SECTION A - GENERAL

i)	Name of the centre with:	The research station is located
	actual location of the	at 10° 20' north latitude and
	research farm	76° 20' east longitude at an
		elevation of 3.25 m above mean
		sea level. The nearest railway
		station is Chalakudy which is
		about 3 km from the research
		station. The farm is situated
		in the Chalakudy municipal area,
		Trichur District.
11)	Name of the project :	Co-ordinated Project for
	х х	Research on Water Management.
iii)		No.F7(4)74-SW & DF dated,
	project	10.6.1975.
iv)	Date of start :	July 1974.
V)	Report period :	1987-88
vi)	Sanctioned budget for 198	7-88 and actual expenditure

headwise furnished in Table-1.

· · ·

Table - 1

Sanctioned budget for 1987-88 and actual expenditure headwise for the year

.

-

83-84, 84-85, 85-86, 86-87 and 87-88

d of account	Sanctioned budget for	Actual expenditure						
مەسەپ مەھەر مەھەر بىلەر بىل	1987-88	1983-84	1984-85 1985-86	.Remarks 1986-87 1987-88				
ay of Officers		88344.72	86548.79 83379.8	37 148131.68 149875.82				
ay of Establish ment	235500/-	41327.55	43374.57 42245.8					
llowances (93901.43	113519.51 145282.6	53 104945.47 86880.32				
ravelling Llowances	10000/-	6922.98	6999.84 9978.3	9700.40 10000.00				
ontingencies:			n di tata ing					
) Recurring	80000/-	96854.31	85982.81 89965.5	1 77005.78 97899.45				
Non-recurring	30000/-	23889.25		- 21021.90				

S. No	8	Name of the Instrument/ Equipment	Date of purcha	E Se ^{No} .	Cost (Rs.)	tock Book entry page	Remarks (ICAR approval Lr.No
(1)	(2)	(3)	(4)	(5)	(6)	(7)
		sture cans minium)	15-3-88	300 nos	1588.0 0	S.R of	A.F.C. dt. - 28.2.88 of ICAR.
2.		luctivity er-systronics	31.3.88	1 No.	4951.40	p.104	11
3.	glas sing llat	er still s vensil le disti- ion er still	19.3.88	1 No .	3392.00	p.102	85
4.	Pock lato	et calcu-se-	31.3.88	1 No.	200.00	p.56 of S.R.F.	R .
5.		speed anical s rer.	31.3.88	1No.	4667.50	_	ŧ
6.	Stev scre	enson en	31.3.88	1No.	2800.00	p.106	, *
7.	shak	seive er with e set.	31.3.88	1 No .	3224.00	p.105	No.PC/B.2 (cky)87-88 dt.14.3.88

vii) Instruments/Equipments purchased during the period

-3-

viii) Staff position

S1.			Name of the	Date of	Date of	an a
NO.	sanction post	ed ^{NO.}	incumbent	joining	leaving	Remarks
	2	3	4 •	5	6	7
1.	Chief Scie					g (specific for any - anno (to magnetic projection and - annual - a - t
	tist	1	Dr.G.Ravindra- nathan Pillai	20.11.80	317.87	
			Mr.P.Chandrase- kharan	36,89	Till dat	e
2.	Agronomis	t 1	Dr.Abdul Salam	205.87	317.87	
						from 1.8.87 onwards
3.	Soil Phys:	icist 1		293.82	Till ,	She was
			kumari		date '	in charge of Chief
						Scientist from
						1.8.87 to 2.6.38.
4	Agrl, Engo	J. 1	Mrs.Lissy Devid Chirayath	177.86	163.88	
						working against the post.
5.	Jr.Agronom	nist 1	Mrs.Reena Mathew	218.87	Till date	ein () O ein
6.	Jr.Soil		Dr.K.A.Mariam	15-12.86	78.87	
	Physicis	st 1 ₂)	Mrs.Manorama Thampatty	1.987	Till date	JAP is working
						against
7.	Jr.Soil Chemist	1	Mr.C.S.Gopi	104.84	Till date	the post.
۰.	Jr. Agri.E	ingg. 1	Mrs.E.V.N.Sheela	177.86		
			ه مرجعة فيحم تاحم		******	working against the post.
9.	JSA/Filed	Asst.31)	Mrs.T.A.Vasanthy	89.86	Till date	
		2) 3)	Mr.M.T.Varghese Mr.P.K.Reghu	86.87	Till date 86.88	
.0.	Jr.Stenogr	apher1.	Mrs.M.A.Sujatha	17.87	20	
			Mr.M.P.Paul			
			Mr.T.R.Bala-	16.86		
3.	Messenger	1 1	Mr.K.Radha- krishnan			

.-

-4-

ix) Brief description of the study area Topography: Flat plains

Soil characteristics

The soils of the study area are in sandy loam texture, with sand 75-85%, silt 4-12% and clay 7-11%. The bulk density of the undisturbed soil varies from 1.3 to 1.6 g/cc.

where the second of the second of the second s

The depth of soil vaires from 45 to 90 cms. The pH and EC of the soil ranges from 5 to 6.1 and 0.2 to 0.5 mmhos/cm respectively.

The content of oganic carbon ranges from 0.57 to 0.64%, the available P_2O_5 from 10-12 kg/ha and available K_2O from 35-39 kg/ha, which are very low.

Farm: The total area of the farm is 8.95 ha of which 7.05 ha is wet land and 1.90 ha upland. The area runs into a finegradient to south west and the wet lands are terraced. The of main sources irrigation water are Chalakudy Irrigation Project, one municipal pond and two wells in the farm, which fulfill the irrigation needs of the farm in most of the months. Water Scarcity will occur in the summer months especially in March-April, during which period the canal irrigation is possible only twice in a week.

Irrigation Project: The Chalakudy Irrigation Project, which is also known as Chalakudy river diversion scheme started functioning in 1966. The water let down after power generation from the two hydroelectric projects of Perinyalkuthu and Sholayar maintains asteady flow of water in the river. The dam was built across the Chalakudy river at Thumburmuzhi.

is wer land and 1.90 he uplant?" The area runs into a find

main Petrotal first of the wifer are childed y inclusion Proyect,

which is about 10 km from the research centre. There are two main canals, viz Right bank canal and left bank canal. The irrigation water from right bank canal is utilized for the irrigation in the farm.

The quality of the irrigation water is good and the conductivity of water ranges from 0.10 to 0.16 mmhos/cm and the PH ranges from 6.0 to 6.6

Command Area: The total area of the Chalakudy command is 19690 ba covering areas under Ernakulam and Trichur districts. The canal water is available throughout the year except the months of of March and April. For the irrigation of Kharif and Rabi crops in /the command areas, adequate water is supplied by canals and during the summer months only about 7000 ha are irrigated by canal, because of the limited supply of water from the hydroelectric projects.

Problems of Watermanagement in the Command area High rainfall especially during Kharif season (south west monsoon) causes water logging in low lying fields which necessitates the development of adequate drainage technology for relating rice crop more profitably during this season. Soil erosion and consequent nutrient loss from the hilly areas of the region warrants the need for soil and moisture conservation studies. The rabid crop is usually subjected to water stress during the later periods of growth, which is the reproductive phase of the crop. Scarcity of irrigation water in summer season stresses the need for the development of suitable rice based cropping pattern which uses water more efficiently and economically. Hence the watermanagement practices in relation to cropping patterns has to be worked out for the system as anwhole rather than individual crops.

The yield of perennial crops such as coconut, arecanut, pepper etc can be boosted up by irrigating them in the dry periods of the year. Hence studies have to be carried out to formulate appropriate irrigation schedules and methods of irrigation for perennial crops. The unavailability of cultivable land necessitates the study of intercropping system in perennial crops and their water requirement. Loss of water during conveyance and distribution is estimated to be very high for which technologies have to be formulated to minimise these losses.

x) Weather during the study period

The daily record of rainfall and the weekly weather data during the year 1987 are furnished in Table II and III respectively and Fig.1.

-7-

During the year 1987, the maximum rainfall of 926.6 mm was received during the month of June followæd by August and July (542.4 and 456.88 mm) respectively. All the months from May '87 to December '87 received rainfall above 200 mm. But during the months from January to April no rainfall have been received except for the month of March which received only 6 mm. Emissureven distribution of rainfall during the year, causes water logging as well as moisture stress condition.

**** 8 ****

The total rainfall received during the year under report is 2975.8 mm as against 2341 mm during the year 1986.

The maximum temperature of 36.97°c was recorded during the 3rd week of April and the minimum temperature of 18.5 °c was recorded during the last week of December. Relative humidity in the morning was maximum during the second week of June (97.86%) and in the evening during the fourth week of October (92%).

The values on open pan evaporation was ranging from 1.46 to 5.45 mm/day. During summer season, the mean evaporationwas 4.37 mm/day.

	Daily record of rainfall (MM) during the year 1967 de Age Chalakudy												
Date	Ja	n.	Feb.	March	April	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
 All integration of the second system of the second system. 	a and a state of a state of a state of the s	,	وي دور و دو دو دو د دو دو دو دو دو دو دو دو دو	er (* 14) er Maar Plaaske faar wetsterer en gemangerige daer	ang ding sa sang sa sang sa	13.0	25.2	67.0	an a		24.0	18.4	
1							62.2	18.0					
2							143.2	11.0	6.8		1.4		
3.							8.5	30.0	17.0	2.2	9.6		
4							23.0	46.2		31.0		0.4	1.2
5							7.0	29.2					
22								21.4	22.4			28.0	19.6
7							6.0	16.0			0.6	27.2	
8							10.2	50.0			36.0	4.2	62.0
9 10			1				2.2	2.6			0.6	29.2	81.2
							22.3	8.2	8.0				
11 12							5.2	2.0	34.2		24.0		
13						0.2	32.2		46.2				1.8
13							11.0	4.2	25.8		5.4		
							49.0	92.2	3.0			9.4	37.4
15 16						5.7	55.2		7.0	28.0	10.2		
						6.7	31.1		32.0		5.4		
17 18							86.8	7.0	35.3	3.2			
						10.6			45.2	4.2		14.0	
19							18.0		12.0	78.2	10.0	58.2	
20										allan yan wax vangentalaan analangan san van san a	and and a second se	antar externe and the second secon	naassaan ahaa kaalaa kaalaa ka kuun ka kaalaa ka kaalaa ka kaalaa ka kaalaa ka kaalaa ka kaalaa ka ka ka ka ka

Table 2

Daily record of rainfall (mm) during the year 1987 at Agronomic Research Station,

.

4

1

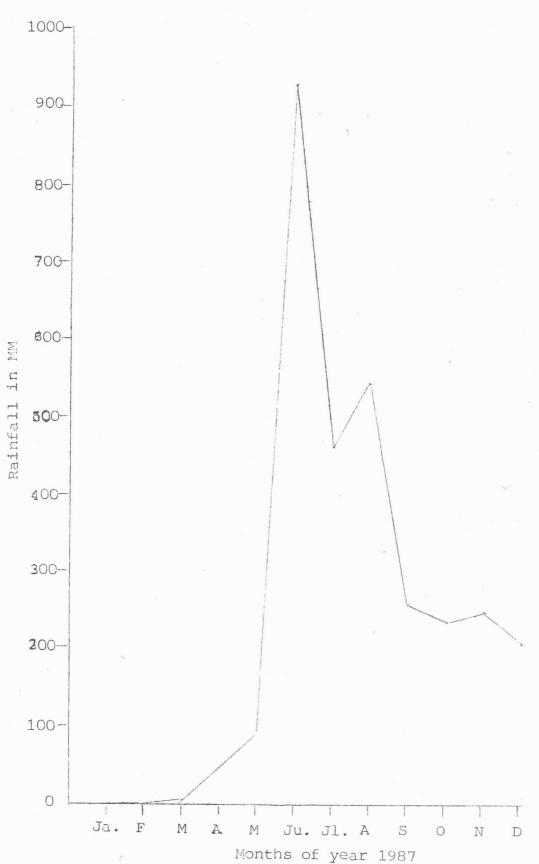
0

. Mar. April	Mayz	June	July	Aug.	Sept.	Oct.	Nov .	Dec,
6.0	2.0			23.3		18.4		
			3.4	15.0		38.2	15.4	
	6.8	117.1		7.6	4.2			5.3
			4.0	63.4	66.0		3.4	
		1.0	20.0	42.0	12.8	6.4	38.2	
	13-C	13.6		28.4		9.2		
		126.0		22.2		12.2		
		52.2		9.2		5.0		
			19.4	36.2				
	1.2	18.0			28.6	15.0		
						2.0		
6.0 -	97.5	926.6	456.8	542.2	258.4	233.6	246.0	208.5
1	8	25	21	22	10	19	12	7
	6.0	6.0 2.0 6.8 73.6 1.2 6.0 - 97.5	$\begin{array}{rcrcrcccccccccccccccccccccccccccccccc$	Mar. April May June July 6.0 2.0 3.4 6.8 117.1 4.0 1.0 20.0 1.0 20.0 1.0 20.0 1.0 20.0 1.0 20.0 1.0 20.0 1.0 20.0 1.0 20.0 1.2 13.6 1.2 19.4 1.2 18.0 6.0 - 97.5 926.6	Mar. April May June July Aug. 6.0 2.0 23.3 3.4 15.0 3.4 15.0 6.8 117.1 7.6 4.0 63.4 1.0 20.0 42.0 4.0 63.4 1.0 20.0 42.0 4.0 13.6 28.4 126.0 22.2 52.2 9.2 19.4 36.2 1.2 18.0 18.0 36.2	Mar. April May June July Aug. Sept. 6.0 2.0 23.3 3.4 15.0 6.0 2.0 23.3 3.4 15.0 6.8 117.1 7.6 4.2 4.0 63.4 66.0 1.0 20.0 42.0 12.8 10.0 12.8 1.0 20.0 42.0 12.8 126.0 22.2 52.2 9.2 19.4 36.2 1.2 18.0 28.6 6.0 97.5 926.6 456.8 542.2 258.4	Mar. April May June July Aug. Sept. Oct. 6.0 2.0 23.3 18.4 3.4 15.0 38.2 6.8 117.1 7.6 4.2 4.0 63.4 66.0 1.0 20.0 42.0 12.8 6.4 13.6 28.4 9.2 126.0 22.2 12.2 52.2 9.2 5.0 19.4 36.2 1.2 1.2 18.0 28.6 15.0 2.0 6.0 - 97.5 926.6 456.8 542.2 258.4 233.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table III

Weekly weather data recorded during the year 1987 at Agronomic Research Station, Chalakudy

Standard	Tempe: (°¢	cature	Rela Humid		Pan eva- poration	Wind speed
week	Max.	Min.	I	II	(mm/day)	(km/ day)
January						
1. 1 to 7 2. 8 to 14 3. 15 to 21 4. 22 to 28 5. 29 to 4	32.87 33.90 33.43 34.43 33.89	19.09 21.40 18.79 19.30 19.80	71.43 79.00 83.57 84.00 74.57	39.40 38.71 29.43 31.14 38.14	3.64 3.53 3.97 4.12 4.26	42.86 36.86 54.0 50.43 49.86
Pebruary	а. А					-1 10
6. 5 to 11 7. 12 to 18 8. 19 to 25 9. 26 to 4	34.34	·20.06 18.86 22.54 22.40	68.57 80.57 78.42 81.29	34.43 32.57 45.57 37.86	4.04 4.23 4.39 4.30	51.43 51.14 58.14 74.0
<u>March</u> 10. 5 to 11 11. 12 to 18 12. 19 to 25 13. 26 to 1	36.03 35.24 35.33 36.31	22.52 22.73 21.60 23.21	76.43 72.70 78.14 69.00	31.71 40.14 39.57 42.57	4.62 4.78 4.61 4.69	57.43 88.14 74.43 66.29
April 14. 2 to 8 15. 9 to 15 16. 16 to 22 17. 23 to 29 18. 30 to 6	35.44 34.54 36.97 35.50 35.03	24.89 25.41 26.00 25.03 24.10	78.93 73.36 73.07 87.07 73.36	44.86 52.93 52.57 53.29 49.43	4.65 4.57 5.17 4.22 4.91	70.00 81.71 78.14 70.14 74.0
May 19. 7 to 13 20. 14 to 20 21. 21.to 27 22. 28 to 3	36.41 35.20 34.31 34.75	25.03 23.83 23.43 23.77		42.00 51.64 58.5 45.29	4.34 3.62	84.29 58.57 49.43 66.00
June 23. 4 to 10 24. 11 to 17 25. 18 to 24 26. 25 to 1	30.11 31.01	23.69 23.90	94.93 97.86 86.29 91.57	53.14 58.29	1.46 3.15	42.43 78.57
July 27. 2 to 8 28. 9 to 15 29. 16 to 22 30. 23 to 29	30.66 30.80	23.07 24.53	94.64 93.21 90.86 88.86	81.93 70.14	3.53	48.57 43.00 73.71 84.71


-11-

(Contd.. Table III)

Augi	ust			5 NG		i de la compañía de l En esta de la compañía				
31. 32. 33. 34. 35.	6 13 20	to to to	19		30.44 31.00 29.86 29.57 30.57	20.61 23.79 23.94 23.21 23.36	82.00 88.57 94.71 92.57 94.29	73.93 66.14 73.00 87.71 76.14	3.60 3.39 3.37 3.46 3.40	50.71 42.43 41.43 59.29 56.00
Sep	teml	ber								
36. 37. 38. 39.	10 17	to to	23	* * * *	30.96 32.06 33.21 32.54	23.50 24.43 23.50 24.09	70.86 85.00 94.29 89.71	66.43 61.43 63.00 57.00	3.71 3.75 3.83 3.78	54.00 86.57 47.43 55.57
Octo	obei	2								
40. 41. 42. 43. 44.	8 15 22	to to	21		31.61 32.36 32.21 33.14 33.31	23.74 24.50 24.21 24.04 23.86	88.21 87.43 84.71 91.00 85.79	73.57 76.64 80.86 92.00 75.36	3.65 3.66 3.74 3.72 3.51	41.71 41.86 48.86 36.43 38.57
Nove	embe	er								
45. 46. 47. 48.	12 19	to to	18		32.81 32.24 33.00 32.36	23.64 23.61 22.54 20.47	90.43 85.29 91.21 83.43	65.43 66.21 67.00 64.5	3.24 3.51 3.43 2.64	36.71 32.71 33.71 22.57
Dece	embe	er				×				
49. 50. 51. 52. 53.	10 17 24	to to			32.19 32.04 32.36 33.07 32.07	18.64 22.44 21.21 19.86 18.5	90.71 86.07 83.14 81.86 84.29	66.14 66.00 62.36 52.36 54.79	1.73 2.53 2.74 3.20 2.94	45.43 45.43 37.29 48.14 41.86

· ·

*I - Morning observation II - Afternoon observation

Monthly rainfall 1987

SECTION - B

-13-

Objectives of the Centre

The main objectives are:

- To develop cropping pattern suitable for varying water management and fertility situations.
- 2. To test new crops and varieties for their adaptability and performance under different moisture conditions.
- 3. To estimate the water requirement of annuals like rice, pulses, oilseeds, vegetables, banana, tuber crops and perennials like coconut, arecanut, pepper etc.
- 4. To evolve suitable measures to increase water use efficiency of crops.
- 5. To work out economics and optimum schedules of irrigation of crops cultivated in the region.
- 6. To study the ground water fluctuations, quality of ground water and recycling of drainage water for irrigation.
- 7. To find out cheap and efficient methods of irrigation for different crops.
- 8. To evaluate water conveyance losses through seepage and to develop economically viable design to reduce these.
- 9. To carry out the detailed study of the soil characteristics of the command area soil.
- 10. Conducting on farm water management studies in the farmers field with improved water management techniques developed at the research centre.

--14---SECTION -- C

BRIEF TECHNICAL PROGRAMME OF THE CENTRE

Experime No.	nt ICAR Code No	Title of the experiment	Page No.
I. <u>On</u>	farm water	.management operational research	an Barillo-Manueroredador Ar Anne g
1	WM.21	Studies on "Onfarm irrigation water management in the command of an irrigation minor".	16-27
II. Cro Wate	pping syst er,	ems under constraints of irrigation	
2	WM.5	Studies on rice based cropping pattern under constraints of irrigation water	28-49
II. Irr	igation sc	heduling and water use by crops	
a) <u>Cer</u>			
3	WM.1.1	Effect of varying water regimes on yield of rice under varying levels of soil fertility.	50 ••• 61
b) Othe	er Crope		
1)]	Plantation	crops	
t	L) <u>Coconut</u>		
4	WM.2.1	Studies on the effect of irrigation schedules on the growth and yield of coconut.	62-73
2) 5	Tuber crop	0S	
Ė	() <u>Colocas</u>	ia	
5	WM.2.4	Response of colocasia to varying levels of irrigation under different nitrogen levels	: 74-84
3) (Vegetable	crops	
i) Bitterg		
6	WM.2.2	Water management practices for bittergourd (<u>Momordica Charantia</u> L) under graded doses of nitrogen	85-101
IV. <u>Mulc</u> 1) E	hing and ; anana	irrigation requirement of crops	
7	WM.3	Effect of various mulches on the growth and yield of banana cv.Palayankodan grown under irriga- ted and rainfed conditions.	102-106

(contd..)

V. Soi	l hydro-ph	vsical properties
8	WM.15.2	Evaluation of long term effect of canal irrigation on changes in physical and chemical properties 107-114 of soil.
9	WM.9	Studies on soil moisture retention and release characteristics of 115-119 laterite soils of varying percentage of gravel.
VI. Reduc	tion of pe	ercolation losses from rice fields
10	WM.18	Studies on evaluation of different liming materials for seepage control. 120
		am allowang ang ang panganang ang allowang an an ang ang allowang an ang ang allowang ang ang ang ang ang ang ang ang ang

SECTION - D

-16-

이 가지 않는 것이 않는 것 않는 것이 있다.

RESEARCH ACCOMPLISHMENTS

EXPERIMENT NO.1

1. WM.21 : Studies on "Onfamalirrigation water management

in the command of an invigation minor"

Introduction: A compactience of 2013 he of paddy fields was selected for conducting the on form irrightion water management in the command of the Chalakudy irrigation project at Thuravoor Village, near Angamaly in Ernakulam District. This project was commenced from the year 1984-85 and is being continued. The fields are terraced slopes where two or three crops of rice are usually cultivated.

The main objectives of the projects are:

- 1) To study the present water utilization pattern in the command area and to test the field applicability of improved water management technology developed at the research centres on a large scale in farmers fields with a view to increase irrigation water use efficiency.
- 2) To evaluate the impact of adopting a scientifically planned rice based cropping pattern formulated on the basis of the agricultural situation and irrigation water
 - "availability of the locality on increasing the crop production and economic uplift of farmers.
- 3) To generate more effective and field oriented water management technology for easy adoption by farmers on a large scale.

2. Location : The study area is located in Thuravoor Village near Angamaly in Ernakulam District. The area is situated about 18 km. south of the Agronomic Research Station, near Angamaly.

The water from the branch canal of the Left Bank Canal of the Chalakudy Irrigation Project is getting into the field through a single spout. Usually canal water is available from the middle of June to April.

3. Significant highlights of Bench mark Survey indicating water management constraints in Agricultural production.

The project was started with a Socio-economic Survey of the 100 farmers whose area is selected for the study. Complete information about the individual farmers was collected through the survey. The survey indicated the Social and Agricultural background of the farmers.

Class	ification	of farms	No. of farmers
Area of	less than	0.2 ha	55
11		0.2 to 0.5 ha	34
91	58	0.5 to 1 ha	10
Area of	above 1 h	8	
		Total	100

The following are the major problems identified which limit the agricultural production and wastage of irrigation water in the study area.

 The farmers were not following the scientifically planned cropping pattern to the area based on season and availability of irrigation water. This may lead to crop failure especially during summer months.

-17-

- 2) The farmers were practising field to field irrigation resulting in the heavy loss of water and nutrients. Properly laid out irrigation and drainage channels were not seen in the area. Iron toxicity is a major problem in the area especially during rabi and summer season, which may be due to inadequate drainage.
- 3) Staggered planting with different varieites having different duration mostly with low yielding local varieities creates problem for the distribution of water.
- The scientific water management techniques were not practised in the area.
- A. 1) Number and date of Coordination Committee meetings held during the report period.

1.	217.87	5.	131.88
2.	268.87	б.	10.,2.88
3.	159.87	7.	93.88
4.	24.11.87	8.	135.88

ii) Whether group meetings of farmers of the operational research are organised. If yes, their number and subject matter discussed.

Two group meetings of the farmers of the operational research project were organised during the period under report. 1) A Karshaka Seminar and Kissan Mela was organised at Thuravoor on 19.9.87. About 135 farmers participated in the seminar. Director of Extension inaugurated the function which was chaired by Director of Research.

-18-

In the Seminar, Officers of the Department of Agriculture and Command area Development authority actively participated. Scientists of different disciplines from Kerala Agricultural University took classes on the following aspects and actively participated in the discussion.

The main topics discussed in the seminar were 1) Crop management and cropping systems.

2) Improvement of soil fertility.

- Water management of crops like rice, coconut, Pulses &
 Oil seeds, Banana, vegetables, tuber crops etc.
- 4) Manures and fertilizers.
- 5) Irrigation and drainage problem of the area and their management.
- 6) Pests and diseases of crop plants.
- 7) Livestock Management.
- 8) Fish farming.

After the classes there was a live discussion on various problems faced by farmers and the scientists and officers of different departments suggested remedial measures. 2) The second meeting of the farmers was organised on 21.3.88. This programme was conducted as a one day training programme in which about 75 farmers participated. Facilities were made available to the farmers to study the various aspects

of the water management research going on in the station and other stations of University.

iii) Farmers association:

The farmers were organised to form an Association ie. Thuravoor Karshaka Samithi and got officially registered.

-19-

A comittee of the farmers consisting of 9 members including President and Secretary was constituted for the effective implementation of the Programme.

The following improved technologies were recommended and tested in the study area based on the problem identified in the Socio-economic survey.

- i) Suitable cropping patterns were formulated and adopted using varieties of appropriate duration and high yield. Time schedules in different operations and scientific management practices recommended by the Kerala Agricultural University were also transferred.
- ii) Shallow continuous submergence of (5 + 2 cm) water was strictly maintained.
- * iii) Changing the existing practices of field to field irrigation to channel to field irrigation.
 - iv) Providing drainage facilities in the ill-drained areas. Irrigation and drainage channels

The canal water is directed into a pond at the beginning of the study area and from the pond water is let into the field in a pond though a central irrigation channelhaving 50 cm width and 50 cm depth constructed upto the tail end of the field. From this channel, irrigation could be effectively done.

Drainage channels were dug along the southern and northern side of the field which could effectively control the excess water and also the iron toxicity problem and other ill effects of water stagnation.

Input supply

Inputs like fertilizer, pesticides, fungicides and paddy seeds of high yielding varieties were partially supplied from the Lab to Land Programme of the centre.

: 1984-85

5. Year of commencement

6. Area covered

: Study area - 25.3 ha Control area - 23.8 ha

7. i) Dates when water was available at the outlet during the report period.

Canal water was available throughout the months from June to December 1987 and during this period the excess water would flow through the outlet.

From January to May, the spout of the canal remained open for five days continuously and the next five days closed.

ii) Presence of wells/tube wells etc.

One big pond is present in the corner of the study area which can act as a reservoir of the canal water. From the canal spout, the water is collected in this pond and regular flow is maintained; through the field channel by regulating the level of water in the pond.

8. Results of the previous year

The results of the onfarm water management conducted during the year 1985-86 and 86-87 are furnished below.

	1986-87 summer		1986-87 summer	
Particulars	Study area	Control area	Study area	Control area
Grain yield (kg/ha) Straw yield (kg/ha)	2893	1700 2500	3300 3125	1250 1890
Irrigation water used (mm)	1175	1325	1457	1342
Water use efficiency (kg/ha mm)	2.46	1.1	2.85	0.93

9. Description of water management technology demonstrated during the year.

Before starting the cultivation irrigation and drainage channels were laid out in the area under the supervision of the Scientist of Agronomic Research Station, Chalakudy.

During kharif season, there was no need of irrigation in the study area. Hence the water management adopted was the careful maintenance of shallow submergence. Drainage channels were provided throughout the length of the field during this period, so as to enable the flow of the excess water.

During the early periods of rabi season also, no irrigation was necessary. But in the later part of rabi season, irrigation was given and shallow submergence maintained.

In both the seasons, especially in rabi season the crop in certain fields was badly affected by bronzing disease caused by ferrous iron and hence in these fields

flow submergence was practised intermittantly and drainage was provided. In all cases channels to field irrigation was practised.

In the summer season, the crop was irrigated throughout the growth period from the canal. During this season also the bronzing was a serious problem which could be controlled by application of lime and providing drainage.

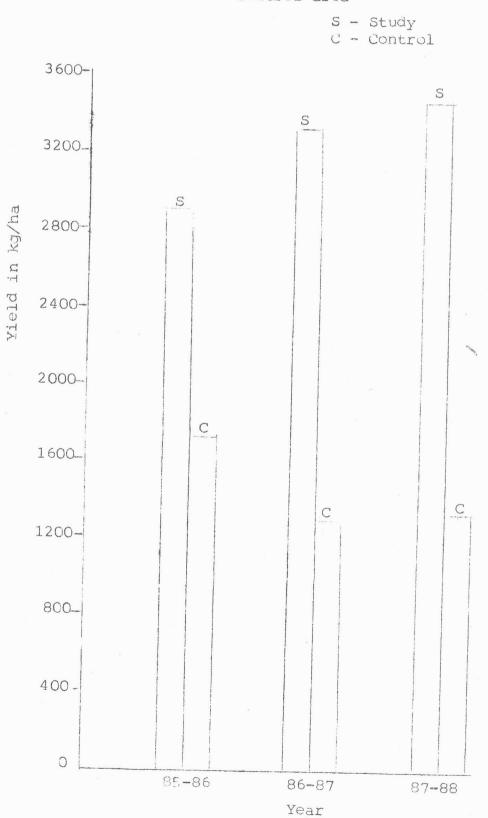
In summer months ie. from January to April, Canal water was available to the study area continuously for 5 days and then no supply for next 5 days. With the result water scarcity was felt in a few fields where we practised continuous submergence at 7 cm depth when canal water was made available. As soon as canal water supply was stopped the ponded water disappeared in two days and the fields were left dry for 2 or 3 days. The station result that irrigation can be prolonged upto 3 days after disappearance of ponded water without any reduction in yield, has been proved convincingly in the study area and the results bear testimony to that. 10.Results obtained during the year.

1) Kharif season

Sowing was done during the third week of June after the application of fertilizers and organic manure as per Package of Practices recommendations. All the operations like land preparation, application of fertilizers, sowing etc. were done as per the time schedule fixed at the instance of the Karshaka Samithi.

-23-

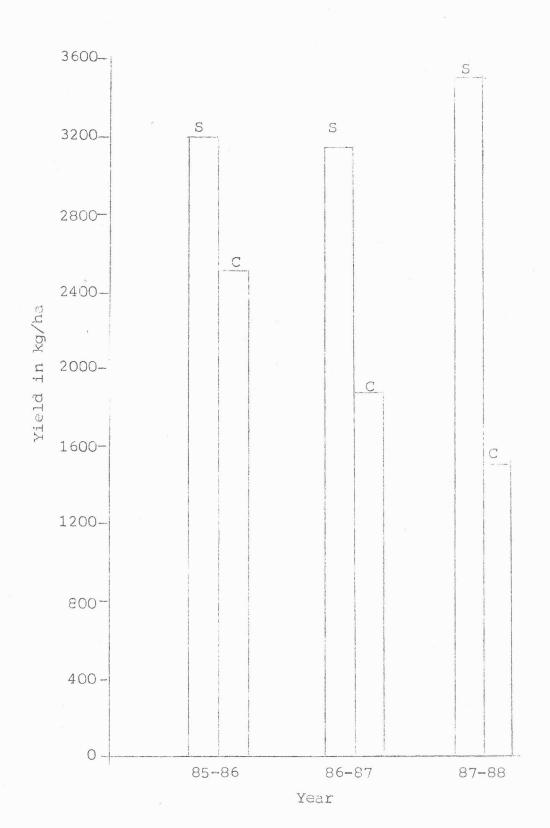
The variety used was Thriveni which is a short duration one and was found to be the most suitable one for the area. During the third week of July weeding was carried out and top dressing with N and K was done. Attack of leaf roller and sheath blight was observed in some areas and could be controlled by the spraying of Ekalux and Hinosan. From the month of June onwards, the maintename of shallow submergence was practised in all the fields. In September, the crop was harvested and the yield data are furnished in the table attached.


2) Rabi season

The medium duration variety Pavizham was sown during the first week of October and all the cultural operation were undertaken as per package of practices recommendation. The attack of case worm and damping off was noticed in most of the fields which could be effectively controlled by the timely application of Ekalux and Hinosan. Top dressing with N and K was done during the third week of November. The attack of stem borer was observed during the tillering stage and Dimecron was sprayed against its attack. The crop was harvested during the last week of January and the yield recorded are furnished in the table attached.

3) Summer season

Thriveni seeds were sown during the 3rd week of February 88. Application of organic manures, fertilizer and lime was done before sowing. Time schedules for all the operations was strictly adhered to. For the summer


-24-

Grain yield in kg/ha in the study and control area

Straw yield in kg/ha in the study and control area

S - Study C - Control

crop the artificial irrigation was a must. For effective utilization of the canal water, one common irrigator was engaged and his wages was paid by Samithi.

Completed the harvest of the summer crop by the fourth week of May and the results are furnished in Table attached.

From the yield data, it can be observed that in all the season maximum yield of grain and straw was obtained from the study area as compared to control area. The grain yield of 2800, 2500 and 2450 was obtained for Kharif, rabi and summer season and in each season the increase over control was 77%, 123% and 165% respectively.

The increase in the yield of straw was also noticed in all the three seasons in the study area.

Hence it can be proved that the yield in farmers fields of fragmented holdings could be increased by adopting Scientific Cultivation and water management practices as group management.

Measurement of irrigation water

The measurement of irrigation water was done during the summer season by measuring the inflow-outflow by using the parshall flumes.

The data on water use is presented on the table attached.

The irrigation water use was 1168 mm in the study area and 1504 mm in the control area. Hence there was a saving of 336 mm of water in the study area by adopting scientific water management. Since the scarcity of

-25-

irrigation water was severe during summer, this saving of water in the study area was quite appreciable.

The water use efficiency in the study area was 2.93 whereas it was 0.86 in the control area. Thus it showed that more grain yield could be obtained per unit of water by following scientific water management practices.

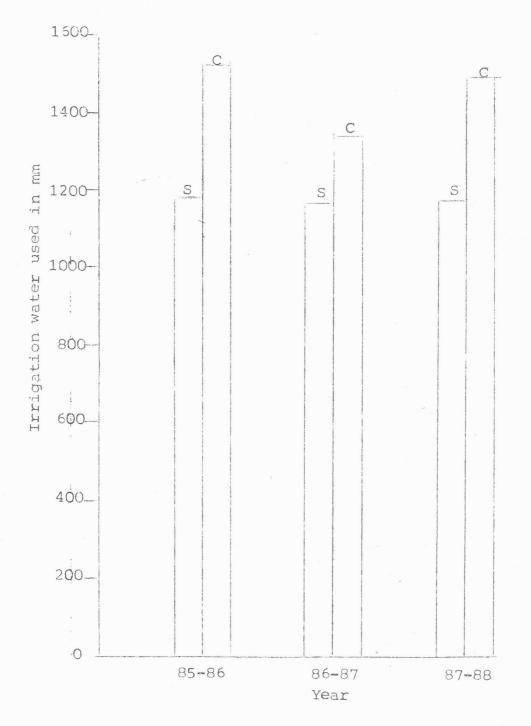
In short the results of the study revealed the possibility of adopting scientific water management practices in rice in farmers field on a large scale by organising the small farmers under group management. Thus the yield of rice could be increased and thereby the income of the farmer on account of irrigation water savings.

11. Difficulties encountered in the implementation of the programme.

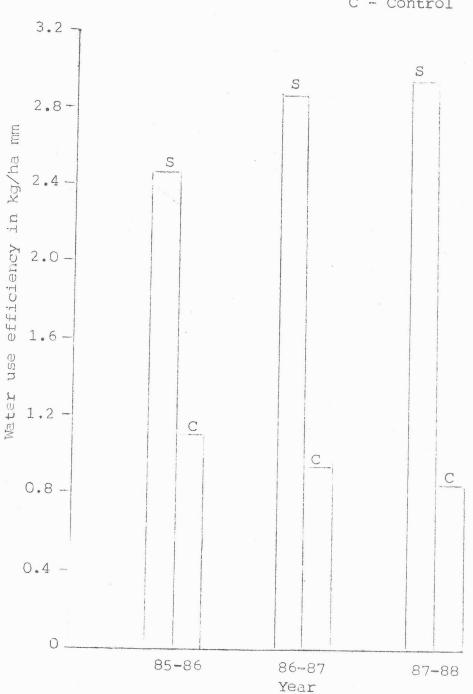
Without giving any financial assistance in kind as fertilizer, pesticides, seeds etc, it was very difficult to organise the farmers.

12. Any other relevant information.

Because of the success of this project in farmers field, the authorities of department of Agriculture, command area development and irrigation render assistance to the farmers in the study area.


During the year under report after the rabi crop, about 750 meters of the irrigation channel was lined with cement concrete with the collaboration of the command area authorities. This channel has been so constructed as to serve as irrigation channel as well as drainage channel by providing holes in different levels. Hence there was no

-26-


Quantity of irrigation water used in mm in the study and control area

S - Study

C - Control

Water use efficiency of the study and control area

S - Study

C - Control

problem of water scarcity during the year. And also draining will not be a problem during the coming years. The command area people agreed to complete the lining of the channel during the ensuing year.

In short this programme in Phyravoor was a grant success. The results revealed that rice yields in the fragmented farm holdings of Korala could be remarkably improved by adopting scientific when management and other cultural operations. These can be effectively and economically carried out through the farmers group organisation.

- mm	7			-1		-1
Tak	21	0	10.05			1
TUY	1	5		ala .	Φ.	-

Yield of rice of the operational research project

nn na faraigeanna ann ann an ann an ann ann ann ann	Khai	Kharif			Summer		
Yield in kg/ha	Study area	Control area	Study area	Control area	Study area	Control area	
Grain	2800	1576	2500	1120	2450	1300	
Straw	3200	1800	2300	1400	3500	1500	

Table-1.2

Water use efficiency of study a rea and control area

nd rates white		Study area	Control area
	Irrigation water used in mm (from February to May)	1163	1504
	Grain yield in kg/ha	3450	1300
	Water use efficiency in kg/ha mm	2.93	0.86

-27-

•••• 28 •••

EXPERIMENT No.2

 Title of the experiment : WM.5 Studies on rice based cropping pattern under constraints of irrigation water.
 Objectives:

a) To find out the appropriate rice based cropping pattern for varying irrigation water supplies.

b) To study thelong term effect of cropping pattern on soil physical-chemical properties.

Rice

3. Year of commencement : 1983. Repeated in the same site with same randomisation.

4. Initial soil characteristics:

5.

6.

a) Soil texture	0.0	Sandy loam
b) pH	e 0	5.2
c) E.C. (millimhos/cm)	0	0.35
d) Organic carbon (percente	BGE):0.39
e) Available P ₂ 0 ₅ (kợ/ha)	0 0	15.2
f) Available K $_2$ O (kg/ha)	00	35.0
g) Available water storage capacity /		11.0
Crop Rotation followed	0	Rice - Rice -
Sowing/Planting		
i) <u>First crop (rice)</u>		
a) Planting	0	15.7.1987
b) Method	80	Transplanting
c) Seed rate	e 0	60 kg/ha
d) Spacing	80	15 cm x 10 cm

-29-

ii) Second crop (Rdde)

a)	Planting	e c	20.10.187
b)	Method of planting	8	Transplanting
e)	Seed rate	0	60 kg/ha
(5	Spacing	0 0	15 cm :: 10 cm

iii) Third crop

1. Rice

- a) Planting : 9.2.88
- b) Method, seed rate and spacing as in the first and second crop.

2. Cowpen

	a)	Sowing	e 0	13.2.88
	b)	Method	0 0	Dibbling
	C).	Spacing	e 0	20 kg/ba
	d)	Spacing	00	25×15 cm
3.	Gro	oundnut		
	a)	Sowing	0 0	13.2.88
	b)	Method	5	Dibbling
	c>	Seed rate	00	75 kernals/ha
	<i>Ö</i> .)	Spacing	0 0	25 x 25 cm
il a	SC	<u>97 num</u>		
	a)	Sowing	0	13.2.88
	b)	Method	0 e	Dibbling
	C)	Seed rate	9	4 kg/ha
	C)	Spacing	80	25 x 15 cm

	~		
	5. Bhindi		
	a) Sowing	: 13.2.88	
	b) Method	: Dibbling	
	c) Seed rate	: 8 kg/ha	
	d) Spacing	: 60 x 50 cm	
7. <u>Ha</u>	rvesting date		
1.	First crop - Rice	: 2.10.87	
2.	Second crop - Rice	: 8. 1.88	
3.	Third crop		
	i) Rice	: 26.4.88	
	ii) Cowpea	: 11.4.88, 30.4.88	
	iii) Groundnut	> The crops were completely damaged	
	iv) Sesamum	, The crops were compretery damaged	•
	v) Bhindi	: 29.3.88, 2.4.88, 5.4.88, 8.4.88	
		11.4.88, 13.4.88, 15.4.88,	
		22.4.88	
8a) Fei	rtilizers and Manures		
1)	Rice		
	NPK	: 70:35:35 kg/ha	
	FYM	: 5t/ha	
ii)	Cowpea		
	NPK	: 20:30:10 kg/ha	
	FYM	: 5 t/ha	
iii)	Groundnut		
	NPK	: 10:75:75 kg/ha	
	FYM	: 5 t/ha	
	Lime	: 1.5 t/ha	

			and when	
.v)	Sesamum			
	NPK		8.0	30:15:30 kg/ha
	FYM		0 0	5 t/ha
V)	Bhindi			
	NPK			25:10:25 kg/ha
	FYM ·		Ф 0	10 t/ha
τ μ.	ind of fertiliser	Ç		N as Urea
f	ormulation	5		P as Single Super Phosphate
				K as Muriate of potash

- a) Mime of application
 - i) <u>Rice</u>: Full dose of FYM and phosphorus and half the dose of nitrogen and potash were applied as basal. The remaining half dose of nitrogenwas applied in two equal splits at the time of active tillering and panicle initiation stages. Half the dose of potash was top dressed at the time of panicle initiation.
 - i) <u>Cowpea:</u> Full dose of FYM, Phosphorus, potash and half dose of nitrogen were applied as basal. The remaining half dose of nitrogen was applied as foliar spray, one month after sowing.

Groundnut: Applied the entire quantity FYM and fertilizers as basal. Lime was applied at the time of flowering and incorporated with the soil.

iv) <u>Sesamum</u>: Full dose of FYM, phosphorus and 3/4 the dose of nitrogen were applied as basal and incorporated into the soil. The remaining dose of N was applied as 3 percent folliar spray after 25th day of sowing.

- v) <u>Bhindi</u>: Full dose of FYM, phosphorus and potash and half dose of nitrogen were applied as basal and remaining half dose of nitrogen was top dressed one month after sowing.
- 9. Irrigation (Treatment-wise) inclusive of presowing irrigation. a) First crop (Rice)

Continuous submergence of Sg 2 cm was given to all plots uniformly by check basin method.

b) Second crop (Rice)

	Water manage	ement practices
Particulars	I -	I 2
1. Date of irrigation		
November '87	14,17,24,29	14,19
December '87	2,5,18	1,8
Total number of irrigation	on 7	4
2. Depth of irrigation water applied each time.	7 cm	7 cm
3. Total water used for the season	490 min	280 mm
4. Mathod of irrigation	Check basin	Check basin

c) Third crop

1. Rice

	Particulars	Water	management	practices
	Falticulars	D ₁	D ₂	D ₃
a)	Dates of irrigation		ų karboning artining	
	March 1988		3,7,15, 22,26,30	3,10,23,28
	April 1988	2,4,6,8, 10,12,15	4,8,12	2,8,13
	Number of irrigations	20	9	7
b)	Depth of water applied each time	1 7 cm	7 cm	7 cm
C)	Total water applied during crop season	1400 mm	630 mm	490 mm
d)	Method of irrigation followed.	Check basin	Check basin	Check basin

2. Other crops in the sequence

Particulars -		Water man	nagement	practices
	I ₁	1 ₂	I ₃	I ₄
Date of irrigation		900/00100000000000000000000000000000000	an a	
March 1988	allege .	27	20	13, 27
April 1988	*****	inces	2	5
Number of irrigation	100	1	2	3

-33-

10. Layout of the experiment.

First crop season

Rice was raised in all the plots giving uniform package of practices.

Second crop season

Crop : Rice

Design : Randomised block design

Cocetments : 2

 I₁ - 7 cm irrigation one day after the disappearance of ponded water.

 I₂ - 7 cm irrigation three days after the disappearance of ponded water.

No. of blocks : 60

Total No. of plots : $60 \times 2 = 120$

Third crop season

Design : Split plot design

Main plot treatments: 5 (cropping sequences)

Sub plot treatments : 6 (3 irrigation levels each for the two irrigation levels of the previous season).

Feplication : 4

Creatments

Cropping sequences : 5

C1 : Rice - Rice - Rice

Co : Rice - Rice - Cowpea

Ca : Rice - Rice - Groundnut

 C_4 : Rice - Rice - Sesamum

C₅ : Rice - Rice - Bhindi

Irrigation levels : 3

Rice

- D₁ 7 cm irrigation one day after the disappearance of ponded water.
- D₂ 7 cm irrigation three days after the disappearance of ponded water.
- D₃ 7 cm irrigation five days after the disappearance of ponded water.

Cowpea, Groundnut, Sesamum

I1 - Irrigation at IW/CPE ratio of 0.3

I₂ - Irrigation at IW/CPE ratio of 0.6

I₃ - Irrigation at IW/CPE ratio of 0.9

Bhindi

 I_2 - Irrigation at IW/CPE ratio of 0.6 I_3 - Irrigation at IW/CPE ratio of 0.9 I_4 - Irrigation at IW/CPE ratio of 1.2 Depth of irrigation : 50 mm

Plot size

Gross : 4.8 m x 2.5 m = 12 m^2 Net : 2.1 m x 4.2 m = 8.82 m²

- 11. i) Plot wise crop yield in kg per net plot in the actual layout followed and
 - ii) Anova for economic yield.

-36	

a) First crop season - Ric	a)	First	crop	season	401046	Rice
----------------------------	----	-------	------	--------	--------	------

	Plo	t wise grain yi	eld (kg/pl	ot)
Plot No.	R ₁	R ₂	R ₃	R ₄
1	1.95	2.00	2.20	2.10
2	1.95	2.45	1.95	2.30
3	2.25	2.35	2.10	2.05
4	1.85	2.00	2.20	2.00
5	2.00	1.65	1.85	1.80
6	2.15	1,95	1.90	2.15
7	2.30	2.20	1.60	1.85
8	2.25	1.55	1.65	2.00
9	2.15	1.60	2.10	1.80
10	2.30	1.50	1.75	1.65
11	2.00	1.55	1.75	1,65
12	2.10	2.00	1.70	1,90
13.	2.20	1.50	1.85	2.35
14	2.15	2.05	1.85	2.00
15	2.00	2.15	2,30	2.15
16	2.15	2.10	2.10	1.90
17	2.25	2.30	2.10	1.95
18	2.05	2.15	2.00	2.15
19	1.60	1.80	1.95	2.00
20	2.00	2.2	2.05	2.00
21	1.90	2.15	2.00	2.00
22	2.10	2.00	1.30	2.00
23	2.05	2.10	1,95	2.00
24	2.10	1.95	2.05	1.85
25	2.20	2.30	2.10	2.10
26	1.90	2.55	2.25	1.95
27	1.95	2.25	2.10	2.30
28	1.85	2.45	2.25	2.15
29	2.10	1.80	1.95	1.85
30	2.35	2.25	2.15	2.CO

-37-<u>A N O V A</u>

Source	đf	33	MS	F	Table Value
Total	19	10.972	0.2215		
Replication	1 3	0.6644	1.244	0.485	
Treatment	4	4.977	0.4442	2.80	3.26
Error	12	5.331			

2. Second crop season - Rice

Dat No	Plot	wise grain y.	ield (kg/	plot)
Plot No.	R ₁	Ra	F.3	R ₄
	3.00	2,15	2.25	2.0
2	2.25	2 - 25	3.00	2.25
3	2.20	2.10	2.50	1.80
4	2.20	2.28	2.30	2.25
5	2.50	2.30	2.25	2.00
6	2.60	2.00	2.75	2.00
7	1.75	2.10	2.00	1.75
8	2.25	2.10	2.30	1.75
9	2.00	1.75	2.25	1.70
10	2.20	2.10	2.00	1.75
11	2.50	2.00	2.00	1.80
12	2.15	2.00	1.65	1.80
13	2.50	1.60	1.75	1.95
14	2.30	2.001.7	1.75	2.00
15	2.50	1.75	1.75	2.50
16.	2.50	2.00	2.10	1.75
17	2.50	2.00	2.00	1.75
18	2.50	1.80	1.75	2,00
19	2.3	1.50	1.75	2.00
20	2.00	2.00	2.00	1.75

(Contd..)

(Contd)		anna bhaile suna a bhaile san gun an sginnain a chuir an sginnain		and a second	
21	1.80	2.15	2.00	2.00	
22	2.30	1.70	2.20	2.00	
23	2.25	1.75	1.75	2.00	
24	1.75	1.90	1.75	2.00	
25	2.55	1.60	2.00	2.50	
26	2.60	2.15	2.20	2.35	
27	2.25	2.10	2.00	2.50	
28	2.50	2.20	2.25	2.25	
29	3.25	2.00	2.10	2.00	
30	2.25	220	1.75	2.25	

Statistical analysis was done using paired 't' test. The effect of water management practices was found to be non significant.

Culculated value of 't' = 0.300Table value = 2.093

3. Third crop season.

Two crops in the sequence viz. groundnut and sesamum were completely damaged due to rain at the podbearing stage. The plot yields of the other 3 crops in the sequence are given below.

1. Rice

R ₁	R ₂	n ₃	R ₄
2.100	1.200	2.000	2.250
0.300	2.250	2.350	0.850
0.750	2.250	1.700	0.500
2.300	0.700	2.000	0.750
2.250	1.750	2.000	1.600
1.300	1.500	1.700	0.500
	2.100 0.300 0.750 2.300 2.250	R1 R2 2.100 1.200 0.300 2.250 0.750 2.250 2.300 0.700 2.250 1.750	2 3 2.100 1.200 2.000 0.300 2.250 2.350 0.750 2.250 1.700 2.300 0.700 2.000 2.250 1.750 2.000

-- 38--

Source	df	SSS	MS	F	Table value
agg yang tabunang sam yan musaganan nant mining menangkik angki	Mgdggach Asplann Rose - C - an		антуна (пър на така) и се на така) и се на така и се се на се		and general series with derive mininger part for a serie in the rest of the series of the series of the series
Total	23	10.6024	2		
Replicatio	n 3	2.384	0.795	1.815	
Treatment	5	1.652	0.3304	0.755	2.90
Error	15	6.5664	0.43776		

2. Cowpea

Treatments	Plot	wise grain	yield (kg	/plot)
reachence	R ₁	R ₂	R ₃	R ₄
C ₂ W ₁ I ₁	0.678	0.480	0.581	0.499
C ₂ W ₁ I ₂	1.144	0.530	0.499	0.561
$C_2^{-W_1}I_3$	1.188	0.683	0.780	0.940
$C_2 W_2 I_1$	0,890	0.733	0.327	0,325
C ₂ W ₂ I ₂	1.09	0.632	0.280	0.427
C ₂ W ₂ I ₃	1.634	0.572	0.474	0.808

ANOVA

Source	df	SS	MB	F	Table value
Total	23	2.368			
Replication	3	1.366	0.4553	12.543	
Treatment	5	0.458	0.0916	2.52	2.90
Error	15	0.544	0.0363		

ANOVA

3. Bhindi

underen har verstenden die der einer der einer verstenden der einer einer der einer der Bereiter im der einer d	Yield of fruit (kg/plot								
Treatments	R ₁ *	R ₂	R ₃	R_4					
C ₅ W ₁ I ₂	5.715	8.415	8.651	6.281					
$C_5 W_1 I_3$	9.019	5.597	7.751	5.917					
$C_5 W_1 I_4$	5.725	3.799	8.410	6.909					
C ₅ W ₂ I ₂	7.067	8,53	7.202	5.043					
$C_5 W_2 I_3$	5.192	5.165	8.606	4.593					
$C_5 W_2 I_4$	3.587	5.799	8.091	5.363					
	AN	OVA							
Source	df	ss M	S F	Total value					
Total	23 61.	1517							
Replication	3 21.	3909 7.1	303 3.455						
Treatment	5 8.	8131 1.7	626 0.8543	2.90					

12. Economic Crop yield and by-product yield

15

1. First crop - Rice

Error

Table-2.1

Grain and straw yields of rice as influenced by crop ______soquences

30.9477 2.0632

Cropping sequence	a) Grain	yield kg/ha		yield kg/ha
bequence	1986-87	1987-88	1985-87	1987-88
C ₁	2740	2322	2857	2603
C ₂	2712	2137	3302	2617
C ₃	3102	2350	3348	2425

(Contd...)

(Cont	dTable 2	2.1)		99994999999 vol. Social and any high population statements and any population	
	4	2965	2254	3289	2811
C	2 5	3022	2414	3225	3351
Me	ean	2908	2295	3204	2.7.61
	D.(0.05)	NS	NS	ĩĩs	NS

-41-

Uniform package of practices including water management were adopted in all the treatments during the first crop season. The grain and straw yields didnote show any significant difference between the plots which clearly indicate that the various crops in the sequence cultivated during the third crop of the provious year didnot influence the yield of rice in the succeeding crop season.

2. Second crop - Rice

Table-2.2

Yield of grain and straw as influenced by crop sequence and water management practices.

		Water management practices						
	Crop	₩1	W2	Maan	W ₁	W2	Man	
			1986-87		1987-88		8	
)	Grain yield (kg/ha)		allingen vers Ligs in norm (grave Sunggione) (dinys, Succession)	ger (Canner Inspirate) (Cantor Arise allaboration	allahatanan renjari dadilakangke naligina nalig	din gelinean a dialogo a ganna dina 4 anina a angeni	BODENTE: Serve SErverseter Benever	
	C ₁	2863	2930	2897	2602	2591	2596.	
	C ₂	2839	2627 ,	2733	2243	1262	2252	
	C ₃	2802	2740	2771	2300	2328	2313	
	C ₄	2839	2527	2633	2196	2205	2200	
	C ₅	2797	3052	2925	2530	2550	2539	
1410-Martin	Mean	2828	2775	huð lith ferfenn rýðin ritigrfun eru vig singiginerf.	2374	2387	anter ets manet dels jantan es - ja	

C.D. (0.05)

Irrigation levels: NS

NS

, neurosette o neuropation developing anting taxin gitan involvementation independent enterformation	n na an	1986-87			1987-88		
Crop	W.1	W2	Mean	W ₁	W2	Mean	
b) Straw yield (kg/ha)							
Cl	2262	2324	2293	1973	1927	1950	
C ₂	2313	2166	2240	1918	1899	1909	
C ₃	2287	2245	2268	1728	1700	1714	
C4	2220	2207	2245	1879	1912	1896	
Mean	2274	2204		1875	1868		
and a second s	nuglar a un tidlar tidlandra mail daalladg	á jenyel agado a vyti vyticky rodyst manor na ta syster	na politika politika na para politika na sela na sela na kala da kala da kala da kala da kala da kala da kala d	Bana Albina - Gerand Ban - Gera managerika	Bilgs waarooddal provinsi orgiffiction for additionarcomine	a ben applipted " * -article-article	

-42-

C.D.(0.05

Irrigation levels: NS

NS

The data on grain and straw yields as influenced by water management practices are presented in Table 2.2. It was observed that neither cropping sequences nor water management practices significantly influenced the grain and straw yield. The W_1 and W_2 treatments (irrigation at one day and three days after the disappearance of ponded water) received 7 and 4 irrigation respectively. The failure of water management practices to register any appreciable differences in straw and grain yields can be attributed to to intermittant rains and high water table during the critical stages of the crop.

3. Third crop

The data on cropwise yield during the third crop season are furnished in Table 2.3. Contrary to the previous two seasons, none of the crops showed significant response to the irrigation practices. The lack of response in yield is due to the rain received during the crop period.

Table-2.3

Economic yield (kg/ha) of different crops in the sequence during the third season as influenced by irrigation treatments.

Treatments	- Gradenic disso de significação	1986	-87	198	1987-88		
n - Augus (Shara umangalang giligang dan manggalang digin ang digin gapan digin ang kanangana uman manggalang d	W ₁	^w 2	Mean	W ₁	W2	Mean	
. Rice				annannan i Ghenneside e i riddorskundidioens, an	angila-ágyásségálásssalákés- Ar újakana _n agyárák kés	allanningsfallan allang vir Grow vir den ywe	
D ₁	428.0	439.3	433.6	213.9	163.0	188.5	
D ₂	123.4	124.7	124.1	171.5	215.4	193.5	
D ₃	76.50	75.10	75.80	147.4	141.7	144.6	
C.D.(0.05) Irrigation le	vels: 19	9.5	rr - na first Galance (Galance of Banage San Appen	N.	S	ningan, ningan kanala ningan kanala kana	
$D_2 = 7 \text{ cm Irr}$ ponded w $D_3 = 7 \text{ cm Irr}$ ponded w	ater. igation 5						
Treatments	W ₁	^W 2	Mean	W ₁	W ₂	Mean	
Cowpea		99 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	dagang di anggarang ang ang ang ang ang ang ang ang ang	nytkiy arananikinaan raqalanar sadaqiyanadaralar	ben duratiogenergigens industriegen verstegen voorden dat geboor	diginalar alan asal jagar igan asaran kung iliku asar akay juri	
I	149.50	163.10	156.30	634.3	644.8	639.5	
I ₂	157.90	168.0	163.0	774.9	688.5	731.7	
I ₃	233.90	213.70	223.8	101779	988.6	1003.3	
Mean	180.80	181.60		809.0	774.0	791.0	
C.D.(0.05)	na na angalapat-o - , , an angala saka-o sakayo kangkangkangkangkangkangkangkangkangkang	t y antiblijsteatinstiinselikselaiten vesategeveler	andra Galanta an an an an da an	aðanað fö ^r skélantöský hanstýringin syr í askýldýgara s	an ang a san ang ang ang ang ang ang ang ang ang a	anadar - alah distran Jandara Jandara Bagina kara - A	

irrigation levels: 25.8

N.S

(Contd..)

(Contd..Table2.3)

Treatments	W ₁	^W 2	Mean	W ₁	W2	Mean
3. <u>Phindi</u>	gggandanan ay gy cafy say yay an					
I ₂	1385.3	1298.5	1341.9	823.7	789.2	806.45
I ₃	1791.6	1687.4	1739.5	801.7	667.7	734.7
I ₄	1933.9	1857.5	1895.7	704.2	647.4	675.8
Mean	1703.6	1614.5	un entre 2006 de chier un de contra de co	776.5	701.4	n a suide despis on the second of a trib factor
C.D.(0.05)	nnan eadangtings perior north dra sec ginglich giver o and	n hand an fan ste fan skin yn yn hand yn ar yn ar yn ar yn	allander hafte het here sog fred Heren van der verken er here verken in de soner Mere	n na an shekararan ku	allen 19, z ogengog et sakt det flett at -geographien geten	una (non de la construir de la

NS

Irrigation levels: 107.4

I1 - Irrigation at IW/CPE ratio of 0.3

I2 - Irrigation at IW/CPE ratio of 0.6

I₃ - Irrigation at IW/CFE ratio of 0.9

I_A - Irrigation at IW/CPE ratio of 1.2

13. Soil moisture studies in the crop rost zone.

Only few irrigations were possible for each treatment due to rain during the crop period. Two crops were completely damaged. Hence soil moisture studies conducted are not complete and so not reported.

en 44 cm

The first particular, and the interview interview data for the first sector of a sector part of the sector part	
Month	Depth from the ground surface
	Maximum (cm) Minimum (cm)
July '87	10 Flooded
August 87	10 Tlooded
September 87	3
Cataber 87	15 Flooded
November 87	13 4
December 87	20 . 6
January 88	97
Tebruary 88	123 45
March 28	140 52
April 88	103

14. Periodic ground water fluctuation in the experimental area.

15. Important weather conditions during crop growing season

	Rainfall			Temperature °c		Mean open <i>p</i> en	Mean wind
Mor.th.	Total (mm)	No. o rainy days	É Mear maxi- mum Temp.	llean niini- mum Temp.		evopo- ration (mm/day	speed (kn/hr
	an a na faile han meny han di han sama di kara sa	un villen (2) daren da inagen hen var varander he	naturga annan Jose - adalera ha e as a sabagaan	day 	n an	de hidder die die Amerikanse verstenden, undersonse volgen is volgen oor	
JU17487 ST	456.8	21	30.85	23.4	82.75	3.57	2.67
August 87	542.2	22	30 26	22.83	82.54		1.97
Jeptember 87	258.4	10	31.CC	23.89	75.12	3.75	2.56
October 87	233.6	19	32.74	24.11	86.07	3.68	1.73
Nevenber 87	246.0	12	32.60	22:20-	75.5	3.72	1,30
December 87	208.5	.7	32.41	20.37	73.96	2.53	1.78
January 88	122.9	1943 S	33.15	18.87	63.46	3.26	1.858
February 88	1.6	1	35.04	21.81	64.31	3.899	2.38
March 33	317.7	5	35.27	24.10	62.5	4.23	2.72
April 88	246.4	15	34.3	24.27	70.22	4.03	2.35

hana 45 mm

16. Data on important biometric observations and quality attributes as influenced by treatments.

1. First crop season - Rice

Table-2.4

Biometric characters as influenced by crop sequences

ene-vertredagtföljett unavere	na na na mana na fatan na na tanàna na mandritra na mandritra dia dia dia dia dia dia dia dia dia di	Bi	ometric ch	aracters (M	ean)
	Treatments	Height of plant (CFi)	No. of tillers per hill	No. of productive tillers/ hill	Percentage of filled grains per panicle
and a second	C ₁	67.13	6,83	4.04	74.04
	C2	66.62	6.90	4.03	70.67
	C ₃	66.56	6.71	3.94	75.25
	C ₄	67.23	6.68	4.20	69.75
	C5	69.74	6.65	4.04	74.83
	Mean	67.45	6.75	4.05	72.91
Anno Anno Anno Anno A	C.D.(0.05)	NS	NS	NS	NS

2. Second crop season - Rice

1. Mean height of plants at harvest

Table-2.5

Height of plants as influenced by crop sequence water management practices

Treatments	Water	management	practices	saan marije yn stad an
Cropping sequences	Wl	W2	Mean	1993, or 1994, or 1
с ₁	72.83	72.67	73.30	
C ₂	72.15	72.67	72.41	
C ₃	73.73	72.38	73.05	
C_4	70.63	71.27	70.95	
C ₅	73.48	72.93	73.20	
Mean	72.56	72.00		an realized and an original set

C.D. (0.05)

NS.

-46-

2. Mean number of tillers per hill

Table-2.6

-47-

Number of tillers per hill as influenced by crop sequences and water management practices.

Cropping sequences	W ₁	^W 2	W3	
C ₁	5.22	5.46	5.34	n sen a begin j
C ₂	5.02	5.27	5.14	
C ₃	5.82	5.52	5.67	
C ₄	5.80	6.05	5.92	
C ₅	5.22	5.32	5.27	
Mean	5.42	5.52	A de daran nga kanang pantang kanan Mananang pantang kanang kanang pantang kanang pantang kanang pantang kanang	Bullin, in provin
C.D. (0.05)	N. 5	5	Bildenfederer maanne van en wedere degewerenderenderenderender	hudhers fr

3. Mean productive tillers

Table 2.7

The number of productive tillers per hill as influenced by crop sequences and water management practices.

nt practices
2 Mean
2 4.45
7 4.29
8 4.60
2 4.41
5 4.47
5

C.D. (0.05)

N.S

---48----

4. Percentage of filled grains per panicle.

Table-2.8

Percentage of filled grains per panicle as influenced by crop sequences and water management practices.

Treatments C1		W ₁	W2	Mean
C ₁	** **********************	an na maga na 'n n a na na air a an air an air air an air an	ure forstalligen er fruskligen och er unseige stelligenden könen å gef felget sonder er an soch auf siger menge	an a kin anggan kinangan kina dalam pakan pakan kina ang panan ang panan a
		60.92	57.83	59.37
C ₂		59.75	54.33	57.04
C ₃		55.50	54.08	54.79
C_4		57.25	54.75	56.00
C ₅		55.92	57.33	56.62
Mean		57.87	55.66	

C.D. (0.05)

NS.

The mean height of plants and the yield contributing characters of rice for the 1st and 2nd crop seasons are furnished in the above tables. None of the characters were significantly influenced by the different crop sequences or water management practices

17. Incidence of pests and diseases with control measures taken.

The rice crop was mildly attacked by leaf roller during both the kharif and rabi season which was controlled by spraying Ekalux. Attack of stem borer was moderate in the second crop season. One spraying with Hingsan was enough to check the spread of sheath blight disease which affected the crop after the panicle initiation stage during 2nd crop season. 18. Any other relevant information

During the third crop season, groundnut and sesamum were completely damaged due to heavy rain which coincided with the pod bearing stage. Hence the data for the year 1987-88 is not complete.

-50-

EXPERIMENT No.3

1. Title of the experiment : WM.1.1 Effect of varying water regimes on the yield of rice under varying levels of soil fertility.

2. Objectives:

- 1) To find out the optimum water regime for wet sown rice in relation to nitrogen levels.
- 2) To quantify the adverse effect of prolonged stress on crop yield.
- 3. Year of commencement : 1987-88
- 4. Intial soil characteristics:

	a) Soil texture	: Sandy loam
	b) pH	: 5.64
	c) EC (mmhos/cm)	: 0.28
	d) Organic carbon (%)	: 0.52
	e) Bulk density (g/cc)	: 1.37
	f) Available P ₂ 0 ₅ (kg/ha)	: 9.8
	g) Available K ₂ O (kg/ha)	:26.1
	h) Available water storage capacity.	
5.	Crop Rotation followed	: Rice - Rice - Green manure
6.	Sowing	
	a) Date of sowing	: 15.10.1987
	b) Method	: Dry sowing - broad casting
	c) Seed rate	: 100 kg/ha
7.	Harvesting date	: 16.1.1988

206583

8. Fertilisers and manures :

a) Dosage

: FYM - 5 t/ha

-51-

Nitrogen as per treatments

P205 35 kg/ha

K20 35 kg/ha

b) Kind of formulation

: Nitrogen as Urea,

P as Superphosphate

K as Muriate of Potash

c) Time of application : N as per treatments, P applied full basal K applied as two equal split doses, one at active fillering stage and the other at panicle initiation stage.

9. Irrigation details

weakalataggiyah	Particulars	T	reatments		99899988899989999999999999999999999999
	rat creatar s	I ₁	I ₂	I ₃	I4
1.	Dates of irrig	ation			ng man-manananggapananggapanan-sanahanggasa co-sosah.
	November '87	12,14,16,18, 23,27,29.	12,17,24 29	12,18	12
	December '87	1,3,5,8,12, 14,17,19, 21,23,26, 28,30	23,28		
	January '88	1,5	1	3	5
	Total number of irrigation	22	11	6	5
	Uniform irri	gation upto 1	2.11.87		
2.	Total water ap lied for irrig ion.		77 cm	42 cm	35 cm
3.	Depth of water applied each t		7 cm	7 cm	7 cm
4.	Method of irri gation.	- : Check	basin		

- 10. Lay out of experiments
 - a) Treatments
 - 1. Water Regimes.
 - i) Continuous submergence of 5 + 2 cm.
 - ii) 7 cm irrigation one day after the disappearance of ponded water.
 - iii) 7 cm irrigation 3 days after the disappearance
 of ponded water.

iv) 7 cm irrigation 5 days after the disappearance
 of ponded water.

- 2. Nitrogen levels
 - i) O kg N/ha
 - ii) 50 kg N/ha
 - iii) 100 kg N/ha
 - iv) 150 kg N/ha

N applied in 3 split doses @ 25,50 and 25

percent of the total dose at sowing, tillering and panicle initiation stages respectively.

- b) Design : 4² Factorial RBD.
 - c) Replication

: 3

- d) Plot size
- : 20 sqm.

	•		Dry weight of gra	ins kg/plot	
Sl. No.	Treat	ments	* R ₁	R ₂	R ₃
	nink kantan wakutakan metapuja per munaput nata	alan initia an dinas da an ang dalam ini na initia da	ante de se de la contra de la con	nen kan yang dalam dalam yang galamat kan	in a faith an a faith a
1.	N ₀ I ₁		3.75	3.60	3.30
2.	No ¹ 2		3.50	3.50	4.10
3.	N ₀ I ₃		3.30	3.35	2.75
4.	NoI4		3.50	3.0	3.50
5.	NIII		4.00	4.50	5.20
6.	N ₁ I ₂		4.50	4.60	5.00
7.	N ₁ I ₃	9 - 1997 - 1999). 21	4.50	4.65	4.50
8.	N_1I_4		4.25	4.50	5.0
9.	N ₂ I ₁		4.60	4.50	5.25
10.	N ₂ I ₂		3.85	4.00	5.00
11.	N ₂ I ₃		4.20	4.00	4.50
12.	N ₂ I ₄		4.10	4.10	4.20
13.	N ₃ I ₁		4.60	4.25	4.60
14.	N ₃ I ₂		5.00	4.60	4.70
15.	N ₃ I ₃		4.50	3.30	4.50
16.	N ₃ I ₄		4.15	3.90	3.75

11. 1) Plot wise crop yield

*R - Replication

ii) ANOVA

Table-3

	Source	df	SS	Mean square	e F	Table value	Vide, a respringing .
	na na sana sana sana s	terenter vandigertigtegepoppinge		Allan son allan en alle ding halp ar "Ballice mediter «"essen diter alle	ngan anan dan katilatik kanala kila kina katala katala katala katala kila kila kila kila kila kila kila k	ĸĸĸĸġĊĸĊĊĸĊġŎŢŎġŎĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	pola.kom aposta
	Total	47	16.49				
	Replication	2	0.972	0.486	4.301	÷	
	Nitrogen	3	9.50	3.167	28.02*	2.92	
	Irrigation	3	1.508	0.503	4.45*	2.92	
	NXI	9	1.122	0.125	1.103	2.27	
	Error	30	3.388	0.113			
10	we whether the second planet ports with the ends of the data water of the the balance we design						

* Significant at 5% level.

-53-

-- 54---

12. Economic crop yield and by-product yield.

```
Table-3.1
```

a) Grain yield kg/ha

Marco a la mora la	water regimes				Mean
Treatment variables	I ₁ (c.s)	「 ₂ (1DAD茶)	I ₃ (3DADW	I ₄)(5DADW)	nean
N - O kg N/ha	1775	1850	1567	1667	1715
J ₁ - 50 kg №/ha	2283	2383	2275	2292	2308
J ₂ – 100 Kg N/ha	2392	2142	2117	2067	2180
N ₃ - 150 kg N/ha	2242	2350	2050	1967	2152
Mean	2173	2181	2002	1998	aga, entrateligiyyyeekkafiyyyeekkafiy, e ture y

*DADW : Days after disappearance of ponded water.

i) SE(cm) 56.50

ii) CD at 5% Irrigation : 140

Nitrogen : 140

Interaction: NS

The data on grain yield of rice as influenced by water regime and nitrogen levels are furnished in Table 3.1 and Fig. 3.1.

Statistical analysis of the data revealed that the different water regimes and nitrogen levels significantly influenced the grain yield. Among the water management practices the treatment receiving irrigation one day after the disappearance of ponded water (I_2) recorded the highest yield of 2181 kg/ha which was on par with I_1 , the treatment receiving continuous submergence (2173 kg/ha). The lowest yield of 1998 kg/ha was recorded by I_4 , the treatment receiving irrigation 5 days after the disappearance of ponded water and I_3 (2002 kg/ha) receiving irrigation 3 days after the disappearance of ponded water. The treatments I_1 and I_2 received 1040 mm and 770 mm of water in 22 and 11 irrigations respectively. The treatment I_2 receiving irrigation one day after the disappearance of porded water is considered superior to continuous submergence, taking into account the yield, total water use and number of irrigations.

Regarding the nitrogen levels, the highest grain yield of 2308 kg/ha was recorded by N_1 (50 kg N/ha) which was on par with N_2 (100 kg N/ha) recording an yield of 2180 kg/ha. The lowest yield of 1715 kg/ha was recorded by N_0 (No Nitrogen) and was significantly inferior to all the other treatments. The yield was found to increase as the level of Nitrogen increased from 0 to 50 kg/ha, but with further increase in nitrogen a decreasing trend was observed.

From the above results, it can be concluded that during the second crop season under wet sown conditions short duration rice need irrigation one day after the disappearance of ponded water and 50 kg Nitrogen per ha. for maximum yield. This may result in saving 270 mm water and 11 nos. of irrigations without any appreciable difference in yield as compared to continuous submergence.

~55~

b) Straw yield

The data on straw yield (kg/ha) is presented in Table 3.2 and Fig. J. 2.

From the data it can be observed that the levels of Nitrogen.influenced the straw yield significantly whereas the influence of different water regimes and their interaction effect were not significant. The highest straw yield of 2656 kg/ha was recorded for N_1 (50 kg/ha) as in the case of grain yield and it was on par with the yield obtained for N_2 (100 kg N/ha) and N2 (150 kg N/ha) levels of nitrogen.

Even though the various water management practices were not significant the trend observed for straw yield is the same as that of grain yield. Maximum straw yield was obtained in I_2 ie. 7 cm irrigation one day after the disappearance of ponded water followed by continuous submergence.

Table-3.2

Straw yield of rice (kg/ha) as influenced by water regimes and nitrogen levels.

Treatments Water regimes				
Nitrogen levels	I ₁ I ₂ (C.S) (1DA)	I ₃ DW) (3DADW)	1 ₄ (5DADW)	Mean
N 0 kg N/ha	1717 216	7 2125	2250	2065
N ₁ - 50 "	2950 283	3 2367	2633	2696
N ₂ - 100 "	2667 316	7 2417	2200	2613
N ₃ - 150 "	3125 245	3 2408	2333	2581
Mean	2615 265	5 2329	2354	anna a' tra chan an tra chuir anna an t
C.D. (0.05)	Water managem	ent : N.S		
	Nitrogen	: 328		
	Interaction	: N.S		

-56-

-57-

c) Yield contributing characters

The data on the yield contributing characters are presented in Table 3.3.

The effect due to irrigation on yield contributing characters namely number of productive tillers, number of grains per panicle, 1000 grain weight and chaffiness was not significant. However the trend of the results indicate that irrigation 1 DADW and continuous submergence (I_2 and I_1 respectively) tended to increase the number of productive tillers and number of grains per panicle.

Though not significant, the nitrogen levels favourably influenced the yield contributing characters, viz. number of productive tillers and number of grains per panicle.

Table-3.3

Mield characters of rice as influenced by different water regimes and nitrogen levels.

Treatments	Number of produ- ctive till- ers per squre		Chaffiness (%)	1000 grain weight (g)
Water regimes				
I ₁ - Continuous submergence	132	77.32	37.93	22.42
I ₂ - 1 DADW*	142	68.33	38.00	22.00
T ₃ - 3 DADW	136	72.76	38.43	22.60
I - 5 DADW	135	73.46	40.33	21.95
C.D. (0.05)	NS	NS	NS	NS
Nitrogen levels				nger vergetekennen av Alle Governen, velde nger versen slad det verse av av synamet i v
N _o - No nitrogen	127	66.25	36.06	24.50
N _l - 50 kg N/ha	144	77.34	39.64	21.86
N ₂ - 100 kg N/ha	140	73.97	43.63	20.92
N ₃ - 150 kg N/ha	134	74.26	35.36	21.62
C.D. (0.05)	NS	NS	5.99	1.84

*DADW - Days after disappearance of water.

the water requirement of the crop. 14. Periodic ground water fluctuation in the experimental area. odf bollous asw append Depth from the ground surfaceody Month Month Maximum (cm) to Minimum (cm) ib October 1987 10 and 10 10 Flooded Flooded		18. Anysichher retevant daformatio
 -59- 13. Soil moisture studies : The experiment was to study in the crop root zone. the water requirement of the crop. 14. Periodic ground water fluctuation in the experimental area. 14. Periodic ground water fluctuation in the experimental area. add beinge asw appendix Depth from the ground surface of Month Maximum (cm) is Minimum (cm); October 1987 	sk witta N. (100 kg What nutur Sur ^a the height of planes	(159 kg. Month and was shired
 -59- 13. Soil moisture studies : The experiment was to study in the crop root zone. the water requirement of the crop. 14. Periodic ground water fluctuation in the experimental area. -59- 14. Periodic ground water fluctuation in the experimental area. -59- -59- -59- -59- -59- the experiment was to study in the experiment of the crop. -59- -59-<!--</td--><td>re significantly superior</td><td>24 substitution + may deady have</td>	re significantly superior	24 substitution + may deady have
 13. Soil moisture studies : The experiment was to study in the crop root zone. the water requirement of the crop. 14. Periodic ground water fluctuation in the experimental area. add bollogs asw apport Depth from the ground surfaceody Month Month Maximum (cm) itse Minimum (<pre>Part i Pit to a part pendor ed no mittroiten respectively)</pre>	
in the crop root zone. the water requirement of the crop. 14. Periodic ground water fluctuation in the experimental area. Month Depth from the ground surfaceody Month Maximum (cm), jon Minimum (cm); October 1987	13. Soil moisture studies	
erop. 14. Periodic ground water fluctuation in the experimental area. edf .bolique asw append Depth from the ground surfaceed: Month Maximum (cm)		The second
14. Periodic ground water fluctuation in the experimental area.		aron
october 1987 of odd model 10 10 10 10 10 10 10 10 10 10 10 10 10	14 Periodia manual	
edf beliggs asw depond Depth from the ground surfaced Month Solution Depth from the ground surfaced Maximum (cm) is Maximum (cm) is Not to be 1987 of a odd for a final subset of the state of the subset of the sub	and a stand of the stand water the	Inflightion in the area in a
October 1987 of add for 10 10 10 10 Flooded Flooded	Den was applied. The Month'	pth from the ground surfaceout
	Made Soraving Edipherghos.	ximum (cm), ito Minimum (cm) ib
on whedail is stift at the terest and the star Strates and a start and the		
December of the two from 14 14 14 14 14 14 14 14 14 14 14 18 19 19 19 19 19 19 19 19 19 19 19 19 19		
January 1988 64 11	to was sprained wit admoved a	312408-X2040439449:":spank up

	Rain	nfall	Tem	perature	Mean	Mean	Moan
Month		No. of Cainy days		Mean Minimum		open pan evaporation (mm/day)	wind speed (km/ha)
October '87	233.6	19	32.74	24.11	86.07	3.68	1.73
November	246.0	12	32.60	22.20	75.5	3.32	1.38
December and	208.5	7	32.41	20.37	73.96	2.53	1.78
January '88		-	33.15	18.87	63.46	3.26	1.858

15. Important weather conditions during crop growing season.

Total rainfall : 688.1 mm

16. Important biometric observations and quality attributes.

1. Height of plants (Table-3.4)

The height of plants at harvest was significantly influenced both by water regimes and nitrogen levels. The height of the plants decreased on the irrigation interval was increased while the height increased with increasing levels of Nitrogen. But the height of plants
at panicle initiation stage was found to be influenced
by Nitrogen levels only, the maximum being recorded for
N₃ (150 kg/ha) which was on par with N₂ (100 kg N/ha).
2. Number of tillers per square meter.

--- 60---

The number of tillers per square was recorded at panicle initiation stage and harvest and are presented in Table 3.4.

The number of tillers both at panicle initiation stage and harvest were not influenced by water regimes. The different Nitrogen levels favourably and significantly influenced the number of tillers at harvest but the effect was not significant at the panicle initiation stage. Maximum number of tillers was noted for N_3 (150 kg N/ha) and was on par with N_2 (100 kg N/ha) and these two treatments were significantly superior to N_1 and N_0 (50 kg N/ha and no nitrogen respectively) 17. Incidence of pests and diseases with control measures

taken.

During the maximum tillering stage. The crop was was inferted by sheath blight. The attack was heavy in the plots where higher doses of Nitrogen was applied. The disease was effectively controlled by spraying Ediphenphos. Attack of leaf roller started from the flowering stage on wards. Satisfactory control was obtained with application of Quinalphos except in plots with higher doses of Nitrogen.

18. Any other relevant information : Nil

Table-3,4

Treatments	Height	of plants	No. of tillers per sq. meter		
	PI stage Harvest		PI stage	Harvest	
Water Regimes			anning an ann an Anna anna Anna		
I - Continuous submergence	45.92	66.4	115	180	
I ₂ - I DADW*	46.41	63.28	112	193	
I ₃ - 3 DADW	46.58	63.00	100	185	
1 ₄ - 5 DADW	47.00	61.00	104	180	
C.D. (0.05)	NS	3.42	NS	NS	
Nitrogen levels		nandlan dan - kanga a sana kada panandapan - Qayangan umungkin kacay panah	ουνταία «συγγαζηγιζής» υποιοία τη «Ολυτής» του Ολλαγουργο	Bernandensentigen gevinning den in den in den einen	
N _o - No nitrogen	38.58	56.87	109	164	
N ₁ - 50 kg N/ha	45.33	63.78	113	176	
N ₂ - 100 kg N/ha	50.67	65.57	105	195	
N ₃ - 150 kg N/ha	51.33	67.47	103	203	
C.D. (0.05)	2.39	3.42	NS	24.3	

Growth characters of rice as influenced by different water regimes and nitrogen levels at PI stage and harvest.

*DADW - Days after disappearnce of water.

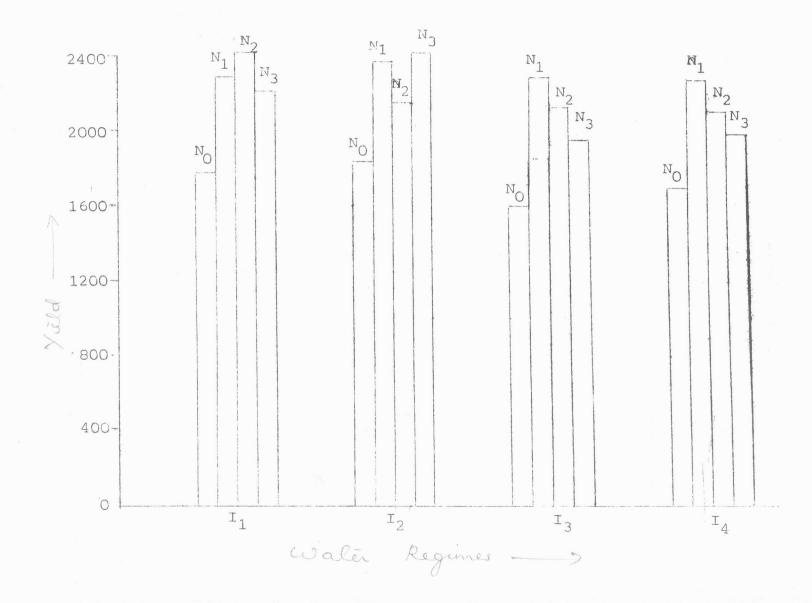
EXPERIMENT No.4

--- 62 ----

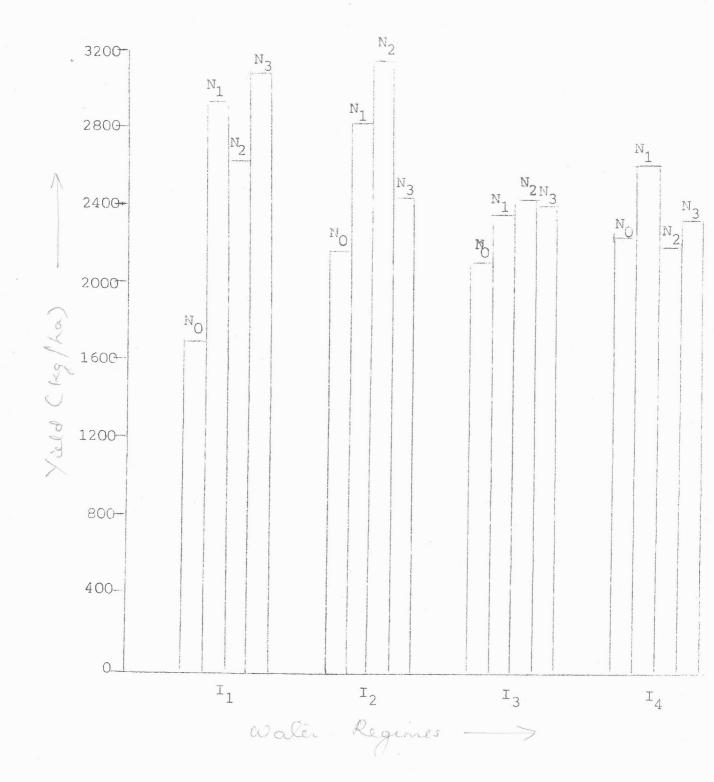
1. Project number and title : WM.2.1. Studies on the effect
of the experiment of irrigation schedules on the
growth and yield of coconut.

2. Objectives:

- a) To study the response of coconut to water management practices during summer season and to evolve a suitable irrigation schedule.
- b) To find out the efficiency of water use in various treatments.
- c) To workout the economics of irrigation in coconut.
- 3. Year of commencement : 1982-83 (same plantation)
- 4. Initial soil characteristics


a)	Field capacity (%)	0	0-20	cm	 1953a	17.69
			20-40	CM	Averta	20.83
						1. Carlos - 1. Car
(d	Wilting point (%)	:	0-20	CM	ettige	8.65
			20-40	CM	18700	9.20
C)	pH	00	5.75			

d) E.C. (millimhos/cm) : 0.28


The data on physical constants and mechanical composition of the different layers of the soil profile estimated before the commencement of the experiment is presented in Table-4.1.

5. <u>Crop rotation followed</u> : The crop is perennial and raised as a sole crop.
6. Scwing : The experiment was taken up in a private coconut garden at Kodassery owned by Sri.
K.Sreedhra Menon, Kuravangad House. The garden consists of 292 palms in an area of 4.25 acres. The palms (about

Yield of rice (kg/ha) as influenced by water regimes and nitrogen levels

Straw yield of rice as influenced by water regimes and nitrogen levels

10 years old at the time of starting the experiment) are west coast tall variety planted at a spacing of $7.5 \text{ m} \times 7.5 \text{m}$.

Before imposing the treatments during the first year of study, the pre-experiment yield of eighty selected palms were recorded. The annual nut yield of four adjoining palms were added and the resultant twenty groups of palms were ranked according to their total nut.yield. These groups were further classified in to 4 blocks (replications) each having five groups (treatments) in the order of their ranks. The nut yield was further subjected to statistical analysis which confirmed the uniformity of palms in their yield potential within a replication.

 Harvest dates: During the year under report, the post experiment data on nut yield was recorded and in this also 8 harvests were obtained from April 87 to April 88.

: N as urea

P as Superphosphate

8. Fertilizers and manures

a) Dose

- : N, P₂O₅ and K₂O @ 0.34:0.17: 0.68 kg/palm/year. Green manure @ 40 kg/palm/year Cowdung @ 25 kg/palm/year
- b) Kind of fertilizer
 formulation
- c) Time of application
- K as Muriate of potash : Three equal splits in April-May, August-September and December-January in each year. Organic manures were applied during
 - South West monsoon period.

-63-

d) Method of application : Broadcasted in the basins and incorporated with the soil.

9. Irrigation

The treatmentwise details of the irrigations given during 1982-85, 1983-94, 1984-25, 1985-86 and 1986-87 are presented in Tables. During the year under report all the treatments were given irrigation on finners practice.

10. Layout of treatment:

- a) Treatments 5
 - T1 Irrigation at 75 mm CPE (50 mm depth)
 - T₂ Irrigation at 50 mm CPE (50 mm depth)
 - T₃ Irrigation at 25 mm CPC (30 mm depth)
 - T_4 Irrigation once in 3 days i.e. farmers' practice (20 nm depth)

 T_{π} - No irrigation

0)	Design		0	Randomised Elock Design				
	Replication		o. c	4				
đ	Plot size		50	4 palms/Plot (with one border				
				row ill cround the plot)				

11. 1) Mut yield (tree in the post experiment period 1987

(lotal of 8 harvests)

Treatments		L. ()	mt	n - Ch fan ann stiftig djing ', and and djing ar 's a'				
ماريان مرجعة المحمد ال				R ₁	R ₂	R ₃	R ₄	Mean
	Т <u>1</u>		98.	56	104.50	103.65	92.46	99.79
	^m 2		114 .	50	109.85	112.20	104.80	110.34
	Τ ₃		108.	38	118.58	124.40	115.25	116.65
	$T_{\underline{A}}$		116.2	24	122.45	128.60	123.24	122,63
-274.5	^m 5		102.	64	92.75	98.30	97.54	97.81

ii) Anova

Source	df	SS	MS	na paratri na perinta na perinta perint Perinta perinta perint Perinta perinta per
Total	19	2225.32	Nor- Han Haan Haal Haal Adda ay yaaraa ka da yaar na sa da ay yaa yaa yaa yaa yaa yaa yaa yaa	gen van Unsechteligen Begeneren geher en eine van de operationen in de personen in de service and an and an an
Block	3	127.94	542.64	
Treatment	4	1821.03	455.26	19.76*
Error	12	276.35	23.03	

* Significant at 1% level C.D.(0.05) 7.4

12. Economic crop yield

Completed the experiment during the year 1986-87. During the year under report, the post experiment data on nut yield and number of bunches/tree were recorded and furnished in table Nos. 4.5 and 4.6 along with the nut yield obtained in previous years 1982 to 1986. (Table 4.2 to 4.4)

From the current years data, it can be observed that maximum nut yield of 122/tree/year was recorded by the T_4 which received irrigations at 3 days interval and was on par with T_3 (116 nuts) ie. irrigation at 25 mm CPE.

During the experimental periods, in the first two years (1983 and 1984) the treatments did not influence the nut yield. However in the subsequent years the palms responded well to irrigation. The effects due to treatments on nut yield in the 3rd and 4th year was significant and almost similar. The treatments T_2 (50 mm CPE), T_3 (25 mm CPE) and T_4 (Once in 3 days) were on par with each other and significantly superior to no irrigation (T_5) .

--- 65---

Results of the study on scheduling irrigation to a standing crop of coconut in a sandy clay loam soil indicated that the crop responded well to irrigation during dry months (January to May) from the 3rd year onwards. Irrigating the crop with 500 litres of water through basins taken at 1.8 m radius at CPE values of 50 mm (approximate interval of 12 days) was most economical.

The effects of irrigation in nutyield was reflected in the succeeding year also in case of irrigation at 3 days interval and irrigation at 25 mm CPE.

13. Soil moisture studies

During the year under report, only the nut yield was recorded to study the effect of irrigation given during previous years. Hence no moisture studies have been worked out.

14. Periodic ground water fluctvations in the experimental area The ground waterwas always below 2 m in the experimental field.

-66-

15. Important weather conditions during the crop growing

season.

Important weather conditions prevailed during the crop period (monthly mean)

	· ····································	مسمحه مستعوره اومتاعتها وتترك الاختار ويرتكونه حار	Anno Street and s				Active local second second second		
مری سری این از ۱۰ کیک محمد میں این ۱۰ ایک ایک	Month	Total Rain- fall (mm)	rainy	temp		SAM	R.H 2PM	Mean P.E. (mm/day	Mean wind (km/day)
. # {2. j	April '87	-		35.64	25.27	75.23	-50-35	5 4 61	
	May '87	97.5							-65.52
	June '87								73.40
	July 187								-64.12
	August '87								
	Sept. '87	258.4	.10	31:08	23.89	88.03	62.20	3.75	61.43
	October '87	233.6	19	32.74	24.11	87.22	84.4	3 3.68	41.48
	November 187	246.0	12	32.60	22.20	83.90	67.10	3.32.	33.23
	December 87								
	January *88								
	February'85								
and a second second	March 188		5	35.00	24.71	78.84	54.20	4.23	65.29
··· · · · ·	April '88	246.4	15	34.30	24.27	84.91	55.54	4.03	56.37

the second second

-67-

	cra	68.	-20

Table-4.1

Initial soil characteristics of the experiment on coconut

Хосколитер Валлантарурийн хулсарийрурдурганур силдээлэг	Physical constants						Mechanical composition (%)					
Soil depth (cms)	Apparant sp. gra- vity (g/cc)	Abosolu te sp. gravity (g/cc)	Max. water holding		Volume expan- C sion of s 100 ml soil(ml)	Coarse	Tipo	ang Kanalagan kang kang kang kang kang kang kang	Clay	nan mula a su	ural class	
0 exe 15	1.242	2.036	33.01	42.49	4.523	39.6	27.0	6.2	26.2	Sandy d	clay loam	
15- 30	1.238	2.192	37.89	45.49	4.613	32.7	27.0	6.6	27.6	Sandy (clay loam	
30- 45	1.149	2.547	39.74	44.89	9.395	30.2	21.6	7.2	32.4	Sandy (clay loam	
45- 60	1.090	1.853	45.54	47.20	12.731	26.5	17.0	8.8	41.4	Sandy (clay	
60- 90	1.000	1.893	53.59	51.85	13.475	18.2	14.7	13.4	48.0	Clay		
90-120	0.978	1.779	57.04	51.88	15.617	16.6	13.6	14.2	50.4	Clay		

i 1 i

Table 4.2

Harvestwise nut yield per coconut

n 1882 hely an a feature a feature from a name of a solid state to an a sector state of a solid state of a	antigen confidencial descentions - a respectively a second state of the second								
Contal		Treatments							
Serial number of the harvests	T ₁ 75 mm CPE	T ₂ 50 mm CPE	T ₃ 25 mm CPE	I ₄ once in 3 days	^T 5 No irri- gation				
1st (52-82)	3.27	3.24	5.06	6.60	6.46				
2nd (52-82)	9.51	14.93	11.00	10.10	8.71				
3rd (243-82)	20.15	17.13	21.68	19.76	19.32				
4th (105-82)	10.54	10.81	8.63	12.07	11.39				
5th (216-82)	8.34	5.13	6.38	5.43	5.98				
6th (188-82)	4.30	3.88	3.63	2.50	2.73				
7th (27-10-82)	2.27	3.38	1.31	2.60	2.04				
8th (15-12-82)	4.75	8.81	33.44	6.00	2.56				
Total	63.13	67.31	61.13	65.06	56.19				
	999 4 mm - main al Sannan manifern Sandarangan anna 1 mm al fam a m	nedijskene under smallender officieliter and met solver allowing the sol	a an antimental sector and an	en partico, a tradiçategin tensi men ağında ana aşını di a dara maşda a tensi a sa a maşdar dara	Marrier and a set in the case of a set				

Pre-experiment period - 1982

-- 70--

Table 4.3

Harvestwise nut yield per coccnut

during the experimental pericd

	ne (bige intellig-digebook vidgio) geometric (bietorio) - e ge	Trea	tments	een waaqada maa mariyya waxiin da halaatagadgadgaddaada	ĸĸĸĸĸŊŊŊŊŢŎŎĊŎĸĸĸŊĸŦŢĸŎĬŊĊĬŊĊĬŊĊĬŊĊĬIJĸĸĸĸĸĸŦĸĸĸĬŎĸĸ
Serial number of the harvests	T ₁ 75 mm CPE	T ₂ 50 mm CPE	T ₃ 25 mm CPE	T ₄ Once in 3 days	T ₅ No irri- gation
(1)	(2)	(3)	(4)	(5)	(6)
First year (1983)	an Halamaa kata kata kata kata kata kata kata	nightigen an an ann an ann an Airpean an Airpean agus ann an Airpean an Airpean an Airpean Airpean an Airpean A	gan hang ween way din ng gang men ne na na na San dag papan d	innerfannen fra felder, dan einigen fra det stallander in der stallander in den stallander in den st	an antiga ino - tao - sale - nenadina antiga ino an
lst (311-83)	12.38	11.94	9.63	10.75	9.56
2nd (16==3==83)	19.31	26.75	19.19	18.50	27.75
3rd (25 ••• ••• 4 ••• 83)	13.56	15.13	11.56	12.94	14.06
4th (30583)	10.44	10.25	8.30	8.56	10.75
5th (137-83)	6.63	5.75	6.69	7.06	6.94
6th (26	3.81	4.69	3.56	2.69	4.38
7th (16-11-83)	2.63	3.25	2.00	2.63	1.88
8th (23-12-83)	5.13	6.75	5.94	6.56	5.44
Total for 1st year	73.89	84.51	69.87	69.69	80.76
Second year (1984)	n, sadrinningski kanologu av vitega a "vec"dolovlaga diteg	C.	engana yanggi katan a kontra gi Pinya katang Kita Kita Kita kata	invertigiteterenden ef Bistorrendigiter droppgaraans v	entry of algebration is an an an algebra
1st (311-84)	6.25	9.31	8.63	6.81	6.25
2nd (63-84)	3.88	4.06	3.94	2.69	4.81
3rd (44-84)	9.50	10.06	9.44	8.25	7.50
4th (95-84)	6.59	4.00	4.31	4.00	2.63
5th (108-84)	5.75	6.13	6.56	7.94	5.69
6th (189-84)	1.63	1.13	1.63	1.13	0.56
7th (13-11-84)	0.59	0.69	6.38	0.69	0.44
8th (22-12-84)	5.25	4.44	5,00	9.94	3.81
Total for 2nd year	39.83	39.82	39.89	41.45	31.69
******	lg Dingsillanffininasaniri nire orghinddarianalial	and a substantial sector of the substance of the	n an	(Contd.	

(Contd...)

(Table 4.3 Contd.)

(1)	(2)	(3)	(4)	(Ξ)	(6)	generation, summing
Third year (1985)			na - na - na na digenego na na digen na se angan dige di to e t- nga a pog	949974997449974499844999899999999999999		
1st (42-85)	14.25	19.94	17.63	14.50	11.00	
2nd (163-85)	19.25	20.25	18.38	20.31	20.94	
3rd (224-85)	26.25	25.94	22.19	24.50	23.13	
4th (17-85)	15.00	15.00	19.88	20.88	14.69	
5th (267-85)	11.25	11.19	16.00	14.75	10.31	
6th (17-10-85)	6,00	6.50	11.94	11.19	5.13	
71h (10-12-85)	6.25	7.38	12.19	8.06		
8th (211-86)	5.69	6.56	11.69		5.44	
Total for 3rd year	104.07	112.76	126.90	124.69	95.89	
Fourth year (1986)	04 19 4 19 4 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5	na dadaaa ha waxay waxaa ka ahaa ahaa ahaa ahaa ahaa ahaa ah	9899-1114-99-09000-649-99-99-99-99-99-99-99-99-99-99-99-99-9	landnanigagarnik-alquinikasyo-ununusikka (-sopultur) - aqtukatur-unu	u-nasilitiyasindir kasilasiya ya ashkiba yara ya y	••••••••••••••••••••••••••••••••••••••
1st (143-86)	12.00	13.00	17.94	16.88	10.89	
2nd (284-86)	13.50	15.81	25.00	22.56		
3rd (76-86)	10.56	11.56	15.00	13.06	9.56	
4th (227-86)	10.50	13.69	14.44	12.75		
5th (3-11-86)	6.13	10.31	11.00	9.25	2.63	
6th (24-12-86)	9.63	11.56	12.75	14.88	7.13	
7th (3 - 2 - 87)	16.19	.18.06	18.75	18.69	13.00	
8th (133-87)	17.56	19.88	19.13	23.75	13.63	
Total for 4th year	96.07	113.87	138.01	131.82	77.07	

Table 4.4

Mean nut yield per palm per year Yearwise (1983 to 1986)

		Nut yie	eld	
Treatments	1983	1984	1985	1986
Irrigation at		where we can be also deviate and the property of the standard standa	ahung pagaagapaan ni kinadokatata basa ming Basada Birda - Matahang	
75 mm CPE (T ₁)	73.87	40.80	104.06	96.07
50 mm CPE (T ₂)	84.50	39.81	112.75	113.87
25 mm CPE (T ₃)	66.75	39.87	129.88	119.26
Once in 3 days (T_4)	69.68	41.43	124.68	131.82
No irrigation (T_5)	80.75	31.68	95.87	77.07
SEm I	7.57	6.92	10.39	11.08
C.D.	NS	NS	12.57	24.14
C.V. %	1).08	17.87	9.16	9.92

Table 4.5

Post experiment data on nut yield 1987

Harvestwise nut yield per coconst

Serial No. of	nan (maaligaaliyyaanga 25 a dariya	Google-with State Advances for and potent with	Treatme	nts	
harvests	T ₁	т ₂	T ₃	T ₄	T ₅
1. 244-87	13.31	16.69	17.00	17.31	18.56
2. 56-87	17.25	18.44	12.50	18.56	18.94
3. 207-87	11.94	13.00	15.06	11.94	15.31
4. 219-87	9.44	13.25	8.13	8.00	8.94
5. 6-11-87	9.94	6.63	4.63	4.63	7.06
6. 23-12-87	10.06	12.31	11.75	11.13	12.25
7. 6	14.85	14.35	23.32	24.50	9.40
8 • 12 ··· · · · · · · · 88	13.00	15.67	24.26	26.56	7.35
Total	99.79	110.34	116.65	122.63	97.81

Table 4.6

--- 73---

Serial no. of harv	00+0		Treatme	nts	
	-1	T2	T ₃	TĄ	Т ₅
1. 24-4-87	1.50	1.56	1.44	1.44	1.31
2. 56-87	1.56	1.63	1.50	1.60	1.63
3. 207-87	1.56	1.50	1.69	1.38	1.63
4. 219-87	1.63	1.75	1.63	1.56	1.56
5. 6-11-87	1.69	1.81	1.25	1.25	1.56
6 23-12-87	1.63	2.13	1.63	1.75	1.81
7. 62-88	1.54	1.69	1.49	1.41	1.52
8. 124-88	1.58	1.72	1.51	1.48	1.56
Total	12.69	13.79	12.14	11.87	12.58

Post experiment data on number of bunches of tree Harvestwise data on number of bunches/coconut

16. Data on important biometric observation.

Since the experiment was over, no biometric observation were recorded.

17. Incidence of pests and diseases : NIL

18. Any other relevent observation.

During the year under report, all the trees received common irrigation. Only the nut yield was recorded to study the effect of irrigation given in previous years.

- 74-

EXPERIMENT No.5

1. Title of the experiment ... WM 2.4 Response of Colocasia

(<u>Colocasia</u> <u>esculenta</u>) to varying levels of irrigation at different levels of nitrogen.

- 2. Objectives:
 - To study the response of Colocasia to various irrigation levels with respect to its growth and yield.
 - 2) To find out the most economic dosage of nitrogen.
 - To work out the optimum combination of levels of irrigation and nitrogen.
 - 4) To study the influence of irrigation and fertilizer application.
 - 5) To workout the economics of irrigation and fertilizer application.

3. Year of commencement : 1987-88 summer

4. Initial soil characteristics:

	a)	Soil texture	8	Loamy sand	
	b)	Available water holding a capacity	°	11.2	
	C)	pH	0	5.75	
	d)	E.C.(millimhos/cm)	0	0.28	
	e)	Organic carbon (%)	0	0.35	
	f)	Bulk density (g/cm ³)	0 0	1.45	
	g)	Available P ₂ 0 ₅ (kg/ha)	0.0	14.45	
	h)	Available K ₂ O (kg/ha)	0 8	30.12	
5.	Cr	op rotation followed - R:	ic	e-Rice-Colocasi	а

		-75-	
6.	Sowing		
	a) Date	: 18.1.1988	
	b) Method	: Dibbling	
	c) Seed rate	: 1500 kg/ha	
	d) Spacing	: 6(x 45 cm	
	e) Variety	: Thamarakannan	
7.	Harvest date	: 20.6.88	
8.	Fertilizers and Manures:		
	a) Dosage	: N as per treatment	
		P 50 kg P205/ha	
		K -100 kg K ₂ 0/ha	
	b) Kind of fertilizer	: N - as Urea	
	formation	P - as Superphosphate	
		K - as Muriate of potash	
	c) Time of application	: Full dose of P, half dose of	
		${\tt N}$ and K were applied with in a	
		week after sprouting and the	
		remaining half dose of N and K	
		were applied after one month.	
	d) Method of application	: Placement.	
9.	Irrigation		

9. Irrigation

	Tr	eatments		
Particulars	0 ^I	I 1	I ₂	I ₃
) Dates of irrigation	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an ga tha fair ann an stàinn ann an stàin	Merred Sydford Algungs in Half Statistics Conference in Annual Sydford	binnişdərininləşin kərvər vəlgərinə bəsərələşin vəsev gəv
January 88	27	27	27	27
February 88	NIL	23	15	9,24
March 88	NIL	10	5	10,28
April 88	NIL	NIL	2	9
May 88	NIL	NIL	NIL	NIL
June 88	NIL	NIL	NIL	NIL

(Contd...)

	140m 76 1000			
(Contd)	gana di King gadi magi na sidar nang ming sing di sina n	nentra dan sasta anen kenasa sakatan para	and decided to the the second decided of the second decided of the second second second second second second s	annan ar salannan kara na sana an
b) Depth of water applied (mm)	50	50	50	50
c) Total water applied (mm)) 50	150	200	300
d) Total number of irrigation	on 1	3	4	6
e) Rainfall received during the crop period (mm)	g 8 01. 10	801.10	801.10	801.10
f) Method of irrigation followed	Furrow	irrigat	ion	
10. Lay out of the experim	ent			
a) <u>Treatments</u> 1) Levels of irriga	tion: 4			
I_0 - No irrigation I_1 - Irrigation I_2 - Irrigation I_3 - Irrigation 2) Levels of nitrogon N_0 - No nitrogen N_1 - 40 kg N/ha N_2 - 80 kg N/ha N_3 - 120 kg N/ha	at 0.3] at 0.6] at 0.9] gen	W/CPE		
b) Design		ctorial 1	R.B.D	
C) Replication	: 3			
d) Plot size	: Gr	oss area	- 5.4 m x	3.6 m
	Ne	t area	- 4.95m x	3 m

i. T

11. Plotwise crop yield

1. Yield of Colocasia tubers (kg/net plot) as influenced

Sl. No.	Treatments	3	Replication I	Replication II	Replication III
1	IoNo		6.80	6.80	6.40
2	I _O N ₁		14.00	5.60	5.20
3	Io ^N 2		12.00	12.0	6.80
4	ION3		12.80	10.0	7.20
5	I ₁ N _o		10.0	9.6	6.0
6	I ₁ N ₁		14.0	16.0	8.80
7	I ₁ N ₂	с. 1. р.	20.0	10.4	6.4
8	I ₁ N ₃		10.8	10.8	7.6
9	I2 ^N O	ж.	9.6	8	6.4
10	I ₂ N ₁		16.8	8	12.0
11	I ₂ N ₂		14.4	10	9.2
12	I ₂ N ₃		16.0	15.84	4.8
13	I ₃ N _O		12.0	7.60	6.80
14	I ₃ N ₁		20.80	12.0	5.60
15	I ₃ N ₂		7.60	14.40	12.80
16	I ₃ N ₃		12.0	8.4	7.2
ć	2.		ANOVA		
	Source	df	3 5	MSS F	nnendi bilanda baran mahasata a una ataya dagan kara da
Tot	tal	47	85.136		gunaldeluidigeann na na stàite naitean ann an ann ann an stàite
Rej	plication	2	32.176 16	.088 14.578	*
Ni	trogen	3	12.464 4	.152 3.788*	2.92
Irı	rigation	3	3.816 1	.272 1.161	2.92
N	x I	9	3.648 0	.408 0.372	2.27
Eri	cor	30	33.032 1	.096	

by irrigation schedules and nitrogen levels.

*Significant at 5% level

C.D. (0.05) - 0.309

-77-

ece 78 cm

12. Economic crop yield and yield contributing characters.

1. Tuber yield.

Statistical analysis of the yield data of tubers. revealed that effects due to levels of nitrogen alone was significant while irrigation schedules and interaction were non significant (Table 5.)

Among the different levels of nitrogen $N_1(40 \text{ kg N/ha})$ recorded the highest tuber yield of 10710 kg/ha which was on par with N_2 (80 kg N/ha) and $N_3(120 \text{ kg N/ha})$. Eventhough the above treatments were on par, a decreasing trend in yield was noticed in the treatments from N_1 (40 kg N/ha) to N_3 (120 kg N/ha). Hence the application of N @ 40 kg/ha was sufficient for maximum production of tuber yield in colocasia. The nonsignificant results due to the different water management practices may be due to the availability of frequent rains during experimental period especially from March to June. Number of irrigation given to all the treatments were only few during these months which is the tuber formation period.

Yield contributing characters

1. Number of tubers per plant is presented in table 5.2. As in the case of tuber yield, the nitrogen levels significantly influenced the number of tubers/plant. The effect of irrigation and the N x I inter-actions were **con**significant. Among the nitrogen levels, the N_2 (80 kg N/ha) recorded the highest number of tuber/ plant (15 No.) and was on par with N_1 and N_3 (14 and 13 respectively).

-	.7	9	-	

Table 5.1

	in the second		the second s			
	Treatments	naunda en martin angen nga kang kang kang kang kang kang kang	Nitrogen	levels (k	g/ha)	Mean
		N _O O	N ₁ 30	N ₂ 60	N ₃ 90	
	งการสำนัญชีวิธีสุขสมัย นายและของสามสามารถสามรูญสุขสามารถสามารถสามารถ	\$	andige and an all and a second se	49.000	ດ້ານແຫຼງແລະລັກລາດເຊັ່ງການເຊັ່ງການເຊັ່ງການເຊັ່ງການແຫຼງການແຫຼງການແຫຼງ ການແຫຼງ	nadityle regorgeddiaene e engeleddiae a refe
I ₀ -	No irrigation	6172.83	7654.30	9259.24	9259.24	8086.4
I ₁ -	Irrigation at 0.3 IW/CPE	7901.22	11975.28	11357.99	9012.33	10061.7
I ₂ -	Irrigation at 0.6 IW/CPE	7407.39	11357.99	10370.35	8839.49	9493.8
I ₃ -	Irrigation at 0.9 IW/CPE	8148.13	11851.82	10740.72	8518.50	9814.7
	Mean	7407.39	10709.84	10432.08	8907.4	660-000-000 / Anno 2014 - A -
	Irrigation sch	edules -	NS		ndin baih a shigan shigan shi a sa shi si shi	an a
	Nitrogen levels	5 -	2288.89			
	Interaction		NS			

Yield of colocasia tubers (kg/ha) as influenced by irrigation scheduled and nitrogen levels.

Table 5.2

Number of tubers/plant as influenced by irrigation schedules and nitrogen levels.

Treatments	l	/ha)			
	NO	N ₁	N ₂	N ₃	Mean
Irrigation levels	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	ale seglet en annound an annound an annound an annound an annound an annound annound annound annound annound an	augusten of galance and a set of provide and an and a set of the s		ande wanten en de die en gebeurgen gebeurgen en geweinen.
I _O - No irrigation	11.13	16.53	14.07	11.9	13.45
I ₁ - Irrigation at 0.3 IW/CPE	10.40	14.80	16.87	12.67	13.68
I ₂ - Irrigation at 0.6 IW/CPE	8.53	11.27	14.60	14.80	12.3
I ₃ - Irrigation at 0.9 IW/CPE	9.93	15.8,	15.73	12.8	13.57
Mean	10.03	14.60	15.32	13.05	tinnigdirflamming dystadiaetaetaetaetaetaetaetaetaetaetaetaetaeta
	Nitrogen		les - NS - 3.45 - NS	889 mm kun m 889 pages hyver första språnderna og	alleftigten av under einer alleftigtigten anneretet v

13. Soil moisture studies.

Due to the continuous availability of rains irrigation were carried upto the month May only. The difference in moisture percentage between after the irrigation and before the next irrigation is presented in Table 5.3.

	-	Depthw	ise so	il moi	sture	(%) du	ring t	he cro	p peri	od				
Treatments $I_1 - IW/CPE = 0.3$ $I_2 - IW/CPE = 0.6$ $I_3 - IW/CPE = 0.9$									1997 (M) 1					
umber of irrigation	n 1	2	٦ ک	1	2	3	4	1	2	3	4	5	6	
itrogen levels and Depth (cm)			17 4 11	annan an a	directing the same of the space of the space	99499498998999999999999999999999999999	udennan fan verskalen fanger og synans kang i		n men daga men este este daga daga daga per	9539900 1944 1946 1959 1960 1960 1960 1960 1960 1960 1960 196	de Malimmum managelening en en publica mala un agage		6	Negeror des
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.21 4.32 3.77 2.56	2.30 2.20 2.09 1.86	2.3 3.1 3.5 2.3	4.04 2.8 2.01 2.48	2.12 3.20 2.52 2.31	2.32 3.45 3.68 2.16	2.89 3.25 3.16 2.85	2.5 2.05 2.83 2.06	2.96 3.15 3.06 2.17	3.12 2.16 2.96 3.02	2.12 3.24 2.86 2.91	2.74 2.92 2.16 2.85	2.85 2.76 2.94	
$ \begin{array}{r} 0 - 15 \\ 15 - 30 \\ N 30 - 60 \\ 60 - 90 \end{array} $	4.5 4.53 4.56 2.62	2.87 2.53 2.56 2.63	2.6 3.54 4.25 2.89	3.95 3.11 2.8 2.61	1.89 2.24 2.14 2.32	3.13 2.68 3.54 2.96	3.04 2.69 3.54 2.45	2.08 3.12 2.74 3.25	3.16 3.04 2.89 2.71	3.16 3.25 2.94 2.58	2.65 2.98 2.75 2.10	2. 69 3.14 2.85	2.34 267 2.83 2.48	
$\begin{array}{r} 0 - 15 \\ 15 - 30 \\ N_{30} - 60 \\ 60 - 90 \end{array}$	5.62 5.24 3.18 2.33	2.21 2.15 2.24 1.81	3.25 4.26 4.87 3.25	4.06 3.67 3.07 2.01	0.85 1.85 1.46 1.26	4.12 3.26 2.89 2.56	2.96 3.26 4.10 2.89	4.12 3.23 4.87 3.12	2.96 3.18 2.19 2.96		3.04 2.95 2.86	2.93 2.18 2.56 2.89	2.82 2.12 2.19 2.67	
$ \begin{array}{r} 0 - 15 \\ N 15 - 30 \\ 30 - 60 \\ 60 - 90 \\ \end{array} $	3.21 3.53 2.41 3.28	2.1 2.02 1.70 1.68	2.94 3.86 3.98 2.56	4.12 3.05 2.95 2.67	1.46 2.28 2.50 1.92	3.64 3.25 2.10 2.06	2.76 2.94 3.25 3.16	3.96 3.23 3.56 4.12	3.19 2.56 2.88 3.19	1.94 2.85 2.67 2.77	2.74 2.66 2.96 3.12 2.85	2.45 2.26 2.94 2.18 2.79	2.78 2.04 2.65 2.54 2.69	

-81-Table 5.3

Tranth

Mana La	Depth from ground	d level in cm.
Month	Maximum	Minimum
January		75
February	124	90
March	118	62
April	30	22
May	. 80	28
June	29	18

-82-14. Periodic ground water fluctuation in the experimental area.

15. Important weather conditions/prevailed during the crop period.

Month	Total No. Mean Mean R.H rain- of temper- (%) fall rainy ature(°c) _{8 AM} 2.PM (mm) days Max. Min.	Mean Mean open wind pan speed evapo- km/hr ration mm/day
January	- 33.11 18.87 82.61 44.32	3.26 1.85
February	1.6 1 35.04 21.81 83.C 45.63	3.90 2.38
March	17.7 5 35.37 24.1 78.84 54.20	4.23 2.72
April	246.4 15 34.3 24.27 84.9 55.54	4.03 2.35
May	123.70 9 33.34 24.52 86.81 33.34	3.05 2.63
June	689.7 27 .30.58 23.28 91.67 30.58	2.05 2.15

16. Growth characters.

The data on important growth characters are furnished in Table 5.4.

a) Height of plants.

The data on plant height recorded two months after germination revealed that both the irrigation and nitrogen levels significantly influenced the plant height at early stages. The treatments I_2 and I_3 (IW/CPE ratio of 0.6 and 0.9 respectively) which received maximum number of irrigation during the early periods recorded maximum height when compared with I_0 (No irrigation) and I_1 (IW/CPE = 0.3) when received lesser number of irrigations. Among the nitrogen levels the maximum plant height was recorded by N_2 (80 kg N/ba). The interaction effects were not significant.

b)Number of suckers/plant

The levels of nitrogen alone showed a significant influence on the sucker production. The highest number of suckers was produced by N_2 (80 kg N/ha) and was on par with N_1 (40 kg N/ha) and N_3 (120 kg/ha).

c) Number of leaves per/hill

The number of leaves/hill was also significantly influenced by levels of nitrogen alone. The levels of nitrogen showed a positive significant influence on number of leaves, and N_3 (120 kg N/ha) recorded the maximum number and was on par with N_2 (80 kg N/ha).

Table 5.4

Data on important biometric observations and quality attributes a) Height of plants as influenced by irrigation schedules and nitrogen levels (cm)

Levels of inrigation		Litrogen levels					
	NC	li.	N_2	N ₃	Mean		
I ₀ - No irrigation	38.20	37.73	44.20	44.83	41.24		
I1 - Irrigation at 0.3							
IW/CPE I ₂ - Irrigation at 0.6	44.53	42.13	8.13	42.00	44.20		
IW/CPE	33.07	34.06	39.6	38.0	36.18		
I ₃ - Irrigation at 0.9							
IW/CPE	29.06	38.00	45.87	34.2	36.78		
Mean	36.2	37.98	44.45	39.76	rhadin androist dike a altaks		
C.D. (0.05) for irrigation C.D. (0.05) for nitrogen C.D. (0.05) for interaction	2	4.049 4.049 NS	Mitthead the c salestar reger reasonant realities	ninnasi in nisana kan yan da paganag dan d	анануулаан изделерит тоо туулуу т		

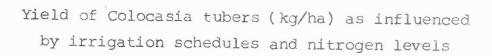
-83-

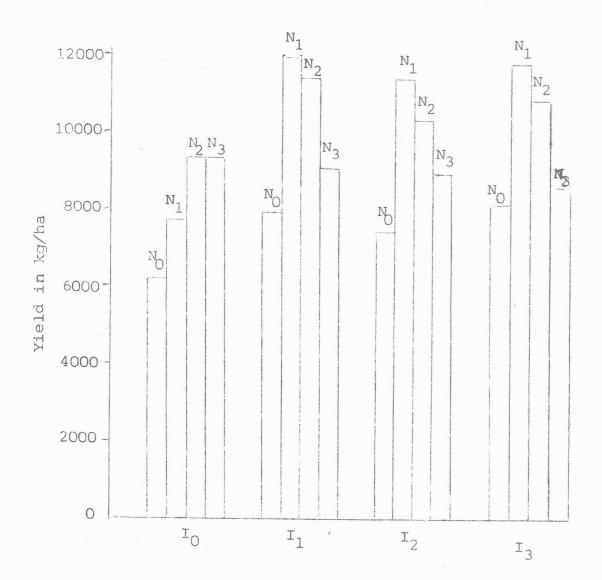
b) Number of suckers/plant as influenced by irrigation schedules and nitrogen levels.

ware 84 mer

					and the second of the second
Levels of irrigation			nitro ^N 2		Mean
I _O - No irrigation	2.4	2.6	3.06	4.0	3.02
I ₁ - Irrigation at 0.3 IW/CPE	3.0	3.73	3.27	3.73	3.43
I ₂ - Irrigation at 0.6 IW/CPE	2.87	3.00	4.2	3.13	3.30
I ₃ - Irrigation at 0.9 IW/CPE	1.87	3.13	4.13	3.53	3.17
Mean	2.53	3.12	3.66	3.60	annander a same i dar og at a s
C.D. (0.05) for irrigation		NS			
C.D. (0.05) for nitrogen	C	.717			
C.D. (0.05) for interaction		NS			

c) Number of leaves/plant as influenced by irrigation schedules and nitrogen levels.


	Lev	els of	gen	Mean	
Levels of irrigation	NO	N ₁	N ₂	N ₃	
I - No irrigation	3.67	3.80	3.80	5.0	4.07
I ₁ - Irrigation at 0.3 IW/CPE	3.80	4.07	4.40	4.4	4.17
I ₂ - Irrigation at 0.6 IW/CPE	3.67	4.13	4.0	4.87	4.17
I - Irrigation at 0.9 IW/CPE	3.80	4.0	4.93	4.47	4.3
Mean	3.73	4.C	4.28	4.68	
C.D. (0.05) : Irrigation sched	ules		NS		


(0.05):	Irrigation schedules	tap	IND
	Nitrogen levels	RR(2)	0.421
	Interaction	1825	NS

17. Incidence of pest and diseases:

The attack of thrips was observed in few plots and sprayed with Ekalux to control this. No major diseases were observed during the year under report.

18. Any other relevent information : Since this variety of Colocasia (Thamarakannan) is a short duration one having 5 months duration, this can be included in the cropping systems after two rice crops under limited water supply.

EXPERIMENT No.6

1. Title of the experiment : W M 2.2 Water management practices for bittergourd (Momordica charantia L.) under graded doses of nitrogen.

- Vegebables

2. Objectives

5.

- 1) To find out the effect of timing and frequency of irrigation on the growth and yield of bittergourd.
- 2) To study the response of bittergourd to graded doses of nitrogen under different moisture regimes.
- 3) To work out the economics of irrigation and fertilizer application.
- 4) To work out optimum combination of levels of irrigation and nitrogen.

3. Year of commencement : 1986 - 87 Repeated in the same field with same randamisation.

4. Initial soil characterstics

a)	Soil texture	Ó B	Loamy	sand
b)	Available water holding capacity (%)	0. B	10.8	
C)	<u>F</u> I.	•	5.8	
d)	E.C. (mm hos/cm)		0.36	
Θ	Organic carbon (%)	0 9	0.36	
£)	Bulk density (g/cm ³)	• 0	1.40	
g)	Available P ₂ 0 ₅ (Kg/ha)	8 9	13.74	
h)	Available K ₂ 0 (Kg/ha)	0 9	28.91	
Cre	op rotation followed	8	Rice -	Rice

6. Sowing:

7

	a) Date	•	14.1.88
	b) Method	•	Dibbling
	c) Seed rate	o e	5 kg/ha
	d) Spacing	8	2 m x 0.75 m
	e) Variety		Priya (VK - 1)
6	Harvesting dates	0.0	14.3.88, 19.3.88, 28.3.88,
			5.4.88, 11.4.88, 16.4.88,
			20.4.88.

8. Fertilizers & Manures:

a) :	Dosage		•	N·	95)cia	as	per treatment
				P	67438	25	kg P ₂ 0 ₅ /ha
				К·	*13310a	25	kg K ₂ 0/ha.
b)	Kind of fertilizer	Ş	•	N	esp	as	Urea
10	formulation	5		P	REED	as	Super Phosphate
				K	#1210	as	Muriate of potash

c) Time of application

25% of nitrogen and full dose of phosphorus and potash were applied as basal dose and the remaining 75% of nitrogen applied in 6 equal splits of 12.5% each at fortnightly intervals.

d) Method of application : Placement

9. Irrigation

a) Dates of irrigation

	Month		Trea	tments	
	MOIICII	I ₁	I ₂	I ₃	IĄ
Fe	ebruary	17, 21, 26	17, 26	17, 29	17, 19, 21, 23, 26, 28.
Ma	arch	1,5, 9, 13, 17, 22, 26, 29		11, 26	1, 3, 5, 7, 9, 11, 13, 16, 19, 21, 23, 25, 27, 29, 31.
Aj	pril	1, 5		5	2,4
b)	Depth of wat applied (mm	er 13540	40	40	40
с)	Total water applied (mm	h / (1	240	200	920
d)	Total numbe of irrigati		6	5	23
e)	Rainfall re ived during crop period	the 283.7	283.7	283.7	283.7
- Andrew - Antonio Antonio	f) Methcd o	f irrigation) : Chec	k basin	
		followed.	5		
10.	Layout cf e	xperiments			
	i) Trastman	+0			

a) Treatments

i) Levels of irrigation:

 $I_1 - Irrigation at 15 mm CPE$

I₂ - Irrigation at 30 mm CPE

I3 - Irrigation at 45 mm CPE

I₄ - Farmers practice (once in two days)

-	i i î	L					-8	8-			×	
-	Li)	Lev	el	s	of r	nitroger		Ŭ				
		No	-	No	nit	rogen						
		N ₁	fatos	30	kg	N/ha						
		^N 2	faces	60	kg	N/kg						
		N ₃	10.39 10.39	90	kg	N/kg						
b)	Des	sign	1				0.0	Fa	ict	orial	LR.	B.D.
c)	Rep	olic	at	ior)		17 0	3				
d)	Plo	ot s	iz	е								
	1)	Gro	SS				:	8	X	5.25	М	
	2)	Net					0 0	4	х	3.75	Μ	

11. i) Plot wize crop yield

Yield of bittergourd (Kg/net plot) as influenced by irrigation scheduled and nitrogen levels.

Treatments	ىيەرىيىنىڭ ئېرىكى ئەرىكەر يېرىكەرلىيەر يەرىكە تەرىپىلەر يېرىكە يەرىكەر يەرىكەر يېرىكەر يېرىكەر يېرىكەر يېرىكەر يېرىكى يېرىكى	Replications	ng gulanaling alarah idalah yan ar-anandanda va	1999-1489 (1
	R ₁	R ₂	R ₃	MitPEsseptronythy, A
I1 ^N O	15.675	16.489	15.319	Marti-ri-dagama u
IINI	23.846	22.583	22.488	
I ₁ N ₂	26.943	28.415	27.285	
I ₁ N ₃	28.232	26.004	29.482	
I ₂ N _O	14.678	15.114	13.071	
I ₂ N ₁	18.506	22.162	21.503	
I ₂ N ₂	19.404	22.862	23.954	
I ₂ N ₃	26.74	25.162	24.308	
I ₃ N _O	10.441	14.09	12.754	
I ₃ N ₁	17.912	20.564	19.532	
I ₃ N ₂	18.742	21.984	21.05	
^I 3 ^N 3	25.792	22.975	22.613	
I ₄ N _O	16.705	15.282	17.265	
I N 1	23.062	24.711	22.645	
I4N2	29.037	32.239	28.617	
I ₄ N ₃	28.994	31.242	30.025	

ii) ANOVA

wara faiged	Source	d£	SS. MSS	F	Table Value
	Total	47		u 68) - Puer Protectiones Protectiones	
	Replication	2	13.766 6.883	1.359	
	Nitrogen	3	945.022 315.007	62.192**	2.92
	Irrigation	3	208.32 69.44	13.709**	2.92
	N×I	9	71.148 7.905	1.561	2.27
	Error	30	151.95 5.065		

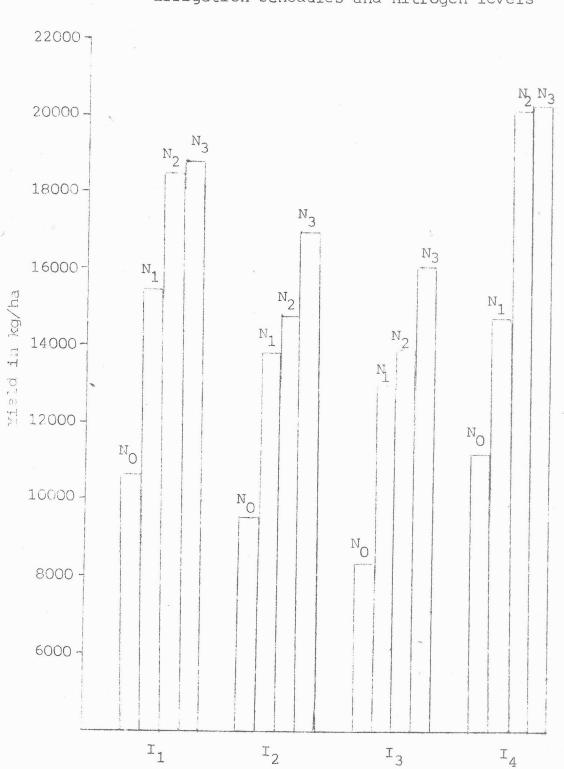
C.D. (0.05%) : 1.876

** Significant at 1% level.

12. Economic crop yield and yield contributing characters.

1. Fruit yield :-

Statistical analysis of the yield-data showed that the effects due to irrigation and nitrogen were significant (Table-6.1), but their interaction was not significant.


Among the irrigation levels, I_4 (Farmers practice of once in two days) recorded the maximum fruit yield of 16712 kg/ha, and was on par with $I_1 - 15$ mm CPE (an approximate interval of 4 days) which recorded the yield of 15709 kg/ha. The treatments $I_2 \& I_3$ (30 mm & 45 mm CPE) were significantly inferior to $I_4 \& I_1$. The number of irrigations received by I_1 , I_2 , I_3 and I_4 were 13, 6, 5 and 23 respectively. Corresponding quantity of water used by the above four treatments were 520mm, 240 mm, 200 mm and 920 mm. Hence it is more economic

-89-

-90-Table-6.1

Yield of bittergourd (kg/ha) as influenced by irrigation schedules and nitrogen levels during the year 1985-87 and 1987-88

K		1986-87			ta V
	nadas metamonalitam metamonalitatinga tegan sama menandi dispating K	Nitrogen	n levels (kg/ha)	Mean
Treatments	N _O O	^N 1 30	N ₂ 60	N ₃ 90	
Irrigation levels	ann a agus bhann ann Alaine Santainn a chuirtean ta ga shaileann				
I ₁ - Irrigation at 15 mm CPE	12824.79	21810.55	27026.58	31389.48	23263.52
I ₂ - Irrigation at 30 mm CPE	15433.47	18003.49	32325.25	29741.90	23876.03
I ₃ - Irrigation at 45 mm CPE	10276.09	19037.91	25456.30	24123.3	19723.07
I ₄ - Farmers practice onc in two days		23636.76	28323.58	32174.62	23867.37
Mean	12466.22	20622.17	28282.93	29257.33	nandag generalize biological generalized in the second second second second second second second second second
	Interacti	1987-88	and comparison of the state of	ero, stant Status	ad the set of the set
The share is a start of the sta	1	Vitrogen le	evels (kg/	ha)	- Mean
Treatments	N _O O	^N 1 30	N ₂ 60	^N 3 90	
Irrigation levels		Υ ⁴ ατογραφικό το τη			
I ₁ - Irrigation at 15 mm CP	10551.67 E	15314.74	18364.93	18603.91	15708.79
I ₂ - Irrigation at 30 mm CP	9525.02	13815.64	14716.74	: 16935.39	13748.20
I ₃ - Irrigation at 45 mm C	PE				
I ₄ - Farmers pra ctime once two days	-11166.99 in		19976.02		16712.28
-	9882.29	14417.30	16696.39	17864.77	
C.D. (0.05)	Irrigatio Nitrogen Interact	levels	es : 1250. : 1250. : NS	.67 .67	

Yield of bittergourd (kg/ha) as influenced by irrigation schedules and nitrogen levels

Table-6.2

Yield contributing characters as influenced by irrigation schedules and nitrogen levels. a) Number of fruits.

and the second	1. C.	Nitroger	n levels (kg/ha)		
Treatments	N _O O	^N 1 30	^N 2 60	^N 3 90	Mean	
Irrigation levels	5 	<u>ang dan kun kun kun kun kun kun kun kun kun ku</u>	anding a second of the provide second se		÷	
I ₁ - Irrigation at 15 mm CPH	85778	10667	119556	113778	106444.75	
I ₂ - Irrigation at 30 mm CPH	80223 E	116889	107779	118223	105778.50	
I ₃ - Irrigation at 45 mm CPH	94667	112889	110223	111778	107389.25	
I ₄ - Farmers prac ice (once in two days)	st- n 98000	114223	111556	112223	109000.50	
Mean	89667	112667	112278.	50 114000.5	50	
C.D. (0.05)	Irrigati	on schedu	les : N.	S	i de la companya de la compa	
	Nitrogen	levels	: 13	420.07		
	Interact	ion	: N.	S		

b) Girth of fruit (cm)

	Nitroc	jen level	.s (kg/ha		Mean
Treatments	0	30	60.	90	
Irrigation levels	annan diga di kana di k	an nonragional na maior da tarafa (halina da tarafa da tarafa da tarafa da tarafa da tarafa da tarafa da taraf			
I ₁ - Irrigation at 15 mn CPE	9.70	10.13	10.60	9.90	10.08
1 ₂ - Irrigation at 30 mm CPE	10.47	10.17	10.2	10.33	10.29
I ₃ - Irrigation at 45 mm CPE	9.6	9.8	9.6	10.16	9.79
\mathbb{I}_4 - Farmers practice	8.83	9.8	10.37	10.97	9.9
Mean	9.65	10.01	10.16	10.34	and an and a sub-later the surgery strengthermore (1990) and
C.D. (0.05) Irrig	ation	: 0.3	07		
Nitro	gen	: 0.30	07		
Inter	action	: 0.1	86	80	

-92-

c) Length of fruits (cm)

					and a second
	Nitr	ogen le	vels (kg/b	na)	Moom
Treatments	0	30	60	90	Mean
Irrigation levels	te en star wer we	 AND THESE IN THESE (1) 	n ne http://www.autof.com/	anan 1 - Singan Sawasa S	and the second sec
I ₁ - Irrigation at 15 mm CPE	17.30	17.70	18.30	18.33	17.94
I ₂ - Irrigation at 30 mm CPE	17.53	18.35	18.5	18.33	18.18
Interview at 3 - Interview At 5 mm CPE	16.16	17.3	18.53	19.23	17.81
I ₄ - Farmers pract:	ice 16.50	18.06	18.50	19.70	18.19
Mean	16.90	17.85	18.46	18.9	
	Irrigation Nitrogen				

Interaction: N.S

torirrigate the crop at 15 mm CPE (approximately 3-4 days interval) taking into account the yield, total water used and number of irrigations.

Levles of nitrogen on fruit yield indicated a positive and significant influence with each successive level of nitrogen. However the magnitude of increase was higher upto 60 kg N/ha.

Among the levels of nitrogen N_3 (90 kg N/ha) recorded the highest yield (17865 kg) which was on par with N_2 (60 kg N/ha). The treatments N_0 (nonitrogen) and N_1 (30 kg N/ha) were significantly inferior to $N_2 \& N_3$. The level of nitrogen @ 60 kg N/ha can be taken as the most economic dose of nitrogen for bittergourd.

2. Yield contributing characters.

The data on different yield contributing characters such as number, girth and length of fruits are geven in Table 6.2.

a) Number of fruits.

The effect of irrigation on the number of fruits not significant but the levels of nitrogen significantly influenced the number of fruits. N_{O} (No nitrogen) was significantly inferior to N_1 , N_2 and N_3 which were on par with each other.

The interaction between irrigation and nitrogen was also not significant.

-93-

b) Girth of fruits.

Irrigation schedules, nitrogen levels and their interaction significantly influenced the fruit girth. The girth of fruits increased with nitrogen levels and the maximum was recorded by N_3 (90 kg N/ha)

-94-

Among the irrigation levels I₂ (30 mm CPE) recorded the maximum girth.

c) Length of fruits.

The water regimes did not influence the fruit length significantly. However the application of nitrogen had a positive significant effect on this character. N_3 (N - 90 kg/ha) recorded the highest length of fruit of 18.9 cm against 16.90 cm for N_0 (No mitrogen)

- 13. Soil moisture studies in the crop root zone
 - 1) Periodic rate of water use.

Depthwise consumptive use (%) at different growth phases

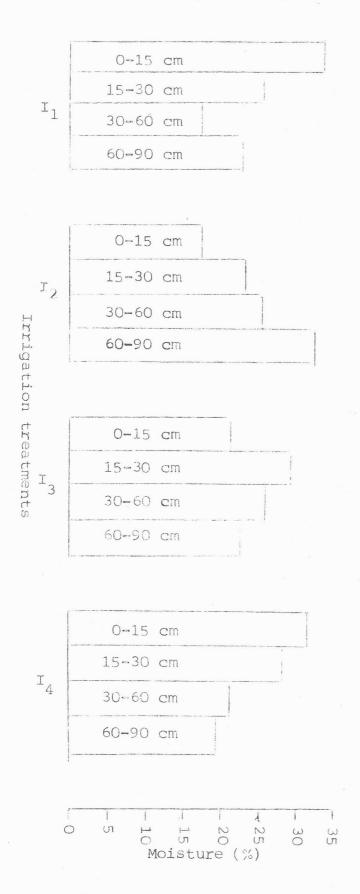
TH DICKCLOCK								ور به موهومه در در در در هموموهومورو وروزی	and and the second of the
ann an ann ann ann ann ann ann ann ann	andread in real party in the second second	I ₁		I ₂		I ₃		I ₄	
Treat- ments	Depth (cm)	Vege- tative phase	Repro- duct- ive phase	Vego- tative phase	Repro- duct- ive phase	Vege- ta- tive phase	Repro- duc- tive phase	Vege- ta- tive phase	duc- tive
NO	15-30 30-60	22.64 15.69 27.40 34.25	20.31 20.24 28.88 30.57	7.98 16.88 32.74 43.94	17.31 13.66 36.35 32.66	22.63 28.21 33.10 16.05	18.61 18.03 33.18 30.16	17.61 23.61 33.33 25.44	19.61 21.24 30.25 29.09
N ₁	0-15 15-30 30-60 60-90	28.98	18.04 19.48 33.51 28.96	10.45 14.81 35.64 39.10	23.63 19.85 30.23 26.28	6.70 19.39 40.07 33.65	21.54 14.80 28.60 35.46	18.59 30.35	
N ₂	0-15 15-30 30-60 60-90	22.03	16.52 21.39 26.89 35.19	10.51 15.77 41.92 31.79	14.59 12.48 33.81 34.45	19.37 18.86 31.35 30.23	29.27	19.86 31.50	
N ₃	0-15 15-30 30-60 60-90	24.72	16.51 27.86 36.57 38.10	13.30 16.27 21.20 49.22	17.74 20.29 30.93 31.03	21.10 17.00 31.57 30.31	32.90	24.61 20.83 28.26 26.23	17.82

in Bittergourd

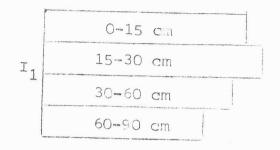
I₂ - Irrigation at 30 mm CPE I₃ - Irrigation at 45 mm CPE I₄ - Farmers practive (once in two days) N₀ - No nitrogen N₁ - 30 kg N/ha N₂ - 60 kg N/ha

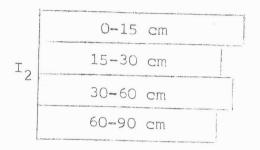
I1 - Irrigation at 15 mm CPE

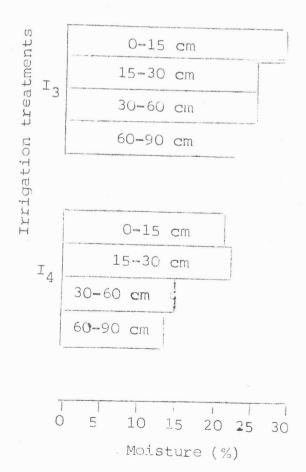
 $N_3 = 90 \text{ kg N/ha}$


-95-

2) Moisture extraction pattern (Depth wise in %) at different growth phases in bittergourd.


	and a subsection of the second s	an a	a strend the office sector and a sector sector sector						
Treat- ments	- Depth (cm)	I ₁		I ₂		I ₃		I ₄	
		Vege- tative phase	Repro- duct- ive phase	ta- tive	Repro- duct- ive phase	ta- tive	Repro- duct- ive phase	Vege- ta- tive phase	duc- tive
No	0-15 15-30 30-60 60-90	33.18 22.65 19.79 24.37	26.72 29.52 21.80 21.97	26.63 25.81	26.78 20.96 27.72 24.54	21.50 26.44 26.39 25.66	27.59 26.38 24.27 21.75	24.49 32.24 22.82 20.45	26.61 30.49 15.97 13.74
N ₁	0-15 15-30 30-60 60-90	30.81 19.16 21.76 28:30	25.85 29.45 25.34 19.30	16.96 23.69 28.52 30:83	33.37 27.64 21.07 17.92	27.98	30.67 19.50 25.80 23.97	31.66 24.20 21.81 22.32	$26.64 \\ 14.53$
N ₂	0-15 15-30 30-60 60-90	37.89 26.23 16.52 19.35	26.85 26.46 25.24 21.45	18.39 19.64 27.4 26.98	24.19 20.40 27.65 27.75	26.11 30.01 22.71 21.76	26.85 26.04 25.27 21.80	35.73 26.72 20.89 17.03	16.9 14.93
ы. Э	0-15 15-30 30-60 60-90	32.98 35.69 11.53 19.78	26.85 26.45 25.22 21.40	20.49	23.30 26.25 26.25 24.19	30.10 28.52 22.26 19.09	26.86 24.58		16.26 14.83
an e file			******	ağınaşılı konço-seş örakışlıktore seğirin in Ke		anton y carponen da falla y la any manada dada yang	tin. İngeliği olarası a siyyanındi toradı bir qaf adalanda soğ	anna an	t da harro Militor de Straffico Agrico de Carlos de


 $I_{1} - Irrigation at 15 mm CPE$ $I_{2} - Irrigation at 30 mm CPE$ $I_{3} - Irrigation at 45 mm CPE$ $I_{4} - Farmers practice (Once in two days)$ $N_{0} - No nitrogen$ $N_{1} - 30 kg N/ha$ $N_{2} - 60 kg N/ha$ $N_{3} - 90 kg N/ha$


Moisture extraction pattern (Depthwise) during the vegetative phase of bittergourd

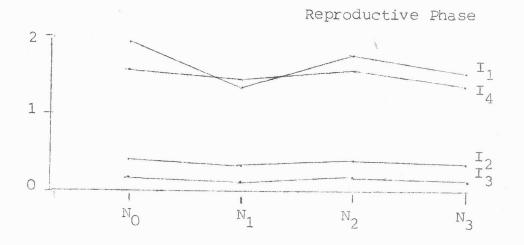
Moisture extraction pattern (Depthwise) during the reproductive phase of bittergourd

1

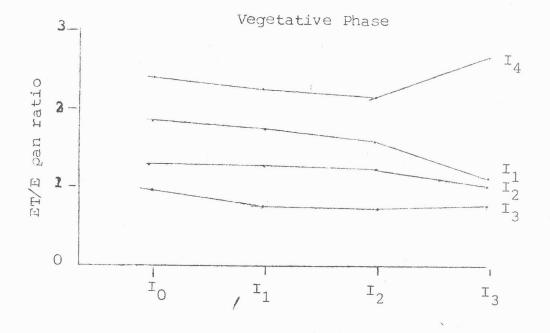
 Seasonal consumptive use (mm) of bittergourd as influenced by irrigation schedules & nitrogen levels.

Treatments	N				
Levels of Irrigation	N _O O	N ₁ 30	^N 2 60	N ₃ 90	Mean
I ₁ - Irrigation at . 15 mm CPE	265.36	267.68	251.27	214.53	249.71
I ₂ - Irrigation at 30 mm CPE	118.47	108.42	116.08	106.05	112.26
I ₃ - Irrigation at 45 mm CPE	80.81	.35.56	65.15	66.62	74.54
I ₄ - Farmer's pract- ice once in two days	327.56	295.82	317.70	308-54	312.41
Mean	198.05	189.37	187.55	173.94	an an gan an a

4) a. ET/E pan ratio during the vegitative phase of bittergourd


Tr	eatments	Ν	Nitrogen levels (kg/ha)					
Irrigation levels		N ₀ N ₁ 0 30		N ₂ 60	N ₃ 90	Mean		
I1 -	Irrigation at 15 mm CPE	1.80	1.73	1.55	1.16	1.56		
1 ₂ -	Irrigation at 30 mm CPE	1.28	1.24	1.20	1.06	1.56		
I.3	Irrigation at 45 mm CPE	0.95	0.70	0.70	073	0.77		
I ₄	Farmer's pract- ice (once in two days)	2.39	2.23	2.18	2.62	2.36		
	Mean	1.51	1.48	1.41	1.39	n de la aggrege general de la constante en la general de la constante en la constante en la constante en la const		

		C THE OTHER DESIGN AND ADDRESS OF THE OWNER DESIGN	to a business of the second	TELEVISION OF A CONTRACT OF A			Preference	
			Nitrogen levels (kg/ha)					
Tre	atments	bir a romannight	N _O O	N ₁ 30	^N 2 60	^N 3 90	Mean	
	Irrigation 15 mm CPE	at 1	.94	1.38	1.84	1.57	1,68	
	Irrigation 30 mm CPE	at C	.48	0.38	C.47	0.42	0,44	
	Irrigation 45 mm CPE	at C	.28	0.24	C.25	0.21	0,25	
	Farmers pra ice (once i two days)		.60	1.42	1.60	1.37	1.5	
n - The second secon	Mean	1	.08	0.86	1.04	0.89	eneraliseteeseeteeleinen of in too by set of dorps, in	


b) ET/E pan ratio during the reproductive pahse of bittergourd.

14. Periodic ground water fluctuation in the experimental area

Depth from grou	
Maximum	Minimum
118	29
125	49
145	60
80	35
	Maximum 118 125 145

ET/E pan ratio during the growth period of bittergourd

15. Important weather conditions prevailed during crop period.

Mail	and the sector of the sector o	-							
Month	rain-	No. of rainy	max.	Mean mini.	Me	ean R.H (%)	Mean openpan	Mean wind-	
	fall (mm)	ll days Tem m) (°c	Temp. (°c)	remp. temp. °c) (°c)		22 PM.	evopo- ration (mm)	speed (km/hr)	
January	-		33.11	18.87	82.61	44.32	3.26	1.86	
February	1.6		5.04	21.81	83.0	45.63	3.90	2.38	
March	17.7	5	35.27	24.1	78.84	54.20	4.23	2.72	
April 24	46.4	. 15	34.3	21.27	e. ±3	55.54	4.03	2.35	

16. Growth characters

1. Height of plants:-

The data on plant height at 30 days after sowing is furnished in table 6.3. The height of plants was significantly influenced by irrigation and I_4 (Farmers practice) recorded the maximum height. Levels of nitrogen did not show any significant influence on plant height.

2. Dry matter production (Vegitative portion)

The data on dry matter production is presented in Table 6.4. The irrigation schedules, nitrogen levels and their interaction significantly influenced the plant dry weight. The dry matter production was highest for I_1 (15 mm CPE) and the lowest for I_4 (Farmers practice). Among the nitrogen levels N_3 (90 kg N/ha) recorded the maximum dry weight.

-- 99-

~~100mm

Table-6.3

	Lev	Levels of nitrogen (kg/ha)						
Greatments -	N ₀ N ₁ 0 30		N ₂ 60	^N 3 90	- Mean			
Levels of irrigation	میں کی کہ دیکھی کہ میں کہ م ان کہ دیکھی کہ میں ک ان کہ میں کہ م	van een kak - ee dage bevondelig geden, voor ook hoef wat hoef	nenakulain olekan , Gruch ketter (kilipin kunntah yang					
I - Irrigation at 15 mm CPS	147.30	139.50	189.67	175.00	162.8			
2 - irrigation at 30 mm CPE	170.43	176.60	168.67	190.67	176.59			
J - Irrigation at 15 mm CPE	140.67	173.00	147.33	141.00	150.50			
la Parmers practice	168.33	181.33	201.50	192.33	185.88			
Mean	156.63	167.61	176.79	174.75	di salaka da ka			
C.D. (0.05) I	rrigation	schedule	5 : 17.	61	a maga i en dianten y an ry nga nderifanan y			
Ν	litrogen		: N.S					
I	interaction	1	: N.S					

Height of plants as influenced by irrigation schedules and nitrogen levels

206583

Table-6.4

-101-

Plant dry weight (vegetative parts) as influenced by irrigation schedules and nitrogen levels.

		Levels of	nitroge	en (kg/ha)	Moon
	N _O O	N ₁ 30	^N 2 60	^N 3 90	- Mean
Levels of insigation	der Gönelligkeitenen, adlen sitzenen. Under bögigter etgennenen	and Chair Belle na ann an Anna ann an Anna Anna Anna A	98699999999999999999999999999999999999		5-150-150-150-150-150-150-150-150-150-15
I - Irrigation at 15 mm CPE	0.833	0.867	1.250	1.300	1.063
I ₂ - Irrigation at 30 mm CPE	0.800	1.263	0,833	1.250	1.027
I ₃ - Irrigation at 45 mm CPE	0.550	1.180	0.867	1.200	0.950
I_4 - Farmers practice	e 0.917	1.067	0.783	0.933	0.925
Mean	0.778	1.095	0.933	1.171	fillen fillen fillen som en skalande som er for på
C.D. (0.05) Ir:	rigation	sc hedules	: 0.065	5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Ni	trogen		: 0.065	5	
	teraction		: 0.125	5	

17. Incidence of pests and diseases with control measures taken.

The attack of leaf feeding insects and fruit fly noticed was controlled by spraying insecticides. Fungicidal spray was also given against the leaf spot disease.

18. Any other relevent information : Nil

206583

EXPERIMENT NO.7

-102-

1. Project number

: WM 2.3 Effect of various mulches on the growth and yield of Banana Cv. Palayankodan grown under irrigated and rainfed conditions.

2. Objectives:

5

- 1) To evaluate the influence of different mulches on the growth and yield of banana cv. Palayankodan.
- 2) To study the effect of irrigation on the bunch yield of bananacy. Palayankodan.
- 3) To study the effect of different mulches on moisture conservation and reduction in irrigation requirement of banana cv. Palayankodan.
- 4) To study the economics of mulching and irrigation in banana cv. Palayankodan.
- 3. Year of commencement : 1987-88
- 4. Initial soil characteristics

a)	Soil texture	a e	Loam
b)	PH	0 Ø	5.9
C)	EC (millimhos/cm)	e e	0.36
d)	Origanic carbon %	00	0.53
e)	Available P ₂ 0 ₅ (kg/ha)	00	37
f)	Available K ₂ 0(kg/ha)	00	135
Cro	op rotation followed	0 0	Monoculture

		•ez	10	13-
6.	So	wing/planting		
	a)	Date	e 0	20-6-87
	b)	Spacing	0 9	2.25 m x 2.25 m
	c)	Variety		Palayankodan
7.	Ha	rvesting dates	a 	Harvesting started from March
				1988 and is being continued.
8.	Fe	rtilizers and manures:		
	a)	Dosage (as per package)	• •	N : 100 g/plant
		of practices recommend		
		ations).		K ₂ 0 : 400 g/plant
	b)	Kind of fertilizer	00	N as Urea
		formulation.		P as Superphosphate
				K as Muriate of Potash
	c)	Time of application	n .	Two split doses in August and
				December.
	d)	Method of application	r e	Broadcasted in the basins
				and incorporated with soil.

9. Irrigation

-104

w		a fal fygellen en de en de fan de	Treatments					
	Particulars	I ₁	I ₂	I ₃				
a)	Dates of irrigation	an an ann ann ann ann ann ann ann ann a	ng manang kang mga ng mga n					
	January 88	4,15,25	4,25	4				
	February 88	2,11,19, 29	1_,26	1,26				
	March 88	8,16,29	14	23				
	April 88	6	2					
	(No irrigation treatments to lst week of April due to availability of rains)		after the					
b)	Depth of water applied (mm) 40	40	40				
c)	Total water applied (mm)	440	240	160				
c)	Total No. of irrigation	11	6	4				
€)	Method of irrigation followed.	Check basin	Check (basin	Check basin				

10. Lay out of the experiment:

a) Treatments : 12 (4 irrigation levels and 3 mulches)

Irrigation levels : 4

- I_O Rain fed
 - $I_1 Irrigation at 30 mm CPE$
 - I₂ Irrigation at 60 mm CPE
 - I_3 Irrigation at 90 mm CPE

Depth of irrigation - 40 mm

- b) Mulches : 3
 - Mo No mulch
 - M_1 Mulching with dried leaves. (5-8 cm thickness)

 M_2 - Mulching with polythene sheet.

- b) Design
- c) Replication

: Factorial R.BD

: 4

····] ····

- d) plot size
- : 4.5 m x 4.5 m

(4 plents per treatment with

a spacing of 2.25 m x 2.25 m)

e) Variety : Palayankodan

11. Plotwise crop yield in kg/net plot in the actual layout followed.

Harvest was not completed during the year

12. Economic crop yield and by product yield. NB

Soil moisture studies in the crop root zone.

i) Consumptive use of water during irrigation period (mm)

	Treat	rment	I 1	I ₂	I ₃	nage (* 19 - e.) e
	MC)	520	206	149	hey gliff 21 (20-
	M ₁	<u> </u>	582	275	170	
-	M2)	451	247	162	

(Irrigation period includes reproductive and maturity)

stages of the crop)

ii) Moisture extraction pattern depth wise (%)

	n an earl a' an	аналагын таку жарап. Т.К.(тактик аналуу кускан тактану жаралагы жаралагы жаралагы жаралагы жаралагы жаралагы ж	anger viel lagt Randomanne vie vandelikelingspachenselse	
Treatment	Depth (cm)	Sp. 11	I ₂	I ₃
MO	0-30	45.76	49.02	41.61
	30-60	36.34	34.36	34.90
M	60 - 90 030	46.90	16.52 38.18	23.49 50.00
	30-60	35.05	36.72	26.47
	60-90	18.05	25.10	23.53
^M 2	0-30	53.65	41.70	50.61
	30-60	27.05	33.19	25.92
	60-90	19.30	25.11	23.47

14. Periodic ground water fluctuation in the experimental area. Ground water was below 2 m during the experimental period.

15. Important weather conditions prevailed during the crop period (monthly mean)

Month	Total rain- fall (mm)	rain	E Max. 7 temp (c°)	Min. . temp (c°)		R.H. %) 2PM (Mean P.E. mm/day)	Mean wind speed (km/day)
July 87	456.8	21	30.85	23.40	91.75	73.75	3.57	64.12
August 87	542.2	2.2	30.26	22.83	90.22	74.87	3.41	47.29
Sept. 87	258.4	10	31.08	23.89	88.03	62,20	3.75	61.43
Nov. 87	246.0	12	32.60	22.20	83.90	67.10	3.32	33.23
Dec. 87	208.5	7	32.41	20.37	86.34	61.59	2.53	42.61
Jan. 88	1 terms	62.2	33.11	18.87	82.61	44.32	3.26	44.61
Feb. 88	1.6	1.	35.04	21.81	83.00	45.63	3.90	57.14
Mar. 88	17.7	5	35.00	24.71	78.84	54.20	4.23	65.29
April 88	246.4	15	34.30	24.27	84.91	55.54	4.03	56.37
May 88	123.70	9	33.34	24.52	86.81	62.77	3.05	63.00
June 88	689.7	27	30.58	23.28	91.67	81.40	2.05	51.67

16. Data on important biometric observations and quality attributes.

Harvest not completed.

17. Incidence of pest and diseases with control measures taken.

Sigatoka disease was noticed in vegetative phase which was controlled by spraying 1% Bordeaux mixture. 18. Any other relevant information.

The experiment will be repeated during next year with ratoon crop.

-105-

EXPERIMENT NO.8

-107-

1. Title of the experiment

: WM.15.2. Evaluation of long term effect of canal irrigation on changes in physical and chemical properties of soil.

2. Objectives

1. To monitor the changes in hydraulic properties of soil over a period of time.

To work out the changes in chemical properties of soil.
 Year of commencement : 1985-86

4. Technique:

Periodic soil sampling to monitor the changes in profile characteristics will be done from various location (garden land and wet land) upto 120 cm depth or upto water table or upto the depth of impermeable layer, if any, at an interval of 30 cm. During the 1st, 5th and 10th year of study the profile upto 120 cm will be opened and in the remaining years, the soils upto 60 cm depth will be collected. In situ determination of water transmission properties will be made. In case where in situ determination is not possible core sample will be collected for laboratory determination. The study will be continued in the same area for at least 10 years.

5. Locations selected

a) Intensively canal irrigated area with stagnant water.

1. Wet land

(In garden land, this type of location is not seen).

- b) Intensively canal irrigated area (without stagnant water).
- 1. Wet land (2) Garden land
- c) Unirrigated cultivated area near the canal irrigated area.

(1) Wet land (2) Garden land

d) Unirrigated cultivated area likely to be brought under irrigation shortly.

(1) Wet land (2) Garden land

e)Control (The area lying near the canal, but above the canal level where canal irrigation is not possible).

(1) Garden land (In wet land this type of land is not seen).

6. Work done during the period.

The major garden land soil series namely Thodupuzha(Tpa) and the wet land soil series namely Kothamangalam (Klm) of the Periyar Valley Irrigation Project command area were selected for the studies. The soil samples were collected from the same location in each year.

During the year under report samples at a depth of 60 cm at an interval of 15 and 30 cm were collected.

The particle size distribution of the samples collected during the year 1985-86 (1st year sample) was determined and furnished in Table 8.1 and 8.2.

The hydraulic conductivity and bulk density of the undisturbed core samples of soils collected during the year '86-87 was estimated and furnished in Tables 8.3 and 8.4.

The chemical properties like pH, EC and organic carbon of the above samples were estimated and furnished in tables 8.5 and 8.6.

This project will be continued for 10 years and hence no conclusion can be drawn with the available data.

-109-

Table 8.1

Mechanical composition of wet land soil series -

Kothamangalam (Klm) - 85-86

S1. Location/		I	Percenta	ige of	Orderigge 1. S
Sl. Location/ No. treatment	Depth in(cm)	Coarse sand	Fine sand	Silt Clay	7
1. Intensively cana		40.73	24.18	14.02 19.9	19
irrigated area w stagnant water	15-30	41.59	31.01	9.44 16.3	18.
	30-60	40.66	29.67	10-47-17.8	18
	60-90	47.33	26.85	6.04 18.8	8
	90-120	55.30	26.21	7.62 6.0	1
2. Intensively cana	0-15	45.76	26.72	5.25 21.6	3
irrigated area	15-30	48.34	27.18	7.19 16.1	3
	3060	46.94	23.90	6.38 22.1	9
	60-90	52.88	20-27	5.69 20.2	5
	90-120	57.52	19.90.	5.0 16.6	2
3. Unirrigated cult		36.85	26.36	13.19 21.3	1
vated area near canal irrigated		41.33	23.72	10.69 22.8	1
	30 60	38.11	24.27	11.87 23.7	5
	6090	39,99	24.13	10.94 22.49	9
	90-120	41.18	24.06	10.69 22.2	5
4. Unirrigated area		41.83	24.26	9.25 23.44	4
likely to be bro under irrigation	ught 15-30	41.93	22.40	10.69 24.1:	3.
shortly	30-60	40.39	25.76	9.15 . 24.00	6
	60-90	41.68	22.63	9.19 26.38	
	90-120	43.30	22.54	9.0 24.32	

Table 8.2

Mechanical composition of garden land soil series -Thodupuzha (Tpa) - 85-86

a ann an a	nger af vite er magnighter of er agabar. Her nar værdeliger skarstedeliter mer in er verke treb erer var omstrugeter det	ana nanakana kana kana kana kana kana k	gernenere dervensette Arterder	Percent	age of	an in a succession of the second s
Sl. No.	Location/ treatments	Depth in(cm)	Coarse sand	Fine sand	Silt	Clay
1.	Intensively canal irrigated area with stagnant water	This typ garden l		ocation	is not	seen in
2.	Intensively canal irrigated area	015 1530	36.25 38.36	23.18 17.93	12.56 11.38	26.56 30.31
		3060 6090	38.44 39.87	17.85 18.71	11.75 13.76	30.25 25.09
3.	3. Unirrigated cultivat- ed area near the canal irrigated area	0-15 15-30 30-60 60-90	38.36 38.46 38.09 37.53	25.08 23.69 21.81 24.53	12.69 14.75 16.25 14.75	22.94 22.44 22.75 22.50
		90-120 120-150		22.93 22.93	14.63 15.00	24.00 23.50
4.	Unirrigated area likely to be brought under irrigation shortly	0-15 15-30 30-60 60-90	 39.85 40.64 42.11 40.81 42.20 	23.91 22.84 21.89 22.95 21.81	10.38 10.40 11.00 11.11 10.25	24.85 25.12 23.66 23.93 24.25
5 •	Control	90-120 0-15 15-30 30-60 60-90	43.29 35.38 39.05 37.63 37.45	26.16 26.16 28.26 25.80	10.38 10.88 9.63 12.25	27.63 23.43 23.88 23.25
		90-120	37.59	24.43	10.12	27.38

Table 8.3

Hydraulic conductivity (mm/hr) of undisturbed soil of garden land and wet land Series (86-87)

					a segment and a segment of a sequence of the second segment of the second segment of the second segment of the	una cara degenerativa entra o (a malica, la - : - : : : : : : : : : : : : : : : :
	Description	Garden land series - T Depth in	pa. cm.		Depth in 15-30	n cm.
		0-15 15-30	30-00	CT		
1.	Intensively canal irrigated area with stagnant water	This type tion was n available -soil serie	ot in this	not b	samples De taken Dant wat	due to
2.	Intensively canal irrigated area	33.6 25.36	18.39	10.27	14.27	17.44
3.	Unirrigated area near the canal irrigated area	15.2 22.2	24.10	39.32	44.39	46.93
4.	Unirrigated area likely to be irrigated short- ly	11.74 28.92	25.26	17.75	32.60	27.90
5.	Control (Area lying near the canal but above canal level where canal irrigation is impossible)	9.66 20.63	22.83	33.68	36.78	29.60

--- 112 ---

Table 8.4

Bulk density of undisturbed soil (g/cc) of wet land and garden land soil series - Kothamangalam (Klm) and Thodupuzha(Tpa) - 86-87

			navarrange a visaria managangingin minan anyan giyanananya di kara sana Alim mangkini mpununun karakan, sa nakabawan 👘 👘 👘 Sanya San	
Sl. No.	Description	Wet land soil series - Kothaman- galam (Klm) Depth in cm	Garden land soil series - Thodupuzha (Tpa) Depth in cm.	
		0=15 15-30 30-60	0-15 15-30 30-60	
1.	Intensively canal irrigated area with stagnant water	Core camples could not be taken due to stagnant water.	This type of location is not available in this soil series.	
2.	Intensively canal irrigated area	1.262 1.483 1.521	1.497 1.562 1.601	
3.	Unirrigated cul- tivated area near the canal irrigated area	1.297 1.383 1.498	1.422 1.410 1.395	
4.	Unirrigated area likely to be brought under irrigation shortly	1.610 1.522 1.510	1.512 1.549 1.565	
5.	Control	This type of loca- tion is not avail- able in this coil recies	1.392 1.452 1.440	

~113m

Table 8.5

pH, EC (mmhos/cm) and organic carbon (%) of wet land

soil series - Kothamangalam (Klm)--86-87

· D. W. Made and Date					
Sl. No.	Description	Depth in cm.	pH	EC (mmhos/ cm)	Organic Carbon (%)
1.	Intensively canal irriga-	0-15	4.85	0.311	1.51
	ted area with stagnant	15-30	4.80	0.421	1.02
	water	30-60	5.00	0.360	1.12
2.	Intensively canal irri-	0-15	5.15	0.612	0.76
	gated area	15-30	5.01	0.512	0.65
		30-60	4.95	0.373	0.54
3.	Unirrigated cultivated	0-15	5.22	0.301	0.69
	area near the canal irrigated area	15-30	5.62	0.283	0.48
		30-60	5.82	0.263	0.46
4.	Unirrigated area likely	0-15	5.11	0.201	0.9
	to be irrigated shortly	15-30	5.64	0.322	0.78
		30-60	5.58	0.413	0.54
An enciet enclose	18-19-19-19-19-19-19-19-19-19-19-19-19-19-				

-114-Table 8.6

pH, EC (mmhos/cm) and organic carbon (%) of garden land soil series - Thodupuzha(Tpa) - 86-87

Sl. No.	Description	Depth in cm.	рH	EC (mmhos/ cm)	Organic carbon (%)
1.	Intensively canal	0-15	5.17	0.211	0.75
	irrigated area	15-30	5.22	0.218	0.81
		30-60	5.34	0.232	0.37
2.	Unirrigated cultivated	0-15	5.16	0.198	0.75
	area near the canal	15-30	5.42	0.210	0.82
	irrigated area	30-60	5.38	0.211	0.65
3.	Unirrigated area likely	0-15	5.03	0.196	0.83
	to be brought under irrigation shortly	15-30	5.12	0.198	0.59
		30-60	5.08	0.205	0.60

EXPERIMENT No.9

1. Title of the experiment

: WM.9 Studies on Soil moisture retention and release characteristics of laterite soils of varying percentage of gravel.

- 2. Objective:
 - The water storage capacity of the laterite soils is very much influenced by the gravel content which vary from 25-60%. The study will be useful for scheduling irrigation in laterite soils of Kerala which occupy nearly 60% of the geographical area of the state.
 - 2) To workout the moisture retention characteristics of laterite soils containing varying percentage of gravel.
 - 3) To workout the relationship between moisture retention and the physical properties of the soil including gravel content.
 - 4) To develop prediction equations of predict the moisture retention at different tension values from the knowledge of the gravel content in laterite soils.
- 3. Year of commencement : 1986-87

4. Technique.

Spil samples from major series of laterite soils will be collected upto a depth of 150 mm at an interval of 30 cm. The mechanical composition of the 2 mm seived fractions and the gravel percentage of each sample will be determined. Moisture retention studies of the gravel as well as the seived fraction at different tension values will be done using pressure plate apparatus. Moisture retention of the soil containing gravel will be found out by working out the mean retention of gravel along with its propertion. Moisture retention will be related to texture, organic matter and gravel content by doing multiple regression analysis.

5. Work done during the period.

The soil series Ipa (Thodupuzha) was selected for this study, which is the major soil series of laterite soils of Kerala.

During the year under report, the percentage of moisture retained in 2 mm seived soil and unseived soil upto a depth of 60 cm of 6 profiles at tensions of 0.3,1,3,5,10 and 15 bar was determined and furnished in Table 9.1.

In all the cases, the moisture retention was low in unseived soil samples.

Conclusions could be drawn only after completion of the work.

-116-

	and the second	Table 9.1
the second of		
		a second and a second

Moisture retention of laterite soils of varying percentage of gravel.

a) Thodupuzha series. Profile 3.1

nong Pire 1. still an en -117-

	ter and a second s		ала мамаларындарын - кырганкан калкан арабаан тог карараандарында	Reports and the state and management of the
Depth	(cu)	Percentage of m tension	oisture at d s in bars.	lifferent
		0.3 1 . 3	5 1	.0 15
0-15	Sieved soil	16,71 14.25 11.71	11.47 9.	.44 9.19
· · ·	Unsieved.soil	14.51 11.48 9.52	8.64 7.	8 7.34
15-30	Sieved soil	16.52 14.56 11.0	10.69 8.	56 8.33
	Unsieved soil	15.91 13.0 10.62	8.91 7.	94 7.81
3060	Sieved soil	15.62 13.28 10.48	10.27 8.	75 8.51
1997) 1997	Unsieved soil	13.63 10.59 9.0	8.28	91 7.41
b) Tho	dupuzha series	Profile 3.2		hann of generalized and an
(1)	(2) ² .0	(3) (4) (5)	(6) (7	7) (8)
0-15	Sieved soil	17.59 14.14 12.24	11.42 10.	24 8.99
	Unsieved soil	14.40 13.11 10.30	9.70 8.	75 8.28
15-30	Sieved soil	14.90 12.93 11.54	10.13 8.	99 8.58
2. 5	Unsieved soil	14.89 11.87 10.02	8.97 8.	88 8.03
30-60	Sieved soil	15.12 14.03 11,10	11.37 9.	40 9.09
	Unsieved soil	12.92 10.27 10.24	9.44 8.	18 7.69

HT2 58	1	1	2	etto
	-	-	0	

c) Thodupuzha series. Profile No.4

Depth	(all in the second s	P	ercent	ages of	moisture tension	ə at di:	Eferen
Depend		0.3	. 1	3	5	10	15
(1)	· (-2) · · · · · · · · · · · · · · · · · · ·	(3)	(4)	(5)	(6)	(7)	(8)
0-15	Sieved soil	14.67	13.22	9.72	9.09	7.47	6.80
	Unsièved soil	9.54	8.35	7.29	6.41	5.94	5.00
15-30		16.26	14.51	11.47	10.42	9.03	8.60
	Unsieved soil	8.12	6.93	5.90	5.52	4.96	4.60
30-60	Sieved soil	17.79	14.68	11.90	11.66	10.14	9.42
	Unsieved soil	11.73	9.66	8.22	7.39	5.87	4.96
d) The	dupuzha series	Profile	e No.5	• 1			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
0-15	Sieved soil	15.25	12.81	11.59	11.01	9.74	9.67
	Unsieved soil	15.20	12.25	11.09	9.60	8.76	7.72
15-30	Sieved soil	15.30	13.08	11.35	10.55	9.72	9.41
	Unsieved soil	13.94	11.96	10.81	10.34	8.41	8,12
30-60	Sieved soil	15.16	12.97	11.02	10.93	9.45	9.25
	Unsieved soil	13.55	10.72	9.70	9.01	8.25	7.66
c) Tho	dupuzha series	Profile	No.5.2	2			
(1)	(2)	(4)	(4)	(5)	(6)	(7)	(8)
0~15	Sieved soil	13.54	10.45	9.63	9.19	8.58	8.18
	Unsieved soll	12.83	10.20	9.02	8.35	7.74	7.62
15-30	Sieved soil	15.61	13.16	11.3	9.59	8.64	8.32
	Unsieved soil	13.69	10.94	9.48	8.91	7.72	7.39
30-60	Sieved soil	15.72	12.88	11.47	11.20	10.45	10.21
	Unsieved soil	13.28	11.60	10.00	9.61	8.27	7.64

-1	-7	5		
	1	Y	1222	
-	- sha	1		

Percentages of moisture of different tension Depth (cm) 0.3 1 3 15 5 10 0-15 Sieved soil 14.53 11.19 9.91 9.08 8.00 7.71 Unsieved soil 10.72 7.40 6.97 5.92 5.88 5.55 15-30 Sieved soil 15.66 12.58 11.28 10.17 9.78 9.33 Unsieved soil 7.57 6.20 6.00 5.86 5.81 5.34 30-60 Sieved soil 16.57 14.70 12.77 12.53 12.13 11.72 Unsieved soil 10.43 8.04 7.30 6.87 6.84 6.52

f) Thodupuzha series Profile No.6

-120-

EXPERIMENT No.10

1, Title of the experiment : WM.18 Studies on evaluation of different lining materials for seepage control.

2. Objectives:

- 1. To assess the durability, effectiveness and economics of different lining materials.
- 2. To evaluate the actual benefit of lining for watercourse.
- 3. Year of commencement : 1987-88 (summer)

4. Treatments:

- 1. Brick laid in cement sand.
- 2. Cowdung mixed with clay.
- 3. Polythene sheet (250 gauge)
- 4. Control (unlined)
- 5. Technique: The channel cross section was designed for 45 lit/sec discharge. The channel was having a bottom width
- of K of 30 cm, top width of 90 cm and a depth of 30 cm. The side slope is 1:1 and the bed slope is 0.4%. The same discharge rate was adopted for all the treatments.
- 6. Work done during the period

During the year under report only the brick laid in cement sand was constructed to a length of 100 meters. This experiment could not . complete due to the lack of qualified hands because the services of the engineers were terminated.

-121-

SECTION_E

Summary

1. WM.21. Studies on onfarm irrigation watermanagement in the command of an irrigation minor.

The centre has implemented an operational research project at Thuravoor in Angamally of Ernakulam District for the last three years. The total area under study was 25.3ha belonging to 100 farm families. The emphasis was on irrigation water management in rice and rice based cropping system under varying irrigation water supplies. For effective implementation of the programme, a Karshaka Samitni was formed, registered and a committee was constituted from this. All the activities were formulated and implemented through this samithi.

Adoption of a suitable gropping pattern using high yielding varieties of medium and short duration rice, strict adherence to the time schedules in various field operation, judicious application of manures and fertilizers based on soil test data, need based plant protection, Scientific watermanagement, channel to field irrigation, shallow submergence and providing drainage wherever necessary and application of lime to eliminate the ill effects of iron toxicity were the area.

This programme was a grant success and the results revealed that rice yields in fragmented farm holdings of Kerala could be remarkably improved by adopting scientific watermanagement and other cultural operations. These can be effectively and economically carried out through the farmers group organisation.

2. WM.5 Studies on rice based cropping pattern under constraints of irrigation water.

The study was repeated for the fifth year with five cropping pattern (two crops of rice followed by a third crop of rice, cowpea, groundnut, sesamum and bhindi) and two watermanagement practices for rice during the second crop season (7 cm irrigation 1 and 3 days after the disappearence of ponded water) and 3 watermanagement practices for different crops during third crop season (7 cm irrigation 1,3 and 5 days after disappearence of ponded water for rice and IW/CFE ratios of 0.3,0.6,0.9 and 1.12 for other crops) to identify an appropriate rice based cropping pattern under conditions of water scarcity.

The study indicated that there was no residual effect of cropping sequences on the growth and yield of the succeeding crops as in the previous crops. The influence of watermanagement in the grain yield during second crop was not significant, which may be due to the availability of frequent rains during the year. In the summer also, the crop did not respond to irrigation.

-122

3. WM.1.1. Effect of varying water regimes on yield of rice under varying levels of soil fertility.

This experiment was laid out to study the optimum water regimes for wet sown rice in relation to nitrogen levels and to quantify the adverse effect of prolonged stress on crop yield during the Rabi season 1987-88.

The results revealed that during the rabi season, irrigation can be prolonged upto one day after the disappearence of ponded water without any reduction in yield. Maximum yield was obtained when nitrogen was applied at the rate of 50 kg/ha in short duration variety (Thriveni).

4. WM.2.1 Studies on the effect of irrigation schedules on the growth and yield of coconut.

Results of the study on scheduling irrigation to a standing crop of coconut in a sandy clay loam soil indicated that the crop responded well to irrigation during dry months (January to May) from the third year onwards. Irrigating the crop with 500 litres of water through basins taken at 1.8 m radius at CPE values of 50 mm (approximate interval of 12 days) was most economical.

The effects of irrigation in nut yield was reflected in the succeeding year also in the case of irrigation at 3 days interval and irrigation at 25 mm CPE.

5. WM.2.4 Response of Colocasia to varying levels of irrigation under different nitrogen levels.

This experiment was conducted during 87-88 to study the respnse of colocasia to various levels of irrigation and nitrogen with regard to its yield and quality.

-123-

The results revealed that the effects due to levels of nitrogen was significant and maximum yield was recorded by nitrogen applied @ 40 kg/ha. The effect of irrigation was not significant during the year under report, which may be due to the availability of frequent rains.

6. WM.2.2 Watermanagement practices for Bittergourd (Momordica charantia L) under graded doses of hitrogen.

The results of the study revealed that the effects due to nitrogen and irrigation were significant in the yield of bittergourd.

Among the irrigation levels the farmers practice of of irrigation of once in two days and irrigating the crop at 15 mm CPE (at an approximate interval of 4 days) were superior to other treatments.

Among the levels of nitrogen 90 kg N/ha recorded the highest yield and was on par with 60 kg N/ha and hence the economic dose of N can be taken as 60 kg N/ha for bittergourd. 7. VM.3 Effect of various mulches on the growth and yield of banana cv. Palayankodan grown under irrigated and rainfed conditions.

Harvest was not completed during the year under report. C. MM.15.2 Evaluation of long term effect of canal irrigation on changes in physical and chemical properties of soil.

Physical and chemical properties of the 1st year sample have been completed. The hydraulic conductivity, bulk pH, Ec and organic carbon of the second year sample have also been completed. Since this project have to be continued for 10 years no conclusion can be drawn from 2 year data. 9. WM.9 Studies on soil moisture retention and release characteristics of laterite soils of varying percentage of gravel.

Moisture percentage of the 2 mm selved and unselved samples of the Tpa suries (laterite series having above 60% gravel) were determined at different tensions. The determination of the aggregate size distribution are being carried out.

10. WM. 18 Studies on evaluation of different lining materials for seepage contro.

Not completed the project during the year under report.

-126-SECTION - F

List of Publications

a) Research articles

and the second second

1. Kuruvilla Varghese, Jose Mathew, G.R.Pillai and

G.Santhakumari - Effect of irrigation on Sweet potato under gruded dose of nitrogen and potash. J-Root crops 13(1) : 25-28 1987.

 G.R.Pillai, Kuruvilla Varghese, Jose Mathew and G.Santhakumari.

Intercropping food legumes with cassava in a rice based farming system Proc. of international workshop as Food legume improvement for Asian farming systems, Khoon Kaean, Thailand 1-5 September 1986 ACIAR Proceedings No.18 240-241.

3. R.Ilangevan, E.K.Kurian and G.Santhakumari.

Rainfall pattern and cropping system in low rainfall area of Kerala.

Accepted for publications in Madras Agricultural

4. Kuruvilla Varchese, C.R.Fillai and Jose Mathew. Economics of irrigation and mulchig in Pineapple var.Kew.

Published in the proceedings of the international symposium on Arid and Somi arid Zones, HAU, Hissar November 27-29 1986 P 545.

E. G.R.Pillai, Kuruvilla Varghese, Jose Mathew and G.Santhakumari.

Response of Nendran Banana to irrigation and mulching Agri (accepted for publication in/Res. J. Kerala 1987. 6. Jose Mathew, Kuruvilla Varghese, G.R.Pillai and G.Santhakumari.

Response of second crop rice to different water regimes and nitrogen levels (communicated to Agric.Res. J. Kerala).

7. Jose Mathew, Kuruvilla Varghese, G.R.Pillai and G.Santhakumari.

Response of sesamum (sesamum indicum) to water management practices under varying levels of nitrogen. (communicated to Agric.Res.J. Kerala)

8. Kuruvilla Varghese, G.R.Pillai, Jose Mathew, G.Santhakumari and C.S.Gopi.

Effect of irrigation and mulching on the growth and yield of Pineapple (communicated to Agric.Res.J. Kerala) 9. Jose Mathew, Kuruvilla Varghese, G.R.Pillai and G.Santhakumari.

Response of Amorphophallus to irrigation and mulching (communicated to Agric. Res.J. Kerala). 10. Jose Mathew, Kuruvilla Varghese, G.R.Pillai and G.Santhakumari.

Studies on reducing the water requirement of tapioca. (communicated to Agric.Res.J. Kerala)

Research notes

- 1. Response of chickpea to soil and foliar application of Diammoniam Phosphate. (communicated to Agric.Res. J.
- Kerala) Kuruvilla Varghese et al

Popular articles

1. Jose Mathew and Kuruvilla Varghese.

Irrigated amorphophallus for higher income (Malayalam) published in Malayalam Daily.

- Kuruvilla Varghese and Jose Mathew.
 Suitable cropping sequence for command area (Malayalam)
 published in Malayalam Daily.
- Kuruvilla Varghese and Jose Mathew.
 Irrigation requirement for summer crops. Published in 'Kalpadhenu' January-February 1988.

 $= \frac{1}{2} \frac$

(approximate data real for 12 days) was made deconstitutes

SECTION G

Results of practical utility

a) The findings of the water management studies in the station were included in the package of practice recommendation the Kerala Agricultural University for the year 1987.

1. Pineapple

Pineapple during summer months has to be irrigated at 0.6 IW/CPE ratio (50 mm depth of water). It requires 5 to 6 irrigations during dry months at an interval of 22 days. Mulching the crop with dry leaves @ 6 t/ha will considerably improve the fruit yield.

2. Sweet potato

Sweet potato requires irrigation at IW/CPE ratio of 1.2 (approximate interval of 11 days) for higher tuber yield in non rainy periods. The application of nitrogen and potassium at the rate of 50 kg/ha is significant for this crop grown under irrigation.

3. Amorphophallus

December-January planted amorphophallus has to be irrigated at 0.9 IW/CPE ratio with 50 mm water through furrows in summer season for higher corm production. It requires about 10 irrigations at an approximate interval of 12 days in non rainy periods. Mulching the crop with dried leaves or paddy waste @ 6 t/ha and coirdust @ 8 t/ha will considerably improve the crom yield.

4, Tapioca

In tapioca all furrow irrigation with 25 mm water at 100 mm CPE and alternate furrow irrigation alternatively with 50 mm water at 75 mm CPE requires only less water and labour for optimum yield. Approximate irrigation interval of the schedules will be 27 and 20 days respectively in summer months.

-130-

b) Irrigation scheduling and water use by crops.

1. Cropping system

Studies on the rice based cropping pattern indicated that there was no residual effect of cropping sequences on the growth and yield of succeeding crops. During rabi season rice requires irrigation at 3 days after the disappearance of ponded water and in the summer season one day after disappearence of ponded water. Other crops in the sequences viz. Bhindi, Cowpea and Groundnut requires frequent irrigation.

2. Coconut

Results of the study on scheduling irrigation to a standing crop of coconut in a sandy clay loam soil indicated that the crop responded well to irrigation during dry months (January to May) from the 3rd year onwards. Irrigating the crop with 500 litres of water through basin taken at 1.8 m radius at CPE value of 50 mm (approximate interval of 12 days) was most economical. c) Operational Research Programme on "Onfarm water management in the command of an irrigation minor".

The operational research project implemented at Thuravoor by the Agronomic Research Station was a grant success and the results obtained revealed that rice yields in fragmented lands of Kerala could be remarkably improved by practicing modern scientific technologies. More and more farmers of the neighbouring area were adopted this practice to optimise the irrigation water use in rice cultivation for better yields.

-131-

*** 132 ***

SECTION H

Details of advisory service rendered by the centre

The following advisory services were rendered by the centre.

1. Operational Research Project

Improved technologies were transferred to the farmers field on a large scale by group organisation of small farmers having fragmented laid through the operational research project of the station. The results obtained from this revealed that rice yields in fragmented lands of Kerala could be remarkably improved by practicing modern scientific technologies. More and more farmers of the neighbouring acea were adopted this practices to optimise the irrigation water use in rice cultivation for better yields.

2. Training Camps and Seminars

Training camps, seminars and karshaka mela were organised during the year under report in Kerala Agricultural University research stations and in operational research project area, Thuravoor. About 150 - 200 farmers actively participated. The Scientists of the research station used to visit the ORP area frequently and hold group discussion with farmers. Scientists from research station as well as from Kerala Agricultural University gave lecturers on all relevant subjects and prticipated in the group discussion with farmers in the Scminars and Kissan melas.

3. Co-ordination with other departments

The scientists of the centre keeps a liasion with the department of Agriculture, department of irrigation, Government of Kerala and command area development authority. A permanent cenent lined irrigation channel was constructed in the operational research project area in collaboration with the command area officers. The soil collection and profile studies of the command area were done with the help of the soil survey unit of the department of Agriculture. 4. Broadcast through AIR

The following topics were broadcasted by the scientist through AIR an interview with Progressive farmers.

1) Water management for summer rice.

2) Points to be observed in watermanagement.

A talk on the success story was broadcasted by a progressive farmer of the ORP area.

5. Publications

The findings of the centre are included in the package of practice recommendation of Kerala Agricultural University. The success of the operational research project in command area was published as a booklet on Group management in farming system. Articles about its success story appeared in a number of Malayalam Duilies, and magazine.

6. Planning

The water use efficiency of different crops culculated by the centre were utilized by other agencies like P.W.D., Irrigation Department, Soil Survey, Department of Agriculture, Command Area Development Authority for various purposes like irrigation project planning, to plan the cropping pattern in command areas, scheduling irrigation to crop etc.

7. Advisory service to farmers

A large number of farmers visited the centre to seek advice from the Scientists for Scientific Cultivation, especially Watermanagement and other problem like pest and disease faced by them for different aspects. They currosponded through letters also for the above purpose. The scientists also visited a large number of plots of different crops of the farmers for suggesting the scientific cultivation and other aspects on their request.

8. Academic

Students from College of Horticulture and College of Agriculture were visited this station as a part of their study tour. The trainees under command area development authority and department of Agriculture also visited the station and studied the various aspects of watermanagement.

-134-

*** 135 ***

SECTION-I

Difficulties experienced by the centre

1. Physical facilities of land

The non availability of upland is often a limit#ing factor in taking up trials in different garden land crops. 2. Finance

Since the prevailing labour wages in the state is comparatively high the allotment of funds under recurring contingencies often become inadequate.

For most of the rice farmers, farming is only a subsidiary occupation and the extent of land available is also very small. Rice farming in this part is very costly often resulting in loss to farmers. The main reason being exorbitant labour wages and poor returns. With the result farmers are tempted to abandon rice farming. The farmers in the ORP area is no exception. During past few years some amount of assistance in kind were made available to them through Lab to Land Programme and they were enthused to adopt our improved technology. Now Lab to Land Programme is not operating in the study area and the farmers are not keen to adopt our technology though they are very much convinced of the benefits. Unless they are given some amount of financial assistance, it will be difficult to get the project going.

