Normal view MARC view ISBD view

Investigations on the efficacy of biochar from tender coconut husk for enhanced crop production

By: Mariya Dainy M S.
Contributor(s): P.B. Usha (Guide).
Material type: materialTypeLabelBookPublisher: Vellayani Department of soil science and agricultural chemistry, College of agriculture 2015Description: 208 Pages.Subject(s): Soil science and agricultural chemistryDDC classification: 631.4 Online resources: Click here to access online Dissertation note: PhD Abstract: An investigation was carried out at College of Agriculture, Vellayani to characterize biochar from tender coconut husk and to assess its effects on soil properties, growth and yield of yard long bean (Vigna unguiculata subsp. sesquipedalis). The experiment consisted of production and characterization of biochar, laboratory experiments on nutrient sorption- desorption studies, carbon dioxide emission studies and a field experiment. Biochar was produced from tender coconut husk by the process of pyrolysis and it was crushed, sieved and the 2 mm sieved samples were used for further studies. The produced biochar had an alkaline pH (9.13), high CEC (15.26 cmol kg-1) and C: N ratio (68.86). Electrical Conductivity, total C, N, P, K, Ca, Mg and S contents in the prepared biochar were 1.73 dS m-1, 72.3 per cent, 1.05 per cent, 0.38 per cent, 2.27 per cent, 0.40 per cent, 0.20 per cent and 0.27 per cent respectively. The produced biochar recorded very high water holding capacity (226 per cent), low bulk density (0.14 Mg m-3) and high Brunauer Emmett Teller surface area (157.93 m² g-1) A laboratory experiment was conducted to study the desorption and sorption of nutrients like N, P, K, Ca, Mg, S, Fe, Mn, Zn and Cu using biochar. 32.35 per cent NH4+, 75.65 per cent PO42-, 45.14 per cent K+, 46.00 per cent Ca2+, 23.45 per cent Mg2+, 74.38 per cent SO42-, 36.80 per cent Fe2+, 30.20 per cent Mn2+, 26.75 per cent Zn2+ and 26.72 per cent Cu2+ were found to be desorbed from biochar after 7 rinses using de-ionized water in 1:100 ratio. The highest per cent of nutrient desorbed was P (75.65 per cent), followed by S (74.38 per cent) and the lowest per cent of nutrients desorbed were Zn (26.75 per cent) and Cu (26.72 per cent) within 72 hours. Sorption experiments were performed using rinsed biochar at different concentrations of nutrients and at different time intervals in 1:100 ratio. The results of the study indicated that biochar could sorb 100 per cent NH4+, 90.70 per cent PO42-, 92.00 per cent K+, 87.00 per cent Ca2+, 86.15 per cent Mg2+ and 91.82 per cent SO42- when it was equilibrated with 100ppm solutions within 24hours. For micronutrients, when 50 mg l-1 Fe2+, Mn2+, Zn2+ and Cu2+ solutions were given, biochar could sorb 99.67 per cent, 100 per cent, 99.12 per cent and 99.12 per cent respectively. Biochar from tender coconut husk is a good sorber and slow releaser of nutrients. An incubation study was carried out to estimate and study the pattern of carbon dioxide emission by the application of biochar into soil and it was compared with that of common organic amendments viz. FYM and vermicompost. The experiment consisted of 7 treatments with 3 replications and the study revealed that the cumulative amount of carbon dioxide emitted was highest for FYM @ 2 per cent (1014.05 mg CO2 100 g-1) and biochar @ 2 per cent registered an emission of 87.17 mg CO2 100 g-1 after 6months of incubation. There observed 91.40 per cent reduction in CO2 emission when soil was incubated with biochar @ 2 per cent compared to 2 per cent FYM. A field experiment was carried out with biochar and other commonly used organic manures at different doses using yard long bean variety Vellayani Jyothika as the test crop during January 2013 to April 2013, at the Instructional farm, College of Agriculture, Vellayani. Yield (1358 g plant-1) and yield attributes like pod length (54.50 cm), pod girth (3.90 cm), number of pods per plant (51), nutrient uptake and B: C ratio were significantly superior for the treatment T8 which received biochar @ 20 t ha-1 with 2 per cent PGPR and NPK as per POP. Physical properties chemical properties of the soil were significantly improved by the application of biochar @ 30 t ha-1. Biochar application reduced the bulk density, increased water holding capacity, water stable aggregates, pH, Cation Exchange Capacity, organic carbon status and nutrient availability. From the investigations, it can be concluded that application of biochar @ 20 t ha-1 along with 2 per cent PGPR and NPK as per POP which resulted in the yield of 1358 g plant-1 (20.12 t ha-1) can be considered as the economically viable and the best treatment. Biochar from tender coconut husk can be used as a good soil amendment which can improve soil health and enhance crop production.
List(s) this item appears in: 2014 -17
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Theses Theses KAU Central Library, Thrissur
Theses
Reference Book 631.4 MAR/IN (Browse shelf) Not For Loan 173480

PhD

An investigation was carried out at College of Agriculture, Vellayani to characterize biochar from tender coconut husk and to assess its effects on soil properties, growth and yield of yard long bean (Vigna unguiculata subsp. sesquipedalis). The experiment consisted of production and characterization of biochar, laboratory experiments on nutrient sorption- desorption studies, carbon dioxide emission studies and a field experiment.
Biochar was produced from tender coconut husk by the process of pyrolysis and it was crushed, sieved and the 2 mm sieved samples were used for further studies. The produced biochar had an alkaline pH (9.13), high CEC (15.26 cmol kg-1) and C: N ratio (68.86). Electrical Conductivity, total C, N, P, K, Ca, Mg and S contents in the prepared biochar were 1.73 dS m-1, 72.3 per cent, 1.05 per cent, 0.38 per cent, 2.27 per cent, 0.40 per cent, 0.20 per cent and 0.27 per cent respectively. The produced biochar recorded very high water holding capacity (226 per cent), low bulk density (0.14 Mg m-3) and high Brunauer Emmett Teller surface area (157.93 m² g-1)
A laboratory experiment was conducted to study the desorption and sorption of nutrients like N, P, K, Ca, Mg, S, Fe, Mn, Zn and Cu using biochar. 32.35 per cent NH4+, 75.65 per cent PO42-, 45.14 per cent K+, 46.00 per cent Ca2+, 23.45 per cent Mg2+, 74.38 per cent SO42-, 36.80 per cent Fe2+, 30.20 per cent Mn2+, 26.75 per cent Zn2+ and 26.72 per cent Cu2+ were found to be desorbed from biochar after 7 rinses using de-ionized water in 1:100 ratio. The highest per cent of nutrient desorbed was P (75.65 per cent), followed by S (74.38 per cent) and the lowest per cent of nutrients desorbed were Zn (26.75 per cent) and Cu (26.72 per cent) within 72 hours. Sorption experiments were performed using rinsed biochar at different concentrations of nutrients and at different time intervals in 1:100 ratio. The results of the study indicated that biochar could sorb 100 per cent NH4+, 90.70 per cent PO42-, 92.00 per cent K+, 87.00 per cent Ca2+, 86.15 per cent Mg2+ and 91.82 per cent SO42- when it was equilibrated with
100ppm solutions within 24hours. For micronutrients, when 50 mg l-1 Fe2+, Mn2+, Zn2+ and Cu2+ solutions were given, biochar could sorb 99.67 per cent, 100 per cent, 99.12 per cent and 99.12 per cent respectively. Biochar from tender coconut husk is a good sorber and slow releaser of nutrients.
An incubation study was carried out to estimate and study the pattern of carbon dioxide emission by the application of biochar into soil and it was compared with that of common organic amendments viz. FYM and vermicompost. The experiment consisted of 7 treatments with 3 replications and the study revealed that the cumulative amount of carbon dioxide emitted was highest for FYM @ 2 per cent (1014.05 mg CO2 100 g-1) and biochar @ 2 per cent registered an emission of 87.17 mg CO2 100 g-1 after 6months of incubation. There observed 91.40 per cent reduction in CO2 emission when soil was incubated with biochar @ 2 per cent compared to 2 per cent FYM.
A field experiment was carried out with biochar and other commonly used organic manures at different doses using yard long bean variety Vellayani Jyothika as the test crop during January 2013 to April 2013, at the Instructional farm, College of Agriculture, Vellayani. Yield (1358 g plant-1) and yield attributes like pod length (54.50 cm), pod girth (3.90 cm), number of pods per plant (51), nutrient uptake and B: C ratio were significantly superior for the treatment T8 which received biochar @ 20 t ha-1 with 2 per cent PGPR and NPK as per POP. Physical properties chemical properties of the soil were significantly improved by the application of biochar @ 30 t ha-1. Biochar application reduced the bulk density, increased water holding capacity, water stable aggregates, pH, Cation Exchange Capacity, organic carbon status and nutrient availability.
From the investigations, it can be concluded that application of biochar @ 20 t ha-1 along with 2 per cent PGPR and NPK as per POP which resulted in the yield of 1358 g plant-1 (20.12 t ha-1) can be considered as the economically viable and the best treatment. Biochar from tender coconut husk can be used as a good soil amendment which can improve soil health and enhance crop production.

There are no comments for this item.

Log in to your account to post a comment.
Kerala Agricultural University Central Library
Thrissur-(Dt.), Kerala Pin:- 680656, India
Ph : (+91)(487) 2372219
E-mail: librarian@kau.in
Website: http://library.kau.in/