Normal view MARC view ISBD view

Estimation of Soil Moisture Indices using Diffuse Reflectance Spectroscopy

By: Sarathjith M C.
Contributor(s): Anu Vaghese (Guide).
Material type: materialTypeLabelBookPublisher: Tavanur Kelappaji college of Agricultural Engineering and Technology 2019Description: 86p.Subject(s): Agricultural Engineering and TechnologyDDC classification: 631.3 Online resources: Click here to access online Dissertation note: M.tech Abstract: Rapid and reliable estimation of soil moisture constants namely, field capacity (FC) and wilting point (WP) is significant for scientific irrigation scheduling. The conventional methods for their estimation are cumbersome, time consuming and not suitable for their estimation at different space and time domains. An alternative would be the use of diffuse reflectance spectroscopy (DRS) for which the development of calibration functions that link the soil attributes with spectral signature is a major pre-requisite. In this study, the utility of spectral index, feature projection of full-spectrum and variable selection approaches namely, normalized difference reflectance index (NDRI), partial least squares regression (PLSR) and ordered predictor selection (OPS), respectively to build accurate and less complex calibration functions was evaluated. The performance of calibration functions were judged in terms residual prediction deviation (RPD) criteria. The NDRI based calibration functions developed in this study do not comply with the minimum accuracy level (RPD<1.4) expected from DRS analysis. In contrast, both full-spectrum based PLSR and OPS approaches yielded calibration functions which were capable for accurate (RPD>2.0) and moderate (1.4<RPD>2.0) estimation of FC and WP, respectively. Specifically, the full-spectrum based calibration function developed using second derivative of reflectance was found to be the best for both FC (RPD=2.01) and WP (RPD=1.74). The OPS approach in conjunction with variable indicators namely, combination of regression & correlation coefficient (β-r) and combination of adjacency values of mutual information & signal-to-noise vector (AMI-StN) yielded best calibration functions in case of FC and WP, respectively. The calibration functions so developed consisted of only 19.09% (FC) and 34.39% (WP) of total number of spectral variables as that in full-spectrum. Thus, the result of the study advocate the use of OPS approach to develop simple and parsimonious calibration functions to estimate FC and WP from spectral signature of soil.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Theses Theses KAU Central Library, Thrissur
Theses
Reference Book 631.3 SAR/ES PG (Browse shelf) Not For Loan 174724

M.tech

Rapid and reliable estimation of soil moisture constants namely, field capacity (FC) and wilting point (WP) is significant for scientific irrigation scheduling. The conventional methods for their estimation are cumbersome, time consuming and not suitable for their estimation at different space and time domains. An alternative would be the use of diffuse reflectance spectroscopy (DRS) for which the development of calibration functions that link the soil attributes with spectral signature is a major pre-requisite. In this study, the utility of spectral index, feature projection of full-spectrum and variable selection approaches namely, normalized difference reflectance index (NDRI), partial least squares regression (PLSR) and ordered predictor selection (OPS), respectively to build accurate and less complex calibration functions was evaluated. The performance of calibration functions were judged in terms residual prediction deviation (RPD) criteria. The NDRI based calibration functions developed in this study do not comply with the minimum accuracy level (RPD<1.4) expected from DRS analysis. In contrast, both full-spectrum based PLSR and OPS approaches yielded calibration functions which were capable for accurate (RPD>2.0) and moderate (1.42.0) estimation of FC and WP, respectively. Specifically, the full-spectrum based calibration function developed using second derivative of reflectance was found to be the best for both FC (RPD=2.01) and WP (RPD=1.74). The OPS approach in conjunction with variable indicators namely, combination of regression & correlation coefficient (β-r) and combination of adjacency values of mutual information & signal-to-noise vector (AMI-StN) yielded best calibration functions in case of FC and WP, respectively. The calibration functions so developed consisted of only 19.09% (FC) and 34.39% (WP) of total number of spectral variables as that in full-spectrum. Thus, the result of the study advocate the use of OPS approach to develop simple and parsimonious calibration functions to estimate FC and WP from spectral signature of soil.

There are no comments for this item.

Log in to your account to post a comment.
Kerala Agricultural University Central Library
Thrissur-(Dt.), Kerala Pin:- 680656, India
Ph : (+91)(487) 2372219
E-mail: librarian@kau.in
Website: http://library.kau.in/