## GENETIC STUDIES IN RED GRAM (Cajanus cajan L.)

By<br>V. V. RADHAKRISHNAN

## THESIS

# Submitted in partial fulfilment of the requirement for the degree of  <br> Faculty of Agriculture Kerala Agricultural University 

Department of Agricultural Botany COLLEGE OF HORTICULTURE Vellanikkara, Trichur 1988

## DECLARATION

I hereby declare that this thesis entitled "Genetic studies in Red gram (Cajanus cajan L.)" is a bonafide record of research work done by me during the course of research and that the thesis hes not previously formed the basis for the award to me of any degree, diplema, associateship, fellowship or any other aimilar title, of any other University or Society.

Vellanikkara, 8--8-1988.

## CERTIFICATE

## Certified that this thesis entitled

"Genetic studies in Red gram (Cajanua cajun L.)" is a record of research work done independently by Sri.V.V.RADHAKRISHMAR, under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to him.

Vellanikkara, 8--8-1988.

K.M.Marayanan Mamboodiri

Chairman, Advisory Committee
Professor and Head
Department of Agricultural Botany
College of Horticulture
Vellanikkara - Trichur.

## CERTIFICAFE

We, the undersigned, members of the Advisory Committee of Sri.V.V.RADHAKRISHNAN, candidate for the degree of Doctor of Philosophy in Agriculture with majox In Agricultural Botany, agree that the thesis entitled "Genetic studies in Red gram (Cajanus cajan L.)" may be submitted by Sri.V.V.RADHAKRISHNAN in partial fulfilment of the requiremente for the degree.

Chairman

Member:


Dr.K.M.Marayanan Mamboodiri


Sri.K.K.Vidtadharan
11
Dr.K.Karunakaran

Sri.V.K.G.Unnithan

## ACKOTOWLEDGEMENT


#### Abstract

I wish to place on record my deep sense of gratitude and indebtedness to my guide and Chairman of Advisory Committee, Dr.K.M.Narayanan Namboodiri, Professor and Head, Department of Agricultural Botany, for his valuable guidence, constructive criticism and sustained interest during the course of the investigation.


It is my pleasant privilege to acknowledge my heartfelt gratitude to Sri.V.K.G.Unnithan, Associate Professor and Head, Department of Agricultural Statistics and member of my Advisory Comittee for his advice and help rendered in the statistical analysis of the data and the subsequant interpretation.

Dr.C.Sreedharan, Associate Dean 1/C., College of Horticulture and member of my Advisory Comittee rendered valuable suggestions and help. His valuable help is gratefully acknowledged.

As a meaber of my Advisory Comalttee Sri.K.K.Vidyadharan, Professor \& Head of the Department of Processing Technology ahowed keen interest in my research work. I andebted to him for his help.


#### Abstract

I express my sincere gratitude to Dr.K. Karunakaran, Professor, Regional Agrl. Research Station, Pattambl for his critical suggestions and valuable help during the course of investigation.

The Regional Centre of National Bureau of Plant Genetic Resources, Vellanikkara and School of Genetics, Tamil Nadu Agricultural University, Coimbatore have provided the materials for this study. I am indebted to them for their help.


I wish to express my deep appreciation to the members of the ataff of the Department of Agricultural Botany and dear fellow students for their whole hearted co-operation and assistance in the conduct of the experiment

I profusely thank the Kerala Agricultural University for awarding me the University fellowship.

Worde fail to express my gratitude and indebtedness to my wife who had pained a lot for making this endeavour a success. I affectionately dedicate this piece of work to her.

## COMTEATS

Page
IMIRRODUCTIOM ..... 1
REVIEW OF LITERATURE ..... 7
MATERIALS AND METHODS ..... 49
Results ..... 72
DISCUSSIOM
-• ..... 141
sumpary ..... 165
RETERENCES
APPENDICES
ABstract

## LIST OF TABLES

Page
Particulars of the one hundred and twelve genotypes of red gram used in the atudy. ..... 50
Particulars of genotypes selected for the second ..... 61 experiment.
Extremes in means of genotypes and the overall ..... 73 means for the different charecters.
Abatract of analysis of veriances for aifferent ..... 74 characters.75Phenotypic, genotypic and envirommental variances
(PV, GV and EV) and heritability ( $\mathrm{H}^{2}$ ) for thedifferent characters.
Details of red gram genotypes constituting ..... 84 different clusters.
Extremes in means of genotypes in cluster I and ..... 86 overall mean for different characters.
Extremes in means of genotypes in cluster II and ..... 87overall mean for different cheracters.
Extremes in means of genotypes in cluster III and ..... 88 overall mean for different characters.
Means of different characters of cluster IV and $V$. ..... 89
Average intre and intracluster $D^{2}$ values. ..... 97
Average intra and intracluster distancesf/ $\boldsymbol{D}^{2}$ values) ..... 98
Abstract of analysis of varience for different ..... 100 characters.Extrames, mean, range as percentage of mean and101standard error of mean for the different characterain red gram.
Ranking of the genotypes for haight of plant at ..... 102 harvest (cm).
Ranking of the genotypes for number of primary ..... 103 branches at harvest.

| 17 | Ranking of genotypes for number of secondary branches at harvest. | 104 |
| :---: | :---: | :---: |
| 18 | Ranking of genotypes for number of clusters per plant. | 105 |
| 19 | Ranking of genotypes for number of pods per plant. | 106 |
| 20 | Ranking of genotypes for length of pod bearing branches (cm). | 107 |
| 21 | Ranking of genotypes for number of days from sowing to $50 \%$ flowering. | 108 |
| 22 | Rarking of genotypes for number of days from sowing to harvest. | 109 |
| 23 | Ranking of genotypes for number of seeds per pod. | 110 |
| 24 | Ranking of genotypes for hundred seed weight (g). | 111 |
| 25 | Ranking of genotypes for seed yield (g). | 112 |
| 26 | Phenotypic, genotypic and environmental variances (PV, GV and EV) and phenotypic and genotypic coefficient of variation (PCV and GCV) for the different characters in red gram. | 113 |
| 27 | Heritability ( $H^{2}$ ), Genetic Advance (GA) and Genetic Gain (GG) for the different characters in red gram. | 114 |
| 28 | Estimates of genotypic veriances and covariances for different characters in red gram. | 124 |
| 29 | Estimates of phenotypic variances and covariances for different characters in red gram. | 125 |
| 30 | Heritability and coheritability among seed yield and its ten components in red gfam. | 126 |
| 31 | Genotypic correlations among different characters in red gram. | 127 |
| 32 | Phenotypic correlations among different characters in red gram. | 28 |

33 Direct and indirect genotypic effects of tencontributing characters on seed yield in132red grem.
34 Discriminant function for the different ..... 135 combinations.
35 Genetic advance (GA) through selection index. ..... 136 efficiency over direct selection and scope for further inclusion of characters.
36 Estimates of the selection index using characters ..... 138seed yield, number of pods per plant, and 100seed weight.
37 Estimates of the selection index using characters ..... 140 seed yield, number of seeds per pod, number of poda per plant, 100 seed weight, nuruber of clusters per plant, height of the plant and number of primary branches at harvest.

## LIST OF FIGURES

## 1 Cluster diagram of one hundred and twelve genotypes in red gram.

2 Range expressed as percentage of mean of eleven charactere in red gram.

3 Phenotypic and genotypic coefficient of variation of eleven characters in red gram.

4 Heritability and genetic gain of the eleven characters in red gram.

5 Genotypic correlations among different charecters in red gram.

6 Path diagram indicating direct and indirect effects of the component characters on yield.

## LIST OF PLates

1 A genotype of red gram representing cluster 1 .

2

3

4

5

6 Cluster of pods representing different groups.
7 Variation in size and colour of seeds of genotypes of red gram included in the study.

## LIST OP APPENDICES

## 1 <br> 2 <br> Mean valuea for the different charactera in the 112 genotypes of red gran. <br> $D^{2}$ values for the 112 genotypes of red gram.

## INTRODUCTION

Pulses are important as a major source of protein in the vegetarian diet of the people and also as fodder to cattle. They also restore fertility of the soil through fixetion of nitrogen by root nodules. Realising the menifold importance of pulses, great attention is now being focussed to increase their production in the country through various means.

Red gram is the second most important pulse crop in India which accounts for more than 90 per cent of the totel world production. Eventhough red gram constitutes the mejor portion of the pulses consumed by Keralites, the production in Kerala is only 1000 M.T. from an area of 2000 ha with an average yield of $500 \mathrm{~kg} / \mathrm{ha}$ as compared to national production of 2.4 million tonnes from 3 million ha with an average yield of $800 \mathrm{~kg} / \mathrm{ha}$. Kerela has the lowest average yield of red gram among the Indian States.

Red gram, a prominant member of the genus Cajanus owing to appreciable amount of hardiness and the capacity to withstand prolonged drought, does well in a wide range of soll types seen in area like palghat, Malappuram and

Trichur Districts of Kerala. In rice growing areas where irrigation is not available, grain legumes auch as cowpea and black gram are grown in rice fallows on residual moisture. Pigeon pea could be another elternative in such situations because it has higher yield potential than many other pulses. In coconut gardens, it can be grown as an intercrop and is also recommended for sowing on the bunds of rice fields.

Active extension or popularisation programe of any crop presupposes adequate information on the varieties to be recomended and on the agronomic prectices to be adopted under differsnt agroclimatic conditions. In red gram. these informations are lacking beccuse of the fact that very little breeding or agronomic research has been carried out, particularly in Kerala.

Cajanus cajan (L) Mill sp. is predominantly self pollinated, with natural cross pollination ranging from 6 to 7 per cent, which is one of the reascns for genetic variability. Further, somatic variation also augments variability. Within the species there is considerable veriability for plant and flowering habit and various yield attributes. Recombination between diverse flowering groups and yield attributes, togetner with reduction of excessive
vegetative growth and duration could be rewarding. As preiminary step in this direction, it is
desirable to investigate the nature and degree of divergence in a population of different groups since information from such a study is useful for an understanding of the course of evolution of that group and also for classifying the population into sub units on the basis of this diversity. Such studies utilizing multiveriate analysis have been successfully completed in several crops. Besides its use in taxonomic problems, such a study helps in choosing parents in the hybriaisation programme for achieving specific breeding objectives. It is well established that exploitation of hybrid vigour and success in getting desirable segregents in eny breeding progremme depends to a large measure, on the degree of genetic divergence between the parents chosen. Informations on the source of voriability for various factors contributing to yield, and the degree of diversity among the genotypes are inadequate in red gram and hence it is necessery to evcluate the available germplasm in this regard.

Primary aim of a plant breeder is to improve yield and guality by evolving superior genotypes. Selection of superior genotypes will be effective only when genetic
variability exists in the material chosen for improvement. The observed variability for a character is the product of interaction of hereditary effects of the concerned genes and the influence of micro and macro environments.

In any crop improvement programe, search for variability available in the germplasm is the preliminary step. Selection of genotypes showing high heritability for the desirable characters that contribute to yield is a prerequisite in the development of new varieties with increased yield potentiality. However, yield by itself is a Very complex character conditioned by numerous genetical factors interacting with environment. It, therefore, becomes difficult to evaluate or select for this character directly. Such situation dictates the breeder to employ more indirect methods such as determination of the association existing between yield and other less variable plant characters which would serve as aimple guides for spoting out high yielders. The existence of association is usually determined by studying the correlations existing between the different characters and yield. Further, it will be more helpful in the selection to have ar understanding on the association between yield and its components and the relative influence of each component on yield.

The association analysis based on correlation coefficients of components with yield, however, will not prove a true picture of the relative merits or demerits of each of the components to final yield, since an individual component may either have a direct influence in the improvement of yield or both. Hence an assessment of the merit of each character by analysing the direct and indirect effects of the same towards final yield is of immense value in selecting the character for crop improvement.

For selecting suitable genotypes from a highly heterogenous mass population, the selection should always be based on the minimum number of characters. An estimation of discriminant function based on such most reliable and effective characters, is a valuable tool for the practical plant breeder. Selection of genotypes based on a suitable index is highly efficient in any breeding programme. Moreover discriminant function would ensure a maximum concentration of the desired genes in the plants or in the ines selected.

With this view in mind, the present investigations were undertaken with the following objectives:

1. To estimate the variability in the important economic characters among the genotypes of red gram.
2. To estimate the genetic divergence among the genotypes and to group them into clusters according to the magnitudes of genetic distances using Mahalonobis $D^{2}$ statistic.
3. To study the genetic variability in the expression of economic characters in the selected genotypes of red gfam.
4. To estimate the heritability, genetic advance and genetic gain for the different characters.
5. To estimate the genotypic and phenotypic correlation coefficients for selected characters between themselves and between yield.
6. To partition the correlation coefficient into direct and indirect effects through the path coefficient analysis in order to get some idea of the casual system of the factors contributing to yield.
7. To evolve a selection index for isolating superior genotypes in red gram

Revien of Literature

## REVIEW OF LITERATURE

A review of literature on the subject is attempted In this chapter. Details of information avalleble have been pooled and a brief review mede covering genetic diversity, genetic veriability, correlation of variables, heritability, coheritability and genetic advence, peth coefficient anelysis and discriminent function. In order to profect the overall picture and magnitude of the problem, relevant informations relating to not only red gram but also other allied crops have been included in the review.

## Genetic diversity

The importance of genetic diversity in selection Of parents for hybridization has been stressed by many workers. Singh and Gupta (1968) working 1in upland cotton stated thet the progenies derived from a set of diverse crosses exhibited a broad spectrum of variability. They emehesised the importence of genetic diversity of parents in hybrid breeding programe. According to them, the more diverse the parents were, witinin a reasonable range, the more would be the chance of lmproving the character in question.

Multivariate analysis by means of Mahalanobis' $D^{2}$ statistic has been found to be powerful tool in the hands of plant breeders for quantifying the degree of divergence between biological populations, to understend the trend on evolutionary pattern, to assess the relative contribution of different characters towards total divergence and the associetions between genetic divergence and geographic divergence.

Generally ecogeographic diversity has been considered as an index of genetic variability in crop plants. However, this may not be true for every case, as many workers have postulated that geographic diversity need not nacessarily be related to genetic diversity. Varieties from widely separated localities are usually included in hybridization programes presuming genetic diversity and greater likelihood of yielding better segregents. The validity of the above presumption depends upon the association between geographic diversity and genetic diversity (Singh and Bain, 1968). Results of Singh and Srivastave (1976) in castor were quite in agrement with the bove. Many vorkers, however, have pointed out that genetic diversity need not necessarily be related to geogrephic diversity (Murthy and Cadri, 1965: Arunachalam and Jawahar Ram, 1967; Singh and Bain, 1968; Gupta and

Singh, 1970). The workers observed that many varieties forming one group were geographically diverse, while varieties obtained from the same region were genetically diverse.

Genetic diversity in red gram


#### Abstract

Asawa (1979) studying the genetic diversity in selected population of pigeon pea (Cajanus cajan (L) Millsp.) reported that calculation of genetic distance in pigeon pea showed wide divergence which was not reflected in the geographical origin of the varieties. Height accounted for 73.6 per cent and the number of seeds per pod for 24.2 per cent of the divergence.


Bainiwal and Jatasra (1980) studied 29 genotypes of pigeon pea in two environments and showed that environmental conditions exerted considerable impact on the clustering pattern. Plant height followed by pod length and days to flower contributed the maximum to genetic divergence. They emphasized the need to conduct the genetic divergence studies over a range of environment. Hybridization between genetically distant types from diverse groups was recomended.

Dumbre and Deshmukh (1984a) conducted the cluster analysis studies in 54 genotypes of Cajanus cajan representing
different parts of India. They reported thet there was substantial genetic divergence. The clustering pattern of the varieties was not related to their geographic distribution. $D^{2}$ values ranged from 3.65 to 1211.5 . Maximum intercluster distence was 39.24 and minimum 5.76.

Malik et al. (1985) studied the genetic diversity in 36 early plgeon pea genctypes end grouped them into clusters. They reported that clustering was not releted to geographicel origin of the cultivars.

Hazarika and Singh (1986) while studying genetic divergence in some pigeon pea varieties and their hybrids for seed yield and 10 related characters, reported that divergence between parents was positively correlated with heterosis in the hybrids for seed yield. All the 44 genotypes studied were grouped into 11 clusters.

Genetic diversity in other pulses

Jain et al. (1982) grouped 32 divergent types of chick pea (Bengel gram) into eight clusters based on $D^{2}$ values of ten yield comfonent cherecters. They reported that the pattern of clustering was highly influenced by enviroment. Srivastev and Gupta (1982) while studying
genetic divergence in 49 chick pea varieties observed that number of pods contributed most to distinguishing groups. They grouped the varieties into nine clusters using Mahalanobis $D^{2}$ statistic. Adhikari and Panday (1983) studied genetic divergence in 36 chick pes varieties on seed yield and 16 yield related characters. All the genotypes were grouped into nine clusters. Dumbre and Deshmukh (196i4 b) on the besis of Mahalanobis $D^{2}$ values obtained from analyais of date on seed yield per plent and seven yield related traits, grouped the seventeen varieties of chick pea into nine clusters. There were considerable differences between cluster meens for seed size, yield per plant, pods per plant and growth perlod, indicating that these traits were involved in divergence. Genetic diversity and geogrophic diversity were unralated. Srivastav et al. (1984) grouped 16 advanced chick pea genotypes into eight clusters based on yield and four yield related tratis.

Das and Gupta (19:4) using multivariote analysis
in 23 black gram genctires reported that no relationship was found between genetic divergence and geographical origin. All the 23 genctises were growed into nine clusters and observed that thousand grain waight made the greatest
contribution to total divergence. Das Gupta and Das (1985) based on multivariate malysis on 40 strains of Vigna mungo grouped them into 17 different clusters regardless of their geographic origin.

Kumar et al. (1982) studied grain yield and nine quantitative characters on 50 genotypes of cow pea using $D^{2}$ statistic and grouped them into seven clusters. They observed that days to 50 per cent maturity, pod length, pod width and hundred grain weight contributed most to genetic divergence. Chikkadyavaioh (1985) studied genetic divergence on 324 genotypes of cow pea and reported that 23 stable genotypes formed one cluster. Jindal (1985) studied genetic divergence in 52 cow pea varieties for 10 characters and grouped them into eight clusters based on Mahalanobis $D^{2}$ velues. The clustering did not reflect the geogrephical origins of the varieties.

Shanmugam and Rangaswamy (1982) studied the genetic diversity for yield and eight yield-related characters in 45 green gram genotypes and grouped them into 16 clusters. The grouping of genotypes into clusters was not related to geographical origin.

Ganeshaiah at al. (1984) conducted multivariate analysia for 18 characters of 100 varieties of horse gram and reported
that plant maturity had contributed most to the divergence. No clear cut association between genetic diversity and geographic diversity was seen.

Chandel and Joshi (1981) studied eight yield component characters on 30 types of yellow seeded pea and grouped the varieties into 10 clusters. Types from different geographical regions fell into same cluster, indicating their close genetic similarity and possibly a common evolutionary trend.

Genetic variability

Bruton (1952) introduced a convenient procedure for the calculation of the phenotypic and genotypic coefficient of variations. Johnson et al. (1955) introduced a methodology for partitioning the total variance into that due to genotype, phenotype and error in the analysis of variance.

Genetic variability in red gram

Rathnaswamy et al. (1973) has reported on genetic variability of certain quantitative characters in red gram (Cajanus cajan). The characters $v i z .$, clusters per plant, seeds per plant, pods per plant, weight of pods, branches
per plant. plant height and days to flowering were found to have high genotypic coefficient of veriation.

Rem et al. (1976 b) reported highest genotypic coefficient of variability for clusters per plant and lowest for pods per cluster in red gram. Singh end Shrivestava (1977) observed high genotypic coefficient of variation for number of secondary branches per plant in pigeon pea.

Awatade at al. (1980 a) while estimating the genetic parameters in edvanced generations of pigeon pea, found higher phenotypic coefficient of verietion end a lower genotypic coefficient of veriation for the characters like number of clusters per plent, yiald per plant, number of pods per plant, height of the plant and hundred aeed weight.

Asawa et al. (19e1) reported in pigeon rea that seed and pod number together accounted for 47.73 per cent of the variability in yield.

Bainiwal et al. (1981) observed maximum variability for number of secondary bxanches followed by primary branches and sed yiela in red gram (Cajenus cajan).

Dumbre and Deshmukh (1983) enclysed the genetic variability in 54 varieties of Cajanus cajan for seed yield
and eight related characters. Very high genetic variabilities were noticed for grain yield, number of primary branches and pods per plant.


#### Abstract

Shoran (1983) observed very high renge of phenotipic veriability for all characters except seeds per pod in red grem. Higher genotypic cuefficient of variation was seen for the characters like pods per plant, days to maturity, plent height and days to flowering in all environments.


Jag Shoron et al. (1985) reported high estimetes of genotypic coefficient of variation for the characters like pods per plant, height, and days to maturity in pigeon pea. Lowest estimetes of genotypic coefficient of variation were exhibited by length of pod and seeds per pod. Genetic variability in other pulses

Fatil and Fhadnis (1977) based on their studies in bengal gram recorded high genetic varistion for pods per plant, pod weight per plent and hundred seed weight.

Soundarapandien et al. (1975) observed high genotypic and phenotypic variances for number of pods per plant ond height of plent in black gram. Goud et al.(1977)
recorded highest genetic veriebility for seed yield and lowest for length of pod in black gram.

Lekshmi and Goud (1977) recorded high coefficient of genetic veriation for height of plant, seed yield, nunber of pods, length of pod and hundred seed weight in cowper. Vaid and Singh (1983) studied eight yield related characters in $60 \mathrm{~F}_{3}$ and $50 \mathrm{~F}_{4}$ populations of cowpea and reported that brench number, cluster number and yield per plant gave high vilues for phenotypic and genotypic coefficient of variation. Patil and Baviskar (1987) reported that in cowpea maximum range of variation was for grain yield per plant followed by pods per plant, clusters per plent and deys to maturity. The genotypic and phenotypic coefficients of variation were higher for clusters per plant, pods per plant, grain yield per plant and hundred grain weight.

Gupta and Singh (1969) while studying 36 varieties of green gram, recorded thet yield per plant hed high genetic variability, Malhotre and Singh (1974) reported that in green gram, numb $r$ of clusters, number of pods and seeds per rod were the most important yield components accounting for 96 , ex cent of veriability in yield.
singh (1985) reported that in pea, grain yield, plent height, pods ger plant and branches per plant ahowed a high degree of genetic variability and were highly amenable to selection as indicated by high genetic advance.

Correlation of variables

Gelton (1889) conceived the idda of correlation of variables for the first instance.

Correleted variables in red gram

Josin 1 (1973) in correlation studies with pigeon pea reported thet sead yield was positively and significantly correlated with the number of pods and number of branches. The pod length and numb $x$ of seeds per pod were positively correlated. The nurber of branches and number of pods per plent were the main yield components.

Singh and Malnotre (1973) recorded significant and positive association of yield with number of clusters per plant, pods per plant and secondary branches in pigeon pea.

Veeraswamy et al. (1973 b) reported that in pigeon pea the nurab $x$ of clusters and pods fer plant was found to be the most reliable and useful index because they had genctypic and phenotypic correlations with yield. The number of
branches per plant was also an important factor in selection, because of high positive genetic association with number of clusters and pods per plant. The number of branches, clusters and pods per plant were the chief characters which contributed to the yield of red gram.

Pankaja Reddy et al. (1975) reported in pigeon pea that pod number and seed size were the most important components contributing to yield. As the duration increased, pod number, yield and seed size also increased.

Tiwari et al. (1978) with their correlation studies in pigeon pea reported that seed yield and harvest index were each positively correlated with plant spread and with each other. Height of the first branch was negatively correlated with number of pods per plant, seed yield and harvest index. The number of pods was positively correlated with the number of secondary branches and with seed yield.

Dani (1979) studied yield components in 24 varieties of pigeon pea and reported that seed yield was correlated with number of inflorescence, number of pods and number of seeds per plant.

Ram et al. (1976 b) estimated the correlation coefficients among the economic characters between themselves
and towards yleld. They reported that the number of primary branches showed positive association with clusters per plant, pods per cluster, hervest index and grein yield both at genotypic as well as phenotypic levels.

Asawa et al.(1981) studied the character correlations in pigeon pea and observed that yield proved to be positively correlated with height, number of secondery branches per plant, pod number per plant, seed number per plant and number of days to meturity.

Singh et al. (1981) while stufying the yield components in $\mathrm{F}_{4}$ progenies of plgeon pea reported that seed yield per plant was positively correlated with pod number per plant, plent height, number of days to 50 per cent clowering, seed number per pod and number of days to meturity.

Yadavendre et al. (1901) xeported in pigeon pea that seed yield per plant wes positively correlated with number of pods per plarit.

Ekshinge et di. (1983) reported that in pigeon pee total dxy matt and pod number per plent were significently correlated with yield par plant.

Kumar and Reday (1983) while studying genetic association in pigeon pea reported that pod number was the most important yield component. In short group, number of primary branches, pod bearing length and seed weight were important yield components.

Wagh et al. (1983) with their correlation studies in 79 varieties of pigeon pea reported thet there were high significant vilues of correlations between grain yield per plent and plent height, number of effective pods per plant and hundred grain weight both at phenotypic and genotypic levels. Number of effective pods and thousand grain weight, however, showed negative phenotypic correlation.

Jagshoran (1985) obtained significant deairable asscciation between seed yield per plant and pods per plant and days to maturity which in turn - suggested that seed yield could be increased in red gram by selecting plants with many pods and reasonabl early maturity.

Correleted variables in other pulses

Kambal (1969) recorded strong and positive association of yield with number of pods per plent and negative association of seed weignt with number of pods per plant and number of seeds per pod in field beans. Joshi (1971)
obtained high positive correlation between yield and number of pods, number of seeds per pod and number of branches in Indian beans. He also observed a high genotypic correlation coefficient. Sharma et al. (1977) reported high genotypic correlation of yield with number of nodes bearing pods in french beans.

Gupta et al. (1972) with their correlation studies In bengal gram involving 46 varieties, recorded significant and positive phenotypic correlation of yield with deys to 50 per cent flowering, number of pods per plant and number of seeds per pod. Khen and Chaudhary (1975) reported positive correlations between yield and height of plant. number of primary, seccndary and textiary branches and number of pods per plent and negative correlation between yield and seeds per pod and seed size in bengal gram. Katiyar et al. (1977) recorded positive correlation of yield with height of plant, number of branches fer plant, number of zods per plant and days to maturity in chick pea. Naxasimhaiah et al. (1977) observed high positive correlation between yield and number of branches, number of pods and number of seeds per plant and seed weight, while days to flowering and meturity showed negetive correlation with yield in chick per. Oraon et al. (1977) observed positive
correlations of grain yield with number of pods per plant and number of seeds per pod in chick pea. They furtiner noticed that genotypic correlations were slightly higher than phenotypic correlations. Katiyar et ai. (1981) while studying seed yield end seven yield components in widely varied lines of chick pea found that genotypic correlations were in greater magnitude than phenotypic correlations. Adhikari and Panday (1982) reported that, in chick pea, seed yield wes positively correlated with primary branches per plant, secondery branches per plant and number of pods per plant. Islam et al. (1984) in a correlation atudy in chick pea reported that yield per plant was highly and positivaly correlated with pods per plant and number of secondery branches per plant.

Verme and Dubere (1970) observed positive association of yield with number f pods per plant in black grem. Further, they observed that pods per plant, length of pod and hundred seed weight contributed much towards yield. Goud et al. (1977) recorded positive correlation of ield with neight of plant, length of pods, seeds per pod and thousend seed weight in black gram. They heve also recorded highest genetic veriability for seed yield and lowest for
length of pod. Muthieh and Sivasubremanian (1981) reported that in black gram (Vigns mungo) pod number, pod yield. cluster numbs, hundred seed welght etc. showed positive genctypic and phenctypic correlations with seed yiold. Rani and Rao (1981) studied eight characters on 12 varieties of black gram and reported thet number of pods per plant, hundred seed welght and number of seeds yer pod showed high positive correlations ans high direct efects on yield. pod welght per plant and pod length were highly and positively corxeleted with yield but with high negative direct effects.

Singh and Mehndiretta (1969) found that grain yield was significently correlated with nurber of branches, number of pods, number of seeds fer pod and hundred grains weight in cowpea. Dumbre et al. (1982) in a study of the genotypic characters among 24 cultivars of Vigna sinensis observed that height and pods per plant were significantly correlated with yield. Jindal and Gupta (1984) in a component analysis of yield in cowpea observed that plant height, inflorescence fer plant, pods per plant, pod length and saeds per pod were significantly and positively associated with seed yield. Chikkadyaveiah(1985) reported that in cowpea, seed yiela was positively correlated with number of
branches per plant, fruiting bunches per plant, pods per plent, seeds ier pod and hundred seed weight. patil and Bhepkar (1987) reported in cowpea that grain yield was positively and significantly correlated with pods per plent and grains per pod.

Singh and Malhotra (1970) while studying 75 strains of mung bean, recorded significant essociation of yield with number of branches, number of pods, length of pod, number of seeds per pol and seed size. They also observed that genotypic correlations were higher than phenotypic and environmentil correlations. Tomas et al. (1973) while studying four yield comenents in 22 genetic stocks of mung bean, recorded positive correlation, of yleld with numb $x$ of pods pex plant, length of pod, hundred seed weight and number of seeds fer pod. Choudhary end singh (1974) recorded strong associction of yield with days to flower, height of plant, number of pods per plent and number of seeds per pod in mung beans. Malhotra and Singh (1974) studied the yield components in 60 strains of green gram and reported strong correlation of yield with number of branches, number of pods, number of clusters, number of seeds per pod and days to flowering. These characters were significantly associated together. They have also reported that number of clusters, number of pods and seeds per pod were the most

Important yield components accounting for 96 per cent of variability in yield. Shamsuzzaman et el. (1983) reported in mung bean thet pods per plant, primery branches per plant and seeds jer pod were positively correlated with yield per plont. Khen (1985) studied the yield components in mung bean and reported that number of fertile branches and number of pods had high heritebility and were positively corxelated with yield.

Agarwal and Kang (1976) observed significant correlations between yield and pods per plant, huncred grain weight, length of pod, height of plant and number of brenches in horse gram. Shivashankar et al. (1977) while studying hunced varieties of horse gram, observed positive correletions of yield with height of plant, number of pods per plant, number of seeds per pod and number of pods per plant. Petil and Deahmukh (1983) reported that seed yield was positively correlated with number of pods per plant. number of secondary branches and nundred seed weight in horse gram.

Singh and Singh (1969) reported a close resemblence between phenotypic and genotypic correlations, although genotypic correlations were slightly higher then phenotypic correlations in field pea. They also recorded that grain

Yield was significently associeted with number of pods per plant and hundred seed weight. Sangha et al. (1971) observed thet weight of green pods per plant and number of pods per plant contributed much to grain yield in pee. Narasinghani et al. (1978 b) while studying 65 diverse genotypes of pea. recorded that the seed yield per plant was positively associated with number of days to flower. maturity period, height of plant, number of branches, number of pods fer plant and number of seeds per pod. singh et al. (1985) reported in fea that days to 50 per cent flowering, days to maturity. plent height, pods per plant and primary bi anches per plent were positively associated with grain yield as well as with each other.

Kew and Menon (1972) studied yield components in 37 varieties of soyabeen and reported strong correlation of yield with number of pods, numb $x$ of seeds, height of plants, days to 50 per cent flowering and maturity. They have also reported that genotypic correlation coefficients were mostly higher than the phenotypic correlation coefficients.

Heritability, co-heritability and genetic advance
Genetic parameters like heritability, coheritability and genetic advence heve been often found to be of great
use for assessing the relative importance of the inherited and correlated variables. Hanson et al.(1956) proposed the mathematical relationship of various estimates on computation of heritability. Lush (1949) and Jolmson et al. (1955) devised a procedure for the calculation of genetic advance under specified intensity of selection. This attribute is generally expressed as the percentage and in the broad sense it refers to the proposition of variances due to genotype over the variance due to the phenotype.

Heritability, coheritability and genetic advance in red gram

Hiremath and Talawar (1971) in a study on genetic variability in pigeon pea observed high heritability with low genetic gain in respect of primary branches, pods per plant, length of pod and weight of thousand seed, where as high heritability with high genetic gain was observed in case of plant height, pods per plant and yield per plant.

Rathnaswamy et al. (1973) reported in pigeon pea that plant height, branches per plant, clusters per plant, pods per plant, days to flowering had high heritability and similar genetic gain.

Ram at al. (1976 a) observed highest value of heritability for clusters per plant followed by grain yield per plant, primary branches and pods per cluster. The clusters per plent showed the highest amount of genetic advance.

Singh and Shrivestava (1978) reported in pigeon pea that heritability estimates wexe highest for days to flowering. followed by deys to meturity, hervest index, seed yield per plant and height of the primary branch. Plant spread, number of secondary branches, haight and days to flowering combined higi heritebility estimates with high genetic advance.

Awatade et al. ( 1980 b ) observed highest heritability estimates for the cherccter height followed by hundred seed weight in pigeon pea. The number of ciusters per plent, yield per plant and number of pods per plant hed high heritability estimates and high genctic ajvance.

Bainiwal et al. (1981) reported high genctic acyance for seed yield, secondary brenches, plant height and primary branches in pigeon pea.

Singh and Srivistav (1981) reported the highest broed sense heritability in pigeon pea for hundred seed weignt.

Yadavendra et al. (1981) observed maximum heritability in pigeon pea for test weight ( 91.76 per cent) followed by nuribr of seeds per pod ( $90.41 \%$ ). The expected genetic advence expressed as percentage of the mean ranged from 13.86 for pod length to 32.62 for number of pods per plant.

Dumbre and Deshmukh (1983) reported in pigeon pea that broad sense heritability estimates were high for days to first flowering, maturity and hundred grain weight and higher hexitability with high genetic advance was observed for the characters like plant helght, pods per plant, days to maturity and days to first flowering.

Shoran (1983) reported high heritability estimates and moderate to high genetic advance for pods per plant, deys to meturity, plant height end days to flowering in all environments.

Suresh Kumer and Reddy (1983) Observed high heritability coupled with high genetic advance in pigeon pea for the characters seed weight, pod clusters ier plant, days to flower. days to maturity, plant height and pod number.

More et al. (1984) suggested the effectiveness of selection in pigeon pea for the character pods pex plant
which showed moderate heritability with highr genetic advance.

Heritability, coneritability and genetic advance in
other pulses

Cyone (1968) reported that heritability was very low for total seed yield in field beans.

Sandha and Chandra (1969) made heritability studies in bengal gram, end found high heritability values for primary and secondery branches. Gupta et al. (1972) observed high heritability values for number of seeds per pod and hundred seed weight in bengal gram. Joshi (1972) reported high heritability and genetic advance for number of pods per plant in bengal gram. Singh et al. (1973) observed high heritability for hundred seed weight and low hexitability for number of secondary branches in bengal gram. Narasimhaiah et al. (1977) recorded high genetic advence for yield of pods, number of pods per plant and yield of seed in chick pea. Dumbre et al. (1984) observed high heritability values of 80 per cent with relatively high genetic advance for the characters like seed per pod, seed yield per plant and hundred seed weight in chick pee. Khorgade et al. (1985) observed high heritability (90\%) for the characters seed Index ( 100 seed mass) seeds per pod and time to 50 per cent flowering in chick pea.

Soundrapandian et al. (2975) observed high heritability for length of pod and height of plant in black gram. Patil and Shah (1982) observed high heritability in conjunction with low genetic advance for seeds per pod, hundred seed weight and pod per clusters in black gram.

Lakshmi and Goud (1977) recorded high heritability for number of seeds, height of plant, length of pod and hundred seed weight in cow pea. Vaid and Singh (1983) while studying eight yield related characters in cow pea, observed high heritability and expected genetic advance values for branch number, cluster number and yield per plant. Dharmalingam and Kadambavanasundaram (1986) reported in cow pea that pod length, hundred seed weight and harvest index showed the highest heritability. Patil and Baviskar (1987) reported in cow pea that heritability estimates were highest for hundred grain weight followed by days to maturity and pod length. The expected genetic advance was also high for clusters per plant, pods per plant, hundred grain weight and grain yield per plant.

Gupta and Singh (1969) while studying 36 varieties of green gram, recorded that yield per plant had high genetic variability and medium heritability but low expected genetic
advance. Srivastav et al. (1977) observed high heritability for days to flowering. length of pod end width of pod in green gram. They have also observed high genetic advance for number of seeds jer pod. Veeraswany et al. (2973 a) observed high heritebility for deys to flower, height of plant, number of clusters and number of branches in green gram. They have also observed high genetic edvance for number of clusters, number of branches per plant, height of plent and number of pods. Length of pod and number of seeds per pod showed moderate to high heritability and low genetic advance.

Sreekantaradhye et al. (1975) while studying 48 varieties of horse gram, recognised high heritability and genetic advance for number of nodes, number of branchea, number of pods, height of plant and yield of seed. Agarwal and Kang (1976) observed high genetic advance for pods pex plent, hundred grain weight and grain yield per plent in horse gram. Shiveshankar et al. (1977) wnile studying hundred verieties of horse gram, recorded that primary branches, secondary branches, daya to 50 per cent flowering, numb $x$ of nodes per plant and hundrad anadimatahtmmeneminemiy heritable, while height of plent, number of seads per pod, number of pods per plant and yield showed low heritability. Patil and Deshmukh (1982) reported in horse gram that seed
yield, number of secondary and primary branchea and pods per plant showed high heritability and high expected genetic advance in two successive years. Ganeshaiah et 01. (1984) reported in horse gram that days to flowering showed the highest heritability (94.23\%).

Koranne and Singh (1974) reported high heritability for flowers per peduncle, pods per peduncle, pods per plant. length of pod and hundred seed weight, while very low heritability for yield in pea.

Path coefficient analysis

The path coefficient analysis devised by Wright (1921) is an effective means of examining the direct and indirect relationships permitting a criticel examinetion of the specific fectors that produce given correlation.

Dewey and Lu (1959) recommended the path coefficient analysis as potent method for resolving the accurate and dependable criterif in sel cticn procedures in breeding programes.

Path coefficient analysis in red gram
Singh and Malhotra (1973) while studying yield components in pigeon pea stated that number clusters per plant was the main yleld component in pigeon pea.

Pokle and Mohatkar (1975) reported that pod number per plant had higher direct effect in pigeon pea.

Veeraswany et al. (1975) while stưying path anelysis recorded thet the number of brenches showed maximum influence both directly and indirectiy on seed yield.

Wakankar and Yadav (1975) while measuring the direct and indirect effects of yield components in arhar, observed that pod number had the nighegt positive direct effect on seed yield, followed by number of secondery brenches and hundred seed weight. They he also concluded that selection for seed yield should be bssed on high number of pods. secondary branches and a high soed index and nonspreading habit.

Ram et al. (1976 a) while studying peth analysis reported in pigeon pea thet the primary branches, cluster per plant and pods per cluster contributed directly as well as indirectly to grain yield.

Awatade et al. (1980 a) reported in pigeon pea that when seed yield and seven yield components were investigated, only number of clusters per plant and 100 seed weight were found to affect yield directly.

Malik et al. (1981) while studying path coefficient analysis in pigeon pea observed that days to maturity, plent spread, clusters per plent and pods per plant proved to be the chief characters contributing to seed yield.

Singh and Shrivastave (1981) reported in red gram that the number of pods per plant had slight positive and direct effect on seed yield but hed a merked positive and indirect effect through 100 seed weight and the number of primary brenches. Pod bearing length also had a marked indirect effect through hundred seed weight and the number of pods per plant. The number of primary brenches had a strong positive and direct effect on yield but streng netstive and indirect effects through pod bearing length and hundred seed weight.

Kurnar et al. (1982) observed in path coefficient analysis studies in red gram that pod number, plant height and number of primary branches had large positive direct effects on yield per plant.

Shoran (1982) reported in arhar that pods per plant had the highest direct effect on seed yield followed by hundred seed weight, seeds per pod and deys to flowering.

Balyan and Sudhakar (1985) observed while eatimating the path coefficients in arher that days to maturity, number of pods per plant, number of seeds per pod and hundred seed weight were found to have high direct effects on yield.

Bainiwal and Jatase (1985) in a path coefficient anelysis of seed yield per plant and nine guentitative characters besed on data from 29 red gram genotypes. reveeled that seed yield was positively and significantly correlated with days to flowering, plant height and primary branch number per plents plent height having the strongest direct effect on yield.

Path coefficient analysis in other pulses

Phadris et al. (1970) studied 45 chick pea varieties and reported that the number of poda par plant, number of seeds per plant and hundred seed welght were the major factors determining yield. Katiyar et al. (1977) recorded that number of branches per plant had higher positive direct effect on grein yield followed by number of pods per plant In chick pea. The direct effect of height of plant and days to maturity on grain yield was high and negative. Jatasra et al. (1978) conducted path anslysis in chick pes
and recorded thet seeds per pod and hundred seed weight should be given due emphesis while selection for high yield. Katiyar et al. (1981) reported in chick pea that number of days to flowering had aigh negative airect effect on seed yield. Adhikari and Pandey (1982) studied 16 characters on 36 chick pea genotypes and reported that deys to complete flowering, pods per plant and hundred seed weight had important direct effect on yields. Singh et al. (1985) in a path coefficient anclysia in chick pea, recorded that seeds per pod hed the highest direct effect on yield, while most of the other characters affected yield directly via pods per plant.

Sounderapandian et al. (1976) studied path coefficient analyaia in black gram and reported that height of plant and number of clusters had direct and indirect effect on seed yield. Sandhu et al. (1980) while attempting path analysis in 268 strins of urd bean affirmed strongly that selection criterie should be based on early flowering less:r plant height, higher fruiting nodes and larger pods. Nuthiah and Sivesubrtmanian (1981) recorded in black gram, that pod yield and pod number were the most important traits determining seed yield per plant. Rani and Rao (1981) showed through path coefficient analysis in black gram that
selections should be based on large seeds, number of pods per plant and number of seeds per pod.

Singh and Mehndiratta (1970) showed that pods per plant. grains per pod and hundred grain weight directly contributed to grain yield in cow pea. Kumar et al. (1976) with their peth coefficient studies in cow pee, recorded that number of clusters per plent, number of pods per plant and hundred seed weight had high direct effect on pod yield. They have also suggested these characters as reliable selection indices in cow pea. Jana et al. (1983) while studying path analysis of pod yield components in cow pee indicated that pod number per plant had the highast direct effect on pod yield per plant. Kumar et al. (1983) reported in cow pea that selection for pods per pedunicle, pod length and width, peduncle length and days to 50 per cent maturity would increase seed yield. Jindal and Gupta (1984) observed in cow pea that bunches of pods per plant, seeds per pod and length were the major components contributing directly to seed yield. Padhye et al. (1984) reported in cow pea that pods per plant and seeds per pod showed the highest positive direct phenotypic and genctypic effects respectively on yield. Chikkadyavaiah (1985) reported in cow pea that plant spread, pods per plant and seeds per pod had direct effect on seed yield. Choulwar and Borikar (1985) while
studying path analysis in cow pea observed that number of seeds per pod and length of pod had greatest direct effects on seed yield per plant. Obiseran (1985) reported In cow pea that most important yield components were number of pods per plant, 100 seed weight and number of seeds per pod.

Singh and Malhotra (1970) who conducted path coefficient analysis with 75 strains of mung bean reported that pods per plant, seeds per pod and seed size were the yield components. Further, they reported that seed size had negative indirect effect on yield through seeds per pod and pods per plant and vice versa. Giriraj and Vifayakumar (1974) while applying path coefficient analysis in mung bean, observed that length of pod, days to flower and height of plant had positive direct effect on seed yield. Height of plant and days to flower had negative indirect effect through length of pod and hundred seed weight. They concluded that maximum weightage should be given to length of pod, days to flower and height of plant while formulating selection indices for seed yield in mung bean. Malhotra and Singh (1974) while examining yield components in green gram, reported that pods per plant had the highest direct and indirect effect on seed yield. Singh et al. (1977) with their path coefficient studies in green gram reported that
number of primary branches, number of cluster per plant, number of pods per cluster and number of pods per plant had significant association with grain yield. Number of seeds per pod showed lack of association with yield. Primary branches and number of clusters per plant exhibited indirect contribution to grain yield. The pods per cluster and pods per plant contributed direct and indirect effects on grain yield. They have also concluded that number of pods per cluster and number of pods per plant were to be considered as major yield components. Boomikumaran and Rathinam (1981) while studying eight yield characters among 49 lines of green gram observed that height, number of pods per cluster and number of clusters per plant had the most important effects on seed yield. Malik and Singh (1983) while studying multiple correlation and regression analysis on 81 green gram genotypes indicated that a combination of branch per plant, pods per plant and seeds per pod was better than any single one for effecting improvement on seed yield. Thandapani and Rao (1984) in a path coefficient analysis in green gram showed that clusters per plant had the greatest direct effect on yield, while pod length and seed weight were also directly associated with yield. Thulasidas (1984) in a multiple regression analysis in green gram observed that pods per plant, days to maturity, pod
length and hundred seed weight in that order were relatively important for their contributions to yield. Vidhyadhar et al. (1984) in an analysis of data on yield and ten yield related and other quantitative traits from 36 green gram genotypes revealed that number of pod clusters per plant and seeds per pod and hundred seed weight had direct effects on seed yield. Khan (1985) in a path coefficient analysis of yield components in mung bean indicated that number of pods had a high positive direct effect on yield while number of fertile branches had a negative direct effect.

Agarwal and Kang (1976) while applying path coefficient analysis in horse gram, observed that pods per plant contributed much for seed yield.

Singh and singh (1969) with their path coefficient stuaies in 40 field pea varieties, found that number of branches, number of pods per plant, number of seeds per pod and hundred seed weight were the important factors determining grain yield. Chandel and Joshi (1976) recorded that number of seeds per pod, number of pods per plant and hundred seed weight had positive direct effect on seed yield and the number of days to flower had a negative direct effect on yield in yellow grained peas. Kalloo and Dhankar (1977) concluded from path coefficient analysis of 64 varieties of
pea, that number of pod clusters, number of pods per plant and number of branches per plant were the major yield components. Narasinghani et al. (1978 a) while studying path analysis in pea indicated that hundred seed weight had positive direct effect on grain yield.

Gupta and Kataria (1971) besed on results from path analysis in soyabean, recorded that maximum weightage should be given to days to maturity and leaves per plant for the improvement of soyabean by selection. Lal and Haque (1971) studied 36 varieties of soyabean and reported thet hundred seed weight and number of pods hed high positive direct effect on seed yield. Further they observed that hundred seed weight had negative indirect effect on seed yiela via number of leaves, totcl leaf area, plant height, number of nodes and number of pods. Kaw and Menon (1972) while studying 37 varieties of soyebean, stated that the yield components were number of pods and days to maturity. Choudiary and Singh (1974) while measuring the direct and indirect effects of yield components in soyabeen, recorded that number of pods fer plant and seed size had inigh direct efrects towards yield. Veeramwany and Ratnaswamy (1975) reported number of pods per plant as the major yield contributing character in soyabean, followed by huncred seed weight and number of nodes. Patirana and Guzhov (1979)


#### Abstract

while studying 11 varieties of soyabean, observed that number of seeds per pod and single seed weight were the major yield components and concluded that selection for these two characters would be an effective method for increasing seed yield.


Discriminant function

Discriminant function technique was developed by Fisher (1936) and Smith (1936) wherein, it was shown that selection for yield could be made more efficient, if the basis of component traits that went to make up the crop yield and the relationship between those characters and yield were studied. This formed the basis for the formulation of selection index.

Discriminant function in red gram

Gunaseelan and Rao (1976) while studying the discriminant function in arhar recorded that the major components that exerted maximum influence on yield in pigeon pea was plant height and number of pods.

Malhotra and Sodhi (1977) conducted discriminant function techniques in pigeon pea and reported that number of branches, number of pods and number of clusters should be given due weightage for an effective selection.

Sharma and Asawa (1977) while studying path coefficient analysis and selection indices for segregating population of arhar, observed that most efficient selection criteria was pods per plant.

Shrivastava et al. (1977) estimated selection efficiency using discriminant function in pigeon pea. They reported that direct selection for yield in pigeon pea was superior to selection based on any component alone or in combination. Further they recorded that the efficiency of selection was highest when selection was based on combination of yield with number of primary branches and pod bearing length or with number of primary and secondary branches with pod bearing length and number of pods per plant or with pod bearing length and hundred seed weight.

Reddy et al. (1979) while studying the combining ability and selection index in $F_{2}$ generation of pigeon pea crosses observed that plant height was an important attribute and was effective as yield. Plant height, seed weight, length of pod bearing branch and number of pod bearing branches furnished criteria for selection.

Discriminant function in other pulses

Panagua and Pinchinat (1976) reported thst improved seed yield in french beans could be achieved by selection for a high number of pods per plant, seeds per pod and nodes per plant. Davis and Evans (1977) aftex studying 112 breeding lines of field beans, reported that officiency of selection would not be improved by including information of yield components. But they have concluded that 10 per cent improvement was predicted if informations on total number of nodes, number of inflorescences and hypocotyl diameter were included. Singh and Singh (1972) constructed selection indices in field beans by studying yield and yield related charecters in 48 genotypes. A meximum reletive efficiency of 28 per cent over straight selection for yield was achieved when all characters were teken into consideration. The date showed that number of pods per plant, number of seeds per pod length were the major yield components.

Mital and Thomas (1969) recorded that number of brenches and total numb $x$ of pods when taken together, would form the best index in bengel gram.

Banerjee et al. (1976) during their discriminant function studies with 16 varieties of black gram recorded that an index based on a combination of yield and days to


#### Abstract

flowering and number of pods were more efficient. Singh et al. (1976) studied 36 stritins of black gram and reported that use of discriminant function based on a single character was not superior to alrect selection for yield. The relative efficiency of selection was highest when discriminant function was based on number of primery brenches, number of clusters per plant, number of pods per cluster and grain yield per plant.


Tikka et al. (1977) reported in cow pee that selection based on single characters would not be more efficient, then direct selection for seed yield except in the case of number of pods per plant. They have also concluded that the most efficient selection index included height, pods per plant and 100 seed weight. Tikka and Asawa (1978) while studying selection indices in 17 verieties of cowped, recorded 100 seed welght as the stable selection component for increased yield. Nurthy (1982) constructed a selection index in cow pea consiating of tyaits - pod number of plant, pod length, seed number per pod, test weight end yield, and found thet this was more effective then selection for seed alone.

Singh and Mehndiratta (1970) studied yield components in 40 treins of cow pea and observed that
discriminant function on two yield components viz... grains per pod and hundred seed weight and three yield components viz., groins per pod, hundred seed weight and pods per plant, were superior in selection for yield.

Malhotre and Singh (1974) recorded that selection for yield in green grem based on number of clusters. number of pods and number of seeds per pod was 30 per cent superior. Singn et af. (1977) while studying 53 ines of mung bean, reported that an index based on number of primary branches per plant, number of clusters per plant, number of pods per plant and number of seeds rer pod would be most efficient for yield improvement. Malik et al. (1982) while studying saven tridts on 50 genotypes of green gram observed that sinultaneous selection for pods per plant, seeds per pod and seed weight was superior to selection for yield alone and also resulted in the greatest genetic advance. Misra (1985) while constructing selection indices in green gram observed that criterion for the choice of cheracters for inciusion in the indices was their direct effect on yield, assessed by path analysia. The most effective index comprised pods per plant, 1000 seed weight, seeds per pod, reproductive period, cluster per plant and yield per plant.


#### Abstract

Singh and Singh (1972) based on results from discriminant function studies in 40 varieties of field pea, recorded that selection based on combination of certain characters would be more effective than that based on a single character.

Wu (1966) while studying discriminant function in eleven characters of nine varieties of soyabean, concluded that height of plant was the best and number of branches, the worst character for descrimination on between any two varieties. Malhotra (1973) while attempting discriminant function technique in soyabean suggested that a function based on pods per plant, primary branches and seeds per pod was best for the selection of high yielding lines.


Materials and Methods

## MATERIALS AND METHODS

The studies reported herein, were undertekan in the Department of Agricultural Botany, College of Horticulture, Vellanikkara, during the period 1983-86. The experimental farm attached to the College is located at an altitude of 22.5 m above M.S.L. and is situated between $10^{\circ} 32^{\prime \prime} \mathrm{N}$ letitude end $76^{\circ} 10^{\prime \prime}$ E longitude Geographically it folls in the werm humid tropical climatic zone. The soil type of the experimental site is sandy loam. A. Materiala

One hundred and twelve genotypes of Red grem (Cajanus cajan L. Millap) exhibiting wide diversity in the expression of various economic cheracters constituted the material for this study. Of these 112 genotypes, 86 were obtained from the germplasm collection maintained at the Regional Centre of the National Bureau of plant Genetic Resources, Vellanikkara and 26 - from Tamil Nadu Agricultural University, Colmbatore. Farticulars of the genotypes included in the study are furnished in Table 1.

Table 1. Particulars of the one hundred and twelve genotypes of red gram used in the study


Table 1 (contd.)

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{19}$ | - | MPAS-120 | T.N.A.U.Coimbatore |
| $\mathrm{V}_{20}$ | NBPGR-10 | ICRISAT-8395 | ICRISAT |
| $\mathrm{V}_{21}$ | NBPGR-101 | PLA 215 | Delhi collection |
| $\mathrm{V}_{22}$ | - | ICPL-1 | T.N.A.U.Coimbatore |
| $\mathrm{V}_{23}$ | - | DPI-711 | ${ }^{\prime}$ |
| $\mathrm{V}_{24}$ | NBPGR-81 | ICRISAT-3795 | ICRISAT |
| $\mathrm{V}_{25}$ | NBPGR-74 | Kerala local | Collected from Kerala |
| $\mathrm{V}_{26}$ | - | ICPL-85 | T.N.A.U.Coimbatore |
| $\mathrm{V}_{27}$ | NBPGR-35 | Kerala local | Collected from Kerala |
| $\mathrm{V}_{28}$ | NBPGR-5 | ICRISAT-8345 | ICRISAT |
| $\mathrm{V}_{29}$ | NBPGR +86 | Karnataka local | Collected from Karnataka |
| $\mathrm{V}_{30}$ | " 59 | Kerala local | Collected from Kerala |
| $\mathrm{V}_{31}$ | - | H-76-19 | T.N.A.U.Coimbatore |
| $\mathrm{V}_{32}$ | NBPGR-60 | Kerala local | Collected from Kerala |
| $\mathrm{V}_{33}$ | - | CORG-1 | T.N.A.U.Coimbatore |
| $\mathrm{V}_{34}$ | NBPGR-28 | Kerala local | Collected from Kerala |
| $\mathrm{V}_{35}$ | * 128 | ICRISAT-8386 | ICRISAT |
| $\mathrm{V}_{36}$ | - | TAT-10 | T.N.A.U.Colmbatore |
| $\mathrm{V}_{37}$ | NBPGR-57 | Kerala local | Collected from Kerala |
| $V_{38}$ | - | H-77-216 | T.N.A.U.Coimbatore |
| $\mathrm{V}_{39}$ | NBPGR-106 | PLA-37 | Delni collection |
| $\mathrm{V}_{40}$ | NBPGR-69 | Kerala local | Collected from Kerala |

## T'able 1 (Contd.)

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $v_{41}$ | - P | Prabhat | T.N.A.U.Coimbatore |
| $V_{42}$ | NEPGR-15 | IC-15709 | Delhi collection |
| $v_{43}$ | NBPGR-102 | PLA-309 | Delhi collection |
| $v_{44}$ | - 83 | Karnataka Local | Collection from Kernataka |
| $V_{45}$ | - 61 | Kerala local | Collected from Kerala |
| $v_{46}$ | " 43 | - | ! |
| $V_{47}$ | " 119 | PLA 639 | Delhi collection |
| $V_{48}$ | - 16 | IC-15720 | " |
| $V_{49}$ | - 48 | Kerala local | Collected from Kerala |
| $V_{50}$ | - 23 | IC-33521 | Delhi collection |
| $v_{51}$ | n 52 | Kerala local | Collected from Kerala |
| $V_{52}$ | " 110 | PLA-465 | Delhi collection |
| $V_{53}$ | " 129 | Gurupura | " |
| $\mathrm{V}_{54}$ | " 42 | Kerala local | Collected from Kerala |
| $\mathrm{V}_{155}$ | " 124 | PLA-345-1 | Delhi collection |
| $V_{56}$ | - 27 | Kerala local | Collected from Kerala |
| $V_{57}$ | " 94 | Karnataka local | Collected from Karnataka |
| $\mathrm{V}_{58}$ | - | H-76-18 | T.N.A.U.Coimbatore |
| $V_{59}$ | NBPGR-40 | Kerala local | Collected from Kerala |
| $\mathbf{v}_{60}$ | 11 | ICRISAT-7385 | ICRISAT |

Table 1. (Contd.)

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{61}$ | NBPGR-54 | Kerala local | Kerala atate |
| ${ }^{6} 62$ | " 87 | Karnataka local | Karnataka state |
| $v_{63}$ | * 24 | ICRISAT-3795 | ICRISAT |
| $\mathrm{V}_{64}$ | - 76 | Kerala local | Kerala state |
| $v_{65}$ | - 39 | Kerela local | Kerala state |
| $v_{66}$ | - 123 | Kerala local | Karala state |
| $v_{67}$ | " 18 | IC-16193 | Delhi collection |
| $\mathrm{V}_{68}$ | - 8 | ICRISAT-8362 | ICRISAT |
| $V_{69}$ | - 107 | PLA-379 | Delni collection |
| $\mathrm{v}_{70}$ | - | H-76-46 | T.N.A.U.. Coimbatore |
| $\mathrm{V}_{71}$ | - | H-76-48 | " |
| $V_{72}$ | NEPGR-93 | Karnetaka locel | Karnataka state |
| $\mathrm{V}_{73}$ | " 58 | Kerala local | Kerala state |
| $V_{74}$ | - 84 | Karnataka local | Karnataka state |
| $\mathrm{V}_{75}$ | - | H-76-20 | T.N.A.U., Colmbatore |
| $V_{76}$ | - 21 | IC-16211 | Delhi collection |
| $\mathrm{V}_{77}$ | $\cdots 7$ | ICRISAT-Var | ICRISAT |
| $V_{78}$ | - 99 | PLA-191-1 | Delhi collection |
| $\mathrm{V}_{79}$ | $=$ | CORG-5 | T.N.A.U., Coimbatore |
| $\mathrm{V}_{80}$ | NBFGR-117 | PLA-6091 | Delhi collection |
| $\mathrm{v}_{81}$ | $\cdots 6$ | ICRISAT-8349 | ICRISAT |

## Table 1. (Contd.)

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{82}$ | NBPGR-46 | Kerala local | Collected from Keral a |
| $\mathrm{V}_{83}$ | - | H-77-169 | T.N.A.U., Colmbatore |
| $V_{84}$ | NBPGR-84 | Karnataka local | Karnataka State |
| $\mathrm{V}_{85}$ | - 75 | Kerala local | Kerala State |
| $V_{86}$ | " 103 | PLA-345 | Delhi collection |
| $\mathrm{V}_{87}$ | " 116 | PLA-606 | $\cdots$ |
| $V_{88}$ | " 25 | Kerala local | Kerala State |
| $\mathrm{V}_{89}$ | " 51 | Kerala local | Kerala State |
| $\mathrm{V}_{90}$ | 1 79 | $\cdots$ | * |
| $\mathrm{v}_{91}$ | " 30 | " | " |
| $\mathrm{V}_{92}$ | - | H-77-208 | T.N.A.U., Coimbatore |
| $\mathrm{V}_{93}$ | - | CORG-2 | " |
| $\mathrm{V}_{94}$ | NBPGR-105 | PLA-349 | Delhi collection |
| $\mathrm{V}_{95}$ | - | H-76-32 | T.N.A.U., Coimbatore |
| $\mathrm{V}_{96}$ | NBPGR-14 | IC-15708 | Delhi collection |
| $\mathrm{V}_{97}$ | - | VL-23 | T.N.A.U., Coimbatore |
| $\mathbf{V}_{98}$ | NBPGR-113 | PLA-529 | Delhi collection |
| $\mathrm{V}_{99}$ | 108 | PLA-439 | " |
| $\mathbf{V}_{100}$ | - | H-77-215 | T.N.A.U., Coimbatore |
| $\mathrm{V}_{101}$ | NBPGR-11 | EC-10046-1 | Delhi collection |
| $v_{102}$ | " 37 | Kerala local | Kerala State |


| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{103}$ | NBPGR-37 | Karnataka local | Karnataka State |
| $\mathrm{V}_{104}$ | " 29 | Kerala local | Kerala State |
| $\mathrm{V}_{105}$ | " 98 | PLA-194 | Deini collection |
| $V_{106}$ | ( 112 | PLA-591 | n |
| $\mathrm{V}_{107}$ | " 121 | PLA-654 | " |
| $\mathrm{V}_{108}$ | ' 104 | PLA-3451 | * |
| $\mathrm{V}_{109}$ | " 34 | Kerala local | Kerala State |
| $\mathrm{V}_{110}$ | - 56 | Kerala local | Kerala State |
| $\mathrm{v}_{111}$ | - | H-76-51 | T.N.A.U., Coimbatore |
| $\mathrm{V}_{112}$ | " | Co-2 | - |

## B. Methods

## Experiment Number 1

With a view to finding out the genetic diversity in Red gram, a field experiment was laid out in June 1983 incorporating the 112 genotypes menticned above. The experiment was laid out in $112 \times 2$ R.B.D., each of the genotypes constituting one treatment. The spacing adopted was 1 m between rows and 50 cm between plants in a row with 12 plants per genotype. Seeds were dibbled on raised beds in a row on 24.6 .1983 at the rate of 2 seeds per hole and subsequently it was thinned to one seeding per hole. The crop received timely management care as per the recommendation given in the Package of Practices of K.A.U.1981.

All the observations were confined to 10 plants per genotype leaving one plant on both the sides fer eliminating the border effects. Thus observations on the following eleven economic characters were recorded from $112 \times 10 \times 2=2240$ plants.

1. Height of plant at harvest ( $\mathrm{x}_{1}$ )

Helght of plants at harvest was measured from the ground level to the tip of plant and expressed in cm .
2. Number of primary branches at harvest ( $\mathrm{x}_{2}$ )

All the primary branches in each plant were counted and recorded at the time of harvest.
3. Number of secondary branches at harvest ( $x_{3}$ )

Total number of secondary branches of each plant at harvest was counted and recorded.
4. Number of clusters per plant ( $x_{4}$ )

All the productive clusters of pods in each plant were counted and recorded.
5. Number of pods per plant $\left(x_{5}\right)$

All the seed bearing pods in each plant were counted and recorded.
6. Length of pod bearing branches ( $x_{6}$ )

The length of individual productive branch (pod bearing branch) was measured in cm and the total length of all productive branches per plant was calculated. This was divided by the number of pod bearing branches in a plant and the mean value in on arrived at.
7. Number of days from sowing to $50 \%$ flowering $\left(x_{7}\right)$

The day on which $50 \%$ of the plants in each row Flowered was noted and the duration in days from the day of sowing to this day was worked out for each genotype.
8. Number of days from sowing to harvest $\left(x_{8}\right)$

The number of days taken by individual plants from sowing to harvest was noted, all the plants constituting in the sample in each plot being harvested on the same day. 9. Number of seeds per pod ( $x_{9}$ )

A random sample of 100 pods per plant was taken for estimation of this trait. In case of plants having less then 100 pods all the pods were taken. They were then shelled and the total number of seeds obtained was divided by the number of pods for arriving at the number of seeds per pod.
10. Hundred seed weight $\left(x_{10}\right)$

Weight of hundred seeds chosen at random from individual plants in treatment was found out and the same expressed ing.

## 11. Seed yield (y)

Seed yield obtained from each plant was estimated after normal drying and the same was expressed in $g$.

Statisticel andysis

The data in respect of eleven metric traits were collacted from all the 112 genotypes (traatments) at tha rate of 10 individual observations from the 10 plants in a genotype. The genotype/treatment maan was then arrived at and these means were utilized for further analysis.

The genetic distance among 112 red gram genotypes was celculated considering all the 11 quantitative charactere. The method suggeatad by Mahalanobis (192a) was used to estimate $D^{2}$ with $X_{1}, X_{2}, X_{3} \cdot \bullet \cdot X_{11}$ as the multiple measurements aveilable on each genotype and $d_{1}, d_{2}, d_{3} \ldots \ldots . d_{11}$ as $x_{1}^{-\frac{2}{2}}-x_{1}^{-2}, x_{2}^{-1}-x_{2}^{-2}$ $x_{3}^{-1}-x_{3}^{-2} \cdots \cdot x_{11}^{-1}-x_{11}^{-2}$ being the differences In the means of two genotypes where power denoted genotypes and sufisix denoted characters.

The $D^{2}$ value obtained for pair of populationa was taken as the calculated value of $X^{2}$ and was tested egeinst the tabulated value of $X^{2}$ for $p$ degrees of freedom, where $\mathbb{P}$ is the number of characters considered.

Grouping of varieties to clusters was done by Tochers: method (Rao. 1952).

## Experiment 2

All the 112 genotypes of the 1 st experiment were found to fall into five clusters based on the $D^{2}$ values estimated. Based on the intracluster distances, 20 genotypes representing the broad spectrum of variability present in the crop were selected and utilized in the second experiment. The particulars of genotypes selected and utilized in this experiment are given in Table 2.

In order to keep the viability of seeds, the above 20 genotypes were grown in nonreplicated study plots of $1 \mathrm{~m} \times 10 \mathrm{~m}$ during 1984.

This experiment was laid out in a $20 \times 4$ Randomized Block Design, adopting a spacing of $1 \mathrm{~m} \times 0.5 \mathrm{~m}$ and a plot size of $5 \mathrm{~m} \times 3.5 \mathrm{~m}$. Seeds were dibbled in raised beds on 19.7.1985 in rows spaced 1 m apart at a distance of 50 cm between plants in a row. Each plot contained five rows of six plants in each row. The crop received all timely management care and practices as per the recommendations given in the Package of Practices of K.A.U. 1981.

Observations on eleven economic attributes listed earlier were recorded from the middle twelve plants of each plot leaving one row all around for avoiding border effect.

Teble 2. Paxticulars of genotypes aelected for the second experiment

| Tr. No. | Acc. No. | Cluster No. | Name of the variety | Characters for which selected |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{1}$ | $v_{55}$ | III | NBPGR 124-PLA-345-1-Delhi collection | Higher number of seeds per pod; longer duration. |
| $\mathrm{T}_{2}$ | $V_{49}$ | III | NAPGR 48 - Kerala local | Increased primary and secondary branches, longer pod beering branch. |
| $T_{3}$ | $\mathbf{V}_{70}$ | II | H-76-46 (Tamil Nadu Agri. University) | Tall plant habit; higher number of seeds per pod; longer duration. |
| $\mathrm{T}_{4}$ | $\mathbf{V}_{79}$ | II | CORG-5 ( ) | Higher number of clusters per <br> plant; higher number of pods per <br> plant: low 100 seed weight. |
| ${ }^{T}$ | $v_{25}$ | III | NBPGR 74 - Kerala local | Medium plant height: medium 100 seed weight; higher number of seeds per pod. |
| $\mathrm{T}_{6}$ | $v_{64}$ | III | NAPGR 76 - Kerala local | Long flowering duration; medium yield per plent. |
| ${ }^{2} 7$ | $v_{12}$ $v_{66}$ | $I$ | NBPGR 55 - Kerala local | Tell plant habity medium number of primary branches and secondary branches; medium 100 seed weight; ehort duration. |
| $T_{8}$ | $\mathbf{V}_{66}$ | 1 | NBPGR 123 - Kerala local | Tall plent habit; high yields long flowering duration |

Table 2. (Contd.)

| Tr. <br> No. | Ace. No. | Cluster No. | Nante of the variety | Characters for which selected |
| :---: | :---: | :---: | :---: | :---: |
| T9 | $v_{101}$ | I | NBPGR 11-EC-10046-1 Delhi collection | Medium primary and secondary branches; higher number of pods. |
| $\mathrm{T}_{10}$ | 111 | II | H-76-51- Tamil Nadu Agri.University | Medium primary and secondary branches: long pod bearing brenches; higher number of seeds per pod: short duration. |
| $\mathrm{T}_{12}$ | $\mathrm{Y}_{73}$ | $I$ | NBPGR 58 - Kerala local | Medium height; lower number of primary branches; medium 100 seed weight: short duration. |
| $\mathrm{T}_{12}$ | $\mathbf{v}_{110}$ | I | NSPGR - 56 Kerala locel | Short pod bearing branch; higher number of seeds per pod; short flowring duration. |
| $T_{13}$ | $\mathbf{v}_{1}$ | v | NBPGR 115-PLA-600 Delhi collection | Tall plant height, medium nurber of primery and secondery branches: long pod bearing branch; long flowering juration. |
| $\mathrm{T}_{14}$ | $\mathbf{V}_{95}$ | II | H-76-32 Tamil Nadu Agrl. University | Medium number of clusters per plant, short duration. |
| $\mathrm{T}_{15}$ | $\mathbf{V}_{93}$ | II | COFG-2 | Medium 100 seed weight; medium yields short flowering duration. |

(Contd.)

## Table 2 (Contd.)

| Tr. Acc. <br> No. | Cluster <br> No. | Name of the variety | Charecters for which sel |
| :--- | :--- | :--- | :--- | :--- |

Thus total number of plants from which observations were recorded worked out to $12 \times 20 \times 4=960$.

## Statistical analyses

The data collected in respect of eleven metric traits were tabulated and subjected to the following statistical analyses.

1. Analysis of variance

Analysis of variance was worked out for all the eleven characters, to find out whether there were significant differences between the genotypes in respect of the characters.

For the analysis of variance, the procedures described by Manse and Sukhatme (1957) were used.
2. Estimation of variability, heritability, genetic advance and genetic gain
a) Variability

Variability existing in the various characters under observation was estimated as per the procedure suggested by Burton (1952). The formulae used in the astimation of genotypic and phenotypic variances are as follows.

Genotypic variance (GV) $=\frac{\text { TM-EM }}{\text { Number of replications }}$
where TM is the treatment mean square and EM is the error mean square from the analysis of variance.

Genotypic standard deviation $=6 g=\sqrt{G V}$ Genotypic coefficient of variation (GCV) $=\frac{6 \mathrm{~g} 100}{M e a n}$ Phenotypic variance (PV) $\quad=\quad$ VV + EM Phenotypic standard deviation $G P=\sqrt{P V}$ Phenotypic coefficient of variation PCV $=\frac{\int \mathrm{P} \quad \mathrm{x} 100}{\operatorname{Mean}}$
b) Heritability

The heritability in broad sense was estimated as suggested by Burton and Dewan (1953) as shown below.

$$
H^{2}(b)=\frac{\text { Genotypic variance }}{\text { Phenotypic variance }}
$$

c) Genetic advance (GA)

The expected genetic advance of the available germplasm at 5 per cent intensity of selection was calculated as per the method suggested by Lush (1949) using the intensity of selection 'i" as 2.06 as given by Allard (1960).

$$
G A=1 \times n^{2} \times 6
$$

d) Genetic gain

The method described by Johnson et al. (1955) was used.

$$
\text { Genetic gain }=\frac{\text { GA } \times 100}{\bar{x}}
$$

where $\bar{X}$ Mean of the character under study
3. Estimation of correlations

The genotypic and phenotypic correlations were estimated, using the formulae suggested by searb (1961) es given below:

$$
x \times y \quad=\frac{\operatorname{Cov} x y(\theta)}{\sqrt{G V(x) \cdot G V(y)}}
$$

where


TSP is the mean treatment sum of product e and ESP is the mean error sum of products between characters $x$ and $y$ on the analysis of variance and $O V(x)$ and $G V(y)$ are the genotypic variances for characters $x$ and $y$. Phenotypic correlation between characters $x$ and $y$ was estimated by

$$
x_{x} \quad=\frac{\operatorname{Cov} \times y^{(P)}}{\sqrt{\operatorname{PV}(x) \times P V(y)}}
$$

$\operatorname{Cov} X_{y}{ }^{(P)}=\operatorname{Cov} x y^{(g)}+$ ESP and RV ( $x$ ) and PV ( $y$ ) are phenotypic variances for characters $\mathbf{x}$ and $\mathbf{y}$.
4. Path coefficient analysis

In the path coefficient analysis, the genotypic correlations among causes and effects are partitioned into direct and indirect effects of canal factors on the effect factor. All the ten yield contributing characters along with yield were considered for the path coefficient analysis.

The estimates of direct and indirect effects in such a closed system of variables were calculated by the path coefficient analysis as suggested by Dewey and Lu (1959). The following set of simultaneous equations were formed and solved for estimating the various direct and indirect effects.

$$
\begin{aligned}
& r_{1 y}=P_{1 y}+r_{12} P_{2 Y}+r_{13} P_{3 y}+r_{14} P_{4 y}+\cdots \cdots r_{1 k} P_{k y} \\
& r_{2 Y}=P_{2 Y}+r_{21} P_{1 Y}+r_{23} P_{3 y}+r_{24} P_{4 y}+\cdots \cdots r_{2 k} P_{k y} \\
& r_{3 y}=P_{3 Y}+r_{31} P_{1 y}+r_{32} P_{2 Y}+r_{34} P_{4 Y}+\ldots \ldots \ldots r_{3 k} P_{k y}
\end{aligned}
$$

$$
r_{4 y}=P_{4 y}+r_{41} P_{1 y}+r_{42} P_{2 y}+r_{43} P_{3 y}+\ldots \ldots r_{4 k} P_{k y}
$$

$r_{k y}=P_{k y}+r_{k 1} P_{1 y}+x_{k 2} P_{2 y}+r_{k 3^{2}}{ }_{3 y}+\ldots x k(k-1) P(k-1) y$ where $x_{1 y}$ to $r_{k y}$ denote genotypic correlation between independent characters 1 to $k$ and dependent charecter $y$. $r_{12}$ to $r_{k}(k-1)$ denote genotypic coefficient of correlation between 011 possible combinations of independent characters and $P_{1 y}$ to $P_{k y}$ denote direct effects of characters 1 to $k$ on character $y$.

The above equations can be written as presented below.
$A \quad \mathrm{BC}$
where $A=\left(r_{1 y}, r_{2 y} \cdots \cdots r_{k y}\right)$
$\mathrm{B}-\left(x_{1,}\right)_{k \times k}$
and $C \quad=\quad\left(P_{1 y}, P_{2 y} \ldots \ldots P_{k y}\right)$
Residual factor "f" which measures the contribution of the charectors which are not considered in the causal scheme was obtained as follows.

Residual factor $h=\left(1-R^{2}\right)^{\frac{1}{2}}$
where $R^{2}=\sum_{i=1}^{k} x_{i y}{ }_{i y}$
5. Estimation of selection indices

A series of selection indices were obtained by discriminant function analysis using different combenation of component charecters.

The method suggested by Robinson et al. (1951) was used for constructing selection indices and computing genetic advance. The following set of simultaneous equations vert solves to obtain weights in the selection index based on yield and the independent component characters.

$$
\begin{aligned}
& a_{1}+b_{1} t_{21}+b_{2} t_{12}+b_{3} t_{13}+\ldots \ldots+b_{k} t_{1 k}+b y t_{1 y}=g_{2 y} \\
& a_{2}+b_{1} t_{21}+b_{2} t_{22}+b_{3} t_{23}+\ldots+b_{k} t_{2 k}+b_{y} t_{2 y}=g_{2 y} \\
& a_{3}+b_{1} t_{31}+b_{2} t_{32}+b_{3} t_{33}+\ldots \ldots+b_{k} t_{3 k}+b_{y} t_{3 y}+g_{3 y}
\end{aligned}
$$

$$
\begin{aligned}
& a k+b_{1} t_{k 1}+b_{2} t_{k 2}+b_{3} t_{k 3}+\cdots+b_{k} t_{k k}+b_{y} t_{k y}+g_{k y} \\
& a_{y}+b_{1} t_{y 2}+b_{2} t_{y 2}+b_{2} t_{y_{2}}+\cdots+b_{k} t_{y k}+b_{y} t_{y y}=g_{y y}
\end{aligned}
$$

where $t_{k k}$ and $t_{k m}$ represent phenotypic variance and covariance respectively and bk is the unknown weight. $g_{k y}$ and $g_{Y y}$ are genotypic covariances and variances respectively. Genetic advance by discriminant function $G A(D)=1\left(\sum b_{k} g_{k y}\right)^{\frac{1 / 2}{2}}$ where ${ }^{\prime} 1$ '
stands for intersity of selection when top 5 per cent of the population is selected (2.06). Genetic advance by straight selection for yield is given by


The relative efficiency of selection through discriminant function over straight selection was calculated as suggested by Paroda and Josh (1970).


The scope for improvement of the index by inclusion of additional measurement was calculated as described by Falconer (1982).
$\left.\begin{array}{l}\text { The room for improvement of the } \\ \text { index by inclusion of additional } \\ \text { measurement }\end{array}\right\}=1-r_{1 A}^{2}$
where $\quad r_{I A}^{2}=\frac{6 I^{2}}{6 A^{2}} \quad 6 I^{2}=$ Variance of index value

## RESULTS

## Experiment 1:

Observations recorded from 10 plents in eech of the 112 genotypes of red gram on eleven economically important cherscters are stetistically anslysed and presented in the following pages.

## Vaxiability in red gram genotypee

Results of observations pertsining to ghe range In means of genotypes and the oversil meens for the eleven characters included in the study are presented in Table 3. Table 4 gives the abstract of anslysis of variance for different characters and Table 5 . the phenotrolc genotyplc and enviromiental variances and heritability for the different choractars.

The results revesl the presence of high amount of variebility in the material studied. There exists wide gep between the meximum and minimum vilues with respect to esch of the eleven traits studied.

A further scrutiny of the result revealed the following.

Table 3. Extremes in means of genotypes and the overall mens for the different characters

| Sl. | Characters | Extremes and the genotypes showing the maximum and minimum value |  |  |  | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Maximum value | Genotype | Minimum value | Genotype |  |
| 1 | Height of plant at harvest (cm) | 354.00 | $\mathrm{V}_{51}$ | 129.00 | $\mathrm{V}_{11}$ | 290.08 |
| 2 | Number of primary branches at harvest | 20.80 | $\mathrm{v}_{10}$ | 5.70 | $\mathrm{V}_{62}$ | 12.77 |
| 3 | Number of secondary branches at harvest | - 286.40 | $\mathrm{v}_{84}$ | 18.70 | $v_{33}$ | 48.43 |
| 4 | Number of clusters per plant | 322.40 | $\mathrm{V}_{25}$ | 9.85 | $\mathrm{V}_{33}$ | 121.19 |
| 5 | Number of pods per plant | 1481.55 | $v_{25}$ | 34.80 | $\mathrm{V}_{33}$ | 530.10 |
| 6 | Length of pod bearing branches (cm) | 218.50 | $\mathrm{v}_{17}$ | 73.00 | $\mathrm{v}_{11}$ | 167.15 |
| 7 | Number of days from sowing to 50\% flowering | 105.00 | $\mathrm{V}_{84}$ | 71.00 | $V_{38}$ | 95.24 |
| 8 | Number of days from sowing to harvest | 186.00 | $v_{33}$ | 178.00 | $\mathrm{V}_{58}$ | 181.43 |
| 9 | Number of seeds per pod | 4.90 | $\mathrm{V}_{109}$ | 3.20 | $V_{16}$ | 3.98 |
| 10 | 100 seed weight (g) | 10.25 | $\mathrm{V}_{53}$ | 5.55 | $V_{102}$ | 7.03 |
| 11 | Seed yield (g) | 297.40 | $\mathrm{V}_{58}$ | 6.80 | $\mathrm{v}_{11}$ | 70.32 |

Table 4. Abstract of analysis of variances for different charecters

| $\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$ | Character 3 | Mean squere values |  | ```F value for cultivers``` |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Cultivars } \\ \text { df }=111 \end{gathered}$ | $\begin{aligned} & \text { Error } \\ & \text { de } 111 \end{aligned}$ |  |
| 1 | Height of plant at hervest ( cm ) | 5159.870 | 564.990 | 9.13** |
| 2 | Number of primary branches at harvest | 12.330 | 6.300 | 1.96** |
| 3 | Number of secondary branches at harvest | 673.250 | 558.390 | 1.21 |
| 4 | Number of clusters per plent | 5643.010 | 1385.190 | 4.07** |
| 5 | number of pods per plant | 112881.480 | 34210.380 | 3.30** |
| 6 | Length of pod bearing branches (cm) | 1982.860 | 767.260 | 2.58** |
| 7 | Aumber of days from sowing to 50\% flowering | 349.720 | 4.8810 | 7.80** |
| 8 | Number of days from sowing to harvast | 330.470 | 333.330 | 0.99 |
| 9 | Number of seeds per pod | 0.097 | 0.096 | 1.01 |
| 10 | 100 Seed weight (g) | 2.220 | 0.773 | 2.89** |
| 11 | Seed yield (g) | 1933.090 | 567.430 | 3.40** |
|  | * Significent et $5 \%$ level <br> ** Significent at $1 \%$ level |  |  |  |

Table 5. Phenotypic, genotypic and environmental variances (pV, GV and EV) and horitability (H2) for the diffarent cherectere

| si. NO. | Characters | PV | GV | EV | $H^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Haight of plant at harvest (cai) | 2862.430 | 2297.440 | 564.99 | 0.803 |
| 2 | Number of primary branches at harvest | 9.312 | 3.017 | 6.30 | 0.324 |
| 3 | Number of secondery brenches at harvest | 615.820 | 57.430 | 558.39 | 0.093 |
| 4 | Number of clusters per plant | 3514.100 | 2128.910 | 1385.19 | 0.606 |
| 5 | Number of pods per plent | 73545.930 | 39335.550 | 34210.38 | 0.535 |
| 6 | Length of pod bearing brenches (cm) | 1375.060 | 607.800 | 767.26 | 0.442 |
| 7 | Number of days from sowing to 50\% flowering | 197.270 | 152.450 | 44.82 | 0.773 |
| $\varepsilon$ | Number of days from sowing to harvest | 331.899 | -1.430 | 333.32 | 0.004 |
| 9 | Number of seeds per pod | 0.097 | 0.001 | 0.096 | 0.010 |
| 10 | 100 seed weight (g) | 1.500 | 0.727 | 0.773 | 0.486 |
| 11 | Seed yiela (g) | 1250.260 | 682.830 | 567.43 | 0.546 |

Height of plant at harvest (cm)

The mean values for height of plant at harvest (cm) of red gram genotypes under study varied from 129.0 to 354.00 . $V_{51}$ recorded the maximum height ( 354.00 cm ) whereas $V_{11}$ showed the minimum height ( 129.00 cm ) (Table 3). The differences among the genotypes were highly significant for this character (Table 4).

The estimated phenotypic variance (PV) for this character was 2862.43 which could be apportioned into genotypic variance (GV) and environmental variance (EV) as 2297.44 and 564.99 respectively, indicating a low amount of environmental effect on this character. A comparatively high amount of heritability for this character ( $H^{2}=0.803$ ) also indicated the predominant genotypic influence for height of plant at harvest (Table 5).

Number of primary branches at harvest

With general mean of 12.77 , the mean values for number of primary branches at harvest of red gram genotypes showed a range of variability from 5.70 to 20.80 . $\mathbf{V}_{10}$ recorded the maximum number of primary branches (20.80) whereas $\mathrm{V}_{62}$ showed the minimum number of 5.70 (Table 3).

The differences thong the genotypes were highly aignificant (Table 4).

The estimated phenotypic variance (FV) for this character was 9.312 which could be aporticned into genctypic visiance (UV) and environmental variance (EV) as 3.017 and 6.30 respectively, indicating a high amount of environmentel effect on this character. A comparatively moderate amount of heritability for this character $\left(H^{2}-0.324\right)$ also indiceted the predominant enviromaental influence for number of primery branches at harvest (Table 5). Number of secondery branches at harvest

A range of vexiability from 10.70 to 286.40 was observed in the mean velues for number of secondary branchea at harvest. $V_{84}$ recorded the maximum number of secondary branches (286.40) and $V_{33}$ showed the minimum number (18.70) with general mean of 48.43 (Table 3). The aifferencea anong the genctypes wer not significent (Table 4).

The estimated phenotypic variance (pV) was 615.82 which could be pertitioned into genotypic veriance ( G ) and anvironmental veriance (EV) as 57.43 and 550.39 respectively, indicating a high amount of envirommental
effect. A comperatively low amount of heritability for this character $\left(H^{2}=0.093\right)$ also indicated the predominence of environmental effect for number of secondary branches at harvest (Table 5).

Number of clusters per plent

In tha mean velue for number of clusters per plant of red grem genotypes under study, a range from 9.85 to 322.40 with a general meen of 121.19 was noticed. $V_{25}$ recorded the maximum number of cluster: (322.40) whereas $V_{33}$ showad the minimun number of 9.85 (Teble 3). The differences among the genotypes were highly significent for this character (Table 4).

The estimetea phenotypic variance (FV) for this character wes 3514.10 which could be apectioned into genotypic veriance (GV) and environmentel veriance (EV) as 2120.91 and 1385.19 respectively, indicating a comperetively low amount of envixonmental effect on this character. A high amount of heritability $\left(\mathrm{H}^{2}=0.606\right)$ also indicated the predominant genotypic influence for number of clustera per plant (Table 5).

Number of pods per plant
The mean values for number of pods eex plant of red gram genotypes under study varied from 34.80 to 1481.55
with general mean of 530.10 . $V_{25}$ recorded the maximum number of pods per plant (1481.25) whereas $V_{33}$ showed the minimum number of 34.80 (Table 3). The differences among the genotypes were highly significant for this character (Table 4).

The estimated phenotypic variance (PV) for this character was $73,545.93$ which could be partitioned into genotypic variance (GV) and environmental variance (EV) as 39,335.55 and $34,210.38$ respectively indicating comparatively a Low amount of environmental effect on this character. A comparatively high amount of heritability ( $\mathrm{H}^{2}=0.535$ ) also indicated the predominant genotypic influence for number of pods per plant (Table 5).

Length of pod bearing branches (cm)

The mean values for length of pod bearing branches of red gram genotypes under study varied from 73.00 to 218.50 with a general mean of 167.15. $V_{17}$ recorded the maximum length of 218.50 cm and $V_{11}$ showed the minimum length ( 73.00 cm ) (Table 3). The differences among the genotypes were highly significant for this character (Table 4).

The estimated phenotypic variance (pV) for this character was 1375.06 which could be partitioned into
genotypic variance (GV) and environmental variance (EV) as 807.80 and 767.26 respectively indicating genotypic and environmental on this character more or less equal. This is also indicated by a heritability value $\left(H^{2}=0.442\right)$ (Table 5).

Number of days from sowing to 50 per cent flowering
The mean values for number of days from sowing to 50 per cent flowering of red gram genotypes under study varied from 71.00 to 105.00 recorded by $V_{38}$ and $V_{84}$ respectively with a general mean of 95.24 (Table 3). The differences among the genotypes were significant for this character.

The estimated phenotypic variance (PV) for this character was 197.27 which could be partitioned into genotypic variance (GV) and environmental variance (EV) as 152.45 and 44.82 respectively indicating a high genotypic influence on this character. A comparatively high amount of heritability $\left(H^{2}=0.773\right)$ also indicated the predominant genotypic influence for the number of days from sowing to 50 per cent flowering (Table 5).

Number of days from sowing to harvest
The mean values for number of days from sowing to harvest of red gram genotypes under study varied from 178.00
to 186.00 recorded by $V_{33}$ and $V_{58}$ respectively (Table 3) with general mean of 181.43. The differences among the genotypes were not significant for this character (Table 4).

The estimated phenotypic variance (PV) for this character was 331.899 which could be partitioned into genotypic variance (GV) and environmental variance (EV) as -1.430 and 333.32 respectively indicating a very high amount of environmental effect on this character. A very low amount of heritability ( $H^{2}=0.004$ ) also indicated the predominant environmental influence for number of days from sowing to harvest (Table 5).

Number of seeds per pod

The mean values for number of seeds per pod ranged from 3.20 to 4.50 with a general mean of 3.98 . $V_{109}$ recorded the maximum number of seeds per pod of 4.90 and $V_{16}$ recorded the minimum of 3.20 (Table 3 ). The differences among the genotypes were not significant for this character (Table 4).

The estimated phenotypic variance (PV) for this character was 0.097 which could be apportioned into genotypic variance (GV) and environmental variance (EV)

```
as 0.001 and 0.096 respectively indicating a low
genotypic effect on this chaxecter. This is also
indicated by a low amount of heritability (id }\mp@subsup{}{}{2}=0.010
(Table 5).
100 Seed weight (g)
The mean values for hundred seed weight of red gram genotypes under study varied from 5.55 to 10.25 with a general mean of 7.03. \(V_{53}\) recorded the maximum weight ( 10.25 g ) whereas \(\mathrm{V}_{102}\) showed the minimum weight (5.55 g) (Table 3). The dIfferences among the genotypes were highly significant (Table 4).
```

The estimated phenotypic variance (PV) was 1.50 which could be paritioned into genotypic variance (GV) as 0.727 and environmental variance (EV) as 0.773 indicating the genotypic and environmental effects more or less equal. This is also indicated by heritability value ( $H^{2}=0.486$ ) (Table 5).

## Seed yield (g)

The mean values for seed yield of red gram genotypes under study varied from 6.80 to 297.40 with o general mean of 70.32 . $V_{58}$ recorded the maximum weight
(297.4 g) wherees $V_{11}$ showed the minimum welght ( 680 g ) (Table 3). The differences ancong the genotypes were highly significont for this cheracter (Table 4).

The astimated phenotypic veriance (PV) for this character was 1250.26 which could be partitioned intc genotyplc veriance (GV) and environmental variance (EV) as 682.83 and 567.43 respectively indicoting a slightly high amount of genotypic effect on this cherecter. A comporatively high anount of heritability ( $H^{2}=0.546$ ) also indiceted the predominent genotypic influence on seed yield.

Genetic divergence among the genotypes

The one hundred and twelve red gram genotypes included in the study wer found to fall into five clusters, each one having different number of genotypes (Table 6).

The reults presented revealed that 80 genotypes constituted Cluster I, 26 genotypes Cluster in. 4 genctypes - Cluster III, one genotype - Clustor IV and one gen type - Cluster V .

Results of observetions pertaining to the extremes in meens of genctypes and overall mean for

Table 6．Details of red gram genotypes constituting different clusters

| Cluster number | Total numbers | Genotypes included |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 80 | $\mathbf{v}_{4}{ }^{\text {。 }}$ | $V_{5}$ ， | $\mathrm{V}_{6}$ 。 | $\mathrm{V}_{7}$ 。 | $\mathrm{V}_{8}$ 。 | $\mathrm{v}_{9}$ 。 | $\mathrm{V}_{12}{ }^{\text {。 }}$ | $\mathrm{V}_{13}{ }^{\text {。 }}$ | $\mathrm{V}_{14}{ }^{\prime}$ | $\mathrm{V}_{15}{ }^{\prime}$ |
|  |  | $\mathrm{V}_{17}{ }^{\prime}$ | $\mathrm{V}_{18}{ }^{\text {。 }}$ | $\mathrm{v}_{20}{ }^{\text {。 }}$ | $\mathrm{V}_{21}{ }^{\prime}$ | $\mathrm{V}_{24}{ }^{\text {。 }}$ | $\mathrm{v}_{27}$ | $\mathrm{V}_{28}{ }^{\prime}$ | $\mathrm{V}_{29}$ 。 | $\mathrm{v}_{30}$ 。 | $\mathrm{v}_{32}$ 。 |
|  |  | $\mathrm{V}_{34}{ }^{\prime}$ | $\mathrm{V}_{35}{ }^{\text {，}}$ | $\mathrm{V}_{37}$ 。 | $\mathrm{V}_{39}$ 。 | $\mathrm{v}_{40}{ }^{\text {，}}$ | $\mathrm{v}_{\mathbf{8} 2}$ 。 | $\mathrm{V}_{43}{ }^{\circ}$ | $\mathrm{v}_{44}$ ． | $\mathrm{v}_{45}$ ， | $\mathrm{v}_{46}$ 。 |
|  |  | $\mathrm{v}_{47}{ }^{\prime}$ | $\mathrm{V}_{48}{ }^{\circ}$ | $\mathrm{V}_{50}$ 。 | $\mathrm{V}_{51}$ ， | $\mathrm{V}_{52}$ ， | $\mathrm{V}_{53}{ }^{\prime}$ | $\mathrm{V}_{54}$ 。 | $\mathrm{V}_{56}$ 。 | $\mathrm{V}_{57}{ }^{\prime}$ | $\mathrm{V}_{59}$ ， |
|  |  | $\mathrm{V}_{60}{ }^{\prime}$ | $\mathrm{V}_{61}{ }^{\prime}$ | $\mathrm{V}_{62}{ }^{\prime}$ | $\mathrm{v}_{63}{ }^{\text {，}}$ | $\mathrm{v}_{65}{ }^{\text {。 }}$ | $\mathrm{v}_{66}$ 。 | $\mathrm{V}_{67}{ }^{\prime}$ | $\mathrm{v}_{68}{ }^{\text {。 }}$ | $\mathrm{V}_{69}$ 。 | $\mathrm{v}_{72}$ 。 |
|  |  | $\mathrm{V}_{73}{ }^{\text {，}}$ | $\mathbf{V 7 4}^{\text {，}}$ | $\mathrm{V}_{76}$ 。 | $\mathrm{V}_{77}{ }^{\text {\％}}$ | $v_{78}$ ， | $\mathrm{v}_{80}{ }^{\prime}$ | $\mathrm{V}_{81}$ ， | $\mathrm{V}_{82}$ ， | $\mathrm{V}_{85}$ ， | $\mathrm{V}_{86}$ ， |
|  |  | $\mathrm{V}_{87}{ }^{\circ}$ | $\mathrm{V}_{88}{ }^{\prime}$ | $\mathrm{V}_{89}{ }^{\circ}$ | $\mathrm{V}_{90}$ 。 | V 91＇ | $\mathrm{v}_{94}$ ． | $\mathrm{V}_{96}{ }^{\text {，}}$ | $\mathrm{V}_{98}$ 。 | $\mathrm{V}_{99}$ 。 | $\mathrm{v}_{101}$ 。 |
|  |  | $\mathrm{V}_{102}{ }^{\text {＇}}$ | $\mathrm{V}_{103}{ }^{\circ}$ | $\mathrm{V}_{104}{ }^{\prime}$ | $\mathrm{v}_{105}{ }^{\prime}$ | $\mathrm{V}_{106}{ }^{\prime}$ | $\mathrm{v}_{107}{ }^{\prime}$ | $\mathrm{V}_{108^{\prime}}$ | $\mathrm{v}_{109}{ }^{\prime}$ | $\mathrm{V}_{110}{ }^{\text {。 }}$ | $\mathrm{v}_{84}$ ． |
| II | 26 | $\mathrm{V}_{36}{ }^{\prime}$ | $\mathrm{V}_{93}{ }^{\prime}$ | $\mathrm{v}_{70}{ }^{\text {，}}$ | $\mathrm{v}_{100}{ }^{\prime}$ | $\mathrm{V}_{38}{ }^{\prime}$ | $\mathrm{V}_{83}{ }^{\prime}$ | $\mathrm{V}_{79}{ }^{\text {，}}$ | $\mathrm{V}_{111}{ }^{\prime}$ | $\mathrm{V}_{75}$ ， | $\mathrm{V}_{95}{ }^{\prime}$ |
|  |  | $\mathrm{V}_{41}$ 。 | $\mathrm{V}_{71}$ ， | $\mathrm{v}_{2}$ 。 | $\mathrm{v}_{10^{\circ}}$ | $\mathrm{v}_{11} .9$ | $\mathrm{V}_{16}{ }^{\prime}$ | $\mathrm{V}_{22}{ }^{\prime}$ | $\mathrm{V}_{23}{ }^{\prime}$ | $\mathrm{v}_{26}{ }^{\prime}$ | $\mathrm{v}_{97}{ }^{\circ}$ |
|  |  | $\mathrm{V}_{19}{ }^{\prime}$ | $\mathrm{v}_{112}{ }^{\prime}$ | $\mathrm{V}_{31}$ ， | $\mathrm{V}_{33}$ ， | $\mathrm{V}_{92}{ }^{\prime}$ | $\mathrm{V}_{58}$ ． |  |  |  |  |
| III | 4 | $\mathrm{V}_{64}{ }^{\prime}$ | $\mathrm{V}_{49}{ }^{\prime}$ | $\mathrm{V}_{25}{ }^{\prime}$ | $\mathrm{V}_{55}$ ． |  |  |  |  |  |  |
| IV | 1 | $\mathrm{v}_{3}$ |  |  |  |  |  |  |  |  |  |
| v | 1 | $\mathrm{v}_{1}$ |  |  |  |  |  |  |  |  |  |

different characters in Cluster I. II, III, IV and $V$ are presented in Tables 7 to 10 .

The results reveries the following.

Height of plant at harvest (cm)

In Cluster I, the maximum mean value of 354.00 cm for this character was expressed by the genotype $V_{51}$ and the minimum of 278.50 cm by the genotype $\mathrm{V}_{82}$ with a clugtar mean of 314.33 cm (Table 7).

The corresponding values for cluster II were seen to be $258.00 \mathrm{~cm}\left(V_{92}\right) .129 .00 \mathrm{~cm}\left(V_{11}\right)$ and 206.70 cm (Table 8) and those for cluster III were $343.50 \mathrm{~cm}\left(\mathrm{~V}_{55}\right)$. $318.00 \mathrm{~cm}\left(\mathrm{~V}_{25}\right)$ and 330.75 cm (Table 9).

Since the cluster IV and $V$ were resesantad by one gonutyoe only, their means were 325.25 cm end 319.90 cm respectively (Table 10).

Among the five clusters, the highest cluster mean of 330.75 cm was recorded by cluster III and the Lowest of 206.70 ca by Cluster II.

Table 7. Extremes in means of genotypes - in cluster $I$ and overall mean for
different characters

| Sl. No. | Characters | Extremes and the genotypes showing the maximum and minimum value |  |  |  |  | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Maximum | value | Genotype | Minimum value | Genotype |  |
| 1 | Height of plant at harvest (cm) | 354.00 |  | $\mathrm{v}_{51}$ | 278.50 | $\mathrm{v}_{82}$ | 314.33 |
| 2 | Number of primary branches at harvest | 15.90 |  | $v_{96}$ | 5.70 | $\mathrm{v}_{62}$ | 12.93 |
| 3 | Number of secondary branches at harvest | 286.40 |  | $\mathrm{V}_{84}$ | 24.20 | $\mathrm{v}_{61}$ | 51.88 |
| 4 | Number of clusters per plant | 230.50 |  | $\mathrm{V}_{46}$ | 71.10 | $\mathrm{v}_{14}$ | 133.85 |
| 5 | Number of pods per plant | 980.60 |  | $\mathrm{V}_{46}$ | 315.85 | $\mathrm{V}_{52}$ | 595.46 |
| 6 | Length of pod bearing branches (cm) | 218.50 |  | $\mathrm{V}_{17}$ | 133.00 | $\mathrm{V}_{57}$ | 178.95 |
| 7 | Number of days from sowing to 50\% flowering | 105.00 |  | $\mathrm{v}_{84}$ | 100.00 | $\begin{aligned} & v_{50} \\ & v_{104} \\ & y_{10} \end{aligned}$ | 102.09 |
| 8 | Number of days from sowing to harvest | 183.00 | $\begin{aligned} & v_{17^{\prime}} \\ & v_{82^{\prime}} \\ & v_{94^{\prime}} \end{aligned}$ | $\begin{aligned} & v_{42^{\prime}} \\ & v_{89^{\prime}} \\ & v_{107} \end{aligned}$ | 180.00 | $\begin{aligned} & v_{5}, v_{9}, v_{12^{\prime}} \\ & v_{13}, v_{14^{\prime}} \\ & v_{21^{\prime}}, v_{39^{\prime}} \text { etc } \end{aligned}$ | 181.25 |
| 9 | Number of seeds per pod | 4.90 |  | $\mathrm{V}_{109}$ | 3.40 | $\mathrm{V}_{29}$ | 4.00 |
| 10 | 100 Seed weight (g) | 10.25 |  | $\mathrm{V}_{53}$ | 5.55 | $v_{102}$ | 6.96 |
| 11 | Seed yield (g) | 132.00 |  | $\mathrm{V}_{54}$ | 34.10 | $\mathrm{V}_{98}$ | 78.17 |

Table 8. Extremes in means of genotypes in cluster $I I$ and overall mean for different characters

| Sl. | Characters | Extremed and the geñotypes showing the maximum and minimum value |  |  |  | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Maximum value | Genotype | Minimum value | Genotype |  |
| 1 | Height of plant at harvest (cm) | 258.00 | $\mathrm{v}_{92}$ | 129.00 | $\mathrm{v}_{11}$ | 206.70 |
| 2 | Number of primary branches at harvest | 20.80 | $\mathrm{v}_{10}$ | 6.80 | $\mathrm{v}_{33}$ | 12.32 |
| 3 | Number of secondary branches at harvest | 79.30 | $\mathrm{v}_{100}$ | 18.70 | $\mathrm{v}_{33}$ | 39.69 |
| 4 | Number of clusters per plant | 121.50 | $\mathrm{v}_{92}$ | 9.85 | $v_{33}$ | 60.17 |
| 5 | Number of pods per plant | 544.20 | $\mathrm{v}_{92}$ | 34.80 | $v_{33}$ | 247.69 |
| 6 | Length of pod bearing branches (cm) | 194.20 | $\mathrm{v}_{95}$ | 73.00 | $\mathrm{v}_{11}$ | 126.88 |
| 7 | Number of days from sowing to 50\% flowering | 73.50 | $\mathrm{v}_{92}$ | 71.00 | $v_{38}$ | 72.46 |
| 8 | Nuraber of days from sowing to harvest | 186.00 | $\mathrm{v}_{33}$ | 178.00 | $\mathrm{V}_{58}$ | 181.60 |
| 9 | Number of seeds per pod | 4.20 | $\mathrm{v}_{11}$ | 3.20 | $\mathrm{v}_{16}$ | 3.90 |
| 10 | 100 seed weight (g) | 9.55 | $\mathrm{V}_{23}$ | 5.95 | $\mathrm{V}_{112}$ | 7.35 |
| 11 | Seed yield (g) | 297.40 | $\mathrm{v}_{58}$ | 6.80 | $\mathrm{v}_{11}$ | 41.78 |

Table 9. Extremes in means of genotypes in cluster III and the overal mean for different characters

| $\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$ | Characters | Extremes and the genotypes showing the maximum and minimura value |  |  |  | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Maximum value | Genotype | Minimum value | Genotype |  |
| 1 | Height of plant at harvest (cm) | 343.50 | $\mathrm{V}_{55}$ | 318.00 | $\mathrm{V}_{25}$ | 330.75 |
| 2 | Number of primary branches at harvest | 12.10 | $\mathrm{V}_{49}$ | 8.10 | $\mathrm{V}_{55}$ | 10.08 |
| 3 | Number of secondary branches at harvest | 52.70 | $\mathrm{V}_{25}$ | 22.35 | $\mathrm{v}_{55}$ | 27.22 |
| 4 | Number of clusters per plant | 322.40 | $\mathrm{V}_{25}$ | 215.80 | $v_{64}$ | 251.99 |
| 5 | Number of pods per plant | 1481.55 | $\mathrm{v}_{25}$ | 1003.00 | $\mathrm{v}_{55}$ | 1133.25 |
| 6 | Length of pod bearing branches (cm) | 190.00 | $\mathrm{V}_{49}$ | 177.50 | $\mathrm{v}_{55}$ | 183.00 |
| 7 | Number of days from sowing to 50\% flowering | 103.00 | $\begin{aligned} & \mathbf{v}_{55^{\prime}} \\ & \mathbf{v}_{49} \end{aligned}$ | 102.00 | $\begin{aligned} & \mathbf{v}_{25^{\circ}} \mathbf{v}_{64} \end{aligned}$ | 102.50 |
| 8 | Number of days from sowing to harvest | 182.00 | $\mathrm{V}_{64}$ | 181.00 | $\mathrm{V}_{55}$ | 181.50 |
| 9 | Number of seeds per pod | 4.00 | $\begin{aligned} & \mathbf{v}_{64^{\prime}} \\ & \mathbf{v}_{55} \end{aligned}$ | 3.80 | $\mathrm{V}_{25}$ | 3.95 |
| 10 | 100 Seed weight (g) | 6.65 | $\mathrm{V}_{55}$ | 5.70 | $\mathrm{V}_{25}$ | 6.25 |
| 11 | Seed yield (g) | 126.85 | $\mathrm{V}_{55}$ | 91.30 | $\mathrm{v}_{49}$ | 107.32 |

Table 10. Means of different characters of clusters IV and $V$

| Sl.No. | Characters | Means |  |
| :---: | :---: | :---: | :---: |
|  |  | Cluster IV | Cluster V |
| 1 | Height of plant at harvest (cm) | 325.25 | 319.90 |
| 2 | Number of primary branches at harvest | 18.30 | 16.50 |
| 3 | Number of secondary branches at harvest | 93.30 | 39.95 |
| 4 | Number of clusters per plant | 210.95 | 82.00 |
| 5 | Number of pods per plant | 411.60 | 349.80 |
| 6 | Length of pod bearing branches ( cm ) | 208.00 | 165.50 |
| 7 | Number of days from sowing to 50\% flowering | 103.00 | 103.00 |
| 8 | Number of days from sowing to harvest | 182.00 | 181.50 |
| 9 | Number of seeds per pod | 4.00 | 4.50 |
| 10 | 100 Seed weight (g) | 6.45 | 5.25 |
| 11 | Seed yield (g) | 66.00 | 41.00 |

Number of primary branches at harvest

The mean values for number of primary branches at harvest in cluster I ranged from $5.70\left(\mathrm{~V}_{62}\right)$ to $15.90\left(V_{96}\right)$ with a cluster mean of 12.93 (Table 7).

In cluster II, the genotype $\mathrm{V}_{10}$ showed the maximum mean value of 20.80 and $V_{33}$ recorded the minimum mean value of 6.80 with cluster mean of 12.32 (Table 8) whereas in Cluster III, the genotypes and the values were $\mathrm{V}_{49}(12.10), \mathrm{V}_{55}(8.10)$ and 10.08 respectively (Table 9).

Cluster IV and $V$ which were represented by one genotype only, exhibited means 18.30 and 16.50 respectively (Table 10).

Maximum cluster mean value for this character was 18.30 shown by cluster IV and the minimum of 10.08 shown by cluster III.

Number of secondary branches at harvest

For this character a range from 24.20 to 286.40 expressed by genotypes $V_{61}$ and $V_{84}$ respectively were noticed in cluster I with a cluster mean of 51.88 (Table 7).

The corresponding values for cluster II were seen to be $18.70\left(\mathrm{~V}_{33}\right), 79.30\left(\mathrm{~V}_{100}\right)$ and 39.69 (Table 8) and those for Cluster III were $22.35\left(\mathrm{~V}_{55}\right)$ and $52.70\left(\mathrm{~V}_{25}\right)$ and 27.22 (Table 9).

The means of cluster IV and V were 93.30 and 39.95 respectively (Table 10).

Cluster IV showed the maximum mean of 93.30 , whereas cluster III showed the minimum mean of 27.22 .

Number of clusters per plant

In cluster $I$, the maximum mean value of 230.50 for this character was expressed by $\mathrm{V}_{46}$, while the minimum value of 71.10 by $V_{14}$ with a cluster mean of 133.85 (Table 7).
$\mathbf{V}_{92}$ recorded the maximum mean value (121.50) and $V_{33}$ showed the minimum of 9.85 in cluster II, Which had a cluster mean of 60.17 (Table 8). The corresponding values for Cluster III were $322.40\left(V_{25}\right)$, $215.80\left(V_{64}\right)$ and 251.99 (Table 9).

The means of cluster IV and V were 210.95 and 82.00 respectively (Table 10 ).

Among the five clusters, the highest cluster mean of 251.99 was recorded by Cluster III and the lowest of 60.17 by Cluster II.

Number of pods per plant

The mean values for number of pods per plant in Cluster I ranged from $315.85\left(\mathbf{V}_{52}\right)$ to $980.60\left(\mathbf{V}_{46}\right)$ with a cluster mean of 595.46 (Table 7).

In cluster II, the genotype $\mathbf{V}_{\mathbf{9 2}}$ showed the maximum mean value of 544.20 and $V_{33}$ showed the minimum of 34.80 with cluster mean of 247.69 (Table 8), whereas in cluster III the corresponding values were $\mathbf{V}_{25}$ (1481.55). $V_{55}(1003.00)$ and 1133.25 (Table 9).

The means of Cluster IV and V were 411.60 and 349.80 respectively (Table 10).

It is mean from the above that the highest cluster mean of 1133.25 was shown by cluster III and lowest of 247.69 - by cluster II.

Length of pod bearing branches (cm)

A range from $133.00 \mathrm{~cm}\left(V_{57}\right)$ to $218.50 \mathrm{~cm}\left(V_{17}\right)$ with a cluster mean of 178.95 cm were noticed in cluster 1 for this character (Table 7).

Corresponding values for Cluster II and III were $73.00 \mathrm{~cm}\left(V_{11}\right), 194.20 \mathrm{~cm}\left(V_{95}\right), 126.88 \mathrm{~cm}$ (Table 8) and
$177.50 \mathrm{~cm}\left(\mathrm{~V}_{\mathbf{5 5}}\right) .190 .00\left(\mathrm{~V}_{\mathbf{4 9}}\right)$ and 183.00 cm respectively (rable 9).

In Table 10 the cluster means of cluster IV and $V$ were given as 208.00 em and 165.50 cm respectively.

Among the five clusters the maximum cluster mean of 208.00 can was shown by cluater IV and minlmum of 126.88 cm by cluster II.

Muber of days from sowing to 50 per cent flowering
The maximum mean value for this character in Cluster I was expressed by $V_{84}$ as 105.00 and the minimum by $V_{50}$ and $V_{104}$ as 100.00 with a cluster mean of 102.09 (Table 7).

The correaponding values for cluster II were seen to be $73.50\left(V_{92}\right), 71.00\left(V_{38}\right)$ and 72.46 (Table 8) and those for cluster III ware $103.00\left(V_{55}\right.$ and $\left.V_{49}\right), 102.00\left(V_{25}\right.$ and $\left.V_{64}\right)$ and 102.50 (Table 9).

The clucter: IV and $V$ exhibited the ame mean value of 103.00 (Table 10).

The higheat cluater mean of 103.00 was recorded by clusters IV and $V$ and the lowest of 72.16 - by cluster II. Wumber of days from sowing to harvest

The mean values for the character in cluster I ranged from 180.00 ( $V_{5}, V_{9}, V_{12}, V_{13}, V_{14}, V_{21}$ and $V_{39}$ ) to 183.00 ( $V_{17}, V_{42}, V_{82}, V_{89}, V_{94}$ and $V_{107}$ ) with a cluster mean of 181. 25 (Table 7).

In Cluster II, the maximum value expressed by $V_{33}$ was 186.00 and the minimum by $V_{58}-178.00$ with a cluster mean of 181.60 (Table 8) whereas in Cluster III the corresponding values were $\mathrm{V}_{64}(182.00), \mathrm{V}_{55}(181.00)$ and 181.50 (Table 9).

The means of clusters IV and V were 182.00 and 181.50 respectively (Table 10).

Among the five clusters, cluster IV showed the highest cluster mean value of 182.00 and Cluster I showed the lowest value of 181.25 .

Number of seeds per pod

In Cluster $I$ the highest mean value for this character was recorded by $V_{109}(4.90)$ and lowest by $V_{29}$ (3.40) with a cluster mean of 4.00 (Table 7) whereas In Cluster II the corresponding values were $\mathrm{V}_{11}$ (4.20), $V_{16}(3.20)$ and 3.90 (Table 8).

Cluster III showed a range from $3.80\left(\mathrm{~V}_{25}\right)$ to $4.00\left(\mathrm{~V}_{64}, \mathrm{~V}_{55}\right.$ and $\mathrm{V}_{49}$ ) with a cluster mean of 3.95 (Table 9).

Cluster IV and $V$ showed a cluster mean of 4.00 and 4.50 respectively (Table 10).

100 Seed weight (g)

The maximum mean value for this character in cluster $I$ was expressed by the genotype $V_{53}$ as 10.25 g and minimum by $V_{102}$ as 5.55 g with a cluster mean of 6.96 g (Table 7).

In cluster II maximum mean value of 9.55 g was expressed by $\mathrm{V}_{23}$ and minimum of 5.95 g by $\mathrm{V}_{112}$ with a cluster mean of 7.35 g (Table 8 ). The corresponding values for cluster III were $6.65 \mathrm{~g}\left(\mathrm{~V}_{55}\right), 5.70 \mathrm{~g}\left(\mathrm{~V}_{25}\right)$ and 6.25 g (Table 9).

Cluster $I V$ and $V$ recorded the cluster mean of 6.45 g and 5.25 g respectively (Table 10 ).

Cluster II showed the highest cluster mean value ( 7.35 g ) and cluster V - the lowest ( 5.25 g ).

Seed yield

The maximum mean value for seed yield in Cluster I was expressed by the genotype $V_{54}$ as 132.00 g and minimum by $\mathrm{V}_{98}$ as 34.10 g with a cluster mean of 78.17 g (Table 7).

In Cluster II maximum mean value of 297.40 g was expressed by $V_{58}$ and minimum of 6.80 g by $\mathrm{V}_{11}$ with $a$ cluster mean of 41.78 g (Table 8). The corresponding
values for Cluster iII were $126.85 \mathrm{~g}\left(\mathrm{~V}_{55}\right) .91 .309$ $\left(V_{49}\right)$ and 107.32 g (Table 9).

Cluster IV and $V$ recorded the cluater mean of 66.00 g and 41.00 g respectively (Table 10 ).

Anong the clusters, the maximum cluster mean value of 107.32 gas shown by clustex III and minimum of 41.00 g by clustar V .

The intra and inter ciustex $D^{2}$ and $D$ values of the five clusters worked out, heve been presented in Tables 11 and 12 respectively.

From the result, it could be observed that tre intre clueter $D^{2}$ velueg were lower than the corresponding inter cluster $D^{2}$ values.

The average intra cluster diztances in the five clusters renged from 0 (Cluster IV and V) to 6.47 (Cluster II). the other clusters possessing values in between the two extremes (Tade 12).

Cluster $V$ was found to sinow the meximum average inter cluster diatance with any other cluster and it was found to be the cluster showing meximum diatance in all

Table 11. Average intra and inter cluster $D^{2}$ values

| Cluster No. | I | II | III | IV | V |
| ---: | ---: | ---: | ---: | ---: | ---: |
| I | 22.93 | 3336.81 | 596.18 | 196.91 | 5846.72 |
| II |  | 41.75 | 3655.97 | 3644.62 | 3844.00 |
| III |  | 14.25 | 145.47 | 5954.58 |  |
| IV |  |  | 0 | 5972.64 |  |
| V |  |  |  | 0 |  |

Table 12. Average intra and inter cluster distances ( $\sqrt{\mathrm{D}^{2}}$ values)

| Cluster No. | I | II | III | IV | V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | 4.79 | 57.77 | 24.42 | 14.04 | 76.42 |
| II |  | 6.47 | 60.47 | 60.37 | 62.00 |
| III |  | 3.78 | 12.07 | 77.17 |  |
| IV |  |  | 0 | 77.28 |  |
| V |  |  | 0 |  |  |

combinetions it cculd meke. Cluster IV showed the lowest average inter cluster distencea (Teble 12).

## Exceriment 2

Results of observations recorded from 12 plents per plot in each of the selected 20 genotypes of red gram included in the second field experiment on eleven economically important charecters are presented in the following peges.

The abstract of analysis of veriance for the different characters is presented in Table 13.

Observations pertaining to the extremes, meam, renge as percentege of mean and standerd exror of mean for the different characters are fxesented in Tuble 14. Tables 15 to 25 give the ranking of genotypes for the aleven chexacters atudied.

Table 26 gives time phenotypic, genotypic, and environmentel variences and phenotypic and genotypic coefficient of varietion for the different cnaractaxs. Heritablilty, genetic advence, and genetic gain for the difearant characters are raseited in Teble 27.

Table 13. Abstract of analysis of variance for different characters

| $\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$ | Characters | Mean square values |  | F value |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Genotypes df $=19$ | $\begin{aligned} & \text { Error } \\ & \mathrm{df}=57 \end{aligned}$ |  |
| 1 | Height of plant at harvest (cm) | 2567.9473 | 742.0439 | 3.4606** |
| 2 | Number of primary branches at harvest | 19.7782 | 12.4356 | 1.5904 |
| 3 | Number of secondary branches at harvest | 759.6028 | 488.8281 | 1.5539 |
| 4 | Number of clusters per plant | 8852.5000 | 2902.4080 | 3.0501** |
| 5 | Number of pods per plant | 112015.6900 | 38708.8790 | 2.8938** |
| 6 | Length of pod bearing branches (cm) | 512.9700 | 316.1184 | 1.6227 |
| 7 | Number of days from sowing to 50\% flowering | 1732.8158 | 12.0406 | 143.9150** |
| 8 | Number of days from sowing to harvest | 28.2500 | 0.8860 | 31.8861** |
| 9 | Number of seeds per pod | 0.0935 | 0.1093 | 0.8554 |
| 10 | 100 Seed weight (g) | 0.9921 | 0.5127 | 1.9445* |
| 11 | Seed yield (g) | 1249.0099 | 262.6151 | 4.7561** |

[^0]Table 14. Extremes, mean, range as percentage of mean and standard error of mean for the different charecters in red gram

| $\begin{aligned} & \text { si. } \\ & \text { No. } \end{aligned}$ | Characters | Extremes |  | Mean | Range as percentage of mean | S.E. of mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Maximum | Minimum |  |  |  |
| 1 | Height of plant at harvest (cm) | 277.150 | 186.675 | 243.521 | 37.15 | $\pm 13.620$ |
| 2 | Number of primary branches at harvest | 21.200 | 12.600 | 18.520 | 46.43 | $\pm 1.763$ |
| 3 | Number of secondary branches at harvest | 72.350 | 23.850 | 46.556 | 104.18 | $\pm 11.055$ |
| 4 | Number of clusters per plant | 249.350 | 91.800 | 189.579 | 83.11 | $\pm 26.937$ |
| 5 | Number of pods per plant | 755.450 | 201.450 | 547.106 | 101.26 | $\pm 98.373$ |
| 6 | Length of pod bearing branches (cm) | 150.275 | 104.250 | 124.292 | 36.95 | $\pm 8.890$ |
| 7 | Number of days from sowing to 50\% flowering | 126.750 | 78.500 | 110.575 | 43.64 | $\pm 1.735$ |
| 8 | Number of days from sowing to harvest | 166.000 | 160.000 | 163.800 | 3.66 | $\pm 0.471$ |
| 9 | Number of seeds per pod | 4.500 | 3.950 | 4.210 | 13.06 | $\pm 0.165$ |
| 10 | Hundred seed weight (g) | 6.225 | 6.18\% | 7.160 | 28.51 | $\pm 0.358$ |
| 11 | Seed yield (g) | 89.825 | 24.030 | 58.810 | 111.87 | $\pm 8.103$ |

Table 15. Ranking of the genotypea for height of
plant at harvest (an)

| Rank | Genotype | Cluster to which it belongs | Mean value |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{T}_{8}$ | I | 277.15 |
| 2 | ${ }^{T} 7$ | I | 267.25 |
| 3 | $\mathrm{T}_{20}$ | I | 266.00 |
| 4 | ${ }^{14}$ | II | 263.75 |
| 5 | $\mathrm{T}_{12}$ | $I$ | 263.50 |
| 6 | $\mathrm{T}_{1}$ | III | 261.50 |
| 7 | ${ }_{13}$ | V | 259.55 |
| 8 | $\mathrm{T}_{4}$ | II | 258.25 |
| 9 | $\mathrm{T}_{6}$ | III | 255.25 |
| 10 | $\mathrm{T}_{15}$ | II | 253.76 |
| 11 | $\mathrm{T}_{2}$ | III | 253.75 |
| 12 | ${ }_{19}$ | IV | 242.32 |
| 13 | $\mathrm{T}_{9}$ | $I$ | 239.80 |
| 14 | $\mathrm{T}_{4}$ | II | 239.68 |
| 15 | $\mathrm{T}_{11}$ | I | 235.25 |
| 16 | ${ }^{18}$ | II | 231.00 |
| 17 | ${ }_{17}$ | II | 214.00 |
| 18 | $\mathrm{T}_{16}$ | II | 207.00 |
| 19 | $\mathrm{T}_{3}$ | II | 195.00 |
| 20 | ${ }_{10}$ | II | 186.68 |
|  | Qenerel Mean C.D. |  | $\begin{gathered} 243.521 \\ 38.52 \end{gathered}$ |

Table 16. Ranking of genotypes for number of primary brenches at harvest

| Rank | Genotype | Cluster to which it belongs | Mean velue |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{T}_{9}$ | I | 21.20 |
| 2 | $\mathrm{T}_{13}$ | V | 21.05 |
| 3 | $T_{6}$ | III | 21.00 |
| 4 | $\mathrm{T}_{20}$ | $I$ | 20.77 |
| 5 | $\mathrm{T}_{4}$ | II | 20.57 |
| 6 | $\mathrm{T}_{12}$ | I | 20.40 |
| 7 | $\mathrm{T}_{1}$ | III | 20.20 |
| 8 | ${ }^{18}$ | II | 19.85 |
| 9 | ${ }^{T} 8$ | I | 19.65 |
| 10 | $\mathrm{T}_{11}$ | I | 19.35 |
| 11 | $\mathrm{T}_{15}$ | II | 19.15 |
| 12 | $\mathrm{T}_{16}$ | II | 18.06 |
| 13 | $\mathrm{T}_{19}$ | IV | 17.92 |
| 14 | $\mathrm{T}_{2}$ | III | 17.75 |
| 15 | $\mathrm{T}_{7}$ | $\underline{1}$ | 17.60 |
| 16 | $\mathrm{T}_{14}$ | II | 17.25 |
| 17 | $\mathrm{T}_{5}$ | III | 17.10 |
| 18 | $r_{3}$ | II | 14.70 |
| 19 | $\mathrm{T}_{10}$ | II | 14.20 |
| 20 | $\mathrm{T}_{17}$ | II | 12.60 |
|  | General Mean |  | 18.52 |
| C.D. |  |  | 2.137 |

Table 17. Kanking of genotypes for number of secondery branches at herveat

| Rank | Genotype | Cluster to which it belongs | Mean velue |
| :---: | :---: | :---: | :---: |
| 1 | $T_{6}$ | III | 72.35 |
| 2 | ${ }_{1} 13$ | V | 71.75 |
| 3 | $\mathrm{T}_{9}$ | $I$ | 64.80 |
| 4 | $\mathrm{T}_{19}$ | IV | 57.55 |
| 5 | $\mathrm{T}_{20}$ | 1 | 57.10 |
| 6 | $\mathrm{T}_{8}$ | 1 | 53.75 |
| 7 | $\mathrm{T}_{2}$ | III | 50.20 |
| 8 | $\mathrm{T}_{4}$ | II | 48.20 |
| 9 | $T_{12}$ | I | 46.95 |
| 10 | $\mathrm{T}_{1}$ | III | 46.85 |
| 11 | $\mathrm{T}_{18}$ | II | 46.10 |
| 12 | $T_{5}$ | III | 44.15 |
| 13 | $\mathrm{T}_{7}$ | I | 42.70 |
| 14 | ${ }_{11}$ | I | 42.00 |
| 15 | $\mathrm{T}_{15}$ | II | 39.35 |
| 16 | $\mathrm{T}_{16}$ | II | 38.00 |
| 17 | $\mathrm{T}_{17}$ | II | 31.46 |
| 18 | $\mathrm{T}_{14}$ | II | 27.40 |
| 19 | $\mathrm{T}_{10}$ | II | 26.60 |
| 20 | $\mathrm{T}_{3}$ | II | 23.85 |
|  |  | General Mean C.D. | $\begin{aligned} & 46.58 \\ & 31.267 \end{aligned}$ |

Table 18. Ranking of gonotypes for number of clusters per plant

| Renk | Genctype | Cluster to which it belongs | Mean vilue |
| :---: | :---: | :---: | :---: |
| 1 | $T_{18}$ | II | 249.35 |
| 2 | ${ }_{1} 14$ | II | 232.40 |
| 3 | $\mathrm{T}_{2}$ | III | 228.75 |
| 4 | $\mathrm{T}_{5}$ | III | 228.35 |
| 5 | T6 | III | 222.10 |
| 6 | $\mathrm{T}_{19}$ | IV | 220.35 |
| 7 | ${ }_{20}$ | 1 | 218.55 |
| 8 | $\mathrm{T}_{15}$ | II | 214.15 |
| 9 | $\mathrm{T}_{1}$ | 111 | 212.70 |
| 10 | $\mathrm{T}_{12}$ | I | 210.25 |
| 11 | $\mathrm{T}_{4}$ | II | 200.35 |
| 12 | $\mathrm{T}_{8}$ | 1 | 193.95 |
| 13 | $\mathrm{T}_{13}$ | V | 190.05 |
| 14 | $\mathrm{T}_{9}$ | I | 181.65 |
| 15 | $\mathrm{T}_{11}$ | I | 175.50 |
| 16 | T 7 | 1 | 175.30 |
| 17 | $\mathrm{T}_{16}$ | II | 154.72 |
| 18 | $\mathrm{T}_{17}$ | II | 97.80 |
| 19 | $\mathrm{T}_{3}$ | II | 32.50 |
| 20 | $\mathrm{T}_{10}$ | II | 91.80 |
| General Meen |  |  | 189.58 |
| C.D. |  |  | 76.189 |

Table 19. Kanking of genotypes for number of pods per plant

| Kank | Genotype | Clustar to which it belongs | Mean velue |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{T}_{5}$ | 121 | 755.45 |
| 2 | $\mathrm{T}_{1}$ | III | 677.90 |
| 3 | $\mathrm{T}_{18}$ | II | 663.05 |
| 4 | $\mathrm{T}_{12}$ | I | 656.45 |
| 5 | ${ }^{1} 19$ | IV | 653.60 |
| 6 | $\mathrm{T}_{15}$ | 12 | 639.90 |
| 7 | $\mathrm{T}_{2}$ | III | 629.40 |
| 8 | ${ }^{2}$ | II | 614.15 |
| 9 | $\mathrm{T}_{6}$ | III | 602.00 |
| 10 | $\mathrm{T}_{8}$ | I | 601.50 |
| 11 | $\mathrm{T}_{20}$ | $I$ | 599.55 |
| 12 | $\mathrm{T}_{13}$ | V | 583.55 |
| 13 | ${ }^{T} 9$ | $I$ | 532.25 |
| 14 | ${ }_{12}$ | 1 | 492.00 |
| 15 | $\mathrm{I}_{14}$ | II | 473.90 |
| 16 | $\mathrm{T}_{16}$ | II | 456.00 |
| 17 | T7 | I | 448.00 |
| 18 | $\mathrm{T}_{10}$ | II | 207.92 |
| 19 | $\mathrm{T}_{17}$ | II | 204.00 |
| 20 | $\mathrm{T}_{3}$ | II | 201.45 |
|  |  | Genexal Mean | 547.11 |
|  |  | C.D. | 275.390 |

Table 20. Fanking of genctypes for length of pos
bearing branches (cm)


Table 21. Renking of genotypes for number of days from sowing to $50 \%$ flowering

| Rank | Genotype | cluster to which it belongs | Maan <br> value |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{T}_{6}$ | III | 126.75 |
| 2 | $\mathrm{T}_{14}$ | II | 126.00 |
| 3 | $\mathrm{T}_{19}$ | IV | 124.75 |
| 4 | $\mathrm{T}_{9}$ | $I$ | 124.50 |
| 5 | $\mathrm{T}_{8}$ | 1 | 124.00 |
| 6 | $\mathrm{T}_{13}$ | V | 123.50 |
| 7 | $\mathrm{T}_{2}$ | III | 123.25 |
| 8 | ${ }^{7}$ | I | 123.25 |
| 9 | $\mathrm{T}_{12}$ | 1 | 122.50 |
| 10 | $\mathrm{T}_{11}$ | I | 122.50 |
| 11 | $\mathrm{T}_{1}$ | III | 122.25 |
| 12 | $\mathrm{T}_{20}$ | 1 | 120.75 |
| 13 | $\mathrm{T}_{5}$ | III | 120.50 |
| 14 | $\mathrm{T}_{4}$ | II | 120.25 |
| 15 | $\mathrm{T}_{3}$ | II | B2. 25 |
| 16 | $\mathrm{T}_{15}$ | II | 80.50 |
| 17 | $\mathrm{T}_{10}$ | II | 79.50 |
| 18 | ${ }^{T} 18$ | II | 79.00 |
| 19 | ${ }^{5} 16$ | II | 79.00 |
| 20 | $\mathrm{T}_{17}$ | II | 78.50 |
|  |  | Ganeral Mean | 110.58 |
|  |  | C.D. | 1.023 |

Table 22. Fanking of genotypes for number of days from sowing to harvest

| Rank | Genotype | Cluster to winich it belongs | Mean value |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{T}_{1}$ | III | 266.00 |
| 2 | $\mathrm{T}_{14}$ | II | 166.00 |
| 3 | $\mathrm{T}_{5}$ | III | 166.00 |
| 4 | $\mathrm{r}_{12}$ | $I$ | 166.00 |
| 5 | $\mathrm{T}_{19}$ | IV | 165.00 |
| 6 | $\mathrm{T}_{6}$ | III | 166.00 |
| 7 | $\mathrm{T}_{7}$ | 1 | 165.75 |
| 8 | $\mathrm{T}_{8}$ | I | 165.50 |
| 9 | $\mathrm{T}_{13}$ | V | 165.25 |
| 10 | $\mathrm{T}_{2}$ | III | 165.25 |
| 11 | $\mathrm{T}_{11}$ | 1 | 165.00 |
| 12 | ${ }^{1} 20$ | I | 165.00 |
| 13 | ${ }_{9}$ | I | 164.50 |
| 14 | $\mathrm{T}_{4}$ | II | 160.00 |
| 15 | $\mathrm{T}_{16}$ | II | 160.00 |
| 16 | $\mathrm{T}_{18}$ | II | 160.00 |
| 17 | $T_{10}$ | II | 160.00 |
| 18 | $\mathrm{T}_{3}$ | II | 160.00 |
| 19 | ${ }_{17}$ | II | 160.00 |
| 20 | $\mathrm{T}_{15}$ | II | 160.00 |
|  |  | General Mean | 163.800 |
|  |  | C.D. | 1.331 |

Teble 23. Ranking of genotypes for number of seeds per pod


Table 24. Ranking of genotypes for hundred seed waight (g)

| Fank | Genotype | Clustar to which it belongs | Meen value |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{T}_{7}$ | $I$ | 8.22 |
| 2 | T 17 | II | 7.71 |
| 3 | ${ }^{1} 16$ | II | 7.70 |
| 4 | ${ }_{15}$ | II | 7.62 |
| 5 | $\mathrm{T}_{3}$ | II | 7.51 |
| 6 | $\mathrm{T}_{1}$ | III | 7.40 |
| 7 | ${ }^{1} 8$ | 1 | 7.38 |
| 8 | ${ }^{2}$ | $I$ | 7.37 |
| 9 | T 14 | II | 7.36 |
| 10 | T6 | III | 7.20 |
| 11 | T9 | 1 | 7.15 |
| 12 | $\mathrm{T}_{13}$ | V | 7.15 |
| 13 | $\mathrm{T}_{5}$ | III | 7.10 |
| 14 | $\mathrm{T}_{2}$ | III | 6.93 |
| 15 | $\mathrm{T}_{10}$ | II | 6.75 |
| 16 | $\mathrm{T}_{19}$ | IV | 6.72 |
| 17 | ${ }^{2} 18$ | II | 6.71 |
| 18 | T11 | $I$ | 6.71 |
| 19 | $T_{12}$ | I | 6.33 |
| 20 | $\mathrm{T}_{4}$ | II | 6.18 |
|  |  | Generel Meen | 7.163 |
|  |  | C.D. | 1.0106 |

Table 25. Ranking of genotypes for seed yield (g)


Table 26. Phenotypic, genotypic and envirommental variances ( EV , ov and EV) and phenotypic and genotypic coefficient of variaticns (PCV and GCV) for the different cherceters in red gram

| si.No. | Chzracters | PV | GV | EV | PCV | ccv |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Height of plant it harvest (cm) | 1198.520 | 456.480 | $742.04{ }^{\circ}$ | 55.12 | 8.77 |
| 2 | Number of primary brinches at harvest | 14.270 | 1.840 | $12.44^{\circ}$ | 20.40 | 7.32 |
| 3 | Number of secondary branches et harvest | 556.520 | 67.690 | $488.83{ }^{\circ}$ | 60.67 | 17.67 |
| 4 | fumbsr of clusters per plant | 4399.930 | 1487.520 | $2902.41^{\circ}$ | 41.18 | 22.34 |
| 5 | Number of pods per plant 5 | 57035.580 | 18326.790 | 38708.880 | 43.65 | 24.74 |
| 6 | Length of pod bearing brenches ( cm ) | 365.330 | 49.210 | 316.120 | 15.34 | 5.63 |
| 7 | Number of days from sowing to $50 \%$ flowering | 442.230 | 430.190 | 12.040 | 19.02 | 18.76 |
| 8 | Number of days from soking to harvest | t 7.727 | 6.840 | 0.887 | 1.70 | 1.60 |
| 9 | Hunber of seeds ger pod | 0.105 | -0.004 | 0.109 | 7.70 | 1.50 |
| 10 | 200 seed weight (g) | 0.634 | 0.121 | 0.513 | 11.12 | 4.80 |
| 11 | ised yield (g) | 509.210 | 246.600 | 262.610 | 38.37 | 26.70 |

Table 27. Heritability ( $\mathrm{H}^{2}$ ), Genetic Advance (GA) and Genetic Gain (GG) for the different characters in red gram

| S1.No. | Characters | Heritability | Genetic advance | $\begin{aligned} & \text { Genetic } \\ & \text { Gain } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Height of plant at hareest (cm) | 0.381 | 27.172 | 11.16 |
| 2 | Number of primary branches at harvest | 0.113 | 0.996 | 5.38 |
| 3 | Number of secondary branches at harvest | 0.122 | 0.929 | 12.73 |
| 4 | Number of clusters per plant | 0.339 | 46.265 | 24.40 |
| 5 | Number of pods per plant | 0.321 | 157.923 | 28.87 |
| 6 | Length of pod bearing branches (cm) | 0.135 | 5.315 | 4.27 |
| 7 | Number of days from sowing to 50\% flowering | 0.973 | 42.090 | 38.19 |
| 8 | Number of days from sowing to harvest | 0.885 | 5.068 | 3.09 |
| 9 | Number of seeds per pod | -0.038 | -0.025 | -0.59 |
| 10 | 100 Seed weight (g) | 0.191 | 0.313 | 4.36 |
| 11 | Seed yleld (g) | 0.484 | 22.499 | 38.26 |

A scrutiny of the results presented in the above tables revealed the following.

Height of plant at harvest (cm)

The differences mong the genotypes were highly significent for the neight of plant at narvegt (rable 13). The rean height renged from 186.6 cm to 277.15 cm withe generel mean of 243.52 cm . The xenge expressed as percentage of mean was 37.15 indicating a wide range of veriebility for thia character (Table 14). Tg belonging to cluster I recorded the maximum mean height $(277.15 \mathrm{~cm})$ anc $x_{10}$ belonging to cluster II xecorded the minimum mean height ( 186.68 cm ) (Table 15).

The estimeted phenotypic variance (pV) for this coaracter was 1198.52 and the same could be apportioned into gerotypic variance (GV) and envixommental variance (EV) as 456.48 and 742.04 resectively inalceting a higher infiuence of environmentel effect on this charecter. The phenotypic and genotypic coefzicients of varietion (NCV $=55.12$ and $G C V=e .77$ ) also confirmed the above fact (Table 26). Hexitebility ( 0.381 ) and genctic gein es percentoge of mean ( $11.16 \%$ ) here foun to be moderate (Table 27).

Number of primery byenches at harveat

The atetistical analysis anowed that the differencea anong genotypes under study for number of primary branches at harvest were not significent (Table 13). The maximum mean value of 21.20 for this chaxecter was recorded by Tg belonglng to cluster I with a general mean of 18.52, wheseas the minimum mean volua of 12.60 was recorted by $T_{17}$ belonging to Cluster iI (Table 16). The range as percentage of mean was 46.43 (Table 14).

The phenotypic. genotypic and environmental veriances for this character were $14.27,1.84$ and 12.44 respactively, thereby showing that this chaxacter wes highly influenced by environment. This is also confirmed by phenotypic and genotyilc coeficiants of variation which were 2.40 and 7.32 ressectively. The heritebility and genetic gein were obsexved to be 0.113 end 5.38 per cent respectivaly.

Numbex of secondery branches et hervest

The gener el mesn for number of secondary branches at harvest was 46.56 with e range from 23.85 to 72.35 and the range expressed as fercontage of mean was 104.19 (Table 14). indiceting wide range of variability. From
the andysis of variance, it could be seen that this character did not differ significantly among the genotypes (Table 13). The maximum value of 72.35 was recorded by $T_{6}$ belonging to the cluster III while the minimum velue (23.650) by $\mathrm{I}_{3}$ belonging to the clugter II (Table 17).

The whenotypic, genotyplc and environamental variances for this cinaracter were estimated to be 556.52. 67.69 and 480.83 resiectively. Phenotypic and genotypic coefficiente of veriation were 50.67 and 17.67 respectively indicating predominont influence of environment on the variability of this character (Teble 26). This is confirmed by low heritability viue of 0.122 and low genetic gain of 12.73 per cent (Table 27).

Number of clusters per plent

In the ebstract of analysis of variance (Toble 13) it could be sean that the iffareaces for the numer of clusters per plent among the genctyes were highly significent. The character under study showed a mean range from 91.80 to 249.35 with a gencral mean of 109.58 end range as ifercentage of mean of 83.11, indiceting a wide range of variability (Table 14). The maximum mean vilue of 249.35 was recorded by $T_{18}$ belonging to the cluster II and minimum mean value 91.80 wes recorded by $T_{10}$ also belonging to the ame clustex II (Teble 18).

The totel phenotypic veriance of 4389.93 could be aportioned into genotypic and enviromentel verimess as 1487.52 and 2902.41 respectively and the PCV, and GCV. cs 41.16 and 20.34 respectively shoning moderate environmentel influence on the exiression of this choxecter. This is suphorted by modarete heriteblify (0.339) and genetic gain (24.40\%) (Toble 27).

Number of pods per plant

From the abstract of analyais of variance, the differences among the genotypes for number of pcds per piant were seen to be highly aignificant (Table 13). Heximum velue of 755.45 was recordea by $\mathrm{s}_{5}$ belonging to cluster III where as minimum number of 2041.45 was recorded by $T_{3}$ belonging to cluster IIT. Kange as pexcentage of mean was 101.26 with generel mean of 547.11 showing wide range Of variability in the expression of the charecter (Teble 14 end 19).

Whenotypic, genotypic and enviromentel variance and PCV and GCV were 57035.58. 18326.70. 3e70e.88. 43.65 and 24.74 respectivaly showing a comparatively hign contriDution ti environment in the exression of thig choracter (Toble 26). This is elso confirmed by heritability and

# genetic gein which were 0.321 and 20.87 per cent respectivaly (Table 27). 

Length of pod bearing branches (cm)

The statisticel anclyals showed thet the varietal differences for length of pod bearing branches were not signiticant (Tcble 13). The character showed a range from 104.25 to 150.18 witit mern vilue of 124.59 . The renge expressad as excontage of mean was 36.95 (Toble 14). The maximum value ( 150.175 ) wos recorded by $T_{20}$ belongin to ciuster I while the minimun vive wes ohown by ${ }^{2} 10$ belong to cluster If (Tanle 2).

The phenotysic visience (365.33), genotypic varience (49.212) and ${ }_{\lambda}^{n}$ irommental variance (316.12) heve shown the environmentel effect on the expression of the charecter. Tie genotypic coefficient of variation (5.63) and phenotypic coefficiont of variation (15.34). heritabillty ( 0.135 ) and garetic gain ( $4.27 \%$ ) elso confirmed the wedoninent environmantal effect in the total veriability.

Number of days from sowing to $50 \%$ flowering
Number of days from sowing to 50 mar cent flowering snowed vexy high sigificont differarces among the genotypes (Table 13). The meximum meon vilue for this
character wes racorded as 126.75 and minimum value as 78. 50 with generel mean vidue of 110.58 . The renge es wexceotege of mean was estimated es 43.64 (Table 14). The above maximutr and minimum values wer recordea by Te belonging to the cluater III and 17 belonging to the cluster II zeapectively (temie 21).

Senetic corponents apeared to contribute vory highly to the totil vexiction for this cherecter. Te phenotypic and genotyoic verisnce were 442.23 and 430.19 respectively while ervironmental vierience wes only 12.04. This is elso confirmed by fhenotypic coefilcient of vaxiation (19.02), genotypic cogfilcisnt of variation (16.76). haxitability (0.973) ans genteic gein (36.19\%) (Table 26 and 27).

Number of days from soming tu haryest

From the abscract of analysia of vexiance "or nunder of deys from sowing to hervest it was sen that the ofefzuence: mong genotypes were highly significant (seble 13). The ch.rectpr ahowed a very low xange of mean rxom 160 to 166 . with genexti mean of 163.00 and 3.66 as tre xange expzessed da arcontwge of mean (rable 14). The maximum velue (166) wes recorded by $\mathrm{T}_{1}$ belonging to

```
cluster III end minimum (160) by }\mp@subsup{T}{15}{}\mathrm{ belonging to
cluster II (Table 22).
```

Majur pert of the variation for this character was found to be genetic $(P V=7.727$, $G V=6.84$ ). The phenotypic ond genotypic coefficients of veriation were 1.70 and 1.60 respectively. Haxitability (0.885) and genetic gein as percuntege of mean ( $3.09 \%$ ) also confimed the above.

Number of seeds rex pod

Numbur of seads per pod showed little differences anong the genotypes studied (Table 13). The maximun mean velue was recorded as 4.50 and minimum mean value 3.95 with a gentari mean of 4.21 and range es ercotage of mean as 13.06 (Table 14). Ts belonging to cluster III showed tae maximun velue end $T_{3}$ belonging to cluater If showed the minimum.

In the totel variation, enviromental effect was predominant ( $\mathrm{VV}=0.105, \mathrm{GV}=-0.004 \mathrm{ev} \mathrm{EV}=0.109 \mathrm{and}$
 $(-0.038)$ ans genetic gin $(-0.587)$ alvo conifmes the above.

100 Seed weight

The statisticel andysis for 100 seed wight sowed thet the siffer roces anong the genctrees were highly
significent (Teble 13). The maximum seed walght (8.225) end the minimum (6.18) with a general mean of 7.163 and a range as fexcentege of mean as 28.52 were obs rved (Xeble 14). Ty belonging to clustex I mowed the maximum Velue whereas $T_{4}$ belonging cluster II showed the minimum value (Table 24). Fox this charecter the enviroment had a predaminant part in the total veriance (TCV 0.634 ) $C V=0.021 . E V=0.513 . \mathrm{PCV}=12.12$ and $\mathrm{GCV}=4.80)$ (Table 26). A low heritab.lity of 0.191 and a genetic gein of 4.36 ger cent also indicated low genetic effect (Ta.1e 27).

Seed yield

The genctype. differed sionific $n t l y$ ir seed yield (Toble i3). The character ahowed wide ronge of variability with maximum of 89.82 and minimum of 24.031 with general mean of 58.81. The range as percentage of mean was 111.87 which was the highest emong tie characters studied (Trble 14). The maximun vilue was recorded by $I_{9}$ belonging to the cluster I whoreas $T_{1}$ ? belonging to the ciuster in recorded the minimum viue.

The totel varience of seed yield wes shered more or leas equally by genctykic and environtentel virance. The cespective veriances were $\mathrm{pV}=509.21 . \mathrm{cV}=246.60$,

2V - 262.61. The phenotypic and genotypic coefficient of varietions were 38.37 and 26.70 respectively. A comperativaly noderate heritability of 0.484 and genetic gain of 36.26 confirmed the above.

Correlation between yield and yield components

The genotypic and phenotypic correlation coeficients were estimated based on genotypic and phenotypic vaxiances and co-veriancea of the characters (rable 28 and 29).

For all the characters the phenotyple covariances were higher then the genotypic covariances. sxcept hundred seed weight, the genetic components of covariance between yiald and its component cheracters wer predominent. This was confirmed by the indication of higher coheritability between yield and its component charscters except hundred seed welght (Table 30).

The correlation coefficients between yield and its component charactars and inter correlations arong the yield components both at genotypic and phenotypic levels are furnished in Tobles 31 and 32.

Table 28. Estimates of genotypic variances and covariances for different characters in redgram (Components of variances in brackets)

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | ${ }^{6}$ | $x_{7}$ | $\mathrm{x}_{8}$ | $\mathrm{x}_{9}$ | $x_{10}$ | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (456.476) | 20.637 | 137.444 | 792.072 | 2790.057 | 139.860 | 402.055 | 55.029 | 1.857 | 0.940 | 278.330 |
| ht of pl |  |  | 12863 | 36.666 | 146.026 | 1.680 | 21.359 | 2.550 | 0.106 | 0.332 | 16.217 |
| Number of primery branches at harvest ( $\mathrm{x}_{2}$ ) |  | (1.836) | 12.86 | 36.6 |  |  | 164.606 | 21.289 | 0.828 | 0.644 | 84.938 |
| Number of secondary branches at harvest ( $x_{3}$ ) |  |  | (67.694) | 236.180 | 749.432 | 29.409 | 164.606 | 21.289 | 3.155 | -4.546 | 523,833 |
| Number of clusters per plant ( $\mathrm{x}_{4}$ ) |  |  |  | (1487.523) | 5286.421 | 209.023 | 552.754 | 73.186 | 3.155 | -4.546 |  |
| Number of clusters per piant ( $x_{4}$ ) |  |  |  |  | (18326.703) | 814.947 | 2106.695 | 285.965 | 8.014 | -17.586 | 2118.042 |
| Number of pods per plant ( $\mathrm{X}_{5}$ ) |  |  |  |  |  | (49.212) | 109.555 | 14.866 | 0.826 | 0.919 | 95.843 |
| Length of pod bearing branches ( $x_{6}$ ) |  |  |  |  |  |  | (430.194) | 54.335 | 1.513 | -2.157 | 208.917 |
| Number of days from sowing to sox flowering ( $x_{7}$ ) |  |  |  |  |  | , |  | (6.841) | 0.246 | -2.237 | 95.749 |
| Number of days from sowing to harvest ( $\mathrm{x}_{8}$ ) |  |  |  |  |  |  |  |  | (-0.004) | 0.001 | 1.147 |
| Number of seeds per pod ( $\mathrm{x}_{9}$ ) |  |  |  |  |  |  |  |  |  | (0.121) | 0.064 |
| 100 - Seed weight ( $\mathrm{x}_{10}$ ) |  |  |  |  |  |  |  |  |  |  | (246.599 |
| Seed yield (y) |  |  |  |  |  |  |  |  |  |  |  |

Table 29. Estimatea of phenotypic variancea and covariances for different characters in red gram (Components of variances in brackets)

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\times_{4}$ | $\times{ }_{5}$ | $\mathrm{x}_{6}$ | $\mathrm{x}_{7}$ | $\mathrm{x}_{8}$ | $\mathrm{x}_{9}$ | ${ }^{10}$ | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Height of plant at harvest ( $\mathrm{x}_{1}$ ) | (1198.52) | 42.566 | 345.065 | 1271.862 | 4901.829 | 407.947 | 411.362 | 48.836 | 4.317 | 0.415 | 368.477 |
| Number of primary branches at harvest ( $x_{2}$ ) |  | (14.271) | 47.140 | 122.873 | 394.905 | 14.818 | 20.344 | 2.240 | 0.144 | -0.796 | 30.583 |
| Number of secondary branches at harvest ( $x_{3}$ ) |  |  | (556.522) | 637.131 | 2229.349 | 159.339 | 160.601 | 17.733 | 2.037 | --3.227 | 173.942 |
| Number of clusters per plant ( $x_{4}$ ) |  |  |  | (4389.931) | 14575.711 | 601.220 | 572.086 | 72.862 | 6.552 | -11.299 | 654.154 |
| Number of poda per plant ( $\mathrm{x}_{5}$ ) |  |  |  |  | (57035.582) | 1755.579 | 2201. 204 | 262.868 | 30.101 | -42.812 | 2450.138 |
| Length of pod bearing branches ( $\mathrm{x}_{6}$ ) |  |  |  |  |  | (365.331) | 130.842 | 14.691 | 0.070 | 1.808 | 102.285 |
| Number of days from sowing to $50 \%$ flowering ( $x_{7}$ ) |  |  |  |  |  |  | (442.234) | 54.258 | 1.491 | -1.892 | 203.128 |
| Number of days from sowing to harvest ( $x_{8}$ ) |  |  |  |  |  |  |  | (7.727) | 0.167 | -0.287 | 25.493 |
| Number of seeds per pod ( $\mathrm{x}_{9}$ ) |  |  |  |  |  |  |  |  | (0.105) | 0.030 | 1.687 |
| 100 - Seed weight ( $\mathrm{x}_{10}$ ) |  |  |  |  |  |  |  |  |  | (0.634) | 0.512 |
| Seed yield (y) |  |  |  |  |  |  |  |  |  |  | (509.214) |

Table 30. Heritability and coheritability among seed yield and its ten components in redgrams. (Components of heritability in brackets)

|  | ${ }^{\text {x }}$ | $x_{2}$ | ${ }^{3}$ | $x_{4}$ | $\mathrm{x}_{5}$ | $\mathrm{x}_{6}$ | $\mathrm{x}_{7}$ | $x_{8}$ | $x_{9}$ | ${ }^{10}$ | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Height of plant at harvest ( $\mathrm{x}_{1}$ ) | (0.381) | 0.485 | 0.398 | 0.623 | 0.569 | 0.343 | 0.977 | 1.127 | 0.430 | 0.267 | 0.755 |
| Number of primary branches at harvest ( $\mathrm{x}_{2}$ ) |  | (0.129) | 0.277 | 0.298 | 0.370 | 0.113 | 1.050 | 1.138 | 0.735 | 0.417 | 0.530 |
| Number of secondiry branches at harvest ( $x_{3}$ ) |  |  | (0.122) | 0.371 | 0.336 | 0.185 | 0.124 | 1.201 | 0.406 | 0.199 | 0.488 |
| Number of plusters per plant ( $x_{4}$ ) |  |  |  | (0.339) | 0.363 | 0.348 | 0.966 | 1.004 | 0.482 | 0.402 | 0.801 |
| Number of pods per plant ( $\mathrm{x}_{5}$ ) |  |  |  |  | (0.321) | 0.464 | 0.957 | 1.088 | 0.266 | 0.411 | 0.864 |
| Length of pod bearing branches ( $\mathrm{x}_{6}$ ) |  |  |  |  |  | (0.135) | 0.837 | 1.012 | 0.038 | 0.508 | 0.937 |
| Number of days from sowing to sox flowering ( $x_{7}$ ) |  |  |  |  |  |  | (0.973) | 1.001 | 1.015 | 1.140 | 1.028 |
| Number of days from sowing to harvest ( $x_{B}$ ) |  |  |  |  |  |  |  | (0.885) | 1.472 | 0.826 | 1.010 |
| Number of seeds per pod ( $\mathrm{x}_{9}$ ) |  |  |  |  |  |  |  |  | (-0.037) | 0.038 | 0.680 |
| 100 - Seed weight ( $\mathrm{x}_{10}$ ) |  |  |  |  |  |  |  |  |  | (0.191) | 0.125 |
| Seed yield ( y ) |  |  |  |  |  |  |  |  |  |  | (0.484) |

Table 31. Genotypic correlations among different characters in red gram

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $\mathrm{x}_{5}$ | $x_{6}$ | $x_{7}$ | ${ }^{\times 8}$ | ${ }^{9}$ | ${ }^{10}$ | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Helght of plant at harvest ( $\mathrm{x}_{1}$ ) | 1.000 | 0.713** | 0.782** | 0.961** | 0.965** | 0.933** | 0.907** | 0.985** | 1,383** | 0.126 | 0.830 ** |
| Number of primery branches at harvest ( $\mathrm{x}_{2}$ ) |  | 1.000 | 1.154** | 0.702** | 0.796** | 0.177* | 0.760** | 0.719** | 1,245** | -0.704* | 0.762** |
| Number of secondary branches it harvest ( $x_{3}$ ) |  |  | 1.000 | 0.744** | 0.673** | 0.510** | 0.965** | 0.989** | 1.601** | -0.225* | 0.657** |
| Number of clusters per plant ( $\mathrm{x}_{4}$ ) |  |  |  | 1.000 | 1.012** | 0.773** | 0.691** | 0.726** | 1.302** | -0.339* | 0.865** |
| Number of pods yer plant ( $\mathrm{x}_{5}$ ) |  |  |  |  | 1.000 | 0.858** | 0.750** | 0.808** | 0.942** | -0.373* | 0.996** |
| Langth of pod bearing branchea ( $\mathrm{x}_{6}$ ) |  |  |  |  |  | 1.000 | 0.753** | 0.810** | 1.873** | $0.376 *$ | *0.870** |
| Number of daya fron sowing to 50x flowering ( $x_{7}$ ) |  |  |  |  |  |  | 1.000 | 1.002** | 1.161** | -0.299* | *0.642** |
| Number of days from sowing to harvest ( $\mathrm{x}_{8}$ ) |  |  |  |  |  |  |  | 1.000 | 1.497** | -0.261* | 0.627** |
| Number of seeds per pod ( $\mathrm{x}_{9}$ ) |  |  |  |  |  |  |  |  | 1.000 | 0.054 | 1.163** |
| 100 - Seed weight ( $\mathrm{x}_{10}$ ) |  |  |  |  |  |  |  |  |  | 1.000 | 0.012 |
| Seed yield ( y ) |  |  |  |  |  |  |  |  |  |  | 1.000 |

Table 32. Phenotypic correlations among different charecters in rad gram

|  | $\mathrm{x}_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | ${ }_{6}$ | $x_{7}$ | ${ }^{8} 8$ | $\mathrm{x}_{9}$ | ${ }^{10}$ | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Helght of plant at harvest ( $\mathrm{x}_{1}$ ) | 1.000 | 0.325** | 0.423** | 0.554** | 0.593** | 0.617** | 0.56i** | - 507** |  |  |  |
| Number of primary branches at harvest ( $x_{2}$ ) |  | 1.000 | 0.529** | 0.491** | 0.483** | $0.20{ }^{*}$ | 0.256* | 0.213* | 0.384** | -.015 | 0.472** |
| Number of secondary branches at harvest ( $x_{3}$ ) |  |  | 1.000 | 0.408** | 0.396** | 0.353** | 0.324** | 0.270* | 0.266* | -0.265 -0.172 | 0.359** |
| Number of clusters per plant ( $\mathrm{x}_{4}$ ) |  |  |  | 1.000 | 0.921** | 0.475** | 0.411** | 0.396** | 0.305** | $-0.214^{*}$ | -.327********) |
| Number of pods per plant ( $\mathrm{x}_{5}$ ) |  |  |  |  | 1.000 | 0.385** | 0.438** | 0.396** | $0.388^{* *}$ | -0.225* | 0.455** |
| Length of pod beoring branches ( $\mathrm{x}_{6}$ ) |  |  |  |  |  | 1.000 | 0.326** | 0.277** | 0.124 | -0.119 | 0.237* |
| Number of deys from sowing to 50\% flowering ( $x_{7}$ ) |  |  |  |  |  |  | 1.000 | 0.926** | 0.218 * | -0.113 | $0.428 * *$ |
| Number of seeds per pod ( $x_{9}$ ) |  |  |  |  |  |  |  | 1.000 | 0.185 | -0.130 | $0.406 * *$ |
| 100 - Seed weight ( $\mathrm{x}_{10}$ ) |  |  |  |  |  |  |  |  | 1.000 | 0.118 | $0.230 *$ |
| Seed yield (y) |  |  |  |  |  |  |  |  |  | 1.000 | 0.029 |
|  |  |  |  |  |  |  |  |  |  |  | 1.000 |

* Significant at $5 \%$ level
* Significant at $1 \%$ level

The genotypic and phenotypic correlation coefficients followed the same trend of association. Generally the genotypic correlation coefficients were slightly higher than the phenotypic correlation coefficients. Mere after the word correlation would denote the genotypic correlation. All the yield component characters except hundred seed weight showed significant correlation at one per cent level with seed yield (Table 31). Among these, number of seeds per pod (1.163) followed by number of pods per plant ( 0.996 ), length of pod bearing branches ( 0.870 ), number of clusters per plant (0.865), height of plant at harvest (0.830). number of primary branches at harvest (0.762), number of secondary branches at harvest (0.657), number of days from sowing to 50 per cent flowering (0.642) and number of days from sowing to harvest (0.627) showed positive significant correlation with yield.

Number of seeds per pod showed significant positive correlation with all the yield components. Number of pods per plant showed signisicant positive correlation with all other characters except 100 seed weight to which it was negative. Length of pod bearing brancies indicated significant positive correlation with all other characters except number of primary branches at harvest. Association of number of clusters per plant with all other characters
except hundred seed weight was significantly positive, while with hundred seed weight it was significantly negative. Height of plant at harvest showed significantly positive association with all other characters except hundred seed weight. Number of primary branches at harvest indicated significant positive association with all other characters except length of pod bearing branches and hundred seed weight. Association of this character with hundred seed weight was significantly negative. Number of secondary branches at harvest showed significant positive association with all other characters except hundred seed weight, to which it was significantly negative. Association of number of days from sowing to 50 per cent flowering with all other yield components were significantly positive except with a significantly negative association to hundred seed weight. Number of days from sowing to harvest showed significantly positive association with all other characters except significantly negative association with hundred seed weight. Hundred seed weight showed significant negative association with all other characters except height of plant at harvest, length of pod bearing branches and number of seeds per pod. Association of hundred seed weight with length of pod bearing branches was the only one which was significantly positive that it could make.

The phenotypic correletion of yield with all other components of yield showed the same trend i.e. agnificently positive association of yield with its components, except hundred seed weight. Sut the magnitude of association was lightly lesser than the genotypic associstion.

Path coefficient analysis

In order to show the direct and infirect effect of yield components on yield. the path coefficient analysis was done considering all the characters. The genotypic correlations of seed yield and its attributes were partitioned into direct and in irect contributions of the components on seed yield. Date represented in Table 33.

The results showed that more than 92 per cent of the variability in sedd yield per plant was contributed by the 10 component characters alone and in combinetions (Residutl effect $=\longdiv { 0 . 0 7 2 2 7 ) }$. It is seen from the toble that maximum positive direct effect on seed yield was for number of pods per plant (4.8914) followed by hundred seed weight (1.6868) where es maximum negetive direct effect wes for number of clueters per plent (-2.7586) followed by

Table 33. Direct and indirect genotypic effects of ten concributing characters on seed yleld in red gram

| Direct effect on seed yield |  | $x_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{x}_{3}$ | $x_{4}$ | $x_{5}$ | ${ }_{6}$ | $\mathrm{x}_{7}$ | ${ }^{8} 8$ | $x_{9}$ | ${ }^{1} 10$ | Totel correlation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Height of plant at harvest ( $\mathrm{x}_{1}$ ) | -1.4718 | - | 0.8601 | 0.5832 | -2.7284 | 3.5512 | -0.1065 | -0.0358 | -0.667 | -0.5180 | 1.3630 | 0.830 |
| Number of primary branches at harvist ( $x_{2}$ ) | 0.8732 | -1.0490 | - | 0.9361 | -1.9366 | 3.8936 | 0. 0722 | -0.0434 | 0.0001 | -0.7960 | -1.1875 | 0.762 |
| Number of secondary branches at harvest ( $x_{3}$ ) | 0.8112 | -1.1510 | 1.0077 | - | -2.0525 | 3.2919 | 0. 2081 | -0.0550 | 0.0001 | 1.0239 | -0.3795 | 0.657 |
| Number of clusters per plant ( $\mathrm{x}_{4}$ ) | -2.7588 | -1.4144 | 0.6130 | 0.6035 | - | 4.9501 | 0.3154 | -0.0394 | 0.0001 | -0.e327 | -0.5718 | 0.865 |
| Number of pods per flant ( $\mathrm{x}_{5}$ ) | 4.8914 | -1.4203 | 0.6951 | 0.5459 | -2.7919 | - | 0.3501 | -0.0428 | 0.0001 | -0.6021 | -0.6292 | 0.996 |
| Length of pod bearing branches ( $\mathrm{x}_{6}$ ) | 0.4081 | 0.1546 | 0.4137 | -0.1325 | 4.1968 | 0.4081 | - | -0.0662 | -0.3528 | -0.6395 | 0.6342 | 0.870 |
| Number of days from sowing to 50\% fiowering ( $x_{7}$ ) | -0.0570 | -1.3349 | 0.6637 | 0.7828 | -1.9063 | 3.6686 | 0.3703 | - | -0.2362 | -0.7425 | -5.5044 | 0.641 |
| Number of days from sowing to harvest ( $x_{8}$ ) | -0.2357 | -1.4497 | 0.6279 | 0.8023 | -2.0029 | 3.9523 | 0.3305 | 0.0001 | - | -0.9514 | -0.4403 | 0.627 |
| Number of seeds per pod ( $\mathrm{x}_{9}$ ) | -0.6395 | -2.0355 | 1.0872 | 1.2987 | -3.5919 | 4.6077 | -0.6395 | -0.0662 | -0.3528 | - | 0.0911 | 1.163 |
| 100 - Seed weight ( $\mathrm{x}_{10}$ ) | 1.6868 | -0.1864 | -0.6148 | -0.1825 | 0.9352 | -1.8245 | -0.6342 | 0.0170 | 0.0612 | -0.0345 | - | 0.012 |

Residual effect $=\sqrt{0.07227}$
height of plant at harvest (-1.4718). The direct effect of number of primary branches at harvest was estimated as 0.8732 indicating a positive effect on yield for this character. The same positive direct effect on seed yield was also indicated by number of secondary branches at harvest with an estimated value of 0.8112 . The least positive direct effect on seed yield was for length of pod bearing branches (0.4081). Number of seeds per pod showed a negative direct effect on seed yield (-0.6395) followed by number of days from sowing to harvest ( -0.2357 ). The least negative direct effect on seed yield was number of days from sowing to 50 per cent flowering ( -0.0570 ).

The highly significant correlation between number of pods per plant and seed yield (0.996) was resulted from the high positive direct effect (4.8914) whereas maximum significant correlation between number of seeds per pod and seed yield (1.163) might have resulted from the high positive indirect effects on yield by number of seeds per pod through number of pods per plant (4.6077). The high significant positive genotypic correlation between yield and number of cluster per plant (0.865) was mainly due to the maximum positive indirect effect of number of cluster per plant on yield through number of pods per plant (4.9501). The maximum negative indirect effect of number

# of days from sowing to 50 per cent flowering on yield was through hundred seed welght (-5.5044). <br> Selection index 

Selection index through discriminent function analysis was "itted to acertain the extent of contribution of each factor towards seed yield per plant and also to predict the seed yield based on the phenotypic performance of the selected cherecters viz.. seed yield, haight of the plent at harvest. number cf primary brenches at harvest, number of clusters ger plant, numbar of pods per plent, number of seeds ger pod and hundred seed weight. These characers were selected based on the direct and in irect effecta and genotypic correlations. The discriminent function for the different conbinations is presented in Table 34. Teble 35 gives the genetic advance terough the various combineticrs, its efficiency over direct selection end scope for further inclusion of charecters.

Maximum efficiency of 1.098 over dixect selection was for the selection index constituting seven characters viz.. yield, number of seeds per pod, hundred seed weight. nelght of the plant at harvest, number of primery branches,

Table 34. Discriminant function for the different combinations

| Sl.No. | Combinations | Discriminant function |
| :---: | :---: | :---: |
| 1 | y, $\mathrm{x}_{9}$ | $0.47326 y+3.32009 x_{9}$ |
| 2 | $y, x_{9}, x_{5}$ | $0.38654 y-1.38115 x_{9}+0.021259 x_{5}$ |
| 3 | $y, x_{9}, x_{5}, x_{10}$ | $0.382103 \mathrm{y}-1.24758 \mathrm{x}_{9}+0.01938 \mathrm{x}_{5}+0.0648 \mathrm{x}_{10}$ |
| 4 | Y, $x_{5},{ }^{10}$ | $0.38083 \mathrm{y}+0.018756 \mathrm{x}_{5}+0.0656 \mathrm{x}_{10}$ |
| 5 | $y, x_{9}, x_{5}, x_{10}, x_{4}$ | $0.38548 \mathrm{y}-2.08084 \mathrm{x}_{9}+0.0337 \mathrm{x}_{5}+0.06915 \mathrm{x}_{10}-$ |
|  |  | $0.06845 \mathrm{x}_{4}$ |
| 6 | $y, x_{9}, x_{5}, x_{10}, x_{4}, x_{1}$ | $0.3749 y-2.6478 \mathrm{x}_{9}+0.0337 \mathrm{x}_{5}+0.06915 \mathrm{x}_{10}-$ |
|  |  | $0.0634 \mathbf{x}_{4}+0.03232 \mathbf{x}_{1}$ |
| 7 | $y, x_{9}, x_{5}, x_{10}, x_{4}$, | $0.38264 y-2.8379 x_{9}+0.03277 x_{5}+0.0629 x_{10}$ |
|  | $\mathrm{x}_{1}, \mathrm{x}_{2}$ | $-0.0537 x_{4}+0.03603 x_{1}-0.027215 x_{2}$ |

[^1]Table 35. Genetic advance (GA) through seiection index, efficiency over direct selection and scope for further inclusion of characters (1- rî̀

| S1. <br> No. | G.A.through <br> selection <br> index | Efficiency <br> over direct <br> selection | Gain in <br> efficiency <br> $(\%)$ | I-rin |
| :--- | :--- | :--- | :--- | :--- | :--- |

$y=$ yield
$x_{9}=$ number of seeds/pod
$x_{10}=100$ Seed weight
$x_{1}=$ height of the plant at harvest
$x_{2}=$ number of primary branches at harvest
$x_{8}=$ number of clusters/plant
$x_{5}=$ number of pods/plant


#### Abstract

number of clusters per plant and number of pods por plant and its gain in efficiency was 9.8 per cent. Scope for further inclusion of character for improving the salection index was only 41 per cent. 1.e. 59 per cent of the genetic improvement through selection could be achleved through the above combination. Though the gein inefficiency was slightly lower ( $8.4 \%$ ) the selection Index constituting the charcters yiadd, nurbor of poda/ plant and huncired seed welght was also promising since it included only three charecters. The fficiency of this conbination over airect selection was 1.0e4. The genetic advance of the above two combinations of selection wes 24.72 and 24.41 respectivoly.


Estimates of the selaction index using characters. v12.. seed yield, nurber of pods per plant and hundred seed weight and the ranking given to the genotypes according to the selection irdex and yield are givan in Table 36.

Besed on the ebove Alscriminant function, the genotyp $T_{9}$ which nes en estimeted selection index of 44.66 secured $1 s t$ renk in both i.e. based on aelection index ana yield. In the case of $T_{1}$ which has on estimeted

Table 36. Estimates of the selection index using characterx seed yield (y) Number of pods per plant $\left(x_{5}\right)$ and 100 sead weight $\left(x_{10}\right)$

Genotype $\quad$ Selection index \begin{tabular}{cc}
Renk eccording to <br>

\& | Selection |
| :---: |
| Index | <br>

\hline
\end{tabular}

| $\mathrm{I}_{1}$ | 44.3100 | 2 | 2 |
| :---: | :---: | :---: | :---: |
| $\mathrm{r}_{2}$ | 41.6566 | 4 | 3 |
| $\mathrm{T}_{3}$ | 16.1284 | 19 | 19 |
| $\mathrm{T}_{4}$ | 30.0420 | 14 | 15 |
| $\mathrm{T}_{5}$ | 42.9595 | 3 | 6 |
| $\mathrm{T}_{6}$ | 33.6473 | 12 | 12 |
| $\mathrm{T}_{7}$ | 27.7889 | 16 | 14 |
| $\mathrm{T}_{8}$ | 37.9298 | 7 | 7 |
| ${ }^{2} 9$ | 44.6600 | 1 | 1 |
| $\mathrm{T}_{10}$ | 18.6460 | 18 | 18 |
| $\mathrm{T}_{11}$ | 26.2077 | 17 | 17 |
| $\mathrm{T}_{12}$ | 36.1171 | 8 | 10 |
| $\mathrm{T}_{13}$ | 34.9458 | 10 | 9 |
| $\mathrm{T}_{14}$ | 38.1035 | 6 | 5 |
| $\mathrm{T}_{15}$ | 41.8024 | 5 | 4 |
| $\mathrm{T}_{16}$ | 28.5716 | 15 | 13 |
| $\mathrm{T}_{17}$ | 13.4817 | 20 | 20 |
| $\mathrm{T}_{18}$ | 30.2094 | 13 | 16 |
| $\mathrm{T}_{19}$ | 34.8296 | 11 | 11 |
| $\mathrm{T}_{20}$ | 35.6244 | 9 | 8 |

eelection index of 44.32 receivad 2nd rank in both based on selection index and yield. The genotype $\mathbf{T}_{2}$ which got 3rd renk in ranking besed on yield. got 4 th renk besed on selection index. $T_{5}$ which got $3 x d$ rank in ranking besed on selection index, secured 6th rank besed on yield. Likewise changed set of genotypes wes formed in renking based on selection index and yield.
estimates of selection index which showed the meximum relative eficiency over direct selection ( $9.8 \%$ ) using charocters sead yield, number of seeds per pod, number of pods jer plant, hundred seed weight, number of clusters par $\mathrm{p}^{2}$ ant, height of the plant at harvest and number of primary brenches are presented in rable 37.

Ranks were giver to the genotypes $T_{1} \ldots .{ }_{20}$ based on the above selection index and yiald.

Besed on selection index 1 at rank was given to $T_{1}$ (selection index $=39.186$ ) while based on yield lst rank wes gone to $\mathrm{T}_{9}$. In the adection indax ranking. $\mathrm{T}_{9}$ secured only 2nd rank. In the case of ranking based on yield, 1st rank to $\mathrm{T}_{\mathrm{g}}$ and 2nd rank to $\mathrm{r}_{1}$. Likewise $\mathrm{I}_{2}$ got 3 rd renk based on yield while it wos $T_{15}$ which got tie 3xa rank besed on selection index.

The mean visiues of eleven characters of 112 genctypes of red gram are presented in fependix $x$. $D^{2}$ vinues considering all the eleven characters simulteneoumiy are given in Appendix II.

Table 37. Estimates of selection index using charecters seed yield ( $y$ ). number of seeds/pod ( $x_{9}$ ) number of pods/plent $\left(x_{5}\right)$, 100-seed weight $\left(x_{1}\right)$, number of ciusters per plant $\left(x_{4}\right)$,
height of number of primary branchea at harvest $\left(x_{2}\right)$.
Genotype Selection index $\frac{\text { Rank eccording to }}{\substack{\text { Selection } \\ \text { Index }}}$

| $T_{1}$ | 39.188 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{2}$ | 34.600 | 5 | 3 |
| $\mathrm{T}_{3}$ | 9.472 | 19 | 19 |
| $T_{4}$ | 24.541 | 13 | 15 |
| $T_{5}$ | 37.468 | 4 | 6 |
| $\mathrm{T}_{6}$ | 26.663 | 12 | 12 |
| $\mathrm{T}_{7}$ | 21.252 | 16 | 14 |
| $\mathrm{T}_{8}$ | 34.006 | 6 | 7 |
| ${ }^{T} 9$ | 38.506 | 2 | 1 |
| ${ }_{10}$ | 11.668 | 18 | 18 |
| $\mathrm{T}_{11}$ | 19.715 | 17 | 17 |
| $\mathrm{r}_{12}$ | 30.856 | 8 | 10 |
| $\mathrm{T}_{13}$ | 29.444 | 10 | 9 |
| $\mathrm{T}_{14}$ | 29.921 | 9 | 5 |
| $\mathrm{T}_{15}$ | 38.306 | 3 | 4 |
| $\mathrm{T}_{16}$ | 22.147 | 14 | 13 |
| $\mathrm{T}_{17}$ | 6.914 | 20 | 20 |
| ${ }_{18}$ | 22.039 | 15 | 16 |
| $\mathrm{T}_{19}$ | 28.567 | 11 | 11 |
| $\mathrm{T}_{20}$ | 31.210 | 7 | 8 |

Relative efficiency $=9.8 \%$ over direct melection

Discussion

## DISCUSSIOM

In any plant breeding programme, the main objective is the development of elite crop varieties through genetic upgrading of economic crops. This usually follows two pathways viz.. "production breeding" and "defect elimination breeding" or "resistance breeding". Though these two pathways are termed differently, they go side by side and are complementary. Production breeding with which the breeder is mainly concerned, is usually followed for evolving varieties or improving the existing ones. The varieties thus evolved or synthesised should have a better genetic make up within a morphological frame work that will result in a better and an efficient absorption of plant food ingredients from the soil and also in the harvest of solar energy, resulting in a better conversion of the above factors into the final harvestable produce.

The basic information which a breeder usually requires as a prerequisite to any breeding programe of a particular crop species, is the extent of variability present in the available germplasm. Informations on heritability and estimates of genetic advance that could be obtained in the next cycle of selection are of vital importance to the breeder in deciding the appropriate method of breeding.

The importance of genetic diversity of parents in hybridisation programe has been emphasised by many workers. The more diverse the parents within a reasonable range, the more would be the chances of improving the characters in question. Mahalanobis $D^{2}$ statistics has been found to be a powerful tool in the hands of plant breeders to assess the degree of relationship among the genotypes and to group them based on their phenotypic expression.

A knowledge on the degree of association among quantitative characters would help the breeder to pinpoint a character or characters whose selection would automatically result in an overall progress of such characters which are positively correlated with yield and would also result in the elimination of such characters which are negatively correlated with the yield.

The association analysis based on correlation coefficients of components with yield will not prove a true picture of the relative merits or demerits of each of the components to final yield, since an individual component may either have a direct influence in the improvement of yield or may have influence through other components or both. Hence an assessment of the merit of each character by analysing the direct and indirect effects of each

## character towards yield is a valuable information in selecting the characters for crop improvement.

For selecting suitable genotypes from a highly heterogenous mass population, the selection should always be based on the minimum number of characters. An estimation of discriminant function based on such most reliable and effective characters, is a valuable tool for the practical plant breeder. Selection of genotypes based on a suitable index is highly efficient in any breeding programme (Hazel, 1943). More over, discriminant function would ensure a maximum concentration of the desired genes in the plants or in the lines selected.

Thus the objectives and methodology of the present investigations which basically deal with obtaining the relevant genetic informations as a prerequisite for production breeding programe in a number of red gran genotypes are fully justified. The results obtained are discussed in the following pages.

Variability in red gram genotypes

The one hundred and twelve red gram genotypes were observed to be significantly different for eight out of eleven characters atudied, viz. height of plant at harvest,
number of primary branches at harvest, number of clusters per plant, number of pods per plant, length of pod bearing branches, number of days from sowing to 50 per cent flowering, hundred seed weight and seed yield.

Of the various estimates of quantitative variability mean range and variation around the means are the basic ones. Success in genetic improvement of a crop would, to a large extent, depends upon a wide genetic base resulting in a wider genetic variability. In the present investigation It is seen that the range of variation for almost all the characters is large particularly in respect of height of plant at harvest ( 129.00 to 354.00 cm ), number of primary branches at harvest (5.70 to 20.80), number of secondary branches at harvest (18.70 to 286.40), number of elusters per plant ( 9.85 to 322.40 ) , length of pod bearing branches ( 73.00 to 218.50 cm ), number of days from sowing to 50 per cent flowering ( 71.00 to 105.00 ), 100 seed weight ( 5.55 to 10.25 g ) as well as seed yield ( 6.80 to 297.40 g ). This indicated the presence of enough variability in the population under study. The investigations of Rathnaswamy et al. (1973), Ram et al. (1976), Awatade et al. (1980), Asawa et al.(1981), Bainiwal et al. (1981), Dumbre and Deshmukh (1983), Shoran (1983) and Jagshoran et al. (1985) have also shown that a wide range of variation was present for most of the characters considered in this crop.

More than the total observed variation. it is the nature of that varietion which is more important. The totil variability can be divided into heritable end nonheritel components. Variance estimates in the present study have indicated the influence of both genetic and environmental factors.
fmong the characters, helght of the plant at harvest anowed the maximum heritability (0.803). followed by number of deys to 50 per cent flowering (0.773), number of cluster per plent ( 0.606 ). seed yield (0.546) and number of pods per plent (0.535) thoreby suggesting thet these traits axe mainly governed by genetic causes and are reiloble characters for aelection. The heritability of the characters like number of socondery branches at harvast (0.093). number of deys from soking to harvest (0.0c4). and number of seeds per pod (0.010) are histily infiuenced by enviromment.

Genetic divergence among the red gram genotypes

One of the main objectives of the present investigation was to assess the genetic diversity among the genotypes of red gram and to group them into clusters based on the genetic distance. On the basis of genetic diatance computed with reference to eleven economic characters, the 112 genotyees of red gram could be grouped Into five clusters. The distribution or genotypes into various clusters showed no regularity. Cluster I contains elghty genotypes, cluster II contains twenty six genotypes, cluster III con ains four and cluster IV and $V$ one each. One hundred and six genotypes were found to comprise just in two clusters in the present study. Such irregular pattern of distribution has been reported by Malik et al. (1985), and Hazarika and Singh (1986).

It is interesting to note that the clustering pattern did not follow the geographic pattern. Within the cluster, the genotypes showed wide geographic diversity. In cluster I, 29 genotypes belonged to Delhi collection, 10 genotypes belonged to ICRISAT, 33 genotypes to the local collection from Kerala and eight genotypes to the collection from Karnataka. In cluster II all the 26 belonged to the improved genotypes from TNAU Coimbatore. Among the four
genotypes included in the cluster III, one genotype belonged to Delhi collection and the rest to locel collections from Kerale. Clusters IV and V contained only one genotype each received from Delhi. These results indicated thet genotypes of the ame region of origin cculd foll into different clusters. These findings are In agrement with the results of Asewa (1979), Dumbre end Dashmukh (1984) and Malik at al. (1985).

Ameng the five clusters gtudied, cluster III gncwad high mean valueg for many of the desirable charecters like yiela, helght of the plant at harvest, number of cluster fer plant, numbar of ods per plant, length of pod beering brenches, number of days from sowing to 50 par cent flowering etc. indicating thet cluster III is superior to the rest of the clusters in respect of desirable attributes. Generally low vilues are attributed to cluster II in most of the charecters sinowing that cluster II is inferior mong the rest. Cluster IV is muerior for chardeters like number of gimary branches at harvest and number of days from awing to hervest. Rest of the clusters are intermediery in position.

$$
D^{2} \text { and } D \text { valueg presented in Table } 11 \text { and Table } 12
$$

heve indicated that the minimum genetic distance was
between cluster III and IV and maximum between cluster IV and V. Rest of the clusters were found to occupz intermediary positions as regard to their genetic distance with other clusters. Thus it is to be concluded that cluster III and cluster IV are genetically closer while cluster IV and $V$ are wider.

A cluster diagram showing all the five clusters along with their intercluster distances is furnished in Fig.1. This diagram gives an overall picture of the distribution of the five clusters. It is also seen that clusters I, III and IV are relatively close while II and $V$ are distant between themselves and also from the rest.

The maximum intracluster distance was shown by cluster II (6.47) followed by cluster I (4.79) and cluster III (3.78), thereby indicating a higher degree of variability in cluster II as compared to clusters I and III. This fact fully justified the selection of eight genotypes from cluster II, six genotypes from cluster $I$, four from cluster III one each from clusters IV and $V$ for further detailed study. Further, these 20 genotypes truly represented the wide spectrum of variability present in the population studied, since among the twenty, there were genotypes representing high, medium, and low values for all the 11 parameters based on which the variability in the population

FIG.1. CLUSTER DIAGRAM OF ONE HUNDRED AND TWELVE GENOTYPES IN RED GRAM

$\leftrightarrow$ inter cluster D values
was studied. These twenty selected genotypes also represented the different geogrephic oxigin, aince seven genotypes belonged to locel collection from Kexale. one genotype to Karnatake, four genotypea to Delni collection, and eight from ThaU, Colmbatore.

Anong the 20 genotypes compared for the elevan charecters in the second field experimant, the genotype $I_{8}$ belonging to the cluster $I$. was found to top all others in the height of the plant at harvest. With regerd to number of primary brenches et hervest and seed yield. To belonging to the same cluster was found to top. The genotype T7 belonging to the above cluster was found to be on top among the genotypes for the charactar 100 seed weight end when the genotype $T_{6}$ belonging to cluster II shoved the maximum vilue with respect of number of secondery branches ot harvest, it was $T 18$ of cluster II which showed the maximum number of clusters per piont. Among the cheracters like number of poda per plant, number of days from sowing to 50 per cont flowering, number of deys from sowing to harvest and number of aeds per pod, the maximum velues were recorded by $T_{5}, T_{6}, T_{1}$ and $T_{5}$ respectively and all these genotypes belonged to Cluster $I$. $T_{20}$ and $T_{7}$ belonging to cluster I showed the maximum vilue in respect of
characters like length of pod bearing branches and hundred seed weight respectively. These facts clearly indicated that wide spectrum of variabllity was present in the material. Hence choice of the 20 genotypes for the second field experiment is fully justifiable.

Variability in the selected genotypes

The twenty selected red gram genotypes evaluated for eleven economic attributes were observed to be aignificantly different for seven characters viz., height of plant at harvest, number of clusters per plant, number of pods per plant, number of days from sowing o 50 per cent flowering, number of days from sowing to harvest, hundred seed weight and sead yield. In the case of characters like number of primary branches at harvest, number of secondary branches at harvest, length of pod bearing branches and number of seeds per pod, the results did not satisfy the test of significance.

Of the various estimates of quantitative variability, mean, range, and variation around the mean are the basic ones. Success in the genetic improvement of any crop would, to a large extent, depends upon a wide genetic base resulting in a wider genetic variability. In the present

Plate 1. A genotype of red gram representing cluster $I$.

Plate 2. A genotype of red gram representing cluster II.


Plate 1


Plate 2

Plate 3. A genotype of red gram representing cluster III.

Plate 4. A genotype of red gram representing cluster IV.



Plate 5. A genotype of red gram representing cluster $V$


Plate 5


Plate 6

Plate 7. Variation in size and colour of seeds of genotypes of red gram included in the study.

investigation it may be seen that the range of veriation for all most all the perameters except number of days from wowing to harvest is fairly large (Fig. 2). This is particularly shown in respect of number of secondary branches at harvest, number of clusters per plant. nurber of pods per plant, seed yield etc. This indiceted the presmnce of enomous amount of variability in the selected population under study. This is in agreemant with the results reported by Ratneswamy et al. (1973). Ramet al. (1976 b). Singh and Srivestav et al. (1977). Jagshoran (1985) etc. in red gram.

The observed wide variabllity alone is not sufilicient for the breeder. A knowlodge of the extent and nature of genetic variability is all the nore important. This mekes the breader to partition the total variability into neriteble or genetic and nonneriteble conponents because of the high influence of enviromment on the expresaica of alnost ali the guantititive traits. Veriance eatimetes in tre present investigation neve shown that the total obs rued varience in two out of eleven characters studed are mainly due to cenetic causes as inticeted by the presominant genctypic veriance over enviromental varience. In nine out of eleven cases. the environmantel variance is seen to
$x_{2}$ - Height of plant at harvest
$x_{2}$ - V umber of primary branches at harvest
$x_{3}$ - Number of secondary branches at harvest
$x_{4}$ - Member of clusters per plant
$x_{5}$ - Number of pods per plant
$x_{6}$ - Lengen of pod bearing branches
$x_{7}$ - Humber of day from sowing to som flowering
$x_{8}$ - Number of day from sowing to harvest
$x_{9} \quad$ - Humber of mede per pod
$x_{10}-100-\operatorname{lecd}$ weight
$y \quad-\quad$ seed yield

FIG.2. RANGE EXPRESSED AS PERCENTAGE OF MEAN OF ELEVEN
CHARACTERS IN RED GRAM
$\because \because \because$ Range expressed as percentage

surpass the genotypic variance thereby indicating that in those cases the expression is highly influenced by fluctuating environment.

The magnitude of variance as such does not indicate the relative amount of variability for which coefficients of variation appear to be a better index when the characters of different units of measurement are to be compared. High genotypic coefficient of variation indicates that genotypic variability present in the material is high and enables one to compare with that present in other traits or characters. The values estimated for phenotypic and genotypic coefficient of variation in the present study have revealed that characters like number of clusters per plant, number of pods per plant and seed yield have high estimates of over 20 per cent. This is suggestive of the fact that there is high degree of variability in the crop for these characters as compared to the rest and therefore the samecan be utilised for crop improvement programme. Characters like number of secondary branches at harvest, number of days from sowing to 50 per cent flowering etc. are observed to have moderate genotypic coefficient of variation (10 to 20\%) while the rest of the characters like height of plant at harvest, number of primary branches at harvest, length of pod bearing branches, number of days
from sowing to harvest, number of seeds per pod and hundred seed weight have exhibited low values of genotypic coef icient of variation (below 10\%) there by suggesting that these characters offer little scope for selection (Fig.3).

The magnitude of genotypic coefficient of variation alone will not help the breeder to determine the amount of variation that is heritable (Gandhi et al.. 1964). Heritability estimates will give an index of that portion of variation that willbe transmissible to the progeny. According to Burton (1952), genotypic coefficient of variation together with heritability estimates would give a true picture of the amount of progress to be expected by selection. Results obtained in the present investigation have indicated that the character number of days to 50 per cent flowering has moderate genotypic coefficient of variation (18.76\%) coupled with high heritability (0.973) and the character seed yield has high genotypic coefficient of variation (26.70\%) toget er with moderate heritability (0.484). Heritability estimates are the highest for number of days from sowing to 50 per cent flowering (0.973) followed by number of days from sowing to harvest (0.885). Other characters like height of the plant at harvest, number
$x_{1}$ - Height of plant at harvest
$x_{2}$ - Number of primary branches at harvest
$x_{3}$ = Number of secondary branches at harvest
$x_{4}$ - Number of clusters per plant
$x_{3} \quad$ Number of pods per plant
$x_{6}=$ Length of pod bearing branches
$x_{7}$ - Number of days from sowing to $50 \%$ flowering
$x_{8}$ = Number of day from sowing to harvest
$x$ - Humber of seeds per pod
$x_{10}-100-s e e d$ weight
$y$ - seed yield

FIG. 3. PHENOTYPIC $\angle N D$ GENOTYPIC COEFFICIENT OF VARIATION OF ELEVEN CHARACTERS IN RED GRAM

of clusters per plant, number of pods per plant, seed yield etc. have given values of heritability ranging from 30 per cent to 50 per cent and hence these characters can be improved by selection to a certain degree since magnitude of heritability indicates the effectiveness with which the selection of genotypes can be based on phenotypic performance (Johnson et al. 1955). Other characters like number of primary branches at harvest, number of secondary branches at harvest, length of pod bearing branches, number of seeds per pod, hundred seed weight etc. have recorded low heritability estimates ranging from 3 to 19 per cent thereby indicating the limited scope for selection for these traits.

Heritability estimates alone will not provide a complete picture of the amount of genetic progress that would result from selecting the best individuals. Alternatively better and more realistic approach in such a situation would be to consider the heritability estimates and genetic advance jointly so as to arrive at a more reliable conclusion. In the present investigation genetic advance was estimated in absolute values for each character and also percentage of mean (genetic gain) for comparying the different characters. Expected genetic advance, estimated in absolute values for the different characters has indicated
that under 5 per cent intensity of selection $1 . e$. by selecting 5 per cent of suparior plants from the avellable poguletion it will be possible to improve height of plent et hervest by 27.172 cm, number of primary branches at harvest by 0.996 , number of secondery branches at harvest by 0.929, number of clusters per plant by 157.923, length of pod beaxing branches by 5.135 cm , number of deys fron sowing to harvest by 5.068 , nurber of seeds per pod by -0.025 , 100 seed weight by 0.313 g and seed yield by 22.499 g respectively.

The genetic gein estimate is maximum for soed yield ( $30.26 \%$ ), followed by number of days from sowing to 50 . 5 cent flowering (36.19\%) and number of pods car plent ( $28.87 \%$ ). The ame is found to be negetive for number of seeds per pod ( $-0.59 \%$ ). The other characters stuiled oref found to possess velues of genetic gein in between the two extremes.

According to Panse and Sukhatme (1957) high heritability coupled with high genetic gein indicetes edditive gene effects while high heritability with low genetic gain indicates non additive gene effects which include dominance and
epistasis. Results of present investigation have indicated that the cherecters like number of days from sowing to 50 per cent flowering (0.973) and seed yield ( 0.484 ) have exhibited high or moderately high estimetes of heritebility coupled with high or moderately high (38\%) genetic gain estimetes, thereby indicating the involvement of adcitive gene effects for the characters conseguentiy they can be improved through straight selection. Characters like number of days from sowing to hexvest. height of plant at hervest etc. have high or modarately nigh estimetes of hexitebility together with low values of genetic gain and hence such chorecters may be attributed to the action of non additive genes of the type dominance or epistasis (Fig.4). As such selection has very inmited scope for imgroving such traitg.

A comparison of the selected genotypas for the different economic treits has revealed thet the different genotyse carry aperiority with regard to various traite thereby suggesting lmanse posibiliity of combining the desirable attributes through effective combination breeding progrmue between genotyos aelectad from the available meterial.

Yield in any crop is a complex cherecter determined by a number of genetic factors and envirommental conditions
$x_{1}=$ Height of plant at harvest$x_{2}$ - Number of primary branches at harvest$x_{3}=$ Number of secondary branches at harvest$x_{4}$ - Number of clusters per plant$x_{5}=$ Number of pods per plant$x_{6}=$ Length of pod bearing branches$x_{7}=$ number of days from sowing to 50x flowering$x_{8}=$ Humber of days from sowing to harvest$x_{9} \quad$ - Humber of seeds per pod$x_{10}=100-$ seed weight$y=$ seed yield

FIG. 4. HERITABILITY AND GENETIC GAIN OF THE ELEVEN CHARACTERS IN RED GRAM

```
                                    %Heritability
                                    Genetic gain
```


occurring at the various stages of the growth of the plant. Hence, selection for yield, merely on the basis of its phenotypic expression, is likely to give misleading results. A more rational approach to the improvement of Yield would therefore be to have some knowledge on the association between different yield components and their relative contribution to the final yield. A knowledge of such relationship is essential if selection for the simultaneous improvement of yield components and in turn yield is to be effective. For this purpose a simple correlation study seems to be inadequate to measure the association, since different genotypes are susceptible to environment in varying degrees. Robinson et al. (1951) have pointed out the usefulness of phenotypic and genotypic correlation in crop improvement progxame. Genotypic correlation coefficients provide a measure of the degree of genotypic association between the characters and reveal such of those useful for consideration. With this object in mind, the phenotypic and genotypic correlation coefficients between yield and ten of its selected components and the inter correlations among them were worked out.

The results have shown that in nine out of ten
cases, there has been significant positive correlation
between the component character and seed yield both in the phenotypic and genotypic levels. However, in the case of 100 seed weight, the correlation with yield was not significent both in the phenotypic and genotypic levels. In all the nine out of ten ceses were significant positive correlation has been obtained, the genotypic correlation coefficients have been observed to be much higher than the corresponding phenotypic correlations, thereby indiceting the reponderance of inherent relationship.

The association of yield with its components through simple correlation elone is not adequete in any selection programie. A knowledge about their inter relationship is also needed. Doku (1970) based on nis work in cow pea has suggested thet iriter correlations anong the yield components shoula be estimated, since in ectual breeding programe, rate of imgrovement in one component might or might not result in the improvement of other component. The estinates of inter correlaticns for the yieid components in the gresent atudy have reveeled that out of 45 intercorrelations estmated 32 in the phenotypic level 42 in the genctypic leval have proiuced significant velues. The results have shown that helght of plant at hervest with six other components, number of primary branches at harvest with two other components, number of
secondary branches at harvest with three other components, number of cluster per plant with two other components, number of pods per plant with one, length of pod bearing branches with one, number of days from sowing to 50 per cent flowering with two and number of days from sowing to harvest with one other component are seen to be strongly and positively associated as evidenced by high genotypic correlation coefficients (over 90\%) thereby indicating that improvement through selection in one trait will take care of a simultaneous improvement in the other traits as well. One hundred seed welght is seen to be negatively correlated with number of primary branches at harvest, number of secondary branches at harvest, number of clusters per plant, number of pods per plant, number of days from soving to 50 per cent flowering and number of days from sowing to harvest (Fig.5). This suggests that improvement through selection of 100 seed weight is possible only at the expense of the other six components.

A comparison of the magnitude of genotypic and phenotypic correlation coefficients in the present investigation has shown that within the limits of aaceptable error, genotypic correlation coefficients are seen to be more than the corresponding phenotypic correlation coefficients This indicates the inherent genetic correlation of that component character with yield.
$x_{1}=$ Height of plant at harvest
$x_{2}$ - Number of primary branches at harvest
$x_{3}$ - Number of secondary branches at harvest
$x_{4}$ - Humber of clusters per plant
$x_{3}=$ Number of pods per plant
$x_{6}=$ Length of pod bearing branches
$x_{7}$ - Number of days from sowing to 50\% flowering
$x_{8}$ - Humber of days from mowing to harvest
$x_{9}$ - Humber of sods per pod
$x_{10}=100-$ seed weight

Y - Seed yield

FIG.5. GENOTYPIC CORRELATIONS AMONG DIFFERENT CHARACTERS IN RED GRAM

——. Significant positive genotypic correlation - -- Positive genotypic correlation $=$ Signiticant negative genotypic correlation



The association analysis through correlation studies alone will not provide a true picture of the relative merits or demerits of each of the components to final yield, since an individual component mey either have direct influence in the improvement of yield or indirect role through other components in the improvement of yield or both. Path coefficient analysis developed by Wright (1921) and applied for first time in plant by Dewey and Lu (1959) furnished a means for finding out the direct and indirect effects of indiviguel components to final yield. Results of path coefficient analysis in the present study have revealed thet number of pods ier plant has the maximum direct effect (4.8914) towards seed yield, followed by 100 seed weight (1.6868), number of primary branches at harvest ( 0.8732 ), number of secondary brenches at harvest ( 0.8112 ) and length of pod bearing branches (0.4081). The direct effects of five of the other components such as height of plant at harvest (-1.4718), number of clusters per plant ( -2.7588 ), number of days from sowing to 50 per cent flowering ( -0.0570 ), number of days from sowing to harvest ( -0.2357 ) and number of seeds per pod ( -0.6395 ) are seen to be negetive, though these components have registered significant positive correlations (Fig.6). This is explainable beceuse of the fact

```
    1 = Helght of plant at harvest
    2 = Number of primary branches at harvest
    3 mumber of secondary branches at harvest
    4 = Number of clustera per plant
    5 = Number of pods per plant
    6 = Length of pod bearing branches
    7 = Number of days from sowing to 50% flowering
    8 = Number of days from sowing to narvest
    9. Number of seeds per pod
    10=100 - Seed weight
    Y = Seed yield
```

$\frac{\text { FIG 6. PATH DIAGRAM INDICATING DIRECT AND INDIRECT EFFECTS OF THE }}{\text { COMPONENT CHARACTERS ON YIELD }}$

that these components might influence yield by their indirect effects through other components. Thus for example height of plant at harvest has been observed to have positive indirect effects on seed yield through number of pods per plant (3.5512), 100 seed weight (1.3630), number of primary branches at harvest ( 0.8601 ), and number of secondary branches at harvest (0.5832). Similarly number of clusters per plant is seen to have positive indirect effect through number of pods per plant (4.3501), number of secondary branches at harvest ( 0.6035 ), length of pod bearing branches ( 0.3154 ) and number of days from sowing to harvest. ( 0.001 ). The same holds good in case of number of days from sowing to 50 per cent flowering which has shown positive indirect effects through number of pods per plant (3.6686), number of secondary branches at harvest ( 0.7828 ), number of primary branches at harvest (0.6637) and length of pod bearing branches (0.3703). Same is the case with reference to number of days from sowing to harvest, which has exhibited positive indirect effect through number of pods per plant (3.9523), number of secondary branches at harvest ( 0.8023 ), number of primary branches at harvest ( 0.6279 ), length of pod bearing branches (0.3305) and number of days to 50 per cent flowering (0.0001). In the case of number of seeds per pod also high
positive indirect effect on seed yield is seen through number of pods per plant (4.6077), number of secondary branches at harvest (1.2987). number of primary branches at harvest (1.0872) and 100 seed weight (0.0911).

The residual effect calculated in the path coefficient analysis amounts to only $\sqrt{0.07227}$. This indicates that about 93 per cent of the variation in seed yield in red gram is cortributed by the ten component traits considered for the path analysis. This comparatively low value obtained In the present case fully supports the right choice of components in red gram for path Cofficient analysis. As such, from the results of present study it can be concluded that greater emphasis has to be laid for improving number of pods per plant, 100 seed weight, number of primary branches at harvest, number of secondary branches at harvest and length of pod bearing branches which have shown high positive direct effect to seed yield.

Discriminant function analysis

Hazel (1943) suggested that selection based on a suitable index was highly efficient. Goulden (1959) believed that the discriminant function would ensure a maximum concentration of the desired genes in the plants or in the lines selected. Hence the descriminant function
analyses (Fisher, 1936 and Smith, 1936) were carried out with a view to evolving a selection index for isolating superior genotypes from among those tested. Seven models using various combinations of yield and its components were tried. These traits were selected based on their direct effects and genotypic correlations with yield.

Maximum efficiency of selection index over direct selection (9.8\%)،was observed when all the seven characters viz., seed yield, height of the plant at harvest, number of primary branches at harvest, number of clusters per plant, number of pods per plant, number of seeds per pod and hundred seed weight, were included. But for the ease of selection, the selection index should be formulated with minimum number of easily measurable characters. Here the selection index formulated by using seed yield, number of pods per plant and 100 seed weight, which has an efficiency of 8.4 per cent, is more useful. This is seen to include 57 per cent of the factors determining the yield. The selection index formulated with seven traits is seen to include only 59 per cent of the factors determining the yield.

Hence from the results of discriminant function analysis carried out in the present study, it can be
concluded thet greater emphasis has to be leid for improving number of pods per plant and 100 seed weight, The selection index formulated by using seed yield, number of jods per plant end 100 seed weight is auggested for selecting superior genotypes. By using the above selection index the genotype $T_{9}$ (NBPGR, Acc.No. 11 (EC-10046-1) followed by $T_{1}$ (Napgr, Acc.No. 124 PLA-345-1) is suggested for selection for increasing the yield in red gram. By using the selection index formulated with seven traits, the genotype $T_{1}$ ( (PLA-345-1) followed by $T_{9}(E C-10046-1)$ is to be the secuence for the improvement in yield.

## SUMMARY

Genetic studies in Rea gram (Cajanus cajan L. Milimp.) were undertaken in the Department of Agricuitural Boteny, College of Horticulture, Vellanikkare, during 1983-86. One hundred and twelve genotypes of Red gram exhibiting wide diversity in the expression of various economic charecters, obteined from the Regicnal Centre of the National Bureau of Plant Genetic Resources, Vellenikkara and Tamil Nadu ingricultural University, Coimbetore were raised during the khariff season of 1983-64 in a randomized block design with two replications. Observations on eleven economic characters were recorded from ten flants per trectment. The deta were subjected to suiteble stetistical analyses for estimeting the generil variability aveilable in the meterial, for finding out the genetic distances among the genotypes and for grouping them into clusters according to their genetic distances following the Mehalanobig' $D^{2}$ statistic.

Besed on both the inter and intracluster distances,
20 genotypes representing the broed sfectrum of variebility prasent in the meterial, and having diversified geographical
origin were selected end utilised in the aecond ilela experiment which was laid out in $20 \times 4$ R.B.D. heving e plot aize of $5 \mathrm{~m} \times 3.5 \mathrm{~m}$ conteining 5 rows of six Llante in asch row. Obsarvations were racorded from the middle twelve plants of each plot leaving one row all around for avolding border effect. The date were subjected to suitable atatistical analysea for astimating the variability available in the selected genotypes. for working out the heriteble portion of the variability, for finding out the degree of association of the different components of yield with yield aither directly or indirectly and for evolving a selection index for isoleting superior genotypes from emong those tested.

The important findings are summerised below.

1. The 112 genotypes studied showed significent differences for eight out of eleven chardctera studied, viz.. heignt of plant at harvest, number of ximary branches at harvest, number of clusters per plent, number of pods per flent, length of pod bearing branches, number of days from wowing to 50 per cent flowering. 100 seed weight and seed yield.
2. The genetic component of variation was found to exceed the envirommental component in the case of height of the plant at harvest, number of days to 50 per cent flowering, number of clusters yer plant, seed yleld and number of pods per plant. Number of pximery branches at haxvest, length of pod bearing branches and 100 seed welght were moderately in Luenced by genetic causes and number of secondary brenches at harvest, number of days from sowing to harvest end number of seeda per pod were hignly influenced by environment.
3. Heritability in the broed sense was high (over 50\%) for five charecters, moderately high ( $30 \%$ to 50\%) for three characters and low (below 30\%) for rest three characters.
4. The 112 genctypes fell into five distinct clusters besed on the genetic distances among them.
5. The intracluster distence was maximum in cluster II and the clusters IV and V, constitute each one genotype viz. $\mathrm{T}_{19}$ and $\mathrm{T}_{13}$ respectively.
6. The interclustar distance wes maximum between clusters IV and $V$ and minimum between clusters III and IV.
7. Gerotypes of the same place of origin fell into
different clusters while those of aiversified oxiyin fell into the same duster.


#### Abstract

8. Clustar III showed high mean valves for many of the desirable cherscters while cluster II showed low Hean values for the desirable zttributes.


9. The twonty selected ganotypes showed significant differences with reference to the seven characters out of eleven atudied and the rest four did not metiafy the test of significance.
10. The range of variation for all the parameters except numbar of days from sowing to hervest vas fairly large.
11. Variance astimates showed that the total variance in two out of eleven characters studied were due to genatic causes and in the rast nine, the genotypic verience wes highly influenced by fluctuating environment.
12. The values astimated for phenotypic and genotyplc coefficient of veriation showed that number of clusters per plant, number of pods per plant and seed yield possessed high estimates of over 20 per cent, number of secondary branches at harvest and number of days from soving to 50 per cent flowexing showed moderate of 10 per cent to 20 per cent while the reat showed below 10 per cent.
13. High heritability estimates of over $85 \%$ were shown by number of days from sowing to 50 per cent flowering and number of days from sowing to harvest while height of plant at harvest, number of clusters per plant, number of poda per plent and seed yield showed moderate ( $30 \%$ to $50 \%$ ) and the rest showed below 30 rer cent.
14. Niunber of diys to 50 per cent flowering showed moderate genotyplc coefficient of variation coupled with high heritability while saed yield posessed high genotypic coefficient of variation together with moderate heritability.
15. Genetic advance estirated in absolute values was promising for 011 the characters except number of seeds per pod.
16. The genetic gain estimate was maximum for seed yield (28.26\%) and minimum for number of seeds pex pod (-0.59\%). The other charactars exhibited estimates of genetic gain in between the two axtremes.
17. Charecters like number of days from sowing to 50 per cent flowering ( 0.973 ) and seed yiald( 0.484 ) exhibited hlgh or moderately high estimatev of heritability coupled with high or moderetely high (38\%) gevetic giln eatimates,
thereby indicating the involvement of additive gene effect. Hence these characters can be improved by straight selection. Cherecters like number of days from sowing to harvest, height of piant at harvest etc, possessed high or moderetely high estimates of horitability togetrer with low valuas of genetic gain thereby zuggeating the action of non-additive genea including dominance and epistasis. Hence, straight selection has limited scope for improving these traits.
18. Th xanking of the selected genotypes for the different economic traits revealed that the different genotypes carried superiority with regard to verious treits suggesting the possibility of combining the desireble attribute through effective combination breeding programe by selecting genotypes from the avallable material.
19. Results of correlation studiea have revealed that phenctypic and genctypic correlation coefficients for a number of traits were of comparable magnitudes. However. genotypic correlaticn coefficienta were higher than phenotypic correlation coefficients in almost all the cases.
20. In nine out of ten casea, there has been significant positive correlation between the component
character and seed yiald both in the phenotypic and genotypic levels. However, the correlation of 100 seed weight with seed yield was not aignificant both at phenotypic and genotypic lavels.
21. Inter coxreletions atudied have shown that charactexs exhibiting significant association with seed yield per plant were also highly intarcorrelated, theraby suggesting the possibility of thein simultaneous improvement. The 100 seed welght was negatively correlated with six othar yield component characters, thereby, suggesting that tne improvement of 100 seed welght through selection was possible only at the expense of those six components.
22. Results of path coefficient anelysis heve brought out that number of pois pex plent, 100 seed weight, number of primary branches at harvest, number of secondary branches at harvest, and length of pod bearing branches had high positive dixect effects on seed yield, in that order. Helght of plant at harvest. number of clusters per plant. number of days from sowing to 50 per cent flowering. numb $x$ of days from sowing to harvest and number of seeds per pod had nogative direct effects on seed yield and the highly positive correlation coefficiente exhibited by them

With seed yield were compensated by their indirect effects on seed yield through other traits.
23. The residual effect vas 0.07227 indicating that about 93 ger cent of the variation in yield was contributed by the ten components considered in path coefficient analysis.
24. Maximum efficiency of selection index over direct selection ( $9.8 \%$ ) was observed when seven characters were included. The selection index formulated with characters like seed yield, number of pods per plant and 100 seed weight snowed an efficiency of 8.4 pax cent over direct selection and it included 57 per cent of the factors determining the yield. Hence it is suggested for isolating superior genotypes.
25. A comparison of different genotypes based on the index value hes revealed the superiority of the genotypes NBFGR 11 - EC-10046-1 and NBPGR 124-PLA-345-1 over others.

References

## RETERENCES

Adnikari. G. and Pandey, M.P. 1982. Component analysis of seed yield in chick pee. Crop improvement 2(1): 69-74.

Ahikari, G . and Pandey, M. P . 1983. Genetic Alvergence in cinck pes. Indian J. Genet. 43 (2): 186-192.

Agerwal, V.D. and Kang. M.S. 1976. Genctic veriability, corcelation and path anciyais studies in horse gram (Dolichos biflorus $L_{\text {. }}$ ) Trocical Aoxiculture. 53 (4): 335-340.

Allerd, R.f. 1960. Principles of Flant Breeding. Jchn wiley $\&$ Sons, Inc. New York, pu.89-98.

Arunachalam, V. and Jawahar Ram, 1967. Geographical diversity in relation to genetic divergence in cultivated sorghum. Indian J. Genet. 27: 369-380.

Asawa. B.M. 1979. Genetic diversity in selected population of pigeon pee (Cajanus cejan (L) Mill ap). TNKVV Repos. 13 (1): 83-84.

Aama, B.M.. Chendra, R. X... end Panday. R.L. 1981. Charactex correlation and divergence in pigeon pea. Indion J. agric. Sci. 51 (1): 12-17.

Awstade, S.N., Chopde, R.R., Makne, V.O. and Chouthari. V.P. 1980 . Character association and path analysis in pigeon pea. Indian J. agic. Sci. 50(12):910-913.

Awatade, S.N.. Chopde, F.R., Makne, V.G. and Choudheri, V.P. 1960b. Estimates of genetic parameters in advanced generations of pigeon pea. Tropical grain legume Bulletin. 17 (18): 16-18.

Balniwal. G.K. and Jatasr*. D.S. 1980. Genetic divergence in pigeon pea Indian J. Genet. 49: 153-156.

Bainiwal. C.F. and Jatasra, D.S. 1985. Component anelyais in pigeon pea (Cejanus cajan L. Mill sp) Indian I. Heridity 15 (4): 1-7.

Bainiwal, G.R.. Mahrctra, N. and Jatasre, D.S. 1981. Stuales on variability and ccrrelations in pigeon pea. Indian J. agxic. Sci. 15: 161-165.

Balyan, H.S., and Suahakar, M.V. 1985. Peth coefficient studies in pigeon pea. Internat. Pigeon pea Nows 2. s: 20.

Banerjee. S.P.. Majumar, M.K.. Chattarjee. S.D.. and Bhettacharya. R. 1976. Application of ath anelysis end discriminant function for selection in black gram (Ehageolus mungo L). Acta ingonorica Academise scientierum Huncericae $25(3 / 4): 423 \mathrm{~m} 30$.

Soomikumaxan, P. end Rathinam, M. 2981. Correlation and path analysie in groen gram (Viona radiata (L) hilc zok) Madres agxic. I. GE (10: 643-647

Burton. ©.w. 1952. wuantitetive inheritance in grasses. Proc. 6th Int. Grassid Congr. 1: 277-283.

Burton, G.W. and Deweng, 1953. Estimating heritability in tall fescun from replicated clonal msterial. Agron. J. 45: 478-481.

Chendel. K.F.S., and Josini, B.s. 1976. Dizect and indirect effects of seed yield components in yollow greined pear (Pigum sativum aubsp avense Poir) Crop Improvement $3\left(I_{2}\right): 27-38$.

Chandel. K.P.S. and Josh1, B. S. 1981. Genetic divergence in yellow seeded pea. Indian J. anzic. Sci. E1 (10): 718-722.

Chowdhary, D.N, and Singh, S.B. 1974. Correlation and path coefficient melyeis of yield components in soybean. Indien I. egric. Sci. 44 (7): 487-490.

Chikkadyavaiah, 1985. Gentic divergence in cowpee (Vigne unguiculate (L) Walp). Hysore J. egric. Sci. 19 (2): 131-132.

Choulwar. S.B. and Borikar, S.T. 1985. Path analyais for harvest index in cowpee. J. Maharashtze aqric. Unive 18 (3): 356-357.

Cyone. D.P. 1968. Correlation, heritahility and selection of yield components in field beans (Phaseolus vulgeris) Eroc. Ages. Soc. hort. Sci. 23: 388-396.

Dani. R.G. 1979. Variability and association batween yield and yield components in pigeon pea. Indian $\mathcal{I}$. agric. Sct. 49 (7): 507-510.

Das, P.K. and Gupte. T. D. 1984. Multivariate analysis in black gram (Vigna mungo (L) Hepper). Indian J. Genet. 4s (2):243-247.

Dasgupte. T.. Des. P.K. 1985. Multivariste analyais and selection of parents for hybridization in bleck gram. philippine Agriculturist. 67 (1): 86-92.

Davis, J.H.C. and Evans. A.M. 1977. Selection indicea using plant type char ctaristics in Navy beans (Fhaseolus nulgarig L.). I. Egricg Sci. U.K. 89 (2):314-348.

Dewey, D.R. and Lu. K.H. 1959. A correlation and peth coefficient analysis of components of crested wheat gress seed production. Aoron. J. 51: 515-518.

Dharmalingam, V. and Kadambavanasundaram, M. 1966. Genetic veriability in cowpea (Viqna uncuiculata (L) Walp). Msdras agric. J. 71 (10:640-643.

Doku, E.V. 1970. Variebility in local and exotic varieties of cowpea (Vigna unguiculata). Ghana I. sgric. Sci. 3: 145-149.

Dumbre. A.D.. Deshmukh, K.E., Padhye. A.P. 1982. Association of grain yield with other economic characters in cowpe. I. Maharesitra agric. Univ. 7 (2): 154.

Dumbre, A.D.. Dashmukh, R.B. 1963. Analysis of genetic variability in pigean fea. I. Maharashtra egric. Univ. 8 (2): 114-115.

Dumbre, A.D.. Demimukh. R.B. and Navale, P.A. 1984. Anelysis of genetic variability in chickpea. J. Maherashtra agric. Univ. 2 (3): 350.

Dumore. A.D., Deshoukn, R.B. 1984 . Genetic aiversity in respect of grain yield and its components in piceon pea germplasm. J. Maharastra agric. Univ. ( (3): 310-312.

Dumiore. A. L. and Desmukia. R.3. 1924 b. Genetic divergence in chickpee. Intarnat. Chickpee. News 1 . 10: 6-7.

Ekshinge. B. S., Shelke, V.B., Kusende, V. ©. 1983. Correlation and patn coefficient analysis in Sorghum and piceonpea grown in intigreropping system. J. Maharashtre esxie. Univ. \& (i): 45-47.

Falconer, D.S. 1982. Introduction to mentitative genetics. Longman Inc. Xew Xork, pp.218-223.
*Fisher, R.A. 1936. The use of multiple measurement in taxonomic problems. Ann. Eugen 7: 179-186.

Galton. 5. F. 1889. Concept of correlation. Cited by Fisher (1954) pp. 209.

Gandhi. S.M., Sanghi, A.K.. Nathwat. K.S. and Bhatnager. M. P. 1964. Genotypic veriability and correlation coefficients relating to grain yield and few other quantitative charactera in Indian wheats. Incian I. Genct. 22: 1-8.

Ganeshaiah, K.N.: Snivashenkar, G. and Hiremath. S.R. 1984. Genetic variablidty for yield end other charectexa In the germplasm of Horsegrem (Dolichos biflorug. L.) Mysoze J. Egric. Sce 16 (4): 400-403.

Gixizaj. R.K. and Vijayakumar, S. 1974. Path coafficient analysis of yield attributes in mung bean. Indian I. Genet. 34 (1): 27-30.

Goud. J.V. Viraktamath. B.C. and Laxmi, P.V. 1977. Variability and correletion tudies in bleck gram (Fhaseolus munco L.) Mysore J. agric. Sci. 11 (3): 322-325.

Goulden. G.H. 1959. Metnods of statisticel aralysis. Asia Publishing tiouse. Eombay.

Guanaseclan, r. and Reo, H.K. 1976. Discriminant function and study of the correlated offects in pigwon pea. Indian J. gqric. Gci. 46 (4): 175-177.

Gupta. S.K. and Kataria. A. S. 1971. Path coefficient anelysis for some characters in soyabean. Indien I. Genet. 31 (2): 290-295.

Gupta, S.P., Luthre, R.C., Vull, A.S. and Phul, P.S.1972. Variability and correlation studies on yield and its components in gram. J. Res. 9 (30):405-409.

Gupta, M.P. and Singn. B.B. 1969. Variability and correlation studies in green gram (Fhaseolus aureus Roxb.) Indian I. acric. Bci. 32 (12): 482-493.

Gupta, M.P. and Singh, R.B. 1970. Genetic divergence for Yield and its components in green gram. Indian $工$. Genet. 30: 212-221.

Hanson, C.t., Robinson, H. F. and Canstock, R.E. 1956. Bicmetrical studies of yield in segregeting populaticn of Korean lespedeza. Agron J. 4E: 268-272.

Hasarike, G.N. and Bingh, V.P. 1986. Genetic divergence in some pigeon pee varieties and their hybrids. Grop improvement 13 (1): 49-53.

Hazel. L.N. 1943. The genetic basis for construction of selection index. Gonctics. 28: 476-490.

Hiremath, K.G. and Talawar. S.N. 1971. A atudy on genetic variability in pigeon paa (Cajanua cajan (L) Milisp.) Anchra agric. J. 18 (3 \& 4) 144-148.

Islam, M.O., Begum, K. ond Kaul. A.K. 1984. Phenotypic variability and correlation atudies in Chickpea. Banoladesh J. acic. Res. I (1): 33-37.

Jagshoran, 1985. Genetic veriablilty for same quantitetive characters in Pigeenpea. Internat. Pigeon Pea New 1. 4: 13.

Jain. X.C., Pandya, B.P. and Pande, K. 19e2. Genetic divergence in chick pea. Indian J. Genet. 11 (2): 220-225.

## vil

Jana, S., Soni, M.G. and Das, N.D. 1983. Correlation and path analysis of vegetabl pod yleld components in cowpea (Yigne unguiculata var. senquipedalis) Haryana J. Horti. Sci. 12 (3/4): 224-227.

Jatesra, D.S., Chandgi, R., Chandra, S. and Singh, A. 197e. Correlation and path analysis in segrageting populetions of chick pea. Indian J. egric. Res. 12 (4): 219-222.

Jindal. S.K.. and Gupta, B.s. 1984. Component analysis of yield in cowpea. Indien J. Eacic. Scl. 54 (3): 163-185.

Jindel. S.K. 1985. Genetic divergence in cow pea (Yiona unquiculata (L) halp.) Indian J. agric. Sci. 39 (1): 19-24.

Johnson, H. W., Robinson, H.F.. and Counstock, R,E. 1955. Eatimates of genetic and environmental veriability in soybeans Acron, J. 17: 314-328.

Josh1. S.N. 1971. Stuales on genetic veriablilty for yield and 1 is components in Indien beans (Dolichos 1 ab 1eb and its components in inosis). Medrat eoric. J. 58 (5): 367-371.

Josin. S.N. 1972. Variability and association of some yield components in grem (Cicer arietinum L.i indian I. soric. Sci. 12 (5): 397-399.

Joshi. S.w. 1973. Vaxiability and correlation atuaies in pigeon pea (Cajenus caian L.) Madres agric. J. $60(6): 412-414$.

Kalloo and Dhankinax. B.S. 1977. Path analysis of yield components in peas (Pisum antivum $L_{0}$ ) Haryane agric. Univ. J. Res. 7 (3): 103-105.

Kambal. A.E. 1969. Components of yield in field baens (Vicia fabe L) I. Earic. 5ci. Camb-72(3): 359-363.

Katiyar, K.P. and 3ingh, S.P. 1979. Genetic divergence in chick pee. Inalan J. Genet. 39 (2): 354-358.

Katiyar, R.P., Prasad, J., Singh, A.B. and Fim, K. 1977. Association anaiysis of grain yield and ita components in segrigeting populations of chick pee. Invien J. eqric. Sci. $47(7): 325-327$.

Katiyar, R.P., Sood. O.P. and Kalia, N.R. 1981. Selection criteria in chick pee. Internat. Chicknea Hews 1.

Kaw, R. and Mencn, M.F. 1972. Asscciotion between yiold and its components in coybean. Indian J. genet. 32 (2): 276-280.

Khan. A.M. and Chaudhery, A.M. 1975. Interrelatior.ship between yield and other plant charmcters in gram (Cicer arietinum L.) I. acric. Res. pakistan 13 (3): 589-592.

Khan. I.A. 1985. Correletion and pach coefficient anelysis of yield components in mung bean (Fhaseolus areus Roxb). Botanicel Bulletin of acedemia Simica 26 (1): 13-20.

Khorgade, P.W., Verthede, W.N. and Raut, S.K. 19e5. Ganetic variability studies in chick peá. Internat. Cnickpes Newsh. 12: 13-13.

Koranne. K.D. and singh, H. G. 1974. Genetic analysis of yiela and yield contributing charactera in pea. Indian I. agric. sci. 44 (5): 294-298.

Kumar, A.S. and Reddy, T.P. 1982. Path coefficient analysis of yield ettributes in piceon pea (Cajanue ceian L. M111 ap) Genetica Acrarie 36 ( 3 ): 63-73.

Kumex, A.S., end Reddy, T.P. 1983. Genetic association in pigeon pea. Internet. Higeoncea Newsl. 2426.

Kumar, A., Mishra, S.N. and Verma, T.S. 1982, Studies on genetic diversity in cowpea. Crop Inprovement 2 (2): 160-163.

Kumar, A.. Mishra, S.N. and Verma, J.S. 1983. Corraletion and peth analysis in cow pea. Cros Improvement 10 (1): 36-39.

Kumar, P.. Prakagh, F. and Hague, M. F. 1976. Interrelationship between yield components in cowpea. (Viona ainenis L.) Proceedings of the Einer Acadeny of Ace icultural Sctences 2 (2): 13-18.

Lakati, P.V. and Goud. J.V. 1977. Variebility in cowpea (Viona sineneis L.) kysore J. Eoric. Sci. it (2): 144-147.

Lal. V.S. and Heque, M.F. 1971. Path anelyais of yield components in soybean. Indien J. Genet. 11 (2): 357-362.

Lusin. J.L. 1949. Animal Exeeding plans. Lowa State College Press, Amer. lowa. pp.473.

Mahalanobis. F.C. 1928. A atatisticel atudy at chinesa head measurement. I. Asiatic Soc. Bengal. 25: 301-377.

Melhotre, 173. Genetic variability and discriminant function in soybeen (Glycinemax L. Merril). Madras acric.I. 604: 225-228.

Malhotra, V.V. and Singh. S.K.i. 1974. Yield components in green gram (Phaseolus araus Roxb.) Indion I. agrice 3ci. 14 (3): 136-141.

Malhotra. R.S. end Sodhi. J.S. 1977. Genetic variability and discriminent function atudies in Pigeon pea. Magras aqric. I. 64 (10): 677-678.

Malik. B.P.S.. Singh, V.P.. Paroda, R.S. and Oupta, S.C. 19e1. Correlations and path coefficient andyais in Pigeon pee. Crop Improvement 日 (2): 100-105.

Malik, B.P.S., Singh, V.P., Chaudhery, B.D. and Choudhary R.K. 1982. Peth coefficient and selection indices in green gram. Indian J. taric. Sci. 52 (2): 208-292.

Malik, B.P.S., and Singh, V.F. 19e3. Hultiple correletion and regression analyait in green gram. Indien J. soric. Sci. 53 (6): 400-403.

Malik, B.P.S., Singh, V.p. and Gupta, S.C. 1985. Genetic divergence in ame early pigeon pea genotypes. Cror Improvement 12 (2): 144-146.

Misare. R.C. 1985. Selection intices in green gram. Medras agric. I. 72 (6): 311-316.

Mital. S.P. and Thomas, T.A. 1969. Correlation and aelaction indices in improvenent of seed yield in guar. Indian J. Genet. 29 (1): 10-17.

More, D.C.. Wage, U.R.. Mehetre, S.S. and Deshmukh, R.B.1984. Genetic variability for yiuld and its components in pigeon pea. I. Maharastra Agoic. Univ. 2 (2): 211-212.

Murtiny, 3.K. and Qadri, K.I.1965. Anelysis of divergence in mome alf compatible forms of Brayslea compestrics vax brown arron. Indian J. Genet. 26: 48-58.

Hurthy. J. 1982. Path anelyeis and salection indicea in three $I_{2}$ populations of cow poa (Viona ungulculeta (L) Walp) Thesis abstracts (4): 393-395.

Muthiah. A.R.. Sivesubremenian, V. 1961. Gerotypic correlatione and path coefficient analyais in black gram (Vigna munce ( L ) Hepper). Madras agic. I. $68(2)$ : 105-109.

Narasimhaish, S.A., Patil, M.S. and Hiremeth. K. S. 1977. Genetic variability and correlation atudies in (Cier arietium $L_{*}$ ) Mysore y. erric. Sci. 11 (2): 131-134.

Narasinghani. V.G.. Kanwal, K.S. and Singh, S.F. 1978 a . Patin analysis of yield compononts in pea. Indien $J$. agric. Bet. 48 (8): 446-450.

Narasinghani, V.G.. Kanwal, K.S. and Singh, S.P. 1978 b. Charbetry correlationa in pea Indian I. aqric. Sci. 48(7): 390-394.

Obleeran, I.O. 1985. Asscciationa among main yield components in cowpea (Viqna unquiculeta L. Walp) Genstica fararia 39 (4): 377-3EE.

Oreon. P., Prakash, R. and Haque, M.E. 1977. Correletion studiass in chick pea (Cier arietinum $L_{\text {, }}$ ) Tropicel gxain legume 3ulhetin. 7: 18-19.

Padhye, A.P.. Dumbre, A.E. snd Demmukh, R.B. 1984. Study of cause and effect relationship ancong quentitetive traits of cowpea. I. Maharastra Agric. Univ. 2 (3): 292-293.

Penague, C.V. and Pinchinet, A.M. 1976. Selection criterie for improving seed yield in French beans (Phaseolus vulgaris L.) 26 (2): 126-131.

Pankaja Reddy, F.. Daljit Singn and Reo, N.G.P. 1975. Charccter association in Pi eon pea. Indian J. Geriet 35 (1): 119-122.

Pense, V.G. and Sukhetme, V.V. 1957. Stetisticel Mathods for Agriculturel horkers, ICAR New Deinf, pp.63-69.

```
Paroda. N.S. an; Jomhi, &.3. 1970. Correlations, path
    coefficients and implications of discriminant
    function for selection in wheat (Iriticum aestivim)
    Heridity: 25 383-392.
```

Patil. J.V. and Deshmuki. F. 13.1982 . Genetic variability in horse gram. J. Maharagtra Agri. Univ. 2 (2): 139-140.

Patil. J.V. and Deshmukh. R.B. 1983. Assccietion analysis in horse grem. ي. Maharastre Agrl. Univ. 8 (2): 120-121.

Patil. F.B. and Bhapkar. D.G.1987. Correlation atudies in cowpea. I. Maharestra Agric. Univ. 12 (1): 56-59.

Patil. R.B. and Bevisker. A.P. 1987. Variability stulies in cowpea. J. Meherestye Agxic. Univ. 12 (1): 83-66.

Patil. S.T., and Sheh, R.M. 1982. Genetic parametrs association and path enalysis in black gxam (Vigne munco (L) Hepper). Madras acric. I. 69 (8) : 535-539.

Patil. V.N. and Phadnis, B.A. 1977. Genotypic variability ana its implicetion in selaction of grem (Cicer arietinum L.) J. Maharastra Aacic. Uniy. 2 (2): 121-123.

Patirana, R. and Guzhov, Y.L. 1979. Path analysis of soed yield components in soybean. Genetika. USSR 15 (1): 131-137.

Phedris. B.A., Ekbote, A. F. and Ainchuar, S. 8. 1970. Peth coefficient anelysis in gram (Cicer arietinum L.) Indian I. aqric. Bci. 40 (11): 1013-1016.

Pokle. Y.S. and Monatkar, L.C. 1975. Path analysis of yield components in pigeon pea (Celanus cajan L.Mill ap). College of Agriculture Magpur Magazine 48: 23-24.

Fam, R.A.. Singh, I.B.. and Sharna, P. 1976 a. Path and discriminent technigue for the improvement of Red grem (Cejanus cajan). Indian J. agric. Res. 10 (2): 1-104.

Rem, $\mathrm{K}_{\mathrm{A}}$ A., Singh. I.B. and Singh, P. 1976 b . Estimetes of corralation. variability, heritability and genetic advance in red gram (Cajanus calon). Indian J. egri. Res. 10 (1): 60-62.

Rans. Y.U. and Reo. J.S. 1981. Path enalymia of yield components in black gram. Indian I. egkic. Sci. 51 (6): 378-381.

Reo. 1952. Advenced statistical method in Biometric Research. Jonn Willey and Sons. New York.

Retnaswamy, F.. Veeraswamy, R., Regupathy, A. and Pelaniavamy, G.A. 1973. Studies on genetic veriability of certain quantitetive charecters in Red gram. Madres agric. J. 69 (3): 204-206.

Reddy, K.P.. Azeem, M.A.. Vidyasagar Reo, K. and Reo. N.G.F. 1979. Cokbining ability and index selection in $F_{2}$ Genet. 39 (2): 247-254.

Robinson, H.F., Comstock, R.E. and Harvey, P.K. 1951. Genotypic and phenotypic correlation in corn and their implications in aelection. Agxon. J. isi 282-287.

Sandia. G.s. and Chandia. S. 1969. Heritebility of some quantitative charectars in two crosass of Bengel gram. Indian J. Genet. 29 (2): 216-219.

Sandhu, T.S., Bhullax, B.S., Chema, K.S., and Brar, J.S.1980. Path coefficient analysie in Urd bean. Indian J. agric. Res. 14 (1): 35-41.

Sanghe, A.S., Singh, B.V. and Singh, M. 1971. Correlation studies in pea (pisum aativum L.) Madras agric.工. 58 (3): 224-227.

Searb，S．R．1961．Phenotypic，genotypic and environmental correlation．Biometrics 17：474－480．

Shenmugr．A．S．，and Rangaswany，S．R．1982．Genetic diversity for quantitative charactars in green grem （Vigna reciata（L）Wilezek）Madras goric．J． 69 （10）：631－636．

Sharma．H．K．and Asawe，E．M．1977．Path coefficient analysis and selection indices for segregeting population of arbar．Mysore I．Eric．Sci．11（3）：317－321．

Snarma，F．K．Tiwari．K．N．and Pachauri，D．C．1977．Gendetc variability in french beans（Phaaeolus yulgaria $L$ ） Erocressive Horticulture $39(3): 57-64$ ．

Shamsuszaman，K．M．，Xhan，M． $\mathrm{H}_{\mathrm{H}}$. ．and Sheikin，M．A． 1983. Genetic variability and character associetion in mung bean（Vigna radiata（L）Wilezek）．Bangledesh工．日gric．Res．日（1）：1－5．

Shoxan，J．1982．Poth analyais in pigeon peo．Indian J． Genet．42（3）：319－321．

Shoran，J．1983．Studies on genctic vaxiability for some guantitative characters in pigeon pea．70（3）： 14648.

Shiveshankar，G．，Talikot，S．H．，Cnikkedevaiah and Sheltax，B．I． 1977．Hexitability and corralation studies in horsegram（Mecrotylam uniflorus syn． Dolichos biflorup）Myore J．Eafic．Sci．11（2）：211－214．

Shrivawtav，M．P．．Singh，R．P．and Tiwari，A．s． 1977. Estimates of selection efficiency using discriminent function in pigeon pea．Indim J．agric．Sci． 47（8）：391－393．

Singh. A. and Srivestave, A.N. 1978. Genetic variability in reletion to yield and its components in castor. Indian I. agxic. Sci. 18: 25-28.
 Poth coefficient analysis in chick pea (Cicer arietinum L.) Crop improvemant 12 (1): 62-63.

Singh, J.S., Singh, R.F. and Singh, H.L. 1977. Selection index as an effective ald in the improvement of grain yield in mung been (Phaseolus aureus Roxb.) 3ci. Cul. 43 (3): 125-127.

Singh. K.引. and Mehndiratta, $9 . D .1969$. Genetic veriability and correlation studies in cowpea. Indion J. Genet. 29 (1): 104-109.
singi. K.3. and Malhotra. R.3. 1970. Interrelationahip betweon yield and yield components in hung bean. Inalan J. Genet. 30 (1): 244-249.
singh, K. B. and Mehndiratta, Fi.D. 1970. Path analysis and selection indices for cowpea. Indian J. Genet. 30(2): 471-475.

3ingh, K. B. end Malnotre, F.S. 1973. Yield componente in plgeon pea (Cajenus cajan L.) Medram agric. J. $60(6): 364-366$.

Singh, L., Tomas, G.S. and Mishra, P.K. 1973. Variability, inter relationships and peth coetficients for some quantitative characters in Bengal gram. SABRAO Newsi. 5 (1): 22-26.

Singh, R.B. and Aain. S.S. 1968. Genetic divergence for ginning out turn and its components in upland cotton. Indian I. Genet. 28 (2): 262-268.

Singh, R.B. and Ouptó, M.F. 1968. Miltivariate anelysis of divergence in upland cotton. Indian J. Genet. 28 (2): 151-157.

Singh, R.P. and Shrivasteva, M.p. 1977. Heritability and corielations of some quantitetive charectexs in pigeon pea (Cajanus cajan L. Milisp) Mysore J. agxic. Sci. $12(3)$ 315-317.

Singh, R.P. and Srivatava, N.P. 1976. Heritebility and correlations of amo guantitative characters in pigeon pea (Cajanus cejen L. Millsp.) Mymore J. agric. Sci. $12(3): \frac{15-317 .}{315}$.

Singh, R.P. and Shrivastav. M.P. 1981. Coheritability and path enalysis of yield and its components in pigeon paa (Cajanus ceian (L) Millap) Jninv Res.先. 13 (1-4): 42-45.

Singh, R.F., Singh, H.L., Singh, V. and Singh, I.P. 1977. Path analyais in green gram. Madraa agxic. J.64 (9): 596-597.

Singh. F.R. 1985. Genctyif and phenotyplc variebility correlationa in pea. Incian J. agric. Sci. 55 147-150.

Singn, S.P., Reddy, R.K. and Narasinghani, V.G. 1981. Correlation studies in $F$ progentes of pigeon pea. Indian J. agric. Bci. $51^{\circ}(11)$; 768-771.

Singh. T. F . and Singh, K. $\mathrm{B}_{\text {. 1969. Interrelationahip of }}$ quantitative treits with grain yield in field pea. Indian J. Genet. 29 (3): 483-487.

Singh, T. P. and Singh. K.B. 1972. Selection indices in field pea. Punieb Agric. Univ. I. Res. 2 (2): 272-276.

Singh, W., Singh, F.. Singh, U. P. and Singh. I. B. 1976. Discriminant function technicue for the improvement of grein yield in black gram (Vigna mungo L. hilesak). Tropical Grein lequme Builetin.g: 15-16.

Smith. E.H. 1936. A aiscriminent functicn for plent selections. Ann. Eugen 7: 240-250.

Sounderapandysa, G., Nagarajan, R., Mahudeswaran, K. and Marappan. P.V. 1975. Genetic vaxiation and scope of selection for yield attributes in bleck gram (Eheseolus mungo L.) Madres agric. J. 62 (6): 318-320.

Goundarapandyan, G.. Nagarejan, R., Mehudeswaran, K. and Nactppan. P.V. 1976. Cenotypic and phenotypic correlation and path analyais in black gram V1gria munco L.) Medras egrice J. 63 (3): 131-147.

Sreekantaradnya, R., Sheltar, K.I., Chandrappa, H.M. and Shivashankar, G. 1975. Genetic Vexiability in hoxse grem. Wysore J. agric. Sci. 2 (3): 361-363.

Sxivastav, A.K. and Gugta, F.K.1982. Genctic ilvergence in chick pea. Internat. Chickead Newsl. 81 4-6

Sriveatev, A.K., Singh, F. and Gupta, P.K. 1984. Genetic divergence among advanced cilck pea genotypes. Internat. Chickoee Mevel. 11: 20-22.

Sxivastav, J.P., Singh, H.N. and Singh, S.P. 1972. Genetic atudies on yield components in pea. (pisum Eativum L. Ver. arvense poix). Indian J. agaric. Sci. 42 (1i): 1001-1094.

Gureshkumar. A. and Tumala P.Ready. 1983. Genetic Association in pigen pee Int. Pigeon gea Newsl. 2: 26.

Thandapani, V. and Reo. J.S. 1984. Yield paxaneters and theix significance in green (Vigna radieta (L) wilemek) genotypes in relation to yleld. Medras agric. ․․ 71 (4): 232-236.

Thulesidas, G. 1984. Multiple regression and chessificetory anclysis in Vigna radiate (L) Field crops Res. 2 (18): 183-191.

Tikke, S.B.S., and Asawa, B.M. 1970. Note on selection indices in cowpea. Indian I. acxic. Sci. 19 (12): 767-769.

Tikke, 5.B. S., Faimini, S.N., Asawa, B.M. and Mathur, J.R. 1977. Genetic variability, interreletionships and discriminent functicn onalysis in cowpea. Indien工. Hexidity 2 (2): 1-9.

Tiwari, A.S., Singh, B.R. and Asawa, B. M. 1978. Character correlations in pigeon pea. Trorical Grain Legume Bulletin. 13/14: 25-27.

Tomas, C.S.. Singh, Le, and Mishra, P,K. 1973. Correlation and path coefficient analyais of yield character in mung bean SABPAO Newl. S (2): 125-127.

Vald. I.K. and Singh. K.B. 1983. Genetic varimbility in $F_{3}$ and $\mathrm{F}_{4}$ poguleticns of croswin cowpee. (Vigna sinensis L.) Medras garic. J. 70 (5): 281-283.

Veeraawam, R. and Ratnaswam. R. 1975. Character association enalyais in soybean (Glycine max L.Marill). Medras agric. J. 62 (9): 534-536.
 Genetic voriability in soma quentitative characters of Phoseolus aureus Rexb. Madrat agric. I. $60(9-12): 1320-1322$.

Veeraswmy, R., Ratnaswamy, A. and Palaniawamy, G.A. 1973 b. Genotypic and phenotypic correlations in Cajanus cajan (L) Millsp. Madras agicic. I. 60: (9-12):1823-1825.

Veeraswamy, R.. Kintnaswemy, R.. Murugeren, M. 1975. Fath analysis in red gram. Madras agric. J. 6? (3): 166-168.

Verma. S.N.P. and Dubere, L.S. 1970. Correlation atudies in Blackgram (Phoseolus mungo). Allahabad Ferming.意(6): 419-422.

Vidnyedhar, Sharme, G.S., and Gupta, S.C. 1984. Path analysis in green gram. Indian J. agric. Sci. 34 (2): 14.4-145.

Wagh. V.R., More. D.C. Mahetra, S.S. and Deshmukh, R.B.1983. Correlations in pigeonpea. I. Meharastra Agric. Univ.8 (2): 132-133.

Wakankar, S.M. and Yadav, LoM. 1975. Path analysis of yield components of arhar (Cajanus catan L.) Indian士. agyic. Sci. 9 (4):182-186.

Wright. S. 1921. Correlation and cauation. J. Agric. Res. 29: 557-585.

Wu, H.P. 1966. Studies on the discriminant function for character groups of soybean varieties. Bot. Bull. Aced. Sci. Tefpei 7 (2): 32-44.

Yadavendre, J.P.. Dixit. S.K. and Shah, R.M. 1981. Genetic veriability correlation and path coefficient analysis in pigeon pea. Guierat Agric. Univ. Res. J.

Appendices

Mean values for the different characters in the 112 genotypes of red gram


| $\begin{aligned} & \text { Varie- } \\ & \text { ties } \\ & \hline \end{aligned}$ | $\left(x_{1}\right)$ | $\left(x_{2}\right)$ | $\left(x_{3}\right)$ | $\left(x_{4}\right)$ | $\left(x_{5}\right)$ | $\left(x_{6}\right)$ | $\left(x_{7}\right)$ | $\left(x_{8}\right)$ | $\left(x_{9}\right)$ | $\left(x_{10}\right)$ | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{16}$ | 164.00 | 10.40 | 35.70 | 36.90 | 147.60 | 90.00 | 72.00 | 181.00 | 3.20 | 6.75 | 17.80 |
| $\mathrm{v}_{17}$ | 324.00 | 8.10 | 31.90 | 75.80 | 365.00 | 218.50 | 102.00 | 182.00 | 4.30 | 9.70 | 90.65 |
| $\mathrm{V}_{18}$ | 279.00 | 8.60 | 46.36 | 92.90 | 437.50 | 194.00 | 102.00 | 182.00 | 4.00 | 6.97 | 81.70 |
| $\mathrm{v}_{19}$ | 212.50 | 12.70 | 37.00 | 83.80 | 335.20 | 139.00 | 73.00 | 182.00 | 4.00 | 7.25 | 60.40 |
| $\mathrm{v}_{20}$ | 310.50 | 10.70 | 52.30 | 129.90 | 570.00 | 184.50 | 103.00 | 180.00 | 4.00 | 5.85 | 103.50 |
| $\mathrm{v}_{21}$ | 313.50 | 9.70 | 36.15 | 81.10 | 422.00 | 197.00 | 103.00 | 180.00 | 4.00 | 6.65 | 66.10 |
| $\mathrm{v}_{22}$ | 264.50 | 12.80 | 42.10 | 88.60 | 424.60 | 140.60 | 72.50 | 181.00 | 4.00 | 8.25 | 24.90 |
| $\mathrm{v}_{23}$ | 253.00 | 9.40 | 30.30 | 71.20 | 356.00 | 171.00 | 72.00 | 182.00 | 4.00 | 9.55 | 93.20 |
| $\mathrm{v}_{24}$ | 323.00 | 9.00 | 37.70 | 192.70 | 807.60 | 179.50 | 101.50 | 182.50 | 3.90 | 5.70 | 108.70 |
| $\mathrm{v}_{25}$ | 318.00 | 10.80 | 52.70 | 322.40 | 1481.55 | 183.00 | 102.00 | 181.50 | 3.80 | 5.70 | 92.53 |
| $\mathrm{v}_{26}$ | 233.00 | 10.60 | 40.30 | 68.80 | 255.55 | 120.00 | 73.00 | 181.00 | 4.00 | 7.10 | 23.60 |
| $\mathrm{v}_{27}$ | 324.50 | 7.30 | 31.82 | 82.30 | 370.33 | 162.90 | 103.00 | 181.00 | 4.40 | 8.25 | 55.50 |
| $\mathrm{v}_{28}$ | 304.00 | 14.20 | 55.00 | 126.70 | 557.50 | 182.00 | 102.00 | 182.00 | 4.00 | 6.75 | 56.35 |
| $\mathrm{v}_{29}$ | 308.00 | 7.70 | 29.55 | 157.60 | 534.75 | 158.00 | 102.00 | 182.00 | 3.40 | 7.85 | 100.25 |
| $\mathrm{V}_{30}$ | 300.50 | 10.30 | 29.30 | 149.10 | 613.90 | 180.00 | 103.00 | 182.00 | 3.70 | 5.45 | 81.50 |
| $\mathrm{v}_{31}$ | 242.50 | 10.00 | 34.05 | 71.00 | 256.40 | 142.00 | 72.00 | 186.00 | 3.60 | 7.48 | 64.90 |
| $\mathrm{V}_{32}$ | 317.00 | 10.50 | 44.60 | 179.20 | 736.70 | 184.00 | 102.00 | 181.00 | 3.80 | 5.75 | 82.70 |
| $\mathrm{v}_{33}$ | 162.50 | 6.80 | 18.70 | 9.85 | 34.80 | 105.00 | 73.00 | 186.00 | 3.35 | 7.70 | 8.50 |
| $\mathrm{v}_{34}$ | 313.00 | 9.10 | 34.00 | 133.50 | 626.05 | 186.00 | 103.00 | 182.00 | 4.10 | 7.40 | 131.10 |
| $\mathrm{V}_{35}$ | 305.00 | 9.70 | 32.50 | 120.00 | 453.25 | 145.00 | 102.00 | 181.00 | 3.80 | 8.05 | 67.40 |
| $\mathbf{v}_{36}$ | 185.50 | 9.80 | 26.50 | 28.20 | 106.30 | 111.50 | 72.00 | 181.00 | 3.90 | 8.35 | 10.60 |
| $\mathrm{v}_{37}$ | 307.50 | 9.10 | 34.20 | 111.10 | 516.95 | 185.50 | 102.00 | 180.00 | 4.00 | 6.20 | 64.90 |
| $\mathrm{V}_{38}$ | 217.00 | 12.20 | 43.80 | 64.00 | 286.00 | 129.00 | 71.00 | 182.00 | 4.00 | 7.35 | 37.20 |


| Varieties | $\left(x_{1}\right)$ | $\left(x_{2}\right)$ | $\left(x_{3}\right)$ | $\left(x_{4}\right)$ | $\left(x_{5}\right)$ | $\left(x_{6}\right)$ | $\left(x_{7}\right)$ | $\left(x_{8}\right)$ | $\left(x_{9}\right)$ | $\left(\mathrm{x}_{10}\right)$ | $\mathbf{Y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{v}_{39}$ | 323.00 | 9.70 | 32.26 | 134.90 | 653.00 | 209.00 | 103.00 | 180.00 | 4.00 | 6.03 | 109.75 |
| $\mathrm{V}_{40}$ | 291.50 | 9.90 | 57.85 | 100.90 | 443.70 | 174.00 | 103.00 | 181.00 | 4.00 | 6.12 | 56.70 |
| $\mathrm{v}_{41}$ | 203.00 | 10.40 | 36.70 | 66.70 | 315.90 | 103.50 | 73.00 | 182.00 | 4.00 | 9.15 | 29.30 |
| $\mathrm{V}_{42}$ | 317.00 | 12.70 | 51.65 | 168.60 | 777.40 | 176.50 | 103.00 | 183.00 | 4.30 | 7.40 | 113.80 |
| $V_{43}$ | 320.00 | 10.30 | 34.55 | 145.20 | 652.85 | 183.00 | 101.00 | 181.00 | 4.00 | 7.05 | 77.60 |
| $\mathrm{V}_{44}$ | 309.00 | 9.60 | 47.00 | 117.10 | 519.85 | 183.00 | 103.00 | 182.00 | 4.00 | 6.75 | 63.70 |
| $\mathrm{V}_{45}$ | 310.00 | 10.30 | 42.10 | 117.10 | 547.30 | 189.00 | 103.00 | 182.50 | 3.80 | 5.85 | 72.70 |
| $\mathrm{V}_{46}$ | 294.50 | 10.60 | 52.98 | 230.50 | 980.60 | 197.00 | 103.00 | 181.50 | 4.00 | 4.78 | 93.60 |
| $\mathrm{v}_{47}$ | 316.50 | 10.30 | 34.53 | 110.50 | 521.35 | 177.50 | 102.00 | 182.50 | 4.00 | 6.90 | 50.1 |
| $\mathrm{V}_{48}$ | 308.00 | 13.40 | 45.90 | 117.30 | 470.00 | 175.50 | 101.00 | 181.50 | 3.90 | 7.50 | 27.80 |
| $\mathrm{V}_{49}$ | 331.50 | 12.10 | 30.23 | 219.40 | 1031.06 | 190.00 | 103.00 | 181.50 | 4.00 | 6.30 | 91.30 |
| $\mathrm{V}_{50}$ | 316.00 | 15.20 | 60.75 | 183.75 | 772.50 | 202.00 | 100.00 | 182.00 | 4.00 | 7.15 | 86.1 |
| $\mathrm{V}_{51}$ | 354.00 | 14.10 | 53.55 | 160.25 | 634.50 | 171.00 | 101.00 | 182.00 | 4.00 | 6.10 | 83.0 |
| $\mathrm{v}_{52}$ | 297.50 | 10.90 | 31.35 | 80.75 | 315.85 | 144.00 | 102.00 | 181.50 | 3.90 | 7.90 | 35.7 |
| $\mathrm{V}_{53}$ | 339.00 | 10.70 | 37.90 | 86.80 | 369.55 | 201.50 | 103.00 | 180.50 | 4.00 | 10.25 | 72.4 |
| $\mathrm{V}_{54}$ | 295.50 | 12.00 | 39.55 | 209.80 | 868.85 | 157.50 | 102.00 | 182.00 | 3.90 | 8.55 | 132.00 |
| $\mathrm{V}_{55}$ | 343.50 | 8.10 | 22.35 | 250.35 | 1003.00 | 177.50 | 103.00 | 181.00 | 4.00 | 6.65 | 126.8 |
| $\mathrm{v}_{56}$ | 294.50 | 10.60 | 52.98 | 230.50 | 980.60 | 197.00 | 103.00 | 181.50 | 4.00 | 4.78 | 93.60 |
| $\mathrm{V}_{57}$ | 298.00 | 10.00 | 36.80 | 145.90 | 639.85 | 133.00 | 103.00 | 180.00 | 3.90 | 7.57 | 64.00 |
| $\mathrm{V}_{58}$ | 252.50 | 13.60 | 53.59 | 73.20 | 274.00 | 150.00 | 73.50 | 178.00 | 4.00 | 6.50 | 297.4 |
| $\mathrm{V}_{59}$ | 304.00 | 8.20 | 35.14 | 136.20 | 612.85 | 217.50 | 102.00 | 180.00 | 4.10 | 7.10 | 102.9 |
| $\mathrm{V}_{60}$ | 313.00 | 13.30 | 53.20 | 117.40 | 474.90 | 184.50 | 101.00 | 182.00 | 4.00 | 7.25 | 74.00 |


| $\begin{aligned} & \text { Varie- } \\ & \text { ties } \end{aligned}$ | $\left(x_{1}\right)$ | $\left(x_{2}\right)$ | $\left(x_{3}\right)$ | $\left(x_{4}\right)$ | $\left(x_{5}\right)$ | $\left(x_{6}\right)$ | $\left(x_{7}\right)$ | $\left(x_{8}\right)$ | $\left(x_{9}\right)$ | $\left(x_{10}\right)$ | $\mathbf{Y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{61}$ | 304.00 | 6.90 | 24.20 | 99.20 | 435.90 | 185.50 | 102.00 | 181.00 | 4.00 | 5.60 | 63.20 |
| $\mathrm{V}_{62}$ | 311.00 | 5.70 | 27.50 | 118.60 | 502.05 | 210.00 | 102.00 | 182.00 | 4.00 | 7.25 | 92.80 |
| $\mathrm{v}_{63}$ | 321.00 | 11.30 | 45.85 | 124.20 | 595.65 | 165.00 | 102.00 | 181.00 | 4.00 | 7.45 | 47.60 |
| $\mathrm{V}_{64}$ | 330.00 | 9.30 | 43.60 | 215.80 | 1017.70 | 181.50 | 102.00 | 182.00 | 4.00 | 6.35 | 118.60 |
| $\mathrm{v}_{65}$ | 314.00 | 10.00 | 39.45 | 157.40 | 787.00 | 165.00 | 103.00 | 181.00 | 4.00 | 6.85 | 70.30 |
| $\mathrm{V}_{66}$ | 310.00 | 12.20 | 52.30 | 166.50 | 822.40 | 194.00 | 101.00 | 181.00 | 4.00 | 7.25 | 116.80 |
| $v_{67}$ | 321.00 | 9.00 | 35.60 | 126.40 | 562.60 | 158.00 | 103.00 | 181.00 | 4.00 | 6.50 | 103.00 |
| $\mathrm{V}_{68}$ | 292.50 | 10.60 | 55.85 | 109.10 | 446.70 | 167.50 | 102.00 | 181.00 | 4.00 | 5.97 | 51.10 |
| $\mathrm{V}_{69}$ | 324.00 | 13.00 | 50.65 | 173.00 | 842.35 | 147.00 | 103.50 | 181.00 | 4.10 | 7.60 | 118.50 |
| $\mathrm{V}_{70}$ | 177.00 | 8.10 | 27.20 | 3 E .20 | 147.60 | 993000 | 73.00 | 180.00 | 4.00 | 6.87 | 32.95 |
| $\mathrm{V}_{71}$ | 204.00 | 11.95 | 37.10 | 61.65 | 209.25 | 90.05 | 72.50 | 183.00 | 4.00 | 6.60 | 31.95 |
| $\mathrm{V}_{72}$ | 315.00 | 11.90 | 46.30 | 168.80 | 767.85 | 180.00 | 102.50 | 180.00 | 4.00 | 5.45 | 90.10 |
| $\mathrm{V}_{73}$ | 312.00 | 11.30 | 46.40 | 130.40 | 653.45 | 171.00 | 101.00 | 181.00 | 4.00 | 5.95 | 78.40 |
| $\mathrm{v}_{74}$ | 321.00 | 11.20 | 48.60 | 178.60 | 750.25 | 165.00 | 101.00 | 182.00 | 4.00 | 6.25 | 87.30 |
| $\mathrm{V}_{75}$ | 210.00 | 12.60 | 38.85 | 80.20 | 300.15 | 114.00 | 73.50 | 180.00 | 4.00 | 6.25 | 31.80 |
| ${ }{ }_{76}$ | 316.50 | 13.80 | 53.45 | 211.50 | 960.60 | 161.00 | 102.00 | 181.00 | 3.90 | 8.32 | 92.30 |
| $\mathrm{v}_{77}$ | 317.00 | 9.30 | 34.25 | 105.00 | 50¢.00 | 174.00 | 100.50 | 181.00 | 4.00 | 7.05 | 86.40 |
| $\mathrm{v}_{78}$ | 325.50 | 10.30 | 40.00 | 167.30 | 769.55 | 186.00 | 102.50 | 182.00 | 4.00 | 7.10 | 76.60 |
| $\mathrm{V}_{79}$ | 246.00 | 10.00 | 31.40 | 44.00 | 171.50 | 161.40 | 72.50 | 180.00 | 3.90 | 6.75 | 9.10 |
| $\mathrm{V}_{80}$ | 327.00 | 13.40 | 50.90 | 172.10 | 722.80 | 183.00 | 103.00 | 181.00 | 4.00 | 7.25 | 107.30 |
| $\mathrm{v}_{81}$ | 321.00 | 12.30 | 57.75 | 106.10 | 448.55 | 165.00 | 101.50 | 183.00 | 4.00 | 6.87 | 71.10 |


| Varieties | $\left(x_{1}\right)$ | $\left(x_{2}\right)$ | $\left(x_{3}\right)$ | $\left(x_{4}\right)$ | $\left(x_{5}\right)$ | $\left(x_{6}\right)$ | $\left(x_{7}\right)$ | $\left(x_{8}\right)$ | $\left(x_{9}\right)$ | $\left(x_{10}\right)$ | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{82}$ | 278.50 | 9.20 | 43.55 | 95.60 | 387.48 | 150.00 | 101.50 | 183.00 | 4.10 | 9.20 | 56.20 |
| $\mathrm{V}_{83}$ | 213.00 | 10.10 | 29.34 | 69.90 | 300.70 | 114.00 | 72.50 | 180.00 | 4.00 | 7.55 | 35.00 |
| $\mathrm{v}_{84}$ | 312.00 | 12.60 | 286.40 | 137.20 | 582.30 | 187.50 | 105.00 | 180.00 | 4.10 | 7.20 | 97.00 |
| $\mathrm{v}_{85}$ | 330.00 | 10.60 | 39.25 | 152.40 | 689.25 | 183.00 | 102.00 | 180.50 | 4.00 | 6.10 | 75.00 |
| $\mathrm{v}_{86}$ | 322.00 | 11.20 | 44.80 | 97.70 | 399.10 | 190.50 | 101.00 | 180.00 | 4.00 | 7.55 | 89.90 |
| $\mathrm{V}_{87}$ | 345.00 | 8.80 | 34.45 | 108.60 | 510.15 | 159.00 | 101.00 | 181.00 | 4.00 | 7.80 | 61.15 |
| $\mathrm{V}_{88}$ | 345.00 | 15.00 | 71.90 | 151.60 | 651.40 | 176.00 | 100.50 | 182.00 | 4.00 | 6.20 | 104.80 |
| $\mathrm{v}_{89}$ | 325.25 | 7.90 | 34.85 | 111.20 | 520.35 | 188.75 | 100.50 | 183.00 | 3.90 | 5.95 | 46.90 |
| $\mathrm{v}_{90}$ | 318.00 | 12.30 | 51.65 | 172.10 | 777.35 | 168.00 | 102.00 | 180.00 | 4.00 | 6.80 | 89.25 |
| $\mathrm{v}_{91}$ | 304.50 | 11.30 | 41.75 | 109.20 | 439.45 | 147.00 | 104.50 | 180.00 | 4.00 | 8.87 | 116.70 |
| $\mathrm{v}_{92}$ | 258.00 | 15.90 | 57.30 | 121.50 | 544.20 | 137.50 | 73.50 | 181.00 | 3.80 | 7.40 | 56.20 |
| $\mathrm{V}_{93}$ | 199.10 | 9.40 | 24.95 | 25.90 | 102.55 | 118.30 | 72.00 | 182.00 | 4.10 | 9.10 | 13.50 |
| $\mathrm{v}_{94}$ | 307.50 | 13.30 | 57.20 | 152.20 | 597.00 | 165.00 | 100.50 | 183.00 | 4.00 | 6.50 | 76.40 |
| $\mathrm{v}_{95}$ | 281.40 | 15.20 | 74.25 | 64.80 | 273.05 | 194.20 | 72.50 | 180.00 | 4.00 | 6.75 | 29.60 |
| $\mathrm{v}_{96}$ | 336.00 | 15.90 | 77.80 | 166.40 | 698.90 | 174.00 | 101.50 | 181.00 | 4.00 | 8.75 | 72.10 |
| $\mathrm{V}_{97}$ | 231.00 | 15.90 | 64.65 | 109.10 | 449.60 | 151.50 | 73.00 | 183.00 | 3.80 | 7.10 | 22.10 |
| $\mathrm{V}_{98}$ | 312.00 | 14.70 | 68.40 | 94.00 | 413.50 | 162.00 | 102.00 | 181.00 | 4.00 | 6.75 | 34.10 |
| $\mathrm{V}_{99}$ | 334.00 | 13.20 | 55.50 | 160.80 | 794.30 | 210.50 | 102.00 | 181.00 | 4.00 | 7.93 | 73.00 |
| $\mathrm{V}_{100}$ | 181.50 | 13.50 | 79.30 | 58.60 | 265.10 | 126.60 | 72.00 | 180.00 | 4.00 | 6.60 | 9.80 |
| $\mathrm{v}_{101}$ | 321.00 | 10.40 | 48.30 | 111.40 | 547.05 | 174.00 | 105.00 | 181.00 | 4.00 | 6.95 | 70.40 |
| $\mathrm{V}_{102}$ | 324.00 | 13.10 | 60.30 | 164.90 | 692.60 | 183.00 | 103.00 | 181.00 | 4.00 | 5.55 | 72.40 |
| $\mathrm{v}_{103}$ | 274.60 | 13.70 | 104.95 | 83.70 | 304.75 | 163.30 | 101.00 | 180.00 | 4.00 | 6.55 | 27.60 |


| Varieties | $\left(x_{1}\right)$ | $\left(x_{2}\right)$ | $\left(x_{3}\right)$ | $\left(x_{4}\right)$ | $\left(x_{5}\right)$ | $\left(x_{6}\right)$ | $\left(x_{7}\right)$ | $\left(x_{8}\right)$ | ( $x_{9}$ ) | $\left(x_{10}\right)$ | $\mathbf{Y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{104}$ | 330.00 | 14.80 | 77.95 | 154.30 | 709.80 | 183.00 | 100.00 | 181.50 | 4.00 | 7.60 | 89.90 |
| $\mathrm{V}_{105}$ | 325.00 | 11.40 | 45.65 | 153.50 | 670.20 | 211.00 | 101.00 | 180.00 | 4.00 | 6.75 | 99.90 |
| $\mathrm{v}_{106}$ | 321.75 | 10.15 | 49.05 | 76.25 | 335.00 | 177.25 | 100.00 | 181.00 | 4.00 | 7.20 | 65.40 |
| $\mathrm{v}_{107}$ | 318.00 | 12.50 | 52.20 | 120.80 | 539.65 | 200.50 | 103.00 | 183.00 | 4.00 | 7.18 | 71.70 |
| $\mathrm{v}_{108}$ | 319.00 | 10.40 | 50.75 | 119.70 | 536.10 | 171.00 | 103.00 | 181.50 | 4.00 | 6.88 | 78.70 |
| $\mathrm{v}_{109}$ | 309.00 | 12.40 | 53.60 | 100.80 | 475.05 | 178.50 | 102.00 | 181.50 | 4.90 | 8.25 | 84.00 |
| $\mathrm{V}_{110}$ | 301.00 | 6.70 | 31.85 | 82.90 | 314.80 | 165.00 | 101.00 | 180.50 | 4.00 | 5.85 | 50.80 |
| $\mathrm{V}_{111}$ | 133.15 | 8.75 | 19.45 | 18.00 | 64.08 | 84.40 | 71.00 | 181.50 | 3.62 | 6.55 | 8.30 |
| $\mathrm{v}_{112}$ | 159.90 | 13.05 | 26.20 | 59.55 | 310.48 | 131.80 | 72.00 | 183.00 | 4.00 | 5.95 | 30.45 |


| $C . D=$ |  |  |  |  |  |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.05 | 46.56 | 4.92 | 46.32 | 72.95 | 362.52 | 54.29 | 13.12 | 35.78 | 0.607 | 1.72 |
| 0.01 | 61.23 | 6.46 | 60.89 | 95.87 | 476.46 | 70.91 | 17.27 | 47.03 | 0.798 | 2.257 |
|  |  | 61.36 |  |  |  |  |  |  |  |  |

## APPEADIX-II

$\mathrm{D}^{2}$ values for 112 genotypes of Red Gram

|  | v, | $\mathrm{V}_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ | $\mathrm{v}_{6}$ | $\mathrm{v}_{7}$ | $\mathrm{v}_{8}$ | $\mathrm{v}_{9}$ | $\mathrm{v}_{10}$ | $v_{11}$ | $\mathrm{v}_{12}$ | $\mathrm{v}_{13}$ | ${ }^{1} 14$ | $\mathrm{v}_{15}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{1}$ | 0 | 3722.85 | 5972.72 | 5814.43 | 5798.37 | 5820.45 | 5938.67 | 5867.14 | 5750.17 | 3648.87 | 3667.33 | 5733.83 | 5711.27 | 5773.83 | 5898.77 |
| $\mathrm{v}_{2}$ |  | 0 | 3506.72 | 3288. 14 | 3309.70 | 3385.98 | 3544.98 | 3421.65 | 3282.37 | 21.96 | 34.46 | 3081.13 | 3065.86 | 3258.85 | 3529.70 |
| $\mathrm{v}_{3}$ |  |  | 0 | 213.39 | 204.25 | 215.59 | 204.02 | 185.12 | 292.07 | 3704.44 | 3909.55 | 196.53 | 233.95 | 244.67 | 214.98 |
| $v_{4}$ |  |  |  | 0 | 3.52 | 6.73 | 13.32 | 4.66 | 11.41 | 3509.36 | 3694.34 | 6.01 | 7.52 | 10.96 | 5.76 |
| $v_{5}$ |  |  |  |  | 0 | 5.48 | 17.98 | 4.74 | 12.56 | 3533.61 | 3729.58 | 7.43 | 7.64 | 8.46 | 7.23 |
| $\mathrm{v}_{6}$ |  |  |  |  |  | 0 | 17.04 | 4.26 | 12.02 | 3608.72 | 3802.23 | 15.39 | 14.95 | 6.20 | 5.77 |
| $\mathrm{V}_{7}$ |  |  |  |  |  |  | 0 | 10.21 | 28.58 | 3792.08 | 3959.07 | 25.34 | 27.49 | 24.15 | 6.54 |
| $\mathrm{v}_{8}$ |  |  |  |  |  |  |  | 0 | 21.94 | 3649.11 | 3836.27 | 13.55 | 15.80 | 9.14 | 3.74 |
| $\mathrm{v}_{9}$ |  |  |  |  |  |  |  |  | 0 | 3505.29 | 3697.44 | 18.69 | 12.69 | 15.73 | 16.03 |
| $\mathrm{v}_{10}$ |  |  |  |  |  |  |  |  |  | 0 | 32.62 | 3297.73 | 3291.35 | 3501.39 | 3763.61 |
| $\mathrm{v}_{11}$ |  |  |  |  |  |  |  |  |  |  | 0 | 3481.02 | 3474.45 | 3687.34 | 3952.19 |
| $\nabla_{12}$ |  |  |  |  |  |  |  |  |  |  |  | 0 | 3.89 | 16.57 | 18.43 |
| $\nabla_{13}$ |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 9.54 | 19.75 |
| $\mathrm{v}_{14}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 12.95 |
| $\mathrm{v}_{15}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |
| $\nabla_{16}$ | 3641.28 | 49.75 | 3839.67 | 3543.35 | 3577.36 | 3633.43 | 3806.20 | 3682.44 | 3579.81 | 61.10 | 57.07 | 3338.94 | 3312.55 | 3509.63 | 3791.98 |
| $v_{17}$ | 5836.94 | 3251.96 | 185.14 | 20.71 | 18.41 | 27.11 | 20.01 | 16.62 | 44.21 | 3497.51 | 3659.74 | 22.93 | 23.36 | 21.77 | 22.51 |
| $\mathrm{v}_{18}$ | 5839.26 | 3167.55 | 176.82 | 24.16 | 30.22 | 37.44 | 20.48 | 22.61 | 54.84 | 3410.20 | 3555.98 | 24.63 | 26.47 | 31.28 | 31.19 |
| $v_{19}$ | 3726.85 | 7.16 | 3432.36 | 3197.72 | 3221.65 | 3289.34 | 3452.05 | 3331.79 | 3182.34 | 22.12 | 37.07 | 2996.74 | 2983.00 | 3180.78 | 3435.13 |
| $\nabla_{20}$ | 5888.82 | 3417.66 | 173.43 | 8.30 | 10.01 | 10.04 | 5.53 | 3.64 | 27.27 | 3653.20 | 3830.29 | 17.51 | 19.61 | 14.94 | 5.64 |
| $\mathrm{V}_{21}$ | 5810.28 | 3288.93 | 224.56 | 7.29 | 6.53 | 9.08 | 14.48 | 5.86 | 19.07 | 3527.13 | 3703.28 | 13.23 | 8.72 | 3.34 | 9.13 |
| $\mathrm{v}_{22}$ | 3615.75 | 49.90 | 3597.52 | 3258.84 | 3274.73 | 3336.83 | 3532.75 | 3399.37 | 3211.06 | 55.79 | 103.81 | 3058.53 | 3034.24 | 3226.66 | 3496.67 |
| $\nabla_{23}$ | 3618.69 | 25.26 | 3715.80 | 3403.08 | 3422.76 | 3489.90 | 3668.08 | 3544.08 | 3364.94 | 46.23 | 66.13 | 3198.57 | 3172.29 | 3370.27 | 3643.96 |


|  | $\mathrm{v}_{1}$ | $\mathrm{v}_{2}$ | $\mathrm{v}_{3}$ | $\mathrm{v}_{4}$ | $v_{5}$ | $\mathrm{V}_{6}$ | $\mathrm{v}_{7}$ | $\mathrm{v}_{8}$ | $\mathrm{v}_{9}$ | $\mathrm{v}_{10}$ | $\mathrm{v}_{11}$ | $\mathrm{v}_{12}$ | ${ }^{13}$ | $\mathrm{v}_{14}$ | $\mathrm{v}_{15}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{24}$ | 5895.65 | 3472.10 | 166.25 | 17.87 | 19.07 | 13.65 | 8.20 | 12.28 | 30.47 | 3708.47 | 388ก. 52 | 24.86 | $2^{0} .17$ | 25.01 | 10.72 |
| $\mathrm{v}_{25}$ | 5925.43 | 3467.68 | 143.77 | 633.31 | 621.31 | 626.77 | 600.15 | 590.08 | 739.04 | 3685.41 | 3829.22 | 584.03 | 643.74 | 667.19 | 630.18 |
| $v_{26}$ | 3671.57 | 21.86 | 3499.44 | 3232.10 | 3251.37 | 3312.47 | 3491.42 | 3365.29 | 3202.24 | 34.22 | 58.42 | 3030.67 | 3011.92 | 3203.44 | 3458.66 |
| $v_{27}$ | 5830.46 | 3388.13 | 213.60 | 16.82 | 11.85 | 9.43 | 17.60 | 10.40 | 25.27 | 3625.22 | 3795. 22 | 24.37 | 24.32 | 12.73 | 13.07 |
| $\mathrm{V}_{28}$ | 5858.68 | 3339.74 | 165.53 | 4.23 | 6.24 | 2.74 | 12.49 | 2.27 | 27.37 | 3562.07 | 3747.51 | 9.41 | 14.92 | 15.13 | 7.41 |
| $\mathrm{v}_{29}$ | 5872.06 | 3416.79 | 152.78 | 45.62 | 47.57 | 33.85 | 34.42 | 32.54 | 63.58 | 3650.40 | 3830.54 | 50.07 | 51.26 | 40.20 | 39.13 |
| $\mathrm{v}_{30}$ | 5988.98 | 3643.54 | 159.07 | 25.16 | 29.08 | 23.57 | 8.87 | 13.53 | 50.80 | 3887.02 | 4066.14 | 38.48 | 43.01 | 32.46 | 14.16 |
| $v_{31}$ | 3875.64 | 45.20 | 2984.17 | 2743.09 | 2767.35 | 2821.03 | 2973.72 | 2864.11 | 2725.88 | 84.88 | 112.22 | 2560.47 | 2540.94 | 2716.63 | 2960.12 |
| $v_{32}$ | 5835.07 | 3325.02 | 157.10 | 12.75 | 13.32 | 10.85 | 12.51 | 9.10 | 27.14 | 3553.38 | 3737.82 | 14.36 | 18.05 | 18.06 | $12.0{ }^{\circ}$ |
| $v_{33}$ | 3935.71 | 67.04 | 3084. 19 | 2844.45 | 2881.47 | 2933.86 | 3060.06 | 2964.11 | 2845.83 | 122.39 | 101.07 | 2662.29 | 2642.55 | 2819.47 | 3065.60 |
| $\mathrm{v}_{34}$ | 5937.64 | 3587.74 | 206.19 | 15.16 | 16.15 | 13.90 | 4.78 | 8.97 | 28.45 | 3833.46 | 4009.56 | 30.80 | 31.10 | 20.20 | 4.84 |
| $\mathbf{v}_{35}$ | 5781.08 | 3238.85 | 181.96 | 15.80 | 16.09 | 7.80 | 22.83 | 10.73 | 26.46 | 3460.40 | 3641.51 | 18.13 | 18.37 | 11.25 | 17.80 |
| $\nabla_{36}$ | 3588.89 | 24.46 | 3791.27 | 3704.71 | 3731.59 | 3799.38 | 3974.07 | 3846.23 | 3685.13 | 31.65 | 20.80 | 3489.99 | 3470.32 | 3676.29 | 3959.08 |
| $V_{37}$ | 5738.80 | 3086.06 | 204.83 | 9.72 | 10.16 | 12.92 | 20.58 | 11.73 | 21.17 | 3315.77 | 3484.38 | 6.98 | 5.28 | 8.12 | 18.07 |
| $\nabla_{38}$ | 3595.35 | 20.28 | 3869.44 | 3584.41 | 3608.41 | 3677.24 | 3858.32 | 3728.41 | 3556.85 | 22.77 | 33.30 | 3373.70 | 3354.05 | 3560.06 | 3835.84 |
| $\nabla_{39}$ | 5836.85 | 3367.46 | 213.31 | 7.01 | 5.97 | 8.27 | 8.95 | 6.10 | 15.72 | 3607.37 | 3788.66 | 13.86 | 11.32 | 7.77 | 4.67 |
| $\nabla_{40}$ | 5884.10 | 3377.67 | 171.27 | 10.87 | 13.48 | 14.43 | 6.90 | 4.90 | 34.93 | 3615.42 | 3782.15 | 18.13 | 20.51 | 16.24 | 10.67 |
| $\mathrm{V}_{41}$ | 3683.75 | 22.57 | 3544.99 | 3243.63 | 3268.89 | 3329.92 | 3500.98 | 3381.09 | 3213.58 | 38.22 | 46.78 | 3045.06 | 3025.34 | 3219.11 | 3481.92 |
| $v_{42}$ | 6000.87 | 3768.21 | 201.64 | 22.39 | 22.90 | 21.71 | 12.77 | 16.16 | 37.82 | 4004.99 | 4195.55 | . 42.06 | 49.30 | 39.24 | 8.99 |
| $v_{43}$ | 5711.18 | 3055.76 | 206.08 | 9.82 | 9.53 | 11.06 | 25.71 | 14.43 | 15.76 | 3277.01 | 3455.59 | 5.35 | 4.90 | 10.27 | 19.19 |
| $V_{44}$ | 5939.96 | 3550.11 | 177.78 | 13.44 | 14.45 | 12.90 | 3.59 | 4.76 | 34.50 | 3793.78 | 3969.39 | 25.32 | 27.78 | 18.37 | 6.01 |
| $\mathrm{v}_{45}$ | 6004.90 | 3722.79 | 204.43 | 21.55 | 24.58 | 20.09 | 7.32 | 11.26 | 42.04 | 3972.56 | 4154.52 | 40.46 | 40.53 | 25.66 | 8.67 |


|  | $\mathrm{V}_{1}$ | $\nabla_{2}$ | $v_{3}$ | $v_{4}$ | $\mathrm{v}_{5}$ | $\mathrm{v}_{6}$ | $\mathrm{V}_{7}$ | ${ }^{V_{8}}$ | $\mathrm{v}_{9}$ | ${ }^{10}$ | ${ }^{111}$ | $\mathrm{v}_{12}$ | $\mathrm{v}_{13}$ | ${ }^{v_{14}}$ | ${ }^{15}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{46}$ | 5957.18 | 3506.62 | 127.53 | 31.89 | 36.54 | 40.49 | 13.80 | 26.86 | 61.37 | 3746.11 | 3914.06 | 34.99 | 48.23 | 55.41 | 26.62 |
| $\mathrm{v}_{47}$ | 5837.82 | 3461.86 | 204.79 | 6.65 | 7.59 | 4.98 | 6.15 | 1.96 | 20.75 | 3699.29 | 3880.04 | 17.05 | 17.39 | 8.51 | 2.50 |
| $\mathrm{V}_{48}$ | 5737.09 | 3066.96 | 168.69 | 10.50 | 11.24 | 13.55 | 29.90 | 11.48 | 28.51 | 3279.42 | 3463.70 | 7.34 | 9.82 | 13.54 | 21.68 |
| $\mathrm{V}_{49}$ | 5983.71 | 3605.18 | 109.39 | 588.32 | 571.46 | 577.62 | 557.89 | 537.12 | 700.68 | 3797.38 | 3981.99 | 548.67 | 603.97 | 613.75 | 587.89 |
| $\mathrm{V}_{50}$ | 5691.75 | 2921.26 | 155.46 | 20.00 | 21.05 | 31.53 | 44.41 | 28.09 | 34.46 | 3126.27 | 3311.61 | 7.65 | 15.33 | 34.50 | 38.06 |
| $\mathrm{V}_{51}$ | 5822.57 | 3441.54 | 190.23 | 18.25 | 12.48 | 6.62 | 32.74 | 13.91 | 22.24 | 3653.63 | 3870.79 | 25.68 | 28.67 | 20.11 | 15.25 |
| $\mathrm{V}_{52}$ | 5003.04 | 3257.14 | 188.12 | 10.27 | 11.58 | 6.03 | 19.80 | 5.15 | 26.69 | 3479.47 | 3657.68 | 14.73 | 15.50 | 7.15 | 13.59 |
| $\mathrm{V}_{53}$ | 5767.64 | 3257.47 | 203.69 | 12.20 | 5.55 | 6.85 | 26.23 | 8.14 | 20.61 | 3485.72 | 3680.21 | 14.74 | 10.89 | 3.55 | 14.06 |
| $\mathrm{V}_{54}$ | 5842.65 | 3342.21 | 158.46 | 14.54 | 18.52 | 14.46 | 14.67 | 13.52 | 28.22 | 3562.23 | 3743.58 | 18.50 | 25.90 | 27.85 | 13.85 |
| $\mathrm{v}_{55}$ | 5972.69 | 3701.35 | 209.17 | 775.23 | 753.92 | 574.78 | 734.73 | 716.23 | 890.04 | 3892.47 | 4071.84 | 727.94 | 787.33 | 796.02 | 772.11 |
| $\mathrm{v}_{56}$ | 6066.83 | 3850.93 | 147.65 | 37.93 | 37.33 | 35.77 | 16.44 | 21.49 | 69.69 | 4098.71 | 4286.68 | 54.50 | 64.10 | 50.30 | 20.67 |
| $V_{57}$ | 5809.06 | 3377.02 | 225.32 | 11.89 | 13.34 | 3.37 | 17.35 | 10.00 | 13.08 | 3600.45 | 3784.39 | 20.01 | 19.47 | 11.08 | 10.09 |
| $V_{58}$ | 3609.68 | 84.36 | 3630.79 | 3320.97 | 3336.15 | 3398.89 | 3595.16 | 3459.15 | 3273.55 | 85.82 | 135.05 | 3130.30 | 3100.20 | 3296.32 | 3555.97 |
| $\mathrm{v}_{59}$ | 5711.10 | 2932.40 | 178.64 | 28.35 | 28.99 | 40.47 | 36.08 | 32.57 | 48.57 | 3165.69 | 3319.92 | 17.01 | 18.7? | 32.80 | 41.64 |
| $\nabla_{60}$ | 5768.94 | 3120.71 | 157.44 | 9.11 | 9.16 | 13.58 | 24.82 | 8.88 | 30.37 | 3337.15 | 3520.32 | 7.00 | 10.96 | 14.87 | 18.64 |
| $v_{61}$ | 5813.21 | 3199.50 | 180.04 | 16.97 | 18.41 | 19.44 | 14.36 | 12.90 | 37.08 | 3440.99 | 3598.54 | 16.82 | 17.06 | 15.50 | 19.75 |
| $v_{62}$ | 5839.76 | 3220.09 | 160.61 | 29.05 | 29.90 | 33.95 | 18.56 | 23.27 | 54.03 | 3469.54 | 3621.95 | 27.26 | 28.73 | 29.90 | 29.99 |
| $v_{63}$ | 5783.68 | 3303.85 | 237.86 | 5.36 | 4.47 | 1.55 | 18.91 | 6.86 | 6.87 | 3526.29 | 3718.31 | 11.35 | 8.73 | 4.07 | 7.63 |
| $v_{64}$ | 5935.98 | 3477.77 | 120.87 | 586.58 | 570.73 | 575.09 | 554.92 | 537.60 | 693.28 | 3673.15 | 3845.17 | 545.37 | 596.58 | 607.94 | 589.09 |
| $\mathrm{v}_{65}$ | 5885.49 | 3571.77 | 262.49 | 12.17 | 13.68 | 7.18 | 11.19 | 11.79 | 10.54 | 3809.22 | 3996.18 | 27.15 | 24.76 | 15.12 | 4.30 |
| $\mathrm{v}_{66}$ | 5711.56 | 3058.17 | 239.56 | 7.33 | 10.21 | 15.04 | 26.72 | 18.41 | 9.64 | 3278.66 | 3457.32 | 5.95 | 3.59 | 14.15 | 18.93 |
| $v_{67}$ | 5904.07 | 3607.13 | 227.17 | 17.15 | 15.93 | 6.20 | 12.34 | 9.54 | 20.70 | 3844.83 | 4033.35 | 32.99 | 31.74 | 14.60 | 5.85 |
| $V_{68}$ | 5806.52 | 3181.45 | 158.08 | 11.02 | 13.36 | 15.30 | 16.03 | 8.18 | 34.63 | 3407.77 | 3574.87 | 10.83 | 14.75 | 16.45 | 17.84 |
| $\mathrm{V}_{69}$ | 5932.87 | 3814.76 | 300.98 | 33.21 | 32.43 | 21.39 | 35.52 | 31.31 | 23.65 | 4042.73 | 4252.84 | 58.41 | 56.42 | 38.56 | 18.46 |
| $\mathrm{v}_{70}$ | 3628.58 | 24.68 | 3816.48 | 3541.83 | 3569.20 | 3432.83 | 3801.41 . | 3680.57 | 3519.01 | 38.59 | 23.06 | 3333.83 | 3314.19 | 3514.29 | 3789.26 |


|  | v | $\mathrm{v}_{2}$ | $v_{3}$ | $\mathrm{v}_{4}$ | $\mathrm{v}_{5}$ | $\mathrm{v}_{6}$ | $\mathrm{v}_{7}$ | $\mathrm{V}_{\mathrm{B}}$ | $\mathrm{v}_{9}$ | $\mathrm{V}_{10}$ | $\mathrm{v}_{11}$ | $\mathrm{v}_{12}$ | $v_{13}$ | $\mathrm{v}_{14}$ | $V_{15}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{71}$ | 3757.58 | 21.40 | 3322.02 | 3076.71 | 3102.10 | 3160.04 | 3327.13 | 3206.43 | 3058.66 | 34.17 | 49.17 | 2992.78 | 2867.11 | 3056.77 | 3307.32 |
| ${ }^{72}$ | 5816.02 | 3340.59 | 201.42 | 3.80 | 4.03 | 3.54 | 11.33 | 5.03 | 10.18 | 3565.17 | 3754.35 | 9.38 | 10.70 | 10.32 | 4.06 |
| $\mathrm{v}_{73}$ | 5739.60 | 3157.45 | 250.25 | 5.14 | 7.22 | 6.92 | 22.67 | 11.97 | 5.91 | 3379.85 | 3560.63 | 8.35 | 4.54 | 6.11 | 12.91 |
| $\mathrm{v}_{74}$ | 5804.91 | 3236.09 | 176.19 | 9.11 | 9.34 | 5.89 | 15.38 | 8.67 | 17.58 | 3506.58 | 3693.39 | 11.44 | 15.50 | 15.95 | 10.54 |
| $\mathrm{v}_{75}$ | 3671.93 | 15.45 | 3534.05 | 3284.84 | 3307.03 | 3371.19 | 3546.75 | 3420.02 | 3261.85 | 20.87 | 40.77 | 3081.11 | 3066.33 | 3263.29 | 3525.12 |
| $\mathrm{v}_{76}$ | 5784.26 | 3346.91 | 232.87 | 10.80 | 11.90 | 7.33 | 25.43 | 16.25 | 6.80 | 3560.12 | 3761.79 | 16.38 | 17.90 | 19.34 | 12.29 |
| $\mathrm{v}_{77}$ | 5671.89 | 2981.23 | 245.84 | 15.41 | 15.65 | 15.80 | 36.06 | 21.72 | 16.76 | 3203.17 | 3376.39 | 12.36 | 6.65 | 9.25 | 27.47 |
| $\mathrm{v}_{78}$ | 5901.15 | 3539.89 | 204.06 | 9.50 | 9.35 | 6.27 | 5.25 | 5.88 | 17.74 | 3777.68 | 3265.67 | 20.20 | 21.93 | 15.34 | 1.84 |
| $\mathrm{v}_{79}$ | 3593.25 | 19.08 | 3791.27 | 3518.04 | 3535.32 | 3604. 14 | 3788.0c | 3655.86 | 3488.72 | 32.31 | 52.70 | 3305.59 | 3282.59 | 3482.52 | 3764.37 |
| $\mathrm{v}_{80}$ | 5886.98 | 3529.97 | 173.19 | 11.25 | 8.78 | 6.65 | 14.17 | 6.04 | 22.81 | 3754.06 | 3956.74 | 21.38 | 25.99 | 19.43 | 4.95 |
| $\mathrm{v}_{81}$ | 5826.97 | 3352.26 | 194.15 | 5.82 | 4.75 | 1.62 | 16.10 | 2.25 | 17.32 | 3574.57 | 3766.24 | 14.23 | 14.23 | 6.46 | 6.59 |
| $\mathrm{v}_{82}$ | 5812.80 | 3154.51 | 162.05 | 17.93 | 22.67 | 23.32 | 19.03 | 14.78 | 44.46 | 3383.37 | 3536.10 | 17.98 | 23.03 | 24.19 | 25.08 |
| $\mathrm{V}_{83}$ | 3583.09 | 28.47 | 3842.96 | 3549.73 | 3572.08 | 3636.48 | 3819.86 | 3691.65 | 3515.65 | 33.67 | 43.08 | 3339.56 | 3318.72 | 3520.40 | 3797.42 |
| $\mathrm{V}_{84}$ | 5973.42 | 3747.18 | 220.15 | 58.24 | 54.34 | 59.90 | 48.87 | 50.48 | 72.43 | 3985.07 | 4178.67 | 80.97 | 76.64 | 73.31 | 55.15 |
| $v_{85}$ | 5788.50 | 3298.93 | 210.60 | 6.34 | 4.22 | 2.44 | 15.17 | 6.74 | 9.45 | 3525.47 | 3715.90 | 9.78 | 0.13 | 6.70 | 7.01 |
| $\mathrm{V}_{86}$ | 5636.23 | 2872.47 | 202.25 | 23.51 | 20.43 | 25.77 | 50.41 | 27.88 | 33.61 | 3085.51 | 3265.73 | 13.96 | 11.41 | 18.23 | 40.22 |
| $\mathrm{v}_{87}$ | 5705.99 | 3219.26 | 284.64 | 23.62 | 18.85 | 10.48 | 43.10 | 25.64 | 11.34 | 3441.64 | 3636.55 | 27.04 | 19.36 | 0.92 | 26.43 |
| $\mathrm{v}_{88}$ | 5779.04 | 3321.91 | 215.76 | 11.36 | 7.91 | 5.62 | 32.91 | 13.02 | 12.51 | 3531.59 | 3744.15 | 18.55 | 18.07 | 14.50 | 14.31 |
| $\mathrm{V}_{89}$ | 5818.16 | 3259.47 | 207.56 | 10.27 | 11.50 | 9.67 | 11.51 | 8.38 | 22.05 | 3499.44 | 3670.46 | 13.37 | 10.67 | 7.22 | 11.79 |
| $\mathrm{v}_{90}$ | 5745.75 | 3219.60 | 220.46 | 7.01 | 6.34 | 4.71 | 23.54 | 11.63 | 6.53 | 3435.30 | 3628.14 | 8.96 | 8.99 | 10.94 | 12.03 |
| $\mathrm{v}_{91}$ | 5110.01 | 3625.43 | 203.47 | 19.09 | 17.25 | 8.37 | 17.66 | 8.71 | 29.08 | 3854.79 | 4048.37 | 37.01 | 37.13 | 18.18 | 8.44 |
| $\mathrm{v}_{92}$ | 3708.19 | 61.00 | 3280.48 | 2960.01 | 2977.87 | 3036.30 | 3225.77 | 3095.77 | 2916.41 | 66.68 | 131.03 | 2770.35 | 2748.78 | 2935.01 | 3188.52 |
| $\mathrm{v}_{93}$ | 3618.87 | 16.65 | 3851.05 | 3587.46 | 3612.05 | 3680.71 | 3852.56 | 3726.80 | 3588.29 | 28.59 | 20.01 | 3375.80 | 3357.59 | 3560.56 | 3837.44 |


|  | $\mathrm{v}_{1}$ | $\mathrm{v}_{2}$ | $\mathrm{v}_{3}$ | $\mathrm{V}_{4}$ | $v_{5}$ | $v_{6}$ | $\mathrm{v}_{7}$ | $\mathrm{v}_{0}$ | $\mathrm{v}_{9}$ | $\mathrm{v}_{10}$ | $\mathrm{V}_{11}$ | $\mathrm{v}_{12}$ | $\mathrm{v}_{13}$ | $\mathrm{v}_{14}$ | $\mathrm{v}_{15}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5815.51 | 3216.61 | 138.62 | 10.89 | 12.98 | 13.55 | 19.69 | 9.01 | 33.53 | 3431.58 | 3613.41 | 10.93 | 10.9\% | 22.45 | 16.93 |
|  | 3598.08 | 15.64 | 3933.04 | 3712.03 | 3733.46 | 3810.73 | 3989.68 | 3056.52 | 3703.06 | 18.25 | 30.41 | 3491.71 | 3476.39 | 3675.89 | 3971.07 |
| 95 | 3598.08 |  |  | 13.16 | 8.31 | 4.29 | 40.22 | 10.80 | 15.26 | 3409.42 | 3622.65 | 13.46 | 15.49 | 18.23 | 21.24 |
| $\mathrm{V}_{96}$ | 5727.30 | 3207.44 | 203.38 | 13.16 | 8.81 | 9.29 |  |  |  |  |  |  |  |  |  |
| $\mathrm{v}_{97}$ | 3780.07 | 18.90 | 3216.73 | 2978.56 | 3001.49 | 3067.59 | 3232.46 | 3110.53 | 2962.26 | 32.33 | 71.74 | 2733.46 | 2770.28 | 2964 | 3210.76 |
| $\mathrm{v}_{98}$ | 5862.97 | 3429.95 | 196.85 | 6.03 | 6.05 | 4.67 | 18.63 | 2.12 | 22.64 | 3649.38 | 3845.85 | 16.91 | 18.90 | 10.86 | 7.06 |
| $\mathrm{V}_{99}$ | 5772.97 | 3266.15 | 235.44 | 4.31 | 2.59 | 7.54 | 21.33 | 30.19 | 6.28 | 3490.82 | 3657.94 | 7.09 | 5.10 | 9.00 | . 01 |
| $\nabla_{100}$ | 3568.89 | 27.04 | 4054.76 | 3792.31 | 3819.60 | 3896.06 | 4070.82 | 3940.28 | 3774.92 | 23.40 | 18.79 | 3574.29 | 3557.29 | 3775.21 | 4054.45 |
| $\mathrm{V}_{101}$ | 6050.58 | 3990.87 | 259.17 | 38.09 | 36.49 | 27.75 | 22.50 | 24.82 | 47.20 | 4242.06 | 4439.51 | 66.49 | 64.66 | 30.14 | 16.33 |
| $\mathrm{v}_{102}$ | 5917.37 | 3568.47 | 163.82: | 11.60 | 9.82 | 8.35 | 10.64 | 4.77 | 27.88 | 3796.29 | 3995.09 | 21.91 | 27.94 | 21. | 4.87 |
| $\mathrm{v}_{103}$ | 5670.16 | 2805.09 | 163.41 | 35.86 | 39.30 | 39.67 | 61.07 | 40.22 | 66.23 | 3010.53 | 3172.69 | 23.58 | 28.19 | 44.49 | 1. |
| $\mathrm{v}_{104}$ | 5660.08 | 2999.09 | 237.34 | 13.48 | 12.35 | 16.38 | 46.01 | 24.24 | 12.70 | 3203.08 | 3401.61 | 9.93 | 7.76 | 7.41 | 29.22 |
| $\mathrm{v}_{105}$ | 5683.87 | 2890.43 | 190.76 | 20.27 | 18.35 | 27.07 | 42.76 | 27.61 | 30.38 | 3106.74 | 3286.23 | 8.35 | 8.68 | 22.61 | . 27 |
| $\mathrm{v}_{106}$ | 5622.92 | 2846.43 | 233.40 | 25.15 | 23.40 | 26.29 | 53.46 | 30.98 | 31.26 | 3061.17 | 3236.33 | 16.91 | 11.37 | 16.46 | 43.29 |
| $\mathrm{v}_{107}$ | 5998.47 | 3688.36 | 173.05 | 18.77 | 19.23 | 20.33 | 9.36 | 8.66 | 45.02 | 3930.83 | 4119.18 | 34.71 | 39.36 | 28.65 | 8.40 |
| $\mathrm{v}_{108}$ | 5921.98 | 3598.59 | 205.88 | 11.91 | 11.10 | 5.69 | 7.66 | 4.15 | 22.93 | 3836.29 | 4024.87 | 27.48 | 27.19 | 13.36 | 2.76 |
| $\mathrm{v}_{109}$ | 5763.14 | 3125.82 | 198.23 | 34.30 | 30.84 | 45.09 | 50.76 | 38.00 | 55.70 | 3343.52 | 3510.03 | 31. | 41.7 | 50.30 | 45.27 |
| $\mathrm{v}_{110}$ | 5694.12 | 2ऽ27.94 | 185.57 | 29.68 | 30.15 | 30.63 | 39.57 | 28.69 | 46.97 | 3155.23 | 330ヶ. 71 | 20.74 | 20.0 | 23.37 | 42.45 |
| $\mathrm{v}_{111}$ | 3599.99 | 54.90 | 4171.61 | 3919.02 | 3956.47 | 4022.97 | 4183.86 | 4063.19 | 3910.99 | 63.37 | 21.65 | 3700.82 | 3681.96 | 3894.45 | 4180.72 |
| $\mathrm{v}_{112}$ | 3737.42 | 14.71 | 3667.04 | 3426.97 | 3461.54 | 3536.55 | 3681.57 | 3568.20 | 3427.07 | 332.43 | 11.84 | 3220.68 | 3209.87 | 3420.11 | 3675.46 |



|  | $\mathrm{v}_{16}$ | $\mathrm{v}_{17}$ | $\mathrm{V}_{10}$ | $\mathrm{v}_{19}$ | $\mathrm{v}_{20}$ | $\mathrm{v}_{21}$ | $\mathrm{v}_{22}$ | $\mathrm{v}_{23}$ | $\mathrm{v}_{24}$ | $\mathrm{v}_{25}$ | $v_{20}$ | $v_{27}$ | $\mathrm{v}_{25}$ | $\mathrm{v}_{29}$ | $v_{30}$ | $\mathrm{V}_{31}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{63}$ | 3548.11 | 26.76 | 36.64 | 3209.46 | 13.25 | 7.17 | 3251.63 | 3403.20 | 18.29 | 659.19 | 3231.45 | 10.8 c | 11.92 | 41.40 | 30.82 | 2747.90 |
| $v_{64}$ | 3813.03 | 503.78 | 481.43 | 3407.72 | 505.41 | 582.34 | 3636.89 | 3711.88 | 478.32 | 12.13 | 3481.54 | 549.86 | 510.26 | 417.43 | 480.32 | 2976.27 |
| $\mathrm{v}_{65}$ | 3819.27 | 36.78 | 47.42 | 3470.59 | 15.39 | 15.52 | 3515.15 | 3669.98 | 15.95 | 702.10 | 3494.72 | 15.65 | 19.99 | 46.03 | 24.45 | 2989.44 |
| $v_{66}$ | 3304.01 | 23.84 | 27.68 | 2968.08 | 18.63 | 11.95 | 3021.62 | 3186.93 | 26.37 | 644.35 | 2999.24 | 23.66 | 16.72 | 53.69 | 45.27 | 2527.48 |
| $v_{67}$ | 3856.74 | 31.21 | 43.45 | 3505.11 | 10.40 | 15.16 | 3558.59 | 3708.48 | 19.60 | 639.86 | 3527.66 | 10.93 | 18.83 | 31.06 | 16.95 | 3017.64 |
| $\mathrm{v}_{68}$ | 3436.06 | 11.15 | 8.09 | 3096.59 | 6.60 | 9.90 | 3181.42 | 3310.34 | 15.74 | 513.10 | 3134.55 | 15.92 | 5.83 | 27.32 | 19.68 | 2645.63 |
| $v_{69}$ | 4068.21 | 71.58 | 92.83 | 3702.18 | 38.67 | 42.76 | 3729.68 | 3901.25 | 37.39 | 775.98 | 3720.99 | 35.19 | 43.80 | 75.57 | 47.7 | 3209.05 |
| $\mathrm{v}_{70}$ | 23.11 | 3514.02 | 3421.61 | 17.77 | 3676.20 | 3541.40 | 44.62 | 29.24 | 3725.03 | 3759.76 | 17.07 | 3633.40 | 3603.58 | 3059.43 | 3900.70 | 66.32 |
| $\nabla_{71}$ | 42.17 | 3060.86 | 2977.33 | 5.83 | 3204.96 | 3084.49 | 31.67 | 26.86 | 3248.69 | 3291.45 | 7.35 | 3168.37 | 3132.34 | 3189.72 | 3423.59 | 20.80 |
| ${ }^{72}$ | 3595.63 | 21.13 | 28.67 | 3245.14 | 6.21 | 8.57 | 3302.42 | 3447.35 | 8.29 | 598.52 | 3275.13 | 11.43 | 7.12 | 32.72 | 20.45 | 2784.27 |
| $\mathrm{V}_{73}$ | 3396.61 | 24.59 | 30.76 | 3064.70 | 15.67 | 7.46 | 3110.55 | 3253.81 | 23.26 | 669.22 | 3089.91 | 15.57 | 14.29 | 47.66 | 39.05 | 2614.55 |
| $\mathrm{v}_{74}$ | 3537.44 | 24.81 | 30.11 | 3188.98 | 8.31 | 15.24 | 3250.22 | 3394.56 | 5.60 | 540.13 | 3217.41 | 13.56 | 9.63 | 24.29 | 20.96 | 2729.22 |
| $\mathrm{v}_{75}$ | 35.93 | 3270.12 | 3187.93 | 4.05 | 3420.58 | 3292.82 | 20.38 | 14.05 | 3464.78 | 3494.58 | 2.54 | 3380.45 | 3343.89 | 3406.18 | 3647.82 | 29.6 |
| ${ }^{76}$ | 3587.08 | 47.28 | 55.56 | 3243.40 | 21.74 | 23.53 | 3281.13 | 3440.23 | 17.74 | 641.10 | 3265.19 | 25.25 | 20.21 | 42.96 | 36.23 | 2781.6 |
| ${ }^{77}$ | 3214.42 | 24.37 | 29.47 | 2892.05 | 23.38 | 11.62 | 2940.49 | 3074.46 | 31.65 | 636.30 | 2915.45 | 20.04 | 23.17 | 47.97 | 51.63 | 2452.4 |
| $\mathrm{v}_{78}$ | 3801.85 | 23.84 | 33.00 | 3443.86 | 5.88 | 12.15 | 3540.76 | 3652.02 | 5.35 | 607.58 | 3474.67 | 11.99 | 10.20 | 31.61 | 12.01 | 2965.2 |
| $\mathrm{v}_{79}$ | 32.55 | 3494.35 | 3414.90 | 17.91 | 3657.20 | 3515.85 | 20.87 | 7.39 | 3704.61 | 3753.65 | 10.00 | 3611.83 | 3579.89 | 3640.48 | 3892.56 | 62.7 |
| $\mathrm{v}_{80}$ | 3798.13 | 28.38 | 39.92 | 3432.53 | 7.57 | 17.31 | 3494.29 | 3644.86 | 7.63 | 565.47 | 3464.29 | 15.82 | 9.03 | 30.89 | 14.86 | 2958.5 |
| $\mathrm{v}_{81}$ | 3604.84 | 19.88 | 28.41 | 3259.23 | 6.00 | 6.88 | 3316.98 | 3463.60 | 12.97 | 596.32 | 3287.18 | 9.43 | 5.59 | 30.78 | 20.01 | 2793.00 |
| $\mathbf{v}_{\mathbf{8 2}}$ | 3408.70 | 11.30 | 5.83 | 3069.33 | 10.42 | 15.19 | 3163.45 | 3285.80 | 19.83 | 506.54 | 3110.04 | 18.42 | 11.72 | 32.65 | 24.63 | 2621.6 |
| $\mathrm{v}_{83}$ | 30.10 | 3534.23 | 3451.46 | 17.87 | 3692.19 | 3553.69 | 19.78 | 8.40 | 3736.93 | 3804.74 | 8.84 | 3644.18 | 3616.19 | 3676.90 | 3030.21 | 69.8 |
| $\mathrm{v}_{84}$ | 4016.29 | 71.44 | 75.85 | 3562.22 | 48.95 | 63.30 | 3725.52 | 3871.36 | 59.50 | 637.60 | 3886.12 | 62.64 | 56.76 | 83.17 | 55.03 | 3164. |
| $\nabla_{85}$ | 3550.16 | 22.26 | 32.31 | 3204.56 | 9.43 | 7.95 | 3253.64 | 3400.48 | 10.54 | 606.36 | 3229.19 | 9.70 | 10.32 | 32.51 | 25.25 | 2743.6 |



|  | $\mathrm{v}_{32}$ | $\mathrm{V}_{33}$ | $v_{34}$ | $\mathrm{v}_{35}$ | $\mathrm{v}_{36}$ | $\mathrm{v}_{37}$ | $v_{36}$ | $\mathrm{V}_{39}$ | $V_{40}$ | $\mathrm{V}_{41}$ | $v_{42}$ | $v_{43}$ | $\mathrm{V}_{44}$ | $\mathrm{v}_{45}$ | $\mathbf{V}_{46}$ | $\mathrm{V}_{47}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{*} 32$ | 0 | 2365.83 | 14.86 | 5.71 | 3741.77 | 11.41 | 3627.06 | 9.70 | 9.76 | 3284.14 | 27.62 |  |  |  |  |  |
| $\mathrm{v}_{33}$ |  | 0 | 3111.66 | 2778.32 | 94.74 | 2648.33 | 104.39 |  |  | 3284.14 | 27.62 | 10.54 | 10.21 | 19.66 | 16.20 | 9.78 |
| $\mathrm{v}_{34}$ |  |  | 0 |  |  |  | 104.39 | 2915.93 | 2906.98 | 67.76 | 3299.42 | 2629.36 | 3070.51 | 3220.94 | 3034.74 | 2993.69 |
|  |  |  | 0 | 22.03 | 4020.46 | 21.81 | 3900.73 | 5.89 | 9.24 | 3543.32 | 7.94 | 26.14 | 3.94 | 7.29 | 22.35 | 50 |
| ${ }^{35}$ |  |  |  | 0 | 3639.10 | 9.35 | 3527.96 | 14.24 | 13.49 | 3186.89 | 40.21 | 69 |  |  | 22.35 | 5.50 |
| ${ }^{\text {v }} 36$ |  |  |  |  | 0 | 3487.41 | 6.54 | 3789.50 | 3900.10 |  | 40.21 | 8.69 | 17.03 | 28.20 | 36.56 | 12.34 |
| $v_{37}$ |  |  |  |  |  | 0 | 3377 78 |  | 3800.19 | 20.43 | 4216.62 | 3454.13 | 3083.29 | 4164.68 | 30.45 .67 | 3886.57 |
| V38 |  |  |  |  |  |  | 3コフา.7๐ | 7.97 | 10.55 | 3045.87 | 43.29 | 2.36 | 18.34 | 33.42 | 36.65 | 12.15 |
|  |  |  |  |  |  |  | 0 | 3670.90 | 3691.05 | 10.99 | 4087.19 | 3339.47 | 3868.50 | 4047.13 | 3033.21 | 3768.97 |
| 35 |  |  |  |  |  |  |  | 0 | 8.03 | 3325.94 | 19.74 | 10.38 |  |  |  |  |
| $\mathrm{v}_{40}$ |  |  |  |  |  |  |  |  | 0 | 34451 |  | 10.38 | 7.85 | 14.87 | 28.24 | 4.33 |
| $\mathrm{v}_{41}$ |  |  |  |  |  |  |  |  | 0 | 3344.51 | 22.71 | 17.76 | 3.00 | 11.51 | 18.12 | 5.21 |
| ${ }^{4} 4$ |  |  |  |  |  |  |  |  |  | 0 | 3723.09 | 3009.82 | 3513.52 | 3683.78 | 3482.49 | 3417.75 |
| $\mathrm{V}_{43}$ |  |  |  |  |  |  |  |  |  |  | 0 | 44.47 | 12.46 | 14.34 | 25.87 | 14.68 |
| $\mathrm{V}_{44}$ |  |  |  |  |  |  |  |  |  |  |  | 0 | 24.41 | 40.62 | 40.07 | 15.50 |
| $\mathrm{v}_{45}$ |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 4.13 | 16.44 | 3.00 |
| $\mathrm{v}_{46}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 25.88 | 7.62 |
| $\mathrm{v}_{47}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 26.41 |
| $\mathrm{V}_{48}$ | 10.69 | 2637.48 | 28.88 | 8.15 | 3471.62 | 5.59 | 3359.58 | 14.84 | 14.25 | 303259 |  |  |  |  |  | 0 |
| $\mathrm{V}_{49}$ | 471.00 | 3187.57 | 558.30 | 497.64 | 4063.98 | 540.70 | 3988.90 |  |  | 3032.59 | 45.79 | 5.10 | 22.89 | 37.94 | 38.36 | 16.70 |
| $v_{50}$ | 20.26 | 2520.71 | 47.84 | 25.25 | 3326.84 | 540.70 15.02 | 3988.90 | 571.03 | 501.19 | 3680.47 | 567.32 | 543.25 | 516.04 | 563.45 | 423.25 | 562.86 |
| $\mathrm{v}_{51}$ | 15.64 | 3005.92 | 25.38 | 15.51 | 3863.37 | 28.39 | 3212.76 | 28.65 | 29.77 | 2996.65 | 61.37 | 11.00 | 41.28 | 62.50 | 39.76 | 35.01 |
| $\mathrm{V}_{52}$ | 9.56 | 2797.40 | 19.02 | 3.21 | 3663.02 | 38 |  | 20.03 | 30.37 | 3397.66 | 26.24 | 20.75 | 25.24 | 33.05 | 47.77 | 17.22 |
| $\mathrm{V}_{53}$ | 13.86 |  |  |  |  | 7.38 | 3552.43 | 11.96 | 7.97 | 3211.17 | 34.86 | 9.76 | 12.42 | 22.51 | 37.59 | 7.23 |
| 53 | 13.86 | 2825.28 | 19.29 | 10.08 | 3671.88 | 7.89 | 3553.76 | 7.08 | 15.42 | 3216.81 | 35.60 | 8.57 |  |  |  |  |
| $\mathrm{V}_{54}$ | 3.72 | 2883.84 | 15.71 | 10.31 | 3756.72 | 17.81 | 3639.78 | 14.52 |  |  |  |  | 17.40 | 28.43 | 47.71 | 10.29 |
| $\mathrm{V}_{55}$ | 630.64 | 3284.21 | 733.66 | 656.92 |  |  |  | 14.52 | 14.99 | 3294.94 | 23.78 | 14.78 | 15.23 | 25.73 | 15.05 | 15.16 |
|  |  |  |  |  |  | 711.65 | 4083.25 | 748.77 | 673.53 | 3778.05 | 748.67 | 711.69 | 689.64 | 745.41 | 581.00 | 742.94 |


|  | $\mathrm{V}_{32}$ | $\mathrm{v}_{33}$ | $v_{34}$ | $\mathrm{V}_{35}$ | $\mathrm{v}_{36}$ | $\mathrm{V}_{37}$ | $\mathrm{V}_{38}$ | $\mathrm{v}_{39}$ | $V_{40}$ | $\mathrm{v}_{41}$ | $\mathrm{V}_{42}$ | $\mathrm{v}_{43}$ | $\mathrm{V}_{44}$ | $V_{45}$ | $\mathrm{V}_{46}$ | $\mathrm{V}_{47}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{56}$ | 26.98 | 3357.70 | 16.33 | 43.13 | 4310.75 | 52.07 |  |  |  |  |  |  |  |  |  |  |
| $V_{57}$ | 10.33 | 2911.32 | 17.26 | 5.84 | 3779.70 | 15.08 |  | 30.20 | 20.34 | 3825.70 | 13.49 | 58.83 | 10.21 | 9.34 | 17.23 | 20.35 |
| $\mathrm{V}_{58}$ | 3360.90 | 169.50 | 3610.37 | 3258.98 | 84.56 | 15.08 3123.45 | 3661.38 | 12.52 | 17.84 | 3310.49 | 28.32 | 12.68 | 16.86 | 24.46 | 40.06 | 9.62 |
| $\mathrm{V}_{59}$ | 24.19 | 2511.78 | 39.33 | 28.65 | 3334.94 | 3123.45 | 56.30 | 3390.66 | 3434.65 | 56.61 | 3794.17 | 3079.60 | 3600.46 | 3769.94 | 3583.77 | 3501.28 |
| $v_{60}$ | 9.78 | 2691.28 | 23.93 | 10.37 | 3533.20 | 5.86 | 3420.63 | 23.16 | 22.14 | 2910.96 | 65.69 | 13.77 | 35.17 | 57.43 | 36.76 | 33.97 |
| $v_{61}$ | 10.50 | 2739.86 | 16.58 | 11.77 | 3609.4d | 4.61 | 3504.86 | 12.59 | 10.27 | 3091.37 | 37.>7 | 6.57 | 17.77 | 32.73 | 30.93 | 13.72 |
| $v_{62}$ | 15.16 | 2758.21 | 21.29 | 22.11 | 3637.09 | 12.96 | 3534.84 | 9.92 | 4.96 | 3160.60 | 39.02 | 11.04 | 11.12 | 24.54 | 24.58 | 11.22 |
| $v_{63}$ | 13.75 | 2859.13 | 17.67 | 10.37 | 3712.14 | 9.80 | 3534.84 | . 30 | 9.79 | 3197.38 | 45.58 | 20.99 | 15.78 | 30.18 | 20.01 | 20.79 |
| $v_{64}$ | 466.21 | 3057.69 | 555.75 | 489.40 | 3921.93 | 530.82 | 3590.46 | 7.63 | 16.89 | 3246.78 | 28.22 | 7.93 | 17.13 | 25.4\% | 45.92 | 6.73 |
| $\mathrm{v}_{65}$ | 19.58 | 3099.24 | 10.77 | 22.06 | 3992.03 | 24.94 | 6. | 566.56 | 497.40 | 3546.04 | 572.85 | 533.46 | 515.44 | 566.03 | 423.25 | 561.63 |
| $v_{66}$ | 18.45 | 2634.99 | 27.41 | 19.41 | 3458.29 | 6.70 | 6.2 | 10.42 | 21.38 | 3506.47 | 15.55 | 24.15 | 14.46 | 15.80 | 4.01 | 7.62 |
| $\mathrm{V}_{67}$ | 15.09 | 3128.61 | 6.21 | 14.92 | 4029.45 | 24.62 | 3906 | 10.95 | 23.09 | 3010.38 | 43.92 | 4.13 | 29.88 | 43.65 | 45.95 | 19.31 |
| $\mathrm{V}_{68}$ | 8.13 | 2730.11 | 19.26 | 8.99 | 3592.10 |  | 06.44 | 9.89 | 16.90 | 3546.06 | 13.77 | 25.02 | 9.76 | 11.95 | 37.96 | 6.66 |
| ${ }^{*} 69$ | 45.78 | 3343.25 | 26.95 | 47.39 | 4244.55 | 59.74 | 4105.57 | 12.31 | 3.70 | 3149.26 | 35.60 | 9.85 | 11.27 | 25.60 | 22.37 | 10.82 |
| $\mathrm{v}_{70}$ | 3577.14 | 77.83 | 3846.27 | 3475.34 | 86 | 27.8 | 4105.57 | 33.09 | 51.69 | 3735.64 | 20.01 | 54.25 | 37.57 | 34.03 | 71.87 | 28. 69 |
| ${ }^{1} 71$ | 3109.77 | 51.94 | 3367.42 | 3015.60 | 34.33 | 2884.00 | 24.44 | 3623.12 3159.15 | 3633.93 | 11.02 | 4039.06 | 3295.40 | 3812.93 | 3991.93 | 3775.77 | 3718.80 |
| $\mathrm{V}_{72}$ | 6.03 | 2895.26 | 10.08 | 9.50 | . 33 | 2884.00 | 24.39 | [3159.15 | 3169.07 | 7.09 | 3540.16 | 2848.81 | 3334.78 | 8502.43 | 3298.64 | 3244.79 |
| $\mathrm{V}_{73}$ | 16.85 | 2720.20 | 22.25 | 13.14 | 3557.23 | 24 | 3635.16 | 3.87 | 11.79 | 3290.92 | 18.23 | 7.27 | 11.16 | 19.96 | 26.75 | 5.70 |
| $\mathrm{V}_{74}$ | 3.20 | 2840.51 | 15.61 | 5.87 | 3697.26 | 10.61 | 3436.05 3577.75 | 8.74 | 15.16 | 3101.69 | 37.45 | 4.43 | 23.47 | 34.34 | 49.51 | 11.78 |
| $\mathrm{V}_{75}$ | 3319.53 | 78.43 | 3587.69 | 3224.32 | 18.74 | 3086.07 | 3577.7 | 9.89 | 13.63 | 3236.04 | 24.29 | 6.71 | 14.10 | 26.13 | 23.81 | 9.66 |
| $\mathrm{v}_{76}$ | 14.89 | 2905.75 | 25.63 | 16.49 |  |  | 9.14 | 3368.55 | 3384.56 | 4.56 | 3764.67 | 3048.23 | 3554.85 | 3728.59 | 3516.01 | 3461.03 |
|  |  |  | 25.63 | 16.49 | 3755.47 | 22.56 | 3627.32 | 16.68 | 30.59 | 3281.91 | 29.43 |  |  |  |  |  |
| ${ }^{77}$ | 21.63 | 2554.67 | 34.13 | 13.47 | 3369.10 | 4.37 | 3256.18 |  |  | 3201.91 | 29.43 | 14.48 | 28.07 | 35.63 | 44.39 | 17.54 |
| ${ }^{78}$ | 8.26 | 3073.41 | 5.06 | 15.49 | 3958.57 | 4.37 |  | 15.53 | 25.18 | 2929.23 | 58.48 | 3.12 | 34.31 | 50.73 | 60.73 | 22. |
|  |  |  |  |  | 398.57 | 18.49 | 3845.54 | 5.53 | 11.40 | 3490.45 | 9.80 | 18.44 | 5.44 | 9 |  |  |



|  | $v_{32}$ | $\mathrm{v}_{33}$ | $\mathrm{v}_{34}$ | $\mathrm{v}_{35}$ | $\mathrm{v}_{36}$ | $\mathrm{v}_{37}$ | $\mathrm{V}_{38}$ | $\mathrm{v}_{39}$ | $\mathrm{v}_{40}$ | $\mathrm{V}_{41}$ | $v_{42}$ | $\mathrm{V}_{43}$ | $\mathrm{V}_{44}$ | $v_{45}$ | $\mathrm{V}_{46}$ | $\mathrm{V}_{37}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{99}$ | 16.25 | 2839.49 | 20.69 | 19.66 | 3683.07 | 11.60 | 3557.82 | 7.02 | 21.15 | 3210.57 | 29.25 | 8.69 | 21.49 | 30.07 | 43.71 | 5.5 |
| $\mathrm{v}_{100}$ | 3838.31 | 121.45 | 4120.27 | 3740.04 | 6.04 | 3581.25 | 8.84 | 3885.46 | 3895.70 | 30.59 | 4310.79 | 3546.40 | 4081.94 | 4266.51 | 4077.40 | 3094.54 |
| $v_{101}$ | 42.76 | 3486.93 | 16.51 | 49.12 | 4440.90 | 60.28 | 4312.22 | 29.94 | 34.53 | 3934.56 | 13.73 | 65.20 | 10.32 | 10.90 | 53.73 | 20.3 F |
| $\mathrm{v}_{102}$ | 8.19 | 3108.82 | 9.19 | 16.45 | 4004.71 | 23.89 | 3840.86 | 11.06 | 11.75 | 3527.70 | 9.09 | 23.37 | 6.25 | 11.07 | 18.99 | 6.4 |
| $\mathrm{v}_{103}$ | 39.45 | 2389.39 | 68.08 | 34.81 | 3196.66 | 21.96 | 3097.30 | 48.16 | 32.85 | 2785.07 | 91.54 | 26.15 | 53.50 | 78.21 | 61.45 | 49.80 |
| $\mathrm{v}_{104}$ | 25.87 | 2595.35 | 44.11 | 21.45 | 3394.57 | 14.74 | 3270.98 | 22.94 | 36.58 | 2947.68 | 57.33 | 7.63 | 44.14 | 60.18 | 66.64 | 29.13 |
| $\mathrm{v}_{105}$ | 19.83 | 2487.54 | 43.07 | 19.86 | 3287.19 | 7.18 | 3175.03 | 21.06 | 28.50 | 2857.90 | 65.27 | 4.63 | 40.01 | 61.36 | 48.96 | 31.65 |
| $\mathrm{v}_{106}$ | 30.88 | 2434.84 | 51.30 | 19.50 | 3229.48 | 8.82 | 3120.02 | 27.66 | 33.61 | 2802.72 | $7 ヶ .03$ | 7.94 | 47.36 | 68.04 | 74.98 | 34.40 |
| $\mathrm{v}_{107}$ | 19.42 | 3209.37 | 7.56 | 30.81 | 4138.19 | 32.61 | 4017.98 | 14.73 | 10.10 | 2659.97 | 8.88 | 38.88 | 3.73 | 3.67 | 20.34 | 8.1 |
| $v_{108}$ | 12.20 | 3122.67 | 4.00 | 15.03 | 4028.11 | 21.27 | 3906.50 | 7.32 | 9.72 | 3548.40 | 9.82 | 23.68 | 3.91 | 6.07 | 29.14 | 2.62 |
| $\mathrm{V}_{109}$ | 51.99 | 2737.75 | 44.79 | 55.23 | 3545.17 | 32.92 | 3426.83 | 34.28 | 38.28 | 3098.98 | 47.57 | 34.68 | 46.91 | 73.17 | 56.97 | 42.96 |
| $\mathrm{v}_{110}$ | 21.26 | 2489.97 | 42.10 | 14.36 | 3315.60 | 6.97 | 3215.94 | 26.48 | 20.64 | 2891.62 | 71.91 | 10.72 | 34.19 | 55.88 | 49.51 | 30.05 |
| $\mathrm{v}_{111}$ | 3952.07 | 98.32 | 4238.98 | 3848.19 | 44.85 | 3693.54 | 37.47 | 4007.22 | 4004.62 | 57.11 | 4446.92 | 3665.63 | 4196.12 | 4378.33 | 4149.12 | 4102.95 |
| $\nabla_{112}$ | 3471.28 | 62.58 | 3732.04 | 3384.74 | 23.84 | 3225.81 | 28.92 | 3514.61 | 31515.77 | 32.20 | 3915.25 | 3198.48 | 3694.67 | 3969.80 | 3641.50 | 3607.28 |


|  | $\mathbf{V}_{48}$ | $\mathrm{V}_{49}$ | $\mathrm{v}_{50}$ | $\mathrm{v}_{51}$ | $V_{52}$ | $\mathrm{V}_{53}$ | $v_{54}$ | $\mathrm{v}_{55}$ | $\mathrm{v}_{56}$ | $\mathbf{v}_{57}$ | $v_{50}$ | $v_{59}$ | $v_{60}$ | $v_{61}$ | $v_{62}$ | $v_{63}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{48}$ | 0 | 490.60 | 7.56 | 21.03 | 0.41 | 9.23 | 15.03 | 658.64 | 52.00 | 18.33 | 3099.77 | 15.80 | 1.04 | 11.97 | 21.28 | 13.59 |
| $\mathrm{V}_{49}$ |  | 0 | 467.08 | 536.26 | 520.00 | 548.38 | 472.32 | 18.49 | 468.83 | 579.00 | 3769.40 | 478.81 | 478.00 | 492.69 | 451.12 | 612.89 |
| $\mathrm{v}_{50}$ |  |  | 0 | 35.11 | 25.22 | 25.59 | 22.15 | 631.87 | 70.79 | 37.26 | 20.7.88 | 14.09 | 7.53 | 24.29 | 30.13 | 29. 24 |
| $\mathrm{V}_{51}$ |  |  |  | 0 | 17.94 | 13.96 | 17.72 | 704.78 | 40.77 | 12.39 | 3438.17 | 57.24 | 20.96 | 37.10 | 50.85 | 11.37 |
| $\mathrm{v}_{52}$ |  |  |  |  | 0 | 7.90 | 15.22 | 690.56 | 37.98 | 8.19 | 3291.91 | 27.93 | 7.10 | 0.44 | 21.56 | 8.03 |
| $\mathrm{v}_{53}$ |  |  |  |  |  | 0 | 22.76 | 721.36 | 44.50 | 13.85 | 3271.8 ? | 26.80 | 9.23 | 14.52 | 25.45 | 6.72 |
| $\mathrm{v}_{54}$ |  |  |  |  |  |  | 0 | 630.73 | 30.86 | 11.73 | 3365.00 | 29.61 | 14.11 | 17.65 | 22.57 | 19.63 |
| $v_{55}$ |  |  |  |  |  |  |  | 0 | 638.78 | 749.40 | 3858.43 | 639.10 | 646.78 | 656.78 | 607.26 | 794.78 |
| $v_{56}$ |  |  |  |  |  |  |  |  | 0 | 42.16 | 3918.43 | 69.45 | 42.78 | 37.06 | 37.26 | 45.28 |
| $\mathrm{v}_{57}$ |  |  |  |  |  |  |  |  |  | 0 | 3385.13 | 42.91 | 20.16 | 20.74 | 35.14 | 4.78 |
| $v_{58}$ |  |  |  |  |  |  |  |  |  |  | 0 | 2989.03 | 3162.07 | 3255.07 | 3284.79 | 3118.79 |
| $v_{59}$ |  |  |  |  |  |  |  |  |  |  |  | 0 | 14.06 | 10.00 | 9.74 | 36.17 |
| $v_{60}$ |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 9.77 | 17.18 | 14.31 |
| $v_{61}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 3.18 | 19.22 |
| $v_{62}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 34.69 |
| $v_{63}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |
| $v_{64}$ | 484.58 | 4.11 | 461.08 | 537.19 | 515.04 | 543.95 | 467.48 | 15.80 | 477.58 | 572.91 | 3630.22 | 465.53 | 473.54 | 483.06 | 440.37 | 603.60 |
| $v_{65}$ | 33.89 | 655.10 | 53.87 | 18.48 | 20.31 | 20.65 | 21.39 | 843.08 | 34.10 | 7.62 | 3583.49 | 56.28 | 32.46 | 29.41 | 43.35 | 7.43 |
| $\nabla_{66}$ | 10.78 | 608.77 | 14.25 | 27.98 | 18.42 | 14.80 | 19.89 | 789.64 | 67.23 | 18.42 | 3073.05 | 18.08 | 12.05 | 18.89 | 29.80 | 10.11 |
| $v_{67}$ | 29.81 | 587.08 | 54.58 | 13.72 | 15.17 | 15.76 | 17.10 | 760.36 | 25.63 | 7.01 | 3608.34 | 54.05 | 28.16 | 24.44 | 35.43 | 10.54 |
| $\mathrm{v}_{68}$ | 5.52 | 471.79 | 15.20 | 28.91 | 5.58 | 13.56 | 12.92 | 637.70 | 34.99 | 18.01 | 3237.52 | : 12.54 | 3.54 | 3.55 | 9.16 | 16.46 |
| $\mathrm{v}_{69}$ | 63.82 | 718.84 | 89.17 | 23.64 | 46.39 | 42.42 | 41.96 | 910.14 | 50.43 | 23.73 | 3786.18 | 103.63 | 62.20 | 69.36 | 86.99 | 25.25 |


|  | $\mathrm{V}_{43}$ | $\mathrm{v}_{49}$ | $v_{50}$ | $\mathrm{v}_{51}$ | $\mathrm{V}_{52}$ | $\mathbf{v}_{53}$ | $v_{54}$ | $v_{55}$ | $V_{56}$ | $v_{57}$ | $\mathbf{v}_{58}$ | $V_{59}$ | $v_{60}$ | $v_{61}$ | $v_{62}$ | $v_{63}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{70}$ | 3315.61 | 313.12 | 3175.49 | 3697.54 | 3500.43 | 3510.75 | 3583.83 | 3993.64 | 4135.95 | 3610.36 | 73.61 | 3278.97 | 3375.94 | 3446.46 | 3473.52 | 3567.6 |
| $\mathrm{V}_{71}$ | 2863.51 | 3413.12 | 2730.24 | 3211.77 | 39.20 | 3050.30 | 3118.69 | 3521.60 | 3632.84 | 3142.55 | 65.08 | 2749.55 | 2919.83 | 29:7.61 | 3025.49 | 3083. 15 |
| $\mathrm{v}_{72}$ | 11.21 | 3431.07 | 21.76 | 10.13 | 9.60 | 8.63 | 7.04 | 731.10 | 32.91 | 5.72 | 3357.30 | 28.04 | 10.30 | 15.05 | 24.96 | 3.98 |
| $\mathrm{v}_{73}$ | 11.09 | 556.55 | 22.46 | 20.09 | 10.78 | 9.70 | 20.10 | 810.75 | 59.57 | 9.56 | 3170.04 | 26.73 | 12.63 | 17.57 | 32.15 | 2.87 |
| $\mathrm{V}_{74}$ | 9.74 | 627.50 | 18.06 | 9.17 | 9.03 | 12.15 | 3.79 | 667.75 | 35.15 | 6.22 | 3307.55 | 26.91 | Q. 22 | 14.49 | 22.04 | 7.95 |
| $\mathrm{v}_{75}$ | 3065.41 | 504. 65 | 2924.31 | 3421.50 | 3249.97 | 3254.18 | 3330.06 | 3729.38 | 3861.60 | 3353.92 | 54.61 | 2¢46.00 | 3123.81 | $32 \sim 6.86$ | 3235.42 | 3200.33 |
| $\mathrm{v}_{76}$ | 21.80 | 3640.64 | 31.13 | 9.11 | 20.04 | 19.59 | 13.49 | 783.24 | 52.28 | 6.76 | 3345.45 | 49.80 | 23.64 | 35.11 | 50.35 | 7.04 |
| $\mathrm{v}_{77}$ | 9.50 | 606.39 | 19.77 | 30.09 | 13.22 | 10.90 | 27.09 | 770.43 | 78.11 | 17.54 | $2 \times 41.64$ | 12.33 | 12.74 | 15.96 | 28.69 | 10.64 |
| ${ }^{78}$ | 23.53 | 597.28 | 38.54 | 13.46 | 14.71 | 15.10 | 11.04 | 737.82 | 18.53 | 8.63 | 3568.24 | 40.83 | 20.26 | 18.25 | 26.44 | 8.70 |
| $\mathrm{v}_{79}$ | 3289.95 | 562.12 | 3147.48 | 3657.53 | 3479.78 | 3474.55 | 3572.80 | 3990.26 | 4114.14 | 3589.42 | 59.28 | 3162.36 | 3350.63 | 3431.44 | 3460.16 | 3517.80 |
| $\nabla_{80}$ | 19.41 | 3900.73 | 32.89 | 6.14 | 15.15 | 13.61 | 8.68 | 687.15 | 19.45 | 11.18 | 3544.48 | 44.47 | 16.59 | 24.68 | 233.05 | 11.80 |
| $v_{81}$ | 8.66 | 516.47 | 25.81 | 8.25 | 3.86 | 5.06 | 13.21 | 720.00 | 31.85 | 7.07 | 3370.50 | 33.35 | 7.82 | 14.77 | 20.31 | 4.05 |
| $\mathrm{v}_{82}$ | 11.10 | 544.71 | 21.15 | 40.87 | 10.01 | 22.12 | 17.24 | 628.92 | 40.67 | 24.40 | 3216.13 | 12.32 | 8.54 | 3.89 | 8.11 | 24.68 |
| $v_{83}$ | 3325.38 | 465.92 | 3182.08 | 3692.05 | 3513.74 | 3514.84 | 3599.96 | 4047.11 | 4155.12 | 3616.45 | 54.35 | 3198.23 | 3387.29 | 3467.69 | 3498.80 | 3550.07 |
| $\mathrm{v}_{84}$ | 78.54 | 3958.51 | 97.73 | 67.49 | 68.73 | 67.60 | 67.92 | 762.64 | 55.56 | 66.41 | 3767.41 | 98.45 | 70.50 | 72.36 | 77.07 | 65.76 |
| $v_{85}$ | 10.99 | 586.88 | 22.90 | 8.80 | 8.43 | 5.60 | 11.12 | 737.07 | 39.27 | 4.81 | 3314.31 | 28.45 | 11.00 | 14.82 | 26.09 | 1.99 |
| $v_{86}$ | 6.27 | 564.29 | 11.44 | 35.15 | 17.61 | 13.10 | 31.98 | 637.10 | 85.17 | 30.57 | 2890.68 | 13.79 | 9.25 | 19.37 | 27.32 | 21.87 |
| $\mathrm{v}_{87}$ | 26.25 | 660.78 | 45.64 | 17.84 | 19.88 | 13.50 | 35.57 | 836.26 | 79.58 | 11.49 | 3201.19 | 52.39 | 30.55 | 35.44 | 54.67 | 7.43 |
| $v_{88}$ | 15.60 | 583.09 | 27.92 | 3.42 | 16.53 | 10.80 | 19.62 | 760.40 | 51.85 | 12.49 | 3311.79 | 48.79 | 16.50 | 34.55 | 40.85 | 7.10 |
| $\mathrm{v}_{89}$ | 11.62 | 549.66 | 26.23 | 24.56 | 6.64 | 9.68 | 16.72 | 722.21 | 36.23 | 12.03 | 3303.90 | 20.00 | 10.59 | 4.42 | 12.03 | 9.57 |
| $\nabla_{90}$ | 11.16 | 580.07 | 20.03 | 9.76 | 11.92 | 9.77 | 12.07 | 753.60 | 53.08 | 5.71 | 3223.61 | 31.52 | 12.79 | 22.07 | 35.70 | 3.30 |
| ${ }^{91}$ | 28.01 | 552.06 | 54.23 | 13.70 | 14.57 | 16.15 | 17.61 | 723.63 | 23.53 | 10.55 | 3623.25 | 57.05 | 26. 25 | 77.82 | 38.24 | 15.13 |


|  | $\mathrm{V}_{48}$ | $\mathrm{V}_{49}$ | $\mathrm{V}_{50}$ | $v_{51}$ | $v_{52}$ | $\mathrm{v}_{53}$ | $v_{54}$ | $\mathrm{v}_{55}$ | $v_{50}$ | $v_{57}$ | $v_{54}$ | $v_{59}$ | $v_{60}$ | $v_{61}$ | $v_{62}$ | $v_{63}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{92}$ | 2760.69 | 345y. 35 | 2629.08 | 3075.46 | 2¢37.37 | 4.29.81 | 3014.50 | 3567.76 | 3534.16 | 3022.39 | 51.07 | 2606.52 | 2820.32 | 2112.67 | 2949.30 | 2956.47 |
| $\mathrm{v}_{93}$ | 3359.05 | 3947.09 | 3214.67 | 3742.87 | 3546.34 | 3554.32 | 3639.85 | 4035.63 | 4183.51 | 3663.52 | 06.12 | 3221.46 | 3418.10 | 3493.42 | 3520.03 | 3594.73 |
| $\mathrm{V}_{94}$ | 5.02 | 447.44 | 10.68 | 17.87 | 8.51 | 16.03 | 6.56 | 009.94 | 32.73 | 17.26 | 3260.97 | 20.43 | 3.12 | 11.32 | $\bigcirc 7.90$ | 17.00 |
| $\mathrm{v}_{95}$ | 3479.31 | 4026.74 | 3320.60 | 3.74.22 | 3685.23 | 3681.61 | 3772.12 | 4121.14 | 4313.73 | 3810.19 | 94.94 | 3337.93 | 3536.44 | 3626.33 | 3543.26 | 3750.92 |
| $\mathrm{v}_{96}$ | 13.22 | 560.33 | 20.16 | 6.33 | 17.96 | 12.79 | 21.13 | 734.28 | 61.64 | 15.06 | 3209.69 | 44.70 | 15.40 | 36.52 | c?. 46 | 50.41 |
| $\mathrm{v}_{97}$ | 2771.65 | 3346.89 | 2632.58 | 3113.21 | 2:52.63 | 2956.16 | 3027.47 | 3448.11 | 3529.45 | 3055.62 | 75.30 | 2662.24 | 2926.43 | 2012.22 | 2039.76 | 2n80. 3 |
| $\mathrm{v}_{98}$ | 14.10 | 563.28 | 32.25 | 12.22 | 7.47 | 10.75 | 20.78 | 748.58 | 28.71 | 13.05 | 3462.13 | 44.67 | 12.05 | 22.58 | 35.80 | 7.56 |
| $\mathrm{v}_{99}$ | 14.76 | 615.56 | 22.59 | 15.15 | 16.75 | 9.07 | 21.18 | 806.51 | 48.90 | 14.74 | 3285.21 | $\$ 232.03$ | 14.20 | 23.36 | 36.26 | 3.78 |
| $\mathrm{v}_{100}$ | 3561.93 | 4160.35 | 3407.60 | 3958.19 | 3761.62 | 3768.05 | 3851.54 | 4254.65 | 4410.28 | 3879.90 | 94.70 | 3423.97 | 3622.28 | 3708.06 | 3735.77 | 3806.89 |
| $\mathrm{v}_{101}$ | 67.40 | 652.15 | 100.04 | 36.95 | 42.82 | 42.83 | 46.81 | 841.88 | 15.87 | 33.01 | 4008.30 | ¢8.82 | 61.46 | 54.70 | 66.00 | 34.45 |
| $\mathrm{v}_{102}$ | 21.32 | 504.79 | 35.01 | 9.85 | 14.94 | 16.35 | 10.34 | 676.64 | 12.61 | 13.3E | 3001.63 | 45.15 | 17.17 | 28.88 | 30.32 | 13.9 ? |
| $\mathrm{v}_{103}$ | 15.77 | 461.64 | 15.34 | 65.43 | 25.22 | 38.89 | 45.87 | 626.26 | 91.64 | 54.88 | - 74.37 | 16.46 | 15.96 | 27.31 | 34.12 | 47.01 |
| $\mathrm{v}_{104}$ | 11.35 | 606.08 | 14.71 | '20.78 | 21.38 | 15.43 | 28.71 | 785.29 | 53.72 | 21.96 | 2ン99.53 | 32.57 | 14.55 | 33.46 | 4:. 36 | 11.73 |
| $\mathrm{v}_{105}$ | 7.07 | 510.17 | 5.23 | 35.11 | 21.52 | 16.26 | 25.03 | 674.07 | 77.80 | 30.87 | 2925.29 | 8.21 | 8.64 | 17.62 | 24.26 | 22.41 |
| $\mathrm{v}_{106}$ | 10.03 | 568.83 | 18.20 | 39.56 | 18.30 | 15.57 | 39.14 | 738.32 | 94.96 | 30.48 | 2063.81 | 19.03 | 13.96 | 21.82 | 34.77 | 20.77 |
| $\mathrm{v}_{107}$ | 33.07 | 522.33 | 51.57 | 28.87 | 23.04 | 25.97 | 24.00 | 703.46 | 5.16 | 29.10 | 3742.21 | 51.48 | 25.86 | 24.57 | 28.87 | 26.51 |
| $\mathrm{v}_{108}$ | 24.75 | 564.63 | 46.97 | 14.16 | "12.07 | 13.60 | 15.91 | 741.68 | 16.61 | 9.46 | 3620.05 | 47.45 | 21.48 | 19.52 | 29.09 | 10.02 |
| $\mathrm{v}_{109}$ | 35.87 | 531.44 | 33.71 | 55.98 | 44.68 | 39.71 | 48.28 | 706.63 | 73.43 | 57.20 | 3168.14 | 31.61 | 28.76 | 37.94 | 44.52 | 43.88 |
| $\mathrm{v}_{110}$ | 11.29 | 477.86 | 19.93 | 47.57 | 14.87 | 21.00 | 29.11 | 632.56 | 72.87 | 30.04 | 2975.44 | 8.87 | 12.69 | 8.02 | 13.64 | 29.38 |
| $\mathrm{v}_{111}$ | 3678.28 | 4241.70 | 3532.23 | 4098.64 | 3871.43 | 3895.16 | 3966.56 | 4325.44 | 4530.03 | 3997.49 | 145.59 | 3531.09 | 3741.50 | 3809.68 | 3833.71 | 3734.47 |
| $\mathrm{v}_{112}$ | 3209.31 | 3771.85 | 3060.07 | 3604.48 | 3400.08 | 3415.50 | 3480.90 | 3873.96 | 4002.50 | 3521.77 | 117.48 | 3065.70 | 3263.62 | $3336.9 n$ | 3357.5 ? | 3452.33 |


|  | $\mathrm{v}_{64}$ | $\mathrm{v}_{65}$ | $\mathrm{v}_{66}$ | $\mathrm{v}_{67}$ | $\mathrm{v}_{63}$ | $\mathrm{v}_{69}$ | $\mathrm{v}_{70}$ | $\mathrm{v}_{71}$ | $\mathrm{v}_{72}$ | $\mathrm{v}_{73}$ | ${ }^{\text {V }} 74$ | $\mathrm{v}_{75}$ | $\mathrm{v}_{76}$ | ${ }^{47}$ | $\mathrm{V}_{78}$ | $\mathrm{V}_{7} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64 | 0 | 653.21 | 599.16 | 583.91 | 465.31 | 721.98 | 3770.75 | 3302.01 | 553.12 | 619.15 | 499.12 | 3509.46 | 603.57 | 584.40 | 561.52 | 3764.05 |
| 65 |  | 0 | 23.44 | 4.98 | 29.78 | 10.67 | 3818.58 | 3339.40 | 8.09 | 13.86 | 14.97 | 3555.78 | 10.30 | 30.05 | 4.32 | 3794.02 |
| 66 |  |  | 0 | 29.70 | 16.80 | 50.60 | 3299.10 | 2853.79 | 8.64 | 3.16 | 12.90 | 3052.36 | 14.46 | 5.59 | 21.46 | 3274.21 |
| 67 |  |  |  | 0 | 25.22 | 14.05 | 3854.52 | 3371.83 | 8.91 | 18.82 | 12.67 | 3591.36 | 15.71 | 30.95 | 4.65 | 3831.04 |
| 68 |  |  |  |  | 0 | 64.53 | 3430.98 | 2976.76 | 11.96 | 15.62 | 10.18 | 3185.32 | 28.49 | 16.18 | 17.93 | 3415.33 |
| 69 |  |  |  |  |  | 0 | 4064.62 | 3563.60 | 25.84 | 36.83 | 35.43 | 3785.00 | 20.59 | 61.07 | 20.13 | 4034.54 |
| 70 |  |  |  |  |  |  | 0 | 22.14 | 3590.60 | 3345.40 | 3531.74 | 12.98 | 3589.08 | 3211.12 | 3797.61 | 14.43 |
| 71 |  |  |  |  |  |  |  | 0 | 3122.43 | 2942.96 | 3064.39 | 6.22 | 3116.54 | 2773.75 | 3317.11 | 27.74 |
| 72 |  |  |  |  |  |  |  |  | 0 | 6.03 | 2.83 | 3330.72 | 5.57 | 14.65 | 4.10 | 3564.62 |
| 73. |  |  |  |  |  |  |  |  |  | 0 | 10.29 | 3146.43 | 10.27 | 4.43 | 15.30 | 3370.03 |
| 74 |  |  |  |  |  |  |  |  |  |  | 0 | 3272.83 | 7.57 | 15.88 | 7.47 | 3507.55 |
| 75 |  |  |  |  |  |  |  |  |  |  |  | 0 | 3322.47 | 2971.79 | 3533.05 | 11.08 |
| 76 |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 22.23 | 11.60 | 3558.52 |
| 77 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 29.66 | 3186.29 |
| 78 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 3771.54 |
| 79 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |
| ${ }^{\circ} 80$ | 518.59 | 11.80 | 24.35 | 7.50 | 19.15 | 21.43 | 3792.69 | 3306.57 | 4.66 | 39.47 | 6.69 | 3520.45 | 10.81 | 32.13 | 4.24 | 3762.36 |
| 81 | 541.83 | 12.40 | 15.08 | 8.39 | 9.85 | 29.37 | 3603.83 | 3132.40 | 4.19 | 8.07 | 5.92 | 3344.03 | 12.28 | 14.98 | 7.88 | 3576.41 |
| ${ }^{8} 8$ | 456.83 | 37.56 | 22.68 | 31.73 | 1.99 | 75.96 | 3398.07 | 2948.79 | 19.19 | 21.86 | 16.14 | 3159.53 | 39.12 | 20.46 | 25.08 | 3391.46 |
| ${ }^{8} 8$ | 3818.74 | 3823.03 | 3303.90 | 3862.27 | 3450.01 | 4059.72 | 7.27 | 23.40 | 3595.81 | 3399.89 | 3537.72 | 8.18 | 3585.16 | 3217.62 | 3805.02 | 5.50 |
| 84 | 582.49 | 60.40 | 82.32 | 53.95 | 62.68 | 70.88 | 4012.30 | 3572.91 | 59.41 | 75.28 | 63.96 | 3745.05 | 73.47 | 92.76 | 53.67 | 3950.70 |
| ${ }^{\prime} 85$ | 559.40 | 8.92 | 9.01 | 9.48 | 13.21 | 28.25 | 3545.92 | 3081.08 | 1.39 | 4.68 | 3.20 | 3287.34 | 6.03 | 10.83 | 5.80 | 3515.50 |
| ${ }^{\prime} 86$ | 509.93 | 50.42 | 12.39 | 46.50 | 16.16 | 85.52 | 3110.58 | 2677.06 | 23.01 | 14.97 | 21.61 | 2869.65 | 34.25 | 5.50 | 41.62 | 3081.06 |


|  | $\mathrm{v}_{64}$ | $\mathrm{v}_{65}$ | $\mathrm{v}_{66}$ | $\mathrm{v}_{67}$ | $\mathrm{V}_{68}$ | $\mathrm{v}_{69}$ | $\mathrm{v}_{70}$ | $\mathrm{v}_{81}$ | ${ }{ }_{72}$ | $\mathrm{v}_{73}$ | $\mathrm{V}_{74}$ | $\mathrm{V}_{75}$ | $\mathrm{V}_{76}$ | $\mathrm{V}_{77}$ | $\mathrm{v}_{78}$ | $\mathrm{V}_{79}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{87}$ | 650.26 | 19.35 | 19.68 | 20.47 | 35.53 | 34.14 | 3446.80 | 2990.29 | 17.03 | 9.76 | 19.13 | 3192.80 | 14.73 | 11.95 | 25.31 | 3411.05 |
| ${ }^{88}$ | 581.09 | 17.49 | 16.19 | 16.27 | 26.17 | 24.86 | 3573.56 | 3097.98 | 7.73 | 10.82 | 9.74 | 3304.07 | 6.36 | 19.50 | 15.56 | 3535.29 |
| $\mathrm{v}_{89}$ | 541.54 | 16.28 | 13.64 | 15.38 | 7.10 | 48.60 | 3507.15 | 3050.24 | 8.74 | 9.01 | 9.44 | 3260.62 | 21.60 | 11.68 | 10.14 | 3480.83 |
| $\mathrm{v}_{90}$ | 574.05 | 12.91 | 9.65 | 15.50 | 17.29 | 30.02 | 3459.73 | 2998.68 | 2.89 | 3.88 | 4.34 | 3201.38 | 3.12 | 9.78 | 11.80 | 3430.62 |
| $\mathrm{v}_{91}$ | 551.64 | 12.12 | 35.16 | 3.02 | 24.72 | 18.15 | 3876.61 | 3390.48 | 11.70 | 24.44 | 15.67 | 3610.28 | 20.28 | 36.34 | 9.49 | 3854.35 |
| ${ }^{\text {V }} 92$ | 3336.51 | 3208.40 | 2735.51 | 3249.58 | 2839.47 | 3410.28 | 70.05 | 30.65 | 3002.26 | 2821.68 | 2952.03 | 29.77 | 2978.44 | 2662.00 | 3191.38 | 45.32 |
| ${ }^{*} 93$ | 3807.39 | 3870.45 | 3344.35 | 3907.12 | 3476.90 | 4118.13 | 2.83 | 24.88 | 3638.41 | 3442.23 | 3579.71 | 12.57 | 3638.77 | 3256.97 | 3846.50 | 9.62 |
| $\mathrm{V}_{94}$ | 443.95 | 29.79 | 17.26 | 24.50 | 4.23 | 56.58 | 3471.02 | 3005.71 | 9.46 | 17.58 | 5.23 | 3214.65 | 20.57 | 20.93 | 16.10 | 3450.62 |
| $\mathrm{V}_{95}$ | 3893.12 | 4016.00 | 3467.54 | 4055.40 | 3603.60 | 4268.68 | 29.91 | 53.66 | 3769.04 | 3575.32 | 3512.84 | 30.85 | 3772.61 | 3390.91 | 3932.09 | 21.36 |
| $\mathrm{v}_{96}$ | 558.53 | 25.34 | 15.70 | 26.16 | 25.50 | 37.18 | 3456.82 | 2988.45 | 10.30 | 12.39 | 10.52 | 3188.34 | 7.57 | 18.73 | 21.92 | 3417.12 |
| ${ }^{\text {V }} 97$ | 3225.86 | 3244.37 | 2760.03 | 3282.05 | 2888.41 | 3466.01 | 44.58 | 10.41 | 3027.02 | 2852.18 | 2972.85 | 13.85 | 3018.68 | 2680.50 | 3219.42 | 33.40 |
| ${ }^{\text {9 }} 98$ | 565.76 | 14.68 | 22.42 | 13.31 | 14.27 | 29.53 | 3690.41 | 3211.33 | 9.02 | 13.68 | 13.07 | 3425.48 | 17.04 | 25.35 | 10.88 | 3661.83 |
| $\mathrm{v}_{99}$ | 617.39 | 12.22 | 6.22 | 19.04 | 20.18 | 31.18 | 3521.81 | 3058,37 | 4.67 | 4.47 | 11.19 | 3260.80 | 8.38 | 13.48 | 11.09 | 3485.45 |
| $v_{100}$ | 4020.29 | 4090.89 | 3545.35 | 4133.26 | 3684.81 | 4343.54 | 13.87 | 46.44 | 3849.92 | 3649.22 | 3791.55 | 25.47 | 3847.15 | 3463.09 | 4066.05 | 19.34 |
| $v_{101}$ | 658.98 | 15.90 | 66.81 | 13.10 | 55.30 | 16.22 | 4259.86 | 3756.63 | 32.98 | 50.62 | 43.45 | 3583.43 | 42.53 | 75.04 | 17.50 | 4233.26 |
| $\mathrm{v}_{102}$ | 508.34 | 12.69 | 28.73 | 9.05 | 17.06 | 25.58 | 3835.41 | 3347.02 | 6.86 | 22.89 | 8.42 | 3563.41 | 15.14 | 36.92 | 3.69 | 3806.68 |
| $\mathrm{v}_{103}$ | 450.48 | 80.12 | 32.85 | 76.55 | 16.88 | 127.94 | 3048.02 | 2618.85 | 44.57 | 37.98 | 40.09 | 2814.47 | 63.12 | 28.61 | 64.47 | 3033.23 |


|  | $\mathrm{v}_{64}$ | $\mathrm{v}_{65}$ | $\mathrm{v}_{66}$ | $\mathrm{V}_{67}$ | $\mathrm{V}_{68}$ | $\mathrm{v}_{69}$ | $\mathbf{v}_{70}$ | $\mathrm{v}_{71}$ | $\mathrm{v}_{72}$ | ${ }^{\mathrm{v}} 73$ | $\mathrm{V}_{74}$ | $\mathrm{v}_{75}$ | $\mathrm{v}_{76}$ | ${ }^{77}$ | $\mathrm{V}_{78}$ | ${ }^{*} 79$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 104 | 597.92 | 33.07 | 6.43 | 37.72 | 25.36 | 54.08 | 3239.37 | 2790.31 | 14.72 | 7.07 | 16.33 | 2984.84 | 14.19 | 8.23 | 31.69 | 3203.92 |
| 105 | 498.85 | 47.02 | 8.32 | 46.84 | 15.00 | 83.92 | 3134.30 | 26ヶ9.06 | 18.96 | 14.76 | 17.47 | 2830.71 | 29.49 | 7.92 | 36.02 | 3104.70 |
| ; 106 | 553.91 | 49.70 | 13.18 | 48.06 | 19.67 | 85.94 | 3077.11 | 2647.37 | 26.50 | 13.13 | 25.48 | 26.40.77 | 36.20 | 3.42 | 44.97 | 3049.10 |
| '107 | 528.25 | 20.69 | 41.97 | 15.98 | 22.08 | 37.57 | 3967.60 | 3475.48 | 18.49 | 35.42 | 24.08 | 369. 03 | 36.24 | 51.73 | 9.98 | 3943.45 |
| 108 | 564.24 | 6.09 | 27.83 | 2.05 | 18.39 | 18.91 | 3855.78 | 3371.96 | 17.50 | 18.26 | 11.80 | 2591.64 | 17.53 | 31.35 | 2.69 | 3831.44 |
| 109 | 527.45 | 60.42 | 35.20 | 59.62 | 32.41 | 85.77 | 3382.33 | 2930.83 | 37.75 | 39.24 | 40.21 | 3132.81 | 58.09 | 40.55 | 49.30 | 3366.11 |
| 110 | 461.93 | 51.82 | 22.12 | 45.20 | 9.26 | 97.19 | 3158.88 | 2728.37 | 27.76 | 22.47 | 22.30 | 3928.46 | 45.23 | 11.41 | 40.20 | 3143.91 |
| 111 | 4093.60 | 4217.94 | 3669.65 | 4255.32 | 3793.34 | 4483.59 | 22.47 | 71.52 | 3976.76 | 3772.31 | 3914.06 | 57.44 | 3981.30 | 3578.65 | 4191.30 | 49.78 |
| 112 | 3639.96 | 3718.27 | 3194.96 | 3759.13 | 3318.15 | 3970.44 | 23.16 | 33.66 | 3486.85 | 3297.86 | 3431.70 | 30.87 | 3494.61 | 3121.94 | 3688.85 | 42.52 |


|  | ${ }^{v_{80}}$ | $\mathrm{v}_{81}$ | $\mathrm{v}_{82}$ | $\mathrm{v}_{83}$ | $\mathrm{v}_{84}$ | $\mathrm{V}_{85}$ | ${ }^{\text {V }} 86$ | $\mathrm{V}_{87}$ | $\mathrm{V}_{89}$ | $\mathbf{v}_{89}$ | $\mathrm{v}_{90}$ | $\mathrm{v}_{91}$ | $\mathrm{V}_{92}$ | $\mathrm{v}_{93}$ | $\mathrm{v}_{33}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{80}$ | 0 | 6.39 | 28.32 | 3796.53 | 52.51 | 7.45 | 38.31 | 28.40 | 9.43 | 17.88 | 11.19 | 6.59 | 3183.15 | 3839.95 | 12.10 |
| $\mathrm{v}_{81}$ |  | 0 | 16.90 | 3610.97 | 53.64 | 4.03 | 21.00 | 15.76 | 6.34 | 8.02 | 7.09 | 8.35 | 3016.61 | 3550.21 | 8.64 |
| $\mathrm{v}_{82}$ |  |  | 0 | 3422.96 | 72.24 | 21.09 | 21.31 | 44.79 | 37.71 | 11.17 | 25.68 | 31.51 | 2874.82 | 3445.14 | 8.35 |
| $\mathrm{v}_{83}$ |  |  |  | 0 | 4027.86 | 3540.62 | 3117.17 | 3441.93 | 3568.34 | 3520.68 | 3454.55 | 3885.95 | 44.80 | 7.17 | 3483.67 |
| $\mathrm{v}_{84}$ |  |  |  |  | 0 | 65.26 | 100.03 | 90.62 | 65.23 | 66.73 | 71.12 | 51.21 | 3408. 14 | 4064.08 | 65.43 |
| $\mathrm{V}_{85}$ |  |  |  |  |  | 0 | 19.26 | 10.18 | 6.87 | 6.90 | 2.02 | 13.95 | 2957.87 | 3592.79 | 11.78 |
| $\mathrm{v}_{86}$ |  |  |  |  |  |  | 0 | 25.21 | 25.27 | 20.46 | 17.66 | 46.75 | 2572.03 | 3152.24 | 19.30 |
| $\mathrm{v}_{87}$ |  |  |  |  |  |  |  | 0 | 12.77 | 20.80 | 9.53 | 28.00 | 2851.89 | 3495.32 | 35.84 |
| $\mathbf{v}_{88}$ |  |  |  |  |  |  |  |  | 0 | 21.58 | 5.40 | 16.92 | 2960.04 | 3619.26 | 17.59 |
| $\mathrm{v}_{89}$ |  |  |  |  |  |  |  |  |  | 0 | 13.33 | 22.04 | 2946.81 | 3554.13 | 12.23 . |
| $\mathrm{V}_{90}$ |  |  |  |  |  |  |  |  |  |  | 0 | 19.18 | 2871.31 | 3507.29 | 13.60 |
| $\mathrm{V}_{91}$ |  |  |  |  |  |  |  |  |  |  |  | 0 | 3271.72 | 3928.85 | 22.87 |
| $\mathrm{V}_{92}$ |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 71.35 | 2909.80 |
| $\mathrm{v}_{93}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 3515.77 |
| $\mathrm{v}_{94}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |
| $\mathrm{v}_{95}$ | 3968.98 | 3782.88 | 3577.48 | 29.38 | 4186.37 | 3726.00 | 3271.67 | 3641.38 | 3745.45 | 3689.22 | 3639.03 | 4872.67 | 93.21 | 17.81 | 3639.04 |
| $\mathbf{v}_{96}$ | 14.27 | 10.42 | 37.80 | 3449.98 | 73.39 | 8.70 | 20.31 | 15.12 | 2.86 | 25.31 | 4.96 | 25.94 | 2851.79 | 3500.16 | 16.77 |
| $\mathbf{v}_{97}$ | 3206.72 | 3039.77 | 2867.64 | 37.99 | 3419.56 | 2986.98 | 2590.13 | 2904.00 | 2999.53 | 2959.42 | 2905.51 | 3300.76 | 21.19 | 42.54 | 2913.41 |
| $\mathrm{v}_{98}$ | 8.94 | 2.83 | 22.66 | 3697.92 | 51.51 | 10.19 | 31.57 | 25.26 | 10.25 | 14.21 | 13.67 | 11.40 | 3093.58 | 3735.21 | 12.93 |
| $\nabla_{99}$ | 13.17 | 9.02 | 30.55 | 3520.77 | 68.64 | 4.17 | 22.03 | 15.30 | 8.23 | 12.65 | 4.85 | 24.17 | 2925.01 | 3561.18 | 18.96 |
| $\mathrm{v}_{100}$ | 4050.39 | 3863.74 | 3655.23 | 16.20 | 4271.11 | 3805.94 | 3352.69 | 3711.09 | 3827.19 | 3768.98 | 3714.93 | 4153.20 | 90.62 | 8.62 | 3722.50 |


|  | $\mathrm{v}_{80}$ | $\mathrm{v}_{81}$ | $\mathrm{V}_{82}$ | $\mathrm{V}_{83}$ | $\mathrm{v}_{84}$ | $\mathrm{Y}_{35}$ | ${ }^{86}$ | $\mathrm{v}_{87}$ | $\mathrm{V}_{88}$ | $V_{89}$ | $\mathrm{v}_{90}$ | $\mathrm{v}_{91}$ | $\mathrm{V}_{92}$ | $\mathrm{v}_{93}$ | $\mathrm{v}_{94}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{101}$ | 22.83 | 30.68 | 64.67 | 4269.37 | 53.31 | 36.52 | 96.55 | 55.74 | 43.02 | 41.60 | 48.05 | 14.37 | 3622.05 | 4312.50 | 55.74 |
| $\mathrm{v}_{102}$ | 1.35 | 7.48 | 25.71 | 3842.51 | 46.88 | 9.94 | 43.20 | 34.62 | 14.42 | 16.68 | 15.50 | 8.46 | 3229.49 | 3882.25 | 11.59 |
| $\mathrm{v}_{103}$ | 60.81 | 39.21 | 18.09 | 3068. 72 | 96.63 | 45.22 | 16.30 | 65.81 | 54.35 | 36.20 | 43.42 | 72.11 | 2544.11 | 3088.80 | 23.28 |
| $\mathrm{v}_{104}$ | 28.25 | 16.28 | 35.13 | 3235.27 | 87.34 | 12.37 | 10.58 | 14.92 | 99.59 | 23.69 | 6.87 | 40.73 | 2659.55 | 3281.84 | 21.37 |
| $v_{105}$ | 34.30 | 23.02 | 20.48 | 3140.19 | 98.42 | 16.99 | 3.15 | 30.22 | 26.07 | 19.02 | 15.39 | 49.45 | 2593.18 | 3175.55 | 16.03 |
| ${ }^{\text {V }} 106$ | 45.22 | 22.75 | 24.17 | 3083.89 | 103.54 | 21.10 | 1.92 | 20.82 | 27.63 | 20.08 | 19.26 | 50.94 | 2541.23 | 3119.70 | 25.24 |
| $\mathrm{v}_{107}$ | 11.44 | 16.18 | 28.38 | 3983.79 | 47.22 | 23.72 | 59.56 | 55.84 | 32.33 | 21.12 | 34.52 | 14.74 | 3369.56 | 4013.41 | 21.99 |
| $\mathrm{v}_{108}$ | 5.20 | 5.73 | 25.15 | 3866.03 | 45.23 | 9.16 | 43.80 | 29.14 | 16.23 | 11.98 | 16.28 | 3.68 | 3254.89 | 3905.64 | 18.51 |
| $\nabla^{209}$ | 46.68 | 39.18 | 30.94 | 3395.21 | 96.98 | 40.66 | 37.87 | 63.82 | 48.17 | 46.40 | 41.40 | 57.48 | 2843.09 | 3418.79 | 33.51 |
| $\mathrm{v}_{110}$ | 43.70 | 25.20 | 8.72 | 3178.15 | 97.42 | 24.24 | 8.96 | 35.86 | 42.04 | 14.52 | 27.02 | 47.80 | 2648.29 | 3204.86 | 17.99 |
| $\mathrm{v}_{111}$ | 4189.31 | 3988.27 | 3755.91 | 43.18 | 4412.04 | 3932.93 | 3471.07 | 8840.09 | 3968.05 | 3877.85 | 3845.29 | 4276.76 | 149.43 | 25.10 | 3839.90 |
| $\mathrm{v}_{112}$ | 3684.45 | 3501.75 | 3283.69 | 40.07 | 3901.43 | 3449.36 | 3017.85 | 3375.56 | 3470.81 | 3402.31 | 3366.67 | 3778.83 | 97.93 | 19.83 | 3357.01 |


|  | $\mathrm{v}_{95}$ | $\mathrm{v}_{96}$ | $\mathrm{v}_{97}$ | $v_{98}$ | $\mathrm{v}_{99}$ | $\mathrm{v}_{100}$ | ${ }^{\mathrm{V}} 101$ | $\mathrm{v}_{102}$ | $\mathrm{v}_{103}$ | $\mathrm{v}_{104}$ | $v_{105}$ | $\mathrm{v}_{106}$ | ${ }^{107}$ | ${ }^{*} 108$ | ${ }^{\text {V }} 109$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nabla_{95}$ | 0 | 3621.85 | 51.00 | 3863.67 | 3687.28 | 9.27 | 4460.26 | 4010.63 | 3198.05 | 3401.34 | 3289.79 | 3245.33 | 4140.25 | 4045.57 | 3538.63 |
| $\mathrm{V}_{96}$ |  | 0 | 2888.99 | 14.22 | 9.39 | 3702.90 | 58.77 | 19.02 | 44.71 | 6.07 | 20.09 | 23.49 | 41.98 | 24.99 | 44.67 |
| $\mathrm{v}_{97}$ |  |  | 0 | 3113.47 | 2955.63 | 57.06 | 3651.98 | 3245.78 | 2532.21 | 2694.57 | 2606.75 | 2563.66 | 3372.45 | 3277.45 | 2847.06 |
| $\mathrm{v}_{98}$ |  |  |  | 0 | 11.73 | 3946.43 | 26.88 | 7.85 | 43.67 | 22.66 | 33.76 | 33.19 | 12.95 | 7.41 | 42.73 |
| $\mathrm{v}_{99}$ |  |  |  |  | 0 | 3771.27 | 42.40 | 15.82 | 47.59 | 9.24 | 18.01 | 23.46 | 27.54 | 16.04 | 40.10 |
| ${ }^{1} 100$ |  |  |  |  |  | 0 | 4545.35 | 4098.75 | 3277.60 | 3478.69 | 3373.85 | 3520.64 | 4234.00 | 4127.97 | 3625.52 |
| ${ }^{*} 101$ |  |  |  |  |  |  | 0 | 20.98 | 124.82 | 79.65 | 95.53 | 98.82 | 15.33 | 11.34 | 91.85 |
| $\mathrm{v}_{102}$ |  |  |  |  |  |  |  | 0 | 59.11 | 34.18 | 38.44 | 49.81 | 6.92 | 4.40 | 47.93 |
| $\mathrm{v}_{103}$ |  |  |  |  |  |  |  |  | 0 | 33.47 | 18.28 | 19.09 | 68.94 | 65.20 | 43.76 |
| $\nabla_{104}$ |  |  |  |  |  |  |  |  |  | 0 | 10.61 | 10.68 | 55.69 | 36.46 | 42.47 |
| $\mathrm{v}_{105}$ |  |  |  |  |  |  |  |  |  |  | 0 | 7.19 | 55.19 | 43.08 | 34.89 |
| $\mathrm{v}_{106}$ |  |  |  |  |  |  |  |  |  |  |  | 0 | 66.05 | 46.35 | 43.51 |
| $\mathrm{v}_{107}$ |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 7.33 | 54.14 |
| $\mathrm{v}_{108}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 | 52.12 |
| ${ }^{\text {v }} 109$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |
| $\mathrm{v}_{110}$ | 3336.98 | 38.12 | 2650.64 | 37.24 | 34.76 | 3412.39 | 93.79 | 44.21 | 14.87 | 29.00 | 11.11 | 9.67 | 55.06 | 41.92 | 43.19 |
| $\mathrm{v}_{111}$ | 42.16 | 3845.89 | 97.14 | 4075.25 | 3907.76 | 22.00 | 4675.16 | 4229.25 | 3385.12 | 3614.68 | 3494.91 | 3436.11 | 4356.50 | 4251.04 | 3766.37 |
| $\mathrm{v}_{112}$ | 25.24 | 3363.86 | 41.35 | 3578.66 | 3416.15 | 23.72 | 4148.08 | 3721.47 | 2933.99 | 3145.87 | 3033.47 | 2989.28 | 3837.04 | 3749.36 | 3262.65 |


|  | $\mathrm{v}_{110}$ | $\mathrm{v}_{111}$ | $\mathrm{v}_{112}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{v}_{110}$ | 0 | 3510.63 | 3063.91 |
| $\mathrm{v}_{111}$ |  | 0 | 31.50 |
| $\mathrm{v}_{112}$ |  |  | 0 |

# GENETIC STUDIES IN RED GRAM (Cajanus cajan L.) 

By

## V. V. RADHAKRISHNAN

## ABSTRACT OF THE THESIS

Submitted in partial fulfilment of the requirement for the degree of

# Thartor of 3 Blilosoply in Agritulture 

Faculty of Agriculture
Kerala Agricultural University

Department of Agricultural Botany COLLEGE OF HORTICULTURE

Vellanikkara, Trichur
1988


#### Abstract

The research project "Genetic studies in red gram (Cajanus caian L. Mill sp.)" was carried out at the College of Horticulture, Kerela Agriculturel University, Vellanikiara, Trichur during the period 1983-86. The genetic diversity atudies among the 112 genotypea of red gram obtained from NBPGR, Vellonikxara and TNAU, Colmbstor during 1963-84 showed that the genotypes of the seme place of origin fell into different cluster: while those of diversified origin fell into seme cluster. All the genotypes studied were grouped into five cluaters.

Based on both the inter and intracluater diatancea 20 genotypes representing the broad spectrum of variebility were selected and raised during 1985-86. The velues estimated for phenotypic coefficient of variation and genotypic coefficient of variation showed that number of clustera per plant, numbur of pois per plent and seed yield possesed high eatimetes. Number of days from sowing to 50 per cent flowering and seed yield have exhibited high heritability


coupled with moderately high genetic gein estimatea indicating the involvement of additive gene effect. Number of days from sowing to hervest and helght of plant at harvest, have high or moderately high estimetes of heritability together with low values of genetic gain indicating the action of non-additive genes.

## In nine out of ten cases there has been

 significent positive correlation between component charectere and seed yield both in the phonotypic and genotypic levela, howaver tho correlation of hundred seed waight with seed yield was not significant both at phenotypic and genotypic levels. Intercorxelations studies have ahown that characters exhibiting significtant sssociation with seed yield per plent were also highly intercorrelated indicating that these characters can be simultaneously improved.peth coefficient anelysia showed that number of pods per plant, hunared seed weight, number of primary branches at hervest, number of secondary branches at harvest anc length of sod bearing branches had high positive direct effects on seed yield in that order. The rasidual effect was 0.07227 indicating that about 93 per cont of the variation in yield were contributed by the ten components considered in peth coefficient andysis.

The selection index formulated with charicters like seed yield, number of pods per plent and hundred seed weight showed an efficiency of 0.4 per cent over direct selection and it includes 57 pex cent of the factors determining the yield. Hence it is suggested for isoleting superior genotypes.

A comparison of different genotypes besed on the index velue has revealed the superiority of the genotypea NEPGR-II-EC-10046-1 and NAPGR-124-PLA-345-1 over others.

The atudy paved the way for understending the source of variability for various factors contribueing to yield, the degree of diversity among the genotypes, on the sssociation between yield and its components and batween themselves, and nelped to formulate selection index for selecting auperior genotypes.


[^0]:    * Significant at 1\% level
    ** Significant at 5\% level

[^1]:    $y=$ seed yield
    $x_{1}=$ height of the plant at harvest
    $\mathbf{x}_{2}=$ number of primary branches at harvest
    $x_{3}^{2}=$ number of cluster/plant
    $\mathbf{x}_{3}=$ number of pods/plant
    $x_{9}^{2}=$ number of seeds/poat
    $x_{10}=100$ seed weight

