Normal view MARC view ISBD view

Incorporation of Resistance to Fruit Cracking in a bacterial Wilt Resistant Genetic Background in Tomato

By: Sadhan Kumar P G.
Contributor(s): Rajan S (Guide).
Material type: materialTypeLabelBookPublisher: Vellanikkara Department of Olericulture, College of Horticulture 1995DDC classification: 635.6 Online resources: Click here to access online Dissertation note: PhD Abstract: An investigation on “Incorporation of resistance to fruit cracking in a bacterial wilt resistant genetic background in tomato” was undertaken in the Department of Olericulture, College of Horticulture, Vellanikkara during the period from January, 1991 to March, 1994. The findings are succinctly mentioned below. Evaluation for bacterial wilt resistance revealed that Sakthi and LE 79 – 5 are consistently resistant to bacterial wilt. Four addition sources of bacterial wilt resistance were identified viz., LE 214, CAV – 5, LE 415 and LE 382 – 1. Resistances to bacterial wilt in these lines was governed by recessive genes. Screening for resistances to fruit cracking resulted in the identification of fifteen tomato genotypes which were found to be resistant to both radial and concentric cracking. Resistances to concentric fruit cracking in these lines were found to be dominant. All the bacterial wilt resistant genotypes had a higher content of total phenols, O.D. phenol and ascorbic acid than the susceptible line pusa Ruby. The crack resistant varieties had a higher content of insoluble solids and pectin, lower content of acidity, total sugar and reducing sugar in fruits, thick fruit skin and pericarb as compared to susceptible variety. The elasticity of skin was also higher in crack resistant genotypes. Crack resistant varieties had a compact arrangement of parenchymatous cells when compared with crack susceptible variety. The resistant lines had a thicker cuticle also. The F1 S developed by line x tester crossing were susceptible to bacterial wilt. All the same, they were resistant to both radial and concentric fruit cracking indicating dominant gene action for crack resistance. The F2 segregants with combined resistance to both bacterial wilt and fruit cracking were selected for further improvement.
List(s) this item appears in: Tomato
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
Theses Theses KAU Central Library, Thrissur
Theses
635.6 SAD/IN (Browse shelf) Available 170759

PhD

An investigation on “Incorporation of resistance to fruit cracking in a bacterial wilt resistant genetic background in tomato” was undertaken in the Department of Olericulture, College of Horticulture, Vellanikkara during the period from January, 1991 to March, 1994. The findings are succinctly mentioned below.
Evaluation for bacterial wilt resistance revealed that Sakthi and LE 79 – 5 are consistently resistant to bacterial wilt. Four addition sources of bacterial wilt resistance were identified viz., LE 214, CAV – 5, LE 415 and LE 382 – 1. Resistances to bacterial wilt in these lines was governed by recessive genes.
Screening for resistances to fruit cracking resulted in the identification of fifteen tomato genotypes which were found to be resistant to both radial and concentric cracking. Resistances to concentric fruit cracking in these lines were found to be dominant.
All the bacterial wilt resistant genotypes had a higher content of total phenols, O.D. phenol and ascorbic acid than the susceptible line pusa Ruby.
The crack resistant varieties had a higher content of insoluble solids and pectin, lower content of acidity, total sugar and reducing sugar in fruits, thick fruit skin and pericarb as compared to susceptible variety. The elasticity of skin was also higher in crack resistant genotypes. Crack resistant varieties had a compact arrangement of parenchymatous cells when compared with crack susceptible variety. The resistant lines had a thicker cuticle also.
The F1 S developed by line x tester crossing were susceptible to bacterial wilt. All the same, they were resistant to both radial and concentric fruit cracking indicating dominant gene action for crack resistance. The F2 segregants with combined resistance to both bacterial wilt and fruit cracking were selected for further improvement.


There are no comments for this item.

Log in to your account to post a comment.
Kerala Agricultural University Central Library
Thrissur-(Dt.), Kerala Pin:- 680656, India
Ph : (+91)(487) 2372219
E-mail: librarian@kau.in
Website: http://library.kau.in/