000 04943nam a22002057a 4500
999 _c154943
_d154943
003 OSt
005 20220425104035.0
008 220425b ||||| |||| 00| 0 eng d
082 _a632.6
_bPRA/PA
100 _aPraveena A
245 _aPathogenicity of indigenous entomopathogenic fungi against select lepidopteran pests
260 _aVellayani
_bDepartment of Agricultural Entomology, College of Agriculture
_c2016
300 _a113 pages
502 _aMsc
520 3 _aThe present study entitled “Pathogenicity of indigenous entomopathogenic fungi against select lepidopteran pests” was carried out in the Department of Agricultural Entomology, College of Agriculture, Vellayani during 2014-2016 with the objective to identify indigenous entomopathogenic fungi and evaluate their pathogenicity to lepidopteran pests of banana and vegetables. Survey was conducted in five agroecological zones of Thiruvananthapuram district at bimonthly intervals during 2015-16, for the isolation of fungi. Fungi from mycosed cadavers and 900 soil samples, collected from cultivated and uncultivated fields were isolated. Of the ten isolates of fungi selected from the 115 fungal isolates obtained, three were from mycosed cadavers which consisted of two isolates of Beauveria bassiana (Balsamo) Vuillemin (SP2 and SP4) and one isolate of Fusarium oxysporum Schlecht (SP1). Of the seven isolates from soil, one isolate was Fusarium solani (Mart.) Sacc. (SP6), five were isolates of Metarhizium anisopliae Metschnikoff (Sorokin) and one isolate was Purpureocillium lilacinum Thorn (Samson). Four isolates of M. anisopliae were trapped using larvae of Galleria melonella L. and one was trapped using grubs of Odoiporous longicollis Olivier. The isolate, S10 was obtained through soil plate method, with selective media. Symptoms of fungal infection varied, which was mainly reflected in the mycelial colour and growth of the isolates. Morphological and cultural characteristics also varied among the fungal isolates. Further, molecular characterization of the fungi was done through ITS sequencing. GenBank accession numbers for all the ten isolates were obtained on submission of nucleotide sequence in National Center for Biotechnology Information (NCBI). Among the various indigenous isolates, highest spore count was recorded in the M. anisopliae isolate, SP11 (28.01 x 107 spores mL-1) at 14 days after inoculation. The pathogenicity of the ten indigenous isolates and two isolates from National Bureau of Agricultural Insect Resources (NBAIR) were evaluated against five lepidopteran insects infesting banana and vegetables at different concentrations. The isolate M. anisopliae (SP8) recorded the highest mortality of 83.33 to 100 per cent and 64.44 to 95.83 per cent against the second instar larvae of Diaphania indica Saunders and first instar larvae of Leucinodes orbonalis Guenee at 107 to 109 spores mL-1 at seven days and five days after treatment respectively. The isolates SP11 and Ma4 of M. anisopliae that caused mortality of 83.33 to 100 per cent and 63.33 to 100 per cent were the most effective isolates against second instar larvae of Sylepta derogata Fabricius and Hymenia recurvalis Fabricius respectively. All the isolates except M. anisopliae (SP11) and B. bassiana (Bb5a) were non pathogenic to the larvae of Spodoptera litura Fabricius. The colour of the mycelial growth varied with isolates. A pot culture experiment was conducted in the Instructional Farm, Vellayani during April to June 2016, for the evaluation of seven indigenous isolates and two NBAIR isolates against leaf webbers in amaranthus, variety Arun. The lowest number of plants infested by webbers, webbings plant-1 and larvae web-1 at 14 days after treatment and the highest yield was recorded in the isolate M. anisopliae (SP11) @ 108 spores mL-1 and it was followed by M. anisopliae Ma4 and SP8 . To conclude, ten indigenous isolates of entomopathogenic fungi were collected from mycosed cadavers and soil and were identified as B. bassiana (SP2, SP4), F. oxysporum (SP1), F. solani (SP6), M. anisopliae (SP7, SP8, SP9, SP11 and SP13) and P. lilacinum (S10) through morphological, cultural characters and molecular characterization. Pathogenicity test to five lepidopteran pests showed that M. anisopliae (SP7, SP8, SP9, SP11, SP13) and NBAIR isolates of B. bassiana (Bb5a) and M. anisopliae (Ma4) were pathogenic to D. indica, H. recurvalis, L. orbonalis and S. derogata. Results of pot culture experiment showed that the indigenous isolates M. anisopliae (SP11) and (SP8) and NBAIR isolate M. anisopliae (Ma4) can be exploited for the management of leaf webbers in amaranthus.
650 _aDepartment of Agricultural Entomology
700 _aSudharma K (Guide)
856 _uhttps://krishikosh.egranth.ac.in/handle/1/5810157666
942 _2ddc
_cTH