Normal view MARC view ISBD view

Genetic Analysis of Segregating Generations of Irradiated Interspecific Hybrids in Okra

By: Sophia John.
Contributor(s): Manju P (Guide).
Material type: materialTypeLabelBookPublisher: Vellayani Department of Plant Breeding and Genetics, College of Agriculture 1997Description: 166.DDC classification: 630.28 Online resources: Click here to access online Dissertation note: MSc Abstract: A study* was. conducted in the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani during l996-'97 to estimate the extent of variability generated in the f 2M? and F3M3 generations as a result of hybridisation and hybrid irradiation of the interspecific hybrids between A. s esculenins and A. manihot and also to isolate high yielding yellow vein mosaic disease resistant lines from among the segregating generations In the l-^M-, generation, the irradiated treatments were found to be late flowering and had more number of leaves per plant, flowers per plant and fruits per plant Irradiation was found to increase pollen sterility and was maximum in 10 kR However seed set was lower for the irradiated treatments. Average fruit weight and weight of fruits per plant was maximum in plants belonging to the treatment 20 kR. Fruit length and girth were found to increase with increasing radiation doses. Number of ridges per fruit, fruiting phase and plant duration were higher in the irradiated treatments when compared to 0 kR and was maximum in 40 kR Plant height was highest in the treatment 30 kR Irradiation was found to increase YVM disease incidence and fruit and shoot borer incidence and it was maximum in 30 kR among the irradiated treatments. However a few high yielding YVM disease resistant plants resembling the cultivated parent were also observed in 30 kR ■Genotypic coefficient of variation, heritability and genetic advance were high for number of branches per plant and number of seeds per fruit in all the irradiated treatments in F2M2. High heritability with high genetic advance were observed for leaf number, number of flowers per plant, Iruits • ' per plant and pollen sterility in 20 kR and 30 kR. Significant positive * . correlation of number of leaves per plant, flowers per plant and fruits per plant with weight of fruits per plant and also among themselves was observed in all the irradiated treatments in F2M0. Average fruit weight and fruit yield A* • 0 per plant were positively correlated in treatments 0 kR, 10 kR, 40 kR, P, and P2. % In F3M3 the irradiated treatments were found to be late flowering and had more number of leaves, branches, flowers and fruits per plant. Pollen sterility was lower for the irradiated treatments, when compared to the unirradiated treatment and was lowest in 30 kR. However the number of seeds per fruit was more in 30 kR compared to the other treatments excluding parental treatments. Irradiation was found to decrease average fruit weight but fruit yield per plant was more for the irradiated treatments due to the larger number of fruits and was maximum in 40 kR. Length of fruit increased with increasing radiation doses. Significant differences among the irradiated treatments were not observed with respect to number of ridges per fruit. Irradiation was found to increase the fruiting phase as well as plant duration. Plant height was maximum in 10 kR when compared to all the other treatments. Yellow vein mosaic disease incidence was high in the cultivated parent and the higher dose radiation treatments viz , 30 kR and 40 kR. From the present study *a few recombinants which resembled the cultivated parent, with high yield and YVM disease resistance could be isolated from 30 kR, which suggested that 30 kR could be ideal radiation dose for evolving high yielding YVM disease resistant lines in okra. Fruit and shoot borer incidence was highest in the cultivated parent and was also high in 30 kR. High to moderately high genotypic coefficient of variation was observed.lor number of branches per plant, leaves per plant, flowers per plant, fruits per plant, weight of fruits per plant and number of seeds per fruit in all irradiated treatments in F3M3. High heritability and genetic advance were observed lor number of fruits per plant, weight of fruits per plant, flowers per plant and pollen sterility in all the irradiated treatments. Number of leaves per plant, flowers per plant and fruits per plant were positively correlated with fruit yield per plant in all the treatments while average fruit weight had significant positive correlation with fruit yield per plant in 0 kR, P, and P2 in the F3M3 generation. As a future line of work, high yielding, YVM disease resistant plants assembling the cultivated parent which have been isolated from the treatment 30 kR will be further evaluated for a few more generations and if found superior and YVM disease resistant it will finally be developed into a YVM disease resistant variety.
List(s) this item appears in: theses okra | OKRA
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
Theses Theses KAU Central Library, Thrissur
Theses
630.28 SOP/GE (Browse shelf) Available 171300

MSc

A study* was. conducted in the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani during l996-'97 to estimate the extent of variability generated in the f 2M? and F3M3 generations as a result of hybridisation and hybrid irradiation of the interspecific hybrids between A.
s
esculenins and A. manihot and also to isolate high yielding yellow vein mosaic disease resistant lines from among the segregating generations
In the l-^M-, generation, the irradiated treatments were found to be late flowering and had more number of leaves per plant, flowers per plant and fruits per plant Irradiation was found to increase pollen sterility and was maximum in 10 kR However seed set was lower for the irradiated treatments. Average fruit weight and weight of fruits per plant was maximum in plants belonging to the treatment 20 kR. Fruit length and girth were found to increase with increasing radiation doses. Number of ridges per fruit, fruiting phase and plant duration were higher in the irradiated treatments when compared to 0 kR and was maximum in 40 kR Plant height was highest in the treatment 30 kR Irradiation was found to increase YVM disease incidence and fruit and shoot borer incidence and it was maximum in 30 kR among the irradiated treatments. However a few high yielding YVM disease resistant plants resembling the cultivated parent were also observed in 30 kR
■Genotypic coefficient of variation, heritability and genetic advance
were high for number of branches per plant and number of seeds per fruit in
all the irradiated treatments in F2M2. High heritability with high genetic
advance were observed for leaf number, number of flowers per plant, Iruits • '
per plant and pollen sterility in 20 kR and 30 kR. Significant positive * .
correlation of number of leaves per plant, flowers per plant and fruits per plant with weight of fruits per plant and also among themselves was observed in all the irradiated treatments in F2M0. Average fruit weight and fruit yield
A* • 0
per plant were positively correlated in treatments 0 kR, 10 kR, 40 kR, P, and P2.
%
In F3M3 the irradiated treatments were found to be late flowering and had more number of leaves, branches, flowers and fruits per plant. Pollen sterility was lower for the irradiated treatments, when compared to the unirradiated treatment and was lowest in 30 kR. However the number of seeds per fruit was more in 30 kR compared to the other treatments excluding parental treatments. Irradiation was found to decrease average fruit weight but fruit yield per plant was more for the irradiated treatments due to the larger number of fruits and was maximum in 40 kR. Length of fruit increased with increasing radiation doses. Significant differences among the irradiated treatments were not observed with respect to number of ridges per fruit. Irradiation was found to increase the fruiting phase as well as plant duration. Plant height was maximum in 10 kR when compared to all the other treatments. Yellow vein mosaic disease incidence was high in the cultivated parent and the higher dose radiation treatments viz , 30 kR and 40 kR. From the present study *a few recombinants which resembled the cultivated parent, with high yield and YVM disease resistance could be isolated from 30 kR, which suggested that 30 kR could be ideal radiation dose for evolving high yielding YVM disease resistant lines in okra. Fruit and shoot borer incidence was highest in the cultivated parent and was also high in 30 kR.
High to moderately high genotypic coefficient of variation was observed.lor number of branches per plant, leaves per plant, flowers per plant, fruits per plant, weight of fruits per plant and number of seeds per fruit in all irradiated treatments in F3M3. High heritability and genetic advance were observed lor number of fruits per plant, weight of fruits per plant, flowers per plant and pollen sterility in all the irradiated treatments. Number of leaves per plant, flowers per plant and fruits per plant were positively correlated with fruit yield per plant in all the treatments while average fruit weight had significant positive correlation with fruit yield per plant in 0 kR, P, and P2 in the F3M3 generation.
As a future line of work, high yielding, YVM disease resistant plants assembling the cultivated parent which have been isolated from the treatment 30 kR will be further evaluated for a few more generations and if found superior and YVM disease resistant it will finally be developed into a YVM disease resistant variety.

There are no comments for this item.

Log in to your account to post a comment.
Kerala Agricultural University Central Library
Thrissur-(Dt.), Kerala Pin:- 680656, India
Ph : (+91)(487) 2372219
E-mail: librarian@kau.in
Website: http://library.kau.in/