EXPERIMENTAL

During the period under report, altogether 6 experiments were conducted at the Model Agronomic Centre, Karamana. The physico-chémical charactristies of the soil of this station is given below.

Major soil group Laterite. Machanical composition Sand 70.50 % Silt 5.15 % Clay 20.20 % Texture Sandy Clay loam. pH 5.30Organic Carbon 0.45 % Available P.kg/ha 24Available K.kg/ha 100 C.E.C (me %) 3.0 E.C. (m.mhos/cm) 0.25

In this area the average rainfall was found to be 1500 to 2000 m.m per annum with the temprature ranging between $21^{\circ}C$ to $35^{\circ}C$.

....2/-

Experiments conducted during 1975-73 were

the following:

- 1. Production potential experiments under optimum input condition (Experiment No 1(a)
- Production potential under resource constraints. (Experiment Mo.1(b)
- 3. Manurial requirement of fixed crop rotation. (Experiment No.2)
- 4. Efficiency of potassium schoenite as a source of potassium (Experiment No.3)
- 5. Fertilizer requirement of new varieties of Cereals (Rice)(Experiment No.4)
- Mitrogen economy through organic manures. (Experiment No.8)

Out of these trials No.1 (a), 2 and 4 were started during 1972-73 and being continued. Experiments Nos 1 (b), 3 were started in 1973-74 and continued this year.

Experiment No.8 was started during 1974-75 and being continued this year also.

.....3/-

RESULTS AND DISCUSSION.

1. <u>Production potential experiment under optimum</u> <u>input condition.</u>

Experiment No.1 (a) The objective of this experiment is to determine the production potential and to study the economies of high intensity cropping system and their effect on Soil when grown continuously. The treatement comp rised of six crop rotations having at least 2 rice crops in each rotation. Individual crop. is raised according to local practices. The rotations followed

are :-

8 2

- 1. Paddy-Paddy-Paddy (all short duration varieties)
- 2. Paddy-Paddy (all medium duration varieties)
- 3. Paddy-Paddy (both long duration varieties) fallow.
- 4. Paddy-Paddy ((both short duration varieties). Tapioca.
- 5. Paddy-Paddy (both short duration varieties)-Colocasia.
- 6. Paddy-Paddy (both medium duration varieties)-Bhindi.

The test varieties of paddy tried are Annapoorna, (short duration) Jaya (medium duration) and Jagannath (long duration). The variety of tapioca tried is H.165.

The yield under different crop sequence (Table.1) ranges from 9198 kg of paddy in two long duration paddy rotation (rotation No.3) to 8162 kg paddy + 36563 kg of Tapieca tuber (rotation No.4) per annum.

..... 4/-

Among the cropping sequences tried three medium duration paddy yielded maximum of 12125 kg/ha whereas four short duration paddy produced 12057 kg/ha per annum. But the maximum production of 44,725 MF/ha of food materials are obtained from two short duration paddy followed by tapioca. The contribution of tapioca alone comes to 36563 kg/ha. From the point of view of gross economic return, the cropping sequence having two medium duration of paddy followed by bhindi is the best as it produced 10714 kg/ha of paddy and 14834 kg/ha of bhindi.

.

TABLE. 1 Total Production of High intensity crop rotation. Year 1975-76							
Crop rotation (varia	ety - duration)	F	Total ertiliser kg/ha	Xield(kg/t		Total grain yield	
Kh arif	Rabi	Summer	N. P. X	Tharif Ral) i	kg/ha	
1				5_6	7	8	
Rice (Annapurnna-77	Rice (Triveni-86)	Rice(Triveni-87)	360-180-180	4995 2083	3281	12057	
		Rice (Annapur- na-71)			1698		
Rice (Jaya-105)	Rice (Jaya-96	Rice (Jaya-100)	270-135-135	5510 4219	2396	12125	
Rice(Jagannath-126)	Rice Jagannath 90)	Fallow	24 0-1 20 - 120	4771 4427	-	9198	
Rice (Annapurna-77)	Rice (Triveni-86)	Tapioca (E.165- 141)	255 -165-1 90	5 844 231 8	36563	8162	
Eice (Annapurna-77	Rice Triveni-86)	Colocasia (local-165)	220-150-210	628 1 257 8	14167	8859	
Rice (Jaya-195)	Rice (Jaya-96)	Bhindi (P.Savani.95)	240-150-210	5943 47 71	14834	10714	

2. Production potential under resource constraints. Experiment No.1 (b)

The objective of this trial is to determine the production potential of a two erop (Rice-Rice) rotation under input constraints. The resources tested are levels of fertilizer and weed control.

In the Kharif season the treatements comprised of four levels of nitrogen, phosphorus and potash, ie 90:45:45, 67.5:33.75:33.75, 45:22.5:22.5, and 22.5:11.25:11.25 kg/ha each being the 100%, 75%, 50% and 25% of the recommended dose of N.P.K for a medium duration rice variety and two methods of weed control, viz Machete @ 1 kg/ha and two hand weedings. In Rabi season, instead of four doses of H.P.K only three doses namely, 100%,75%, and 50% of the recommended doses were tried. The variety used in the both seasons was IR 20 at a spacing of 15 x 15 c m. The experiments were laidout in a split plot design with the weed control treatements in the main plots and fertilizer levels in the sub-plots.

The results show (Table 2) that the reduction in the fertilizer dose at all stages from 100% to 25% significantly reduces the yields during the Kharif season. Similarly, during the Rabi season also maximum yield is obtained with 100% of the manurial application and subsequent reduction in manurial dose significantly reduces the yield also. In the case of weed control treatements higher yield has been recorded in the treatements having hand weeding and chemical (Machete application) weed control produced lesser yields in both the seasons. The same trend has been noticed during the previous year also thus proving the supiriority of hand weeding over chemical weed control.

.....7/-

TABLE -2 Grain yield as affected by rates of fertilizer application and methods					
of weed control. Kharif and Rabi 1975-76					
No Fertilizer applied.	<u>Grain_yie</u>	ld_kg/ha			
	_Kharif	Rabi.			
1. 199% of the recommended dose(90:45:45 kg/ha)	5281	2948			
2. 75% of the recommended dose($67.5:37.75:37.75$ kg/ha)	4875	2662			
3. 50% of the recommended dose $(45:22.5:22.5 ext{ kg/ha})$	4591	2609			
4. 25% of the recommended dose (22.5:11.25:11.25 kg/ha)	4205	_			
5. Teed control.					
i. Mache te 1.0 kg a.i/ha	4434	2673			
ii. Hand weeding twice,	4770	2 88 1			
C.D. for fertilizer treatgment.	459	394			
C.D. for weed control.	110	562			

3. Manurial requirements of a fixed erop rotation. Experiment No.2

The direct, residual and cumulative effects of the application of phosphorus, potassium and farm yard manure on the yield of a two crop rotation (rice-rice) are studied in this experiment. The treatements included all combinations of three levels of phosphorus (0,30 and 60 kg/ha), two levels of potassium(0,30 kg/ha) and two levels of farm yard manure (0 and 15tonnes/ha) to each crop. The treat ments were given in three phases, namely, manuring in every season, manuring in alternate season starting from Kharif season, and manuring in alternate season starting from Rabi season. The experiment is conducted using a split plot design with combinations of phosphorus, potash and farm yard manure in the main plot and phases of manuring in the sub-plots. The variety used in the trial is IR 8 for both the season. The results of the experiment are presented in the following tables:-

TABLE-3. Response of rice to applied phosphorus kg/ha.

Levels of $\frac{1}{2} \frac{0}{5} \frac{\text{kg/ha}}{1}$	Direct •Kharif	effect Rabi∙	Residual Marif	effeet Rabi	Cumulati Kharif	ve effect. Rabi.	
О	5746	2764	5735	3010	5642	2798	is.
30	5725	2737	5587	2810	5780	2753	
60	5648	2694	54 21	2766	5657	2878	
Standard Error	M.S	N.S	N.S	N.S	N.S	N. S	
	16 8	182	159	166	217	162	

N.S - Not significant.

....9.

- 8 -

-9-

The yield data indicates that generally the application of Phosphorus has a negative response for rice at Karamana. This tendency of decreasing the yield of rice by the application of phosphorus is evident from the results of direct residual and cumulative effects in both the seasons. Similar results have been observed in the provious years also.

Table-4. Response of rice to applied potash(Kg/ha)							
Levels of I ₂ 0 (kg/ha	Direct			al effect			-
	Kharif_	.abi_	<u>Kharif</u>	_ dabi_	effec Kharif		
0	5740	2688	5596	2861	5735	2742	
30	5672	2776	5566	2863	5651	2877	
Standard Error	N.S 138	N.S 149	N.S 129	N.S 135	N.S 177	N.S 132	-

The data in the above table show that application of potash in the Karamana soil has no significant response for increasing the grain yield of rice. This is the case for direct, residual and cumulative effects for this nutrition during both the seasons.

.....10/-

	10	
--	----	--

Table - 5.	despon	se of r	ice to f	arm yard	manure	(kg/ha)
			5-00 MMD 5000 1000			
Levels of FYM kg/ha	Direct	effect	He sidua	l effect	Cumul	ative effect.
	Xharif	nabi	Kharif	nabi	Kharif	nabi
0	5370	2478	5339	2748	5480	2704
15000	6042	2985	5823	2976	5905	2915
Standard	H.Sig.	H.Sig.	H.Sig.	N.S	Sig.	N.S
Error	138	149	129	135	177	132
C.D	280	302	263	-	361	-

The yield data of rice shows highly significant direct response for the application of farm yard manure in both the seasons in Karamana soils, Similarly, the yield response is significant in Kharif season for both residual and cumulative effects and an increasing trend is noticed for the same in the dabi season. This result is in concurrence with the results of the previous years.

..... 11/-

4. Efficiency of potassium schoenite as a source of Potassium. (Experiment No.3)

The main objective of the experiment is to study the relative efficiency of potassium schoenite as a source of potassium as compared to potassium sulphate and potassium chloride on different soils. The treatement consisted of three levels of potassium, namely, 40, 80 and 120 kg/ha applied over a basal dose of 120 kg nitrogen and 60 kg phosphorus/ha. Based on the amount of magnesium in potassium schoenite on corresponding to the three levels of potassium, another set of three treatements of potassium sulphate with magnesium sulphate is also tried to see the effect of magnesium. In addition, the effect of zinc sulphate is also studied over some selected treatements of potassium and magnesium at a dose of 25 kg/ha. The experiment is laid out in the Kharif and the residual effect is studied in the succeding crop in mabi. The variety used is Jaya.

The results of the experiment conducted both in Kharif and mabiare given in table No. 6.

The yield data indicate that the sources of potassium viz, schoenite, chloride, and sulphate have as such no significant variation on the grain production. However, a definite progressive trend is shown by potassium schoenite at all levels in the direct and residual effects. In the case of magnesium, though there is no significance in the yield results, a positive trend is observed in all treat ments.

Zinc application does not show any additional advantage.

.....12/-

Table- 6. Influence of source of potas	sium of	the yield
of rice.		
No. Treatément		
110. lleatenent	Grain y	ield kg/ha
	Direct	.uesidual
	<u>effect</u> Kharif	effect
		uabi
1. Control (Unnauured)	3666	3333
2. $N-120$, $P-60$ (kg/ha)	5458	5468
3. Tr-2 + Pot.schoenite @ 40kg potsh/ha	4791	5208
-, + - 4 + FUL SCHOCHILE () SOlvenoteh/he	EAFO	5208
5. $Tr-2$ + Pot.schoenite @ 120kg potsh/h 6. $Tr-2$ + Fot sulphate @ 10kg potsh/h	ą5562	5624
6. Tr-2 + Fot.sulphate @ 40kg potsh/ha to the first crop		
r_{r-2} + Pot.sulphate @ 80 kg	4791	5156
8. Tr-2 + Pot.sulphate @ 120 Kg	5208	5531
9. Tr-2 + Pot.chloride @ 40kg	5520	5520
potash/ha to the first eron 1	4895	5531
10. Tr-2 + Fot.chloride @ 120 kg (potash/ha to the first crop)	51 04	5354
11. Tr-6 + Magnesium sulphate equalising	0101	0004
Mg. content in tr.3 to the first		
crop.	4812	5583
12. Tr-7 + Mg.sulphate equalising the		
Mg.content in tr.4 to the first i		
13. Tr-8 + Mg.sulphate equalising	5187	5145
Mg.contents in tr.5 to the first		
crop.	r roo	
14. Tr-5 + Zinc sulphate at 25 kg/ha)	5708	5562
to the first crop	5312	~ 700
15. Tr-8 + Zinc sulphate @ 25 kg/ha	0014	5708
to the first crop	5312	4989
16. Tr-13 + Zinc sulphate @ 25 kg/hal to the first crop		
	5187	5624
· · · · · · · · · · · · · · · · · · ·		
S.L	314	258
C.D (0.05)	633	520
		540
	Name and and and	

- 12 -

5. Fertilizer requirement of new varieties of cereals. (rice) (Experiment No.4)

The objective of this experiment is to study the relative response of new high yielding variaties of rice to nitrogen and phosphorus. The treatements consisted of all combinations of five variaties (Jaya, Aswathi, 79/60, 1065 and A.P.4-14), three levels of nitrogen (0, 60 & 120 kg/ha) and three levels of phosphorus (0, 30 & 60 kg/ha). A basal dose of 60 kg K_2 O/ha is applied in all plots. The trial is conducted during mabi season 1975-76.

Table- 7.	<u>Respons</u>	e of fiv	ve varie	ties of	rice to)
		n and pl				
Variety	Grain yield kg/ha	Nitroga kg/ha		ne spons over su ccessiv levels N(kg gr per kg N)	- phor e kg/h of ain	- Grain us yield a kg/ha
V1 Jaya V2 Aswathi V3 79/60 V4 1065 V5 d.P.4-14	3460 3057 2417 2439 2859	0 60 120	2332 3020 3187	11.47 2.78	0 30 60	2863 2858 2818
S.E	231	· ·	155			155

..... 14/-

From the above table it is evident that the varieties produced significant differences in grain yield, Jaya proved to be the best, out yielding all the other varieties and the next in order is Aswathi and then π .P.4-14. The varieties 1065 and 79/60 are on par giving the poorest yield.

Among the different doses of nitrogen and Phosphorus, Nitrogen alone significantly increased the grain yield, whereas, phosphorus has got no effect. The percentage of increase in grain yield is maximum between 0 and 60 kg N/ha amounting to 11.5 kg grain per kg of nitrogen, whereas, between 60 and 120 kg N/ha the ratio decreased to 2.8 kg grain per kg of Nitrogen. Similar results are noticed in the previous years also.

..... 15/--

6. Nitrogen economy through organic manures. (Experiment No.8)

The objective of this experiment is to study the possibility of economising nitrogenous fertilizers through application of organic manure in a crop sequence. The trial is conducted in a split plot design. The treatements consisted of 10 main plots each divided in to 3 sub plots. The main plots are the combinations of farm yard manure plus fertilizers. There is no difference among the subplots within the main plots.

In the second season the same plots in each main plot are given a treatement of 90, 60 and 30 kg Nitrogen/ha within one main plot.

In the 3 rd crop season cowpea is raised and/nitrogen dose is given @ 30 kg/ha

The yield obtained in the different seasons are given in the table-8.

During Kharif season the maximum yield is recorded in the treatement No.10 with 120:60:60 N.F.K. in the form of chemical fertilizers having no organic manure application. The same trend of the superiority of the chemical fertilizers over the farm yard manure in increasing the rice yield is clearly evident from all the other treat ments of this experiment.

During dabi season, where the residual effect has been studied significant yield increase has been recorded with the application of increased doses of nitrogen in the form of chemical fertilizers during that season.

> n The set of the same of the

> > 16/-

For the summer crop cow-pea the yield difference between treatements is not significant.

and the first state of the

· · · · · · · · · · ·

Table- 8. Froduction of paddy and cow-pea in kg/ha Kharif, dabi and Summer 1975-76					
Treatenent number	<u>Kharif</u>		dabi		Yield of
		30 kg	N. 60 kg N.	90 kg N.	cow-pea (Sunner)
T1. Control.	4243	3388	4111	4203	1745
T2. F-0.N.60	5268	3296	4037	4703	1742
T3. F4 tonnes & N-40	4888	3518	3907	4583	1733
T4. F8 tonnes & N-20	4925	3472	3777	4490	1616
T5. F12 tonnes & N-0	4530	3370	4222	4592	1558
T6. F-0 ,, & N-60 + P-30	5138	3611	3879	4296	1752
T7. F-0 ,, $& N-60 + P-30 + K-30$	5120	3703	3657	4537	1746
T8. $F-0$, & N-60 + P-60	5345	3138	3740	4611	1701
T9. $F-0$, & $N-60 + P-60 + K-60$	5160	3296	4055	4287	1487
T10.F-0 ,, & $N-120 + P-60 + K-60$	5422	3388	4148	4638	1961
	Sig	 Sig	· • • • • • • • • •		
S.X	271	86	Sig	Sig	N.S
C.D	569	551	86	86	
Sig = Significant			551	551	
N.S = Non-significant					

Table- 8 Fraduction of mode. .

N.S = Non-significant

PART II

EXPERIMENTS IN CULTIVATORS' FIELDS MALAFIURAM AND TRIVANERUM DISTRICTS.

-:17:-

EXPERIMENTAL

As in the previous year during 1975-76 four types of trials, namely, A,B,C and G types were conducted at Malappuram and Trivandrum districts during kharif and Mabi seasons. Each district is stratified into three agricultural homogeneous zones after leaving out the area demarked for C type experiments. The selection of villages within the blocks and the cultivators' fields within the villages are done by using random numbers. The names of the blocks selected in each zones are given below.

District	Zone	Block.
Malappuran	I	Kondotti Mancheri
	II	Andathode Tanur
	III	Mankada Malappuran
Trivandrun	ľ	Nenon Perinkadavila
	ž ž	Kilinanur Nedumangad
	III 	Chirayinkil Trivandrun (rural)

The soil pH in all these blocks are acidic ranging between 5 to 6.

There are twelve treatements in A and B type trials and 10 treatements each in C and G types. In type A experiment the fertilizer requirement of high yielding varieties of rice is studied. This is with a view to formulate fertilizer recommendation of high yielding varieties of rice for different Agreelimatic regions of the State. The trial is comprised of six levels of mitrogen (0, 30, 60, 90, 120 and 180 kg/ha), three levels each of phosphorus and potash (0, 30, and 60 kg/ha) and a single dose of lime at the rate of 500 kg/ha in twelve different combinations as shown below.

No of plots	Serial No treatéments	Treatgment rotations.
12	т <u></u>	N ₀ P ₀ K ₀
	12	
	13	N ₃₀ P ₃₀ K ₀
	TA	N ₁₂₀ F ₀ K ₀
	Тъ	^N 90 ^P 30 ^X 0
	T_{6}	^N 60 ^P 30 ^X 0
	E.g	^N 60 ^P 60 ^E 0
	ΤŚ	^N 60 ² 30 ³ 30
	T_9	^N 120 ^E 60 ^K 0
	T ₁ O	^N 120 ^P 60 ^I 60
	T11	$^{N}180$ $^{P}60$ $^{K}60$
	^T 12	N_{60} P_{30} X_{30} +
		Line @ 500 kg/ha

-:18:-

The varieties used in this trial is Java for both the districts.

In B type trial the comparative performance of dwarf and medium tall varieties of rice in relation to low and medium levels of fertilizer applications is studied. The test varieties used are Jaya for dwarf in both the districts for Kharif and Rabi seasons and for medium tall Jyothi . in Malappuram district and Sabari and Bharati in Trivandrum district for Kharif and Rabi respectively. The trial is comprised of three levels of nitrogen (0, 40 & 80Kg/ha) and two levels each of Phosphorus and Potash (0, and 40 kg/ha) in twelve different treatement combinations as shown below.

12 T ₁ T ₂ T ₂ T ₃ T ₄ T ₅ T ₆ T ₇ T ₇ T ₈ T ₉ T ₁₀ T ₁₂ T ₁ T ₁ T ₁ T ₁ T ₁ T ₁₂ T ₁ T ₁ T ₁₂ T ₁ T ₁ T ₁₂ T ₁ T	No of plot	s Sl.No. of treatements	Treateme	ents	rotations
		$ \begin{array}{c} T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{10} \\ T_{11} \\ T_{12} \\ \end{array} $		P0 P40 P40 P40 P0 P0 P0 P0 P0 P0 P40 P40	K ₀ K ₀ K ₀ K ₀ K ₀ K ₀ K ₀ K ₀

 V_{2} - Medium tall variety

-:20:-

In C type trial, the fertilizer requirement of rice in relation to soil fertility is studied. The base levels of nutrients used in this trial@re 120 kg nitrogen, 120 kg Phosphorus and 60 kg Potash. They are applied in ten different combinations as noted below.

No of plots	Sl.No. of	Treater	nent con	nbinations.
	_treatements			•
10	 T	 		
	1	$^{\mathrm{N}}$ o	$^{\mathbb{P}}$ o	K0
	T_2	N	Ð	
	2	M _b	0^{q}	^Х 0
	$^{\mathrm{T}}_{3}$	L1 D	$^{\mathrm{P}}$ O	К b
	$T_{\underline{A}}$	N N	11	D YZ
	4	$\mathbb{N}^{\mathbf{N}}$	0.50	K _b
	$^{\mathrm{T}}5$	$^{ m N}{}_{ m b}$	$^{\mathrm{P}}\mathbf{b}$	м
	'n	N	0	b
	' ^T 6	Nb	$^{\mathrm{p}}_{\mathrm{1.5b}}$	К _р
	^т 7	$^{\rm N}{}_{ m b}$	Р _Ъ	ĸ
		L) Trit	Ð	
	T ₈	$\mathbb{N}_{\mathbf{b}}$	Pb	^K 0.5b
	$^{\prime }\Gamma _{9}$	$^{ m N}{ m b}$	Р b	R S S S S
	n n		b	^K 1.5b
	^T 10	1.5b	P 1.5b	^K 1.5b
		2.000	TOD	T • OD
b = base level o	f untriant			
	i nutrients.			

The phosphorus fixing capacity of representative sample of the soil series of C type trials is determined for deciding $P_{\rm b}$ (the base level of phosphorus)

All these A, 3 and 0 type trials are conducted on fresh site selected during each season.

		-:21:						
In the cas	e of G	type	experime	ents th	e same	site		
is used for conducting the trials during Kharif and								
Rabi seasons. The main objective of 6 type trial is								
to study the fertilizer requirements of a fix ^{ed} single								
year two crop sequence under resource constraints.								
The treat¢ments	are ra	andomi	sed only	z in Kha	orif g	6230b		
while in Rabi s	eason	no ran	domisati	ion is :	arri 5	Each		
plot treated in	Khari	f seas	on will	receivo	e the	Daten		
corresponding t	reatem	ent fo	r Babi s	ic chow				
				IS SHOWL	1 0610	w :		
Treatement No.	Level	ls_of_	<u>fertiliz</u>	er_app]	licati	on.		
		Khar			nbi	andra galar distri annia agira		
$^{ m T}$ 1	e^{N}	$^{\mathrm{P}}$ 0	\mathbb{K}_{O}	$^{ m M}$ O	²⁹	$^{\mathrm{K}}$ O		
$^{\mathrm{T}}2$		D		D.T.	U .			
2	1120	60	^K 60	1120	Peo	Kco		
T ₃	^N 120 ^N 90	P_{60} P_{45}	K_{60}	^N 120 ^N 120	\mathbf{P}_{60}	к ₆₀ ксо		
${}^{\mathrm{T}}_{3}$ ${}^{\mathrm{T}}_{4}$	$^{N}90$	$^{P}45$	K_{45}	^N 129	$^{\Gamma}60$	K60		
т ₃ т ₄ т ₅	$\begin{array}{c} \mathrm{N} \\ \mathrm{O}\mathrm{C}\mathrm{e}^{\mathrm{M}} \\ \mathrm{O}\mathrm{O}\mathrm{C}\mathrm{O}^{\mathrm{M}} \end{array}$	P 45 P 90	$^{K}_{45}$	^N 129 ^{II} 90	$^{\Gamma}_{P}_{O}$	$^{K}_{60}$		
т ₃ т ₄ т ₅	N90 N90 N90	P45 P90 P0	^K 45 ^K 0 ^K 90	^N 129 ^N 90 ^N 90	^Г 60 ^Р 0 ^Р 90	^К 60 ^К 90 ^К 0		
$\begin{array}{c} {}^{\mathrm{T}}_{3} \\ {}^{\mathrm{T}}_{4} \\ {}^{\mathrm{T}}_{5} \\ {}^{\mathrm{T}}_{6} \\ {}^{\mathrm{T}}_{7} \end{array}$	^N 90 ^N 90 ^N 90 ^N 90	P 45 ^P 90 P0 P30	^K 45 ^K 0 ^K 90 ^K 30	^N 129 ^N 90 ^N 90 ^N 90	Г60 Ро Р90 Р90	^К 60 ^К 90 К ₀ К ₀		
$\begin{array}{c} {}^{\mathrm{T}}_{3} \\ {}^{\mathrm{T}}_{4} \\ {}^{\mathrm{T}}_{5} \\ {}^{\mathrm{T}}_{6} \\ {}^{\mathrm{T}}_{7} \end{array}$	^N 90 ^N 90 ^N 90 ^N 60 ^N 60	$ P_{45} \\ P_{90} \\ P_{0} \\ P_{30} \\ P_{30} \\ P_{60} $	K45 K90 K30 K30 K30 K0 K30 K0 K10 K10	^N 129 ^N 90 ^N 90 ^N 90 ^N 90 ^N 90	$ \begin{array}{c} \mathbb{P} \\ $	^К 69 ^К 99 К ₀ К ₀ К ₄₅		
${}^{T}_{3}$ ${}^{T}_{4}$ ${}^{T}_{5}$ ${}^{T}_{6}$ ${}^{T}_{7}$ ${}^{T}_{8}$	$^{M}90$ $^{M}90$ $^{M}90$ $^{M}60$ $^{M}60$ $^{M}60$	P45 P90 P0 P30 P60 P0	K45 K90 K30 K30 K0 K60	^N 129 ^H 90 ^N 90 ^N 90 ^N 90 ^N 90 ^N 90 ^M 60	P60 P0 P90 P90 P90 P45 P60	K 69 K90 K0 K45 K0		
${}^{T}_{3}$ ${}^{T}_{4}$ ${}^{T}_{5}$ ${}^{T}_{6}$ ${}^{T}_{7}$ ${}^{T}_{8}$ ${}^{T}_{9}$	^N 90 ^N 90 ^N 90 ^N 60 ^N 60 ^N 60 ^N 60 ^N 60	P45 ^P 90 ^P 0 ^P 30 ^P 60 ^P 0 ^P 30	$ K_{45} K_{90} K_{30} K_{0} K_{60} K_{30} $	^N 129 ^N 90 ^N 90 ^N 90 ^N 93 ^N 63 ^N 60	P60 P90 P90 P90 P45 P60 P30	K6 0 K90 K0 K45 K0 K30		
${}^{T}_{3}$ ${}^{T}_{4}$ ${}^{T}_{5}$ ${}^{T}_{6}$ ${}^{T}_{7}$ ${}^{T}_{8}$	$^{M}90$ $^{M}90$ $^{M}90$ $^{M}60$ $^{M}60$ $^{M}60$	P45 P90 P0 P30 P60 P0	K45 K90 K30 K30 K0 K60	^N 129 ^H 90 ^N 90 ^N 90 ^N 90 ^N 90 ^N 90 ^M 60	P60 P0 P90 P90 P90 P45 P60	K 69 K90 K0 K45 K0		

-:21:-

-:22:-

In all the above four types of experiments the gross plot size is 50 m². Phosphorus and potassic fertilizers are applied as basal dressing and nitrøgen in two split doses at planting and paniele initiation in Malappurom district and in three splits at planting, tillering and paniele initiation in Trivandrum district. The crops are raised purely under rainfed condition. The climatic conditions have been quite favourable during the period of crop growth in both seasons. Incidence of pests and diseases like leaf roller, and brown plant hopper/sheath blight are prevalent in most of the plots where the experiments are conducted and are controlled by taking plant protection measures.

RESULTS AND DISCUSSION

<u>A type experiment</u>

In 'A' type experiment response of nitrogen, phosphorus, potash and lime are studied. The effect of nitrogen is studied in four different phases. They are, 1) response of nitrogen at three levels of 0, 60 and 120 kg/ha keeping phosphorus and potash at zero level, 2) effect of nitrogen at two levels (60 and 90 kg/ha), at lower level of phosphorus (30 kg/ha) and zero level of potash, 3) effect of nitrogen at two levels (60 and 120 kg/ha) at a higher level of phosphorus (60 kg/ha) and 4) effect of nitrogen at higher level of phosphorus and potash.

desponse to nitrogen

The response of applied nitrogen at two different levels, namely, 60 and 120 kg/ha is found to be significant in Malappuram and Trivandrum districts during both seasons. The response is found to be maximum at 120 kg N/ha (Table 9 and 10). Naximum response to 120 kg N/ha is found in Zone I of Malappuram district consisting of Kondotti and Mancheri blocks resulting in an yield increase of more than 1000 kg/ha followed by Zone HI consisting of Mankada and Malappuram blocks during Kharif season. During Rabi season also the same trend is maintained as far as zone I is concerned.

In Trivandrum district maximum yield is recorded for 120 kg N/ha for both the Kharif and Aabi seasons in Zone III consisting of Chirayinkil and Trivandrum (rural) blocks followed by Zone II (Kilimanur and Nedumangad blocks) and Tone I (Semom and Perinkadavila blocks). Response to phosphorus

Application of phosphorus has been found to be significantly increasing the yield in Malappuram and Trivandrum districts in both the seasons at all levels of application (Tables 11 and 12). The relative response is more pronounced in Zone III of Malappuram district consisting of Mankada and Malappuram blocks and Zone II of Trivandrum district consisting of Kilimanur and Nedumangad blocks at 60 kg P_205 /ha during both the seasons. There is no significant response to phosphate application in Zone II (Andathode and Tanur) of Malappuram district during both the seasons.

Response to potash

In Malappuram district except Zone III (Mankada and Malappuram) there is no significant response to potash application in Kondotti, Mancheri, Andathode and Tanur blocks during Kharif season. During Rabi season significant response to potash has been noticed in the district; the response being more pronounced in Zone I consisting of Kondotti and Mancheri blocks followed by Zone II (Andathode and Tanur) at 60 kg K20/ha. For 30 kg K20/ha in Zone II of Malappuram district the response is 502 kg/ha of paddy and for 60 kg K20/ha the increased response is 289 kg/ha (Tables 13 and 14).

In Trivandrum district response to potash is noticed for 60 kg K20/ha in all the blocks during both the seasons. For 30 kg K20/ha significant yield increase is noticed in Zone III (Chirayinkil and Trivandrum rural) during Kharif season and in Zone II (Kilimanur and Nedumangad blocks) during Rabi season.

Combined effect of nitrogen, phosphorus and potash

In Malappuram district during both the seasons increasing the dosage from 60 kg N/ha to 90 kg N/ha over a base level of 30 kg P_205 /ha does not produce any/significant yield response (Tables 15 and 16).

-:24:-

Whereas, in Trivandrum district, to this applied increased dose of nitrogen, significant response is noticed during both the seasons. This is especially so in Zone III (Chirayinkil and Trivandrum rural). Increasing the nitrogen dose from 60 kg/ha to 120 kg/ha over a base level of 60 kg P₂05/ha there is no response in both the seasons in all the blocks of Malappuram district except in Zone III (Mankada and Malappuram) in Kharif season (Tables 17 and 18)

In Trivandrum district for the same treatments significant response is noticed in all the Zones during Kharif season to the applied nitrogen, whereas, during Rabi season only in Zone II (Kilimanur and Nedumangad) significant yield increase is noticed.

Still more addition of nitrogen upto 180 kg/ha has no added advantage over 120 kg N/ha for both the seasons in Trivandrum district. In Malappuram district this increased dosage of nitrogen has significant yield increase only in Tharif season (Tables 19 and 20).

Response to lime

Lime application has not shown any significant response in Malappuram district during both the seasons. In Trivandrum district significant yield increase is noticed only in Kharif season. This significance is mainly due to positive significant response to lime application in Zone I (Nemom and Perinkidavila) where the same trend is maintained during Rabi season also (Table 21).

'B' Type experiments Response to nitrogen

In this experiment response to nitrogen at three different levels, namely, 0, 40 and 80 kg/ha on two different varieties are studied. In Malappuram district the varieties compared are Jaya and Jyothi during both seasons and in Trivandrum

.206906

-:26:-

district Jaya and Sabari in Kharif season and Jaya and Bharati In Rabi season. In both the districts during both the seasons high yielding variety Jaya produced more yield at all levels of nitrogen than the locally improved varieties. The rate of response per unit of nitrogen is also more in the case of high yielding variety Jaya. The highest yield is recorded at 80 kg N/ha for both the varieties during both the Jeasons (Tables 22 and 23).

Response to phosphorus

Application of phosphorus at 40 kg/ha over a basal dose of 40 kg and 80 kg N/ha has produced significant yield increases in Trivandrum district for both varieties during both the seasons. This is so during Kharif season in Zone I (Nemom and Perinkadavila) and Zone II (Kilimanur and Nedumangad), whereas, in Rabi season this was so in Zone I and Zone III (Cheriyinkil and frivandrum rural) (Tables 24 and 25).

In Malappuram district significant yield response to phosphate application at both the levels of nitrogen (40 and 80 kg/ha) is noticed only in Jaya during both the seasons. For Jyothi there is no significant response to phosphate during Kharif and during Rabi significance is noticed only at 80 kg M/ba. This significant response to phosphate application was predominantly evident in Zone I consisting of Kondotti and Mancheri blocks for both the varieties during Kharif season and for only Jyothi during Rabi season. All the other blockshave not produced significant response for both the varieties during both the seasons except for Jyothi in Andathode and Tanur blocks of Zone II in Kharif season at the level of 40 kg N/ha.

Response to Potash

Positive significant response to applied potash is noticed for both the varieties during both the seasons in Trivandrum district. In Zone I (Nemom and Perinkadavila) this is so during Kharif and Rabi seasons. But for Zone III (Chirayinkil and Trivandrum rural) significance for potash in increasing yield is noticed only during Kharif season for the variety Sabari alone. Whereas, in Zone II (Kilimanur and Medumangad) potash application produced no significant yield increase during both the seasons for both the varieties (Table 26).

In Malappuram district significant yield increase due to botash application is obtained only for Jaya during Kharif season. In Zone II (Andathode and Tanur) significant yield increases for both the varieties are noted during Kharif and Rabi. In all other blocks of the district the effect of potash in increasing the grain yield is not significant.

'C' Type Trials

(Soil test values and crop response)

From the trials conducted it is seen that the response to nitrogen is evident for 'ML' and 'MM' fertility classes in Malappuram district and for 'ML' class in Trivandrum district during Kharif season. During Rabi season none of the fertility classes ('LM', 'LH' and 'MM') of Trivandrum district does not produce significant yield response for 120 kg N/ha. In Malappuram district for the same dose significant yield response has been obtained in 'LL' and 'LM' fertility classes (Tables 27 and 28).

The effect of phosphorus is found to be statistically significant only with respect to the trials conducted under 'LL' level of fertility class at 180 kg P205/ha during Kharif season in Malappuram district. During Rabi season significant yield response to phosphate application has been recorded for 60, 120 and 180 kg/ha in 'LL' fertility class, whereas, for 'LM' fertility class the significant response is only for 180 kg P_205/ha . It is noted that the variation in yield increase from 60 to 180 kg P_205/ha is not significant for both the fertility classes.

In Trivandrum district during Kharif season significant yield increase at all levels of phosphate application have been recorded for 'LL', 'LM' and ML' fertility classes. Similarly, during Rabi season the same trend of significance in yield increase has been recorded for 'LM', 'LH' and 'MT' fertility classes.

In Malappuram district potash application has not recorded any significant yield increase in all fertility classes except for 'MM' during Kharif season at 90 kg K20/ha. In Trivandrum district during Kharif season significant yield increase has been recorded for 'LL' fertility class at 60 kg and 90 kg K20/ha and for 'LM' and 'ML' fertility classes at 90 kg K20/ha. During Rabi season significant yield response has been recorded from 30 to 90 kg K20/ha in 'LM' fertility class, for 60 and 90 kg K20/ha for 'MM' fertility class and for 90 kg K20/ha for 'LH' fertility class.

The yield obtained at maximum level of fertilizer application (180:180:90) over 120:120:60 NPK was not significant in Malappuram district in both seasons. In Trivandrum district the same dose produced significant yield increase in Kharif season alone in 'LL', 'LM' and 'ML' fertility classes.

G Type Trials

Response of nitrogen, phosphorus and potash at low, medium and higher levels

In this type of trials the production of rice on three levels of nitrogen, phosphorus and potash combinations, namely, 60:30:30, 90:45:45 and 120:60:60 in each season is compared. During both the seasons Zone II (Andathode and Tanur blocks) and Zone III (Mankada and Malappuram blocks) of Malaneuram district recorded significant increased rice production for 120:60:60 NPK dose over 60:30:30 NPK (Table 29). In Frivandrum district significant results have been obtained for 90:45:45 over 60:30:30 in Zone II (Kilimanur and Nedumangad) during kharif season and for both Kharif and Rabi seasons in Zone III (Chirayinkil and Trivandrum rural). The maximum dose of fertilizer (120:60:60) has produced significantly more grain yield in all zones during both seasons over 60:30:30 NPK in this district.

The residual studies on the effect of different fertilizers as shown in Table 30, it can be inferred that the residual effect of the applied chemical fertilizers is negligible in both the districts. This may be due to high rainfall during Kharif meason which results in heavy leaching losses of the applied nutrition to give any positive effect in yield during the following Rabi season.

-:30:-

SUMMARY AND CONCLUSIONS

Experiments at Model Agronomic Centre, Karamana are conducted to gather information on production potential under adequate as well as limited production resources, to study the long term effects of different agronomic practices on cropping system and to evaluate the fertilizer requirement of newly released varieties of rice.

The following important conclusions are drawn from the results of the experiments conducted during 1975-76.

1. The most suited cropping system for obtaining maximum production of rice annually is to raise three crops of Jaya in succession during three cropping seasons in an year.

2. Maximum production of 44 MT/ha food material per annum can be obtained from the rotation of two short duration paddy along with the summer crop of H.165 tapioca.

3. Maximum gross economic return is obtained from the rotation consisting of two medium duration paddy (Jaya) and a summer crop of bhendi.

4. Any reduction in the fertilizer dose from that of the recommended, significantly reduces the paddy yield.

5. Hand weeding has been found to be superior to the chemical method of weed control.

6. Farm yard manure application has direct, residual and cumulative effects in increasing rice production in Karamana soil.

7. Potassium schoenite as a source of potash is equally good and even better than potassium sulphate and potassium chloride in producing more rice.

8. Jaya variety seems to be the best in rice yield when compared with even the recently released rice varieties. 9. Phosphorus and potash application has no additional effect in increasing the grain yield of rice in Karamana soils.

10. Farm yard manure cannot replace chemical fertilizers as a source of supply for different nutrients to rice.

11. Tigher doses of nitrogen have good response in increasing the rice yield in both Trivandrum and Malappuram districts. Maxinum response in rice production has been obtained by applying 120 kg M/hm.

12. Similarly application of phosphorus significantly increases rice production in both the districts.

13. Response to potash application has been found to be more pronounced in Trivandrum district than in Malappuram district.

11. Maximum yield has been recorded by the combined application of 120:60:60 NPK in Trivandrum district; 180:60:60 NPK in Malappuram district.

15. Lime application has not produced any significant resnonse in Malappuram district, whereas, the same was erratic and inconsistent in Trivandrum district.

16. Dwarf high yielding variety Jaya respond more by produeing higher yields than the medium tall locally improved varieties.

17. Response to all applied nutrients, has been observed only in 'ML' fertility class of Trivandrum district during Marif season. Nitrogen alone has response in 'ML', 'MM' and 'LM' in Malappuram district. Phosphorus application has positive response in all fertility classes during both the seasons in Trivandrum district, whereas, in Malappuram district the same has been noticed in Rabi season. Similarly, potash application at higher levels produced response in Trivandrum district during both the seasons, whereas, it was absent in Malappuram district.

18. Studies on residual effect of fertilizers have shown that there is no effect of the applied chemical source of nutrients in the subsequent season.

District Z	lone	Block	Barder general process					
		DFOCK	No.of trials	Control 0- 0- 0	Response to over 0-0		n 3.E	C.D
	-				60	120		
Malappuram	I	Kondotti Mancheri	2	2250	437	1031		
I	I	Andothodc Tanur	9	2480	318 [*]	304*	149.4	295.9
II		Mankada Malappuram	7	3626	409*	677 [*]	120.3	240.7
		District Mean	18	2900	367*	530*	94.1	184.5
1rivandrum 1		Nemom Perinkadavila	8	3018	79	532*	145•7	288.5
I		Kilimanu <i>r</i> Nodumangad	8	2877	323*	647*	113.2	224.2
III	Ι	Chirayinkil Trivandrum(rura	1) ⁹	3219	789*	1187*	105.9	209.7
		District Mean	25	3045	413*	805*	70.2	137.6

TABLE - 9. Response of Mitrogen in 'A ' type experiment at Zero level of Posphorus

<u>- 10</u> .	Potasl	nae of Altrogen h Rabi 1975-76	(Grain	type exp yield kg/	<u>criment at Ze</u> <u>ha)</u> Variety	ro level Jaya.	of Pospho	rus and
District	Zon	Block	No.of trials		Response to over 0-0		 S.E	C.D
					60	120	~	
MALAPPURAM	I	Kondotti Mancheri	16	3003	315 [*]	811*	136.8	268.3
	II	Andathode Tanur	10	2918	402 [*]	640*	110.0	217.9
	III	Mankada Malappuram	11	3383	440 [*]	557*	173-2	342.9
		District Mean	37	3093	376*	689*	84.2	165.0
TRIVATDRUM	I	Nemom Perinkadavila	12	2315	200	457 *	133.9	265.2
	ΤI	Kilimanur Nedumangad	10	2683	498*	701*	107.7	213.3
	III	Chirayinkil Trivandrum (ru	10 aral)	2097	600*	827*	107.6	213.1
		Diatrict Mean	32	2362	418*	649*	69.4	136.0

TABLE - 10. Response of Mitrogen in 'A' type experiment at Zone low

<u>PABLE-11</u> .	<u>Rospo</u> (Grain	nse of Phospho Yield kg/ha)	rus in	'A' type	experiment	<u>Kharif 1</u>	975-76.		
District	Zone	Block	No.of triels		Phosphorus response over 60-0-0 on 60-30-0		Phosphor response over 120-0-0 120-60-0	on	
MALAPPURAM	I	Kondotti Mancheri	2	2687	2000	3281	781	7448 1444 Peak ;	
	II	Andathodo Tanur	9	2798	144	2784	253	149.4	295.9
	III	Mankada Malappuram	7	4035	247*	4303	600*	120.3	240.7
	Dict	rict Mean	18	3267	390*	3430	446*	94-1	184.5
TRIVANDRUM	T	Nemom Porinka d avila	8	3097	509*	3550	628*	145.7	288.5
	II	Kilimanur Nedumangad	8	3200	734*	3524	853*	113.2	224.2
	III	Chirayinkil Trivandrum (rural)	9	4008	245*	4406	492 *	105-9	209.7
	Dist:	rict Mean	25	3458 	486 [*]	3850	651*	70.2	137.6

-:34:-

CABLE - 12 Besponse of Phosphorus in 'A' type experiment Rabi 1975-76.									
(Grain Yield kg/ha) Variety Jaya.									
District	Zone		No.of triels	60-0-0	Phosphorus response over 60-0-0 on 60-30-0	120-0-0	Phosphorus response over 120-0-0 on 120-60-0	STE	C.D.
MALAPPURAM		Kondotti Mancheri	16	3318	713	3814	464 [*]	136.8	268.3
		Andathode Panur	10	3320	141	3558	-25	110.0	217.9
		Mankada Malappuram	11	3823	351*	3940	524 [*]	173-2	342.9
	Distri	ict Mean	37	3469	450*	3782	380*	84.2	165.0
TRIVANDRUM		Nomom Porinka d avil	<u>12</u> 18	2515	368 [*]	2772	380 [*]	133.9	265.2
		Kilimanur Nodumangad	10	3181	248*	3384	452 [*]	107.7	213.3
		Ohirayinkil Privandrum(228*	2924	420 [*]	107.6	213.1
	Diatri	ict Mean	32 	2780	287*	3011	415*	_69•4	136.0

<u> 14BLE - 13</u>	Reapon	nse of potash	in ' <u>à</u> '	type exp	criment Kha	rif 1975-	76.	
	(Grain	n Yield kg/ha)		Vez	iety - Jaya	•		
		9000 8000 9000 Jour 9000 9000 10000	anna brain 2000	Provide Service raymond Johann			-	
District	Zone	Block	No.of triels		Response of Potsha over 60-30-0 on _60-30-30_		Response of Potash over 120-60-0 on_120-60-6	S.E C.D
MALAPPURAM	Ϊ	Kondotti Mancheri	2	4687	- 375	4062	- 1062	
	II	Andathodo Tanu <i>r</i>	9	2942	171	3037	238	149.4 295.9
	111	Mankada Malappuram	7	4282	339 [*]	4903	293*	120.3 240.7
·	Dist	rict Mean	18	3657	.176	3876	115	94.1 184.5
TRIVANDRUM	I	Nemom Perinkadavil	8	3606	175	4178	662 [*]	145.7 288.5
	II	Kilimanur Nedumangad	8	3934	47	4377	331*	113-2 224-2
	TIT	Ohirayinkil Privandrum (rural)	9	4253	362 *	4898	370*	105.9 209.7
	Dist	rict Mean	25	3944	201*	4501	451*	70.2 137.6

-:36:-

<u>9ABLE - 14</u>	Address of the second of the second	onac of Pot in Yield kg		1 <u>.1 590</u> .	o <u>experime</u> r Variety		975-76.		
District	Zone		No.of triela	60-30-0	Response of Potahs over - 60-30-0 or 60-30-20		Response of Potash-over 120-60-0 on 120-60-60	S.E	C.D
MALAPPURAM	 I	Kondotti Mancheri	16	4031	200	4278	367*	136.8	268.3
	II	Andathode Tanur	10	3461	232^{*}	3533	289*	110.0	217.9
	III	Mankada Meleppuram	11	4174	- 12	4564	222	173.2	342 . 9
	Dist	rict Mean	37	3919	146	4162 -	- 302 [*]	84.2	165.0
URIV MDRUM	I	Nemom Perinka d av	12 ila	2883	- 22	3152	585*	133-9 Th	265.2
	11	Kilimanu <i>r</i> Nodumangad	10	3429	217*	3836	252*	107.7	213.3
	III	Chirayinki Trivandrum (rural		2925	162	3344	242*	107.6	213.1
<u>.</u>	Dist	rict Moan	32	3067	110	3426	374*	69.4	136.0

-:37:-

<u> </u>	TUV	ponse of er level o level K	or Fher	iphorus k	locping Po	ld kg/ha)
Diatrict 2	Zone	Block	No.of trials	60-30-0	Response nitrogen over 60- on 90-30	30-0
MALAPPURAM	I	Kondotti Mancheri	2	4687	- 875	and the last link and line and
		Andathod. Tanur	o 9	2942	- 112	149•4 295•9
		Mankada Malappura		4 2 82	101	120.3 240.7
		trict Mea	n 18	3657	- 114	94.1 184.5
TRIVANDRUM		Nemom Perinkada	8 Ivila	3606	210	145.7 288.5
		Kilimana: Nedumang	ad	3934	35 *	113.2 224.2
	111	Chirayin Trivandru (rural)		4253	460*	105.9 209.7
tens) on thing Midd Long you good Sont You you have	Dis	trict Mean	1 25	3944	244*	70.2 137.6
	OWC:	onse of Ni r level of L Rebi 197	Fhogol	lorus ked Frain Yid	ming Pote	ash at Zoro
District Z	one		No.of trials	60-30-0		of S.E C.D
MALAPPURAM	Ι	Kondotti Mancheri	16	4031	- 122	136.8 268.3
	II	Andathodo Tanur	10	3461	+ 30	110.0 217.9
		Mankada Malappura	11 m	4174	+ 15	173.2 342.9
	Dist	wiet Neen		3919	- 40	84.2 165.0
TRIVANDRUM	I	Nemom Perinka d a	12 vila	2883	181	133.9 265.2
	II	Kilimanur Nedumanga		3429	73	107.7 213.3
1	III	Chirayiki Trivandru		2925 .)	211	107.6 213.1
]	Diat	rict Mean	32	3067	156*	69.4 136.0

<u> </u>				- 39 -		
	hi	SUNC TONG	LUIJ	Mogphor	na keonina	xpcriment at a Potash at icld kg/ha)
					_ Varicty	- Jaya.
District	Zon	e Block	Nc.of trial	f 60-60- La		of S.E C.D
M.L.PFUR.M	I	Kondotti Mancheri	2	3937	125	ante auto sunt sunt sunt arragante puet
	II	Andathodo Tanur	9	3093	- 56	149.4 295.9
		Mankeda Malappura	7 om	4626	277*	120.3 240.7
State Hand State State State State State State State State		trict Mean	18	3783	93	94•1 184•5
2 RIVANDRUM		Nomon Porinkada		3828	350*	145.7 288.5
		Kilimanur Nodumanga	d	4096	281*	113.2 224.2
		Chirayink Trivandru	m(rur	4598 el)	300*	105.9 209.7
	Dist	prict Mean	25	4191	310*	70.2 137.6
annal a na baas anna anna gana anna bana bana bana bana		ang harang telahang panang panang panang panang harang panang panang ang panggan halang panang kanang panang panang panang panang			ng pang bang bang pang nang pang nang pang pang pang	an from many here, and adjust from man you they must been man been
<u>TABLE- 18</u>	II.L.	THE THEY IS A		noaphori 975 - 76	'A' type Ex as keeping (Grain Yiel Variety - J	d kg/ha)
District 2	Zor Zone	b Block	or <u>e</u> abi 1	60-60-(18 kceping (<u>Grain Yiel</u> Jariety - J	Potesh at <u>d kg/ha)</u> Dya. of S.E C.D 0-0
	Zone I	Kondotti	or E abi 1 No.of trial: 16	60-60-(18 kceping (<u>Grain Yiel</u> Jariety - J) Response Nitrogen over 60-6	Potesh at <u>d kg/ha)</u> Dya. of S.E C.D 0-0
District 2	Zone Zone I II	Block Kondotti	or E abi 1 No.of trial: 16	4253	13 kceping (<u>Grain Yiel</u> Nariety - J) Response Nitrogen over 60-6 on 120-60	Potesh at <u>d kg/ha)</u> Dya. of S.E C.D 0-0 -0
District 1 MaLappuram	Zone Zone I II III	Kondotti Mancheri Andathode Tanur Mankada Malappurar	or E abl 1 No.of trial, 16 10 11	4253	18 kceping (Grain Yiel Variety - J) Response Nitrogen over 60-6 on 120-60 25	Potash at <u>d kg/ha)</u> Oya. of S.E C.D 0-0 -0 136.8 268.3
District 2 M&L&PPURAM I	Zone Zone I II III	Kondotti Mancheri Andathode Mankada	or E abl 1 No.of trial, 16 10 11	noaphorn 975-76 1 60-60-0 3 4253 3560	13 kcoping (Grain Yiel Jariety - J) Response Nitrogen over 60-6 on 120-60 25 - 27	Potach at <u>d kg/ha)</u> of S.E C.D 0-0 -0 136.8 268.3 110.0 217.9
District 1 MaLappuram	Zone Zone I II III Dist	Kondotti Mancheri Andathode Tanur Mankada Malappurar rict Mean Nemom Perinkad av	or E abl 1 No.of trial 16 10 11 a 37	noaphorn 975-76 1 60-60-0 3 4253 3560 4386 4105 3127	13 kceping (Grain Yiel Jariety - J) Response Nitrogen over 60-6 on 120-60 25 - 27 178 57 25	Potach at <u>d kg/ha)</u> oya. of S.E C.D 0-0 -0 136.8 268.3 110.0 217.9 173.2 342.9
District 2 M&L&PPURAM I	Zonc Zonc I II III Dist II	Kondotti Mancheri Andathode Tanur Mankada Malappurar rict Mean	or P abi 1 10.0f trial 16 10 11 17 12 711a 10	noaphorn 975-76 1 60-60-0 3 4253 3560 4386 4105	18 kceping (Grain Yiel Jariety - J) Response Nitrogen over 60-6 on 120-60 25 - 27 178 57	Potach at <u>d kg/ha</u>) aya. of S.E C.D 0-0 136.8 268.3 110.0 217.9 173.2 342.9 84.2 165.0
District 2 M&L&PPURAM I I TRIVANDRUM	Zone Zone I II III III III III	Kondotti Mancheri Andathode Tanur Mankada Malappurar rict Mean Nemom Perinkada Kilimanur	or E abi 1 No.of trial: 16 10 11 37 12 711a 10 1 10	noaphorn 975-76 3 60-60-0 3 4253 3560 4386 4105 3127 3560 3250	13 kceping (Grain Yiel Jariety - J) Response Nitrogen over 60-6 on 120-60 25 - 27 178 57 25	Potach at <u>d kg/ha</u>) of S.E C.D 0-0 -0 136.8 268.3 110.0 217.9 173.2 342.9 84.2 165.0 133.9 265.2

- 39 -

<u> TABLE- 19</u>	a h	the state is a state of the sta	1	rain Yi	'A' type c orus and F <u>cld kg/ha</u> ricty - Ja	
District	Zone	Block	No.o. trial	f 120-6	0-60 Nitro respo over 120-60 on 180-	nse 60
ille L. PPURE	I	Kondotti Mancheri	2	3000	1375	
	<u>n</u>	hdathodo lanu <i>r</i>	9	3275	231	149.4 295.9
	ľy	lankada lalappura	7 n	5196	104	120.3 240.7
	Dist:	rict Mean	-18	3991	309	94.1 184.5
TRIVANDRU	Ē	lemom 'erinka d ar	8 vila	4840	- 637	145.7 288.5
	II K	ilimanur cdumanga	8	4708	- 70	113.2 224.2
	III C T	hirayink: rivendrur	ll 9 n(rurs	5268	- 325	105.9 209.7
	Distr	ict Mean	25	4952	- 343	70-2 137.6
TABLE- 20	1975	- <u>76 (Grai</u>	n Yie	ld kg/h	s am Pota a) V	aricty - Jaya.
District	Zone	Block t	No.of Tials	120-50	-60 Nitrog respon over 120-60- on180-60-	so
MALAPPURAM		ondotti	16	4645	<u> </u>	136.8 268.3
	II ÁI	ancheri Idathode Anur	10	3822	114	110.0 217.9
	III Ma	unkada Lappuram	11	4786	26	173.2 342.9
	Distri	et Mean	37	4464	92	84.2 165.0
TRIVAMDRUM	I No Po	emon erinka d av:	12	3737	- 255	133.9 265.2
	II Ki	limanur edumangad	10	4088	92	107.7 213.3
•	III Ch	irayinki ivandrum	L 10	3586	- 168	107.6 213.1
	Distri	.ct Mean	32	-) 3800	- 120 -	69.4 136.0
						presid presid presid days (bland bases) presid

. - -

<u> TABLE - 21</u>	Re	paponac of	lim	lo ir	1 ' <u></u> ' t	ype experime	nt Kharif	and Rabi	1975-76			
		rain Yicl										
District	Zonc	Block	tri	als	60-30-	<u>K H A R I</u> 30 Response (Lime over 60-30-30 (60-30-30 -	of C.D	60-30-30	Line over 60-30-30 o	n		
Tanàna mana amin' a Tanàna amin' ami			К -	R		Lime			60-30-30 + Limo			
MALAPPURAM	Τ	Kondotti Mancheri	2	16	4312	- 312		4231	301*	268.3		
	II	Andathodc Tanur	9	10	3113	2 68	295.9	3693 .	- 107	217.9		
	III	Mankeda Malappura		11	4621	4	240.7	4162	5	342.9		
	Dist.	rict Mean	18	37		100	184.5	4065	102	165.0		
MURIVINDRUM	I	Nemom Perinkada			3781	295*	288.5	2861	388 [*]	265.2		
	ΙI	Kilimanur Nodumanga		10	3981	176	224.2	3646 -	- 162	213-3		
	III	Chirayink Trivandru	il 9 m(ru	10 ural	4615)	160	209.7	3087	131	213.1		
-	Dist:	cict Mean	25	32	4145	208*	137.6	3177	135	136.0		

- 41 -

-:42:-

<u> 1ABLE - 22</u>		lesponse of	Nitroge	<u>n in 'B'</u>	type	experim	cnt Khari	<u>f 1975-</u>	76(Grain	Yiold kg/ha)
District Z	Sene		No.of trials	- 00ntrol 0- 0- 0	Mitro	nsc of gen 0-0-0	<u> </u>	Mitro	nsc of gen 0-0-0	C.D
					40	80		4O	80	
MALAPPURAM	Ī	Kondotti Manchori	5	2725	337	225	2625	150	350	395.3
V 1-Jaya V2 -Jyothi	II	Andathodo Tanu <i>r</i>	10	2410	424*	509*	2206	219	435*	415.2
	III	Mankada Malappuram	10	4660		751*	3950	587*	681*	412.8
	Dia	trict Mean	25	3373 	440*	549 [*]	2987	.353	517*	. 247•4
TRIVANDRUM V1- Jaya	I	Nemon Porinkatav	9 ila	2556 -	398	- 79	2484 -	256	42	264.6
V2-Sabari	II	Kilimanu <i>r</i> Nodumangad	10	2501	190	408*	2407	149	466 [*]	195.2
	III	Chirayinki. Trivandrum		3229	450 [*]		2840	346*	737*	257.1
_	Dis	trict Mean	27	2735	71	313*	2561	72	405*	135.5

-:43:-

<u> DABLE - 23</u>	3	lesponse of	Nitrogo	n in 'B	type	experi	<u>mont Rabi</u>	1975-7	<u>76(Grain</u>	<u>Yield kg/ha)</u>
					V.1	-	3000 2001 0000 0000 2000	V ₂		
District	Zonc	Block		Control 0- 0- 0		gon	Control 0- 0- 0	Nitrog cvor (C.D
MALAFPURAN	ī I	Kondotti Manchari	11	3240		671*	5105	667 [*]	975*	460.6
V ₁ - Jaya V ₂ - Jyothi	II	Andathodo Danur	10	2690	490*		2380	446*	487*	196.4
	III	Mankada Malappura	9 n	3719	635 [*]	803*	3748	585*	668*	530.5
	Dia	trict Mean	30	3200	578*	601*	3056	569*	720*	238.6
TRIVAMDRUL V ₁ - Jaya	I I	Nomem Perinkatay		2343	175	269	2334	29	244	280.7
V ₂ - Bharat	i II	Kilimanur Nodumangad	8	2723	171	350*	2345	292	440 [*]	311-3
	III	Chirayinki Trivandrum		1980	422 *	630 [*]	1610	364*	529*	231-3
 	Dis	trict Mean	28	2322	262*	421*	2078	224*	403*	155.7

	· / / · -	
-: 44:-	• _ · · ·	

<u>TABLE- 24</u> <u>Response of F</u> (Grain Yield	hospl kg/ha	<u>norua i</u> 1)			exp crime	ont Khe		
District Zone Block		of ls	Respo nac 0 ovci 40-0)0_ <u>8</u> 0	leo5 neo 0000-00-00-00-00-00-00-00-00-00-00-00-0	or)-0 405	Res- panse 0-0 ⁰ vor 40-0-0 80-0	Ros- C.D ponse over - 80-0-0
MALAFPURAM I Kondotti Mancheri	5	3062	404 788	2950	01] -	on -0 _40 <u>-40</u> -0 _475_2975	on 80 <u>-</u> 40-0 450 [*] 395•3
V ₁ - Joya II Andethodo V ₂ - Jyothi _{III} Mankada	10 10	2834 5167	277 404	2919 5411	289 279	2425 4537	432 2641 - 56 4631	297 415 2 200 412 8
Malappuram District Mean	25	3813			477*		245 3504	288 247.4 -
TRIVINDRUM I Nomom Perinkatav V ₁ -Jaya II Kilimanur V ₂ -Gabari Nodumangad	9 ila 10	2158 2691	545 [*] 568 [*]	2477 2909			574 [*] 2526 546 [*] 2873	399 [*] 264.6 484 [*] 195.2
III Chirayinki Trivandrum	(rura		256	3865	356*		259 [*] 3577	58 257.1
District Mean	27	2806 	458 [*]	3048 	531*	2633	470 [*] 2966	329* 135.5

-:45:-TABLE- 25 Response of Phesphorus in 'B' type experiment Rabi 1975-76 (Grain Yield kg/ha)

				V 1				V ₂			
District Zond		lo.of rials 4		Res- ponse over- 40-0-0 on - 40-40-		Res- ponse over 80-0-0 on 80-40-)	Res- ponse over- 40-0- on 40-40	80 - 0-0 0 -	Res- ponse over- 80-0-0 on - 80-40-0	C.D
MALAPPURAM I V ₁ - Jaya	Kondotti Manchcri	11	3852	368	3881	363	3772	619*	4080	614*	460.6
V ₂ - Jyothi II	Andathodo Tanur	10	3180	- 52	3063	114	2826	- 16	2867	143	196.4
III	Mankada Malapp ur am	9	4354	415	4522	471	4333	28	4416	471	530.5
Dia	trict Mean	30	3778	*	3801	312*	3625	230	3776	415*	238.6
T R IVANDRUM I V ₁ - Jaya	Nemom Porinkatav	10 ila	2518	332*	2612	387 [*]	2363	340 [*]	2578	333 [*]	280.7
V ₂ - Bharathi ^{II}	Kilimanur Nedumangad	8	2894	348*	3073	256	2637	218	2785	308	311.3
III	Chirayinki Orivendrum	l 10 (rura	2402 l)	280*	2610	344*	1974	341*	2139	366*	231-3
Dist	rict Mcan	28	2584 	318 [*]	2743	334 [*]	2302	305 [*]	2481	337*	155.7

<u> TABLE - 26</u> <u>Response o</u> (Grain Yiel	f Potaah Ld kg/ha)	in 'B'	ύγρα επρ.	oriment I	<u>Charif</u> a	nd Rab	<u>)i 197</u>	5-76		
District Zone Block	No.of trials 8		V ₁ Rcs- ponse over 80- 80-40-0 on 80-40-40	pons 40-0°o⊽c 80-4 on	0 - 0	80-40	80-4(- 2 r 80 2-0 -(D
MALAPPURAM I Kondotti								- <u>B</u> -	80-40-4 -1	-
MALAFFURAM I Kondotti Kharif Manch cri	5 + 11	4200			395.3	4244	329	4694	-165	46016
$V_1 = J_{eye}$ II Andathod	c 10+ 10	3208	300* 293	8 273*	415.2				278*	
V'- Jyothi III Mankeda <u>Rábi</u> V ₁ - Jaya Malappur	10+ 9	5690	191 483	1 -56	412.8				-	530.5
V2- Jyothi District Mean		4399	266* 379;		247•4*	4113			-	238.6
TRIVANDRUM I Nomom <u>Kherrif</u> Porinkata	9+10 vila	3090	498 2925	5 355 [*]	264.6	2999	385	2911		
V - Jaya II Kilimanun V - Seberri Nodumente	· 10+8	3506	232 3357	7 170	195.2	3329	179	3093		11.3
<u>Rabi</u> III Chirayink V ₁ - Jaya Trivendru V ₁ - Bhomethi	n(rural	4221	200 3635	-	257.1	2954	167	2505	186 2	31.3
Diatrict Mean	27+28	3579	312* 3295	257*	135.5	3077	248*	2818	241 1	55.7

-:46:-

Response of Rice to Mitrogen, Phosphorus and Potash as influenced by TABLE - 27 fortility classes Kharif 1975-76 (Grain Yield kg/ha)'C' type experiments. Variety - Jaya. Forti- No.of Non- Mitrogen Phosphorus District Potash response 180-180-90 C.D lity trial manu- response response over over 120-120-0 on over classes 10 120-0-60 cn On 120-120-50 control120-0-0 60- 120 180 30 60 90 OVCI 0-0-0 MAL APPUR AM LΤ 774* -364 -60 -36 _376 5 3240 494 122 58 619.6 845* MT, 10 2670 -73 151 22 45 80 -50 -104 260.3 1041* MM 3 3299 365 215 322 90 206 506* -113 435.6 1357^{*}2132^{*} 2314^{*} 126 237^{*} 403^{*} TRIVANDRUM LL 2555 6 68 479* 139.7 1422^{*}2168^{*} 2210^{*} LM 6 3054 57 42 66 214* 385* 79.1 796^{*}1487^{*} 1511^{*} 193 324 504^{*} 316* 5 3146 MIM 414* 210.0

-:47:-

TABLE- 28 Response of Rice to Mitrogen, Pheaphorus and Potach as influenced by									Salara .			
fortility classes Rabi 1975-76 (Grain Yield kg/								kg/h	a)'C'	type	oxporim	ente.
	Varicty - Jaya.											
District Rorti- lity classe		trial		response on	2 CAD	Phosphorus Potash response 180-180- response over ever 120-120-0 over 120-0-60 en on 120-120-						
			0.0.0.0.0	over 0-0-0	60	120	180	30	60	90		
24.5 25.5 26.5 26.5 26.5 26.5 26.5 26.5 26	janaj panja 3000 juga	00-4 januar 1			 *	*	*					
MALAPPUR	AM IL	9	2946		721*	630*			202	281	161	424.5
	LM	9	4244	781*	290	287	412*	72	2	-6	192	312.0
DEINTIDE	UM LM	6	2456			1847*						304.6
	LH	6	2608	97	1083	1139*	1232*	268	20	398*	61	335.0
	MIM	6	2366			1633*						304.7

-:48:-