HOMEOSTATIC ANALYSIS OF COMPONENTS OF GENETIC VARIANCE AND INHERITANCE OF FRUIT COLOUR，FRUIT SHAPE AND BITTERNESS IN BITTER GOURD（Mamordica charantia L．）

By
M．ABDUL VAHAB

250

TBESIS

Submitted in partial fulfilment of the requirement for the degree
週actor of 解hilosoply in 期articulture

Faculty of Agriculture

Kerala Agricultural University

> Department of Olericulture
> COLLEGE OF HORTICULTURE
> Vellanikkara-Trichur

DECLARATION

I hereby declare that this thesis entitled ${ }^{\text {EHomeostatic analysis of components of genetic variance }}$ and inheritance of fruit colour, fruit shape and bitterness in bitter gourd (Momordica charantia L.)" is a bonafide record of research work done by me during the course of research and the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship, or other similar title, of any other University or Society.

Vellanikkara, 15th April. 1989.

(M. ABDUL VAHAB)

CERTIFICATE

Certified that this thesis entitled "Homeostatic analysis of components of genetic variance and inheritance of fruit colour, fruit shape and bitterness in bitter gourd (Momordica charantia L.)" is a record of research work done independently by Sri Abdul Vahab, M. under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to him .
Dr.P.K. Gopalakrishnan
Chainman
Advisory Comittee
Associate Dean (Retired)
College of Horticulture
Vellanikkara

CERTIFICATE

We, the undersigned members of the Advisory Committee of Sri Abdul Vahab, a candidate for the degree of Doctor of Philosophy in Horticulture agree that the thesis entitled "Homeostatic analysis of components of genetic variance and inheritance of fruit colour, fruit shape and bitterness in bitter gourd (Momordica charantia L.)" may be submitted by Sri Abdul Vahab in partial fullfilment of the requirement for the degree.

Chairman
Associate Dean (Retired)
College of Horticulture

Dr.K.V.Peter, Professor and Head, Department of Olericulture.

Dr. T.V. Viswanathan. Associate Professor. (plant breeding).

Dr.K.C.George, Professor and Head,
Department of Agricultural Statistics.

I have great pleasure to express my profuse and sincere gratitude to Dr.P.K.Gopalakrishnan former Associate Dean, College of Horticulture and Chairman of Advisory Comittee, for his keen interest, bountiful guidance and everhelping nature all through the investigation until the consummation of this thesis.

I am greatly indebted to Dr.K.V.Peter, Professor and Head, Department of Olericulture, College of Horticulture and Member of Advisory Committee, for his constant encouragement, sustained guidance, constructive suggestions and unruffled demenour at every stage of investigation and preparation of this thesis.

I express my sincere thanks and gratitude to Dr.K.M.N. Namboodiri, Professor of Agricultural Botany and Member of Advisory Committee for his valuable guidance and immense help for the investigation and preparation of the thesis.

It is with sincere thanks that I acknowledge the immense help and suggestions in the statistical analysis rendered for me by Dr.K.C.George, Professor and Head, Dept. of Statistics and Member of Advisory Comittee.

My thanks are due to Dr.A.I.Jose. Professor and Head, Dapartment of Soil Science and Agricultural Chemistry and

Member of Advisory Committee for his critical and valuable suggestions in the preparation of the thesis.

The help rendered to me by Sri.V.K.G.Unnithan, Associate Professor of Agricultural Statistics is sincerely acknowledged.

I take this opportunity to place on record my heartful thanks and gratitude to all my friends, particularly to Dr.K.Rajmohan, Dr.T.R.Gopalakrishnan, Dr.T.P.Murali, Sri V.K.Raju, Sri,V.S.Devadas, Sri P.G.Sadankumar, Sri,M.C. Narayanankutty, Smt.Meagle Joseph, Kum.Anita K. Cheriyan and Kum.Ushamani for their sincere and timely help at every stage of research and preparation of the thesis.

I am indebted to my wife, Nisa for her encouragement and help all through the investigation.

I am very thankful to Sri Joy for typing the thesis neatly in time.

The award of Senior Fellowship of the Indian Council of Agricultural Research is gratefully aeknowledged.

M. ABDUL VAHAB

		Page No.
I	INTRODUCIION	1
II	REVIEW OF LITERATURE	6
III	MATERIALS AND METHODS	31
IV	RESULTS	64
V	DISCUSSION	216
VI	SUMMARY	250
VII	REFERENCES	i - viil
VIII	APPENDICES	
IX	ABSTRACT	

LIST OF TABLES

Table No.
Title
1 Morphological fruit characters of3450 bitter gourd genotypes
2 Weighted analysis of variance of 40 pooled data3 Analysis of Variance under Ebrhart43and Russell (1966) Model4 Analysis of variance for combining44ability
5 Analysis of variance for combining 46 ability over environments
6 General analysis of variance for 18General analysis of variancer
characters in bitter gourd
7
Range, mean, pcv, gcv, heritability68and genetic advance as percentage ofmean for 18 characters in bitter gourd

8

8 Clustering pattern in bitter gourd Clustering pattern in bitter gourd 75 75 9 9
Average intra and inter cluster D^{2}
Average intra and inter cluster D^{2} 76 76 values values
10 Analysis of variance for stability78with respect to yield and its componentsin bitter gourd11 Stability parameter for branches/plant.Vine length and node to first femaleflower in bitter gourd
12
Stability parameters for days to firstfemale flower opening, female flowers/plant and percentage of female flowers
13 Stability parameters for fruits/plant.6581fruit weight and length in bitter gourd14 Stability parameters for fruit girth8694and yield/plant in bitter gourd
15 Goneral analysis of variance for 55 99 genotypes of bitter gourd in three enviromments

Table Ho.
16 Analysis of variance for combining ability in a 10×10 diallel in bitter gourd for three environments

17 Analysis of variance for combining ability over three environments in bitter gourd

18 Estimates of gca effects of ten bitter gourd lines for vegetative characters, female flowers and earliness in three environments

19 Estimates of gca effects of ten bitter gourd lines for yield and fruit characters in three environments

20 Estimates of sca effects of $45 \mathrm{~F}_{1}$ hybrids for vegetative characters, female flowers and earliness during first season

21 Estimates of sca effects of $45 \mathrm{~F}_{1}$ hybrids for vegetative characters, female flowers and earliness during second season

22 Estimates of sca effects of $45 \mathrm{~F}_{1}$ hybrids for vegetative characters, female flowers and earliness during third season

23 Estimates of sca effects of 45 F hybrids for yield and fruit characters during first season

24 Estimates of sca effects of 45 F hybrids for yield and fruit characters during second season
25 Estimates of sea effects of 45 F hybrids for yield and fruit charalcters during third beason

Mean performance of parents and F_{1} hybrids and extent of heterosis for branches/plant, vine length and node to first fomale flower during first seasonTitle

109gourd lines for yleld and fuitcharacters in three environmentsfirst season

Page Mo.

Table No.	Title	Page No.
27	Mean performance of parents and F_{1} hybrids and extent of heterosis for branches/plant, vine length and node to first female flower during second season	143
28	Mean performance of parents and F_{1} hybrids and extent of heterosis for branches/plant, main vine length and node to iirst female flower during third season	146
29	Mean performance of parents and F_{1} hybrids and extent of heterosis for female flower characters during first season	151
30	Mean performance of parents and F_{1} hybrids and extent of heterosis for female flower characters during second season	154
31	Mean performance of parents and F_{1} hybrids and extent of heterosis for female flower characters during third season	157
32	Mean performance of parents and F_{1} hybrids and extent of heterosis for days to picking maturity, yield and fruits/plant during first season	163
33	Mean performance of parents and F_{1} hybrids and extent of heterosis for days to picking maturity, yield and fruits/plant during second season	166
34	Mean performance of parents and F_{1} hybrids and extent of heterosis for days to plcking maturity, yield and fruits/plant during third season	169
35	Mean performance of parents and F_{1} hybrids and extent of heterosis for weight, length and girth of fruits during first season	174

36	Mean performance of parents and F_{1} hybrids and extent of heterosis for weight, length and girth of fruits during second season	177
37	Mean performance of parents and F_{1} hybrids and extent of heterosis for weight, length and girth of fruits during third season	180
38	Mean performance of parents and F_{1} hybrids and extent of heterosis for flesh thickness, seeds/fruit and 100 seed weight during first season	186
39	Mean performance of parents and F_{1} hybrids and extent of heterosis for flesh thickness, seeds/fruit and 100 seed reight during second season	189
40	Mean performance of parents and F_{1} hybrids and extent of heterosis for flesh thickness, seeds/fruit and 100 seed weight during third season	192
41	Inheritance of fruit colour in bitter gourd	197
42	Inheritance of fruit surface in bitter gourd	200
43	Joint segregation of fruit colour and surface in F_{2} generations in bitter gourd	205
44	Partioning of in the F_{2} segregations of two crosses in bitter gourd	206
45	Generations means for bitterness in bitter gourd	208
46	Sealing tests for non allelic interaction for bitterness	209
47	Components of total genetic effects for bitterness	211

Table No.
Title
Page Ho.
48 Components of genetic variance, degree 212 of dominance, heritability and number of effective factors for bitterness
49 Period of anthesis in three species of 213 Momordica
50 Observations on ovary growth in the crosses among three species of Momordica 21451 Mean, regression coefficient anddeviation from regression for variousbitter gourd genotypes suited for high,medium and low environments
52 Number of hybrids showing significant 230 heterosis for important characters
53 Node to first female flower in salient 234F_{1} hybrids
54
Days to first female flower in salient 235F_{1} hybrids
55 Female flowers/plant in salient F_{1}
hybrids 236
Percentage of female flowers in salient 237F_{1} hybrids
57
Yield/plant in salient F_{1} hybrids 238
58 Fruits/plant in salient F_{1} hybrids 239
59 Fruit weight in salient F_{1} hybrids 240

LISI OF FIGURES

No.
Title

1 Diagramatic representation of clustering of fifty genotypes of bitter gourd

2 Parameters of stability (bi) plotted againet mean yield of individual varieties

LIST OF PLATES

No.
Title

1. Priya
2.
3.

MC 78
4.
5.
6.
7.
8.
9.

MC 69
10.

MC 34
11.

Momordica diolca
12. Momordica dioica
13.
14.
15.
16.
17.
18.
19.
20.

Momordica cymbalaria
Momordica cymbalaria length in low environment girth in high environment in medium onvironment in medium environment in medium onvironment

Priya x MC 66, stable F_{1} hybrid for fruit

MC $78 \times$ MC 84, stable F_{1} hybrid for fruit

Priya x MC 84, stable F_{1} hybrid for Yield
MC $78 \times$ MC 69 , stable F_{1} hybrid for yield
MC $84 \times$ MC 66, stable F_{1} hybrid for yield
MC $66 \times$ MC 34 m stable F_{1} hybrid for Yi in medium enviroment

Priya \times MC 69, stable F_{1} hybrid for Yield in high enviromment

MC $78 \times$ MC 34, stable F_{1} hybrid for Yield in high enviromment

Priya x MC 78, stable F_{1} hybrid for Yield in low environment
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

Priya x MC 49, stable F_{1} hybrid for Yield in low enviromment

MC 49π MC 69, stable F_{1} hybrid for Yield
in low environment in low environment

MC $69 \times$ MC 34, stable F_{1} hybrid for Yield in low environment

MC $60 \times$ MC 49, an early flowering standard heterotic F_{1} hybrid
MC $84 \times$ MC 69, an early maturing standard heterotic F_{1} hybrid
MC $49 \times$ MC 34, heterobeltiotic F_{1} hybrid
for yield
MC $78 \times$ MC 66, heterobeltiotic F_{1} hybrid for yield

MC $78 \times$ MC 69, standard heterotic F_{1} hybrid for fruit length

Arka Hzrit \times MC 49 , standard heterotic F_{1}
hybrid for fruit girth hybrid for fruit girth

Inheritance of fruit colour
Inheritance of fruit colour
Inheritance of fruit colour
Inheritance of fruit surface
Inheritance of fruit surface
Inheritance of fruit surface
Joint inheritance of fruit colour and surface

LIST OF APPENDICES

No. Title

I Mean performance of 50 bitter gourd genotypes for yield and component characters

II Mean performance of 50 bitter gourd genotypes for frult characters

III Source of 50 bittergourd genotypes

INTRODUCTION

Cucurbits were among the first plants used by man. Apart from this historical awareness, they are now recognised to have high economic, nutritional and medicinal values. They form the single largest group of summer vegetables. Out of the 750 species under 90 genera of the family Cucurbitaceae, approximately 30 apecies under nine genera have achieved global recognition. In the tropics, subtropics and milder portions of the temperate zones of both hemispheres, these crops find an important place in human diet, besides having other minor uses.
In many countries, much attention has been given towards the 1 mproverent, and considerable progress has been made in various aspects of cucurbits in general. Bitter gourd (Momordica charantia L.). the most popular Indian vegetable romained neglected and under-researched without any effective attention till recently. It has now been underatood that, this less known crop when represented nutritionally on a per hectare basis can very well compare and even compete with any other well known vegetables (Whitaker and Bemis, 1976 and Esquinas-Alcazar and Gulick, 1983).

In the late 1970s, workers in many developed countries atarted bestowing attention towards the improvement of this crop. The Internetional Board for Plant Ganetic Resources (IBPGR) expert consultation held in January, 1979 at the National Vegetable Research Station (IVRS), U. K.. Included Momordica among the nine high priority groups of vegetables in the tropics (EsquinasAlcazar and Gulick, 1983).

In India, bitter gourd is the most important cucurbitaceous vegetable. In terms of nutritive value, It ranks first among the cucurbits, the most important contribution being vitamins and minerals. The large and amall fruited varieties contain 4.2 g and 9.8 g of carbohydrate, 1.6 g and 2.1 g of prote $\mathrm{in}, 88 \mathrm{mg}$ and 96 mg of vitamin C. 210 I. U each of vitamin A and 1.6 mg and 9.4 mg of iron reapectively in 100 g of edible portion (Choudhury, 1967). Although bitter in taste, the tender fruits are used in various preparations like pickles, curries and fries.

The frults and leaves are used in various indigenous medicines (Nadkarni, 1954).

Despite the economic, mutritional and medicinal importance of bitter gourd, the availability of high yielding
variety/s or hybrid/s is limited. There is an imperative need for developing variaty/s or hybrid/s suited to the agroclimatic conditions of Kerala. This calls for a need based crop improvement programme.

Originated in the Indi-Burma Centre of Origin (Garrison, 1977), considerable variability is observed in bitter gourd in India. Information on genetic divergence. variability and components of variation are basic for any crop improvement programme.

Being a cross polilnated crov due to monoecy. considerable scope exists for commercial exploitation of heterosis. Identification of specific parental combination(s) with heterobaltiotic effects for economic characters are very important.

Informations on type of gene action governing economic characters are pre-requisites for any breeding programe. This holpa in choice of appropriate breeding method(s) for improvement of any particular character.

Homeostatic analysis of components of genetic varlance would reveal the genetic basis of stability of r_{1} hybrids grown over different enviroments. A phenotypically stabla and heterobeltiotie F_{1} hybrid is more important considering the possibility for growing bitter gourd through out the year in troples..

Abstract

Preferences of bitter gourd with respect to fruit colour, shape (surface) and intensity of bitterness vary with locality. Colour, surface and Bize dotermine market price considerably. Information on inheritance of such characters is useful in transfering them to a desired variety.

Thare are three related spacies of Momordica: charantia, cymbaleria (Syn. Momordica tuberosa, Luffa tuberosal and dioica. Information on phylogenetic association among the above species would help transfer desirable attributes from the related species to Momordica charantia.

The present research is formulated with the following objectives.

1) To study genetic divergence, Variability and components of variation in the bitter gourd germ plasm,
2) To identify specific parental combination(s) hoterobeltiotic for economic characters,
3) To find out components of genetic variance, proponderantly responsible for inheritance of economic chargaters and their homeostatic behaviour,
4) To identify phenotypically atable and heterobeltiotic F_{1} hybrid(s),
5) To study number and type of gene(s) action, ilnkage, penetrance, expressivity, etc, of genetic factors reaponsible for transmission of fruit characters like colour, shape (surface) and bitterness and
6) To investigate into the crossability association among three species of Momordica: charantia, cymbalaria and diolea.

Review of literature

REVIEN OF LITERATURE

Bitter gourd (Momordica charantie L.) has long been a less researched crop compared to other cucurbits and hence literature available is very few. Mainly because of efforts of International Bureau of Plant Genetic Resources, Rome, much emphasis is given on this crop now. It has slowly attained global recognition and attention among Agricultural Scientists. The available information on various aspects of the crop is reviewed under the following heads:
A. Genetic Variability and divergence in bitter goure,
B. Combining ability analysia in bitter gourd,
C. Heterosis in bitter gourd,
D. Gene action in bitter gourd,
E. Inheritance of qualitative characters in bitter gourd and
P. Crosaab:I1ty studies among the related species of Komordica
A. Oenetic variability and divergence in bitter gourd:

Observations on variebility, genetic divergence and components of phenotypic and genotyple varlation are basic
to crop improvement work. The effectiveness of selection of a genotype depends on estimates of heritability based on the phenotypic performance. Estimates of heritability along with estimates of genetic advance, are more useful in the choice of selection method rather than heritability or genetic advance alone (Johnson et al., 1955).

The existence of very high variability in respect of all the vegetative, productive and quality characters were observed by many workers in bitter gourd. Scientific studies in respect of extent of variability, by eatimating the genetic parameters like phenotypic coefficient of variation, genotyplc coefficient of variation, heritability, genetic advance and genetic gain are not sufficiently enough in bitter gourd.

Varleties possessing marked differences in fruit s1za and quality characters are observed by Choudhury (1967). Varietien differing in blooming time, blooming period, bud emergence and development, anthesis and dehiscence, per cent of fruit set, pollen viability and pollen aizewere roported by Pal et al. (1972). Srivastava and Srivastava (1976) obtained highest genotypic coefficiont of variation (37.45\%) , heritability (99.31%) and genetic gain (71.73%) for fruita/plant and, lowest genotypic coefficiont of
variation (11.47), heritability (49.93\%) and genetic gain (16.73\%) for male flowers per plant in ten ilnes of bitter gourd. High heritability in conjuction with high genetic gain was also observed for fruit weight, yiold/plant and fruit length which might be attributed to action of additive genes. Characters such as lateral branches/plant, female flower/plant and days to appearance of first female flower which showed high values of heritability, but very low values of genetic gain might be attributed to nonadditive effects.

While trying to establish the possible centre of origin as Indo Burma region, Garrison (1977) observed considerable genetic variability in respect of vegetative and productive characters in bitter gourd.

Singh at al. (1977), while investigating the genetic variability and correlation in 25 lines of bitter gourd reported significant differences among the varieties for yiold/plant, fruit/plant, fruit width, days to flowering and age of ealble fruit. The yield and ita main components fruits/plant and fruit length showed high genotypic coeffiaient of variation ($35 \%, 39 \%$ and 34% respectively), high heritability ($92 \%, 93 \%$ and 95% respectively) and high expected genetic advance $(69 \%, 76 \%$ and 68% respectively).

Days to flower had the least genotypic coefficient of variation (4\%). low heritability (22%) and very low genetic advance (3.52). The correlations at genotypic level were more aignificant than their correaponding phenotypic correlations. The Eruit/plant and fruit length were positivaly and significantly correlated at genotypic and phenotypic levels. The variability for yield was primarily dependant upon fruits/plant and fruit length。

Ramachandran and Gopalakrishnan (1979) carried out dotailed variability studies and observed significant variability for primary branches/plant, main vine length, node to first female flower, days to first female flower opening, number of female flowers, days to picking maturity, yield/plant, number, weight, length and girth of fruits, seeds/plant and 100 seed weight in 25 diverse types of bitter gourd. They observed highest phenotypic coefficient of variation (39.88%), genotypic coefficient of variation (37.82\%) and genetic gain (81.9%) for yield/plant. The valuo of heritability was highest for fruits/plant (99.8\%) followod by yiold/plant (99.74%), days to opening of first female flower (98.5\%), female flowers/plant (98.39\%) and main Vine length (98.18%). The lowest values of genotyple coofficiont of variation (5.72), heritability (43.3\%) aurd
genctic gain (7.76\%) were observed for seeds/fruit. In the case of female flowers/plant, yield/plant, fruits/ plant, both the values of heritability and genetic gain were higher indicating the action of additive genes for these characterp Characters such as days to opening of first female flowers and days to fruit maturity which showed higher values of heritability but low values of genetic gain might be attributed to non additive gene action.

Ramachandran and Gopalakrishnan (1980) observed significant variability with respect to certain blochemical traits also. The variance components, genotypic coefficient of variation, heritability and genetic gain were calculated for total soluble solids, vitanin C, protein, potassium, phosphorus and iron contents in all the genotypes. The range of variation was wide and the differences between types highly significant. High or moderate estimates of heritablily and high genetic gain were found for vitamin C ($99.65 \%, 70.72 \%$), phosphorus ($94.9 \%_{\mathrm{r}} 40.8$), total soluble solids ($82.69 \%, 35.99$) and iron (75.65%, 5181) suggesting that these tralts wore controlled by additive genas, while proteln $(60.55,20.74)$ and potassium $(96.73 \%, 22.2)$ contents were governed by non additive genes.

Mangal et al. (1981) estimated genotypic and phenotyplc coefficients of variation in 21 varieties for various characters. Highly significant variation was observed for all the characters among the varieties. Yiold/plant recorded the highest gcv, while days to first female flower opening the minimum. In general, the pev was greater than the gcv. High heritability values were noted for leaf length, plant height, average fruit weight, branches, fruits and yield/plant and seeds/fruit. They also observed parallelism in the magnitude of the value of heritebility and genetic gain in respect of plant height, average fruit welght, branches, fruits and yield/plant.
Chaudhary (1987) also observed significant Variability in respect of various vegetative and yield characters. The highest phenotypic and genotypic coefficient of variation was observed for yleld/plant, fruits/plant, vine length and fruit waight. For fruit length, fruit diameter, seeds/ fruit and seed weight/fruit, the genotypic and phenotypic coefficients of varlation were of average order. The estimates of pev and gev ware low for early female flower formation and early harvest. Genetic advence was very high for yield/plant (1114.39) and vine length (151.53).
B. Combining ability analysis in bitter gourd

In heterosis breeding programme, the concept of combining ability is very important. Bitter gourd being a cross pollinated erop dus to monoecy there is ample scope for exploitation of heterosis. Though there are strong indications of manifestation of hybrid vigour in bitter gourd, an F_{1} hybrid is yet to be evolved for comercial ntilization. For this, good combiners are to be first isolated. The eelection of desirable parents for production of T_{1} hybrids has to be besed on genetic informetion and knowledge of thair combining ability.
Sirohi and Choudhury (1977) undertook a detailed
investigation in a group of eight genetically diverse ines of bitter gourd and obtained informetion regerding estimates of general and specific combining ability. They took eight inbred ilnes of bitter gourd of diverse noture namely. Fusa Do Maumi $\left(P_{1}\right)$, S. $113\left(P_{2}\right)$. Colmbatore Long $\left(P_{3}\right)$, $S .96\left(P_{4}\right)$ $8.144\left(P_{5}\right) .5 .72\left(P_{6}\right) .5 .63\left(P_{7}\right)$ and $5.77\left(P_{8}\right)$ for the study and developed the $F_{1} s$. These $2 \theta F_{1}$ slong with their perents were used to etudy the combining ability in bitter gourd Lor vine length, days to first harvest, fruit length, fruit diameter, flash thicknosg. fruit/plant, fruit waight, seeds/ fruit, seed waight/iruit and total yield/plant.

Out of the eight parental ilnes used aignificant gea values were noted in four for vine length, and seed weight/Eruit, five for fruit length fruit weight and total yieldplant, three for fruit diameter, flesh thickness and fruite/plant, and two for soeds/fruit. The four parenta had significant ganeral combining ability effects for carliness. The parent Pusa Do Mausmi had the highest gea offect for total yield/plant and high gea for weight, length and diameter of fruits; vine length, seeds/isuit and seed weight/fruit. The Parent. S. 63 had the maximum gea effects for fruit diameter, flesh thickness fruit weight. seeds/Eruit and seed Yield/Eruit and ${ }_{5}{ }_{5}$ (5.144) had the highest gea offects for vine length and fruit lencth. ${ }_{2}$ 。 (5.113) had highest gca affects for days to first harvest and Eruitg/plant.

Among the 28 hybrida, 14 for vine length, 7 for Irult weight, 12 for fruit diamater, 13 for flesh thickness, 16 for fruits/plant, 10 for fruit woight. 9 for seeds/ fruit, 6 for seed weight/Eruit and 18 for total yield plant showed significant specific combining ability effecta. It was observed that when efther one or two of these parental ilnes having high gea offecta for yield and its componant characters wore involved in the crosses, the F_{1} hybrids
gave best performance. The varlance due to gea was greater than that due to sca for all the characters studied.

Singh and Joshi (1979) studied a 5 parental diallel of bitter gourd and worked out the combining ebility effects. The five lines of bitter gourd collected from different places were purified to obtain five inbreds namely BWM 1, BB 1, BWL 1, Colmbatore Long and BS 1. They were crossed in all possible combinations. The ten hybrids along with the parents were studied for combining ability effects with respect to plant height, primary branches, fruit length and number and $y i e l d / p l a n t$.

The varlance due to gea for all the above characters were highly significant. The variance due to sca were aignificant for fruita/plant and yield/plant only. The mean squares for gea were higher than those for sca.

None of the parental lines had significant gea -ffocts for plant height and primary branches/plant. BWL 1 had significant positive gea effect for fruita/vine, but aignificant negative gea for fruit. length and yleld/plant. signifleantly positive sca effects were observed in one hybrid for fruit length, in 2 hybrids for frulta/plant
and in 4 hybrids for yiold/plant. AwL 1 having high significant gca effects for fruit yield plant and fruit length, showed significantly higher sea effects for yield plant in combinations with BB 1, BWM 1 and BS 1.

Pal at al. (1983) conducted a line x tester analysis of combining ability in bitter gourd with the objective of selecting suitable parents for hybridisation and for characterising the nature and magnitude of gene action, using five lines Ark Harit, Monsoon Miracle, The Largest, Uchhe and Chine and two testers Holly Green and Indian Prime. Observations were made on days to first female flower, node to the first female flower, days to first fruit maturity, number of fruits, single fruit weight, fruit size index (length x width) and fruit yield/plant. The estimates of sea and gca were calculated.

They observed that the parents showed relatively higher gca for days to female flower formation, and fruits/ plant. Higher variances due to sea were exhibited by node to first female flower, days to maturity, fruit yield, fruit size, fruit weight and fruit cavity size.

The phenotypically superior parent Monsoon Miracle was the best general combiner for fruit yield, fruit weight,
fruit aise and fruit cavity 8ise. However, the gea values vere negative for fruit weight and fruit aize.

The sea effects were not aignificant in all the hybrids. However, in a few combinations like Monsoon Miracle x Holly Green, The Largest x Indian Prime and China x Indian Prime, the absolute values of sca effect were negative and higher than the standard error for days to firat female flower. The negative value indicated that the hybrids can be exploited for earliness. For fruit size Index, the hybrid. The Largest x Indian Prime possessed higher positive value than the standard error. Monsoon Miracle x Holly Green and Monsoon Miracle x Indian Prime possessed absolute values higher than the standard error and was negative. These may be exploited for breeding small Cavity fleshy fruits. Inspite of high sca effects, these hybrids are not heterotic, where as heterosis was exhibited by three other hybrids having no marked sca effects.

In a combining ability study in bitter gourd, Srivastava and Nath (1983) observed that both gea and sca effects were operative in the expression of all the four characters studied. They observed high gea effecta for three parents and high sca effects for combinations for ylold. Their study also indicsted that the gea effects of paronts had no particular influence on sca effects of a
combination. All the three types of combinations, ie., high x high, high x low and low x low showed high sea effects and inferred that only high x low and low \times low effects could be made use of for commercial exploitation of herterosis.

Chaudhari (1987) studied a 11 parental dialled in bitter gourd and observed that the gca and sea variances were significant for all the 13 characters observed. The variances due to gca were consistently greater than the sea variances for all the characters. The parents Coimbatore Long, Hissar Selection and Khandesh Mali were the best combiners since they made significant contributions towards most of the yield contributing characters as evidenced by their high gca effects.
C. Heterosis in bitter gourd

It was Pal and Singh (1946) who first observed heterosis in crosses involving five diverse lines of bitter gourd, T_{1} - Panipat Local, T_{2} - Delhi Local. T_{3} Small Fruited, T_{4} - Ambala Local and T_{5} - Bihar Local.

Heterobeltiosis was observed for male and female Flowers, main vine length, fruit size and total yield plant. In addition to heterobeltiosis for male and female flowers, there were proportionately more female flowers in
the hybrids as compared to the proportion of their parents. The hybrids had eignificantly longer vines than their parents. Higher increace in fruita/plant was observed in hybrids between small fruited varieties than hybrids between big fruited varieties. In a few cases, there was negative heterosis. For fruit girth only, two $F_{1} s$ showed heterobelt10a1s. In Panipat Local x Ambala Local, though fruite were amaller in siza, they were heavier than the better parent. The small sise of the F_{1} hybrids was compensated by more number of fruits whereby the total yield approaches or even oxceeds that of hybrids between bigger fruited varieties themselves. In case of fruit length all hybrids exhibited negative heterosis.

In case of yield all except a few showed striking Increase over the better parent. In a cross between Deini Local \times Panipat Local the percentage increase over the better parent was as high as 191.3. All the crosses inferior to the better parent were intermediate. In the two seasons tested, the performance of the hybrid in hot season was aignificantly better than in rainy season. The hybrid between Panipat Local \times Ambala Local gave consiatently higher yiold as compared to other hybrids.

There was distinct differences in the reciprocal crosses for all the characters studied. Only in one character - interval between the appearance of male and female flowers - the hybrids did not differ significantly from thair parants.

Alyedurai (1951) also gave information on heterosia. In preliminary studies on bitter gourd he observed heterois in earliness, fruits/plant, fruit size, fruit flesh thickness and total yield. The F_{1} s were intermediate for Vine length.

Agrawal et al. (1957) crossed wild types of bitter gourd with cultivated varieties and observed intermediate performance for earliness, Vine length, female flowers, fruits and yield/plant.

Srivastava (1970) in his attempt on exploitation of heterosis found that as much as 45 out of $90 F_{1}$ hybrids produced fomale flowers aignificantly earlier than the bettor parent and concluded that deys to fomele flower formation could be reduced to 16.7% from that of the parents. He also observed 64% heterobeltiosis for yield. Significant increase was also observed in hybrids for fruit length, fruit girth, fruit weight and fruite/plant.

Kohle (1972) examined hybrid vigour in yield in six hybrids selected from various cross combinations of aix parenta - M.P-14. Bihar-15, Coimbatore-16, Jamur-21. Mulsh1-26 and Local. None of the hybrids possessed standard heterosis. However, the cross B-15 $\times \mathrm{J}-21$ showed a heterobeltiosis of 2.41% and 29.7%. Another cross. B-15 \times M- 26 gave an average heterosis of 16.56%. All others showed negative heterosis.

Lal at al. (1976) 1solated two hybrids - Green Iocal x White Local and Green Local x Bundelkhand Local - as heterotic for vegetative growth, floral character and fruit yield. They observed heterosis for internode length, leaf petiole length, leaf length, leaf width, branches/plant. shoot length, node at which first female flowers formed, fruits/plant. length, girth and weight of fruits and total yiold. In total yield, Green Local x White Local gave 139.1\% increase over the better parent whereas it was only 35.2\% In the hybrid, Green Local x Bundelkhand Local. In case of days to flower, there was 7.02% negative heterosis in the hybrid, Green Local \times Bundelkhend Local.

Siroh1 and Choudhury (1978) developed $28 F_{2}$ hybrids using eight diverse lines of bitter gourd and observed that, when either one or two of these parental lines heving high
gea effect: for yield and its component characters ware Involved in the erosses, the F_{1} hybrids gave the best performance. Among the 28 hybrids, crosses between Pusa Do Mausmi x S.144, Pusa Do Mausm1 x S. 63 and Colmbatore Long x 5.63 appeared the bast performing for total yield/plant and its componant characters, and they showed 84.10%, 72.00\% as 45.46% higher yield respectively than the top parent Pusa Do Mausmi.

Singh and Joshi (1979) studied a 5 parental diallel cross of bitter gourd using five inbreds developed from five lines collected Irom different places. The inbreds namely BWM 1. BB 1, EWL 1. Coimbatore Long and BS 1 were crossed in all possible combinations to develop ten hybrids. The ten hybrids along with theix parents were studied and the extant of heterosis was worked out. Heterobeltiosis ranged from 2.1\% to 22.3% for plant height, and 7.8% to 37/\% for primary branches/vine. Fruit length registered aignificant heteroboltiosis in BWM $1 \times$ Coimbatore Long having 29.9\% heterobeltiosis. Crosses BW $1 \times$ BWL 1 and EWL $1 \times$ BS 1 had significantly more fruits/plant with 13.7% and 34.4% heterobeltiosis respectively. Theso two crosses yielded significantly higher than their respective better parents. The former cross exhibited 16.8% and 7.7% and latter 16.4% and 6.00% heterobeltlosis and standard
hoterosis, respectively. Heterosis for plant height and primary branches showed 22.3% and $37.1, \%$ heterobeltiosis. Among medium fruited lines, significant heterobeltiosis for fruit length was observed in BWM $1 \times$ Colmbatore Long. Standard heterosis for fruit yield was low indicating that F_{1} hybrids of these parental innes are not of conmercial valuo.

$$
\text { Pal et al. (1983) in a line } x \text { tester analysis with }
$$

five lines and two testers examined the presence of hybrid vigour and its feasibility of exploitation. In all the tan hybrids with five lines namely Arke Herit, kionsoon Miracle. The Largest, Uchhe and China and two testers, Holly Green and Indian Prime, manifestation of heterosis was found to be very imited as a whole. However in some combinations, like Monsoon Miracle x Holly Green, The Largest x Indian Prime and China x Indian Prime, the absolute values were negative and higher indicating the possibility of exploitation for earliness. It was suggested that the ilmited hybrid vigour in the crosses could be due to imited aiveraity in the parents. The trend showed that more pronounced hybrid vigour could be observed with incluolon of more of diverse parents.

Srivastava and Nath (1983) observed heterosis for various characters. They observed significant reduction In days to opening of first female flower (0.3 to 16.7%). Out of 90 hybrids heterobeltiosis was observed in 35 for Vine length (0.4 to 27.1\%) and 40 for fruits/plant 10.2 to 47.2%). They also observed as much as 64% increased yield in the hybrids.

Significant relative heterosis, heterobeltiosis and standard heterosis were also reported by Ranpise (1985) for vine length, fruits/plant and Yield/plant.

Chaudhari (1987) observed relative heterosis, heterobeltiosis and standerd heterosis for various characters in a 11×11 diallel cross in bitter gourd. Out of 55 hybrids, he observed relative heterosis in 33 for Vine length, 15 for fruit diameter, 14 for fruit flesh thickness, 15 for fruit weight, 11 for seeds/frult, 23 for seed weight, 19 for fruits/plant, 16 for yield/plant and 25 for T.s.s. Heterobeltiosis was observed for vine longth in 8 , deys to female flower in 42, days to harvest in 51, days to maturity in 10, fruit length in 5, frult diameter in 7, flesh thickness in 1. fruit waight in 8 . reede/frult in 1 , seed weight in 15. fruits/plant in 15, yiold/plant in 15 and T.8.S. In 18 crosses. Standard
heteroais was observed for days to first female flower in 23, days to harvest in 25, fruit waight in 1, seed weight/ fruit in 2, fruits/plant in 1, yield/plant in 2 and T.S.S. in 2 crosses.

He also observed that the average performence of F_{1} hybrids exceeded that of the parents by 26.32% in vine length, 22.98% in early female flower formation, 19.26% in carly harvest and 1.26% in days to fruit set. For fruit characters, the figures exceeded 11.57% for length, 2.88% for diameter, 16.18% for flesh thickness, 2.12% for seeds/ fruit. 5.89% for seed weight/fruit, 18.11% for fruits/ plant. 25.32% for total yield/plant and 11.87% for T.S.S.

Relative heterosis was maximum for yield/plant (276.43\%) followed by fruits/plants (127.44\%), fruit weight (121.45\%), flesh thickness (118.73\%) and frult diameter (106.53). Heterobeltiosis also was meximum for yield/ plant (235.94\%) followed by fruit diameter (93.12\%), fruit woight (85.7%) and Elesh thickness (74.24%) . Standard hetarosis wes high for seed velght/fruit (62.59%) followed by seeds/fruit (55.42%) and frult welght (50.4%). The hybrids $6.96 \times$ Green bitter gourd, Khandesh Mali x Green bltter gourd, B.O. $112 \times$ Washin Local, BG $114 \times C_{0}$ Long and Washin Local \times BG 110 which recorded $53.03 \%, 24.47 \%$,
12. 32% and 10.45% heterosis respectively for yiald over the top parent; Khandesh Mali wert the most promising.

D. Gane action in bitter gourd

Sirohi and Choudhury (1979) had examined gene
effects in bitter gourd at the Division of Vegetable Crops, Indian Agricultural Research Institute, New Delhi. They used five parents, Pusa Do Mausmi (P_{1}), Sl. 113 (P_{2}), Colmbatore Long $\left(P_{3}\right), ~ S 1.144\left(P_{4}\right)$ and Sl. $63\left(P_{5}\right)$ and their six generations ($P_{1}, P_{2}, F_{1}, F_{2}, B_{1}$ and B_{2}) for the estimation of gene effects for four important characters Vine length, days to first harvest, fruit/plant and total yield/plant. In many of the crosses, duplicate epistasis was observed for v ine length. The dominance (h) and dominance x dominance (1) components chiefly contributed to this character. This leads to the conclusion that hoterosis breeding is useful for getting longer vines in bitter gourd. In majority of the crosses for days to first harvest and fruityplant, role of the additive (d) and additive x additive (1) components were more pronounced, although in a few crosses the dominance (h) and dominance x dominance (1) components of genetic variance were more important. These characters could be fixed in a progeny
by following proper selection methods. For total yiold/ plant, majority of the crosses showod the presence of complementary epistasis and the contribution of the dominance (h) and the dominance x dominance components (1) of genetic variance were observed to be higher than the additive (d), the additive x additive (i) and the additive x dominance (j) components of genetic varience. This, like the vine length, also could be improved by heterosis breeding.

Sirohi and Choudhury (1979), while investigating the combining ability analysis using eight diverse genotypes of bitter gourd also observed additive x additive type of apiatatic interaction for all the charecters. In a diallel cross with 5 parents, Singh and Josh1 (1979) observed preponderance of additiveness for fruits/plant and their waight.

Pal and singh (1983), in a line x tester analysis using five lines of bitter gourd for charactorising the nature and magnitude of gene actions observed the operation of more additive genes for days to first female flower and fruits/plant, and non-additive genes for node of first famalo flowar formation, days to maturity, fruit yield, fruit sise, frult veight and fruit cavity aise. In crosses

Involving the variety Monsoon Miracle, charactors such as fruit yield/plant, individual fruit weight, fruit sise and fruit cavity size also showed the preponderance of additive x additive gene interaction.

Investigating yield and seven yield related characters in an eight partial diallel without reciprocals, Siroh1 and Choudhury (1983) reported additive gene action with partial dominance for vine length, days to first fruit harvest, fruit length and diameter, fruit flesh thickness, Eruits/plant and fruit weight.

Sirohi and Choudhury (1983) studied gene action by the diallel method also. The study with $28 \mathrm{~F}_{1}$ hybrids In a diallel set involving eight parents excluding reciprocals showed partial dominance for V ine length, days to first harvest, fruit length, fruit diameter, flesh thickness, fruita/plant and fruit weight. It was observed that all the charactors were governed by additive genes. There was assymmetry in the distribution of genes with positive and negative effects in all the cases, except for frult diametar for which they were in equal proportion. Epistasis, particularly of complementary type, was observed for total yiold/plant. Dominant alleles wore more frequent for all
the characters, except for vine length, days to first harvest and fruit weight. They suggested that heterosis breeding programme may be advantageous as there was presence of dominance and complementary type of gene action.
E. Inheritance of qualitative character in bitter gourd

In bitter gourd, information on inheritance of qualitative characters is very few. Esquinas-Alcazar and Gulick (1983) reported the inheritance of certain qualitative characters in bitter gourd. White epicarp is controlled by a single gene 'w' white being recessive to green. Similarly light brown seed is recessive to dark brown seed, being governed by the gene 'lbs'. Large seed is recessive to small seed, being governed by 'ls'. The nature of inheritance of other characters are not yet reported.
F. Crossability studies among the related species of Momordica

A good amount of work has been done on the phyllogenetical studies in other cucurbits like Cucumin. Cucurbits (Esquinas-Alcazar and Gullck, 1983) and Luffa (Choudhury and Thakus, 1965, Roy at al., 1975; Dust and Roy, 1969).

In bitter gourd, works in this line are quite insufficient. Trivedi and Roy (1972) Investigated the cytological aspecta of three species of Momordica Momordica charantia, Momordica balsamina and Momordica diolca. They found that the somatic chromosome number in Momordica charantia, Momordica balsamina and Momordica diolca are 22, 22 and 28 respectively.

In addition to the diploid, netural triploids and tetraploids of M. dioica have been reported from Assam and Darjeeling (Agarwal and Roy, 1976), which show 42 and 56 chromosomes respectively at the root tips.

Interspecific crosses have been attempted among Momordica charantia, Momordica balsamina and Momordica dioica (Trivedi and Roy, 1972). About 500 attempts of crossing betveen M. charantia and M. dioica falled to set any seed. The ovaries dried about 40 hours after pollinet10n. The pollen grains did not germinate even two hours after polilnation, although $2-4 x$ of pollen grains germinated after four hours. Tho ovaries fell down after 40 hours of pollination.

About 400 erossen were made between Momordica
Algige and Momondica balsaminel all of which failed. Only
a fow pollen grains geminated 6 hours after polination pollon
and the growth of the, tube was very slow. The ovaries shrivelled and fell down after 30 hours. Thus it was clearly established that Momordica charantis is incompatible with Momordiea dialea and Momordica balsamina.

Materials and Methods

MATERIALS AND METHODS

The investigations were carried out at the Department of Olericulture, College of Horticulture, Kerala Agricultural University, Vellanikkara, during 1980-85. The experimental field is located at an altitude of 22.5 M above M.S.L. between $70^{\circ} 32^{\prime} \mathrm{N}$ latitude and $76^{\circ} 16^{\prime} \mathrm{E}$ longitude. The area enjoys a warm humid tropical climate. The experimental site has a sandy loam soil with a pH of 5.1. These climatic and soil factors are ideal for bitter gourd cultivation through out the year.

The studies were conducted under the following four heads:
A. Genetic variability and divergence in bitter gourd,
B. Development of F_{1} hybrids and their homeostatic analysis,
C. Inheritance of fruit colour, fruit shape and bitterness in bltter gourd and
D. Crossability studies among the related species of Momordica.
A. Ganetic variebility and divergence in bitter gourd 1. Experimental materials

The germplasm of bitter gourd maintained at the Department of Olericulture, College of Horticulture along with the collections from different parts of Kerale were utilized for the variability studies. This included fifty diverse types verying in fruit size, shape, colour and bitterness. These were grown in a Randomized Block Design with two replications during 1981-82 to find out the extent of genetic variability and to select ten parents for further attempt on development of F_{1} hybrids and their homoeostatic analysis. There were 2 plants/ pit and 2 pits/replication. The fleld culture was dona as per the recommendations of the Package of Practices of the Korala Agricultural University (1980). The morphological fruit characters of 50 bitter gourd lines are given in Table 1.
2. Observations recorded

All the plants were considered for recording

 observations. Data are recorded on the following 18 characters and the everage values were calculated for statistical analysis.a) Main branches/plant
b) Main vine length (m)
c) Hode to first female flower
d) Days to first female flower opening
e) Female flower/plant
f) Percentage of female flowers
g) Days to picking maturity
h) Yield/plant (kg)

1) Fruits/plant
j) Fruit weight (g)
k) Fruit length (cm)
2) Fruit girth (cm)
m) Flesh thickness (mm)
n) Seeds/Eruit
o) 100 seed weight (g)
p) Total soluble solids
q) Vitamin C content: Estimated volumetrically by 2,6$\mathrm{mg} / 1009$ dichlorophenol indophenol visual titration method (A.O.A.C., 1960)
3) Protein contont $(\%)$: Eatimated by macrokjeldahl method (A.O.A.C., 1960)

Table 1. Morphological fruit characters of 50 bitter gourd genotypes *

$31 .$ Ho.	Genotype	Colour	Length	Girth at the middle	Spines	Ridge:
1	2	3	4	5	6	7
1	MC-A	Green	Long	Narrow in the middle and broad at the tip	Present, not prominent	Absent
2	MC-10	Green	Long	Broad	Present	Absent
3	MC-15	Green	Medium long	Broad	Present	Absent
4	Priya	Green	Long	Narrow	Present	Absent
5	Arka Harit	Dark green	Medium long	Broad	Absent	Present, discontInuous
6	MC-34	White	Medium long	Broad	Present, prominent	Absent
7	MC-42	Whitish green	Long	Broad	Present	Absent
8	NC-48	Green, light green at the tip	Medium	Narrow	Absent	Present continnous
9	MC-49	Green long	Medium long	Broad	Absent	Present continuous
10	nc-50	Light grean	Medium long	Broad	Present	Absent
11	MC-51	White	Medium long	Narrow	Present	Absent
12	MC-52	Whitish green	Medium long	Narrow	Present. not prominent	Absent
13	MC-53	Dark green	Medium long	Broad	Present	Absent

Table 1. Continued

1	2	3	4	5	6	7
14	MC-54	Green	Medium long	Broad	Present	Absent
15	MC-57	Green	Medium long	Broad	Present, prominent	Absent
16	MC-60	Light green	Medium long	Broad	Present. not prominent	Absent
17	MC-61	Green	Medium long	Broad	Present	Absent
18	MC62	Dark green	Long	Narrow	Present	Absent
19	MC-63	White	Long	Narrow	Present	Absent
20	MC-64	White	Long	Narrow	Present	Absent
21	MC-65	White	Long	Narrow	Present	Absent
22	MC-66	White	Long	Narrow	Present	Absent
23	MC-67	Light green	Medium long	Narrow	Present	Absent
24	MC-68	Green	Medium long	Broed	Present	Absent
25	MC-69	White	Long	Broad	Absent	Present, continuous
26	nC-70	Graen	Medium long	Broad	Absent	Present, discont inuous
27	MC-71	Light green	Long	Narrow	Present, prominent	Absent
28	MC-72	Green	Medium long	Narrow	Present	Absent
29	MC-73	Light green	Medium long	Narrow	Present	Absent
30	MC-74	Grean	Long	Narrow	Present	Absent
31	MC-75	Dark green	Medium long	Broad	Present	Absent

Table 1. Continued

1	2	3	4	5	6	7
32	HC-76	Green	Madum long	Broad	Present	Absent
33	NC-77	Whitish green	Medium long	Broad	Present	Absent
34	MC-78	White	Long	Marrow	Present	Absent
35	MC-79	White	Short	Broad	Present, not prominent	Absent
36	MC-80	Green	Madium long	Natrow	Present	Absent
37	MC-82	Green	Short	Broad	Present	Absent
38	MC-83	Green	Medium long	Broad	Present	Absent
39	MC-84	White	Medium long	Broed	Present	Absent
40	MC-85	Green	Short	Broad	Present	Absent
41	MC-86	Light green	Short	Broed	Present	Absent
42	MC-87	Green	Kedium long	Broad	Present	Absent
43	MC-88	Green	Medium long	Broad	Present	Absent
44	MC-89	Light green	Medium long	Narrow	Present	Absent
45	MC-90	Green	Short	Broad	Fresent	Absent
46	MC-91	Whitigh green	Short	Broad	Present	Absent
47	MC-92	Green	Medium long	Broad	Absent	Present discontinuous
48	MC-93	Light green	Medium long	Broad	Absent	Present. discontinuous
49	MC-94	Green	3hart	Broad	Present	Absont
50	MC-95	Green	Short	Broad	Presont	Absent

3. Statistical analysis
(a) Analysis of Variance

The analysis of variance was done as described by Oatle (1966) for a randomised block design.

The somatic analysis of variability was conducted as suggested by Burton (1952).
(1) Genotypic coefficient of variation (gev) =

Genotypic standard deviation Mean of that character
(11) Phenotypic coefficient of variation (pCv) =

Phenotypic standard deviation $\times 100$ Mean of the character
(iii) Standard error of mean $=$ Environmental standard deviati $\sqrt{\text { Replications }}$

Environmental variance = Moan square due to error
Genotypic Variance =
Mean square due to genotype - Mean square due to error Replications

Phenotypic Variance = Genotypic variance + error variance
(iv) Heritability in broad sense was estimated by the formula suggested by Burton and Devane (1953)

$$
h_{b}^{2}=\frac{\text { Genotypic variance }}{\text { Phenotypic variance }}
$$

(v) Expected genetic advance at 5% intensity of selection was calculated using the formula of Johnson at al. (1955).

$$
G A=h^{2} \times p \times 1
$$

$$
\text { Where, } h^{2}=\text { heritability }
$$

p = phenotypic standard deviation
1 - coefficient of intensity of selection (2.06 at $p=0.05$)
(vi) Genetic advance $\%=\frac{\text { Genetic advance }}{\text { Mean of the character }} \times 100$
(b) Genetic divergence:

The genetic divergence among the 50 bitter gourd
genotypes were calculated using all the 18 characters in the somatic analysis. The method suggested by Mahalanobis (1928), was used to estimate the D^{2}. With $x_{1}, x_{2}, x_{3} \ldots x_{18}$ as the multiple measurements, available on each genotype and $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots d_{1 B}$ as $\bar{x}_{1}{ }^{1}-\bar{x}_{1}{ }^{2}, \bar{x}_{2}^{1}-\bar{x}_{2}{ }^{2} \cdot \bar{x}_{3}^{1}-\bar{x}_{3}{ }^{2}$ $\bar{x}_{18}^{1}-\bar{x}_{18}^{2}$ respectively being the difference in the means of two genotypes, where power denotes the genotypes and suffix denotes the characters, Mahalanobis D^{2} statistics is defined as follows:

$$
p^{D^{2}}=b_{1} d_{1}+b_{2} d_{2}+b_{3} d_{3} \ldots \ldots \ldots \ldots \ldots b_{1 \theta} d_{2 B}
$$

Here, the b_{1} values were estimated such that the
rate of variance between the genotypes to the variance within the genotype was maximised

$$
D^{2}=w^{1 j}\left(\bar{x}_{1}^{1}-\bar{x}_{1}^{2}\right)\left(\bar{x}_{j}^{1}-\bar{x}_{j}^{2}\right)
$$

Where W^{11} is the $1 j^{\text {th }}$ element of the inverse of the estimated variance - Covariance matrix.

Grouping of genotypes to clusters was done by Tocher's method (Rao, 1952).
B. Development of F_{1} hybrids and their homeostatic analysis 1. Experimental materials

Ten parents Priya, MC-78, MC-84, Arka Harit, MC-82, MC-79, MC-66, MC-49, MC-69 and MC-34 which were originally included in the germplasm wore selected based on genetic divergence (Plates $1=10$). These ten diverse parental innes were crossed in all possible combinations to develop $45 F_{1}$ hybrids. These hybrids elong with their parents were grown in a randomised block deaign with two replications continuously for three seasons.
2. Observations

Observations ware recorded on branches/plant, main Vine length, node to first female flower, daya to first
Plate-1. Priya

PLATE-1

PLATE - 3

PLATE-4

Plate-5.
MC 82

PLATE-5

Plate-7.
MC 66

Plate-8.

PLATE-7

PLATE-9

female flower opening, female flowers/plant, percentage of female flowers, fruite/plant, fruit weight, fruit length, fruit girth and yield/plant.
3. Statistical analysis
(a) Stability analysis

The homogeneity of error variance in different environments was tested using Bartletts' test. To test the $G \times E$ interaction unweighted analysis of variance of the pooled data was carried out in cases where error variance was homogeneous (Panse and Sukhatme, 1954). Weighted analysis was done in cases where the errors were heterogeneous.

Table 2. Weighted analysis of variance of pooled data

$$
\begin{aligned}
& \text { Where, } W_{j}=\frac{I}{s_{j}^{2}} \quad s_{j}^{2}=\begin{array}{c}
\text { Error mean square in the } \\
\text { environment }
\end{array} \\
& 5 \text { - Number of replications in each } \\
& \text { environment } \\
& s \text { = Number of environments } \\
& t \text { = Number of genotype } \\
& s_{j}=\text { Crude ss for } j^{\text {th }} \text { environment } \\
& P_{j}=\text { Total for } j^{\text {th }} \text { environment } \\
& c=\frac{G^{2}}{t \sum_{j=1}^{S} W_{j}} \\
& \sigma=\sum_{j=1}^{S} W_{j} P_{j}
\end{aligned}
$$

Significance of $G \times E$ interaction was tested using x^{2} test

$$
X^{2}=\frac{(n-4)(n-2)}{n(n+t-3)} I \text { with } d f=\frac{(s-1)(t-1)(n-4)}{(n+t-3)}
$$

I = Interaction $5 s$
n a Number and degrees of freedom on which error mean square was based in each environment.

The analysis was further proceeded for estimating the stability parameters (Eberhart and Russell, 1966) as the $O \times E$ interactions were significant for all the characters.

Eberhart and Russell modal (1966) (ER Model)

$$
x_{i j}=\mu_{1}+b_{1} x_{1}+\delta_{i j}
$$

where, $M_{1}=$ Mean of $1^{\text {th }}$ variety over all environments
b_{1} - Regression coefficient that measures the response of the 1 th variety to varying environments
$I_{j}=$ Environmental index which is defined as the deviation of the mean of all varieties at the $j^{\text {th }}$ environment from the grand mean.
$\delta_{1 j}=\begin{aligned} & \text { Deviation from the regression of the } 1 \\ & \text { variety in the } f \text { th environment }\end{aligned}$
If is obtained as

$$
I_{j}=\sum_{1=1}^{t} \frac{Y_{1 j}}{t}-\sum_{1=1}^{t} s Y_{j=1}^{s t}
$$

$$
1=1 \ldots \ldots . \ldots . . .
$$

So that, $\sum_{j=1}^{S} I_{j}=0$

$$
j=1 \ldots \ldots \ldots \ldots .
$$

The two parameters of stability are

Regression coefficient

$$
\left(b_{1}\right)=\frac{\sum_{j=1}^{S} Y_{1 j} \cdot I_{j}}{\sum_{j=1}^{S} I_{j}^{2}}
$$

where $\sum_{j=1}^{B} \delta_{1 j}{ }^{2}=\sigma_{v_{1}}{ }^{2}-b_{i} \sum_{j=1}^{B} Y_{i j} I_{j}$
$\sigma v_{1}{ }^{2}=\sum_{j=1}^{s} x_{1 j}{ }^{2}-\frac{x_{10}}{s}{ }^{2}$

$$
b_{1 .} \sum_{j=1}^{S} Y_{1 j .} I_{j}=\frac{\sum_{j=1}^{S} Y_{i j 0} I_{j}{ }^{2}}{\sum_{j=1}^{S} I_{j}{ }^{2}}
$$

Table 3. Analysis of variance table under Eberhart and Russell (1966) model are given below:
Source \quad Sta $\sum_{i=1}^{t} \sum_{j=1}^{S} \mathrm{X}_{1 j}{ }^{2}$. CF
Varieties $\quad t-1 \quad \frac{1}{S} \sum_{1=1}^{t} Y_{i}{ }^{2}-C F \quad M_{1}$

Environment +
Varieties x environment

$$
\begin{array}{r}
(-1)+\binom{t-1)}{(s-1)}
\end{array}
$$

Environment (lInear)

$$
1 \frac{\left.\frac{1}{t\left(\sum_{j=1}^{S}\right.} Y_{i j} I_{j}\right)^{2}}{I_{j}^{2}}
$$

$$
j=1
$$

Variety x Environment ($t-1$) (linear)

Pooled deviation

$$
t(s-2)
$$

$$
\sum_{1=1}^{t} \sum_{j=1}^{s} \delta_{1 j}^{2}
$$

$$
\sum_{j=1}^{s} \delta_{1 j^{2}}
$$

Variety t

$$
8-2
$$

$$
\sum_{j=1}^{5} \delta_{1 j}^{2}
$$

'F' test

1. To test the significance of the differences among the variety means, the ' F ' test is defined as, $T=\mathrm{MS}_{1} / \mathrm{MS}_{3}{ }^{\circ}$
2. The equality of regression coefficient is tested by ' F ' test, $F=M_{2} / \mathrm{MS}_{3}$.
3. The individual deviation from linear regression is tested as, $F=\sum_{j=1}^{s}\left(\delta_{1 j}^{2} \mathrm{~s}-2\right)$ Se^{2}

A genotype with unit regression coefficient
$\left.{ }^{(b}(1)=1\right)$ and deviations from regression not significantly different from zero $\left(S_{(1)}^{2}=0\right)$ was considered to be stable one.
(b) Analysis for combining ability

The data from the three environments were separately analysed for combining ability using Method of Griffing (1956) as given in Table 4.

Table 4. Analysis of variance for combining ability

where, $\mathrm{sg}=\frac{1}{\mathrm{p}+2} \quad \sum_{1}\left(Y_{1 .}+Y_{11}\right)^{2}-\frac{1}{p} Y_{.0}{ }^{2}$

$$
\begin{array}{r}
s_{s}=\sum_{1} \leq 1 \sum x_{1 j}^{2}-\frac{1}{p+2} \sum\left(Y_{1 .}+Y_{11}\right)^{2}+ \\
\frac{\mathbf{Y}_{0} .^{2}}{(p+1)(p+2)}
\end{array}
$$

P = number of parents involved

$$
M^{\prime} c=\sigma_{0}^{2}
$$

General combining ability effects, g_{1} and specific combining ability effects, $S_{1 j}$ were estimated as follows:

$$
\begin{aligned}
& g_{1}=\frac{1}{p+2}\left(Y_{10}+Y_{11}\right)-\frac{2}{p} Y_{0} \\
& g_{11}=Y_{i j}-\frac{1}{p+2}\left(Y_{1}+Y_{11}+Y_{i j}+Y_{1 j}+Y_{i 1}\right)+ \\
& \frac{2}{(p+1)(p+2)} Y_{\ldots}
\end{aligned}
$$

SE $\left(g_{1}\right)$
$=\left[\begin{array}{ll}(p-1) & \frac{2}{e} / p(p+2)\end{array}\right]^{\frac{2}{2}}$
$\operatorname{sE}\left(\mathrm{E}_{1 j}\right)$
$=\left[\left(p^{2}+p+2\right) \sigma_{e}^{2} /(p+1)(p+2)\right]^{\frac{2}{2}}$
$\operatorname{sE}\left(g_{1}-g_{j}\right)$
$=\left[\left(2 \sigma_{e}^{2} / p+2\right)\right]^{\frac{1}{2}}$
$\operatorname{sE}\left(s_{1 j}-0_{1 k}\right)=\left[2(p+1) \sigma^{2} e / p+2\right]^{2}$
$\operatorname{sE}\left(\operatorname{la}_{\left.1,1^{-0}\right)_{k I}}\right)=\left[(2 n[0 / n+2)]^{\frac{1}{2}}\right.$
Analysis of variance for combining ability over three environments was done as suggested by Singh (1973b) a given in table 5.

Notation: The analysis is done on genotype mean taken over blocks for 3 environments. P_{1} number of parents, \vee genotypes, 1 environments, b blocks/environment and c individuals/plot.
$x_{1 j}=\sum_{k} x_{i j k} x_{1, k}=\sum_{1} x_{i j k}$ where $x_{i j k}=x_{j i k}{ }^{\prime}$
$x_{1}=\sum_{1} x_{1 j}=\sum_{k} x_{1-k}$ where $x_{i j}=x_{j 1}{ }^{\prime}$
$x_{. k}=\sum_{i=1} \sum_{i j k^{\prime}} x_{\ldots} \ldots=\sum_{k} s_{\omega_{k}}$

Table 5. Analysis of variance for combining ability over environments

where. $s s(g)=\frac{\sum_{i}\left(x_{1,0}+x_{11}\right)^{2}}{(p+2) 1}-\frac{4 x_{\ldots}{ }^{2}}{p(p+2)_{1}}$

$$
\begin{aligned}
& s s(1)=\frac{\sum_{1=1} x_{110}^{2}-\frac{\sum_{1}\left(x_{1 \ldots}+x_{11}\right)^{2}}{1}+\frac{2 x_{\ldots} \ldots{ }^{2}}{(p+2) 1}(p+2) 1}{p} \\
& s s(1)=\frac{2 \sum_{k} x_{0 k}}{p(p+1)}-\frac{2 x^{2} \ldots}{p(p+1) 1} \\
& s S(g 1)=\frac{\sum_{k} \sum_{1}\left(x_{1, k}+x_{i 1 k}\right)^{2}}{p+2}-\frac{4 \sum_{k} x_{0 . k}}{p(p+2)} \\
& -\frac{\sum_{1}\left(x_{1,0}+x_{11 .}\right)^{2}}{(p+2) 1}+\frac{4 x_{\ldots} .^{2}}{p(p+2) 1} \\
& s S(\pi 1)=\sum_{k} \sum_{1} \sum j x_{1 j k}^{2}-\frac{\sum_{t} \sum_{1}\left(x_{1, k}+x_{11 k}\right)^{2}}{p+2} \\
& +\frac{2 \sum_{k} x^{2}}{(p+1)(p+2)}-\frac{\sum_{1 \sum 1} \sum_{11}^{2}}{1}+\frac{1\left(x_{1,0}+x_{11}\right)^{2}}{(p+2)_{1}} \\
& -\frac{2 x}{(p+1) \cdot(p+2) 1}
\end{aligned}
$$

(c) Heterosis in bitter gourd

Magnitude of heterosis was calculated in terms of three parameters for all the three seasons. Heterosis over mid parent (Relative heterosis). better parent (Heterobelt1osia) and standard variety (Standard heterosis) wore worked as suggested by Brigla (1963) and Hayes (1965).

Relative Heterosis $(\mathrm{RH})=\frac{\Gamma_{1}-M P}{M P} \times 100$
Heterobeltiosis (HB) $\quad=\frac{\mathrm{F}_{1}-\mathrm{TP}}{\mathrm{BP}} \times 10$
Standard heterosis $(S H)=\frac{F_{1}-T P}{T P} \times 100$

For testing heterosis over mid parent

$$
\begin{aligned}
& S E=\frac{\sqrt{3 x v e}}{2 \pi I} \\
& C D=S E x^{\prime} t^{\prime}
\end{aligned}
$$

and over better part and top part

$$
\begin{aligned}
& S E=\frac{\sqrt{2 \times v e}}{r} \\
& C D=S E \times t
\end{aligned}
$$

```
where, va e Error mean square in RBD
    \(r\) number of replications
    \(C D=c i t i c a l\) difference
```

C. Inheritance of fruit colour, fruit shape (surface) and bitterness and study on linkage if any in bitter gourd

1. Experimental materials

Tour parental ilnos (Priya, MC 49, MC 66 and MC 69) originally included in Sot I differing in fruit colour (grean/white) and fruit surface (spiny/smooth) wore used to develop the $s 1 x$ generations of $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and
$B C_{2}$. There were alk groups, of which four were with parents differing in fruit colour and four with differing fruit surface. Two groups had parents differing in both fruit colour and surface. These were used to study inheritance of fruit colour and fruit surface and study on ilnkage if any between fruit colour and surface.
(a) Fruit colour
(1) Group 1

$$
\begin{aligned}
& P_{1}-\text { Priya (Green, spiry) } \\
& P_{2}-M C 66 \text { (White, spiny) } \\
& F_{1}-\text { Priya } \times M C 66 \\
& F_{2}-\text { Priya } \times M C 66 \\
& B C_{1}-(\text { Priya } \times M C 66) \times \text { Priya } \\
& B C_{2}-(\text { Priya } \times M C 66) \times M C 66
\end{aligned}
$$

There were 25 plants each in F_{1}, P_{1} and $P_{2}, 200$ in $\mathrm{P}_{2}, 80 \mathrm{in} \mathrm{BC}_{1}$ and $120 \mathrm{in} \mathrm{BC}_{2}$.
(11) Group 2

$$
\begin{aligned}
& P_{1}-\text { Priya (Green, spiny) } \\
& P_{2}-\text { MC } 69 \text { (White, smooth) } \\
& F_{1}-\text { Priya } \times \text { MC } 69 \\
& F_{2}-\text { Priya } \times M C 69 \\
& B C_{1}-(\text { Priya } \times M C 69) \times \text { Priya } \\
& B C_{2}-(\text { Priya } \times M C 69) \times M C 69
\end{aligned}
$$

There were 17 plants in P_{1}, P_{2} and $F_{1}, 180$ in F_{2} 70 in $E C_{1}$ and 140 in $B C_{2}$.
(111) Group 3

$$
\begin{aligned}
& P_{1}-\text { MC } 49 \text { (Green, Smooth) } \\
& P_{2}-\text { MC } 66 \text { (White, spiny) } \\
& P_{1}-M C 49 \times M C 66 \\
& P_{2}-M C 49 \times M C 66 \\
& B C_{1}-(\text { MC } 49 \times M C 66) \times M C 49 \\
& B C_{2}-(\text { MC } 49 \times M C 66) \times M C 66
\end{aligned}
$$

There were 20 plants each in P_{1}, P_{2} and $F_{1}, 190$ in ${ }^{5}, 80$ in BC_{1} and 165 in BC_{2}.
(Iv) Group 4

$$
\begin{aligned}
& P_{1}-M C 49(\text { Green, smooth }) \\
& P_{2}-M C 59(\text { White, smooth }) \\
& F_{1}-M C 49 \times M C 69 \\
& F_{2}-M C 49 \times M C 69 \\
& B C_{1}-(M C 49 \times M C 69) \times M C 49 \\
& B C_{2}-(M C 49 \times M C 69) \times M C 69
\end{aligned}
$$

There were 15 plants each in P_{1}, P_{2} and $F_{1} 205$ in $r_{2}, 65 \ln B C_{1}$ and $110 \ln B C_{2}$.
(b) Fruit surface
(1) Group 1

$$
\begin{aligned}
& P_{1}-\text { Priya (Green, spiny) } \\
& P_{2}-\text { MC } 49 \text { (Green, smooth) } \\
& P_{1}-\text { Priya } \times \text { MC } 49 \\
& P_{2}-P r i y a ~ \\
& B C_{1}-(\text { Oriya } \times \text { MC } 49) \times \text { Priya } \\
& B C_{2}-(\text { Priya } \times \text { MC } 49) \times \text { MC } 49
\end{aligned}
$$

The parents, $F_{1} s$ and segregating generations were grown accomodating 20 plants each in parents and $F_{1} 3,225$ in $\mathrm{F}_{2}, 95$ in BC_{1} and 110 in BC_{2}.
(ii) Group 2

$$
\begin{aligned}
& { }^{1} 1 \text { - oriya (Green, spiny) } \\
& P_{2} \text { - MC } 69 \text { (White, smooth) } \\
& r_{1} \text { - oriya } \times \mathrm{MC} 69 \\
& \mathrm{~F}_{2} \text { - oriya } \times \text { MC } 69 \\
& B C_{1} \text { - (oriya } \times M C 69 \text {) } \times \text { oriya } \\
& \mathrm{BC}_{2}-(\text { oriya } \times \mathrm{MC} 69) \times \mathrm{MC} 69
\end{aligned}
$$

There wore 17 plants in P_{1}, P_{2}, F_{1} and 180 in F_{2} 70 in $B C_{2}$ and $140 \mathrm{in} E C_{2}$.

(iii) Group 3

$$
\begin{aligned}
& P_{1}-M C 49 \text { (Green, smooth) } \\
& P_{2}-M C 66 \text { (White, spiny) } \\
& F_{1}-M C 49 \times M C 66 \\
& F_{2}-M C 49 \times M C 66 \\
& B C_{1}-(M C 49 \times M C 66) \times M C 49 \\
& B C_{2}-(M C 49 \times M C 66) \times M C 66
\end{aligned}
$$

There were 20 plants each in $P_{1}, P_{2}, F_{1}, 190$ in P_{2} 80 in BC_{1} and 165 in BC_{2}.
(iv) Group 4

$$
\begin{aligned}
& P_{1}-M C 66(\text { whin }, \text { spiny }) \\
& P_{2}-M C 69 \text { (White, smooth) } \\
& F_{1}-M C 66 \times M C 69 \\
& F_{2}-M C 66 \times M C 69 \\
& B C_{1}-(M C 66 \times M C 69) \times M C 69 \\
& B C_{2}-(M C 66 \times M C 69) \times \text { MC } 69
\end{aligned}
$$

There were 20 plants each in $F_{1}, F_{2}, F_{3}, 205$ in F_{2}. 65 in $B C_{1}$ and 110 in $B C_{2}$.
(c) Detection of linkage between colour and surface

Two crosses, where the populations were eegregating simultaneously for fruit colour and surface and their segregation was separately tested, were used for further testing their indopendance in inheritance.
(1) Group 1

$$
\begin{aligned}
& P_{1}-\text { Priya (Green, spiny) } \\
& P_{2}-\text { MC } 69 \text { (White, smooth) } \\
& F_{1}-\text { Priya } \times \text { MC } 69 \\
& F_{2}-\text { Priya } \times \mathrm{MC} 69 \\
& B C_{1}-(\text { Priya } \times \mathrm{MC} 69) \times \text { Priya } \\
& B C_{2}-(\text { Priya } \times M C 69) \times M C 69
\end{aligned}
$$

(ii) Group 2

$$
\begin{aligned}
& P_{1}-M C 49 \text { (Green, smooth) } \\
& P_{2}-M C 66 \text { (White, spiny) } \\
& F_{1}-M C 49 \times M C 66 \\
& P_{2}-M C 49 \times M C 66 \\
& B C_{1}-(M C 49 \times M C 66) \times M C 49 \\
& B C_{2}-(M C 49 \times M C 66) \times M C 66
\end{aligned}
$$

(d) Bittorness

Three ilnes, originally included in sot 1 and varying in bittorness as tested by organoleptic methods
were used for studies on inheritance of bitterness. The lIne, MC $79\left(P_{1}\right)$ characterised by very small fruits, seeds and thin flesh was adjudged as less bitter. Another line MC 53 (P_{2}) with aping dark green fruits was highly bitter. MC $34\left(P_{2}\right)$ with moderate bitterness was also used. These three lines were used to develop six generatlong of $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and $B C_{2}$.

Bitterness was expressed as the percentage of ether extract obtained as per Visratha and Ungsurungsie (1981) which showed a low value in less bitter types and higher value in highly bitter types. Fruits samples from all the plants were dried powdered and extracts obtained and expressed in percentage as a measure of bitterness.
(1) Group 1

$$
\begin{aligned}
& P_{1}-M C 53 \text { (Highly bitter) } \\
& P_{2}-M C 79 \text { (Less bitter) } \\
& { }^{F_{1}} \text { - MC } 53 \times \text { MC } 79 \\
& \mathrm{~F}_{2}-\mathrm{MC} 53 \times \mathrm{MC} 79 \\
& \mathrm{BC}_{1}-\left(\mathrm{MC}_{53} \times \text { MC 79) } \times \text { MC } 53\right. \\
& \mathrm{BC}_{2}-(\mathrm{MC} 53 \times \mathrm{MC} 79) \times \mathrm{MC} 53
\end{aligned}
$$

There were 15 plants each in $P_{1}, P_{2}, F_{1}, 150$ in
$\mathrm{F}_{2}, 90 \mathrm{in} \mathrm{BC} \mathrm{C}_{1}$ and $100 \mathrm{in} \mathrm{BC}_{2}$.
(1i) Group 2

$$
\begin{aligned}
& P_{1}-M C 53 \\
& P_{2}-M C 34 \\
& P_{1}-M C 53 \times M C 34 \\
& F_{2}-M C 53 \times M C 34 \\
& B C_{1}-(M C 53 \times M C 34) \times M C 34 \\
& B C_{2}-(M C 53 \times M C 34) \times M C 34
\end{aligned}
$$

The plants wore grown accomodating 15 each in P_{1}. P_{2} and $F_{1}, 120$ in $F_{2}, 90$ in $B C_{1}$ and 100 in $B C_{2}$.
(1i1) Group 3

$$
\begin{aligned}
& P_{1}-M C 79 \\
& P_{2}-M C 34 \\
& \mathbb{F}_{1}-M C 79 \times M C 34 \\
& F_{2}-M C 79 \times M C 34 \\
& B C_{1}-(M C 79 \times M C 34) \times M C 79 \\
& B C_{2}-(M C 79 \times M C 34) \times M C 34
\end{aligned}
$$

The parents, F_{1} sand segregating population were grown accomodating 20 plants ach in P_{1}, P_{2} and $F_{1}, 150$ in $B_{2}, 100$ in $B C_{2}$ and 90 in $B C_{2}$.
2. Observations

For qualitative characters - Colour and shape

(Burface), counts of plants with green, white, apiny and

Abstract

smooth and their combinations were recorded. Since the expressivity of frult surface was not complete in two crosses, the method suggested by Avdeyev (1979) was used to calculate the expected values.

For bitterness, ether extracts as per the methods of Visratha and Ungsurungsie (1981) were taken from the dried and powdered fruits and expressed as percentage.
3. Statistical analyois
(a) Qualitative characters

The agreement of the observed values with the expected values by X^{2} test of 'goodness of fit' with $\mathrm{n}-1$ dogrees of freedom, where n is the number of classes and presence of linkage were tested as suggested by Panse and Sulchatme (1954).

(b) B1tternose

The data on percentage of ether extracts obtained from the six generations followed a normal distribution in $\bar{\nabla}_{2}$ generations indicating quantitative inheritance of the character. Therefore scallng teats and generation mean analysis were carried out for this tralt.

(1) Scaling tests

The presence of non-allelic interaction was detected by scaling testa (Mather, 1949). Estimates of additive (D) and dominance (H) components of genetic variance were made using the mean and variances of $s i x$ generations $-P_{1}, P_{2}, F_{1}, P_{2}, B C_{1}$ and $B C_{2}$.

$$
\begin{aligned}
A & =2 \bar{B}_{1}-\bar{P}_{1}-\bar{F}_{1} \\
V(A) & =4 V\left(\bar{B}_{1}\right)+V\left(\bar{P}_{1}\right)+V\left(\bar{F}_{1}\right) \\
B & =2 \bar{B}_{2}-\bar{P}_{2}-\bar{F}_{1} \\
V(B) & =4 V\left(\bar{B}_{2}\right)+V\left(\bar{P}_{2}\right)+V\left(\bar{F}_{1}\right) \\
C & =4 \bar{F}_{2}-2 \bar{F}_{1}-\bar{P}_{1}-\bar{P}_{2} \\
V(C) & =16 V\left(\bar{F}_{2}\right)+4 V\left(\bar{F}_{1}\right)+V\left(\bar{P}_{1}\right)+V\left(\bar{P}_{2}\right) \\
D & =2 \bar{F}_{2}-\bar{B}_{1}-\bar{B}_{2} \\
V(D) & =4 V\left(\bar{F}_{2}\right)+V\left(\bar{B}_{1}\right)+V\left(\bar{B}_{2}\right)
\end{aligned}
$$

Adequacy of the scale satisfied two conditions namely. additivity of gene effects and independence of heritable components from non heritable ones.
(11) Generation mean analysis

Throe parameter morel as suggested by Jinks and Jones
(1958) wat applied in the absence of non-allelle interaction

$$
\begin{aligned}
& \text { m }=\frac{4}{4} \bar{p}_{1}+\frac{4}{4} \overline{\bar{B}}_{2}+4 \overline{\bar{F}}_{2}-2 \overline{\bar{B}}_{1}-2 \overline{\mathrm{~B}}_{2} \\
& V(m)=\frac{4}{4}\left(\bar{P}_{1}\right)+4 V\left(\bar{P}_{2}\right)+16 V\left(\bar{T}_{2}\right)+4 V\left(\bar{B}_{1}\right)+4 V\left(\bar{B}_{2}\right) \\
& d=\frac{\frac{1}{2}}{P_{1}}-\frac{4}{P_{2}} \\
& V(d)=\psi V\left(\bar{P}_{1}\right)+\& V\left(\bar{P}_{2}\right) \\
& \mathrm{n}=6 \overline{\mathrm{~B}}_{1}+6 \overline{\mathrm{~B}}_{2}-8 \overline{\mathrm{~F}}_{2}-\overline{\mathrm{P}}_{1}-3 / 2 \overline{\mathrm{P}}_{1}-3 / 2 \overline{\mathrm{P}}_{2} \\
& V(\mathrm{~h})=36 \mathrm{~V}\left(\overline{\mathrm{~B}}_{1}\right)+36 \mathrm{~V}\left(\overline{\mathrm{~B}}_{2}\right)+64 \mathrm{~V}\left(\overline{\mathrm{~F}}_{2}\right)+\mathrm{V}\left(\overline{\mathrm{~F}}_{1}\right)-9 / 4 \mathrm{~V}\left(\overline{\mathrm{P}}_{1}\right) \\
& +9 / 4 \mathrm{~V}\left(\overline{\mathrm{P}}_{2}\right)
\end{aligned}
$$

In the presence of non allelic interaction, sixparameter model was used (Haman, 1958).

$$
\begin{aligned}
& m=\bar{F}_{2} \\
& V(m)=V\left(\bar{F}_{2}\right) \\
& \text { d }=\bar{B}_{1}-\bar{B}_{2} \\
& V(d)=V \bar{B}_{1}+V \bar{B}_{2} \\
& h=\overline{\bar{F}}_{1}-4 \overline{\bar{F}}_{2}-\frac{L}{2} \bar{p}_{1}-\frac{1}{2} \bar{p}_{2}+2 \bar{B}_{1}+2 \bar{B}_{2} \\
& v(h)=v\left(\overline{\bar{P}}_{1}\right)+16 V\left(\bar{P}_{2}\right)+\frac{v}{V}\left(\bar{P}_{1}\right)+\frac{4}{4}\left(\bar{p}_{2}\right)+4 V\left(\bar{B}_{1}\right) \\
& +4 \mathrm{~V}\left(\overline{\mathrm{~B}}_{2}\right) \\
& 1=2 \bar{E}_{1}+2 \bar{E}_{2}-4 \bar{F}_{2} \\
& V(1)=4 V\left(\bar{B}_{1}\right)+4 V\left(\bar{B}_{2}\right)+16 V\left(\overline{\bar{F}}_{2}\right) \\
& \text { J= } \bar{B}_{1}-\frac{1}{1} \bar{P}_{1}-\bar{B}_{2}+\frac{1}{1} \bar{p}_{2} \\
& v(j)=v\left(\bar{B}_{2}\right)+4 v\left(\bar{p}_{1}\right)+V \bar{B}_{2}+v V\left(\bar{p}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1=\bar{p}_{1}+\overline{\mathrm{P}}_{2}+2 \overline{\mathrm{~F}}_{1}-4 \overline{\mathrm{~F}}_{2}-4 \overline{\mathrm{~B}}_{1}-4 \overline{\mathrm{~B}}_{2} \\
& \nabla(1)=\mathrm{V}\left(\overline{\mathrm{P}}_{2}\right)+V\left(\overline{\mathrm{P}}_{2}\right)+4 \mathrm{~V}\left(\overline{\mathrm{r}}_{1}\right)+16 \mathrm{~V}\left(\overline{\mathrm{~F}}_{2}\right)+16 \mathrm{~V}\left(\overline{\mathrm{~B}}_{1}\right) \\
&+16 \mathrm{~V}\left(\overline{\bar{B}}_{2}\right)
\end{aligned}
$$

whare, $m=$ mean
d = additive effect
h = dominance offect
1 = additive \times additive interaction
$j=$ additive x dominance interaction
1 = dominance \times dominance interaction

The above genetic parameters were tested for slgnificance using ' t ' test.
(111) Degree of dominance

The following equations were solved to calculate the proportion between dominance and additive variance.

$$
\begin{array}{r}
V\left(I_{2}\right)=\frac{4}{2} D+\frac{y}{4} H+E \\
V\left(B_{2}\right)+V\left(B_{2}\right)=\frac{y}{4} D+\frac{y}{2} H+E \\
\text { Dogree of dominance }=\sqrt{\frac{H}{D}}
\end{array}
$$

(17) Effective factors

Using the following formulec the number of effective fectors were celfulated.

$$
\begin{aligned}
& K_{1}=\frac{\left[\left(\bar{P}_{1}-\bar{P}_{2}\right) / 2\right]^{2}}{D} \\
& K_{2}=\frac{\left[\left(\bar{P}_{1}-\left(P_{1}+P_{2}\right) / 2\right]^{2}\right.}{H}
\end{aligned}
$$

D. Crossability studies among the three species of Momordica - charantia dioica and cymbalaria.

1. Experimental material

Three related species of Momordica - charantia, diolca and cymbalaria (Syn: Momordica tuberose. Luffa tuberose) - were used for crossability studies.
(a) Momordica charantia L.

Seeds of diverse types of bitter gourd were collected from various parts of Kerala during 1981-'84 and maintained In the research plots of the Department of Olericulture. This included types with small, large, spiny, smooth, ribbed, green and white fruits.
(b) Momordica dio1ea Roxb. (Plate Nos. 11 and 12)

Momordica diolea is cultivated in some parts of South India, Bihar, Assam, Orissa and West Bengal. It is also seen often growing wild.

Plate-11. Momordica dioles
 Plant with Eruit
 and femele flower

Plate-12. Momordica dlolea

PLATE-11

PLATE-12

Plate-13. Momordica cymbalaria
Shoot with male and female flowers

Rlate-14. Komordica cymbalaria

Fruits

PLATE-13

PLATE- 14

Momordicn diolica is a peronniel dioectous elimber with tuberous roote. Trulta are ovola or ellipsold, $2.5-6.3$ en long, shortly beaked, densely echinate with coft apineay seeds slightly compressed, 6.00-7.00 min long and irregulerly corrugated. The fruits are bitterlese and contaln: high contents of mutrionto - like protein.: 3.1 gf fate 1 gy calciumg 33 mg iron: 4.6 mg and carotone: $1620 \mu \mathrm{~g}$ per 100 g of edible portion. This is approximately $2,5,1.5,3$ and 10 times respectively higher than thoir corresponding values in large fruited Momordica gharantia (Sheshadri, 1986). It is uaed as a vegatable.

Rhizomatous tubery which often weigh 500 g were collected from the Parnimalai area of the Anne district In Tamil Nadu during December 1983. The tubers had a domancy of $81 x$ months and hence stored for $s i x$ months beneath so1l.
(c) Momordica cymbalaria Hook (5 yn . Momondica tuboroan (Roab) Cogni Luffa tuborona Roxb (Flates Nos. 13 and 14)

Momorila gymbolarin are seon growing wild in some parts of Tomil Madu.

It is perennial monoccious tralling plant with turnip shaped roots. Frults are pyriform or fualform,
ribbed, 1.8 to 4 an long; seeds small, 2-4 man long and smooth.

The fruits are bitterless and are often used as vegetable or sundried chips or after plekiing.

Tubers were collected from the Lake area near Viruthunagar of the Kamarapr district in Tamil Nadu in December 1983 and stored for six months beneath soil.

All the three species were grown in the vegetable Research Plots of the Department of Olericulture during June-November in 1984 and 1985.
2. Observations
(a) Anthesis

Observations were made on time of anthesis in all the three species.
(b) Ovary growth

Two hundred eroses each were made in all directions including reciprocally among the three species. Solfings were also done simultaneously in all the three species. Observations were recorded on changes in ovary of both the selfed and crossed flowery every day morning for a week.

Crossability index was worked out es per Marks (1965) as applied to various species of Solanum, as under:

$$
\begin{aligned}
\text { Crossability Index } & =\frac{\text { Crossing efficiency of the cross }}{\text { Selfing efficiency of the female }} \begin{aligned}
\text { parent }
\end{aligned} \times 100 \\
& =\frac{A^{c} \times B^{c} \times C^{c} \times D^{c}}{A^{s} \times B^{s} \times C^{B} \times D^{s}}
\end{aligned}
$$

```
Where, A a percentage of fruit set
    \(B=\) average seeds/fruit
    \(C=\) percentage germination of seeds
    D a percentage survival of the germinated seedlings
```

 \(A^{C} B^{C} C^{C} D^{C} \quad\) Stands for values in crosses
 and $A^{B} B^{B} C^{B} D^{3}$ for values when the mother parent is selfed.

Results

Results

A. Genatic variability and divergence in bitter gourd

1. Varlability, haritability and genetic advance

General analysis of variance showed significant differencea among the 50 genotypes for all the 18 characters observed (Table 6). Their mean values are given In Appendix-1.

The mean, range, coefficient of variation at genotypic and phenotypic levels, heritability, genetic advance and genetic advance as percent of the mean for all the 18 characters are given in Table 7.
a. Main branches/plant

Branches/plant ranged widely from 20.00 to 43.63
with a general mean of 32.05. MC-79 (Plate 6) a genotype which is wild in nature and parennial in habit and with very small frults had the maximum branches (43.63). MC-82, a medicinal bitter gourd with vory small and highly bitter fruita had the lowest branchea/plant $(20,0)$. The phenotypic difforences in branchos/plant were mainly genetical (pev, 12.96, gev, 12.31) as indicated by high estimate of heritabllity (0.90). The genetic advance as percent of mean was low (24.08) for branchen/plant.

Table 6. General analyais of varlance for 18 characters in bitter gourd

		Mean squares								
Sources of variation	df	Main branches/ plant	Main vine length	Node to first female	Days first female flower opening	Female flowers/ plant	Percentage of female flowera	Days to picking maturity	Yiald plant	$\begin{aligned} & \text { Pruita/ } \\ & \text { plant } \end{aligned}$
Roplications	1	0.04	0.21	0.678	0.25	$43.5{ }^{\text {考 }}$	0.04	0.04	.47	0.46
Genotypes	49	32.83	2. ${ }^{\text {\% }}$	5.78	22.92	700.91	3.12	2.5*		600.02
Error	49	1.69	0.06	0.86	0.51	4.85	0.03	0.18	0.04	2.60

Table 6. Continued

Sources of variation

Fruit Fruit Fruit weight length girth thicknes

Soplications	1	14.75	. 04	0.47
Ganotypea	49	9195.9**	148.17	17.74
Error	49	8.69	0.35	. 05

Mean square
Seeds/ 100 seed T.S.S. Vitamin C Protein
s fruit weight content content

. 21	. 69	. 06	1.84	.56
23.72	$15.8{ }^{\text {* }}$	0. 39	452.57	8.04
1.16	0.39	0.02	3.09	0.44

b. Main vine length

Significant variation among the genotypes was observed for main vine length. It ranged from 1.98 to 7.79 m with a mean of 4.89 m . Here also MC-79 and MC-82 ranked first and last respectively. Heritable variation was much higher than non-heritable variation (per, 22.32; gev, 21.69) and it resulted in a high estimate of heritability (0.94). The genetic advance as per cent of mean was moderate for this character (43.39).
c. Node to first female flower

The node to first female flower ranged from 18.13 to 25.13 with a general mean of 22.28 . This character had a comparatively lower estimate of heritability (0.74) and genetic advance as per cent of mean (12.45).
d. days to first female flower opening

The genotypes showed aignificant variation for days taken for the opening of the first female flower. The genotype MC-34 took the minimum days to opening of the first female flower (33.5) (Plato 10). The differences In the days to opening of the first female flower were

Table 7. Range, mean, pcv, gev, heritability. percentage of mean for 18 characters

Characters

Range
Meantsem

1. Primary branchea/
$20.0-43.63$ 32.05 ± 0.91 plant
2. Main vine length 1.97-7.79 4.89さ0.18
3. Node to Elrat fenale flower
4. Days to Eirst female flower opening
5. Fenale flowers/ plant
6. Percentage of female Elowars
7. Days to picking matarity
8. Yleld/plant (kg)
9. Truits/plant
10. Fruit walght(g)
$18.13-25.25 \quad 22.28 \pm 0.05$
35.88-47. 25
40.92 ± 0.55
$\begin{array}{rr}31.88-120.0 & 68.73 \pm 1.56 \\ 2.13-6.75 & 4.39 \pm 0.11\end{array}$

$$
10.63-16.12 \quad 13.76 \pm 0.29
$$

$\begin{array}{rr}2.32-12.76 & 6.78 \pm 0.15 \\ 17.25-113.25 & 54.56 \pm 1.14 \\ 25.25-311.0 & 139.09 \pm 2.08\end{array}$
11. Fruit length (an)
12. Fruit girth (an)
$6.55-40.52 \quad 29.15 \pm 0.42$
6.44-24. 35
14.41 ± 0.15
13. Flesh thickness (mm)
3.3-9.4
14. Seeds/Eruit
12.00-27.75
6.60-23.1
16. Total soluble solids (TSS) (\%)
17. Vitamin C content $45.5-122.38 \quad 71.25 \pm 1.24$ (mg/100 g)
18. Protein Content(\%) 11.37-20.15 14.67士0.46
genetic advance and genetic advance as in bitter gourd

gev	pev	Heritability	Ganatic advance	Canetic advance (\%)
12.31	12.96	0.90	7.72	24.08
21.69	22.32	0.94	2.12	43.39
7.03	8.18	0.74	2.78	12.45
8.16	8.38	0.95	6.69	16. 37
27.14	27.33	0.98	38.16	55.51
28. 32	28.56	0.98	2.54	57.87
7.90	8.47	0.87	2.09	15.17
39.77	39.91	0.99	5.53	81.62
31.68	31.82	0.99	35.46	64.95
48.72	48.77	0.99	139.47	100.27
29.48	29.56	0.99	17.66	60.58
20.64	20.70	0.99	6.11	42.43
17.93	19.25	0.86	1.80	34.41
16.59	17.43	0.91	6.58	32.53
12.92	13.25	0.95	5.58	25.99
15.55	16.25	0.92	0.89	30.69
21.04	21.18	0.98	30.66	43.02
13.29	14.04	0.89	3.81	25.94

mainly genetical (pew, B, 38, gev, B.16). Sven though the heritability (0.95) was high, genetic advance as per cent of mean vas low for this character.

- Female flowers/plant

Female flowers/plant had a very vide range. This varied from 31.88 in Arks Hart to 120.0 in MC-79. The variation for female flowers/plant was mainly genetical (per, 27.33, gev, 27.14) resulting in a high estimate of heritability (0.98). The genetic advance as per cent of man was also high (55.51) for this character.
f. Percentage of female flowers

The general mean of the percentage of female flowers In bitter gourd genotypes studied was 4.39 with a range of 2.66 to 6.72 . This character was found genetically controlled as evidenced by high estimate of heritability (0.93) with a high value of genetic advance as per cont of man (57.87).
g. Days to ploking maturity

The average days to picking maturity from female flower opening was 13.76. The genotype, MC-34 wee the
earliest requiring an average of only 10.63 daya for maturity. Though this character had a modorate value for heritability (0.87) the genetic advance as per cent of mean was only 15.17.
h. Yield/plant

There were significant differences among the genotypes for yield/plant. The popular variety. Priya (Plate 1) recorded the highest yield/plant (12.76 kg) which was on par with the genotypes MC-84 (12.48 kg), MC-78 (12.25 kg) and MC-66 (12.17 kg). The difference in yield was mainly genetical (pev, 39.91; gev, 39.77) as Indicated by high heritability (0.99) with a high gonetic advance as per cent of mean (81.62).

1. Pruit/plant

Pruits/plent ranged widely from 17.25 in Arka Harit to $\mathbf{1 1 3 . 2 5} \ln$ MC-79, the wild type. Major part of variation in fruita/plant wes genetic (pev, 31.82), gov, 31.68) indicated by high heritability (0.99) and genetic advance as per cent of mean (64.95).
J. Fruit veight

Significant veriation was observed in fruit weight also. It ranged from 25.25 g in MC-82, the madicinal bitter gourd to 311.0 g in MC-84 (Plate 3) a high yielding type. The differences in frult weight was also highly genetical (pev, $48.7, \mathrm{gcv}, 48.72$) as indicated by high heritability (0.99). The fruit weight had the highest value of genetic adivance as per cent of mean (100.27) promising scope for selection for improvement.
k. Fruit length

Fruit length also had a very wide range with 6.55 cm In MC-82 to $40.52 \mathrm{~cm} \mathrm{in} \mathrm{MC-78} \mathrm{(Plate} \mathrm{2)}$. (29.55) and genotypic (29.48) coefficients of veriation showed that a major part of the variation was due to genetic -ffoct. The heritability (0.99) and genetic advance (60.58) were high for this character.

1. Pruit girth

The fruit girth averaged 14.41 cm with 6.44 cm in MC-79 to 24.35 cm in MC-B4. The high estimete of heritability (0.99) showed that this charactar also was controlled
by genetic factors. The genetic advance as per cent of mean was moderately high (42.47) for this character.
m. Flosh thickness

Flesh thickness ranged from 3.3 mm to 9.4 mm . Arka Harit (Plate 4) was the fleshy type with a thickness of 9.4 mm . The flesh was thinnest in the wild type, MC-79 $(3.3 \mathrm{~mm})$. Tha heritability (0.86) and genetic advance as per cont of mean (34.41) were moderately high for this character.
n. Seeds/fruit

The seeds/fruit averaged 20.24 with a range of 12.00 in MC-82 to 27.75 in MC-49 (Plate 8). Genotypic variation contributed mostly to seeds/plant. The heritability was $h 1 g h(0.91)$ and the genetic advance as per cent of mean was moderate for this character.
-. 100 seed weight

100 seed waight ranged widely from 6.57 g in MC-79 to $27.1 \mathrm{~g} \mathrm{in} \mathrm{MC-66} \mathrm{(Plate} \mathrm{7)} \mathrm{with} \mathrm{an} \mathrm{average} \mathrm{of} 21.48 \mathrm{~g}$. Though the estimato of heritability wes high 0.95, the genotic advence as per cent of mean was low (25.99).

p. Total soluble solids

The total soluble solids varied from 2.05 to 3.57 with an average of 2.77. It was the highest in Aria Hart and the lowest in MC-90. The variation in T.S.S. is mainly genetical (Lev, 16.25, gev, 15.55) as indicated by high heritability (0.85). The genetic advance as per cent of mean was moderate (30.69).
q. Vitamin C content

Vitamin C content varied from 45.5 to $122.38 \mathrm{mg} /$ 100 g. MC-82 (Plate 5) the medicinal bitter gourd had maximum vitamin C content. This also is controlled by genetic factor as evidenced by high estimate of heritab111ty (0.98).
r. Protein content

Protein content on dry weight basis averaged to 14.67% with a range of 11.37% to 20.15%. Here also MC-82 recorded the highest value. Variation in protein content was also genotical an evidenced by high heritability estimate $(0,89)$. The genetic advance as per cent of mean vas low for protein content.
2. Genetic divergence among 50 genetypes of bitter grourd

Following Tocherg method, 50 bltter gourd genotypes ware grouped into five clustera. The clustering pattern in bitter gourd is given in Table B,

The Cluster III was the biggest with 23 genotypes, followad by Cluster II with 14 genotypes and Cluster I with nine genotypes. Cluster V had only one genotype MC-79, the wild perennial type bitter gourd. There were three genotypea in Cluater IV.

Arka Harit was in the Cluster II along with MC-80 and MC-82, the medicinal bitter gourd.

Cluster III contained high yieldera like Priya, MC-66, MC-78 and MC-84.

Cluster I had genotypes with small to medium frults which were not economically superior.

The intra and interaluster genetic distances are presented in Table 9.

The intraculture distence was high in Cluster IV (72.00) followed by Cluster I (31.51). In Inter cluster distance was maximum between Cluster IV and V (910.31)

Table B. Clustering pattern in bitter gourd

Cluster	Number of genotypes	Genotypes
Number		
in each		
cluster		

I	9	MC-83, MC-85, MC-86, MC-87, MC-89, MC-90, MC-91, MC-94 and MC-95.
II	14	$\begin{aligned} & M C-4, M C-10, M C-42, M C-48, M C-51, \\ & M C-52, M C-57, M C-50, M C-63, M C-67, \\ & M C-68, M C-72, M C-73 \text { and MC-8B. } \end{aligned}$
III	23	MC-15, Priya, MC-34, MC-49, MC-50, MC-53, MC-54, MC-61, MC-62, MC-64, MC-65, MC-66, MC-69, MC-70, MC-71, MC-74, MC-75, MC-76, MC-77, MC-78, MC-84, MC-92 and MC-93.
IV	3	Arka Harit, MC-80 and MC-82
v	1	MC-79

Ig. 1 DIAGRAMATIC REPRESENTATION OF CLUSTERI OF FIFTY GENOTYPES OF EITTERGOURD

* See table 4 for details

Table 9. Average intra and inter cluster D^{2} Values					
Clusters	31.51	70.22	76.94	218.39	304.74
II		24.70	55.88	176.02	448.51
II			18.39	337.93	259.86
III				72.00	910.31
IV					0.00

followed by II and V (448.51) and III and IV (337.93). The minimum genetic distance was between Cluster II and III (55.88).

With the help of average inter, cluster distance values (D) the cluster diagram showing the inter cluster relationship was prepared (Fig.1).
B. Development of F_{1} hybrids and their homeostatic analysis

1. Stability analysis
a. Pooled analysis of variance

Pooled analysis of variance was done for all the characters over three environments. Significant genotype x environment interaction was observed for all the characters studied. The genotypes were significantly different In all the three environments. Environments ware significanty different among one another.
b. Pooled analysis of variance for stability

The analysis of variance of pooled data for stability as per Eberhart and Russell (1966) is furnished in Table 10. The pooled deviation was highly significant ($p=0.01$) when compared to the pooled error for 11 the characters, except

Table 10. Analysis of variance for stability with respect to yield and ite components in bitter gourd

Sources of variation	Mean squares					
	Primary branches/ plant	Main vine length	Node to first female flower	Days to first female flower opening	Female flowera/ plant	Percentage of female flowers
Ganotypes	70.7 年	4.6 考	2.61	14.6 **	926.9*	3.12
Invironments (Linear)	1432.13	29.72	67.23	19.25	3714.61	23.21
Env + (Cano \times Env $)$	16.56	0.42	1.15	4.42	89.77	0.44
Geno z Env ((inear)	4.44	0.18	0.77	1.58	84.0ิ1	0.26
Pooled deviation	2.71	0.13	0. ${ }^{\text {* }}$	$6.9{ }^{\text {*** }}$	29.51	0.22
Pooled Error	0.49	0.02	0.30	0.63	3.34	0.02

Teble 10. Continued

Sources of variation

Gonotypes

Environmants (Linear)
$\mathrm{Inv}_{\mathrm{mv}}+\left(\right.$ Geno $\left._{\mathrm{x}} \mathrm{Env}\right)$
Geno x Env (Linear)
Pooled daviation
Pooled Error

Fruits/ Fruit	Fruit	Fruit	Yield/	
plant	meight	length	girth	plant
838.67	12752.78	264.00	44.65	14.34
11318.53	9001.10	76.06	2.12	157.05
174.56	654.80	6.23	1.75	2.34
92.91	287.87	6.27	2.10	1.27
52.11	863.29	4.91	1.39	0.59
1.75	5.62	1.21	0.06	0.22

$p=0.05$
$p=0.01$
for node to first female flower. The linear component of genotype x environment interaction vas highly Eignifluent for node to first female flower, female flowers/ plant, fruits/plant and Yield/plant and significant for primary branches/plant and fruit girth. It was not aignificant for vine length, days to opening of first female flower, fruit weight and fruit length.
c. Stability parameters

Stability parameters for yield and yield components vara estimated as proposed by Eberhart and Russell (1966) and are presented in Tables 11 to 14.
(1) Primary branches/plant

Based on grand mean over all environments, the cross Arka Merit \times MC-79 produced the highest branches/plant (43.83). The genotype MC-82, a small fruited bitter gourd had the lowest branches/plant (17.63). Considering regressIon coefficient approximately equal to unity $(b(1) \longrightarrow 1)$ and deviation from regression not significantly different from zero $\left({ }^{2} \mathrm{Bd}(1) \longrightarrow 0\right)$, the genotypes, Priya, MC-7B, MC-49, MC-84, MC-78 \times MC-79, MC-78 \times MC-66, MC-82 \times MC -34, MC-66 \times MC-59 and MC-49 \times MC- 34 were eatable. Priya \times MC-84, Priya \times MC-66 and MC-49 x MC-69 were above average eatable genotypes.

Table 11. Stability parameters for branchea/plant, vine length and node to first female flower in bitter gourd

Table 11. Continued

1	2	3	4
Priya \times MC-49	31.67	0.55	3.43
Priya \times MC-69	29.91	0.96	-0.91
Prifa \times MC-34	29.25	1.63	-0.94
MC-78 \times MC-84	30.93	1.36	1.12
MC-78 \times Arica Harit	27.63	1.24	0.82
MC-78 \times MC-82	23.13	1.66	0.53
MC-78 \times MC-79	36.58	1.03	1.18
MC-78 \times MC-66	33.42	1.07	-0.97
MC-78 \times MC-49	30.96	0.65	-0.64
MC-79 \times MC-69	27.63	0.81	$2.75 *$
MC-78 \times MC-34	30.00	0.74	-0.63
MC-84 \times Arka Harit	26.42	1.14	-0.97
MC-84 \times MC-82	24.83	1.73	$15.66 *$
MC-84 \times MC-79	37.08	0.36	8.07
MC-84 \times MC-66	33.87	0.71	-0.95
MC-84 \times MC-49	32.25	0.16	$9.96 *$
MC-84 \times MC-69	28.92	1.26	-0.49
MC-84 \times MC-34	29.08	0.59	-0.77
Arika Harit \times MC-82	23.08	1.54	0.52

5	6	7	8	9	10
5.89	0.26	0.06	21.25	0.80	-0.51
5.30	1.64	0.13	21.25	1.40	0.36
5.66	0.95	-0.03	21.62	1.35	-0.54
6.01	1.07	0.15	21.91	1.58	-0.51
4.21	2.13 *	0.33	20.58	1.09	-0.01
3.61	$2.14 *$	0.20	20.66	1.73	-0.24
6. 67	0.75	-0.00	21.08	0.32	-0.55
5.67	0.70	0.13	20.83	2. 39	-0.54
5.69	0.76	-0.03	22.00	0.80	-0.51
5.37	0.90	-0.02	20.91	$3.18{ }^{*}$	-0.47
5.51	0.80	-0.01	21.25	0.48	-0.51
3.84	2.02	0.02	18.53	0.79	-0.57
3.48	2.19*	0.18	20.16	0.65	-0.44
6.68	0.76	0.03	20.41	1.12	-0.58
5.82	0.70	-0.01	20.79	1.81	0.04
5.58	0.95	-0.02	22.16	1.75	-0.59
5. 38	0.98	-0.03	21.37	1.03	-0.55
5.52	1.38	-0.02	21.91	1.58	-0.51
2.26	0.71	-0.03	19.08	1.41	0.00

Table 11. Continuad

1	2	3	4
Arka Harit \times MC-79	43.83	0.61	-9.27*
Arka Harit I MC-66	28.58	0.28	4.93
Arla Harit x MC- 49	28.67	0.50	0.46
Arka Harit x MC-69	24.50	0.90	-0.93
Arla Harit x MC-34	24.50	1.38	-0.56
MC-82 \times MC-79	33.03	0.58	2.50
MC-82 \times MC-66	30.29	0.46	1.80
MC-82 \times MC-49	26.67	0.64	0.32
nC-82 \times MC-69	24.25	1.14	-0.92
MC-82 \times MC 34	23.67	1.12	0.53
nc-79 \times MC-66	35.92	0.91	-0.81
MC-79 х MC-49	36.17	1.21	3.86
MC-79 \times MC-69	31.79	$1.90{ }^{*}$	9.82*
MC-79 = MC-34	31.00	1.57	0.82
MC-66 \times MC-49	33.08	0.51	0.99
MC-66 \times MC-69	29.25	0.97	-0.94
nc-66 \times nc- 34	29.67	1.46	11.59
MC-49 \times MC-69	31.21	1.47	-0.79
HC-49 \times NC-34	30.92	0.96	-0.91
NC-69 x MC-34	28.33	0.65	-0.64

5	6	7	B	9	10
6.88	0.67	0.04	19.50	-0.91	1.00
3.63	1.38	0.09	20.62	1.79	0.72
3.69	1.14	-0.00	21.12	0.94	-0.47
3.00	0.43	-0.03	19.70	1.42	-0.37
3.33	0.65	0.00	21.70	1.35	-0.59
3.72	2.31	0.36	20.41	0.65	-0.44
3.73	1.69	0.13	19.75	-0.12	0.26
3.91	1.70	0.02	21.16	1.58	-0.51
3.73	0.76	0.14	20.91	2.05	-0.23
3.15	1.67	-0.03	20.41	0.48	-0.58
5.07	0.93	2.47*	21.08	0.96	-0.56
5.99	0.27	0.31	21.45	0.72	-0.59
5.66	0.81	0.04	21.25	0.80	-0.51
5.93	1.82	-0.00	21.58	0.94	-0.39
5.68	0.97	-0.00	21.08	2.19	0.65
4.97	0.67	-0.03	20.33	0.32	-0.55
4.96	0.53	-0.01	21.08	0.81	-0.36
5.07	0.98	-0.03	21.60	2.02	2.00
5. 30	1.20	-0.01	21.25	1.87	1.71
4.80	0.92	-0.01	21.95	-0.21	-2.38

MC-79, a wild genotype, MC-78 \times MC-49 and MC-84 and MC-66 were below average stable genotypes. The Sd(i) values ware significant for Priya x MC-82, Priya \times MC-79, MC-7 \times MC 69, МС-84 \times MC-82, MC-84 x MC-79, МС-84 \times MC-49, Arka Harit \times MC-79, MC-79 \times MC-69 indicating unstable nature of these genotypes.

(1i) Main vine length

The wild genotype MC-79 had the longest vine (6.98 m) followed by two crosses Arka Harit x MC-79 (6.88 m) and MC-84 × MC-79 (6.68 m). MC-82 had the shortest vine (2.00 m). The genotypes, MC-79, MC-66, MC-34, Priya \times MC-34, MC-78 x MC-84, MC-7B \times MC-69, MC-84 \times MC-49, MC-84 \times MC-69, MC-66 \times MC-49, MC-49x MC-69 and MC-69 x MC- 34 were stable. The above average stable genotypes were MC-84, Priya x Arka Harit, MC-84 \times MC-34, and MC-49 \times MC-34. The below average stable genotypes are MC-78 x MC-79, MC-78 \times MC-66, MC-78 \times MC-49, MC-78 \times MC-34, MC-84 \times MC-79, MC-84 \times MC-66, Arka Harit \times MC-79, MC-79 \times MC-69 and MC-66 \times MC-69.

(111) Node to flrat fumale flower

Arika Harit \times MC-84, Arka Herit. Arka Herit \times MC-82 MC-82 and NC-79 ranked first in producing female flowers
on the lower nodes (19 th node). MC-78 \times Arka Harit was the only stable genotypa. MC-84 x Arka Harit is above and Priya \times MC-82, MC-78 \times MC-82, MC-84 \times MC-79, MC-84 x MC-66 and Arka Herit \times MC-82 are below average stable Sd(i) for MC-78 x MC-69 was significant indicating unstable nature of the genotype.
(iv) Days to first female flower opening Based on grand mean over all environments, MC-82 x MC-49, MC-66 x MC-49, MC-49 \times MC-34 and MC-34 were the earliest in first female flower opening (38 days after sowing). Priya \times MC-52, Priya \times MC-69, and MC-78 \times MC-66, ware the stable genotypes. Priya \times MC-49, Arka Harit x MC-66, and MC-79 \times MC-69 ore below and Arka Harit \times MC- 34 and MC-82 sre above average stable genotypes.
(v) Female flowers/plant

MC-79, the wild genotype produced maximum female flowera/plant (107.75) and Arka Harit the minimum (27.20). Pripa and Priya x MC-82 are the stable genotypes. MC-84 x MC-82, MC-84 \times MC-79, MC-78 \times MC-82, MC-79 \times MC-66, MC-82 \times MC-66, MC-66 \times MC-49 and MC-49 \times MC- 34 are above and MC-78 \times MC-79, MC-82 \times MC-79, MC-82 \times MC-49 and MC-82 \times MC-69 are below average atable genotypes.

Table 12. Stability parameters for days to $f:$ and percentage of female flowera

Days to first female flower opening
Genotype

Mean
 2

1

Priya
MC-78
MC-84
Arica Harit
MC-82
MC-79
MC-66
MC-49
MC-69
MC-34
Priya x MC-78
Priya x MC-84
Priya x Arica Harit
Pripa x MC-02
Priya x mC-79
Priya x MC-66
$41.66 \quad 0.10 \quad 0.28$
$43.66-0.14 \quad 5.03$
$44.83-0.19 \quad 8.02$
$44.62-0.44 \quad 6.08$
$40.31 \quad 0.43-0.51$
46.05 -1.63 7.62
$43.25 \quad 1.02 \quad-1.24$
39.29 6.12* 31.62*
$43.00 \quad 0.70 \quad-0.55$
$38.16 \quad 3.03 \quad 2.81$
43.95 -0.70 8.26
$44.08 \quad-1.37 \quad 4.62$
$42.83-0.74 \quad 7.21$
$41.16 \quad 0.98 \quad 2.20$
43.75 -2.55 11.76
$42.50 \quad 2.13-1.21$
female flower opening. female floweri/plant
le flowera/plant
Percentage of femalo flowers

10	0.85	-5.40	6.05	0.35	-0.02
1	0.79	-6.60	5.03	0.79	-0.01
3	0.63	-6.49	4.39	0.22	-0.00
0	0.87	-4.87	3.15	0.64	-0.02
5	2.86	26.04	2.66	0.54	-0.02
5	-0.35	4.12	2.91	-0.24	0.01
5	1.97	-5.25	6.01	0.77	-0.01
3	0.94	-1.32	5.90	1.60	0.00
1	1.30	-5.47	5.67	2.16	0.04
1	2.04	50.80	4.30	0.44	-0.03
5	0.57	-6.25	5.43	1.32	-0.03
1	-0.26	11.40	5.23	0.72	0.79
1	0.43	-6.49	4.12	0.96	0.26
1	1.17	-6.62	3.75	1.42	0.06
1	3.21	40.34	5.53	0.57	-0.01
1	0.43	43.98	6.01	0.62	-0.32

Contd.

Table 12. Continued

Priya $=$ MC-49 Priya x MC-69 Priya x MC- 34 мС-78 \times MC-84 mC-78 x Arica Harit NC-78 \times MC-82

MC-78 \times MC-79
MC-78 \times MC-66
MC-78 x MC-49
MC-78 \times MC-69
MC-78 \times MC- 34
MC-84 x Arka Harlt
MC-84 \times NC-82
MC-84 \times MC-79
MC-84 \times MC-66
MC-84 \times MC-49
NC-84 \times MC-69
MC-84 x MC. 34
Arica Horit x MC-82
Arica Harit x MC-79

39.58	1.46	0.03
41.16	0.98	2.20
39.33	1.71	-1.23
44.25	-3.80	15.05
43.74	0.48	-0.03
41.75	-1.26	0.55
43.62	-2.78	24.94
41.00	0.94	-1.06
40.54	2.59	1.39
41.54	-0.64	1.18
39.54	3.07	2.14
42.08	-0.27	6.01
40.29	-0.13	0.56
44.25	-0.30	12.58
41.58	2.02	-0.15
38.87	3.24	7.83
43.70	-0.42	-0.55
40.83	4.01	13.77
45.45	0.28	1.54
44.37	-1.59	10.45

	7		9	10
0.32	-0.60	6.33	0.57	0.14
0.21	0.54	5.80	0.94	-0.02
0.67	72.57	5.17	1.27	0.20
-0.25	-1.84	4.74	0.97	0.01
0.30	42.88	3.83	0.42	0.34
1.78	10.46	3.45	-0.01	0.34
0.32	96.09	3.90	0.40	-0.00
1.61	-6.17	5.68	0.20	0.01
1.68	-3.46	5.90	1.15	0.04
0.41	-1.41	5.66	1.69	0.06
1.71	4.82	4.87	1.31	-0.01
-0.12	-6.44	3.56	0.77	-0.03
1.29	-5.80	3.31	0.14	0.00
1.39	-6.13	3.73	-0.16	0.05
0.88	-5.35	5.36	1.20	-0.03
0.55	-6.68	5.62	0.47	0.05
-0.24	1.86	5.22	1.61	0.67
0.19	-6.63	4.42	0.07	-0.03
2.29	29.07	2.87	0.76	0.47
$5.22 *$	50.88	3.08	0.20	-0.02

Table 12. Continued

123
Arlea Harlt x MC-66
Arka Harit x MC-49 Arka Harit I MC-69 Arka Harit \bar{x} M.C- 34 MC-82 x MC-79 MC-82 x MC-66 nC-82 x MC-49 MC-82 ㅍ MC-69 MC-82 5 MC-34 NC-79 MC-66 MC-79 x MC-49 MC-79 x MC-69

MC-79 \times MC- 34
NC-66 \times MC-49
MC-66 x MC-69
MC-66 x MC-34
MC-49 $=$ MC-69
MC-49 $=$ MC 34
MC-69 $\times \mathrm{MC} 34$

40.12	1.26	1.21
38.75	0.39	-0.93
42.29	-1.35	-0.88
39.83	0.52	-0.68
41.37	-1.59	10.45
42.45	-0.10	-1.24
37.54	3.66	5.98
41.91	0.97	-1.04
39.58	4.25	25.20
43.87	-0.40	1.72
39.16	3.11	1.52
41.50	1.89	-0.51
38.79	4.73	12.84
38.00	4.43	11.36
42.33	3.37	2.92
39.41	3.27	9.53
38.25	3.16	3.61
38.04	3.91	38.13

0.77	88.64	5.10	1.41	0.58
-0.56	3.27	5.38	1.32	0.39
-0.63	7.46	4.39	3.11	-0.02
1.20	12.57	3.57	-0.01	0.24
0.54	23.60	2.97	-0.28	0.01
1.25	140.10	4.25	2.07	-0.02
0.62	-2.35	4.37	2.23	1.42
0.67	-5.17	3.92	1.78	2.00
2.73	1.62	3.65	1.50	0.15
0.27	63.47	3.78	-0.43	0.26
-0.63	384.37	4.40	1.50	0.06
2.30	99.31	4.04	1.40	0.71
$3.71 *$	-4.33	3.69	0.93	-0.00
1.22	-1.26	5.99	1.20	0.14
0.53	-5.98	5.50	1.99	0.31
0.62	-2.60	4.94	2.08	0.09
-0.00	-5.24	5.55	2.35	-0.03
1.50	15.43	5.82	2.26	0.30
1.02	62.13	4.94	1.48	0.11

(vi) Percentage of female flowers/plant

The highest percentage (6.33) was observed in Priya \times MC-49, followed closely by Priya \times MC-66 (6.01) and Priya (6.05). It wes lowest in MC-82. Priya x MC-69, MC-78 x MC-84, MC-78 x MC-49 are the stable genotypes. MC-49, Priya x MC-78, Priya x MC-34, MC-7B x MC-69, MC-78 x MC-34, MC-84 x MC-66, MC-84 x MC-69, Arka Harit \times MC-66, Arka Harit \times MC-49, MC-66 \times MC-49 and MC-69 x MC-34 are above average stable genotypes. MC-78, MC-66, Priya x MC-84, Priya x MC-79, Priya x MC-66 and Priya \times MC-49 are below average stable.
(vi1) Fruita/plant

MC-79, the wild genotype recorded the highest number of fruits/plant (103.08) followed by MC-82 x MC-79 (91.08) MC-82 (77.33) and Arka Harit \times MC-79 (77.33). Priya \times MC-66, MC-78 \times MC-79 and MC-49 \times MC- 34 were stable genotypes. Fxiya \times MC-82, MC-78 \times MC-82, MC-7B \times MC-66, MC-84 \times MC-82, MC-84 \times MC-79, MC-82 \times MC-66, MC-82 $\times M C-49$, MC- $82 \times$ MC- 34, MC- $79 \times$ MC-66, MC-79 \times MC-49 and MC-66 \times MC-49 were above average stable genotypes. Bolow average atable genotypes are MC-79, MC-66, MC-69, MC-82 x MC-69 and MC-66 \times MC-34. The $\mathrm{E}_{\mathrm{d}}(1)$ velues in MC-82. Arjea Harit x

Fable 13. Stability paraneters for fruita/plant. fruit woight and fruit langth in bitter gourd

Ganotypes	Fraits/plant			Fruit waight			Truit Rength		
	Mean	b(1)	$\xi_{d}(1)$	Mean	$b(1)$	$S_{d}(1)$	Mean	$b(1)$	$2 \mathrm{sa}(1)$
1	2	3	4	5	6	7	8	9	10
Priya	46.08	0.49	4.07	223.08	0.74	42.66	36.76	-2.21	-2.37
MC-78	41.12	0.23	28.83	219.66	0.55	135.29	35.83	-1.11	-2.28
nc-84	35.08	0.06	2.17	267.00	0.76	2494.32	29.85	-0.43	-2.12
Arla Harit	16.91	0.14	-3.31	201.25	0.35	-7.86	28.71	1.38	-0.54
nc-82	77.33	1.29	250.14*	30.41	0.19	120.39	6.60	-0.18	-2.36
MC-79	103.08	0.76	-2.09	30.25	0.17	-10.67	7.65	0.30	-2.14
MC-66	54.83	0.78	75.25	201.41	0.45	-5.87	29.48	0.32	-1.97
nc-19	41.37	0.43	-1.30	208.50	0.67	37.97	24.31	0.64	-2.19
ne-69	43.37	0.66	23.60	207.33	1.35	18.75	33.71	0.54	-2.21
nc-34	50.33	1.15	128.50	147.70	1.22	4777.51*	25.91	0.52	-2.37
Puipe x MC-78	45.66	0.60	15.88	223.58	0.72	-5.48	37.06	-3.14	-2.28
Priya x MC-84	40.50	0.53	0.86	246.08	0.39*	286.07	31.96	0.27	-0.54
Priya x Arla Harit	29.91	0.39	0.44	191.41	-0.13	1453.07	31.10	0.37	1.80
Priye x MC-82	57.00	1.62	-1.30	107.41	-0.28	280.02	11.76	2.48	-0.59
Priya x MC-79	73.83	2.41*	3.83	99.66	0.35	91.18	13.47	2.95	8.06

Table 13. Continued

1	2	3	4
Priya x mC-66	52.58	1.04	2. 39
Priya x MC-49	49.00	1.05	9.42
Priya \times mC-69	43.16	0.72	-2.27
Priye x MC-34	45.08	1.00	28.46
NC-78 \times MC-84	38.16	0.39	-2.96
MC-78 \times Arka Harit	25.83	0.21	-3.45
MC-78 \times MC-82	59.25	1.55	-2.42
MC-78 х MC-79	75.58	1.05	174.90
MC-78 \times MC-66	55.25	1.47	36.08
MC-70 \times KC-49	48.75	1.37	0.03
MC-78 x MC-69	42.79	0.75	1. 31
MC-78 \times MC- 34	46.75	1.39	39.53
MC-84 \times Arka Harit	27.08	-0.01	31.75
MC-84 \times MC-82	54.33	1.24	115.19
MC-84 \times MC-79	67.16	1.21	45.24
MC-84 \times MC-66	46.91	1.20	50.18
MC-84 \times NC-49	42.16	0.80	10.00
MC-84 \times MC-69	38.50	0.56	-1.93
MC-84 \times MC-34	41.75	0.86	0.23
Arka Harit \times MC-82	42.16	1.15	-2.83
Arica Harit \times MC-79	77.33	3.77*	510.34 *

6	7	8	9	10
0.67	34.43	32.33	0.83	0.37
0.55	164.07	29.91	2.57	-1.38
1.10	-4.05	36.01	-1.20	-2. 31
3.70	1924.53	28.07	0.33	-0.98
2.06	14.59	32.76	0.96	-0.72
-0.42	455.60	31.14	0.60	7.16
0.91	75.45	12.02	1.56	-2.40
1.96	428.75	14.24	2.50	1.50
0.55	-10.89	32.35	1.50	5.93
0.77	-4.39	28.35	-0.39	3.86
1.11	75.42	36.56	0.26	-0.95
3.74*	3568.33 ${ }^{\text {* }}$	28.06	0.52	1.49
1.66	6115.73*	29.74	-0.18	-1.72
2.27	-11.19	14.97	3.32	5.54
3.25	28.08	15.05	4.06	23.87*
1.21	1448.55	30.08	0.53	-1.23
3.00	5.10	29.05	-1.95	1.05
1.38	465.95	32.30	1.93	-1.39
0.68	1078.44	27.64	0.29	-0.99
-0.13	97.67	11.06	2.26	2.29
-0.84	772.26	12.58	3.05	11.41

Table 13. Continued

1	2	3	4
Arlo Harit x MC-66	35.00	1.24	69.44
Arica Rarit x MC-49	27.58	0.45	-1.89
Arka Parit \times MC-69	32.83	-0.36	47.95
Arka Harit \times MC-38	35.08	0.68	170.89
MC-82 = MC-79	91.08	1.03	265.64*
MC-82 \times MC-66	65.75	1.37	27.03
UC-82 \times MC-49	52.50	1.23	1.19
MC-82 \times MC-69	58.91	0.73	-2.29
MC-82 \times MC-34	62.66	1.73	4.01
MС-79 x nc-66	76.16	1.65	7.76
MC-79 \times MC.49	72.75	1.31	327.04*
MC-79 x MC-69	66.66	1.83	0.23
nС-79 \times MC-34	67.50	2.49*	64.94
MC-66 \times M	59.41	1.26	37.79
MC-66 \times MC-69	49.08	0.66	-0.91
MC-66 \times MC-34	52.16	0.75	16.30
MC-49 ¥ MC-69	50.33	0.57	73.00
NC-49 \times MC-34	59.16	1.08	2.31
MC-59 \times MC-74	47.08	0.77	-3.48

6	7	B	9	10
-0.52	2221.68	29.45	1.26	0.73
0.84	21.20	27.66	-0.35	-1.52
-0.47	7712.38*	31.05	2.13	-2. 31
2.58	946.41	27.55	1.29	-2.00
0.26	79.55	8.55	-1.23	-2.14
2.40	131.67	10.07	-0.91	8.57
2.14	54.32	10.60	-0.28	10.76
3.82*	62.13	10.30	-0.59	-0.63
3.29	94.76	10.04	-1.46	-1.45
1.43	165.30	13.46	3.53	27.02*
-0.11	242.01	14.77	4.14	17.58*
1.17	76.56	15.10	5.05	29.86*
1.16	614.56	13.75	3.81	17.74*
0.38	1832.16	25.26	6.00*	-0.46
0.02	554.67	28.84	8.31*	0.97
-0.62	1358.50	27.61	0.50	-0.82
-0.28	2341.10	31.63	1.98	2.97
-3.06	-5.27	26.10	-0.39	-1.46
0.47	1894.19	29.99	1.10	-2.04

MC-79 and MC-79 x MC-49 were found significant indicating their unstable nature.

(viii) Fruit weight

MC-84 had the highest fruit weight (267.00 g) followed by Priya x MC-84 (246.08 g), Priya \times MC-78 $(223.58 \mathrm{~g})$ and Priya $(223.08 \mathrm{~g})$. MC-82 had the lowest fruit weight (30.25 g). Friya \times MC-69 and MC-78 \times MC-69 were the only two stable genotypes. MC-69, MC-84 \times Arka Harit, MC-84 x MC-66 and MC-84 x MC-69 were above average stable genotypes. Priya, MC-78, MC-84, MC-49, Priya x MC-78, Priya \times MC-66, MC-78 \times MC-49, MC-84 $\times \mathrm{MC}-34$ and Arka Harit \times MC-49 were below average stable.

(ix) Fruit length

The longest fruit (37.06 cm) was observed in Priya x MC-78 followed by Priya (36.76 cm) and Priya \times MC- 34 $(36.01 \mathrm{~cm})$. MC-82 had the shortest frults (6.6 cm). MC-7B \times MC-84 and MC- $69 \times$ MC- 34 were the stable genotypes. Arke Harit, MC-78 x MC-66, MC-84 \times MC-69, Arka Harit x MC-66, Arka Harit \times MC-34 and MC-49 x MC-69 were above averago steble. Priya, MC-78, MC-84, MC-69, MC-34, Priya x MC-78 (Plate 15). Priya \times MC-84, Priya \times Arka Harit,

Plate-15. Priya x MC 66, atable F_{1} hybrid for fruit length in low environmeat

Plate-16. NC $78 \times$ NC O4, atable F_{1} hyhrid for fruit girth in high enviroment

PLATE-15

Table 14. Stability parameters for fruit girth and yialdplant in bitter gourd

Genotypes	Fruit girth			Yield/plant		
	Mean	d(1)	$\stackrel{2}{\text { S }}$ (1)	Mean	d(1)	${ }_{5}^{2} \mathrm{~d}(1)$
1	2	3	4	5	6	7
Priye	16.50	0.88	0.25	9.64	0.34	0.07
NC-78	14.56	-1.09	0.28	8.95	0.44	0.26
MC-84	22.50	3.80	2.22	9.46	0.71	0.09
Arla Harit	22.55	6.05	2.83	3.21	-0.01	0.00
nc-82	8.16	0.83	-0.11	2.30	0.13	0.00
MC-79	6.53	-0.52	-0.11	3.18	0.23	-0.04
MC66	15.90	0.96	0.09	9.68	0.36	1.25
MC-49	17.81	1.49	0,12	8.25	0.28	0.32
NC-69	16.58	0.41	-0.10	7.95	0.64	0.08
nc-34	15.11	-0.11	-0.08	7.07	0.27	-0.01
Priya \times nc-78	15.25	-3.27	1.71	9.64	0.55	0.74
Priya \times Mc-84	17.63	2.87	0.14	9.00	1.07	0.47
Priya \times Arka Harit	17.40	-10.24	0.48	6.13	1.64	0.05
Priya \times MC-82	11.91	-8.53	-0.11	5.38	0.56	0.55
Priya \times MC-79	10.85	-9.79	2.33	6.09	2.07	0.44
Priya x Mc-66	16.46	-2.01	0.16	9.75	0.47	0.86

Table 14. Continued

Priya x MC-49
17.31

Priya x MC-69
16.70

Priya x MC-34
15.92

MC-78 \times MC-84
19.73

NC-78 \times Arica Rarit
19.69

MC-78 \times MC-82
11.73

MC-78 = MC-79
MC-78 \mathbf{I} MC-66
MC-78 x MC-49
MC-78 \times MC-69
MC-78 \times MC- 34
MC-84 x Arka Harit
10.35
15.98
17.35
16.21
14.95
22.23

MC-84 \times NC-82
nC-84 x MC-79
MC-84 \times NC-66
MC-84 \times MC-49
MC-84 \times MC-69
NC-84 \times NC—34
Arka Harit x MC-82
Arlea Harit x MC-79
12.60
10.93
18.01
19.36
18. 66
16.01
11.55
10.61

3			5	
-1.38	0.09	9.47	0.23	0.61
0.32	-0.05	8.53	1.13	0.00
-2.00	-0.01	7.84	1.62	0.26
2.31	0.06	9.03	1.13	0.05
9.07	9.62^{*}	5.75	1.19	0.11
3.95	1.75	5.02	1.72	0.01
-7.56	9.92^{*}	5.80	2.90^{*}	0.07
0.76	0.16	10.33	0.46	3.03
-0.55	0.73	8.98	0.80	-0.04
-2.34	0.06	8.55	0.87	0.02
-4.76	0.04	7.70	1.32	0.04
6.80	$4.01 *$	5.67	1.79	-0.04
-6.62	0.63	4.54	1.84	0.65
-1.50	0.28	5.47	1.96	0.75
13.87	0.68	8.77	0.89	-0.04
7.36	0.00	9.00	1.06	0.99
$16.38 *$	0.46	8.33	1.02	0.26
7.76	0.69	8.03	0.72	0.71
10.48	2.63	2.77	0.37	-0.01
3.82	2.80	5.06	1.82	0.76

Contd.

Table 14. Continued

Arka Harit x MC-66 Arka Harit x MC-49 Arka Harlt x MC-69 Arlea Harit x MC-34 MC-82 x MC-79 MC-82 I HC-66 MC-82 x MC-49 MC-82 x MC-69 MC-82 x MC-34 ルС-79 x MC-66 MC-79 x MC-49 MC-79 x MC-69 MC-79 π N.C- 34 HC-66 x ML -49 MC-66 x MC-69 nC-66 \times MC-34 MC-49 x NC-69 MC-49 \times MC- 34 MC-69 x MC- 34
16.85
20.11
17.07
15.45 8.81
10.46
10.37
10.55
10.03
9.46
10.38
10.83 9.35
16.95
16.59
15.18
17.59
16.40
15.08

1		
5	0.75	0.05
5.01	0.75	
6.28	2.48	0.78
5.41	0.54	0.20
5.69	0.34	1.34
3.18	-0.09	-0.01
4.76	1.33	1.04
3.95	0.57	0.09
4.23	2.02	2.09
4.11	1.75	2.01
5.70	1.73	-0.02
4.65	0.67	0.77
5.64	1.70	-0.04
4.90	1.52	0.37
9.29	0.33	0.90
8.66	0.86	0.88
7.79	1.05	-0.01
8.15	0.83	0.14
8.79	0.99	1.55
7.12	0.73	1.17

Priya x MC-66, Priya x MC-49, Priya x MC-69, Priya x MC-34, MC-78 x Arka Harit. MC-78 \times MC-49, MC-78 \times MC-69, MC-78 \times MC-34, MC-84 x Arka Harit, MC-84 x MC-66, MC-84 x MC- 34 and Arka Harit \times MC- 49 were below average stable.
(x) Fruit girth

Arka Harit had maximum fruit girth (22.55 cm)
closely followed by MC-B4 (22.5 cm). MC-84 x Arka Harit $(22.23 \mathrm{~cm})$ and MC-79 the minimum (6.53 cm). Priye and MC-66 are the only two stable genotypes. MC-49, MC-84, Arka Herit, PriYa \times MC-B4, MC-78 \times MC-84 (Plate 16), Arka Harit \times MC-69, Arka Harit \times MC-34 and MC-66 \times MC-69 were above average stable. The below average atable genotypes are MC-69, MC-34, Priya x MC-78, Priya x Arka Harit, Priya x MC-66, Priya x MC-49, Priya x MC-69, Priya \times MC- 34 and Arka Harit \times MC-66.

(xi) Yield/plant

The highest overall mean pleld/plant wes recorded by MC-78 \times MC-66 $(10.33 \mathrm{~kg})$ follawed by Priya \times MC-66 $(9.75 \mathrm{~kg})$, MC-66 (9.68 kg) and Priya (9.64 kg) (51 g .2). The atable genotypes are Priya \times MC-84 (Plate 17), MC-78 x MC-69 (Plate 18), MC-84 x MC-66 (Plate 19), MC-84 x MC-49,

FIg 2: PARAMETERS OF STABILITY (bI) PLOTTED AGAINST MEAN YIELD
OF INDIVIDUAL VARIETIES

> Plate-17. Priye \times MC 84, stable F_{1} hybrid for yield in medium environment

Plate-18. MC $78 \times$ MC 69, stable F_{1} hybrid for yield in medium environment

PLATE-17

Plate-19. MC B4 \times MC 66, Etable F_{1} hybrid for yield in medium environment

Plate-20. MC $66 \times$ MC 34nstable F_{1} hybrid for yield in medium environment

PLATE-19

Plate-21. Priya x MC 69, etable F_{2} hybrid for yield in high environment

Plate-22. NC $78 \times$ NC 34, stable F_{1} hybrid for yield in high environment

PLATE-21

Plato-23. Priya x IC 70, Etable F_{2} hybrid for yield in low enviromment

Plate-24. Priya x NC 49, stable F_{1} hybrid for Yield in 20 environment

Plato-25. MC $49 \times$ MC 69, steble F_{1} hybrid for yield in low enviromment

Plate-26. MC $69 \times$ MC 34, etable Fi hybrid for yield in low enviroment:

PLATE-25

PLATE-26

MC-84 \times MC-69. MC-66 \times MC-34 (Plete 20) and MC-49 x MC-34. Priya x MC-69 (Plate 21). Priya x MC-34, MC-78 x MC-84 and MC-78 \times MC-34 (Plate 22) are above average stable genotyper. PriYa, MC-7B, MC-84, MC-66, MC-49, MC-69, MC-34, Priya \times MC-78 (Plate 23), Priya \times MC-66, Priya x MC-49 (Plate 24), MC-78 \times MC-49, MC-84 \times MC-34, MC-66 x MC-49, MC-49 \times MC-69 (Plate 25) and MC-69 \times MC- 34 (Plate 26) cre below average stable genotypes. The $\stackrel{2}{2} d(1)$ for the genotype MC-78 \times MC-66, which yielded the highest mean yield was significant indicating the unstable nature of the genotype.
2. Combining ability analyais

Analysis of veriance for combining ebility for all
the cheracters were carried out during all the three seaso seperately and the resulta are presented in Table 16. The onalysis of veriance for combining ablilty over three enviroments was also carried out (Table 17). General combining abllity effects were estimated for the three environmenta separately and presented in Tebles $1 B$ and 19. The corresponding sca effects were presented in Tables 20 to 25. The pooled analysis of variance for combining abllity shows that the gea variances wore highly oignificant for all the characters. The aca varience ware highly

Foble 15. General analyaia of variance for 55 genotypas of bitter gourd in three onvironmenta Man equare

Sources of variation	dif	Exvironments	Branches per plant	Main vine length	Node to firat female flower	Mean equare			
						Days to first female flower opening	Female flowers/ plant	Percentage of female flower:	Days to pleking maturity
Raplication	1	E_{1}	10.13**	0.06	0.18	1.56	50.78 ${ }^{\text { }}$	0.003	1.11*
		E_{2}	7.39*	0.22	0.03	0.02	70.00**	0.01	0.55
		E_{3}	11.78**	0.03	0.18	0.66	32.16*	0.001	0.004
Ganotypea	54	E_{1}	41.73 **	2.97**	2.17**	21.56**	904.44**	2.89**	0.32**
		E_{2}	69.82**	4.25**	3.47* ${ }^{\text {\% }}$	4.65**	588.43**	1.76**	0.38**
		E_{3}	42.21**	2.76**	1.77**	20.29**	$589.97 * *$	2.55**	0.47
Error	54	E_{1}	0.78	0.02	0.55	1.21	9.08	0.02	0.18
		E_{2}	1.17	0.09	0.57	1.28	6.39	0.04	0.24
		E_{3}	0.95	0.07	0.64	1.28	4.56	0.03	0.40

Table 15. Continuad

Sources of af Environvariation
 di
 Yield plant
 Fruits/
 plant

Mean squares

Fruit Fruit Fruit Flesh Seeds/ 100 seed
weight length girth Thickness fruit waight

$96.25^{* *}$	$1.44^{\star \star}$	$1.49^{*} \hbar$	0.01	0.07	0.48
4.75	0.16	0.41	0.003	$15.47 *$	0.45
38.00^{*}	0.53	0.03	0.01	0.96	0.05

$0071.51^{* *} 195.76^{* *} 41.75^{* *} 1.58^{* *} 16.00^{* *} 79.24^{* *}$ 8304.02** 202.44** 22.95** 0.93** 16.59** 55.26** 9463.74** 154.83** 31.64** 1.66** B.28** 53.04**

25.96	0.11	0.03	0.03	0.85	0.46
1.44	0.08	0.28	0.03	2.54	1.301
6.38	0.19	0.03	0.04	0.80	0.69

significant for 13 characters. It was significant for yield/plant and not significant for days to picieing maturity. In general the variances due to gea were higher than sca variances. The interaction of gea with environments was highly aignificant for all the characters except node to first female flower and days to picking maturity. The interaction of sca with location were highly significant for all the characters.
a. Branches/plant

The gea and sca variances were highly significant during all the three seasons. Positive values of gea and sea effects indicated increase and negative values, decrase in branches/plant. MC-84 had the maximum value of gea effect (35.93) during the first season. MC-79 had the highest value during the second (6.92) and third (5.97) seasons. MC-82 had the lowest value of gea effect for all the threa seasons. The crosses MC-82 \times MC-79 (37.13) and Arka Harit \times MC- 34 (33.53) had the meximum values of sca effects during the first season. Arka Harit \times MC-79 possessed the highest values in the second and third aeasons (12.36 and 8.64 raspectively).

Table 16. Analyais of variance for combining ability in a 10×10 diallal in bittor gourd for three environments

Source of variation		Environmenta	Mean squares						
			Main branches per plant	Main vine length	Node to first female flower	Days to first female flower opening	Female flowers/ plant	Porcentago of female flowers	Daya to picking maturity
gea	9	Σ_{1}	107.93**	8.04**	4.06**	51.44**	2191**	7.54**	1.11**
		E_{2}	136.67*	10.48**	5.04**	1.79**	1527.52*	4.44**	0.34**
		E_{3}	105.26**	6.69**	2.89**	47.74**	1608.99**	0.49**	0.46**
sca	45	E_{1}	4.65**	0.17**	0.49*	2.69**	104.39**	0.23**	$0.32^{* *}$
		E_{2}	14.56**	0.46**	1.07**	2.43**	47.55**	0.17**	0.16
		E_{3}	4.28**	0.29**	0.48	$2.63^{\text {** }}$	32.19**	0.23**	0.19
Error	54	E_{1}	0.39	0.10	0.28	0.61	4.54	0.01	0.09
		E_{2}	0.59	0.05	0.29	0.64	3.19	0.02	0.12
		E_{3}	0.47	0.04	0.32	0.64	2.28	0.02	0.30

$$
\begin{aligned}
& p=0.05 \\
& * *=0.01
\end{aligned}
$$

Table 16. Continued

Sources of variation	df	Environmenta	Mean squarea							
			$\begin{aligned} & \text { Yleld } \\ & \text { plant } \end{aligned}$	Fruits/ plant	Frait weight	Fruit length	Frult girth	Flesh thickness	Sceda/ fruit	100 seed waight
		Σ_{1}	24.86**	2555.26**	28022.61**	$536.68^{* *}$	110.21**	3.90**	34.3**	212.27**
gea	9	E_{2}	25.27* ${ }^{\text {\# }}$	1066.67**	21004.22**	$539.44^{* *}$	63.28**	2.4**	23.94**	194.09**
		E_{3}	32.61**	1456.08**	25855.61**	425.32**	79.26**	3.89**	13.58**	108.92**
		E_{1}	$0.96 * *$	$92.78^{* *}$	438.39**	9.92**	3.01**	0.17**	2.74**	5.09**
sea	45	E_{2}	0.67**	39.34**	$781.57{ }^{\text {\# }}$ *	13.58**	1.11	0.08**	5.17**	50.27**
		E_{3}	1.27**	33.87**	501.12**	7.84**	3.13**	0.22**	1.65**	10.05**
		Σ_{1}	0.02	2. 32	12.98	0.06	0.01	0.02	0.42	0.23
Error	54	E_{2}	0.04	0.93	0.72	0.04	0.14	0.01	1.27	45.11
		E_{3}	0.01	2.05	3.19	0.10	0.01	0.02	0.40	0.34

Table 17. Analysis of variance for combining ability over three environments in a 10×10 diallel in bitter gourd
Sources of
Variation

$$
\begin{aligned}
& * P=0.05 \\
& * * P=0.01
\end{aligned}
$$

Table 17．Continued

Sources of variation	de	$\begin{aligned} & \text { Yield } \\ & \text { plant } \end{aligned}$	Fruits／ plant	Fruit weight	$\begin{aligned} & \text { Fruit } \\ & \text { length } \end{aligned}$	Fruit girth	Flesh thickness	$\begin{aligned} & \text { Scods/ } \\ & \text { Erult } \end{aligned}$	100 seed weight
General combining ability（G）	9	88.78	4750.87	71855．0	$1480.4{ }^{\text {产 }}$	246.22	9.8 咅	$67.7{ }^{\text {＊}}$	457．${ }^{\text {㤑 }}$
Specific combining obllity（s）	45	$1.5{ }^{\text {\＃}}$	$56.5{ }^{\text {＊}}$	932． 31	26．${ }^{\text {＊}}$＊	$4.4{ }^{*}$	0．35²	5.83	$9.5{ }^{\text {＊}}$
Enviromment（L）	2	77.9 \＃${ }^{\text {\％}}$	5660．41	4498．${ }^{\text {\＃}}$（	29．8＊＊	1.415	0.60511	113.6 部	
Interaction（ $0 \times \mathrm{L}$ ）	18	$1.00{ }^{\text {\％}}$	$162.8{ }^{\text {＊}}$	1532.0 䒨	9.48	$3.2{ }^{\text {¢ }}$ を	$0.20{ }^{\text {\％}}$	3.74	5.67
Interaction（ $5 \times \mathrm{L}$ ）	90	3.49	$54.9^{* *}$	394.31	$2.78{ }^{\text {® }}$	1．4＊＊	0．0＊＊		4．64
Error	162	0.023	1.77	5.63	0.037	0.053	0.017	0.70	0.28

Toble 18. Iatinates of gea effects of ten bitter gourd linos for vegetative charactorn. Feala flowers and earliness for three environments

Parental limes	Bnvironments	Branches/ plant	Main vine length	Node to first female flower	Days to first female flower opening	Female flowers/ plant	Percentage of female flowera	Days to plcking maturity

1	2	3	4	5	6	7	8	9
Priya	E_{1}	34.51	0.43	0.60	0.90	-3.95	0.68	-0.10
	E_{2}	0.34	0.73	0.49	-0.45	-1.73	0.85	-0.05
	E_{3}	0.88	0.51	0.43	0.85	-0.39	0.60	-0.04
MC-78	E_{1}	34.23	0.54	0.39	1.58	-6. 32	0.10	-0.18
	E_{2}	0.02	0.51	0.53	-0.38	-5.12	0.23	0.14
	E_{3}	0.37	0.56	0.19	1.51	-5.73	0.32	-0.25
nc-84	E_{1}	35.93	0.60	0.29	1.51	-9.92	-0.25	-0.14
	E_{2}	0.63	0.44	0.13	0.16	-3.85	0.12	-0.08
	E_{3}	0.63	0.48	0.34	1.61	-6.30	-0.12	0.04
Arlca harit	E_{1}	-3.42	-1.26	-1.16	1.66	-18.86	-0.83	-0.04
	E_{2}	-2.66	-1.30	-1.08	-0.11	-18.30	-0.81	0.05
	E_{3}	-3.27	-1.16	-0.84	1.52	-21.08	-0.56	0.00

Contd.

Table 18. Continued

1	2	3	4	5	6	7	8	9
MC-82	E_{1}	-77.73	-1. 51	-0.78	-0.25	14.0	-1.02	0.47
	E_{2}	-5.59	-1.93	-0.76	-0.40	7.04	-0.95	0.33
	E_{3}	-4.84	-1.40	-0.79	-0.50	11.22	-1.32	0.38
MC-79	E_{1}	-72.88	1.12	-0.08	2.07	29.46	-1.08	0.59
	E_{2}	6.92	1.15	-0.89	-0.13	25.29	-0.49	0.08
	E_{3}	5.97	0.93	-0.01	2.14	23.17	-0.94	0.27
NC-66	E_{1}	7.19	0.09	-0.12	-0.30	4.15	0.60	0.11
	E_{2}	2.36	0.26	0.23	0.80	3.57	0.49	-0.27
	E_{3}	2.08	0.02	-0.15	-0.18	4.05	0.83	-0.15
NC-49	E_{1}	13.10	0.15	0.39	-3.81	-1.41	1.07	-0.20
	E_{2}	1.75	0.21	0.57	0.01	3.07	0.68	0.02
	E_{3}	0.75	0.17	0.29	-3.49	-2.25	0.78	-0.02

Table 19. Continued

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NC-69 | E_{1} | 7.90 | -0.22 | 0.09 | 0.002 | -7.1 | 0.84 | -0.14 |
| | E_{2} | -2.03 | -0.08 | 0.30 | 0.26 | -3.34 | 0.09 | -0.05 |
| NC-34 | E_{3} | -1.26 | -0.06 | -0.08 | -0.20 | -2.33 | 0.42 | -0.02 |
| | E_{1} | 21.16 | -0.06 | 0.57 | -3.36 | -0.05 | -0.11 | -0.37 |
| | E_{2} | -1.74 | 0.02 | 0.51 | 0.24 | -6.03 | -0.20 | -0.17 |
| | E_{3} | -1.20 | -0.03 | 0.63 | -3.29 | -0.37 | -0.01 | -0.21 |
| | E_{1} | 0.05 | 0.001 | 0.02 | 0.05 | 0.34 | 0.001 | -0.01 |
| | E_{2} | 0.04 | 0.004 | 0.02 | 0.05 | 0.24 | 0.002 | 0.01 |
| | E_{3} | 0.04 | 0.003 | 0.02 | 0.05 | 0.17 | 0.001 | 0.02 |

Table 19. Eatimates of gea effacts of ten bitter gourd ilnea for yiald and fruit charnctare in three onviromments

Parental IInes	Environments	$\begin{aligned} & \text { Yield } \\ & \text { plant } \end{aligned}$	Fruit plant	Fruit weight	Pruit length	Frult girth	Flesh thickneas	Seeds/ fruit	100 seed waight
1	2	3	4	5	6	7	8	9	10
Priya	E_{1}	1.27	-4.13	30.76	4.79	0.14	0.19	1.38	1.95
	Σ_{2}	1.39	-3.70	34.51	6.00	1. 26	0.04	0.74	0.75
	\mathbf{E}_{3}	1.43	-2.11	30.58	4.23	0.75	0.26	1.43	1.55
MC-78	E_{1}	1.26	-5.9	30.99	5. 31	0.32	0.17	1.07	1.95
	E_{2}	0.9	-3.67	34.23	5. 35	0.30	0.07	0.49	5.67
	E_{3}	1. 34	-2.52	29.54	4.10	1.01	0.11	0.23	1.38
NC-84	E_{1}	1.23	-11.80	61.33	3.17	3.64	0.27	0.88	3.26
	E_{2}	1.17	-3.87	35.93	3.20	2.58	0.27	0.78	1.04
	E_{3}	0.61	-9.72	43.04	3.14	2.88	0.19	0.87	1. 52
Aria Harit	E_{1}	-1.72	-19.38	16.64	2.49	3. 30	1.00	-0.04	0.54
	E_{2}	-1.88	-13.15	-3.42	1.55	2.13	0.51	-0.66	-0.29
	E_{3}	-1. 53	-17.96	23.11	1.85	2.63	0.99	-0.85	0.54

Contd.

Table 19. Continued

1	2	3	4	5	6	7	8	9	10
MC-82	E_{1}	-2.75	13.76	-82.03	-12.56	-4.21	-0.84	-3.46	-2.54
	E_{2}	-2.27	6.99	-77.73	-12.44	-3.54	-0.82	-3.62	1.95
	E_{3}	-3.33	13.04	-86.77	-13.14	-4.63	-0.87	-2.22	-1.27
NC-79	E_{1}	-1. 39	32.95	-83.07	-12.17	-5.95	-1.05	-1.62	-11.27
	E_{2}	-2.00	22.37	-72.88	-12.07	-4.51	-0.78	-0.77	-10.34
	E_{3}	-2.09	21.08	-78.21	-8.06	-4. 34	-1.01	-1.40	-8. 24
MC-66	E_{1}	0.95	3.77	16.37	2.91	0.38	0.03	1.09	3.15
	E_{2}	1.00	1.14	7.19	2.33	0.46	0.23	0.82	0.90
	E_{3}	1.72	3.46	20.61	2.13	0.14	-0.01	0.58	1.38
MC-49	E_{1}	0.58	-1.88	17.10	0.84	1.95	0.16	0.34	0.89
	E_{2}	0.92	1.18	13.10	1.19	1.13	0.31	0.88	0.08
	E_{3}	1.08	-4.11	23.46	0.24	1.33	0.20	0.20	1.34

Contd.

Table 19. Continued

1	2	3	4	5	6	7	8	9	10
14C-69	E_{1}	0.49	-7.53	16.56	4.49	1.00	0.05	-1.54	0.64
	E_{2}	0.48	-1.84	7.9	4.47	0.49	0.12	0.44	0.32
	E_{3}	0.18	-3.76	14.43	5.38	0.66	0.04	-0.11	0.94
MC-34	E_{1}	0.08	0.16	-24.67	0.73	-0.58	0.03	1.92	0.41
	E_{2}	0.27	-5.45	21.16	0.42	-0.30	0.05	0.90	-0.08
	E_{3}	0.001	2.60	-19.79	0.11	-0.43	0.10	1.27	0.86
SE (gi)	E_{1}	0.001	0.17	0.97	0.004	0.001	0.001	0.03	0.02
	E_{2}	0.003	0.07	0.05	0.003	0.01	0.001	0.10	3.38
	E_{3}	0.001	0.15	0.24	0.01	0.001	0.001	0.03	0.03
$\therefore(91-g 1)$	E_{1}	0.01	1.58	8.85	0.04	0.01	0.01	0.29	0.16
	E_{2}	0.03	0.64	0.49	0.03	0.10	0.01	0.87	30.76
	E_{3}	0.01	1.39	2.18	0.07	0.01	0.01	0.27	0.23

b. Main ∇ inc length

Vine length also had highly significant variances due to gca and sea consistently. MC-79 had the highest values of gca for all the three seasons (1.12, 1.15 and 0.93 respectively). MC-82 was the lowest in gca effect for this character also. Arka Harit \times MC-79 was the highest in sea effects throught the three seasons (2.0, 2.41 and 1.95).
c. Node to first female flower

The gca variances were highly significant for all the three seasons. Sea variance was highly significant during the second season. It was significant during first and not significant during second season. Arka Harit and MC-82 had negative values of gca effects which favoured production of female flowers in the lower nodes. Priya and MC-34, in general, had higher and positive values which favoured female flower production in the upper nodes. Higher and negative values were recorded by Arka Merit x MC-84 consistently for the three seasons. Arks Hart x Priya, Ark Hart x MC-79, MC-B2 x MC-66 and MC-66 x MC-69 had higher and negative values of sea in the second season. In general, crosses involving Aria Hart as one of the parents had negative values of sea effects.
d. Days to first female flower opening

The gca and sea variances were highly significant for days to first female flower opening during the three seasons. MC-49 and MC- 34 had the highest negative gca effect during first and third seasons indicating earlier female flower production. The crosses with higher and negative sea effects are Arka Hart x MC-66 and MC-79 x MC-69 during the first and third seasons and Priya x MC-49 and Arka Harit \times MC-49 during the second season.

- Female flowers/plant

Highly significant and consistent gca and sea Variances were observed for this trait. MC-79 had the highest gca affect through out the three seasons (29.46. 25.29 and 23.17). The crosse MC-49 $\times \mathrm{MC}-34$ had higher sea - fact consistently (11.70. 8.14 and 3.89). Higher sea effects ware observed in Priya \times MC-79, MC-78 x MC-66 in the first MC-79 $\times M C-66$ and MC-82 $\times M C-79$ in the second and Artea Merit \times MC-79 and MC-82 \times MC-66 in the third seasons. The cross Arks Hart x MC-79 recorded the highest sen affect (48.69) in the first season.

Table 20. Eatimates of aca effecta of 45 F hybrida for vegetative charectars. fomale flowars and arliness during first beason

I_{1} hybrida	$\begin{aligned} & \text { Branches/ } \\ & \text { plant } \end{aligned}$	Main vine length	Node to first female flower	Days to first female flower opening	Pemale flowers/ plant	Percentage of femalo flowers	Days to pleking maturity
1	2	3	4	5	6	7	8
Priye x MC-78	-0.64	0.02	0.87	1.12	-1.48	0.18	-0.56
Eriye x MC-84	0.23	-0.02	0.63	1.56	-3.88	0.32	0.65
Priya x Arka Harit	-1.28	-0.16	0.04	-0.09	-6.44	-0.55	0.55
Priya x MC-82	-1.25	-0.15	-0.33	-1.18	-1.43	-0.24	0.05
Friya x mC-79	0.55	0.02	-0.04	1.50	9.74	1.13	-0.58
Friye x NC-66	2.31	-0.13	0.00	-0.13	-3.95	-0.12	-1.09
Prifa x NC-49	-0.70	0.08	-0.51	0.88	2.61	-0.13	-0.28
Priya \times MC-69	0.22	0.35	-1.03	-1.43	-2.20	-0.39	-0.85
Priye x MC 34	1.07	0.20	-0.69	-0.07	-6.76	0.26	-0.62
MC-78 \times MC-84	0.25	0.13	0.08	2.38	-5.52	0.17	-0.51
MC-78 x Arka Harit	0.49	0.38	-0.25	-0.64	-12.58	-0.55	0.38
MC-78 \times MC-82	-0.23	0.09	-0.37	0.14	6.06	-0.96	-0.37
NC-78 \times MC-79	0.45	0.01	-0.08	0.82	-2.90	0.00	-0.51
MC-78 \times MC-66	1.46	-0.21	-0.54	-1.81	10.04	0.02	-0.01
MC-78 \times MC-49	-1.05	-0.05	0.45	0.33	7.35	0.25	-0.45

Contd.

Table 20. Continued

1	2	3	4	5	6	7	B
MC-78 \times MC-69	-1.82	0.09	-0.57	-0.61	-0.34	0.34	0.49
MC-78 \times HC-34	0.09	-0.09	-0.48	-1.37	2.61	0.44	0.97
NC-84 \times Arka Harit	-0.65	0.02	-1.61	-1.70	-6.97	-0.09	0.59
MC-84 \times MC-82	0.76	-0.07	0.01	-1.79	2.16	-0.41	-0.41
MC-84 \times MC-79	-1.07	-0.20	-0.70	-0.11	-3.05	-0.05	-0.53
MC-84 \times MC-66	0.57	-0.03	-0.91	-1.75	3.89	-0.47	0.45
MC-34 \times MC-49	-0.69	-0.12	0.58	-1.73	2.70	0.00	-0.24
NC-84 x MC-69	0.29	-0.03	0.06	1.45	-3.23	0.04	-0.81
MC-84 \times MC- 34	-1.42	0.10	-0.09	-0.68	-3.29	-0.31	-0.08
Arka Harit x MC-82	2.62	-0.07	-0.57	3.06	3.10	0.20	-0.51
Arka Harit x MC-79	10.05	2.00	0.72	0.74	4.86	-0.06	0.36
Arka Harit x MC-66	-2.19	-0.71	0.01	-2.89	-2.55	0.66	-0.16
Arka Harit x MC-49	-0.33	-0.14	0.63	-0.38	-11.48	0.38	-0.35
Arka Harit x MC-69	-1.84	-0.71	-0.40	0.18	-9.79	0.82	-0.41
Arka Harit \times MC-34	-0.05	-0.55	1.32	0.17	-3.85	-0.78	-0.18
MC-82 \times MC-79	1.46	-0.34	0.60	-0.36	-7.22	-0.08	-0.14
MC-82 \times MC-66	2.09	0.44	0.39	2.01	-5.91	0.54	0.34
MC-82 \times MC-49	0.33	0.63	0.38	-1.48	-5.85	0.67	-0.10
MC-02 \times MC-69	0.81	0.25	0.36	0.71	-4.14	0.30	1.09
MC-82 x MC-34	0.10	0.01	-0.30	-0.42	2.79	0.26	0.07

Table 20. Continued

1	2	3	4	5	6	7	8
MC-79 x : C -66	-2.36	-0.54	0.43	1.45	-3.74	-1.25	-0.03
HC-79 x MC-49	-0.49	-0.41	0.17	-1.79	-2.81	0.13	0.28
MC-79 \times MC-69	-1.14	-0.38	0.65	-2.60	0.88	0.12	0.22
MC-79 \times MC-34	-2.22	-0.19	-0.26	-3.61	2.33	0.27	-0.56
MC-66 \times MC-49	-0.48	0.42	-0.04	-1.42	7.76	-0.35	0.01
MC-66 x MC-69	-1.50	-0.01	-0.31	-0.23	-5.31	-0.27	0.45
MC-66 \times MC-34	-0.21	-0.34	0.03	0.13	-9.61	0.24	-0.33
HC-49 x MC-69	3.49	0.18	0.18	-0.72	-1.62	-0.34	0.51
MC-49 \times MC-34	1.65	0.30	-1.73	1.64	11.70	0.67	-0.01
MC-69 \times MC-34	0.37	-0.08	1.00	-0.17	-2.11	-0. 30	0.92
SE (sij)	0.26	0.04	0.22	0.32	0.87	0.04	0.14
SE ($51 j-81 k)$	0.84	0.14	0.71	1.05	2.88	0.14	0.41
SE (sij-ske)	0.81	0.14	0.68	1.00	2.75	0.14	0.39

Toble 21. Eatinates of aca effecta of $45 \mathrm{~F}_{1}$ hybride for vegetative charactore, Lemale flowera and earlinea during second seasón

F_{1} hybrids	Branchea per plant	Main vine length	Node to firgt femalo flower	Daye to firat female flower opening	Female flower:	Percentage of female flowers	Days to plcking maturity
1	2	3	4	5	6	7	8
Prifa \times MC-78	-1.48	0.53	-0.01	0.66	-0.08	-0.41	-0.38
Priya \times nC-84	-1.10	0.45	-0.36	0.61	2.91	0.19	0.47
Priya x Arka Harit	-3.81	-0.97	-1.90	-0.61	-2.76	-0.80	0.59
Priye x MC-82	-4.63	0.94	0.79	1.93	1.27	-0.81	0.56
Priya x MC-79	7.11	0.13	0.41	-0.59	-14.73	0.78	0.06
Eriya x MC-66	-0.08	0.42	0.81	-0.73	0.24	0.15	-0.08
Priya \times RC-49	2.03	0.55	-1.05	-2.24	3.99	0.56	-0.13
Priya \times MC-69	1.56	-0.77	0.22	1.27	0.65	0.22	-0.05
Priya \times MC-34	-2.48	0.02	0.12	-1.71	0.44	0.01	-0.06
MC-78 x MC-84	-1.78	0.32	0.85	-0.94	1.55	-0.34	0.15
MC-78 \times Arka Herit	-1.23	-0.74	0.56	1.83	-7.00	-0.28	-0.11
MC-78 \times MC-82	-4.18	-0.66	0.74	-0.38	3.15	-0.34	-0.14
MC-78 \times MC-79	0.18	0.31	-0.13	-1.90	8.90	-0.15	0.11
MC-78 \times HC-66	0.75	-0.04	0.27	-0.59	2. 37	0.77	0.72
MC-78 \times MC-49	0.60	-1.29	-0.34	0.95	-6.13	0.43	0.18

2-blo 21. Continued

NC-78 \times MC-69	1.13	0.12	0.93
MC-78 \times MC-34	2.84	0.24	-1.28
me-84 \times Arka harit	-2.10	-0.82	-1.55
MC-84 \times MC-82	-4.67	-0.74	-0.61
MC-84 \times MC-79	3.07	0.18	0.27
MC-94 \times MC-66	1.88	0.30	0.41
MC-84 \times MC-49	4.24	0.08	1.06
WC-84 \times MC-69	-0.98	0.11	0.08
MC-84 \times MC-34	1.72	-0.06	0.87
Arka Harit x MC-82	-1.13	0.73	0.60
Arla Harit \times MC-79	12.36	2.41	-1.53
Arla Harit \times MC-66	2.46	-0.59	1.62
Arica Harit x MC-49	1.78	-0.27	0.77
Arka Marit x MC-69	-0.44	-0.19	0.04
Arka Harit \times MC- 34	-2.73	-0.04	1.58
MC-82 \times MC-79	4.54	-1.35	0.66
MC-82 \times MC-66	6.10	-0.03	-1.94
MC-82 \times MC-49	2.20	-0.23	0.95

118

 Contd.

$\begin{array}{llllllll}\infty & 0 & N & \infty & 0 & m & m & m \\ 0 & 0 & \cdots & 0 & m & 0 & \forall & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 & N & 0 & -1\end{array}$

Table 21. Continued

1	2	3	4	5	6	7	8
MC-82 \times MC-69	1.24	-0.76	1.47	0.22	2.63	0.52	-0.44
NC-82 \times MC-34	-0.06	-0.19	-0.74	2.74	-4.08	-0.27	0.18
MC-79 \times MC-66	-2.91	-0.49	0.68	0.16	10.22	-0.51	0.03
MC-79 x MC-49	-4.31	0.35	0.58	-0.55	17.84	-0.47	0.24
MC-79 = MC-69	-7.78	-0.36	0.60	0.70	-14.87	0.06	-0.19
MC-79 \times MC-34	-6.82	-0.64	1.14	0.72	-18.58	-0.15	-0.32
MC-66 \times MC-49	1.26	0.25	0.72	-0.99	1.43	-0.10	-0.16
NC-66 x MC-69	-0.96	0.06	-1.76	1.77	-3.15	-0.42	-0.58
MC-66 \times MC-34	-4.26	0.07	-0.96	-0.21	1.64	-0.61	-0.53
NC-49 \times MC-69	-0.36	0.04	0.64	-1.44	1.85	-0.43	-0.63
NC-49 x MC-34	-0.85	0.13	0.43	1.58	8.14	-0.11	0.49
MC-69 $\times \mathrm{MC}-34$	3.51	-0.08	-1.05	-0. 42	-0.44	0.02	0.56
sz (sij)	0.32	0.10	0.22	0.33	0.73	0.20	0.14
SE (3ij-3ik)	1.03	0.30	0.72	1.08	2.42	0.80	0.47
SE (aij-akl)	0.31	0.28	0.69	1.03	2.31	0.80	0.14

F_{1} hybrida	Branches/ plant	Maln vine length	Node to first female flower	Days to first femalo flower opening	Female flowers/ plant	Percentage of famele flowera	Daya to picking maturity
1	2	3	4	5	6	7	8
1. Priya x MC-78	1.70	0.25	-0.05	1.60	-2.11	-0.14	0.63
2. Priya \times MC-84	-0.41	0.01	0.35	0.99	-7.78	-0.60	-0.41
3. Priya x Arka Harit	-2.51	-0.20	0.22	0.34	-3.50	-0.11	0.13
4. Priya x MC-82	0.06	-0.24	-0.57	-1.95	-3.05	-0.46	0.01
5. Priya x MC-79	1.00	-0.34	-0.10	0.45	5.99	1.16	0.36
6. Priya \times MC-66	2. 38	-0.38	0.29	0.78	4.61	0.05	-0.22
7. Pripa \times MC-49	-1.53	0.04	-0.40	1.59	1.42	-0.00	0.15
8. Priya x MC-69	0.48	0.20	-0.03	-2.20	-2.25	0.21	-0.10
9. Priya \times MC-34	-1.84	0.25	-0.62	0.40	2.54	-0.46	-0.41
10. MC-78 \times MC-84	0.95	-0.32	0.05	0.84	1.05	0.08	0.55
11. MC-78 \times Arka Harlt	1.59	0.32	0.45	-0.22	1.83	-0.02	0.09
12. MC-78 \times MC-82	-1.59	-0.14	-0.08	-0.60	-1.72	0.38	-0.28
13. MC-78 x MC-79	-0.90	0.10	0.39	0.68	-4.67	-0.20	0.32
14. MC-78 \times MC-66	0.99	0.49	-1.22	-2.12	4.76	-0.22	-0.01
15. MC-78 \times MC-49	-0.43	-0.01	0.60	0.44	1.00	-0.07	-0.89

16. MC-78 x NC-69

-2.92	-0.15
0.52	-0.06

18. MC-84 x Arka Harit
$-1.01 \quad-0.28$
19. MC-84 \times MC-82
20. MC-84 x MC-79
21. MC-84 $=$ MC-66
22. MC-84 \times MC-49
23. MC-84 x MC-69
24. MC-84 x MC-34
25. Arica Harit x MC-82 26. Arice Harit \times MC79 27. Arica Harit x MC-66 28. Arica Harit x MC-49 29. Arka Harit x MC-69 30. Arica Herit x MC-34 31. MC-82 \times MC-79 1.09
-0.12
8.64
1.95
-1.97 0.11
0.36
-0.14
$-1.13 \quad-0.64$
-0.69 -0.56
-0.29
26. MC-82 \times MC-66
27. MC-82 \times MC-49
28. MC-82 \times MC-69
29. MC-82 \times HC— 34

1.85	0.48
-0.07	0.38
0.45	0.61
0.63	-0.37

5	6	7	$-\cdots$
-0.73	0.83	0.49	0.36
-0.76	1.37	-0.18	0.05
-1.18	-1.60	-0.39	-0.20
-1.83	0.48	0.01	-0.33
1.20	-2.10	-0.02	-0.03
-1.73	-0.22	0.02	-0.31
-2.04	2.82	0.12	-0.18
0.92	-0.10	0.93	0.07
-0.62	-1.05	0.01	0.76
3.76	-7.37	-0.44	-0.53
0.67	20.69	0.08	-0.18
-2.76	-10.19	0.82	-0.26
-1.32	-1.90	0.96	0.11
-1.61	-5.81	-0.32	-0.64
-0.52	-7.73	0.01	0.30
-0.36	-1.62	0.38	-0.06
1.21	9.51	0.07	-0.14
-0.98	-2.20	-0.79	0.24
1.10	-2.62	-1.02	0.49
-0.55	-2.08	0.66	-0.08

Toble 22. Continued

	1	2	3	4	5	6	7	B
36.	KC-79 \times MC-66	-2.46	-2.10	0.23	1.11	-2.44	-0.21	-0.03
37.	MC-79 x MC-49	1.12	-0.51	0.42	-1.45	-8.15	-0.37	0.34
38.	MC-79 \times MC-69	-0.62	0.08	0.41	-2.24	5.94	-0.80	-0.41
39.	NC-79 = MC-34	-2.93	0.20	0.20	-2.90	-7.02	-0.12	-0.97
40.	NC-66 \times MC-49	-0.99	0.68	-0.57	-1.13	4.48	0.07	0.76
41.	MC-66 x MC-69	-1.73	0.07	0.04	0.58	-5.94	0.03	0.01
42.	MC-66 x MC-34	1.45	-0.06	-0.42	-0.07	-4.40	-0.29	0.45
43.	$\mathrm{MC}-49 \times \mathrm{MC}-69$	1.85	0.03	-0.32	-0.36	-0.39	-0.37	0.38
44.	MC-49 x MC-34	1.54	0.11	-0.85	0.11	3.89	0.81	0.32
45.	MC-69 \times MC-34	0.42	0.07	1.14	-0.18	2.98	0.17	0.57
	SE (3ij)	0.28	0.10	0.22	0.33	0.62	0.05	0.17
	SE (sij-sik)	0.93	0.24	0.77	1.09	2.04	0.17	0.61
	SE (sij-skl)	0.89	0.24	0.73	1.03	1.95	0.17	0.57

f. Percentage of female flowers

The general analysis of variance for combining ability showed highly significant gee and sea variances for percentage of female flowers. Considering all the three seasons, MC-49 had higher values of gca effects (1.07, 0.68 and 0.78) followed by Priya $(0.68,0.85$ and 0.6) and MC-66 ($0.60,0.49$ and 0.83). Priya x MC-79 possessed higher and consistent value of sea effects (1.13, 0.78 and 1.16).
g. Days to picking maturity

Analysis of variance showed that only the gca Variances were significant for days to picking maturity In all the three seasons. See verience was significant only for the first season. In general gca and sea effects were comparatively low for this character.

h. Xield/plant

Mean square due to gena and sea were highly aignifiCant for yield plant in all the three seasons. Considering the three seasons, Priya (1.27, 1.39 and 1.43) ranked first In gee effect followed closely by MC-66 (0.95, 1.00 and 1.72) and MC -78 (1.25, 0.90 and 1.34). The crosses Are

Herit x MC-49 (2.60). Arka Harit x MC-79 (2.53), MC-78 x MC-79 (1.75) and MC-49 \times MC-34 (1.31) had higher values of sca effects during the first season. Arka Harit x MC-79 (2.19). MC-82 \times MC-79 (1.55) and Priya \times MC-49 (1.50) in the second and MC-82 \times MC-79 (2.12), MC-78 x MC-66 (2.09), MC-49 \times MC-34 (1.83). Arka Harit \times MC- 34 (1.71) and Priya \times MC-78 (1.01) in the third season had higher values of sca effects.

1. Fruits/plant

The gea and sca variances were highly significant for fruits/plant. MC-79 had the highest and consistent values of gca effects $(32.95,22.37$ and 21.08) followed by MC-82 $(13.76,6.99$ and 13.04) and MC-66 (3.77, 1.14 and 3.46) . Tha cross Arka Harit \times MC-79 recorded the highest sea effect in the first season (47.81). Other crosses With highor sca effects are MC-49 x MC-34 (10.6), MC-78 x MG-66 (10.02) and MC-78 \times MC_49 (9.42) in the first, MC7Bx MC-79 (12.79), Arka Harit \times MC-79 (11.57), Arka Harit x MC-69 (11.24) and MC-49 $\times \mathrm{MC}-34$ (7.90) in the second and MC-82 \times MC-79 (17.92) and Arka Harit \times MC- 34 (10.15) in the third seacons.

1. Fruit weight

Fruit weight also recorded highly significant gea and sca variances consistently. Considering the three seasons MC-84 had the highest gca effect (61.33, 35.93 and 43.04) followed by Priya (30.76, 34.51 and 30.58) and MC-78 (30.99, 34.23 and to 29.54). MC-79 recorded the lowest gea effects followed by MC-82. However, the crosses betweon these small fruited lines recorded the highest sea effects consistently (34.56, 37.13 and 50.18) Indicating the higher sca effects in crosses between small fruited x amall fruited than in crosses between large fruited x small fruited or large fruited x large fruited lines.

k. Truit length

The gea and sca variances were highly significant for all the three seasons. Priya (4.79, 6.00 and 4.23), MC-78 (5.31, 5.35, 4.1) and MC-69 (4.49, 4.47 and 5.38) possessed higher values of gea affecta. The two mall Irulted 11 nes MC-79 and MC-82 recorded negetive effects. Tho sea offects wore simller to those for frult woight, MC-82 \times MC-79 having the highest values $(8.86,10.82$ and 4.09).

1. Fruit girth

There were highly significant differences among the variances due to gca and sea for fruit girth. In all the three environments, the parent MC-84 had the highest values of gca effects (3.64, 2.58 and 2.88) followed by Ark Hart (3.3. 2.13 and 2.63). The sea effects showed similarity to those for fruit length and weight, the highest being shown by MC-82 x MC-79 (4.05, 2.78 and 2.10).

m. Plash thickness

The mean square due to gee and sea showed highly significant variances for all the seasons. MC-84 (3.64, 0.27 and 0.19) and Arka Barit (3.3, 0.51 and 0.99) were good general combiners for fruit flesh thickness. Here also, MC-82 and MC-79 registered negative values indicating poor combining ability. Priya x Arka Hart (1.07) and NC-82 \times MC -79 (0.80) possessed higher ace effects in the first, MC -79 \times MC -34 (0.69), MC-79 \times MC -69 (0.50), MC-79 x HC-66 (0.30) and Priya x Arks Hart (0.34) in the second and Prize \times Arks Hart (1.06), MC -82 \times MC-79 (0.94), MC-B2 x MC-66 (0.44) and MC-79 \times MC -34 (0.47) in the third seasons.

n. Seeds/Erult

There were significant gea and sca variances for this trait. MC-34 (1.92, 0.90 and 1.27), Friya (1.38, 0.74 and 1.43), MC-78 (1.07, 0.49 and 0.23) and MC. 84 ($0.88,0.78$ and 0.87) were in general., good combiners for seeds/Eruit. Arka Harit, MC-79 and MC-82 possessed negative values indicating their poor combining ability for this trait. MC-82 \times MC-69 (2.91, 4.61 and 2.68) and MC-82 x MC-34 (4.45, 4.16 and 1.56) possessed higher sca affects consistently.
0. 100 seed woight

Mean square due to gea end sca were highly ignificant for all the three seasons. Estimatos of gea effects revealed that the parents MC-78 (1.95, 5.67 and 1.38), MC_84 (3.26, 1.04 and 1.52), MC-66 (3.15, 0.9 and 1.38) and Priya ($1.95,0.75$ and 1.55) possessed higher values in general. The mall fruited type MC-79 possessed negative valuas for soed weight also. Arka Harit x MC-69 (2.75), MC-78 \times MC-84 (2.71), MC-84 \times MC-82 (2.22) and MC-78 x MC-66 (2.07) in the first, Priya \times MC-49 (2.93), Priya \times MC -69 (2.68) and Priye \times MC- 34 (2.58) in the scoond and Priya x Arka Merit (3.77). Priya x MC-66 (3.19)

Foble 23. Eatimates of aca effects of $45 F_{1}$ hybrids for yield and fruit charactora during fixet

F 1 hybrida	$\begin{aligned} & \text { Yield } \\ & \text { plant } \end{aligned}$	Fruita/ plant	Frult weight	Fruit length	Fruit girth	Flesh th1ckne	$\begin{aligned} & \text { seeds/ } \\ & \text { afrult } \end{aligned}$	100 geed veight
1	2	3	4	5	6	7	B	9
Prife \times MC-78	-0.31	-1.34	0.21	1.17	-0.77	-0.12	0.17	0.77
Priye x MC-84	-0.18	-0.19	23.88	0.76	-0.74	-0.06	-0.34	-0.29
Priya x Arta Harit	0.68	-4.86	-2.44	1.14	-2.75	1.07	-0.43	-1.32
Priye x NC-82	-0.55	2.50	-18.77	-4.95	0.45	-0.01	-2.01	-0.98
Priye \times MC-79	0.89	9.06	-16.73	-4.89	-0.05	0.03	1.16	-2.01
Priya x MC-66	0.01	1.25	5.84	1.83	-0.57	0.04	1.45	1.32
Prija \times MC-49	-0.23	4.64	-2.89	-0.26	-0.05	0.06	-1.30	1.08
Pripa \times HC-69	0.17	-0.21	3.15	1.70	0.55	-0.88	-0.43	1.33
Priye \times MC-34	0.58	-3.65	12.88	-0.79	0.98	-0.10	-1.38	0.56
nc-78 \times Mc-84	-0.07	-2.92	4.40	1.24	1.08	-0.14	-2.03	2.71
MC-78 \times Arica Harit	-0.31	-9.59	3.84	1.52	2.42	0.02	-1.11	0.43
MC-78 \times MC-82	0.71	6.27	-13.50	-4.47	1.18	-0.09	-0.19	-0.48
MC-78 x MC-79	1.75	-0.17	2.04	-3.86	-0.33	0.07	0.97	-3.01
MC-78 \times MC-66	0.57	10.02	7.61	2.51	0.34	0.14	0.76	2.07
NC-78 \times MC-49	0.81	9.42	4.88	-0.43	-0.08	-0.07	0.51	0.33
HC-78 \times MC-69	-0.17	1.31	1.42	1.58	-0.63	0.21	0.39	-0.67

Table 23. Continued

1	2	3	4	5	6	7	8	9
NC-7e $=$ MC-34	0.04	4.12	10.15	-0.66	-0.60	-0.06	-0.07	-0.31
MC-78 x Arka Har1t	0.46	-3.94	13.50	0.26	1.31	-0.00	0.07	1.38
MC-84 \times MC-82	0.41	5.92	-34.33	-0.93	-2.94	0.06	-3.51	2.22
MC-84 \times MC-79	0.18	-2.02	-20.29	-2.72	-2.05	-0.22	1.66	-4.19
MC-84 \times MC-66	-0.36	6.41	11.27	0.65	1.17	0.02	0.95	1.77
MC-84 x MC-49	0.51	2.56	8.04	1.36	-0.10	-0.11	2.70	0.78
NC-84 = HC 69	-0.15	0.96	-31.42	0.22	1.61	-0.07	-2.43	-2.97
MC-84 x MC-34	-0.44	-0.23	2. 31	0.38	-0.87	0.15	0.12	-1.24
Arlea larit x MC-82	-0.41	-2.00	-34.14	-4.05	-0.10	-0.78	0.41	-0.07
Arke Harit \times MC-79	2.53	47.81	-46.60	-3.84	-1.15	-1.06	0.57	-2.09
Arka Harlt \times MC-66	-1.35	3.25	2.46	1.48	-2.49	-0.52	0.87	0.24
Arlen Harit x MC-49	2.66	-9.36	15.23	0.54	3.64	-0.32	0.62	0.50
Arica Harit x MC669	-0.79	-6.21	9.77	0.25	-1.70	-0.11	0.49	2.75
Arica Harit x MC-34	-0.38	-3.40	27.00	0.91	-2.07	-0.67	0.03	-0.02
MC-82 \times MC-79	-0.99	-9.84	34.56	8.86	4.05	0.80	1.99	1.49
MC-82 \times MC-66	0.24	-0.15	-13.87	-2.47	-0.63	-0.48	-0.22	-3.43
MC-82 \times MC-49	-1.26	-3.00	-0.10	0.59	-1.70	-0.01	-1.47	-0.17
NC-82 \times MC-69	1.13	-1.86	3.94	-5.19	-0.40	0.15	2.91	0.08
MC-82 \times MC 34	1.05	4.96	28.67	-2.29	-1.52	0.02	4.45	-0.19

Table 23. Continued

1	2	3	4	5	6	7	8	9
MC-79 $\times \mathrm{MC}-66$	0.36	-5.34	-9.83	-4.45	-2. 39	0.09	-2.05	-4.21
MC-79 \times MC-49	-1.77	-3.19	-29.56	-0.14	-2.96	-0.22	0.20	-2.20
MC-79 \times MC-69	0.72	-0.54	-0.52	-4.03	-0.85	-0.21	2.07	-1.70
MC-79 = MC-34	0.14	-1.73	22.71	-1.17	-0.97	-0.04	-0.88	-0.97
MC-66 \times MC-49	0.04	9.99	18.00	0.38	-0.96	0.32	-2.01	0.88
$\mathrm{MC}-66 \times \mathrm{MC} 69$	0.24	-2.39	3.54	1.49	0.61	0.23	-2.13	0.13
MC-66 \times MC-34	0.05	-7.05	-39.97	0.75	1.39	0.06	-1.09	-1.64
MC-49 > MC-69	0.05	4.79	7.81	0.90	1.24	-0.05	0.12	0.39
MC-49 \times MC-34	1.31	10.60	-40.96	0.76	0.87	0.25	-0.34	1.62
MC-69 \times MC-34	-0.59	0.25	-29.42	1.27	0.38	0.19	-1.47	-0.19
52 (aij)	0.05	0.93	1.47	0.10	0.04	0.05	0.26	0.20
	0.17	2.06	4.87	0.32	0.17	0.17	0.88	0.65
SE (a11-s)ke)	0.17	1.96	4.65	0.30	0.14	0.17	0.84	0.62

Teble 24. Ertinates of sea effects of $45 \mathrm{~F}_{1}$ hybrida for yield and fruit charactera during second season

F_{1} hybrids	$\begin{aligned} & \text { Yield/ } \\ & \text { plant } \end{aligned}$	Pruita/ plant	Fruit weight	$\begin{aligned} & \text { Fruit } \\ & \text { length } \end{aligned}$	Fruit girth	Flesh thickness	$\begin{aligned} & \text { seeds/ } \\ & \text { fruit } \end{aligned}$	100 sced woight
1	2	3	4	5	6	7	8	9
Priza x MC-78	0.25	1.85	-1.97	5.40	0.10	-0.28	1.72	-3.92
Priya \times MC-84	0.09	1.31	8.57	-1.00	-0.90	0.03	0.43	-0.54
Priye x Arka Herit	-0.85	1.09	-30.83	-0.38	-0.51	0.34	-1.89	0.29
Priya \times MC-82	0.29	-3.81	3.49	-7.36	0.05	-0.13	-0.93	-3.70
Priya \times MC-79	-1. 36	-9.43	-13.37	-6.26	1.18	-0.17	-1.03	-2.41
Priye \times MC-66	0.27	1.55	3.56	-0.33	0.47	0.06	1.88	1.10
Priya x MC-49	1.50	1.51	17.65	1.71	0.55	0.02	1.32	2.93
Priya x nc-69	-0.39	-1.47	3.84	3.38	-0.07	0.18	-2.99	2.68
Prifa \times MC-34	-0.25	-0.87	6.59	-2.15	0.10	-0.03	1.55	2.58
MC-78 \times MC-84	0.29	-1.60	13.51	-0.21	1.56	-0.01	2.68	-2.71
wC-78 x Arka Harit	-0.48	-2.94	-0.04	-0.03	-0.49	-0.15	-1.39	-3.39
MC-78 \times MC-62	-1.09	0.41	-32.97	-5.74	-1.13	0.19	-3.43	2. 38
MC-78 \times MC-79	-1.48	12.79	-45.08	-4.57	-1.86	-0.20	1.22	-5.82
MC-78 \times MC-66	0.79	-1.48	15.35	-0.46	-0.02	0.03	2.63	-2.81
MC-79 x MC-49	0.47	-2.27	3.44	-1.45	0.51	0.05	1.07	-1.74

Toble 24. Contimued

1	2	3	4	5	6	7	8	9
MC-79 = \%C-69	0.29	-2.75	18.64	3.27	1.15	0.02	-0.49	-3.24
NC-78 \times MC-34	0.25	-2.90	25.38	-1.78	0.81	-0.04	1.05	-4.09
MC-84 x Arla Harit	-0.96	4.02	-49.74	1.72	0.73	0.28	-2.68	-0.75
MC-84 \times MC-82	1.17	4.62	-20.93	-1.99	-0.10	0.19	-2.72	-5.00
MC-94 \times MC-79	-0.57	0.50	-26.54	-2.74	-1.38	-0.40	0.43	-0.20
MC-84 x MC-66	-0.14	0.73	-5.61	0.57	-0.35	-0.17	1. 34	0.06
MC-94 \times MC-49	1.04	-3.07	31.24	2.96	-0.49	0.10	0.78	-0.37
MC-34 \times MC-69	0.26	-4.80	29.43	-0.45	-0.03	-0.13	-0.53	1.38
nC-94 \times MC-34	0.59	-0.69	29.17	0.25	-2. 34	-0.23	-0.24	0.79
Arica Marit x MC-82	0.69	-4.10	2.17	-3.32	-1.56	-0.32	-1.78	-1.91
Arka Mer1t x MC-79	2.19	8.03	11.57	-2.97	-0.94	-0.64	2.86	0.13
Arica Harit x MC-66	-0.96	-1.49	-22.76	0.81	0.65	-0.03	3.28	2.15
Arka Harit x MC-49	-1.26	-8.54	32.59	1.80	0.18	0.14	2.72	0.97
Arke Harit \times MC-69	-0.01	11.24	-70.71	-0.33	-0.81	-0.29	0.16	0.47
dina Harit x MC-34	0.15	-3.41	33.53	0.92	-1.02	-0.47	1.20	-0.63
MC-82 \times MC-79	1.55	-0.12	37.13	10.82	2.78	0.07	0.82	-3.61
HC-82 \times MC-66	0.27	-0.39	-1.07	-2.67	-0.48	-0.32	-2.26	-4.85
MC-82 $=\because C-49$	-0.94	-2.93	-17.85	-1.63	-1.53	0.10	1.68	-4.15

Toble 24. Continued

1	2	3	4	5	6	7	B	9
HC-82 \times MC-69	-0.48	-4.84	-19.53	-4.66	-0.27	-0.21	4.61	-3.53
MC-82 \times MC-34	-0.22	-1.95	-20.91	-0.01	1.52	0.23	4.16	-3.82
MC-79 \times NC-66	-0.72	-6.26	4.54	-2.92	0.24	0.39	-3.62	-2.05
MC-79 \times MC-49	-0.22	5.95	-7.95	-1.16	-0.68	-0.19	-2.18	-0.23
NC-79 \times MC-69	-0.17	-11.03	9.49	-4.69	-1.17	0.50	2.76	-1.10
MC-79 \times MC- 34	-0.99	-17.93	-0.77	-1.84	0.24	0.69	2.30	-0.83
MC-66 x MC-49	0.36	7.17	-22.78	0.97	-0.15	0.12	-2.26	-0.72
MC-66 \times M. $\mathrm{C}_{\text {- } 69}$	-0.19	1.70	-4.83	1.29	0.61	0.21	2.18	1.53
nc-66 \times nc-34	-0.21	4.05	-17.09	0.29	-0.72	0.03	-0.28	1.68
HC-49 x MC-69	-0.24	7.90	-38.48	-0.34	-0.06	-0.15	1.14	1.10
MC-49 \times MC-34	-0.08	12.51	-55.99	1.11	0.11	0.17	-1.10	3.01
MC-69 \times MC- 34	0.54	4.53	-4.80	0.83	-0.76	0.17	-1.91	1. 51
SE (aij)	0.10	0.40	0.35	0.10	0.14	0.04	0.46	2.74
8E (sij-silu	0.28	1.31	1.15	0.28	0.51	0.17	1.53	9.09
SE (sij-skl)	0.26	1.25	1.10	0.26	0.48	0.14	1.46	8.67

Table 25. Egtimatea of sca effect of $45 \mathrm{~F}_{1}$ hybrida for yield and fruit cheracters during third season

F_{1} hybrids	yleld plant	Fruits/ plant	Fruit weight	$\begin{aligned} & \text { Fruit } \\ & \text { length } \end{aligned}$	Fruit girth	Flesh thickness	Seede/ frult	100 Sbed woight
1	2	3	4	5	6	7	8	9
1. Priza x MC-78	1.01	3.42	7.34	2.52	-2.03	-0.13	0.94	0.44
2. Priya \times MC 84	-0.39	0.62	-4.91	-0.71	-1.39	0.19	0.56	2.04
3. Priya x Arka Harit	-0.76	-1.14	0.78	-0.68	0.56	1.06	-0.72	3.77
4. Priya \times MC-82	-0.10	-6.64	13.65	-1.59	1.67	-0.48	-1.61	0.08
5. Priya x MC-79	-0.27	0.32	-7.16	-3.47	-0.72	0.06	1.08	-6.08
6. Priya x MC-66	0.84	1.44	4.03	0.79	0.54	-0.17	-0.40	3.19
7. Priya x MC-49	0.10	0.51	2.42	-1. 32	0.21	0.53	-0.28	0.23
8. Priya x MC-69	-0.11	-0.84	2.83	1.30	0.63	-0.21	-1.71	-3.19
9. Priya \times HC-34	-1.61	-2.70	-27.58	-1.44	1.16	0.08	-0.84	-1.05
10. MC-78 \times MC-84	-0.01	1.41	3.87	0.67	1.14	-0.06	-1.25	1.72
11. C-78 \times Arka Harit	-0.69	-2.47	10.06	-1.05	2.74	0.21	0.60	0.20
12. MC-78 \times MC-82	-0.38	-5.72	-8. 32	-2.66	1.20	0.25	-0.16	-1.74
13. MC-78 \times MC-79	-1.28	-5.27	-24.38	-3.64	1.71	-0.29	-0.22	-5.27
14. MC-78 \times MC-66	2.09	5.86	12.56	0.57	0.33	-0.04	1.55	0.86
15. NC-78 \times MC-49	-0.06	0.92	3.45	-2.44	0.89	0.26	0.92	1.90

Toble 25. Continaed

1	2	3	4	5	6	7	8	9
16. MC-78 \times MC-69	0.21	-0.05	5.48	3.43	-0.34	-0.08	-0.27	-1.20
17. MC-78 \times MC-34	-1.39	-1.29	-25.29	-1.71	-0.36	-0.27	0.11	1.88
18. MC-84 \times Arka Harit	-0.75	1.97	-8.19	-0.48	2.83	-0.12	-0.41	0.30
19. MC-84 \times MC-82	-0.98	-9.53	-34.07	4.15	-0.56	-0.26	-2.05	-0.64
20. NC-84 \times MC-79	-1.13	-2.07	-48.63	0.82	-2.75	-0.62	-0.61	-4.67
21. MC-84 \times MC-66	-0.27	-4.94	10.81	-0.16	-1.53	0.26	0.91	-0.78
22. MC-84 \times MC-49	-0.53	2.12	-14.55	-1.28	-0.47	-0.02	-0.46	-2.74
23. MC-84 \times MC-69	0.04	2.78	-11.77	0.99	-1.51	0.01	1.60	-1.10
24. MC-84 \times MC-34	0.19	-0.84	31.20	-0.74	-1.22	-0.05	-1.28	-2.26
25. Arica Harit \times MC-82	0.84	-5.79	-12.88	0.49	-3.27	-1.06	1.92	-0.41
26. Arka Herit \times MC-79	0.69	-4.83	-17.14	-1.64	-4.01	-1.30	0.86	-4.44
27. Arka Harit \times MC-66	-1.59	-9.70	5.74	0.47	-1.54	-0.92	0.38	0.45
28. Arka Herit \times MC-49	-0.41	0.86	3.64	0.16	-0.63	-0.13	0.75	-3.01
29. Arica Harit \times MC-69	0.33	2.02	7.17	0.68	-1.16	-0.09	-2.43	-0.37
30. Aria Harit x MC-34	1.71	10.15	-3.86	1.34	-1.97	0.22	2.19	0.47
31. $\mathrm{nc}-82 \times$ 亿C-79	2.12	17.92	50.18	4.09	2.10	0.94	1.47	-2.63
32. МС-82 \times MC-66	-1.69	0.55	-34.89	-6.19	-0.78	0.44	-0.76	1.01
33. MC-82 \times MC-49	-0.87	-5.64	-24.24	-3.60	-2. 37	0.11	-0.13	-0.70
34. MC-82 \times MC-69	-1.74	-1.98	-41.70	-7.74	-2.15	-0.11	2.68	0.70
35. MC-82 \times MC- 34	-1.18	-5.09	-9.24	-3.02	-0.50	-0.17	1.56	2.03

Contd.

Trbla 25. Continuad

1	2	3	4	5	6	7	B	9
36. MC-79 \times MC-66	-1.12	0.26	-22.94	0.38	-0.32	0.08	-2. 32	-5.27
37. MC-79 \times MC-49	-1.57	-11.18	-16.55	3.32	0.49	0.25	-0.44	-2.77
32. HC-79 \times MC-69	0.00	-6.78	-3.77	-0.16	2.46	0.28	0.87	-0.96
39. MC-79 \times MC-34	0.31	-6.64	16.95	2.25	0.20	0.47	0.49	-0.75
40. MC-66 x MC-49	0.84	2.44	6.39	0.93	-0.04	-0.18	0.08	0.40
41. MC-66 \times MC-69	0.44	-2.40	12.17	0.45	0.73	0.21	0.89	-2.20
42. M.C-66 \times MC-34	-0.89	-1.27	-9.86	0.27	0.52	-0.08	-0.74	-0.37
43. MC-49 \times MC-69	0.22	1.16	9.32	4.09	0.34	-0.05	1.27	0.09
44. MC-49 \times MC-34	1.83	6.80	20.54	0.30	0.43	-0.36	0. 39	0.17
45. MC-69 x MC-34	-0.76	-2.79	-10.43	0.17	0.09	0.30	-1.55	-1.43
SE (51j)	0.03	0.58	0.73	0.14	0.04	0.05	0.26	0.24
SE (311 -aik)	0.10	1.94	2.42	0.42	0.14	0.17	0.85	0.79
SE (sij-skl)	0.10	1.84	2.31	0.04	0.14	0.17	0.82	0.75

and MC-82 x MC-34 (2.03) in the third seasons had the higher sea effects.
3. Heterosis in bitter gourd

General analysis of variance for 10 parents and 45 hybrids indicated significant differences among the genotypes in all the three seasons for all the characters, except days to picking maturity in the third season (Table 15). The Relative Heterosis (RH), heterobeltiosis (HB) and standard heterosis (SH) calculated are presented In Table 26 to 40.
a. Branches/plant

Out of $45 \mathrm{P}_{1}$ hybrids significant relative heterosis was shown by 16 in first, 12 in second and 22 in third seasons. Arka Hart \times MC-79 recorded the highest heterosis of $37.9 \%, 53.09 \%$ and 33.33% in first, second and third seasons respectively. Other crosses like Arks Barit x MC-82 (26.67%) in first, MC-82 \times MC -66 (31.11\%), MC-84 x KC -19 (23.72\%) and Priya \times MC-79 (23.31\%) in second and Ark Hart \times MC-82 (26.17\%) in third seasons had higher values of relative heterosis.
significant heterobeltiosis was recorded by three hybrids in first, seven in second and four in third seasons. Ark Hart x MC-82 in first and third (15.15\% and 14.63%) and MC-84 \times MC-49 (19.日2\%) in second seasons recorded highest values of heterobeltiosis for this trait.

Standard heterosis was significant for eight hybrids in first, ten in second and nine in third seasons. Aria Hart x MC-79 recorded consistently higher standard heterosis in all the three seasons (32.17\%, 50.43% and 35.54\%). Other crosses with higher standard heterosis are Priya \times MC-79 in first (16.78%) and second (42.61%) seasons.
b. Main vine length

Fifteen hybrids in first, one in second and ten in third seasons recorded significant relative heterosis for Vine length. Arka Barit \times MC -79 had the highest and consistent relative heterosis ($44.42 \%, 57.58 \%$ and 42.29%).

None of the hybrids showed significant heterobeltiosis In first and second seasons. However, in the third season it was sIgnificant for the crosses Priya \times MC -79 (8.63\%) and MC-66 x MC -49 (14.35\%).

Significant standerd heterosis was observed in five crosses in first and three in third seasons. It was not significant in second season. The crosses MC-7B \times MC-79 (14.4\%) and Priya \times MC-79 (23.27%) recorded the higheat values for the first and third seasons respectively.
c. Mode to firat female flower

Significant and negative relative heterosis was observed for seven hybrids in first, five in second and six in third seasons. NC-19 x MC-34 (-10.0%) and MC-84 x
 In second and MC-78 \times MC-69 (-11.9%) and MC-84 \times Arka Harit (-11.66%) in third scasons recorded highest negative hoterosis for node of first fenale flower formation.

Heterobeltiosis was nignificent for four hybrids in first and three in third seasons. There was no significant heterobeltiosis in the second season. The hybrids MC-49 x MC-34 (-8.99%) and MC-78 \times MC-69 (-9.76%) possessad highert and negative values in first and thind seasons respectively.

Conaldarable standard heterosis was observed in all the three seacons for meny hybrids. The hybrids with highest standard heterosis observed vere Arka Harit \times MC-B2 (-18.68%), MC-84 \times Arika Harit $(-18.68 \%), \mathrm{MC}-78 \times \mathrm{MC}-82$

Table 26. Mean performance of paremta and Finybrida and ortent of hatorome for wrenchea/ilent.

Parenta/crossea	Branchea/plant				Main vino length				Mode to	0 flrat famale flowor		
	Mean	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HD} \\ & \left.()^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{SH} \\ & (\mathrm{x}) \end{aligned}$	Mean (ra)	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { HB } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { 8H } \\ & (x) \end{aligned}$		$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Ki } \\ & (x) \end{aligned}$	8H (x)
1	2	3	4	5	6	7	8	9	10	11	12	13
Priye	37.75				6.25				22.75			
nC 78	35.25				6.38				22.25			
NC 84	35.63				6.77				22.50			
Arla Marit	24.63				2.63				18.75			
NC 82	20.38				2.08				19.38			
MC 79	43.75				7.55				20.13			
MC 65	37.50				5.90				21.75			
Ne 49	33.75				5.35				22.25			
ISC 69	32.75				5.19				20.75			
nc 34	31.75				5.75				22.75			
Pripa x wc 78	34.63	-2.11	-2.79	-2.79	6.48	2.61	1.57	3.60	22.75	1.11	2.22	0.00
Priya x MC 84	35.50	-0.35	-0.69	-0.69	6.50	0.75	3.92	4.00	22.50	-0.55	0.00	-1.09
Prifa \times Arica Harit	30.63	1.65	-13.99	-13.99	4.50	1.40	-28.00	-28.00	20.50	-1.20	-9.33	-9.90
Priye x NC 82	28.50	1.78	-7.48	-7.47	4.25	2.10	-32.00	-32.00	20.50	-2.94	5.12	-9.90
Pripa x MC 79	41.63	5.03	-4.57	16.78	7.05	2.17	-6.62	12. ${ }^{\text {帾 }}$	21.50	0.00	6.17	-5.49
Priya \times me 66	38.88	4.02	3.33	$8.3{ }^{\text {\% }}$	5.88	-3.29	-6.00	-6.00	21.50	-2.80	-1.15	-5.49
Priya x we 49	34.50	-0.72	-3.50	-3.50	6.15	$6.0{ }^{\text {a }}$	-1.60	-1.60	21.50	-4.40	-3.37	-5.49
Priya \times nc 69	33.50	-2.23	-6. 29	-6.29	6.05	5.76	-3.20	-3.20	20.50	-5.74	-1.20	-9.90

1	2	3	4	5	6	7	B	9	10	11	12	13
Priya \times MC 34	34.50	2.22	-3.49	-3. 49	6.18	2.96	-1.20	-1.20	21.50	-5.49	-5.49	-5.49
MC $78 \times$ MC 84	35.50	0.35	0.00	-0.69	6.75	2.74	-0.22	8.00	21.75	-2.79	-2.25	4.40
mC $78 \times$ Arica Har	31.80	4.47	-9.22	-10.49	5.15	14.44	-19.21	-17.60	20.00	-2.44	6.67	-12.0ิ
MC $78 \times$ MC 82	29.00	4.50	-17.73	-18.88	4.60	0.89	-27.80	-26.40	20.25	-2.76	-3.85	-10.92
MC $78 \times$ MC 79	41.00	3.80	-6.29	14.69	7.19	2.69	-5.30	14.40	21.25	0.31	4.94	$4-6.60$
MC $79 \times$ MC 66	37.50	3.09	0.00	4.90	5.90	-3.87	-7.45	-5.60	20.75	-5.68	-4.60	- -8.80
MC $78 \times$ MC 49	37.63	-2.54	-4.25	-5.60	6.13	4.48	-3.92	-2.00	22.25	0.00	0.00	-2.20
WC $78 \times$ NC 69	31.38	-7.79	-10.61	-11.89	5.90	2.03	-7.45	-5.60	20.75	3.60	0.00	-8.80
NC $78 \times \mathrm{MC} 34$	33.00	-1.49	-6.38	-7.69	5.99	-1.07	-5.96	-4.00	21.50	-4.40	-3.37	-5.49
wC 84 xarla Harit	30.75	2.07	-13.38	-13.97	4.85	3.30	-28.31	-2.40	18.50	-10.30	-1.33	-18.68
MC $84 \times$ MC 82	30.00	7.6 数	-15.49	-16.08	4.50	1.81	-33.81	-28.00	20.50	-2.95	5.12	-9.90
MC $84 \times$ MC 79	39.50	-3.10	-9.71	$10.4{ }^{\text {* }}$	7.00	-2.20	-7.28	12.0 ®̈	20.50	-3.80	1.23	-9.90
MC $84 \times$ MC 66	36.63	0.68	-2.00	2.80	6.15	-2.88	-9.09	-1.60	20.25	-8.40	-6.90	-10.99
MC $84 \times$ MC 49	34.00	1.81	-4.23	-4.90	6.13	1.11	-9.64	-2.00	22.25	-0.56	-0.00	-2.20
MC $84 \times$ MC 69	33.50	-1.90	-5.60	-6.29	5.90	-1.30	-12.79	-5.60	21.25	-1.85	2.41	-6.60
MC $84 \times$ MC 34	31.50	-6.32	-11.20	-11.89	6.25	-0.08	-7.61	0.00	21.75	-3.87	-3.33	-4.40
Srica Harit x yre 82	28.50	26.67	15.15	-20.28	2.65	12.7 \% ${ }^{\text {\% }}$	0.95	-57.60	18.50	-3.01	-1.33	-18.68
Arice Harity MC 7	47.25	-37.96	8.00	32.17	7.35	44.42	-2.65	-17.60	20.50	5.48	9.33	-9.90
Arlo HaritxMC 66	30.50	-2.00	-18.67	-14.69	4.25	-0.29	-27.97	-32.00	19.75	-2.47	5.33	-13.19

 Arla Hartt x MC 69 28.00 $\mathbf{- 2 . 6 9} \mathbf{- 1 4 . 6 3} \mathbf{- 2 1 . 6 8} 3.30$ Arka Harit x MC $3429.50 \quad 4.42$ 10.00 $\mathbf{1 0} \mathbf{7 0 . 4 8} 3.75$

MC $82 \times \mathrm{MC} 79$ MC $82 \times$ MC 66 MC 82 x MC 49 NC 82 I MC 69 MC $82 \times$ NC 34 MC $79 \times$ MC 66 NC $79 \times$ MC 49
WC $79 \times$ MC 69
MC $79 \times$ NC 34
NC $66 \times$ MC 49
MC $66 \times$ MC 69
NC $66 \times$ MC 34
MC 49 I MC 69
MC $49 \times$ MC 34
MC 69 I MC 34
($\mathrm{D}=0.05$)
CD ($\mathrm{p}=0.01$)

6.58	-20.56-32.00	20.88	1.46	10.67	$7-8.8{ }^{\text {er }}$
-15.55	-36.41-47.20	19.38	-1.90	4.00	- 14.25
-10.39	-34.73-40.00	21.75	4.82	0.16	6 -
-1.30	-37.09-24.00	20.75	4.40	6.41	$1-8.80$
12.85	-23.73-28.00	20.50	-0.61	5.13	$3-9.90$
27.95	-11.12-24.00	21.00	0.60	7.69	-7.70
10.12	-22.93-36.00	20.50	1.86	5.12	- -9.90
3.58	-29.50-35.20	20.50	-3.96	5.12	-9.90
-8.55	-18.54 -1.60	21.25	1.19	4.94	80
-1.55	-15.89 1.60	21.25	1.18	6.17	49
-5.80	-20.05-4.00	21.50	4.89	6.17	-5.49
3.01	-9.27 9.60	21.25	-1.16	4.94	-6.60
9. ${ }^{\text {k }}$	$4.23-1.60$	20.25	-6.90	-6. ${ }^{* 9}$	-10.0゙9
-3.52	-9.32-14.40	20.50	-3.53	-1.20	0
-8.90	-10.17-15.20	21.50	-3.33	-1.15	-5.49
-6. 26	$4.67-10.40$	21.50	0.00	3.61	-5.49
8.1̂*	$4.44-4.00$	20.25	-10.0̈\%	-8.99 ${ }^{\text {a }}$	-10.09
-3.98	$1.16-16.00$	22.50	3.45	8.43	-2.05
0.24	0.280 .28	1.04	1.25	1.04	1.04
0.31	$0.36 \quad 0.36$	1.36	1.65	1.36	1.36

Tholo 27 . Moan porformance of parenta and Fi hybride and oxtend of hoteromis for brancherviant. Nine lemgth and mode to firet female flower in bittor gourd during gecond manon

Parentr/croanes	Primany branchea/plant				Main vine length				Node to firat Iamale			
	Mean	$\begin{aligned} & 8 H \\ & (\%) \end{aligned}$	HB (\%)	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Man (m)	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & H B \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{SH} \\ & (x) \end{aligned}$	Man	$\begin{aligned} & R H \\ & (\%) \end{aligned}$	HB (x)	$\begin{aligned} & 8 H \\ & (\%) \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Priya	28.75				6.18				23.25			
He 78	28.25				6.05				22.00			
MC 8	27.75				5.38				21.50			
Arloz Harit	18.75				2.05				19.50			
MC 32	15.75				1.88				19.25			
1.679	37.75				6.45				18.50			
xe 66	29.25				4.95				22.25			
me 49	26.00				5.03				21.00			
nc 69	24.13				4.43				21.75			
ne 35	26.88				4.73				22.75			
Pripa x NC 78	25.50	-10	-11	-11.30	6.18	1.19	0.16	0.16	22.75	0.55	3.40	-2.15
Prife x nc 84	26.50	-6	-7	-7.82	6.03	4.42	-2.30	-2. 30	22.00	-1.68	2.33	-5.38
Prife x Aria Harit	20.50	-13	-28	-28.69	2.88	30.21	-53.52	-53.52	19.25	-9.94	-1.28	-17.20
Prifa x nc ${ }^{\text {e2 }}$	16.75	-24	-41.	-41.74	2.28	43.48	-63.16	-63.16	22.25	4.71	15.50	-4.30
Prifa x MC 79	41.00			42.61	6.43	1.78	-0.39	4.01	21.75	4.19	17.57	-6.45
Priva x MC 66	29.25			1.74	5.83	4.72	-5.71	-5.67	23.25	2.20	4.49	0.00
Priye x nc 49	30.75			6.95	5.90	5.36	-4.45	-4.45	21.75	-1.70	3.57	-6.45
Priza $=$ MC 69	26.50	-4.	-7.	-7.83	4.30	18.87	-30.36	-30.36	22.75	1.11	4.60	-2.15

Table 27 . Coneinued

Priya x NC 34
$22.75-4.50-20.86-20.86$ MC 78 I MC $84 \quad 25.50-8.93-9.73-11.30$ MC $70 \times$ Arlea Harit 22.75 - 1.26 -19.46 $\mathbf{- 2 0 . 8 7}$ MC $78 \times$ MC $82 \quad 16.88-23.64-40.50-41.56$ NC $78 \times$ UC $79 \quad 33.75 \quad 2.27-10.60 \quad 17.39$ MC $78 \times$ HC 66
MC 78 I NC 49
$29.75 \quad 3.49 \quad 1.71 \quad 3.48$
$29.00 \quad 6.91 \quad 2.65 \quad 0.87$ NC $78 \times$ MC $69 \quad 25.75-1.45 \quad-8.85-10.43$
MC $78 \times$ NC 34
$27.75-0.91 \quad-1.77 \quad-3.48$
MC $84 \times$ Aria Harit $22.50 \quad \mathbf{- 3 . 2 2} \mathbf{- 1 8 . 9 2} \mathbf{- 2 1 . 7 4}$
MC $84 \times$ MC 82
MC $84 \times$ MC 79
MC $84 \times$ MC 66
MC $84 \times$ MC 49
NC 84 ㅍ MC 69
MC $84 \times$ MC 34
$\begin{array}{rrrr}17.00 & -21.84 & -38.74 & -40.87 \\ 32.25 & 15.27 & -1.32 & 29.57 \\ 31.50 & 10.53 & 7.69 & 9.57\end{array}$
$33.25 \quad 23.72 \quad 19.82 \quad 15.65$
$24.25-6.28-12.61-15.65$
$27.25 \quad 0.00 \quad \mathbf{- 1 . 8 0} \quad \mathbf{- 5 . 2 2}$
Arlua Harit x MC $8217.25 \quad 0.00-8.00-40.00$

Arica Harit I MC $66 \quad 28.75 \quad 19.79 \quad 1.71 \quad 0.00$

6	7	8	9	10	11	12	13
5.18	-4.86	-16.03	-16.03	22.75	-1.01	0.00	-2.25
5.68	-0.56	-6.12	-8.02	23.25	6.90	8.13	30.00
2.88	-28.89	-52.40	-53.36	21.75	4.82	11.54	-6.45
2.32	-41.30	-61.57	-62.35	22.25	7.88	15.58	-4.30
6.38	2.00	-1.08	3.32	21.25	4.94	14.86	-8.60
5.13	-6.64	-15.12	-16.84	22.75	2.80	3.41	-2.15
5.33	-3.66	-11.82	-13.60	22.50	4.65	7.14	-3.23
4.97	-5.11	-17.85	-19.51	23.50	7.43	8.04	1.08
5.18	-3.94	-14.46	-16.19	21.50	-3.50	2.27	-7.53
2.72	-26.60	-49.30	-55.87	19.25	-6.10	-1.28	-17.20
2.18	-39.86	-59.44	-64.70	20.50	0.61	6.40	-11.83
6.18	4.61	-4.11	1.00	21.25	6.25	14.86	-8.60
5.41	4.79	-4.37	-12.39	22.50	2.86	4.65	-3.23
5.14	-1.15	-4.37	-16.76	23.50	10.59	11.90	1.08
4.88	-0.41	-9.21	-20.97	22.25	2.89	3.48	-4.30
4.81	-4.75	-10.51	-22.11	23.25	5.08	8.14	0.00
1.91	-2.90	-7.07	-69.50	20.50	5.80	6.49	-11.83
6.67	57.58	-3.49	8.10	18.25	3.94	-1.35-	-21.50
2.78	-20.57	-43.84	-54.98	22.50	7.78	15.38	-3.23

1	2	3	4	5	6	7	8	9	10	11	12	13
Arlea Harlt x MC 49	27.50	22.9 古	5.77	-4.35	3.05	-13.81	39.30	-50.61	22.00	8.64	12.82	-5.38
Arla Harit I MC 69	21.50	0.58	-10.42	-25.21	2.84	-12.12	-35.71	-53.93	21.00	1.82	7.69	-9.68
Nrka Harlt I NC 34	19.50	-14.28	-27.10	-32.17	3.09	-8.78	-34.60	-49.86	22.75	7.69	16.67	$7-2.15$
HC $82 \times$ NC 79	32.50	21.49	-13.91	-13.04	2.28	-45.11	-64.57	-62.30	20.75	9.93	12.16	-10.75
HC $82=$ NC 66	29.50	31.11	0.85	2.61	2.70	-20.73	-45.35	-66.19	19.25	-7.23	0.00	-17. 20
MC $82 \times \mathrm{MC} 49$	25.00	19.70	-3.81	-13.04	2.96	-14.35	-41.19	-52.15	22.50	11.80	16.88	-3.23
MC $82 \times$ MC 69	20.25	1.89	-3.75	-29.57	3.16	0.48	-28.47	-48.74	22.75	10.98	18.18	-2.15
MC $82 \times \mathrm{MC} 34$	19.25	-9.41	-28.04	-33.04	2.31	-30.00	-51.11	-62.59	20.75	-1.15	7.79	-10.75
MC $79 \times \mathrm{MC} 66$	33.00	1.49	-12.58	14.78	5.33	-6.49	-17.36	-13.68	21.75	6.75	17.57	-6.45
HC $79 \times$ MC 49	31.00	-2.70	-17.88	7.83	6.13	6.75	-5.04	-0.81	22.00	11.39	18.92	-5.38
MC 79 I NC 69	23.75	-23.70	-37.09	-17.39	5.10	-5.66	-20.47	-16.92	21.75	-8.07	17.57	-6.45
NC $79 \times \mathrm{MC} 34$	25.00	-22.48	-33.77	-13.04	4.94	-11.59	-23.41	-20.00	22.50	9.09	21.63	-3.23
MC $66 \times$ NC 49	32.00	15.83	9.40	11.30	5.13	2.76	-1.79	-17.00	23.25	7.51	10.70	0.00
MC 66 I MC 69	26.00	-2.34	-11.11	9.57	4.65	-0.69	-6.00	-24.62	20.50	-6.82	-5.75	-11.83
MC $66 \times \mathrm{MC} 34$	23.00	-17.85	-21.37	-20.00	4.76	-1.71	-3.94	-23.00	21.50	-4.44	-3.37	-7.53
MC 49 x MC 69	26.00	4.00	0.00	-9.57	4.58	-3.07	-8.86	-25.83	23.25	B.77	10.31	0.00
MC $49 \times$ UC 34	27.50	4.27	2.80	-4.35	4.76	-2. 26	-5.17	-22.84	23.25	6.29	10.71	0.00
IIC $69 \times$ MC 34	26.38	4.04	-1.30	-8.17	4.28	-6.56	-9.52	-30.77	21. 50	-3.37	-1.15	-7.53
$C D(p=0.05)$	2.12	1.84	2.12	2.12	0.62	0.51	0.62	0.62	1.48	1.27	1.48	1.27
c) (p0.01)	2.79	2.42	2.79	2.79	0.81	1. 31	0.81	0.81	1.94	1.67	1.67	1.67

Primary branches/plant

Main vine length
Node to firit female flower

Parenta/Crossea	Primary branches/plant				Main vine length				Node to first femalo flowar			
	Moan	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{SH} \\ & (\%) \end{aligned}$	Man (m)	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { HB } \\ & (x) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HD} \\ & (x) \\ & \text { (} \end{aligned}$	$\begin{aligned} & \mathrm{SH} \\ & (\mathrm{x}) \end{aligned}$
	2	3	4	5	6	7	8	9	10	11	12	13
Priya	31.75				6.13				21.50			
\%C 78	30.25				5.78				21.50			
MC 84	31.50				5.68				22.50			
Arica Harit	20.50				2.38				18.25			
MC 82	16.75				2.05				18.50			
HC 79	40.50				6.95				19.50			
MC 66	33.50				5.05				20.75			
MC 49	31.50				5.00				20.75			
MC 69	28.75				4.63				20.38			
ve 34	28.00				4.98				21.75			
Priya $\times 10 \mathrm{Cl} 9$	32.50	4.83	2.36	2.30	6.23	4.62	1.63	1.63	20.75	-3.49	-3.49	-3.49
Priya x UC 84	30.75	-2.77	-3.15	-3.15	5.90	0.00	3.67	3.67	21.30	-3.18	-0.93	-0.93
Priya \times Mrica Harit	24.75	-5.26	-22.05	-22.05	5.05	-4.70	-33.87	-33.87	20.00	0.63	9.50	-6.97
Priye x nc 92	25.75	6.18	-18.90	-18.90	3.78	-7.64	-38.36	-38.36	19.25	-5.53	4.05	-10.16
Priye x MC 79	37.50	4.52	-6.66	18.11	7.55	15.48	8.63	23.27	20.50	0.00	51.28	-4.65
Priya x MC 66	35.00	7.27	4.48	10.23	5.05	-9.61	-17.55	-17.55	20.75	-1.78	0.00	-3.49
Priya x MC 49	29.75	-5.17	-6.29	-6.29	5.63	1.12	-8.16	-8.16	20.50	-2.96	-12.05	-4.65
Priya \times nc 69	29.75	-1.65	-6. 29	-6.29	5.55	3.25	-9.38	-9.38	20.50	-2.38	0.00	-4.65

Table 29.
 Contimued

1

Priya x MC 34
MC $78 \times$ MC 84
me $78 \times$ Arka Harit
MC 78 x MC 82
NC $78 \times$ MC 79
MC $78 \times$ HC 66
MC $78 \times$ MC 49
MC $78 \times$ MC 69
WC $78 \times$ MC 34
MC $84 \times$ Arla Harit
MC $84 \times \operatorname{MC} 82$
MC $84 \times$ MC 79
MC $84 \times$ MC 66
NC $84 \times$ MC 49
MC $84 \times$ MC 69
MC B4 x MC 34
Arla Harit x MC 82 Arica Harit x MC 79 Arica Harlt x MC 66
$27.50 \quad-7.95-13.38-13.38 \quad 5.63$
$31.50 \quad 2.02 \quad 0.00 \quad 3.14 \quad 5.63$
$28.2511 .33 \quad-6.61-11.024 .63$
$23.50 \quad 0.00-23.31-25.98 \quad 3.93$
$35.00-0.35-12.50 \quad 10$. 啇 $_{3}^{*} 6.50$
$\begin{array}{lllll}33.00 & 3.52 & -1.49 & 3.94 & 5.98\end{array}$
$30.25-1.22 \quad-2.42 \quad-4.96 \quad 5.63$
$25.75-12.71-14.87-18.90 \quad 5.25$
$29.25 \quad 0.43-3.30 \quad-3.31 \quad 5.38$
$26.00 \quad 0.00-17.46-14.05 \quad 3.95$
27.50 13.99 $-12.69-13.38 \quad 3.78$
$34.50 \quad-3.49-13.79 \quad 14.05 \quad 6.88$
$33.50 \quad 3.07 \quad 0.00 \quad 10.74 \quad 5.90$
$29.50-5.60 \quad-6.34 \quad-2.48 \quad 5.48$
$29.00-3.73-7.93-4.13 \quad 5.38$
$28.50-4.20 \quad-9.52 \quad-5.79 \quad 5.53$
$23.50 \quad 25.17 \quad 14.63-22.31 \quad 2.23$ $41.00 \quad 33.33 \quad 2.50 \quad 35.54 \quad 6.63$
$26.50-1.85-20.89-12.40 \quad 3.88$
$1.35-8.16 \quad-8.16 \quad 20.63-5.20 \quad-3.48 \quad-4.49$
$\begin{array}{lllllll}-1.74 & -2.50 & -8.16 & 20.75 & -5.68 & -3.49 & -3.49\end{array}$
$13.49-19.91-24.4920 .00 \quad 0.63 \quad 9.58 \quad-6.97$
$0.31-32.03-55.9219 .50 \quad-2.50 \quad 5.40 \quad-9.30$
2.16 －6．47－6．12 $20.75 \quad 1.22 \quad 6.41 \quad-3.19$

$4.40 \quad-2.60 \quad-8.16 \quad 21.25 \quad 0.59 \quad 2.41 \quad-1.16$
$0.96-9.09-14.29 \quad 28.50-11.9$ 产 $-9.76-13.95$
$0.00-6.93-12.24 \quad 20.75 \quad-4.05 \quad-3.40 \quad-3.49$
$-1.86-30.40-35.5018 .00-11.66-1.37-16.27$
$-2.26-33.48-38.3719 .50-4.88 \quad 5.40-9.30$
$8.19 \quad-1.07 \quad 12.24 \quad 19.50 \quad-7.14 \quad 0.00 \quad-9.30$

2.57 －5．19－10．61 20.75 －4．05 $0.00-3.49$
$4.37-5.19-12.24 \quad 20.63 \quad-4.65 \quad 0.00 \quad-4.65$
$3.75-4.32-9.78 \quad 20.75 \quad-6.21 \quad-4.60 \quad-3.49$
$0.56-6.31-63.6718 .25-0.68 \quad 0.00-15.12$
42.0 莫 -4.67 B．1莫 19.75 4．64 $8.22-8.14$
$4.37-23.26-36.73 \quad 29.50 \quad 0.00 \quad 6.84 \quad-9.30$
Contd．

1	2	3	4	5	6	7	8	9	10	11	12	13
Arka Harlt \times NC-49	27.50	-6.78	-11.29	-13.38	3.78	2.37	-24.50	-38.37	20.50	5.13	12.33	-4.65
Arka harit \times MC-69	24.00	-2.53	-16.52	-20.66	3.05	-12.85	-34.05	-50.20	18.75	-3.22	2.74	-12.80
Arka Harit \times MC-34	24.50	1.03	-12.50	-19.00	3.15	-14.28	-36.60	-48.57	20.63	2.50	12.33	-4.62
MC-82 \times MC-79	31.88	12.33	-20.06	5.35	4.15	-7.78	-40.28	-32.24	19.75	3.95	6.76	-8.14
MC-82 \times MC-66	28.75	$14.4{ }^{*}$	-14.17	-4.96	4.00	12.67	-20.79	-34.70	19.50	0.64	5.41	-9.30
MC-82 \times MC-49	25.50	6.80	-17.74	-15.70	4.05	14.89	-19.00	-33.87	20.00	1.91	8.10	-6.97
MC-82 \times MC-69	24.00	5.49	-16.52	-20.66	4.05	21.35	-12.43	-33.87	19.50	0.00	5.41	-9. ${ }^{\text {* }}$
MC-82 \times MC-34	24.25	8.37	-13.39	-19.83	3.10	-11.76	-37.68	-49.38	20.00	-0.62	8.10	-6.97
MC-79 x MC-66	35.25	-4.08	-11.87	16.53	3.75	-37.50	-46.07	-38.00	20.25	0.62	3.85	-5.80
MC-79 x MC-49	37.50	5.63	-6.25	18.11	5.50	-7.94	-20.80	-10.20	21.00	4.34	7.69	-2.33
MC-79 \times MC-69	33.75	14.8 **	-15.65	$11.5{ }^{\text {k }}$ ¢	5.85	1.07	-15.82	-4.49	20.50	2.50	-5.13	-4.65
MC-79 \times MC-34	31.50	8.62	-21.25	4.13	6.00	0.62	-13.66	-2.04	21.00	1.82	7.61	-2.33
MC-66 x MC-49	31.75	-1.55	-5.22	4.96	5.78	$14 .{ }^{*}{ }^{*}$	$14.3{ }^{*}{ }^{*}$	5.71	19.75	-4.82	-4.82	-8.14
MC-66 \times MC-69	28.75	-7.63	-14.17	-4.96	4.93	1.80	-2.48	-19.60	20.00	-3.03	-2.44	-6.97
MC-66 \times MC-34	32.00	4.06	-4.48	5.79	4.83	-3.74	-3.46	-21.22	20.25	-4.71	-2.41	-5.80
MC-49 \times MC-69	31.00	3.76	0.00	2.48	5.05	4.90	1.00	-17.55	20.00	-3.03	-2.44	-6.97
$\mathrm{MC}-49 \times \mathrm{MC}-34$	37.75	4.23	-0.81	1.65	5.15	3.25	3.00	-15.92	20.25	-4.71	-2.41	-5.80
MC-69 \times MC-34	27.50	-0.06	-3.91	-8.76	4.88	1.56	-2.00	-20.41	21.88	2.95	6.10	1.16
CD ($\mathrm{p}=0.05$)	1.91	1.65	1.91	1.91	0.52	0.45	0.52	0.52	1.57	1.35	1.57	1.57
CD ($\mathrm{p}=0.01$)	2.51	2.16	2.51	2.51	0.68	0.59	0.68	0.68	2.08	1.77	2.06	2.06

(-10.99%) and MC-84 \times MC-66 (-10.99%) in firat, Arka Hartt x MC-79 (-21.5%), MC-84 x Arka Harit (-17.2%), priya x Arka Harit (-17.2%) in second and MC-84 \times Arka Harit ($1-6.27 \%$) and Arka Harit \times MC-B2 ($\mathbf{- 1 5 . 1 2 \% \text {) in third }}$ sesons.
d. Days to first female flower opening

Out of 45 hybrids, 16 in first, 10 in second and 28 in third geasons showed significant and negative hoterosis over mid parents. Hybrids with higher and negative relative hoterosis were MC-79 x MC-34 (-13.17%), Arks Harit \times MC-66 (-9.97%), MC-79 \times MC-69 (-9.75%) and nc-79 x nc-49 (-9.37%) in first, Arke Harit \times MC-49 (-10.03%) and Priya x MC-49 (-9.77%) in second and MC-49 x
 MC-66 (-10.02%) in third seasons.

Hoterobeltiosis wes significant for five hybrids in firat, nine in second and ton in third seasons. Arke Harit \times MC-66 (-7.6%) and MC-84 \times Arka Harit (-5.56%) in firat, Arka Harit \times MC-49 (-7.65%) and MC-84 \times Arka Harit (-5.08\%) in second and Arka Harit \times MC-66 (-7.47%) and MC-49 \times MC-34 (-7.25%) in third seasons.

Standard heterosis was significant for 17 hybrids In first, on a in second and 27 in third seasons. During the first season, MC-66 x MC-49 (-14.97\%) (Plate 27). MC -49 \times MC- $34(-13.28 \%)$ and MC-79 \times MC- $34(-13.17 \%)$ had highest negative standard heterosis. MC-49 x MC- 34 $(-17.65 \%), ~ M C-82 \times M C-49(-13.53 \%), ~ M C-82 \times M C-34$ $(-11.76 \%), M C-66 \times M C-49$ (12.44), MC-84 x MC-49 (-11.18\%) and MC-79 x MC-34 (-11.18%) recorded maximum standard heterosis in the third season.
C. Female Elowera/plant

Relative heterosis was significant and positive in nine crosses each in first and third and 13 in second season. It was maximum in Arks Harit $\times \mathrm{MC}-79$ (19.25\%) and MC -49 \times MC- 34 (19.25\%) in first, MC-79 \times MC -49 (28.77\%) followed by MC-49 \times MC- $34(27.65 \%)$ and Arka Hart \times MC -49 (23.51%) in second and Arka Merit x MC-79 (27.69\%) followed by MC-82 $\times 1 . C-79(14.97 \%)$ in the third seasons.

Out of 45 hybrids, 17 in first, 16 in second and 17 In third seasons exhibited significant standard heterosis. Highest values were shown by Ark Merit x KC-79 (88.92\%) followed by MC-82 x MC-79 (54.98\%) and MC -79 \times MC -49
(79.22\%)

Percentage of Eamalo Elonar

Mean	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { HB } \\ & (\%) \end{aligned}$	$\begin{aligned} & 84 \\ & (x) \end{aligned}$
6	7	日	9	10	11	12	13

Priza	41.75				67.75			6.26			
MC 78	44.00				54.50			5.38			
Ne 84	45.25				57.50			4.55			
Arla Harit	45.00				32.00			3.45			
MC 82	40.00				102.00			2.96			
NC 79	47.00				106.75			2.86			
上c 66	42.75				81.75			6.36			
MC 49	35.75				60.75			6.63			
NC 69	42.75				68.50			6.65			
MC 34	36.50				71.50			4.55			
Priya a Mc 78	44.63	3.79	6.58	6.58	57.00	-6.75-15.87	-15.87	6.08	4. 50	-2.79	-2.79
Priya \times NC 84	45.00	3.44	7.78	7.78	51.00	-18.56-24.72	-24.72	5.88	8.75	-6.08	-6.08
priya x Arion harit	43.50	0.29	4.19	4.19	39.50	-20.80-41.70	-41.70	4.43	-8.81	-29.26	-29.26
Priya x HC E2	40.50	-1.16	1.25	-3.00	77.50	-8.69-24.02	14.39	4.55	-0.01	-27.26	-27.26
Priva x nc 79	45.50	2.36	8.98	8.98	104.00	19.20 -2.76	53.50	5.85	28. 36	-6.47	-6.47
Priva x MC 66	41.50	-1.78	-0.60	-0.60	65.00	-13.04-20.49	-4.06	6.29	-2.24	-1.02	0.56
Priva x MC 49	39.00	0.65	9.90	-6.59	66.00	-11.71-2.58	-2.58	6.75	4.81	1.89	7.91
Priya x nc 69	40.50	-4.14	-3.00	-3.00	55.50	-18.53-18.98	-18.08	6.25	-3.14	-6.02	-0.08

Table 29. Continued

1 2

Priya $=$ MC 34
NC $78 \times$ NC 84
$38.50 \quad-1.60 \quad 5.48 \quad-7.78$

MC 78 x Arlea Harit
NC $78 \times$ NC 82
MC $78 \times$ MC 79
NC 78 I MC 66
MC 78 x MC 49
MC $78 \times$ NC 69
MC $78 \times \mathrm{MC} 34$
NC $04 \times$ Nrka Harit
MC $84 \times \mathrm{MC} 82$
MC 84 I NC 79
MC $84 \times$ MC 66
MC $84 \times$ NC 49
MC B4 2 MC 69
MC $84 \times$ MC 34
Arica Marit x MC 82 Arica Harit x NC 79 Arica Harit x MC 66
$58.00-16.85-19.16-14.39$ $47.00-16.07-18.26-30.63$ $31.00-28.32-46.09-54.24$ $81.50 \quad 5.43 \quad-9.12 \quad 21.77$ $89.50 \quad 13.74-16.63 \quad 31.37$ $76.63 \quad 12.66 \quad-6.12 \quad 13.29$ 68.6318. है $_{67} 12.76$ 胡 1.1 $55.00-10.57-19.71-18.82$ $65.00 \quad 2.97 \quad-9.41 \quad-4.06$ $33.00-26.26-42.61-51.29$ $75.00-5.96-26.47-10.70$ $85.25 \quad 3.81-20.14 \quad 25.83$ $66.75-4.13-18.35 \quad-1.48$ $60.25 \quad 1.90 \quad-0.82-11.07$ $48.50-23.01-29.20-28.41$ 85.50-14.12 -22.65 -18.08 $67.00 \quad 0.00-34.43 \quad-1.10$
 $51.50-9.45-37.00-23.99 \quad 5.55 \quad 13.2$ 党 $-12.67-11.27$

Arla Harit x MC 49
Arla Harit x MC 69
Arica Harit x MC 34 NC $82 \times$ WC 79 NC $82 \times$ MC 66 MC $82 \times$ MC 49 NC $02 \times$ MC 69 nc $82 \times$ nc 34 MC $79 \times$ MC 66 MC $79 \times$ NC 49
MC $79 \times$ MC 69
MC $79 \times$ MC 34
MC $66 \times$ MC 49
MC $66 \times$ MC 69
MC $66 \times$ MC 34
MC $49 \times$ HC 69
NC $49 \times$ NC 34
MC $69 \times$ MC 34
CD ($p=0.05$)
Co ($p=0.01$)

38.50	-4.64	7.69	-7.7*
42.75	-2.56	0.00	2.40
39.50	-3.07	8.22	-5. 39
42.50	-2.30	6.25	1.80
42.50	2.72	6.25	1.80
45.50	20.13	27.27	8.98
41.50	0.30	3.75	0.60
37.00	-3. 27	21.23	
44.25	-1.39	3.50	5.98
37.50	-9.37	4.90	-10.18
40.50	-9.75	-5. 26 *	-3.00
36.25	-13.17	-2.74	-13.17
35.50	-9.55	-0.92	-14.97
40.50	-5.26	-2.60	-3.00
37.50	-5.36	2.74	-10.18
36.50	-7.00*	2.10	
35.50	-1.73	0.69	-13.28
37.50	-5.36	2.74	-10.18
1.53	1.86	1.53	1.53
2.01	2.45	2.0	2.01

$00-20.28-39.09-45.39 \quad 5.75 \quad 14.14-13.21 \quad-8.07$
$25-33.83-51.46-50.92 \quad 5.95 \quad 17.82-10.53-4.88$ $00-11.33-35.89-32.10 \quad 3.40-15.00-25.27-45.64$
$00 \quad 0.60 \quad-1.63 \quad 54.98 \quad 2.95 \quad 1.46 \quad-0.50-52.84$
 $\begin{array}{llllllll}50 & -7.22 & -25.98 & 10.70 & 5.85 & 22.13 & -11.70 & -6.47\end{array}$ $50-16.13-29.90 \quad 5.54 \quad 5.25 \quad 9.32-21.05-16.07$
 $\begin{array}{lllllllll}63 & 4.78 & -7.49 & 45.79 & 3.40 & -26.20 & -46.49 & -45.64\end{array}$

$\begin{array}{lllllllll}00 & 5.00 & -13.81 & 35.79 & 5.00 & 5.115 & -24.81 & -20.06\end{array}$

25	$1 .{ }^{\text {® }}$ 3	－3．06	16.97	6.45	－0．62	－2．64	－3．12

50	-19.47	-25.99	-10.70	6.30	3.11	-5.26	0.72
25	-17.59	-22.63	-6.64	5.85	7.30	-7.95	-6.17
63	-9.09	-14.23	-13.28	6.70	0.94	0.75	7.10

0	19.25	10．1哭	16.0 晹	6.75	20.81	1.89	動

$50-15.15-17.07-12.17 \quad 5.55 \quad-8.93-16.54-11.27$

91	5.12	5.91	5.91	0.28	0.24	0.28	0.28
76	6.72	7.76	7.76	0.36	0.31	0.36	0.36

Iable 30 . Mean performance of parente and Fi hybrida and oxtent of heteronla for female Elover

Parenta/crosses	Days to first female flower opening			Female flowers/plant					Percentage of female flowera			
	Mean	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { HD } \\ & (\%) \end{aligned}$	$\begin{aligned} & S H \\ & (\%) \end{aligned}$	Maan	RH (2)	HB (\%)	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean	$\begin{aligned} & \text { RHA } \\ & (x) \end{aligned}$	$\begin{aligned} & H B \\ & (x) \end{aligned}$	$\begin{aligned} & 5 H \\ & (\%) \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Priye	40.75				57.75				5.95			
HC 78	41.75				45.25				4.62			
MC 84	42.50				50.13				4.37			
Arla Harit	42.50				21.75				2.85			
NC 82	39.75				68.25				2.47			
HC 79	43.50				111.25				3.12			
MC 66	43.50				58.75				5.62			
ne 49	44.75				49.50				5.12			
MC 69	42.50				53.25				4.62			
HC 34	40.25				47.25				4.12			
Prive x MC 78	41.50	0.61	1.84	1.84	58.25	-2.43	-12.90	-12.90	4.87	-7.e0	-28.07	-18.07
Priya x HC 84	42.00	0.91	3.07	3.07	54.50	1.16	-5.63	-5.63	5.37	0.04	-9.66	-9.66
Priya $=$ Arica Harit	40.50	-2.70	-0.61	-0.61	34.38	13.21	-40.26	-40.26	3.45	-21.59	-42.02	-42.02
Pr17a x HC 82	42.75	6.21	7.56	4.91	63.75	1.19	-6.59	10.38	3.30	-21.66	-44.54	-44.54
Prita i MC 79	40.50	-3.86	-0.61	-0.61	66.00	-21.89	-40.67	14.29	5.35	17.91	-10.08	-10.08
Priya x MC 66	42.75	1.48	4.91	4.91	59.25	1.72	0.85	2.60	5.70	-1.51	-4.20	-4.20
Pri>a x MC 49	39.00	-8.77	-4.29	-4.29		16.55	8.23		6.30		5.88	5.88
Priya x MC 69	42.75	2.70	4.90	4.90	52.75	-4.95	-8.66	-8.66	5.37	1.65	-9.66	-9.66

Teble 30. Continued

$\begin{array}{lllllllll}25 & -6.64 & -14.71 & -14.71 & 4.87 & -3.22 & -18.07 & -18.07\end{array}$ $4.46-0.50-13.864 .22 \quad-6.11 \quad-8.65-28.99$
$75-20.15-46.50-53.68 \quad 3.35-10.37-27.57-43.69$
$\begin{array}{lllllllllll}25 & 9.69 & -8.79 & 7.79 & 3.15 & -11.27 & -31.69 & -47.06\end{array}$
$25 \quad 10.22-22.47 \quad 49.35 \quad 3.80 \quad-1.94 \quad-17.84 \quad-36.13$
$\begin{array}{llllllll}00 & 11.54 & -1.28 & 0.43 & 5.70 & 11.22 & 1.33 & -4.20\end{array}$
$00 \quad 3.43-1.01-15.15 \quad 5.55 \quad 13.85 \quad 8.29$ 音 10.72
$00 \quad 1.52 \quad-6.10-13.424 .80 \quad 0.38 \quad 3.89-19.32$
$\begin{array}{llllllll}75 & -3.76 & -5.29 & -22.51 & 4.37 & 0.00 & -5.41 & -26.47\end{array}$
$50-3.83-31.00-40.26 \quad 3.25-10.03-25.71-45.37$
$88 \quad 1.48-12.09 \quad 3.90 \quad 3.35-2.19-23.43-43.69$

$4.37-3.40 \quad-1.734 .85 \quad-0.03-13.78$-18.49
$8.04 \quad 7.50^{*} \quad-6.93 \quad 5.57 \quad 17.37 \quad 8.75 \quad-6.36$
$1.21-4.23-11.694 .12-8.33-10.81-30.67$
$9.51 \quad 6.50 \quad-7.794 .37 \quad 2.94 \quad 0.00-26.47$
$-8.89-39.93-29.00 \quad 2.90 \quad 8.92 \quad 1.75-51.26$
$2.63-31.65 \quad 18.18 \quad 2.95 \quad-1.26 \quad-5.60-50.42$
8.07 -25.96 -24.68 4.12 -2.65 -26.67 -30.67

1	2	3	4	5	6	7	－	9	10	11	12	13
Arlca Harit x MC 49	39.25	－10．0．）${ }^{\text {¢ }}$	－7．65	－3．68	43.88	23.51	－11．11	－23．80	4.42	10．9゙す	－13．66	－25．63
Arlia Harit \times MC 69	42.50	0.00	0.00	1.75	41.00	9.33	－23．00	－29．00	3.12	－16．39	－32．43	－47．48
Arka Harit x NC 34	40.50	－2．11	0.62	－0．61	32.50	5.78	－31．22	－43．72	3.32	－4．66	－19．39	－44．12
MC $82 \times$ NC 79	38.50	－7．50	－3．14	－5．52	99.25	10.58	－10．79	$71.8{ }^{\text {凩 }}$	3.27	16.96		－44．96
MC $82 \times$ MC 66	42.50	2.10	6.92	1.75	65.25	2.75	－4．40	12.99	3.35	－17．28	－40．44	－43．70
MC $82 \times$ MC 49	40.25	－4．73	1.26	－1．23	68.50	16.35	0.37	18.61	4.02	5．92	－21．46	－32．35
UC $82 \times$ UC 69	41.75	1.52	5.03	2.45	63.50	4.53	－6．96	10.00	3.87	9.15	－16．22	－34．87
MC $82 \times \mathrm{MC} 34$	44.25	10.63	11.32	8.59	53.50	－7．35	－21．61	－7．36	2.80	－15．15	－32．12	－52．90
MC $79 \times$ MC 66	42.50	－2．30	－2．30	1.75	96.25	13.24	－13．48	66.67	3.70	－15．42	－34．22	－37．82
HC $79 \times$ NC 49	41.00	－7．08	－5．75	0.61	103.38	28.77	－6．97	79． 22	3.92	－4．85	－23．41	－34．03
MC $79 \times$ NC 69	42.50	－1．16	0.00	1.75	64.25	－21．88	－42．25	11.26	3.87	0.00	－16． 22	－34．87
MC 79 ＝NC 34	42.50	1.49	5.59	1.75	57.25	－27．76	－48．50	－0．87	3.37	－6．90	-18.18	－43．28
MC $66 \times \mathrm{MC} 49$	41.50	－5．95	－4．60	1.84	65.25	20.55	11．06	12.9 ＊	5.27	－1．86	－6．22	－11．34
HC $66 \times$ MC 69	44.50	3.49	4.70	9.20	54.25	－3．13	－7．66	－6．06	4.37	－14．63	－22．22	－26．47
NC $66 \times$ nc 34	42.50	1.49	5.59	1.75	55.75	5.19	－5．11	－3．46	3.89	－20．20	－30．84	－34．02
MC $49 \times$ NC 69	40.50	－7．16	－4．71	－0．61	58.75	14.08	10.33	1.73	4.55	－6．67	－11．22	－23．53
nc $49 \times$ ne 34	43.75	2.94	8.70	7.36	61.75	27.6	－48．08	6.93	4.58	20.76	－10．54	－22．94
nc $69 \times$ nc 34	41.75	0.91	3.73	2.45	46.75	－6．97	－12．21	－19．05	4.12	－5．71	－10．81	－30．67
CD（ $\mathrm{p}=0.05$ ）	2.22	1.92	2.22	2.22	4.95	4.29	4.95	4.95	0.39	0.33	0.39	0.39
$C D(p=0.01)$	2.91	2.52	2.91	2.91	6.51	5.26	6.51	6.510	0.52	0.44	0.52	0.52

Parents/Crosses	Days to first female flower opening				Pemala flowers/plant				Percentage of femalo flowers			
	Mean	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean	$\begin{aligned} & \mathrm{RH} \\ & (\mathrm{x}) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean	$\begin{aligned} & \mathrm{RH} \\ & (\mathrm{x}) \end{aligned}$	$\underset{(\%)}{\mathrm{HB}}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Priya	42.50				63.50				5.95			
MC-78	45.25				49.63				5.10			
NC-84	46.75				53.88				4.25			
Arka Harit	46.25				27.88				3.15			
MC-82	41.00				90.00				2.55			
MC-79	47.50				105.25				2.75			
MC-66	43.50				70.25				6.05			
MC-49	37.50				57.25				5.95			
MC-69	43.75				61.25				5.75			
MC-34	37.75				67.25				4.25			
Priya x MC-78	45.75	4.27	7.64	7.65	54.00	-4.53	-14.96	-14.96	5.35	4.40	-10.00	-10.00
Priya \times MC-84	45.25	1.40	6.47	6.47	47.75	-18.63	-24.80	-24.80	4.45	-0.13	-25.25	-25.21
Priya x Arka Harit	44.50	-0.28	4.71	4.71	37.25	-18.46	-41.50	-41.50	4.50	-1.09	-24.57	-24.37
Priya x nc-82	40.25	3.59	-1.82	-5. 29	70.00	4.87	-22.00	10. ${ }^{\text {* }} 4$	3.40	-0.20	-42.85	-42.85
Priya x MC-79	45.25	0.55	6.47	6.47	91.00	$7.8{ }^{*}$	-13.30	$43.30{ }^{*}$	5.40	24.10	-9.24	-9.24
Priya x MC-66	43.25	0.58	1.75	1.76	70.50	5.40	0.35	11.00	6.05	0.83	0.00	1.68
Priya \times MC-49	40.75	2.03	8.67	-4.12	61.00	0.83	-3.93	-3.93	5.95	0.00	0.00	0.00
Pripa x MC-69	40.25	-6.09	-5. ${ }^{\text {* }}$ 尔	-5. 29	57.25	8. 21	-9.84	-9.84	5.80	-0.85	-2.52	-2.52

Talole 31. Cortimued

1	2	3	4	5	6	7	8	9	10	11	12	13
Priya \times MC-34	39.75	-0.93	5.30	-6. 47	64.00	2.10	-4.80	0.78	4.70	-7.80	-21.00	-21.00
MC-78 \times MC-84	45.75	-0.54	1.10	7.05	51.25	0.97	-4.87	-19.29	4.85	3.70	4.90	-18.49
HC-78 x Arka Harit	44.50	-2.51	1.44	4.70	37.25	3.87	-24.90	-41.13	4.30	. 20	-15.68	-2
MC-78 \times MC-82	42.25	1.50	3.05	-0.58	66.00	-0.05	-26.67	3.94	3.95	3.27	-22.55	5
MC-78 \times MC-79	46.00	-0.54	1.66	8.20	75.00	-0.03	-28.74	$18.1{ }^{*}{ }^{\text {a }}$	3.75	-4.45	-26.47	7 -36
MC-78 \times MC-66	41.00	-7.60	-5.75	-3.5* ${ }^{\text {* }}$	65.25	8.8	-7.12	2.75	5.50	-1.34	-9.09	-7
MC-78 \times MC-49	40.25	-2.57	7.33	-5.29	55.25	3.39	-3.50	-12.90	5.60	1.36	-5.85	5
MC-78 \times MC-69	42.38	-4.78	$-3.4{ }^{*}$	-0.58	55.00	-0.79	-10.20	-13.30	5.80	6.90	0.88	-2.
MC-78 \times MC-34	39.25	-5.42	3.97	-7.64	57.75	-1.18	-14.12	9.000	4.70	0.53	-7.80	-2.
MC-84 \times Arka Harit	43.75	-5.91	-5.4. ${ }^{*}$	-2.94	33,25	-18.65	-38.20	-47.60	3.50	-5.40	-17.65	-4.12
MC-84 \times MC-82	41.13	-6.26	0.00	-3. ${ }^{\text {* }}$ 2	67.63	-5.60	-24.90	5.90	3.15	-7.35	-25.85	-47.05
MC-84 \times MC-79	46.75	-0.79	0.00	10.00\%	77.00	-3.22	-26.84	21.25	3.50	0.00	-17.64	-41.11
MC-84 \times MC-66	41.50	-7.52	-4.60	-2. ${ }^{*}{ }^{\text {a }}$	59.75	-3.73	-14.90	-5.90	5.30	2.90	-12.40	-10.92
MC-84 \times MC-49	37.88	-9.9**	0.67	-11.18 ${ }^{\text {® }}$	56.50	2.38	-1. 31	-11.02	5.35	4.90	-10.08	-10.00
MC-84 \times MC-69	44.13	-2.48	0.57	3.53	53.50	-7.05	-12.65	-15.70	5.80	16.000	0.87	-2.52
MC-84 \times MC-34	39.50	-6. 5	4.64	-7.06	54.50	-1.00	-18.95	-14.10	4.45	4.70	4.70	-25.21
Arica Harit x MC-82	46.63	6.87	13.41	9.41	45.00	-23.64	-50.00	-29.10	2.25	-21.00	-28.57	-62.18
Arica Harit \times MC-79	46.00	-1.60	0.54	8.23	85.00	27.6 **	-19.24	33.84	3.15	6.78	0.00	47.06
Arka Harit \times MC-66	40.25	-10.02	-7.47	-5.29	35.00	-28.66	-50.17	-44.80	5.65	22.80	-6.61	-5.04

Table 3i. Continund

1	2	3	4	5	6	7	8	9	10	11	12	13
Arka Harit x MC-49	38.50	-7.92	2.67	-9.41	37.00	-13.07	-35.37	-41.70	5.75	26.37	-3.36	-3.36
Arka Harit \times MC-69	49.50	-7.78	-5.14	-2. 35	33.00	-25.95	-46.10	-48.00	4.10	-9.90	-28.69	-31.09
Arka Harit x MC-34	39.50	-5.95	4.64	-7.06	33.00	-30.62	-50.90	-48.00	4.00	$8.10{ }^{\text {\% }}$	-5.88	-32.77
MC-82 \times MC-79	43.13	-2.50	4.88	1.18	95.00	$14 . \stackrel{\text { ® }}{ }{ }^{\text {® }}$	-9.70	$49.6{ }^{\text {® }}$	2.70	1.10	-1.82	-54.60
MC-82 \times MC-66	42.25	0.29	3.05	-0.58	87.00	$8 .{ }^{\text {* }} 8$	-3.30	$37.00{ }^{\text {* }}$	4.15	-3.40	-31.40	-30.25
MC-82 \times MC-49	36.88	-5.90	-2.00	$-13 .{ }^{\text {* }}{ }^{\star}$	69.00	-6.28	-23.30	8.70	3.25	-23.50	-45.38	-45.38
MC-82 \times MC-69	42.50	0.29	3.60	0.00	68.50	-9.42	-23.80	7.80	2.65	-36.14	-53.91	-55.46
MC-82 \times MC-34	37.50	-4.70 ${ }^{\text {\% }}$	-0.66	-11.76	71.00	-9.70	-21.10	$11.8{ }^{\text {* }}$	3.90	14. ${ }^{\text {* }}$	-8.24	-34.45
MC-79 \times MC-66	44.88	-1.37	2.87	5.29	87.00	-0.85	-17.33	37.000	4.25	-3.40	-29.75	-28.57
MC-79 \times MC-49	39.00	-8. ${ }^{\text {* }}$	4.00	-8. ${ }^{\star}{ }^{\star}$	75.00	-7.69	-28.70	18.10	4.05	-6.89	-31.93	-31.93
MC-79 \times MC-69	41.50	-9.0. ${ }^{\text {a }}$	-5.14	-2. ${ }^{*}{ }^{\text {a }}$	89.00	$6.90^{\star *}$	-15.40	40.1 * ${ }^{\text {a }}$	3.25	-23.52	-43.48	-45.38
HC-79 \times MC-34	37.75	-11.44	0.00	-11.18 ${ }^{\text {k }}$	78.00	-9.56	-25.90	22.80	3.50	0.00	-17.65	-41.11
MC-66 x MC-49	37.00	-8. ${ }^{\text {* }}$	-1.33	-12.9**	78.50	$7.4{ }^{\text {¢ }}$	-2.50	$7 .{ }^{\text {® }} 7$	6.25	4.17	3.31	5.00
MC-66 \times M C-69 $^{\text {c }}$	42.00	-3.72	-3.45	-1.18 ${ }^{\text {* }}$	58.00	-11.78	-17.43	-8.71	5.85	-0.85	-3.30	-1.68
MC-66 x MC-34	38.25	-5. ${ }^{\text {® }}{ }^{\text {\% }}$	1.32	-10.00*	61.50	-10.56	-12.50	3.10	5.10	-0.97	-15.70	-14.28
NC-49 x MC-69	37.75	-6.9**	0.67	-11.17	57.25	-3.37	-6.50	-9.80	5.40	-7.69	-9.24	
$\mathrm{MC} 49 \times \mathrm{MC-34}$	35.13	-14.10*	-17. ${ }^{\text {2 }}$	5-17.2 ${ }^{\text {a }}$	63.50	2.00	-5.57	0.00	6.15	20.5**	3.36	3.36^{\star}
MC-69 x MC-34	38.13	-6.44************)	0.66	-10.5**	62.50	-2.70	-7.06	-1.57	5.15	3.00	10.43	13.44
CD ($\mathrm{p}=0.05$)	2.22	1.92	2.22	2.22	4.18	3.63	4.18	4.18	0.34	0.29	0.34	0.34
$C D$ ($\mathrm{p}=0.01$)	2.91	2.52	2.91	2.91	5.50	4.77	5.50	5.50	0.45	0.39	0.45	0.45

Plote-27. MC $60 \times$ MC 49, on early Rlowering atandard heterotie Γ_{1} hybrid

PLATE-27

MC-82 \times MC-79 (71.86\%) and MC-79 \times MC-66 (66.67%) in second and MC-82 \times MC-79 (49.6\%), Priya x MC-79 (43.3\%) and MC-79 x MC-69 (40.1\%) in third seasons.
f. Percentage of famale flowers

Significant relative heterosis was observed in 23 hybrids in first, 12 in second and eight in third seasons. The highest values vere recorded by Priya x MC-79 (28.36\%) followed by MC-82 x MC-49 (22.13\%), MC-49 x MC-34 (20.81\%) and Arka Harit x MC-69 (17.82\%) in first MC-49 x MC-34 (20.76\%) followed by Priya \times MC-79 (17.91\%), MC-84 \times MC-49 (17.37\%) and MC-82 x MC-79 (16.96%) in second and Arka Harit x MC-49 (26.37%), Priya \times MC-79 (24.14%), Arka Harit x MC-66 (22.8\%) and MC-49 x MC-34 (20.58\%) in the third seasons.

Significant heterobeltiosis for percentage of female flowefs was observed in five hybrids in the second and three In the third seasons. MC-78 \times MC-49 (13.85\%) and MC-B4 \times MC-49 (8.75%) during second season possessed considerable heterobaltiosis. It was not significant in the third

season.

Standard heterosis was aignificant in 4 crosmes

 in the first, one in second and two in the third seasons. Priya x MC-49 (7.91\%), MC-49 x MC-34 (7.91\%), MC-49 x MC-69 (7.1\%) and MC-78 x MC-49 (4.72\%) in first, Priya x MC-49 (5.88\%) in second and MC-66 x MC-49 (5.00\%) and MC-4 \times MC- $34(3.36 \%)$ in the third seasons were the crosses possesaing significant standard heterosis.g. Days to picking maturity

Relative heterosis was observed only for 12 crossea In first and four crosses in second season. The hybrids showed comparatively poor heterosis for maturity.

Heterobeltiosis was observed in five crosses in first and only one in the second season.
standard hoterosis for maturity was observed in 27 crosses in the first season. Higher values of standard heterosis (-15.78%) were observed in Priya \times MC-69, Priya x MC-34 and MC-84 \times MC-69 (Plate 28) in the first season. Hone of the crosses had shown significant standard haterosis in the scoond season.

The 55 genotypes did not differed aignificantly for pleking maturity in the third seeson.
h. Yield/plant

Out of the 45 hybrids, 32 had aignificant relative heterosis in first, four in second and seven in third seasons. The maximum relative heterosis of 127.2% was recorded by Arka Harit x MC-79 followed by Arka Harit x MC-49 (63.83%), MC-78 x MC-79 (50.19\%), Priya \times MC-79 (30.75%) and MC-79 \times MC-69 (29.55%) in the firat season. In the second season also Arka Harit x MC-79 recorded the maximum relative heterosis (45.45\%) followed by MC-82 x MC-79 (26.17\%) and Priya \times MC-49 (17.91\%). In third season Arka Harit \times MC-69 (23.12\%) ranked first in relative heterosis followed by MC-82 x MC-79 (21.95\%) and Arka Harit \times MC-34 (21.2\%).

Heterobeltiosis for yield was observed for six crosses in first, four in second and two in third seasons. Maximum values of heterobeltiosis were observed in hybrids Arka Harit \times MC-79 (117.17%) and MC-49 \times MC- 34 (17.34%) (Plate 29) in the first, Arka Harit \times MC-79 (43.09\%) and MC-84 \times MC-49 (6.32%) 111 sacond and MC-78 \times MC-66 (10.00%) (Plate 30) and MC-49 $\times M C-34(6.24 \%)$ in the third seasons.

Standard hetorois for yield/plant was ilgnificant only for MC-78 \times MC-66 (7.46\%) and MC-78 \times MC-84 (4\%) in

Plate-29. MC $49 \times$ MC 34, hoterobeltiotle F_{1} hybrid for yield

Plate-30. MC $78 \times$ MC 66, heterobeltiotic F_{1} hybrid for yield

FATE-29

Table 32. Moan performance of parents and P_{1} yleld and fruita/plant during firat

Pareata/Croasea

Daya to picking maturity

Pareata/Crosses Moan | RH |
| :---: |
| $(\%)$ |

Priya
MC $78 \quad 12.50$

MC 84
Arica Harit
MC 82
MC 79
MC 66
HC 49
MC 69
MC 34
Priya x
Priya x MC 84
Pripa x Arka Harit Prifa x uC 82
Pripa x MC 79
Priya x NC 66
Priya x NC 49
Priya \times HC 69
14.25
12.50
13.25
12.88
14.00
14.25
13.50
13.00
12.00
12.00
$12.25-8.40 \quad-2.00-14.04$
$13.50-1.80 \quad 1.89-5.26$
$13.50-0.46 \quad 5.88-5.26$
$13.50-4.04 \begin{array}{llll} & -3.57 & -5.26\end{array}$
$13.00-8.77 \quad-8.77-8.77$

hybrids and extent of heteroais for pleking matarity. : season

Yield/plant

Mean (kq)	$\begin{aligned} & \text { RH } \\ & (x) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (x) \end{aligned}$	$\begin{aligned} & \mathrm{SH} \\ & (\mathrm{x}) \end{aligned}$	Mean	$\begin{aligned} & \mathrm{RH} \\ & (x) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$
6	7	8	9	10	11	12	13

10.19	51.25
9.55	42.75
10.45	36.25
3.19	18.50
2.50	89.25
3.50	112.00
10.18	62.25
8.65	46.00
8.85	50.00
7.45	61.50

Table 32. Continued

1	2	3	4
Priya \times MC 34	12.00	-8.57	0.0
MC $78 \times \mathrm{MC} 84$	12.25	-4.85	-2.00
ne $78 \times$ arka Harit	13.25	4.43	6.00
C $78 \times \mathrm{MC} 82$	13.00	1.89	4.00
NC $78 \times \mathrm{EC} 79$	14.00	4.67	12.00
NC $79 \times$ MC 66	13.00	0.00	4.00
MC $78 \times \mathrm{MC} 49$	12.25	-3.92	-2.00
MC $78 \times \mathrm{MC} 69$	13.25	8.16	10.42
MC $78 \times$ MC 34	13.50	10.20	12.80
wC $84 \times$ Arka Harit	13.50	3.35	5.88
NC $04 \times$ NC 82	13.00	-4.59	1.89
MC $84 \times$ MC 79	13.00	-5.45	-1.89
MC $84 \times$ MC 66	13.50	1.00	1.89
MC $84 \times$ MC 49	12.50	-4.76	-3.85
MC $84 \times$ MC 69	12.00	-4.95	0.00
MC $84 \times$ m 34	12.50	-1.00	4.17
Arica Harlt x HC 82	13.00	-3.26	1.96
Arica Harit x MC 79	14.00	3.23	9.80
Arka Harit x MC 66	13.00	-1.42	1.96

10.10	14.5 **	-0.88	-0.88	55.50	-1.55	-9.75	58.29
16.60	6.00	1.44	4.00*	42.50	7.60	-0.55	5-17.07
7.40	16.17	-22.51	-27.38	28.25	-7.80	-33.90	0-44.88
7.40	22.82	-22.51	-27.38	77.25	17.01	-13.45	5 50.73
9.80	50.19	2.62	-3.83	90.00	24. 35	-19.64	75.61
10.95	$11.0{ }^{*}$	7.62	7.46	71.00	35.23	14.06	38.54
10.10	11.0**	5.76	0.88	64.75	45.71	40.76	36. ${ }^{\text {満 }}$
9.75	5.98	2.09	-4.32	51.00	9.97	2.00	-0.49
9.55	-4.1	0.00	-6. 30	01.50	18.00*	. 00	. 0
. 15	19.50	-22.00	-20.00	28.00	2.28	-22.76	-45.37
7.10	9.65	-32.01	-30.32	71.00	13.15	-20.45	38.54
8.20	$17.5{ }^{\text {\% }}$	-21.53	-19.53	82.25	10.96	-26.34	$60.4{ }^{\text {¢ }}$
10.00	-3.03	-4.31	-1.86	62.00	25.88	-0.40	20.98
10.50	10.00*	0.48	3.04	52.00	26.25	13.04	1.46
9.75	1.04	-6.69	-4.32	44.75	3.77	-10.50	-12.68
9.05	1.12	-13.40	-11.19	51.25	4.86	-16.67	0.00
3.30	16.00*	3.45	-67.60	55.50	3.02 -	-37.82	0.29
7.60	127.20	117.14	-25.54 1	124.50	90.80	11.16	142.93
6.05	-9.46	-40.54	-40.66	50.75	$25.70{ }^{\text {a }}$	-18.00	-0.98

contd.

1	2	3	4	5	6	7	8	9	10	11	12	13
Arka Harit x MC 49	12.50	-3.38	-1.96	-12.88	9.70	63.85	12.12 ${ }^{\text {\# }}$	-40.66	32.25	0.58	-30.43	-36.58
Arka Marit x MC 69	12.50	0.48	4.16	$-12.2{ }^{\text {\# }}$	6.15	2.15	-30.51	-4.81	30.00	0.12	-40.00	-41.46
Arka Harit x MC 34	12.50	0.48	4.16	-12.28	6.15	15.60	-17.45	-4.81	40.50	1.25	-34.15	-20.98
MC $82 \times \mathrm{Mc} 79$	14.00	0.92	0.00	-1.75	3.05	1.67	-12.36	-70.06	100.00	-0.62	-10.71	95.12
UC $82 \times$ MC 66	14.00	1.82	3.70	-1.75	6.12	4. ${ }^{*}{ }^{*}$	-34.98	-35.08	80.50	6.27	-9.80	$57.0{ }^{\text {\% }}$
WC $82 \times \mathrm{MC} 49$	13.25	-1.85	1.92	-8.02	4.75	-14.79	-45.09	-53.38	72.00	6.37	-19.33	40.49
MC $82 \times$ MC 69	14.50	11.54	20.83	1.75	7.05	24.22	-20.34	-30.08	67.50	-3.09	-24.37	31.77
MC $82 \times \mathrm{MC} 34$	13.25	1.93	10.41	-8.02	6.55	82. 80	-12.08	-35.72	82.00	8.78	-8.12	60.00
MC $79 \times$ NC 66	13.75	-0.90	1.85	-3.51	8.10	18.46	-20.39	-20.51	94.50	8.46	-15.63	84. 39
MC $79 \times$ MC 49	13.75	0.91	-5.76	-3.51	5.60	-7.82	-35.26	-45.04	91.00	15.09	-18.79	75.56
MC $79 \times$ MC 69	13.75	4.76	14.58	-3.51	8.00	29.55	-9.66	-21.44	88.00	8.64	-21.43	71.71
MC $79 \times$ NCC 34	13.50	2.84	12.50	-5.26	7.00	27.85	-6.04	-31.31	94.50	8.93	-21.43	84. 39
MC $66 \times$ MC 49	13.50	1.87	3.85	-5.26	9.75	3.59	-4.18	-4. 32	75.00	38.40	-33.04	46.34
NC $66 \times$ NC 69	13.00	1.96	8.33	-8.77	9.85	3.55	-3.19	-3.34	57.00	1.56	-8.43	11.22
MC $66 \times$ MC 34	13.00	1.96	8.33	-8.77	9.25	4.96	-9.09	-9.22	60.00	-3.00	-3.61	17.67
MC 49 I MC 69	13.75	10.00	14.50	-3.51	9.30	6.29	5.0 * ${ }^{\text {\% }}$	-8.73	58.50	21.71	-6.02	14.15
MC $49 \times$ MC 34	12.50	0.00	4.16	-12.28	10.15	26.0̈9	17.34	-0.39	72.00	33.80	17.07	40.49
NC 69 x MC 34	13.50	12.37	13.50	-5.26	8.15	0.00	-7.91	-20.02	56.00	1.35	-8.94	9.27
CD ($\mathrm{p}=0.05$)	0.83	0.51	0.83	0.83	0.34	0.29	0.34	0.34	4.22	3.65	4.22	4.22
$C D(p=0.01)$	1.09	0.67	1.09	1.09	0.45	0.39	0.45	0.45	5.54	4.79	4.54	4.54

Toble 33. Mean performance of parents and Fi hybrids and extent of hotorosia for pieking meturity. Field and fruita/plant during secónd season

Paronta/Crossea	Days to pleking maturity				Yield/plant				Pruist/plant			
	Mean	$\begin{aligned} & R H \\ & (\Sigma) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean (kg)	RH $(\%)$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{SH} \\ & (\%) \end{aligned}$	Mean	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & 5 H \\ & (x) \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Priya	12.25				9.13				40.50			
NC 78	12.88				8.25				35.88			
nC 84	12.75				8.70				36.00			
Arka Harit	13.13				3.08				15.50			
MC 82	14.25				2.38				57.50			
NC 79	13.38				2.98				97.75			
MC 66	12.50				8.63				43.25			
nc 49	12.88				7.63				37.00			
MC 69	13.25				7.25				35.00			
HC 34	12.00				6.75				34.25			
Priya \times NC 78	12.63	0.00	2.04	2.04	8.63	-0.72	-5.48	-5.48	38.25	0.33	-5.56	-5.56
Pripa x uc 84	13.25	6.00	8.16	8.16	8.75	-1.82	-4.11	-4.11	37.50	1.96	-7.41	-7.41
Priya x Arica Harit	13.50	5.88	10.20	10.20	4.75	-22.13	-47.95	-47.95	28.00	0.00	-30.86	-30.86
Priya x MC 82	13.75	3.77	12.24	12.24	5.50	-4.35	-39.73	-39.73	43.25	-11.73	-24.78	6.79
Priya x MC 79	13.00	-1.89	6.12	6.12	4.13	-31.82	-54.79	-54.79	53.00	-23.33	-45.78	30.86
Priya x KC 66	12.50	1.00	2.04	2.04	8.75	-1.40	-4.11	-1.11	42.75	2.08	-1.16	5.56
Priva \times NC 49	12.75	0.99	4.08	4.08	9.88	17.91	$8 .{ }^{\text {® }}$	8.22	42.75	10.32	5.56	5.56

1	2	3	d	5	6
Frya	12.75	0.00	4.08	4.08	7.58
Priya x KC 34	12.75	5.15	6.25	4.08	7.50
mc $78 \times \mathrm{mc} 84$	13.13	1.96	1.96	6.12	8.45
MC $78 \times$ Arla Harit	13.00	0.00	1.96	6.12	4.63
HC $78 \times \mathrm{MC} 82$	13.25	-1. 85	3.92	8.16	3.63
MC $78 \times \mathrm{NC} 79$	13.25	0.95	3.92	8.16	4.50
MC $78 \times \mathrm{MC} 66$	13.50	6.93	8.00	10.20	8.78
HC 79 x MC 49	13.25	2.91	3.92	8.16	8.38
1. $78 \times$ MC 69	12.75	1.92	0.00	4.08	7.75
NC $78 \times$ NC 34	13.25	7.07	10.42	8.16	7.50
NC $84 \times$ Arica Harit	12.75	-1.92	0.00	4.08	4.43
MC $84 \pm$ NC 82	12.75	-5.50	0.00	4.08	3.83
MC $84 \times \mathrm{MC} 79$	13.00	-0.95	1.96	6.12	4.70
HC $84 \times$ MC 66	12.75	0.99	2.00	4.08	8.13
NC $84 \times$ NC 49	13.00	0.97	1.96	6.12	9.25
NC 84 x HC 69	13.00	0.00	1.96	6.12	8.00
NC $84 \times$ MC 34	12.00	-0.03	0.00	2.05	B. 13
Aria Harit x MC 82	13.00	-5.45	-1.89	6.12	2.63
Arice Harit x MC 79	13.00	-2.80	1.89	6.12	4.40
Arica Harit x MC 66	12.00	-6.80	-4.00	2.05	4.25

$.45-16.99-16.99 \quad 36.75 \quad-2.65 \quad-9.26 \quad-9.26$ $.55-17.81-17.81 \quad 33.75 \quad-9.70-16.67-16.67$ $\begin{array}{lllllll}.29 & -2.87 & -7.39 & 34.50 & -3.83 & -4.17 & -14.81\end{array}$
$.32-43.44-49.30 \quad 24.00 \quad-6.34-32.87-40.74$
$\begin{array}{lllllll}.76 & -56.06 & -60.27 & 47.50 & 1.88 & -17.39 & 17.28\end{array}$

$\begin{array}{lllllll}.00 & 1.74 & -3.84 & 39.75 & 0.63 & -8.09 & -1.85\end{array}$
$\begin{array}{llllllll} & 51 & 1.52 & -8.22 & 39.00 & 7.22 & 5.41 & -3.70\end{array}$
$.00-6.06-15.07 \quad 35.50 \quad 0.35 \quad-0.70-12.35$
$.00 \quad-9.01$-17.80 $31.75 \quad-9.29$-11.19 -21.60
$.84-49.13-51.51 \quad 30.75 \quad 19.42-14.58-24.07$
$.92-56.03-58.08 \quad 51.50 \quad 10.16-10.43 \quad 27.16$
$.50-45.98-48.49 \quad 61.75 \quad-7.66-36.83 \quad 52.47$
$\begin{array}{lllllll}.20 & -5.80 & -10.75 & 41.75 & 5.36 & -3.47 & 3.09\end{array}$

6.32	1.36	38.00	4.11	2.70	-6.17

$.31-8.05-12.33 \quad 33.25 \quad-6.33-10.14-17.90$
.18 -6.61 -10.95 33.75 -3.91 -8.78 -16.67
$67-14.63-17.23 \quad 33.50 \quad-8.22-41.74-17.28$

* * * *

$45 \quad 43.09-51.78$
$35-50.72-53.48$

Table 33. Continued

Arka Harit x HC 49 Arka Harit x MC 69 Arka Harit x MC 34 MC $82 \times$ MC 79

MC $82 \times$ MC 66
MC $82 \times$ NC 49
NC $82 \times$ MC 69
MC $82 \times$ MC 34
MC $79 \times$ MC 66
MC $79 \times$ MC 49
MC $79 \times$ MC 69
MC $79 \times$ MC 34
NC $66 \times$ MC 49
MC $66 \times$ MC 69
MC $66 \times$ MC 34
MC $49 \times$ NC 69
MC $49 \times$ MC 34
UC $69 \times$ NC 34
CD ($\mathrm{p}=0.05$)
$C D \quad(p=0.01)$

13.00	-0.95	0.00	6.
13.38	1.87	1.87	10.
12.75	0.99	6.25	4.
12.75	-8.10	-5.56	4.
12.75	-4.67	2.00	4.
13.25	-2.75	1.92	8.
12.75	-4.47	-3.77	4.
13.25	0.95	10.41	8.
12.75	-1.92	2.00	4.
13.25	0.00	1.92	8.
12.75	-4.67	-3.71	4.
12.50	-1.96	4.17	2.
12.50	-1.96	0.00	2.
12.00	-6.80	-12.00	2.
13.00	6.12	8.33	6.
12.25	-6.67	-5.76	0.
13.25	6.00	10.42	8.
13.25	4.95	10.42	8.
0.96	0.82	0.96	0.
1.26	1.08	1.26	1.

$\begin{array}{llllllllll}12 & 3.88 & -27.57 & -49.18 & -57.50 & 23.25 & -11.43 & -37.16 & -42.59\end{array}$ $\begin{array}{lllllllll} & 20 & 1.68 & -9.44 & -35.52 & -48.76 & 40.00 & 58.42 & 14.29\end{array}-1.23$ $084.63-5.85-31.48-49.32 \quad 21.75-12.56-36.50-46.30$ $\begin{array}{llllllllll}08 & 3.38 & 26.17 & 13.45 & -63.01 & 73.00 & -5.96 & -25.32 & 80 . \mathbf{H}^{*}\end{array}$, 08 4.55 $-17.25-47.25-50.13 \quad 51.50 \quad 2.23-10.43 \quad 27.16$ $\begin{array}{lllllllll}16 & 3.80 & -24.00 & -50.16 & -58.36 & 49.00 & 3.70 & -14.78 & 20.99\end{array}$ $\begin{array}{lllllllll}08 & 3.83 & -20.52 & -47.24 & -58.08 & 53.75 & 16.21 & -6.52 & 32.72\end{array}$ $\begin{array}{lllllllll}16 & 3.88 & -15.07 & -42.59 & -57.53 & 47.25 & 3.00 & -17.83 & 16.67\end{array}$ $084.38-24.57-49.28-52.05 \quad 61.00-13.48-37.60 \quad 50.62$ $\begin{array}{lllllllll}16 & 4.80 & -7.43 & -37.05 & -47.39 & 73.25 & 8.72 & -25.06 & 80.86\end{array}$ $\begin{array}{llllllll}0 & 4.40 & -13.96 & -39.32 & -51.78 & 53.25 & -19.77 & -45.22\end{array} \quad 31.48$ $04 \quad 3.38-30.59-50.00-63.01 \quad 42.75-35.23-56.27 \quad 5.56$ $\begin{array}{lllllllll}0 . & 8.38 & 3.08 & -2.89 & -8.22 & 53.25 & 32.71 & 23.12 & 31.48\end{array}$ $\begin{array}{lllllllll} & 05 & 7.38 & -7.09 & -14.49 & -19.18 & 44.75 & 14.32 & 3.46 \\ 10.49\end{array}$ | 12 | 7.15 | -0.70 | -17.01 | -21.64 | 43.50 | 12.66 | 0.58 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $.00-7.25-2.52-4.90-20.55$ $\begin{array}{llll} & 12 & 7.20 & 0.17\end{array}-5.57-21.09$ $51.00 \quad 41.66$ $52.00 \quad 45.96$ $37.83 \quad 25.93$

 \begin{tabular}{llllllll}
16 \& 7.38 \& 5.35 \& 1.72 \& -19.18 \& 41.00 \& $18 . \overline{k i}_{1}$ \& 17.14

\hline

\hline 96 \& 0.59 \& 0.51 \& 0.59 \& 0.59 \& 2.68 \& 2.31 \& 2.68 \& 2.68

26 \& 0.77 \& 0.67 \& 0.77 \& 0.77 \& 3.52 \& 3.04 \& 3.52

\hline
\end{tabular}

Toble 34. Neam performance of parents and F_{1} hybrids and extent of heterosis for days to pieking maturity. yield and fruits/plant in bitter gourd during third season

parents, Crosses	Daya to picking maturity				Yield/plant				Fruits/plant			
	Mean	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean	RH (\%)	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	SH	Mean	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Priya	13.00				9.63				46.50			
MC-78	12.25				9.05				44.75			
MC-84	13.25				9.25				33.00			
Arka Harit	13.75				3.38				16.75			
MC-82	14.25				2.05				85.25			
MC-79	14.00				3.08				99.50			
MC-66	12.75				10.25				59.00			
MC-49	12.50				8.50				41.00			
MC-69	12.75				7.78				45.13			
MC-34	12.25				7.03				55.25			
Priya \times MC-78	13.50	6.90	10.20	3.84	9.05	-3.00	-5.97	-5.97	47.00	3.01	1.08	1.08
Priya x MC-84	12.75	-2.85	-1.92	-1.92	7.78	-17.60	-19.22	-19.22	37.00	-2.75	-20.43	-20.43
Pripa x Arka Harit	13.25	-0.93	1.92	1.92	5.27	19.00	-45.30	-45.30	27.00	-14.00	-41.94	-41.94
Priya \times MC-82	13.50	-0.92	3.85	3.85	4.43	-24.20	-54.03	-54.03	52.50	-20.30	-38.42	-12.90
Priya x MC-79	13.75	1.85	5.77	5.77	5.20	-18.00	-45.97	-45.97	67.50	-7.53	-32.16	45.16
Priya x MC-66	12.75	-0.97	0.00	-1.92	10.12	1.78	-1.38	5.0゙4	51.00	-3.32	-13.56	9.68
Priya \times nc- 49	13.25	3.92	10.41	1.92	8.74	-3.61	12.99	-9.24	42.50	-2.80	-8.60	-8.60
Priva \times MC-69	13.00	0.97	1.96	0.00	7.93	-8.80	-17.61	-17.61	41.50	-9.40	-10.75	-10.75

5abie 34. Gontinued

1	2	3	4	5	6	7	8	9	10	11	12	13
Priya \times MC-34	12.50	-0.99	2.04	-3.84	5.95	-28.50	-38.23	-38.23	46.00	-9.58	-16.74	$4-1.08$
MC-78 \times MC-84	13.50	5.80	10.20	3.84	8.06	-11.96	-12.92	-16. 31	37.38	- -3.80	-16.40	8-19.35
MC-78 \times Arka Harit	13.00	0.00	6.12	0.00	5.25	-15.60	-42.04	-45.51	25.25	-17.85	5-43.58	8-45.70
MC-78 \times MC-82	13.00	-1.89	6.12	0.00	4.05	-3.48	-55.25	-57.92	53.00	-18.46	-37.83	313.9 *
MC-78 \times MC-79	13.50	2.86	10.20	3.84	4.10	-32.37	-54.70	-57.40	61.50	-14.70	-38.19	$932.2{ }^{\text {¢ }}$ ¢
MC-78 \times MC-66	12.75	2.00	4.08	-1.92	11.28	$16 .{ }^{\text {®* }}$	10.000	$17.1{ }^{*}{ }^{*}$	55.00	5.02	-6.78	8 18.28
MC-78 \times MC-49	12.00	-3.00	-2.04	-7.69	8.49	-3.30	-6.24	-11.84	42.50	0.87	-5.03	-8.60
MC-78 \times MC-69	13.25	6.00	8.16	1.92	8.15	-3.12	-9.90	-15.32	41.88	-6.80	-6.94	-10.10
MC-78 \times MC- 34	12.75	4.00	4.00	-1.92	6.08	-24.41	-32.87	-36.88	47.00	6.00	-14.93	1.08
MC-84 x Arka Harit	13.00	-3.70	-1.89	0.00	4.46	-29.43	-51.84	-53.71	22.50	-9.50	-31.82	-51.61
MC-84 \times MC-82	13.25	-3.64	0.00	1.92	2.72	-54.60	-70.64	-71.79	42.00	-28.96	-50.73	-9.68
MC-84 \times MC-79	13.50	-0.92	1.84	3.84	3.52	-43.00	-62.00	-63.48	57.50	-13.20	-42.21	23.66
MC-84 \times MC-66	12.75	-1.90	0.00	-1.92	8.19	-16.00	-20.09	-14.41	37.00	-19.57	-37.29	-20.43
MC-84 \times MC-49	13.00	0.00	4.00	0.00	7.28	-18.00	-21.35	-24.42	36.50	-1.35	-10.98	-21.51
MC-84 \times M ${ }^{\text {M }}$-69	13.25	1.90	3.92	1.92	7.26	-14.70	-21.57	-26.62	37.50	-4.00	-14.67	-19.35
MC-84 \times MC-34	13.75	7.84	12.24	5.76	6.93	-14.37	-25.14	-28.04	40.25	-8.78	-27.15	-13.44
Arica Harit x MC-82	13.00	-7.10	-5.45	0.00	2.40	-11.50	-28.89	-75.06	37.50	-26.47	-56.01	-19.35
Arka Harit \times MC-79	13.25	4.50	-3.64	1.92	3.20	-7.80	-5.19	-66.75	46.50	-20.00	-53.27	0.00
Arka Harit \times MC-66	12.75	-3.70	0.00	-1.92	4.74	-30.50	-53.80	-50.81	24.00	-36.60	-59.32-	-48.38

Tablo 34. Contimued

1	2	3	4	5	6	7	8	9	10	11	12	3
Arka Harit x MC-49	13.25	0.95	6.00	1.92	5.27	-11.30	-33.82	-45.30	27.00	-6.50	0-34.15	5-41.94
Arka Harit \times MC-69	12.00	5.64	-1.96	0.56	5.41	23.12	-30.48	-43.84	28.50	-7.80	0-36.67	7-38.71
Arka Harit \times MC-34	13.25	1.92	8.16	1.92	6.31	21. ${ }^{\text {* }}$ 免	-10.25	-34.50	43.00	19.44	4-22.17	7 -7.52
MC-82 \times MC-79	13.75	-2.60	-1.78	5.76	3.13	21.95	1.63	-67.53	100.25	58.53	3 * 0.75	5115.60
MC-82 \times MC-66	13.25	-1.85	3.92	1.92	3.13	-49.10	-69.51	-67.53	65.25	-9.53	3-23.46	6 40.32
$\mathrm{MC} 82 \times \mathrm{MC}-49$	13.75	5.70	10.00	5.76	3.30	-37.50	-61.18	-65.71	51.50	-18.42	2-33.59	10.75
MC-82 \times MC-69	14.00	3.70	9.80	7.69	1.84	-62.50	-76.33	-80.88	55.50	-14.86	-34.90	-19.35
MC-82 \times MC-34	13.25	0.00	14.29	1.92	1.92	-58.80	-79.85	-80.10	58.75	-16.37	-31.00	-26.34
MC-79 \times MC-66	13.25	0.93	3.92	1.92	4.65	-30.30	-54.68	-51.74	73.00	-7.89	-26.63	56.99
MC-79 \times MC-49	13.75	3.77	10.00	5.76	3.55	-38.60	-58.24	-63.12	54.00	-23.13	-45.72	16.13
MC-79 \times MC-69	13.00	-2.80	1.96	0.00	4.53	-16.50	-41.80	-52.99	58.75	-18.75	-40.95	26. 34
MC-79 \times MC-34	12.25	-6.67	0.00	-5.77	4.35	-13.86	-38.08	-54.81	65.25	-15.67	34.42	32
MC-66 \times MC-49	13.75	8.90	10.00	5.76	9.77	$4.1{ }^{\star} \frac{1}{6}$	-4.73	1.45	50.00	0.00	-15.25	75.25
MC-66 \times MC-69	13.00	1.96	1.96	0.00	8.78	-2.60	-14.39	-8.83	45.50-1	-12.61-	-22.88	2.15
MC-66 \times MC-34	13.25	6.00	8.16	1.92	6.97	-19.30	-32.05	-27.64	53.00	-7.22	-10.17	13.98
MC-49 \times MC-69	13.50	6.90	8.00	3.84	7.90	-3.00	-7.05	-17.92	41.50	-3.63	-7.78	10.75
$\mathrm{NC}-49 \times \mathrm{MC} 34$	13.25	7.07	8.16	1.92	9.03	16. 30	6.24	-6.18	53.50	11.17	-3.17	15.05
MC-69 \times MC-34	13.50	8.00	10.20	3.84	5.85	-21.05	-24.82	-39.27	44.25 -	-11.80	-19.91	-4.84
CD ($\mathrm{p}=0.05$)	1.24	1.08	0.86	0.86	0.20	0.18	0.20	0.20	3.96	3.43	3.96	3.96
$C D$ ($\mathrm{p}=0.01$)	1.63	1.42	1.63	1.63	0.26	0.23	0.26	0.26	5.21	4.50	5.21	5.21

the first season. In the second season only one hybrid (Priya x MC-49) possessed significant standard heterosis. However, in the third season MC-78 \times MC-66 (17.14\%) and Priya x MC-66 (5.04\%) possessed significant standard neterosis.

1. Pruits/plant

Pruits/plant showed significant relative heterosis In 29 crosses in first, 15 in second and 3 in third seasons. In the first season, Arka Harit \times MC-79 (90.8\%), MC-7B \times MC-49 (45.71%) and MC-78 \times MC-66 (35.23\%); in second season, Arka Harit \times MC-34 (58.42\%), MC-49 x MC-34 (45.96\%) and MC-66 \times MC-49 (32.71\%), and in third season Ariea Harit \times MC-34 (19.44% were superior in relative hoterosis.

Significant heterobeltiosis was observed in five hybrids in first and eight in second season. None was significantly superior in the third season. Crosses MC- $78 \times$ MC- 49 (40.76%) and MC-49 \times MC- 34 (17.07%) in Eirst and MC-49 \times MC- 34 (40.54%), MC-49 \times MC-69 (37.33%) and Arle Harit \times MC-79 (37.6\%) in second seasons were superior in haterobeltiosis.

Standard heterosis was shown by 30 crosses in first, 22 in second and 17 in third seasons. The superior hybrids observed were Priya x MC-79 (97.07\%), MC-82 x NC -79 (95.12%), MC-79 \times MC- 34 (84.39\%), MC -79 \times MC-49 (77.56\%) and MC-79 \times MC-69 (71.71\%) in the first; MC-78 x KC-79 (85.3%) , MC-79 \times MC-49 (80.86%) and MC-82 \times MC-79 (80.29%) in the second; and MC-82 \times MC-79 (115.6%), MC-66 x MC-49 (75.2\%) and MC-79 x MC-66 (56.99\%) in the third seasons.

1. Fruit weight

Relative heterosis for fruit weight was significant for 10 crosses each in first, and second seasons and four in the third season. The crosses between the two small fruited types, MC-82 \times MC-79 recorded the highest relative heterosis of $22.94 \%, 35.57 \%$ and 23.5% in first, second and third seasons respectively. Other crosses with higher values were MC-82 \times MC- 34 (20.75\%) in first and MC-84 x MC-34 (13.2\%) in second seasons.

Heterobeltiosis wa significant only in MC-82 x MC -79 (10.94%) and MC-66 \times MC -49 (3.57\%) in the first season. In the second season 8 crosses showed significant

Sable 35. Mean performance of parents and F_{1} girth of fruits during first seas

hybrids and extent of hoterosis for waight, longth and Fruit length

Mean (m)	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (x) \end{aligned}$	Mean (cm)	$\begin{aligned} & \text { RH } \\ & \text { (} \mathrm{I} \text {) } \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\mathrm{x}) \end{aligned}$	$\begin{aligned} & \text { sM } \\ & (x) \end{aligned}$
6	7	8	9	10	11	12	13

36.10
35.70
30.10
16.65
30.25
6.70
8.15
29.10
24.20
14.40
23.10
23.50
8.30
6.45
6.05
18.05
34.25
16.65
26.25
35.65 -0.69 $\mathbf{- 1 . 2 5}$
$33.10 \quad 0.00 \quad-8.31$
$32.80 \quad-1.13 \quad-9.14 \quad-9.1415 .75-21.50-32.98 \quad$-5.41
$11.65-45.60-67.73-67.7310 .55-15.43-36.64-36.40$
$12.10-45.31-66.48-66.48 \quad 9.30-19.48-44.14-44.14$
$33.90 \quad 3.98^{* *}-6.09 \quad-6.0916 .15 \quad-1.12 \quad-3.00 \quad-3.00$
$29.75-1.33-17.59-17.5917 .10 \quad-1.44 \quad-5.26 \quad 2.70$
$35.35 \quad 0.49 \quad \mathbf{- 2 . 0 8} \quad \mathbf{- 2 . 0 8} 16.75 \quad 0.60 \quad 0.60 \quad 0.60$
Contd.

1	2	3	4	5	6
Priya	185.00	7.25	-17.78	-17.78	
NC $78 \times$ NC 84	262.75	. 05	-12.42	77	
C $78 \times$ Arla Harit	217.50	33.54	0.00	-3.33	
MC $78 \times$ HC 82	101.50	-38.50	-53.33	-54.89	
MC $78 \times$ MC 79	116.00	-7.01	-46.67	-48.44	
MC $70 \times$ MC 66	221.00	4.43	1.61	-1.78	
MC 78 x MC 49	219.00	2.46	0.69	-2.67	30.10
MC $78 \times$ MC 69	215.00	-0.57	-1.15	-4.40	
ME $78 \times \mathrm{MC} 34$	182.50	8.15	-16.32	-18.89	
Me 84 IArica Harit	257.50	1.98	-14.16	14.44	30.30
MC $84 \times$ MC 02	111.00	-31.85	-63.00	-50.67	4.0
Me $84 \times$ MC 79	124.00	-25.30	-58.67	-44.89	2.65
MC $84 \times$ MC 66	255.00	0.74	-15.00	13.33	31.10
ME $84 \times$ MC 49	252.00	-0.98	-15.83	12.22	29.7
HC $84 \times$ ILC 69	212.00	-17.48	-29.17	-5.56	32.25
NC $84 \times$ MC 34	205.00	-2.38	-31.67	-8.89	8.6
Arka Haritx NC 82	65.50	-42.36	-67.56	-70.44	2
Arla Maritx MC 79	53.00	-55.22	-74.15	-76.44	8
Arka HaritimC 66	201.00	-2.00	-2.30	-10.44	2

$-6.66-19.39-19.3915 .60 \quad-1.73 \quad-6.31 \quad-6.31$
$3.65 \quad-4.65 \quad-4.48 \quad 20.10 \quad 7.20 \quad 13.00-20.72$
$2.2 \begin{array}{lllllll} & -5.60 & -6.65 & 21.10 & 11.34 & -10.21 & 26.73\end{array}$
$-40.33-64.56-64.56 \quad 12.35 \quad 8.81 \quad-14.24 \quad-25.83$
$-37.74-61.76-62.19 \quad 9.10-12.71 \quad-36.80-45.34$
$9.34-1.68 \quad-2.78 \quad 16.10 \quad 5.75 \quad 0.31 \quad-3.30$
$0.50-15.69-16.6217 .25 \quad 6.32 \quad-4.43 \quad 3.60$
$2.20 \quad 0.14 \quad-0.97 \quad 15.75 \quad 1.45 \quad-5.41 \quad-5.41$
$-3.95 \quad 16.67-17.59 \quad 14.20 \quad 6.78 \quad-5.96 \quad-14.71$
$0.49 \quad 0.17-16.07 \quad 23.30 \quad 0.32 \quad-0.85 \quad 39.94$
$-23.60-53.35-61.0811 .55-26.43 \quad-50.00-30.63$
-33.90-57.97-64.96 $10.70-27.58 \quad-53.68$-35.74

$\begin{array}{rrrrrrr}\text { 9. 部 } & -1.16 & -17.59 & 20.55 & -0.12 & -11.04 & 23.12 \\ 0.23 & -5.84 & -10.66 & 21.30 & 7.17 & -7.79 & 27.92\end{array}$
$1.69-4.82-20.6417 .25 \quad-9.69 \quad-25.32 \quad 3.60$
$-44.61-66.11-71.6113 .25-16.67-43.62-20.42$
$-43.44-64.13-69.9411 .25-24.87 \quad-52.13-32.43$
$5.31 \quad 3.31-13.4316 .25-17.83 \quad-30.85 \quad-2.40$
Contd.

Arka Harit x MC $49215.00 \quad 3.61 \quad 2.38$-4.48 28 . Arica Harit I MC 69 209.00 $\mathbf{- 0 . 4 8} \mathbf{- 2 . 7 9} \mathbf{- 7 . 1 1} 31$. Arica Harit x MC $34185.00-13.85 \quad \mathbf{- 9 . 7 5} \mathbf{- 1 7 . 7 8} 28$. NC $82 \times$ MC $79 \quad 35.50 \quad 22.94 \quad 10.94-84.22 \quad 8$.

MC $82 \times$ MC 66
MC $82 \times$ MC 49
MC $82 \times$ MC 69
NC $82 \times$ MC 34
nC $79 \times$ nC 66
NC 79 I MC 49
NC $79 \times$ NC 69
MC $79 \times$ MC 34
MC 66 I MC 49
HC 66 I MC 69
MC $66 \times$ HC 34
MC 49 MC 69
MC $49 \times$ HC 34
MC 69 x NC 34
CD ($p=0.05$)
$C D$ ($p=0.01$)
$86.50-25.60-58.06-61.5612$. $101.00-14.32-51.90-55.1113$. $104.50-13.18-51.40-53.5611$. $88.00 \quad 20.75-26.66-60.8910$ 。 $89.50 \quad 24.87-56.60-60.2210$. $70.50-41.73-66.43-68.67$ 12. $99.00-19.83-53.95-56.0012$. $81.006 .57-32.50-64.0011$.
 $202.50-3.85-5.81-10.0033$. $117.75-27.80-43.03-47.7828$. $207.50-2.35-3.49 \quad-7.78 \quad 30$. $117.50-28.79-44.50-47.77$ 21. $128.75-23.13-40.12-42.78$ 30. $9.98 \quad 8.64 \quad 9.98 \quad 9.98 \quad 0$. $13.12 \quad 11.36 \quad 13.12 \quad 13.12 \quad 0$ 。
$25 \quad 3.77 \quad-6.61-21.75$

95	15. 音	1.91
17.65	-12.08	-24.89
15.70	-18.67	-33.19

$25-31.56-57.90-66.07 \quad 10.60-12.90-13.96-36.36$
$25-14.24-45.25-63.30 \quad 11.71-15.75-38.50-33.33$
$10-45.78-67.60-69.29$
$25-37.78-60.95-71.61$
$11.45-8.22-31.23-31.23$
$8.75-25.37-42.05-47.45$
$65-42.82-63.40-70.50 \quad 7.10-36.88-55.76-57.36$
$90-20.25-46.70-64.27 \quad 8.10-33.88-55.12-51.35$
$65-40.33-63.07-64.96$
$9.25-19.91-44.41-44.41$
$75-31.68-55.20-67.45$
$50 \quad 6.94 \quad 2.66-21.05$
25
75
6
70
$8=$
$50 \quad 6.94 \quad 2.66-21.05$
$7.55-29.90-50.00-54.65$
18.35

4.97	-2.92	-7.89
3.88	-1.20	-20.36

17.30

$$
1.9 \text { * }-9.93-14.54
$$

15.85
$-0.16-13.21-14.80$
65
$85 \quad 0.75 \quad 0.85 \quad 0.85$

Toble 36. Nean performance of parents and F hybrids and extent of heterosis for waight, length
and girth of fruit during second season

Parenta/Crosses	Fruit weight				Fruit length				Fruit girth			
	$\begin{aligned} & \text { Mean } \\ & \text { (cm) } \end{aligned}$	$\begin{aligned} & \mathrm{FH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{RB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & (\mathrm{a}) \end{aligned}$	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean (cm)	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	$\begin{gathered} \mathrm{HB} \\ (x) \end{gathered}$	SH
1	2	3	4	5	6	7	8	9	10	11	12	13
Priya	230.50				38.85				16.85			
MC 78	230.50				36.85				15.10			
MC 84	228.50				30.20				21.13			
Arica Harit	200.50				27.25				20.85			
NC 82	40.50				6.75				8.10			
HC 79	30.50				7.30				6.60			
MC 66	200.50				29.25				15.50			
IC 49	215.50				23.75				17.35			
NC 69	214.50				33.15				16.50			
HC 34	205.50				25.40				15.25			
Priya \times MC 78	227.00	-1.52	-1.52	-1.52	40.10	5.94	$3.2 \begin{aligned} & \text { * } \\ & \text { \# }\end{aligned}$		16.48	3.13	-2.23	-2.23
Priya x MC 84	239.25	4.25	3.80	3.80	31.55	-8.62	-18.79	-18.79	17.75	-6.51	-15.98	5.34
Priya x Arka Harit	160.50	-25.43	-30.37	-30.37	30.50	-7.63	-21.43	-21.43	17.70	-6.10	-15.11	5.04
Priya \times NC 82	120.50	-10.91	-47.72	-47.72	9.55	-58.11	-75.55	-75.62	12.60	1.00	-25.22	-25.22
Priya \times MC 79	108.50	-16.70	-52.90	-52.90	11.00	-52.22	-71.62	-71.62	12.75	8.74	-24.33	-24.33
Priya \times MC 66	205.50	-5.64	-13.02	-10.85	31.35	-7.93	-19.31	-19.31	17.00	5.10	0.89	0.89
Prita \times MC 49	225.50	1.12	-6.51	-2.17	32.25	3.04	-16.98	-16.98	17.75	3.80	2.31	5.34
Priye x MC 69	206.50	-7.19	-6.94	-10.41	37.20	3.33	-4.25	-4.25	16.50	-1.05	-2.08	-2.08

Fale 36 Continued

1	2	3	4	5	6	7	8	9	10	11	12	13
Priya \times MC 34	222.50	2.0 *	-10.80	-3.47	27.60	-14.00	-28.89	- -28.89	15.88	1.	-5.79	. 79
LC $78 \times$ MC 84	244.00	6.31	5.86	5.86	31.70	-5.44	-13.98	8-18.40	19.25	6.28	- -8.88	
mC $78 \times$ Arica Harit	191.00	37	-17.14	-17.14	30.25	-5.69	-17.98	8-22.20	16.75	-6.82	-19.66	-0.59
MC $78 \times \mathrm{MC} 82$	83.75	-38.07	-63.67	-63.67	10.50	-51.70	-71.44	-72.91	10.45	-9.91	-30.79	-37.98
MC $78 \times$ HC 79	76.50	41.27	-66.81	-66.81	12.10	-45.30	-67.20	- -68.90	8.75	-19.35	-42.05	-48.07
MC $78 \times$ MC 66	217.00	0.69	-5.86	-5.86	30.55	7.49	-17.03	$3-21.30$	15.50	1.31	0.00	-8.01
MC $78 \times$ MC 49	211.00	-5.38	-8.46	-8.46	28.45	-6.11	-22.80	-26.75	16.75	3.24	-3.46	-0.51
NC $78 \times$ MC 69	221.00	-0.67	-4.12	12	36.45	4.	-1.01	$1-6.18$	16.75	6.01	1.52	-0.59
MC $78 \times \mathrm{MC} 34$	241.00	10.65	4.56	4.56	27.35	-12.13	-25.78	-29.60	16.63	2.97	2.46	-7.27
MC $84 \times$ Arka H	143.00	-33.33	-37.96	-37.96	29	3.	-1.24	-23.23	20.25	-3.51	-4.14	20.18
MC $84 \times$ MC 82	97.50	-27.37	-57.33	-57.70	12.10	-3.44	-59.85	-68.79	13.15	-5.90	-3.49	-18.40
MC $84 \times$ MC 79	96.75	-25.15	-57.65	-58.03	11.75	-37. 33	-61.09	-69.76	11.50	-17.04	-45.56	-31.75
MC $84 \times$ MC 66	196.75	-8.28	-13.89	-14.64	29.45	-0.93	-2.48	-24.20	17.50	-4.44	-17.16	3.86
MC $84 \times$ MC 49	240.50	. 33	5.25	$4.3{ }^{\text {a }}$	30.70	13.81	$1.60{ }^{\text {\# }}$	-20.98	19.00	-1.23	-10.06	12.76
MC $84 \times$ NC 69	233.75	3	30	1.41	30.55	-3.47	-7.77	-21.30	17.85	-5.12	15.50	3.93
MC $84 \times$ MC 34	245.50	13.0̂*	7.44	6.51	27.25	-2.01	-9.85	-29.92	14.75	-18.90	-30.18	-12.46
Arica Harit x MC	81.25	-32.43	-59.48	-64.75	9.15	-46.18	-66.42	-76.45	11.85	-18.13	-43.16	-29.67
Arica Harit x MC 79	91.50	-20.61	-54.36	-60.30	10.05	-40.00	-63.12	-74.13	11.50	-16.21	-44.84	31.75
Arka Harit x MC 66	141.00	-29.68	-29.68	-38.82	28.05	-0.71	-4.10	-27.80	18.25	0.41	-12.47	8. 30

1	2	3	4	5	6	7	B	9	10	11	12	13
Arka Horit I MC 49	202.50	-2.64	-6.03	-12.15	27.90	9.41	2.39	-28.19	18.25	-4.45	- -12.47	7 8.30
Arka Harit \times MC 69	94.00	-54.70	-56.17	-5.92	29.05	-3.81	-12.37	-25.23	16.63	-10.97	7-20.26	6-1.33
Arka Harit x MC 34	211.50	4.28	2.87	-8.24	26.25	-0.28	-3.67	-32.43	15.63	-13.43	3-25.06	6-7.27
NC $82 \times$ MC 79	46.75	35.57		-79.71	9.67	37.72	32.53	-75.10	9.55	29.93	317.96	6-43.32
MC $82 \times$ MC 66	88.60	-26.30	-55.80	-61.56	10.57	-41.25	-63.85	-72.78	11.25	-4.66	-27.42	$2-33.23$
HC $82 \times$ MC 49	77.75	-39.14	-63.92	-66.27	10.47	-31.31	-55.89	-73.04	10.88	-14.54	-37.32	2-35.46
HC $82 \times \mathrm{MC} 69$	70.75	-44.30	-66.97	-69.28	10.72	-46.24	-67.64	-72.39	11.50	-6.50	-30.30	-31.75
MC $82 \times \mathrm{nC} 34$	82.75	-32.62	-59.75	-64.10	11.32	-29.55	-55.41	-70.85	12.50	7.07	-27.87	-25.81
NC $79 \times$ HC 66	99.00	-14.10	-50.60	57.05	10.70	-41.45	-63.42	-73.46	11.00	-0.45	-29.03	-34.72
WC $79 \times$ IC 49	92.50	-24.64	-42.92	-59.87	11.32	-27.05	-61.28	-70.85	10.75	-10.23	-38.04	-36.20
MC $79 \times$ MC 69	104.75	-14.31	-51.17	-54.56	11.07	-47.24	-66.60	-71.49	9.65	-16.45	-41.52	-42.73
MC $79 \times$ MC 34	107.75	-8.54	-47.60	-53.25	9.87	-39.60	-61.12	-74.58	10.25	-6.18	-32.77	-39.17
MC $66 \times$ MC 49	157.75	-24.16	-24.90	-31.56	27.85	5.09	-4.79	-28. 31	16.25	-1.07	-6.34	-3.56
NC $66 \times$ NC 69	170.50	-17.83	-20.51	-26.05	31.45	0.80	-5.13	-17.05	16.38	2.34	0.76	-2.82
MC 66 x MC 34	171.50	-15.54	-16.59	-25.60	26.37	-3.48	-9.83	-32.11	14.25	-7.31	-8.06	-15.43
MC $49 \times$ NC 69	143.00	-33.48	-33.64	-37.96	28.67	0.79	-13.50	-26.15	16.37	-3.15	-5.62	-2.02
MC $49 \times$ MC 34	138.50	-34.22	-35.73	-39.91	26.07	6.10	2.66	-32.88	15.75	-3.37	-9.22	-6.53
NC $69 \times$ MC 34	184.50	-12.17	-13.98	-19.96	29.07	-0.68	-12.29	-25.16	14.25	-10.24	-13.64 -	-15.43
CD ($\mathrm{p}=0.05$)	2.35	2.04	2.35	2.35	0.55	0.47	0.55	0.55	1.03	0.90	1.30	1.30
$C D$ ($p=0.01$)	3.09	2.68	3.09	3.09	0.73	0.62	0.73	0.73	1.36	1.18	1.36	1.36

Mean performance of parents and F hybrids and extent of heterosia for fruit woight, frait length and fruit girth in bitter gourd during third eason

	Fruit weight				Pruit length				Fruit girth			
	Mean (g)	RH (\%)	$\begin{aligned} & \text { HB } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean (cm)	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean (cm)	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	HB (\%)	SH (\%)
1	2	3	4	5	6	7	8	9	10	11	12	13
Priya	213.75				35.35				16.00			
MC-78	211.00				34.95				14.20			
MC-84	272.50				29.25				23.30			
Arka Harit	198.25				28.65				23.30			
MC-82	25.50				6.35				8.10			
MC-79	287.50				7.06				6.55			
NC-66	197.50				30.10				16.15			
M. -49	200.00				25.00				18.05			
MC-69	192.50				33.75				16.60			
MC-34	117.50				26.10				15.00			
Priya x MC-78	215.75	1.55	0.94	0.94	35.45	0.85	0.28	0.28	14.55	-3.64	-9.06	-9.06
Priya x MC-84	217.00	-10.70	-20.37	1.52	31.25	-3.20	-11.59	-11.59	17.05	16. 38	-26.82	6.56
Priya x Arka Harit	202.75	-1.58	-5.16	-5.16	30.00	-6.25	-15.13	-15.13	18.75	27.98	-19.53	17.19
Priya x MC-82	105.75	-11.59	-50.53	-50.53	14.10	-32.37	-60.11	-60.11	12.60	4.56	-21.25	-21.25
Priva x MC-79	93.50	-22.89	-56.25	-56.25	17.30	-18.40	-51.06	-51.06	10.50	6.87	-34.38	-34.38
Priya x MC-66	203.50	-1.03	-4.80	-4.78	31.75	-2.98	-10.18	-10.12	16.25	1.08	0.62	1.56
Priya x MC-49	204.75	-1.02	-4.21	-4.21	27.75	-8.20	-21.50	-21.50	17.10	0.44	-5.26	6.88
Eriya x MC-69	196.13	-3.45	-8.25	-8.25	35.50	2.75	0.42	0.42	16.85	3.37	1. 51	5.31 u

Table 37. Continued

1	2	3	4	5	6	7	8	9	10	11	12	13
Priya x MC-34	131.50	-20.60	-38.48	-38.48	27.50	-10.50	-22.21	-22.21	16.30	5.1	1.88	1.88
$\mathrm{MC-78} \times \mathrm{MC-84}$	224.75	-7.00	-17.53	5.1 * ${ }^{\text {¢ }}$	32.50	1.23	-7.01	-8.06	19.85	34.57	-14.88	24.06
MC-78 x Arka Harit	219.00	7.25	3.79		29.50	2.20	-15.59	-16.55	21.20	54.1**	-9.07	32. 50 㤟
MC-78 x MC-82	82.75	-30.02	-60.78	-61.87	12.90	-37.50	-63.09	-63.51	12.40	11	-12.68	-22.50
MC-78 \times MC-79	75.25	-37.20	-64.34	-64.80	17.00	-19.05	-51.36	-51.91	13.20	27.20	-7.04	-17.50
MC-78 x MC-66	211.00	3.30	0.00	-1.29	31.40	-3.40	-10.15	-11.17	16.30	7.41	0.93	1.88
MC-78 x MC-49	204.75	-0.37	-2.96	-4. 21	26.50	-11.59	-24.18	-25.04	18.05	11.9\% ${ }^{\text {¢ }}$	0.00	12.8 * ${ }^{\text {¢ }}$
MC-78 x MC-69	197.75	-1.98	-6.28	-7.49	37.50	3.52	7. ${ }^{\text {3 }}$	$6.0 \stackrel{\star}{8}$	16.15	4.87	-2.71	0.93
MC-78 \times MC-34	132.75	-19.18	-37.09	-37.89	27.10	-11.22	-22.46	-23.33	15.05	3.0゙*	0.33	-5.94
MC-84 x Arka Harit	206.25	-12.37	-24.30	-3.51	29.10	0.51	-5.13	-17.68	23.15	-0.64	-0.64	44.69
MC-84 \times MC-82	70.50	-52.68	-74.13	-67.00	18.75	5. 34	-35.90	-46.96	12.50	-20.30	-45.65	-21.88
MC-84 x MC-79	64.50	-57.17	-76. 33	-69.82	20.75	14.32	-29.06	-41.30	10.60	-28.97	-53.91	-33.75
MC-84 x MC-66	222.75	-5. 21	-18. 26	4.21	29.70	0.08	-1.33	-15.98	16.30	10.69	-21.13	1.88
MC-84 x MC-49	200.25	-15.24	-36.51	-6. 32	26.70	-1. 56	-8.72	-24.47	18.55	-10.28	-19.34	15.94
MC-84 x MC-69	194.0	-16.56	-28.81	-9.24	34.10	8.25	1.04	-3.56	16.85	-15.50	-26.74	5.31
MC-84 x MC-34	202.75	-3.97	-25.59	-5.15	27.05	-2.25	-7.52	-23.48	16.05	-16.19	-30.22	0.31
Arka Harit \times MC-82	71.7	-35.86	-63.80	-66.43	13.80	-21.14	-51.83	-60.96	9.55	-39.17	58.48	40.31
Arla Harit x MC-79	75.75	-33.48	-61.79	-64.56	16.75	-6.16	-41.15	-52.62	9.10	-39.02	-60.45	43.13
MC-6	197.7	-0.06	-0.25	-7.49	29.05	-1.10	-3.48	-17.82	16.05	-18.63	30.21	-0.31

Contd.

1	2	3	4	5	6	7	8	9	10	11	12	13
Arka Harit x MC-49	198.50	-0.31	-0.75	-7.13	26.85	-0.09	-6.28	-24.05	18.15	-12.21	1-21.87	13.44
Arka Harit x MC-69	193.00	-1. 22	-2.65	-9.77	32.50	4. ${ }^{\text {* }}$	-3.70	-8.06	16.95	-15.03	$3-26.30$	5.94
Arka Marlt x MC-34	147.75	-6.41	-0.25	-30.88	27.90	1.92	-2.62	-21.07	15.05	6.36	* -36.57	-5.94
MC-82 \times MC-79	33.50	23.50		-84.33	7.50	11.90 ${ }^{\text {* }}$	-6.38	-78.78	7.95	8.50	-1.85	-50.31
MC-82 \times MC-66	47.25	-57.60	-76.08	-77.89	7.40	59.73	-75.41	-79.07	9.55	-21.20	-40.87	-40.31
MC-82 \times MC-49	60.75	-45.80	-69.63	-71.58	8.10	-48.33	-67.60	-77.09	9.15	-30.10	-49.31	-42.81
MC-82 \times MC-69	34.25	-68.34	-82.40	-83.98	9.10	-41.95	-73.04	-74.26	8.70	-29.69	-47.59	-45.63
MC-82 \times MC-34	32.50	-54.55	-72.34	-84.80	8.55	-47.30	-67.24	-75.81	8.85	-23.38	-0.41	-44.67
MC-79 x MC-66	67.75	-40.10	-65.56	-68.30	19.05	2.56	-36.71	-46.11	10.30	-9.25	-36.22	-35.63
MC-79 x MC-49	77.00	-32.67	-62.00	-63.98	20.10	$25.4{ }^{\text {* }}$	-19.60	-43.14	12.30	0.00	-31.86	-23.13
MC-79 \times MC-69	80.75	-27.00	-58.05	-62.18	21.75	$6.6{ }^{\star}$ 2	-35.56	-38.47	13.60	$17.4{ }^{\text {* }}$	-18.07	-15.00
MC-79 x MC-34	67.25	-8.40	-42.77	-68.54	18.90	14.07	-27.59	-46.53	10.25	-4.87	-31.67	-35.94
MC-66 x MC-49	198.75	0.00	-0.63	-7.02	27.90	1.27	-7. 31	-2.10	16.25	34.56	-9.97	1.56
MC-66 \times MC-69	195.50	0.25	-1.01	-8.54	32.55	1.96	-3.56	-7.92	16.35	-0.15	-15.06	2.19
MC-66 \times MC-34	139.25	-11.58	-29.49	-34.85	27.10	-3.56	-9.97	-23.33	15.05	-3. 30	-6.81	-5.94
MC-49 x MC-69	195.50	-0.38	-2.25	-8.54	34.30	16.78	1.63	-2.97	17.15	-1.01	-4.99	7.19
$\mathrm{MC}-49 \times \mathrm{MC} 34$	172.50	8.66	-13.75	-19.30	25.25	-1.17	-3.26	-28.57	16.15	-2.26	-10.53	-0.94
MC-69 x MC-34	132.50	-14.52	-31.17	-38.01	30.25	1.08	-10.37	-14.43	15.15	-4.11	-8.73	-5.31
$C D(p=0.05)$	4.95	4.29	4.95	4.95	0.85	0.74	0.85	0.85	0.34	0.29	0.34	0.34
$C D(p=0.01)$	6.50	5.64	6.50	6.51	1.12	0.98	1.12	1.12	0.45	0.39	0.45	0.45

heterobeltiosis. MC-82 x MC-79 as in relative heterosis recorded the highest heterobeltiosis (16.88\%). In the third season only MC-82 \times MC-79 (16.52\%) and MC-78 x Aria Harit (3.79\%) showed significant heterobaitiosis.

Standard heterosis was significant for 5 crosses In first. 6 in second and three in the third seasons. Priya x MC-84 (25.37\%) and MC-78 x MC-84 (16.77\%) in first season recorded the highest values of relative heterosis. Heterobeltiosis was relatively lower in the second and third seasons.
k. Fruit length

Out of 45 hybrids, 16 in first, ten in second and eleven in third seasons exhibited significant relative heterosis. The hybrids with significant relative heterosis wore MC-82 x MC-79 in first and second seasons with 14.48% and 37.72% relative heterosis respectively. In the third season the hybrid MC-79 \times MC -49 (25.43\%) showed superiority over others.

Significant hetarobeltiosis was exhibited by three crosses infirat, five in second and only one in the third seasons. None of the hybrids had significant stand heterosis in the first and second saseons.

MC-78 \times MC -69 (6.08) (Plate 31) was the only hybrid with standard heterosis in the third season.

1. Fruit girth

Relative heterosis was significant in 15 crosses in first four in second and 18 in third seasons. Superior crosses wore MC-66 \times MC-49 (52.28\%) and MC-82 \times MC -79 (21.35\%) in first, MC-82 x MC-79 (29.93\%) in second and MC -78 x MC -84 (34.57%), MC -66 x MC -49 (34.5\%), Priya x Aria Hart (27.98\%) and MC-78 \times MC-79 (27.2\%) in the third season.

Five hybrids in first, one each in second and third seasons showed significant heterobeltiosis. Crosses MC -66 \times MC -49 (8.4%) and MC-82 \times MC -79 (7.83\%) in first and MC-82 \times MC-79 (29.93\%) in second possessed comparatively higher relative hetorobeltioais.

The hybrid MC-84 \times Ark Harit in general possessed consistent standard heterosis for all the three seasons (39.94\%, 20.18\% and 44.69%) Other crosses with appreciable standard heterosis were Arka Hart x MC-49 (43.04\%) (Plate 32) in the first, and MC-78 \times MC-84 in the second and third seasons (14.24% and 32.5%).

Plate-31. MC 70 m NC 69, etanderd heterote F_{2} hybrid for fruit length

Plato-32. Arka Harit π MC 49, etemaard heterotic F_{1} hybrid for fruit girth

PLATE-31

Only two hybrids, Priya x Arka Harlt (7.34\%) and MC-82 x MC-79 (16.92\%) showed aignificant relative hoterosis In the first season. In the second season relative heterosis was aignificant for six hybrids and seven in the third season.

Mone of the hybrids possessed significant heterobelt10sis in the first and second seasons. However, there were crosses with significant heterobeltiosis in the third season. The cross MC-82 x MC-79 possessed meximum heterobaltiosis (17.86%) followed by Priya x MC- 34 (5.77\%) and MC-69 \times MC-34 (5.76\%).

Standerd heterosis was significant for four hybrids In the first and 11 each in the second and third seasons. Priya x Arka Harit showed consistent standard heterosis for all the seasons ($35.71 \%, 16.41 \%$ and 43.9%).
A. Soods/plant

Rolative heterosia was observed in 11 crosses in firat and third and 17 in second sesson. Marimum heterosis Vas shown by MC-82 \times MC-79 (27.57) in first MC-82 \times MC-69 and MC-82 \times MC- 34 (40.17% each) in third season.

Table 38. Mean perfonance of parents and Fi hybrids and extent of heterosia for flesh thick. seeds/fruit and 100 seed veight during firyt season

Parenta/Crossea	Flesh thlcknesa				Seeds/Eruit				100 seed waight			
	Mean (mm)	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{HB} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{SH} \\ & (\%) \end{aligned}$	Mean	RH (\%)	$\begin{aligned} & \text { HB } \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{SH} \\ & (\%) \end{aligned}$	Maan (g)	RH (\%)	$\begin{aligned} & \text { K1 } \\ & (x) \end{aligned}$	$\begin{aligned} & \mathbf{8 H} \\ & (x) \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Priya	5.25				25.75				24.25			
MC 78	5.25				23.25				23.25			
NC 84	5.60				24.75				27.00			
Arka Rarit	8.03				20.75				20.75			
MC 82	3.38				13.50				18.25			
NC 79	3.13				15.50				7.48			
VC 66	5.00				25.50				28.30			
nc 49	5.28				22.75				20.75			
ne 69	5.25				18.75				22.25			
ve 34	5.00				25.75				22.25			
Priya \times MC 78	5.13	-2.38	-2.38	-2.3B	24.50	3.78	-4.85	-4.85	25.25	$6.3{ }^{\text {\% }}$	4.13	4.13
Priya \times MC 84	5.28	-2.76	-5.80	-0.48	23.50	-6.90	-8.74	-8.74	25.50	-0.49	-5.56	5.15
Priya x Arica Harit	7.13	7.34	-11.21	35.71	22.50	-3.20	-12.62	-12.62	21.75	-3.30	-10.31	-10.31
Pripa \times MC 82	4.23	-2.02	-19.52	-19.52	17.50	-í: :	-32.03	-32.03	20.25	-4.70	-16.50	-16.50
Priya x M 79	4.05	-3.29	-22.86	-22.86	22.50	9.09	-12.62	-12.62	9.25	-41.60	-61.85	-61.85
Priya x MC 66	5.15	0.49	-1.90	-1.90	25.50	-0.49	-0.97	-0.97	27.00	2.76	-4.59	11.34
Friya \times MC 49	5.30	0.71	0.47	0.95	22.00	-0.09	-14.56	-14.56	24.50	8.89	1.03	1.03
Priya $=$ MC 69	4.25	19.05	-19.04	-19.04	21.00	-5.62	-18.45	-18.45	24.50	5.38	1.03	1.03

Toble 38 Contlumad

1 2

Priya 2 NC 34
C $78 \times \mathrm{HC} 84$
c $78 \times$ Arica Harit
C $78 \times \mathrm{MC} 82$
C $78 \times \mathrm{MC} 79$
LC 78 K MC 66
C. 78 K M 49
[$78 \times$ MC 69
H2 78 x MC 34
HC 84 I Arita Harit MC $84 \times$ NC 82

MC $84=$ MC 79
MC 84 I NC 66
MC $84=$ HC 49
MC 84 x NC 69
MC 84π MC 34
Arica Harit x MC 82 Arita Rarit x HC 79 Arion Harit x MC 66
$5.00-2.44 \quad-4.76 \quad-4.76 \quad 23.50$
$5.18-4.61-10.71 \quad-1.43 \quad 21.50$ $6.05-8.85-24.61 \quad 15.2421 .50$
$4.13-4.65-21.43-21.4319 .00$
$4.08-2.68-22.38-22.38 \quad 22.00$
$5.23 \quad 1.95 \quad-0.48 \quad-0.48 \quad 24.50$
$\begin{array}{llllll}5.15 & -2.13 & -2.37 & -1.90 & 23.50\end{array}$
$\begin{array}{lllll}5.33 & 1.43 & 1.43 & 1.43 & 21.50\end{array}$
$5.03-1.95 \quad-4.29 \quad-4.29 \quad 24.50$
$6.13-16.24-23.68-16.67 \quad 22.50$
$4.38-2.51-21.88-16.6715 .50$
$3.88-11.17-30.80-76.19 \quad 22.50$
$5.20-1.89 \quad-7.14 \quad-0.75 \quad 24.50$
$5.20-4.37 \quad-7.14 \quad-0.95 \quad 25.50$
$5.13-5.53-8.48 \quad-2.38 \quad 18.50$
$5.33 \quad 0.48 \quad-0.28 \quad-1.43 \quad 24.50$
$4.25-24.43-47.04-19.0418 .50$
$3.75-32.74-53.27-28.57 \quad 20.50$
$5.38-17.47-33.02 \quad 2.38 \quad 23.50$
$\begin{array}{llllllll}-8.74 & -8.74 & -8.74 & 23.50 & 3.30 & -3.03 & -3.09\end{array}$

$\begin{array}{llllllll}-3.64 & -9.47 & -16.50 & 23.50 & 6.82 & 0.00 & -3.09\end{array}$
$1.67-20.00-26.21 \quad 20.50 \quad-1.20-12.77-15.46$
$11.7 \begin{array}{lllllll}\text { 产 }\end{array}$－7．35 $-14.56 \quad 8.25-46.30-64.89-65.98$
$\begin{array}{llllllll}-0.75 & -3.92 & -4.85 & 27.75 & 7.66 & -1.94 & 14 . \text { Hै }^{*}\end{array}$
$\begin{array}{llllllll}0.84 & -1.05 & -8.74 & 23.75 & 7.95 & 2.10 & -2.06\end{array}$
$\begin{array}{llllllll}0.88 & -9.47 & -16.50 & 22.50 & -1.10 & -3.20 & -7.22\end{array}$
$1.29-4.85 \quad-4.85 \quad 23.25 \quad 2.20 \quad 0.00 \quad-4.12$
$1.10 \quad-9.09-12.85 \quad 25.75 \quad 7.85-04.65 \quad 6.19$
$\begin{array}{llllllllllll}-18.95 & -37.37 & -39.80 & 24.50 & 39.00 & -9.26 & 1.03\end{array}$ 11.8 产
$-2.40 \quad-3.92 \quad-4.85 \quad 28.75 \quad 4.00 \quad 1.59 \quad 18.8$ $7.37 \quad 3.03 \quad-0.97 \quad 25.50 \quad 6.80$ 满 $-5.50 \quad 5.50$
$-14.94-25.25-28.16 \quad 21.50-12.60-20.37-11.34$
$-3.00-4.85 \quad-4.85 \quad 23.00 \quad-6.60-14.81-11.34$
8．0覀 $-10.84-28.16 \quad 19.50 \quad 0.00 \quad-6.02-19.59$
13.10 若 $-1.20 \quad-20.39 \quad 7.75-45.10-62.65-68.00$
$1.62-7.84 \quad-8.7424 .50 \quad \mathbf{- 0 . 1 0} \mathbf{- 1 3 . 4 2} 1.03$
Contd．

Table 38. Continued

Arle Harit x MC 49 5.70 $\mathbf{- 1 4 . 2 9 - 2 8 . 9 7 ~ 8 . 5 7 ~}$ Ark Harit x MC $69 \quad 5.80-12.62-27.7310 .48$ Arla Harit x MC $34 \quad 5.23-19.97$ - $34.90 \quad-0.48$ MC $82 \times$ MC 79 MC $82 \times \mathrm{MC} 66$ MC $82 \times$ MC 49

MC $82 \times$ MC 69
MC $82 \times \mathrm{MC} 34$
NC $79 \times$ NC 66
MC 79 ㅍ MC 49
MC $79 \times \mathrm{MC} 69$
NC $79 \times$ NC 34
NC $66 \times$ NC 49
MC . $66 \times$ MC 69
HC $66 \times$ MC 34
MC $49 \times$ MC 69
HC $49 \times$ NC 34
MC $69 \times$ MC 34
CD ($\mathrm{p}=0.05$)
CD ($\mathrm{p}=0.01$)

6	7	8	9	10	11	12	1
22.50	3.37	－1．10	－12．87	22.50	8.43		$3-7.22$
20.50	3.80	－1．20	－20．39	24.50	13.95	5 10．11	11.03
3.50	1.08	－8．74	－8．74	21.50	0.00	$0-3.37$	7 －11．34
8.50	27.57	19．35	－28．16	9.25	－28．08	－49．31	1－61．86
9.00	－2．60	－25．50	－26．21	18.75	－19．40	－33．75	－22．68
7.00	－6．20	－25．27	－33．98	19.75	1.28	－4．82	－18．56
9．50	20.93	4.00	－24．27	19.75	－2．47	－11．24	－18．56
24.50	24.84	－4．85	－4．85	19.25	－4．90	－13．45	－20．62
9.00	－7． 31	－25．49	－26．21	8.25	－56．30	－70．00	－65．95
0.50	7.19	－9．89	－20．39	8.00	－43．30	－61．45	－67．01
20.5	19．70̈	$9.33^{\frac{1}{3}}$	－20．39	8.25	－44．50	－62．92	－65．98
1.00	1.81	-18.45	－18．45	8.75	－41．10	－60．67	－63．92
． 00	$9.80{ }^{\text {a }}$	－17．65	－18．45	25.50	3.98	－9．87	5.15
． 00	－14．12	－17．65	－26．21	24.50	－3．16	－13．48	1.03
3.50	－8．30	－8．73	－8．75	22.50	0.89	－20．50	－7．22
20．50	－0．61	－9．89	－20．39	22.50	4.65	1.12	－7．22
3.50	－3．10	－8．74	－8．74	23.50	9．3䓔	5.60	－3．09
0.50	－13．68	－20．38	－20．38	21.50	－3．30	－3．30－11	－11．34
1.80	1.57	1.80	1.80	1.32	1.16	1.32	1.32
2.37	2.06	2.37	2.37	1.74	1.52	1.74	1.74

Toble 39. Kean performance of parenta and Fi hybrida and extent of heteroais for fiesh thichanose.
eeadafirut and 100 seed waight during second season

1	2	3	4	5	6	7	B	9	10	11	12	13
Prifa x MC 34	4.85	2.10	4.86	-0.51	22.25	17.11	8.54	8.54	23.00	11.51	5.75	5 5.75
MC $78 \times$ MC 84	5.13	-3.53	-6.82	5.13	23.00	20.26	10.84	$12.20{ }^{\text {a }}$	23.75	-3.55	-6.00	09.20
MC $78 \times$ Arka Harit	5.23	9.13	-10.04	7.18	17.50	2.94	0.00	-14.65	21.75	-1.72	-8.42	20.00
MC $78 \times$ ルС 82	4.23	0.89	-17.56	-13.33	12.50	-14.53	-28.57	-39.02	19.75	-4.82	-16.04	$4-9.60$
MC $78 \times$ MC 79	3.88	-6.91	-24.39	-20.51	20.00	20.30	14.29	-2.44	9.25	-40.08	-61.05	5-57.47
MC $78 \times$ MC 66	5.13	-0.24	0.00	5.13	23.00	15.17	19.48 ${ }^{\text {\% }}$	12.20	23.50	-0.53	31.05	8.05
MC $78 \times \mathrm{MC} 49$	5.23	0.72	-0.48	7.18	21.50	$17.00{ }^{\text {* }}$	11.69	4.87	23.75	9.83	0.00	9.20
MC $78 \times$ MC 69	5.00	0.00	2.43	2.56	19.50	11.43	11.43	-4.87	22.50	2.86	-5.26	3.45
MC $78 \times$ MC 34	4.88	0.00	-4.88	0.00	21.50	22.86	22.86	4.87	21.25	-1.73	-10.53	-2.30
MC $84 \times$ Arka Harit	5.85	-1.47	-8.24	20.00	16.50	-11.41	-20.48	-19.50	19.75	-14.13	-22.55	-9.20
NC $84 \times$ WC 82	4.43	1.14	-19.55	-9.23	13.50	-16.92	-34.94	-34.15	17.75	-17.92	-30.39	-18.39
MC $84 \times$ MC 79	3.88	-10.92	-29.55	-20.51	19.50	6.85	-6.02	-4.87	10.25	-37.16	-59.80	-52.87
MC $84 \times$ MC 66	5.13	-3.30	-6.82	5.13	22.00	10.00	6.02	7.32	21.75	-11.22	-14.71	0.00
NC $84 \times$ MC 49	5.48	1.86	-0.46	12.31	21.50	7.50	3.61	4.87	20.50	-8.88	-19.61	-5.75
MC B4 x MC 69	5.05	-2.65	-8.18	3.59	19.75	2.60	-4.81	-3.66	22.50	-1.10	-11.76	3.45
MC $84 \times$ MC 34	4.88	-3.70	-11.36	0.00	20.50	6.49	-1.20	0.00	21.50	-4.44	-15.67	-1.15
Arica Harit x MC 82	4.15	-13.76	-34.90	-14.87	13.00	-7.96	-21.21	-6.34	19.50	1.96	-4.88-	-10.34
Arica larit x MC 79	3.88	-19.06	-39.22	-20.51	20.50	27.13	24.24	0.00	9.25	-33.02 $=$	-54.88 -	-57.47
Arka Harit \times MC 66	5.50	-4.14	-13.73	12.82	22.50	25.87	16.88	9.76	22.50	2.27	-4.25	3.45

Contd.

Tabla 39.

Continced

1
Arlos Hartt I MC $495.75 \quad-1.08 \quad-9.80 \quad 17.95 \quad 22.00$ Arla Harit x nc $695.13 \quad-8.89 \quad-19.61 \quad 5.1319 .00$ Arla Harlt x me 34 4.88 -11.36 -23.53 $0.00 \quad 20.50$ ne 82 x nc $79 \quad 3.25 \quad 0.78 \quad 0.00-33.3315 .50$

NC $82 \times$ NC 66 HC $82 \times$ HC 49
MC $82 \times \mathrm{MC} 69$ MC $82 \times$ MC 34
MC 79 MC 66
NC $79 \times$ MC 49 MC $79 \times$ MC 69 MC 79 x MC 34 NC $65 \times$ MC 49 MC $66=$ HC 69 HC $66 \times$ MC 34 MC $49 \times$ MC 69 MC 49 x MC 34 MC $69 \times$ vC 34 CD ($p=0.05$)
CD ($p=0.01$)

3.25	0.78	0.00	-33.33	15.50
3.88	-7.18	-24.02	-20.51	14.00
4.38	2.94	-16.67	-10.26	18.00
3.88	-4.62	-20.51	-20.51	20.50
4.25	7.94	-8.10	-12.82	20.50
4.62	11.45	-9.31	-5.12	15.50
4.13	-2.37	-21.43	-15.38	17.00
4.63	-14.55	-4.62	-5.12	21.50
4.75	21.41	2.70	-2.56	21.50
5.45	5.31	3.81	11.79	18.50
5.35	7.27	4.90	9.74	22.50
5.10	4.88	0.00	4.61	20.50
5.08	0.25	-3.33	4.10	21.50
5.33	7.85	1.43	9.23	19.75
5.13	7.89	5.13	5.13	18.50
0.34	0.29	0.34	0.34	3.12
0.45	0.39	0.45	0.45	4.11

8	9	10	11	12	13
	7． 32	20.50	2.50	0.00	5.75
8.57	－7． 32	20.25	1.25	－1．22	2
17.14	00	18.75	－6． 25	－8．50	－13．79
－1．58	－24．39	7.75	－37．69	-56.34	－64．36
－27．27	－31．71	17.75	0.14	－24．47	－18．39
－6．45	－12．20	17.62	－5．00	－9．62	－18．97
17.14	0.00	13.50	－28．47	－32．50	－37．93
17．14	0.00	17.75	－4．43	－8．72	－18．16
－19．48	－31．71	8． 25	－46．12	－64．89	－62．06
－11．69	－17．07	9.25	－30．52	－52．56	－57．47
22.86	4.87	8.62	－36．41	－56．88	－60．34
22．86	4.87	8.50	－36．15	－56． 41	－60．92
－3．90	－9．76	20.00	－6．98	－14．89	－8．05
28．57	9.76	22.50	3.45	－4．25	3.45
17．14	0.00	22.50	4.65	－4．25	3.45
11.69	4.87	21.50	8.86	7.50	－1．15
2.60	－3．66	22.50	15．38 ${ }^{\text {冎 }}$	12．50	3.45
－6．33	－9．76	21.75	10．13	8.75	0.00
3.12	3.12	2.23	1.94	2.23	2.23
4.11	4.11	2.93	2.53	2.93	2.93

Table 40. Mean performance of parents and Fi hybrids and extent of heterosis for flesh thiclanese, seeds/fruit and 100 seed weight in bitter gourd during third season

Parents/Crosses	Flesh thickness				Seeds/fruit				100 seed weight			
	Mean (mm)	RH (\%)	HB (\%)	SH (\%)	Mean	RH (\%)	$\begin{aligned} & \text { HB } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { SH } \\ & (\%) \end{aligned}$	Mean (g)	RH (\%)	HB (\%)	$\begin{aligned} & \text { SH } \\ & \text { (\% } \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11	12	13
Priya	5.13				23.50				23.75			
MC-78	5.38				18.50				23.75			
MC-84	5.78				22.38				27.50			
Arka Harit	8.13				16.63				23.00			
MC-82	3.50				13.25				19.00			
KC-79	3.13				15.75				6.75			
MC-66	5.25				20.50				24.50			
MC-49	5.25				29.25				21.50			
MC-69	5.00				18.25				22.00			
MC-34	5.20				21.50				19.00			
Priya \times MC-78	5.30	0.95	-1.40	3.41	21.75	3.57	-7.45	-7.45	23.75	0.00	0.00	0.00
Pripa \times MC-84	5.70	4.58	-1. 30	11. ${ }^{\star} \stackrel{*}{2}$	22.00	-4.08	-6.38	-6.38	25.50	-0.48	-7.27	7.36
Priya x Arka Harit	7.38	11.3 **	-9.23	43.9 **	19.00	-5.30	-29.27	-29.27	26.25	$12.3{ }^{* *}$		10. ${ }^{\text {2 }}$
Pripa \times MC-82	3.88	-10.14	-24.39	-24.40	16.75	-8.80	-43.62	-43.62	20.75	-2.90	-12.63	-12.63
Priya \times MC-79	4.38	6.06	-14.63	-14.63	20.75	3.18	-13.83	-13.83	7.63	-50.00	-67.89	-67.89
Priya x MC-66	5.15	-0.72	-1.90	-0.49	20.75	-5.68	-12.66	-12.66	26.50	9.8 **	8.14	11.58
Priya \times MC-49	6.05	16.6**	$15.2{ }^{*}{ }^{*}$	18.00*	20.50	-4.10	-18.08	-18.08	23.50	3.87	-1.05	-1.05
Priya \times MC-69	5.15	1.73	0.49	0.49	18.75	-10.17	-20.21	-20.21	19.75	-13.67	-16.84	-16.84

Toble 40. Continued

1	2	3	4	5	6	7	B	9	10	11	12	13
Priya x MC-34	5.50	6.54	5.77	7.32	21.00	-6.60	-10.64	-10.64	21.75	1.75	. 42	-8.42
MC-78 \times MC-84	5.30	-4.90	-8.23	3.41	19.00	-7.03	-15.06	-19.14	25.00	-2.43	-9.05	5.26
MC-78 \times Arlca Harit	6.38	-5.56	-21.54	24. 34	19.00	8.18	2.70	-19.14	22.50	-3.74	-5.26	-5.26
MC-78 天 MC-82	4.55	2.53	-15.35	-11.22	17.00	7.09	-8.10	-27.66	18.75	-12.28	-21.05	-21.05
MC-78 \times MC-79	3.88	-8.80	-27.90	-24.39	17.75	3.65	-4.05	-24.46	8.25	-45.90	-55.26	-65.26
MC-78 \times MC-66	5.13	-3.52	-4.65	0.00	21.50	10. 26	4.88	-8.51	24.00	-0.52	-2.04	1.65
MC-78 \times MC-49	5.63	5.88	4.65	9.76	20.50	$8.6{ }_{1}^{\text {* }}$	6.41	-18.08	25.00	10.49*	5.26	. 26
MC-78 x MC-69	5.13	-3.61	-4.65	0.00	19.00	3.40	2.70	-29.27	21.50	-6.01	-9.47	-9.47
MC-78 \times MC-34	5.00	-5.44	-7.00	-2.44	20.75	3.75	-3.49	-12.76	24.50	14.6 \%	3.16	3.16
MC-84 x Arka Harit	6.13	-11.87	-24.62	19.50	18.75	-3.85	-16.18	-20.21	22.75	-9.90	-17.27	4.21
MC-84 \times MC-82	4.13	-11.05	-28.57	-19.50	15.75	-11.58	-29.59	-32.98	20.00	-13.98	-27.27	-15.79
MC-84 \times MC-79	3.63	-18.54	-37.23	-29.27	18.00	-5.58	-19.54	-23.40	8.75	-48.90	-68.18	-63.16
MC-84 \times MC-66	5.50	-0.22	-4.76	7.32	21.50	0.29	-3.89	-8.51	22.50	-13.46	-18.18	-5.26
MC-84 \times MC-49	5.43	-1.60	-6.06	5.85	19.75	-5.11	-11.71	-15.95	20.50	-16. 33	-25.45	-13.68
MC-84 \times MC-69	5.30	-1.62	-8.23	3.41	21.50	5.85	-3.89	-8.51	21.75	-12.12	-20.91	-8.42
MC-84 \times MC-34	5.30	-3.40	-8.23	3.41	20.00	-8.83	-10.59	-14.90	20.50	-11.83	-25.45 -	-13.68
Arka Harit \times MC-82	4.13	-29.03	-49.23	-19.50	18.00	20.50	8.30	-23.40	19.25	-8.33	-16.30-	-18.95
Arka Harit \times MC-79	3.75	-34.76	-53.86	-26.83	17.75	9.65	6.89	-24.49	8.25	-44.54	-64.13-65	-65.26
Arka Harit \times MC-66	5.13	-23.36	-36.92	0.00	19.25	3.70	-6.10	-18.08	22.75	-4.12	-7.14 -	4.21

Contd.

1	2	3	4	5	6	7	8	9	10	11	12	13
Arka Harit x HC-49	6.13	-8.41	-24.62		17.75	-1.49	-7.79	-24.47	19.25	-13.48	-10.30	0-18.95
Arka Harit \times MC-69	6.00	-8.57	-26.50	17.07	15.75	-9.68	-13.69	-32.98	8 21.50	-4.44	-6.52	$2-9.47$
Arka Harit x MC-34	6.38	-4.30	-21.38	24. ${ }^{\text {* }}$ 产	21.75	$14.0{ }^{\star}{ }^{\star}$	1.16	-7.45	522.25	5.95	-3.26	6-6.32
MC-82 x MC-79	4.13	24.50	$17 .{ }^{\text {* }}$ ¢ ${ }^{\text {c }}$	-19.50	17.00	17.24	-26.73	-27.66	8.25	-35.92	-56.58	8-65.26
NC-82 \times NC-66	4.63	$5.71{ }^{*}$	-11.90	-9.75	16.75	-0.74	-18.29	-43.62	21.50	-1.15	-12.24	4-9.47
MC-82 \times MC-49	4.50	2.86	-14.29	-12.20	17.00	4.62	-11.68	-27.66	19.75	-2.47	-8.14	-16.84
MC-82 \times NC-69	4.13	-2.90	-18.50	-19.50	19.50	$23.81{ }^{\text {® }}$	$6.81{ }^{\text {k }}$	-17.02	20.75	-3.49	-5.68	-12.63
MC-82 \times MC-34	4.13	-5.17	-20.67	-19.50	19.75	13.0\% ${ }^{\text {¢ }}$	-8.13	-15.95	22.00	15.78	15.78	-7.37
MC-79 \times MC-66	4.13	-1.49	-21.43	-19.50	16.00	-11.72	-21.95	-31.91	8.25	-47.20	-66.33	-65.26
MC-79 \times MC-49	4.50	7.46	-14.29	-12.20	17.50	$10.00{ }^{*}$	-9.09	-25.53	8.25	-41.59	-61.60	-65.26
MC-79 \times NC-69	4.38	7.69 *	-12.50	-14.63	18.50	8.82	1.37	-21.28	7.50	-47.82	-65.90	-68.42
MC-79 \times MC-34	4.63	11.11	-11.06	-9.76	19.50	4.70	-9.30	-17.02	9.75	-24.75	-48.68	-58.94
MC-66 $\times \mathrm{MC}-49$	5.08	-2.87	-2.87	-0.98	20.00	0.63	-2.44	-14.90	23.50	2.17	4.08	-1.05
MC-66 x MC-69	5.30	3.41	0.95	3.41	20.50	5.81	0.00	-18.08	20.50	-11.83	-16.33	-13.68
MC-66 \times MC-34	5.33	1.91	1.43	3.90	20.25	-3.57	-5.80	-13.83	22.25	2.29	-9.18	-6. 32
MC-49 \times MC-69	5.25	2.44	0.00	2.44	20.50	9. ${ }^{*} 3$	6.49	-18.08	22.75	4.60	3.41	-4.21
HC-49 \times MC-34	5.00	-4.31	-4.76	-2.44	21.00	3.07	-2. 30	-10.64	22.75	12.35	5.81	-4.21
MC-69 \times MC-34	5.50	7.84	5.76	7.32	18.75	-5.67	-12.80	-20.21	20.75	1.19	-5.68-	-12.63
CD ($\mathrm{p}=0.05$)	0.39	0.33	0.39	0.39	1.75	1.51	1.75	1.75	1.62	1.41	1.62	1.62
CD ($\mathrm{p}=0.01$)	0.52	0.44	0.52	0.52	2.30	1.98	2.30	2.30	2.14	1.85	2.14	2.14

Only two crosses in the first, 14 in second and four in third seasons showed significant heterobeltiosis.

Hone of the hybrids possessed significant standard heterosis.
0. 100 seed weight

Twelve crosses in first, ix and in second and third had significant relative heterosis.

Heterobeltiosis was found significant for three crosses in first and third and five in second season. Hexinum heterobeltiosis was observed in Arks Barit x MC-69 (10.11%) and Ark Hart $\times \mathrm{MC}-49$ (8.43%) in first, MC-49 x nC- 34 (12.50%), Prize x MC-49 and Priya x MC-69 (8.05% each) in second MC-82 \times MC-34 (15.7B\%) and Priya \times MC-66 (8.16\%) in third season.

Stander heterosis was significant for seven crosses in first and two in third seasons. MC-84 $\times \mathrm{MC}-66$ (18.56\%) In frat and Prigs $x M C-66(11.58 \%)$ in third season had higher standard heterosis.
C. Inheritance of fruit colour, fruit surface and bitterness and study on ink age if any in bitter gourd

1. Fruit colour

Pour parental line with contrasting fruit colours (Priya, MC-49, MC-66 and MC-69) were used to study the inheritance of fruit colour in bittergourd. The fruits of Priya and MC-49 were green while those of MC-66 and MC-69 were white. Crosses were made with these four ines to generate $F_{1}, F_{2}, B C_{1}$ and $B C_{2}$. Out of the six crosses, four with contrasting colours were considered for the study (Table 41).

In all the four crosses, the $F_{1} s$ were all green fruited indicating dominance of green over white. The plants in the segregating $\mathrm{F}_{2} \mathrm{~B}, \mathrm{BC}_{1} \mathrm{~B}$ and $\mathrm{BC}_{2} \mathrm{~B}$ were classsled into green and white fruited.
a. Group 1. Priya x MC-66

In the $\bar{\Gamma}_{2}, 200$ plants segregated into 154 green and 46 white fitting in the $3: 1$ ratio $\left(X^{2}=0.426, p=0.50-\right.$ $0.70)$. All the 80 plants in $B C_{1}$ possessed green fruits. In the $B C_{2}, 120$ plants segregated into 63 with green and 57 with wite fruits, which fitted well in the 111 ratio $\left(X^{2}=0.30, P=0.50-0.70\right)$.

Table 41. Inheritance of fruit colour in bitter gourd Group e Generations Observed number of
plants Green White Total ratio X^{2} Probability

D. Group 2. Priya \times MC-69

One hundred and eighty plants in the F_{2} segregated Into 137 green and 43 white fitting a 311 ratio $\left(x^{2}=0.118\right.$, $P=0.70-0.80)$. In the $B C_{2}, 140$ plants consisted 73 green and 67 white fruited. This fitted the expected ratio of $111\left(X^{2}=0.257\right.$, $\left.P=0.50-0.70\right)$. In $B C_{1}$ all plants had green fruits only.
c. Group 3. MC-49 \times MC-66

In the $F_{2}, B C_{1}$ and $B C_{2}$, the observed frequencies were in agreement with the expected frequencies. Out of 190 plants in F_{2} (Plate 33) 139 had green and 51 white fruits $\left(X^{2}=0.34, P=0.50-0.70\right)$. In $B C_{2}$ (Plate 34) 165 plants included 84 with green and $B 1$ with white fruits ($X^{2}=0.054, P=0.80-0.90$). In $B C_{1}$ (Plate 35) all the plants were green fruited.
d. Group 4. MC -49 \times MC -69

The observed frequencies in the F_{2} felted wall in the expected ratio of $311\left(X^{2}=0.04, P=0.80-0.90\right)$ Where 205 plants segregated into 155 green and 50 white fruited. All the $B C_{1}$ g were green fruited. In $B C_{2}$ also

Plate -33. Inheritance of fruit colour F_{2} segregation, 3 green 1 white

Plate -34. Inheritance of fruit colour $B C_{1}$ segregation, 1 green : 0 white

Plate -35. Inheritance of fruit colour $B C_{2}$ segregation, 1 green 11 white

PLATE-33

the segregation were in agreement with the expected ratio of $1: 1$ where 110 plants consisted 58 with green and 52 with white fruits $\left(X^{2}=0.327, P=0.50-0.70\right)$.

2. Fruit surface

Out of the six crosses developed from Priya, MC-49, MC-66 and MC-69, four with contrasting fruit surface were considered for the study of inheritance of fruit shape. The fruits of Priya and MC-66 were spiny, while that of MC-49 and MC-59 were smooth. Crosses were mede with these Ines to generate the $F_{1}, F_{2}, B C_{1}$ and $B C_{2}$ ($T_{a b l e} 42$).

Expressivity of smoothness was not complete in MC-49 as evidenced by 2 spiny fruited plants out of 20. So also was the case with MC-69.

The r_{1} hybrids in all the crosses were spiny Fruited indicating dominance of spininess over smoothness. Tho plants in the segregating generations were classified into spiny and smooth fruited.
A. Group 1. Priya \times MC -49

Out of 225 plants in the $F_{2}, 172$ wore spiny and
53 smooth fruited. Considering the incomplete expressivity

Table 42. Inharitance of fruit surface in bitter gourd

Qroup	Cenerations	Observed number of plants			Expectad number considering expressivity		Expected genetic ratio	Probabil1ty
		Spıny	Ribled	Total	Spiny	Ribled		
1	2	3	4	5	6	7	$8 \quad 9$	10
1. Prija	P_{1}	20	0	20				
x	P_{2}	2	18	20				
MC 49	F_{1}	20	0	20				
	${ }_{2}$	172	53	225	174.38	50.62	$3.1: 0.90 .143$	$0.70-0.80$
	$B C_{1}$	95	0	95				
	BC_{2}	61	49	110	60.5	49.5	$1.1: 0.90 .009$	0.90-0.95
2. Priya	\square_{1}	17	0	17				
x	P_{2}	0	17	17				
MC-69	r_{1}	17	0	17				
	F_{2}	136	44	180			3:1 0.029	0.80-0.90
	BC_{1}	70	0	70			1:0	
	$B C_{2}$	74	66	140			1:1 0.457	$0.30-0.50$

Contd.

1	2	3	4	5	6	7	B	9	10
3. HC-49	P_{1}	0	20	20					
x	P_{2}	20	0	20					
MC-66	F_{1}	20	0	20					
	F_{2}	146	44	190			$3: 1$	0.343	0.5-0.7
	$B C_{1}$	42	38	BO			$1: 1$	0.20	
	BC_{2}	165	0	165			$0: 1$		0.5-0.7
4. MC-66	P_{1}	20	0	20					
x	P_{2}	2	18	20					
	${ }^{1}$	20	0	20					
	${ }^{1} 2$	156	49	205	158.88	46.12	3.1:0.9	0.231	0.5-0.7
	EC_{1}	65	0	65					
	BC_{2}	58	52	110	60.5	49.5	1.1:0.9	0.229	0.5-0.7

of smoothness in MC-49, the expected ratio in the F_{2} was modified to $3.1: 0.9$ with expected frequency of 174.38 spiny and 50.62 white. The observed ratio was in agreement with the expected ratio $\left(X^{2}=0.143 . P=0.70\right.$ and 0.80$)$. In $B C_{1}$ all the 95 plants had spiny fruits. In $B C_{2}, 120$ plants segregated into 61 spiny and 40 smooth fruited fitting in the modified expected ratio of $1.1: 0.9\left(X^{2}=0.009, P=0.90\right.$ - 0.95).
b. Group 2. Priya \times MC -69

The observed F_{2} segregation agreed well with the expected ratio $3: 1\left(X^{2}=0.029, P=0.80-0.90\right)$. The 180 plants of F_{2} possessed 136 with spiny and 44 w th smooth \&ruits. In $E C_{1}$ all the plants had spiny fruits. In $B C_{2}$, out of 140 plants 74 were spiny and 66_{2} smooth fruited agreeing the expected ratio of $1: 1(X=0.459, P=0.30-$ 0.50).
e. Group 3. MC-49 \times MC-66

Out of $190 \mathrm{~F}_{2}$ (Plate 36) plants 146 wore spiny and 44 smooth fruited, agreeing the expected ratio of 311 ($X^{2}-0.343, P=0.50-0.70$). In $B C_{1}$ (Plate 37) 80 plants segregated in to 42 spiny and 38 moth fruited fitting in

```
Plate-36. Inheritance of fruit surface \(F_{2}\) segregation, 3 spiny : 1 mooth
```

Plate-37. Inheritance of fruit surfece B_{1} segregation, 1 spiny : 1 emooth

Plate-38. Inheritance of fruit surface $B C_{2}$ segregation, 1 epiny : 0 mooth

PLATE-36

PLATE-30
the expected ratio of $1: 1\left(X^{2}=0.02, P=0.50-0.70\right)$. In $B C_{2}$ (Plate 38) all the plants had aping fruits.
d. Group 4. MC -66 \times MC-69

The 205 plants in the F_{2} segregated into 156 spiny and 49 smooth fruited. Considering the incomplete expires--ivity of smoothness in MC-69, the expected ratio was modified into $3.1: 0.9$ with the expected 158.88 spiny and 46.12 goth fruited plants. The observed F_{2} ratio was in agreement with this modified expected ratio $\left(X^{2}=0.231\right.$, $P=0.50-0.70)$. The segregation of 110 plants in $B C_{2}$ In to 58 spiny and 52 smooth fruited west also in agreement with the modified expected ratio of $1.1: 0.9\left(X^{2}=0.229\right.$. $P=0.50-0.70$). In $B C_{1}$ all were with spiny fruits.
3. Detection of linkage between fruit colour and surface

Out of the $b 1 x$ crosses used for the studied on inheritance of fruit colour and surface separately, two had parents differing for both colour and surface. The r_{2} generations segregating jointly for colour and surface were used to test their independent inheritance.

In both the crosses, the ${ }_{1}$ a were all with green, spiny fruited indicating dominance of green spiny fruits over white smooth.
a. Group 1. Priya \times MC-69

The joint segregation of F_{2} population into green spiny, green smooth, white spiny and white smooth is presented in Table 43. The $180 \mathrm{~F}_{2}$ plants (Plate 39) segregated into 102 green spiny, 35 green smooth, 34 white spiny and 9 white smooth. This is in agreement with the expected ratio of $9: 3: 3: 1$. Inspection of the results showed that the probability of exceeding the calculated value of total X^{2} lies between 0.90 and 0.95 , which showed the agreement of the observed frequencies with the expected ratio.

The partitioning of χ^{2} (Table 44) into colour, surface and linkage revealed clear independence in the inheritance of fruit colour and surface ($x^{2}=0.3556$, $P=0.70-0.80$)
b. Group 2. MC-49 \times MC-66

The doing segregation in $\boldsymbol{r}_{\mathbf{2}}$ showed that the 190

Toble 43. Joint segregation of fruit colour and surface in the F_{2} segregations in bitter gourd

Aroups	Gemerations	Observed number of plants				Expected genetic ratio							
		Oreen		White		Total	Green		White		$\begin{gathered} \text { Total } \\ v^{2} \end{gathered}$	Probabilit	
		Spiny	Smooth	Spiny	Smooth		Spiny	Smooth	Spiny	Smooth			
$\begin{aligned} & \text { 1. Priya } \\ & \mathrm{x} \\ & \mathrm{MC}-69 \end{aligned}$	P_{1}	17	0	0	0	17	9	3	3	1	0.504	0.09-0.95	
	P_{2}	0	0	0	17	17							
	F_{1}	17	0	0	0	17							
	F_{2}	102	35	34	9	180							
	$B C_{1}$	70	0	0	0	70							
	DC_{2}	36	37	38	29	140							
2. $\mathrm{HC}-49$	${ }^{2} 1$	0	20	0	0	20	93		3	1	0.802	0.80-0.90	
I	P_{2}	20	0	20	0	20							
nc-66	z_{1}	20	0	0	0	20							
	F_{2}	106	33	40	11	190							
	BC_{1}	42	38	0	0	80							
	$B C_{2}$	84	0	81	0	165							

Plate-39. Joint inheritance of iruit colour and eurfoce F_{2} segregation

9 Green opiny:3 Green mootha3 White apiny:i White mooth

Table 44. Partitioning of X^{2} in the F_{2} segregetions of two crosses in bitter gourd ${ }^{2}$
Source df Crossess X^{2} Frobability

Frait colour	1	1	0.1185	$0.70-0.80$
		2	0.3438	$0.50-0.70$
Fruit shape	1	1	0.0296	$0.80-0.90$
		2	0.3438	$0.50-0.70$
Linkage	1	1	0.3556	$0.50-0.70$
		2	0.1146	$0.70-0.80$
		1	0.5037	$0.90-0.95$
		2	0.8022	$0.80-0.90$

40 white spiny and 11 white smooth. This also fitted well in the expected ratio of $9: 3: 3: 1\left(K^{2}=0.8022\right.$. $P=0.80-0.90)$.

The partioning of total ψ^{2} into fruit colour and surface showed that the inheritance of fruit colour is independent to that of fruit surface $\left(X^{2}=0.1146, P=\right.$ $0.70-0.80$)
4. Bitterness

Three parental lines viz. MC-53, MC-79 and MC-34 with varying bitterness in the original set 1 were used for generating three crosses to study inheritance of bitterness. The mean values of bitterness expressed as percentage of ether extract of these three lines, their ${ }{ }_{1}{ }^{3}, F_{2}$ and back cross generations are presented in (Table 45).

The presence and type of non allelic interactions were determined by AB C and D scaling tests and presented In Table 46.

The generation means were partitioned into different components like man effect (m), additive effect (d). dominance effect (h), additive x additive effect (i),

Table 45. Generation means for bitterness in bitter
gourd

Generations

Crosses

$P_{1} \times P_{2} \quad P_{1} \times P_{3} \times P_{3}$

P_{1}	3.01 ± 0.05	3.01 ± 0.05	1.99 ± 0.04
$B C_{1}$	2.67 ± 0.05	2.80 ± 0.05	2.17 ± 0.04
F_{1}	2.49 ± 0.03	2.75 ± 0.03	2.23 ± 0.03
F_{2}	2.52 ± 0.04	2.75 ± 0.01	2.35 ± 0.02
$B C_{2}$	2.23 ± 0.03	2.61 ± 0.04	2.51 ± 0.02
P_{2}	1.99 ± 0.04	2.54 ± 0.03	2.54 ± 0.03

Table 46. Scaling tests for no allelic interactions for bitterness

$$
* * p=0.01
$$

additive x dominance effect (j) and dominance x dominance effect (1) and are presented in Table 47. The components of genetic variances, estimates of heritability and number of effective factors were worked out and presented in Table 48.

The null hypothesis underlying the scaling tests that $A=B=C=D$ was rejected in MC-53 \times MC-79 and MC-79 \times MC-34 indicating presence of non allelic interactions. However, scaling tests were not significant in MC-53 \times MC- 34 indicating the absence of non allelic interactions in this cross.

Additive effects (d) were significant in all the three crosses of which MC-79 \times MC- 34 had negative effect (-0.345). Dominance effect (h) was significant only in MC -53 \times MC -79 (-0.266) and it wal negative in all the three crosses. The interaction was of additive x dominance (g) type in MC-53 to MC-79 (-0.953).

Additive Variance (d) were 0.43 in MC-53 \times MC-79. 0.13 in MC-79 \times MC- 34 and -0.05 in MC-53 \times MC-34. Domainnance variance (h) yes $0.16 \mathrm{In} \mathrm{MC-53} \mathrm{\times MC-79}$ and 0.07 in MC-53 \times MC-34. It was negative in MC-79 \times MC- $34(-0.15)$.

Table 47. Componenta of total genetic affect for bittorness

Crosses	Genetic paremetera					
	m	d	h	1	1	1
$P_{1} \times P_{2}$		$0.44 \pm 0.0{ }^{\text {䉼 }}$	-0. $27 \pm 0.0{ }^{\text {A }}$	-0.26 ± 0.20		-0.43 ± 0.28
$P_{1} \times P_{3}$	2.95 ± 0.13	$0.24 \pm 0.1{ }^{\text {\% }}$	-0.60 ± 0.38			
${ }^{2}=P_{3}$	2.35 ± 0.02	$-0.35 \pm 0.0{ }^{\text {号 }}$	-0.07 ± 0.12	-0.04 ± 0.11	-0.07 ± 0.05	-0.33 ± 0.20

Table 49. Components of genetie variance, degree of dominance. heritabllity eatimates and number of effective factors for bitterness

| | | Degree
 of dom-
 inance | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C_{1} \times P_{2}$ | 0.43 | 0.16 | 0.61 | 1.20 | 0.90 | 0.61 | 0.001 |

Components of genetic variance, degree of dominance, heritebility estimates and number effective factors for betterness ware worked out and are presented in Table 48. The degree of dominance $\sqrt{H / D}$ for bitterness was 0.61 in $P_{1} \times P_{2}$. It was negative in both the other crosses. Estimates of heritability in narrow sense $\left(h^{2}(n)\right.$ was high in MC-53 \times MC-79 (1.2) and MC-79 \times MC-34 (1.58) and moderate in MC-53 \times MC-34 (0.51). Estimates of K_{1} was 0.61 in MC-53 \times MC-79 and 0.58 in MC-79 \times MC-34. The estimates of K_{2} was very low in all the three crosses.
D. Crossability studies emong the three species of Momordica 1. Anthesis

Observations were made on period of anthesis in three species of Momordica (Table 49). All the species differed in thoir anthesis period.

Table 49. Period of anthesis in three spacies of Momordics s1.180.
anthesis period

$$
6.00-11.30 \mathrm{PM}
$$

Momordica gymbalaria

$$
8.00-11.00 \mathrm{PM}
$$

Table 50. Observations on ovary growth in crosses among the three speciea of Momoralca

Types of polinnation	Duration after pollination							
	12 hours	1 day	2 days	3 days	4 days	5 days	6 days	7 days
Momordica charantia (sel)	100\% ovary remained green	98\% remalned green	98% grarted growing	94\% continued growth	92% continued growth	$\begin{aligned} & 91 \% \\ & \text { continued } \\ & \text { growth } \end{aligned}$		$\begin{aligned} & 91 x \\ & \text { cont Inued } \\ & \text { growth. } \end{aligned}$
momordica charantia x Momordica d101ca	98x ovary rema!ned azeen	$\begin{aligned} & 90 \% \\ & \text { remained } \\ & \text { green } \end{aligned}$	60% remained green 40\% started shrinking	```29% remained green 71% shrinking and dry!ng```	```10% remained green 90% shrinking and drying```	```5% remalned 95% drying```	remained green 98x shrinking and drying	No ovary remained green
Momordica chasant!a \qquad x Mon rolica cymbalarla	97% ovary remalned green	$\begin{gathered} 9: x \\ \text { remalned } \\ \text { green } \end{gathered}$	65% remalned green $35 x$ started shrinking	```24.5x remalned green 75.5% shrinking and drying```	5% remained green 95x shrinkina and drying	4\% remained green 96x shrinking and drying	1x remained green 99\% shrinked and atarted drying	No ovary remained green
$\frac{\text { Momardica }}{\left(\mathrm{Sel}_{\mathrm{e}}\right] \mathrm{flolea}}$	99\% ovary cemained green	$\begin{aligned} & 97 \% \\ & \text { remained } \\ & \text { green } \end{aligned}$	96% started growing	$\begin{aligned} & 90 x \\ & \text { continued } \\ & \text { arowth } \end{aligned}$	$\begin{aligned} & 90 \% \\ & \text { continued } \\ & \text { growth } \end{aligned}$	$\begin{aligned} & 90 x \\ & \text { continued } \\ & \text { growth } \end{aligned}$	$\begin{aligned} & 90 \% \\ & \text { continued } \\ & \text { growth } \end{aligned}$	$\begin{aligned} & 90 x \\ & \text { continued } \\ & \text { growth } \end{aligned}$
Momordica d1010a Mcmordica cymbalar!a	96\% ovary remained green	$\begin{aligned} & 91 \% \\ & \text { remalned } \\ & \text { green } \end{aligned}$	$65 x$ remained green 35\% started shrinking	24% remalned green 76\% shrinked and started drying	5% remained green 95\% shrinking and drying	3\% remalned green 07x shrinking and drying	No ovary remained green	No oviry remained green
$\frac{\text { Momordica } \frac{\text { cymbalaria }}{(5 e l f)}}{\text { (f) }}$	98\% overy rema!ned green	$\begin{gathered} 96 \% \\ \text { remained } \\ \text { green } \end{gathered}$	96\% started grow!ng	$\begin{aligned} & 90 \% \\ & \text { continued } \\ & \text { growth } \end{aligned}$	$\begin{aligned} & 00 \% \\ & \text { conelnued } \\ & \text { grawth } \end{aligned}$	$\begin{aligned} & n 5 \% \\ & \text { continued } \\ & \text { growth } \end{aligned}$	85% continued growth	05.0% enntinued growth.

2. Ovary growth

Observations on ovary growth were taken and expressed as percentage (Table 50). In all the selfed flowers ovary growth was normal. Fruit set was above 85\% in all the selfed flowers. However, in crossed flowers more then 70% of the ovaries started shrinking and drying even the 3rd day after pollination. None of the ovaries in any of the crosses remained green after a week. Maximum fruit set was observed in Momordica charantia and Momordica dioica on selfing (91% and 90% respectively). In Momordica cymbalaria the selfed flowers set 85\% fruits.

Thus the three species of Momordica - charantia, dolce and cymbalaria were found totally cross incompatible. And the crossability index was zero among these three species studied.

Discussion

DIBCUSSIOM

Bitter gourd (Momordica charantin $L_{\text {o }}$) is a very

 popular Indian vegetable. In terme of nutritive value, it ranks first among the cucurbits, the most important constituenta being minerals and vitamins. One hundred g of edible portion of the large fruited variety contains 4.2 g of carbohydrate, 1.6 g of protein, 88 mg of vitamin C, 210 I. U. of $V i t a m i n ~ A$ and 1.6 mg of iron. In small fruited types, the nutrient contents are higher (Choudhury, 1967). Though bitter in taste, tender fruits are used in curries, plekles and fries, besides being used in various indigenous medicines.Deapite the aconomic, nutritional and medicinal
values of bitter gourd, avallability of high yielding Verieties/hybrids is ilmited. In bitter gourd, fraferences with respect to fruit colour, fruit surface and intensity of bittorness vary with locality and with individual. Fruit colour and fruit surface datermine market prico considerably. Stabllity in performance of a variety/hybrid is an important aspect for cultivating bitter gourd through out the year in troples. There exists other apecies of Momordica with desirable qualleles. Attempts were made to study various aspectes of erop improvement in bitter gourd.

The present investigation was carried out mainly with the objectives of studying genetic divergence, identiEying eatable and heterobeltiotic F_{1} hybrid, unravelling genetics of various economic characters and investigating into the crossability among the related species of bitter gourd.

Genetic variability and divergence

Studies on genetic variability and divergence are basic to any crop improvement programme. Effective selectIon of a genotype depends on estimates of heritability based on phenotypic performance. In the choice of proper eelaction method (s), estimates of heritability coupled with genetic advance are more useful than any one of the two alone (Johnson et al.. 1955).

Many workers have earlier reported existence of very high heritability in respect of several vegetative, productive and qualitative characters in bitter gourd. The components of variation due to phenotype and genotype wore studied in the present investigation.

Significant differences ware observed among 50
genotypes for all the 18 characters - branchea/plant, main \checkmark inc length, node at which first female flow or formed, days to first tomato flower opening, female flowors/plant,
percentage of female flowers, days to picking maturity, fruits/plant, fruit weight, fruit length, fruit girth, flesh thickness, seeds/iruit, 100 seed weight, protein content. T.S.S and Vitamin C content. Bitter gourd being cross pollinated due to monoecy exhibits much variation, and therefore, the present observed variation is quite rational as reported earlier by Srivastava and Srivastava (1976). Ramachandran and Gopalakrishnan (1979), Kangel (1981) and Chaudhar1 (1987).

Fruit yield/plant was maximum in Priya (12.76 kg) which was on par with MC-84 (12.48 kg), MC-78 (12.25 kg) and MC-66 (12.17 kg). Fruita/plant were maximum in MC-79 (113.25) and minimum in Aria Hart (17.25) , MC-34 took the least (33.50) days to first female flower opening.

Maximum phenotypic coefficient of variation was observed for fruit weight (48.77) followed by yield plant (39.91) and Eruita/plant (31.82). Similar findings were earlier made by Ramachandra and Copalakrishnan (1979). Mangal (1981) and Chaudheri (1987).

Phenotypic coefficient of variation (pew) was moderate for fruit length (29.56), per cent of female flowers (28.56), female flower/plant (27.37) and main

Vine length (22.32). These values were higher in the earlier report of Mangal (1981). However, the observed average pev for fruit length was in agreement with that of Chaudhari (1987).

In the present study, earliness had only a low value of pCv. The lowest values of pcv were observed for node to first female flower formation (8.18) days to opening of first female flower (8.38) and days to picking maturity (8.47). Least values of pcv for days to flower opening was also reported by Mangal (1981). The low estimates of pCv for early famale flower formation and aarly harvest obtainod by Chaudori (1997) also confirms the present findings. It is therefore suggested that variation for earliness and maturity is comparatively low In bltter gourd lines used for the present study.

The genotypic coefficient of veriation (gev)
resulting in high heritability was of higher magnitude for frult weight, yield/plant and fruits/plant. This Indicates low impect of enviroments on the expression of these characters. High gev with high heritebility was also roported by singh at al. (1977), Remachandran (1978) and Chauderi (1987). Node to firat female flower fomation
and days to pleking maturity had the lowest values of gev and heritability indicating greater impact of environment on earliness and maturity aspects in bitter gourd.

High heritability does not mean a high genetic advance for a particular quantitative character. For effective selection, heritability along with genetic adrance should be considered. In the present study high heritability along with genetic gain was observed for fruit weight, yield/plant and fruits/plant. The estimates of gev were also of high magnitude for these characters. This revealed that variation for the above cheracters were mainly due to action of additive genes. This confims to the earlier findings of Srivastava and Srivastava (1976), Singh et al. (1977), Ramachandran (1978) and Mangal et al. (1981).

Though heritability wes high for primery branches/ plent and days to opening of first femele flower, the gonetic gain was of low magnitude, indicating the action of non additive genes for expression of these characters. Similar findings were earlier made by Srivastava and Srivastave (1976). Non additive gene action for days to firat female flower opening was also reported by Ramachandran and Copalakrishman (1979).

Genetic divergence
The D^{2} statistics is a tool in estimating the genetic divergence in plant breeding experiments. It permits precise comparison among all possible pairs of population in any group.

Following Tocher's Method, 50 bitter gourd genotypes were grouped into five clusters. The study revealed that lines of different origin/sources fell in the same group and different groups consisted of lines of the same source/origin.

Clustor I contained lines with less economic

value. Cluster II hed lines with average yield. The high Yielding ines like Priya, MC-84, MC-78, MC-66 etc. ware in Cluster III. The bush types Arka Harit and MC-82 Eall in Cluster IV. Cluster V had only one line MC-79, the porennial type. In the present otudy meximum distance (D = 30.16) existed between clusters IV and V. Theoretically, therefore, maximum heterosis would be expected in crosses involving parents belonging to these elusters. From the study, it is observed that cholces of perents for hybrialsation or for other crop improvement progranmes need not necessarily be based on source or origin or geographical distence.

stability analysis

Bitter gourd is grown through out the year in the tropica. Varieties differ in their reaponse to varying environmental conditions. Stabllity analyses of yield and its components reveal the genetic bases of stability of parents and hybrids. A phenotypically stable and heterobeltiotic F_{1} hybrid is more important considering the possibility of growing bitter gourd through out the year In tropics. An attempt was made in the present study to evaluate performence of bitter gourd perents and hybrids under different environments and to know the genotypeenvironment interaction almed at identifying stable hybrids suited to high, medium and low envirohments.

Ten parents and $45 \mathrm{~F}_{1}$ hybrids were grown in a randomised block design consecutively for three seasons. Observations were mede on earliness and verlous vegetative and productive characters.

Pooled analysis of varlance was done for all the characters. Stabllity parameters for yield and its components were estimated as proposed by Eberhart and Russell (1966).

Significant genotype x environment $(0 \times E)$ interaction was observed for all the characters. The genotypes were aignificantly different in all the three seasons. Environments ware also aignificantly different among one another. The pooled deviation was highly significant for all the characters except for node to first female flower formation. This auggested thet the genotypes interacted aignificantly with the enviroments. The linear components of genotypes x environment interaction was highly significant for nodes to first female flower, female flowers/plent, fruits and yield/plant and significant for branches/plant and fruit girth. It was not significant for vine length, days to first female flower opening, fruit weight and fruit length. Significance of the linear components of genotype x environmental interaction suggested that the genotype enviromment interactions were linear and the genotypes differ considerably with respect to the above characters. This was reported arlier in other crops like compea (Sanghi and Kendalkar, 1983), bhindi (Suresh Babu, 1991) and brinjal (Ushamon1, 1987).

Eberhert and Russell (1966) considered both linear
$b(1)$ and non linear ${ }^{2} d(1)$ components, while judging the phonotypic stability. The highest overall mean yiold/
plant was recorded by MC-78 \times MC -66 (10.33 kg) followed by Priya \times MC -66 $(9.75 \mathrm{~kg})$. Considering the regression coefficients approximately equal to unity ($b 1 \longrightarrow 1$) and deviations from regression not significantly different from zero $\left(^{2} \mathrm{Sd}(1) \longrightarrow 0\right)$, Priya \times MC-84, MC -78 \times MC -69. MC-84 \times MC-66, MC-84 \times MC-49, MC-84 \times MC-69, MC -66 \times MC -34 and MC-49 x MC- 34 were found stable (Table 51). Priya x MC-69, Priya \times MC -34, MC-78 \times MC-84, MC-78 \times MC-34 were the \mathbb{F}_{1} hybrids with above average stability. Lines like Priya, MC-7B, MC-84, MC-66, MC-49, MC-69 and MC-34 and hybrids like Priya x MC-78, Priya \times MC-66, Priya x MC-49, MC-78 \times MC-49, MC-84 \times MC-34, МС-66 \times MC-49, MC-49 \times MC -69 and MC-69 \times MC-34 ara below average stable genotypes. The highest Yielding hybrid MC-78 \times MC-66 was unstable.

It revealed that hybrids responded more to varying environments than their parents. It also identified hybrids suited to low, medium and high environments 80 as to make bitter gourd cultivation profitable through out the year.

Combining ability analysis
The common approach of selecting parents on the basis of per se performance does not necessarily lead to

Table Si. Mean, regression coefficient and deviation from regression for varlaus bitcer gourd genorypes suited for high. medium and low environments

> Environments

Genorypes	High			Medium			Low		
	Mean	$b(1)$	${ }_{S}^{2} d(1)$	Mean	$b(1)$	$\stackrel{2}{S} d(1)$	Mean	$b(1)$	$5 \mathrm{~d}(1)$
Priya \times MC-69	8.53	1.13	0.00						
Eriya x MC-34	7.84	2.62	0.26						
$M C-78 \times \mathrm{MC-84}$	9.03	2. 13	0.05						
MC-7e $\times \mathrm{MC}-34$	7.70	1. 32	0.04						
FIIYa \times ME-84				9.00	1.07	0.47			
MC-78 \times MC-69				8.55	0.87	0.02			
MC-84 \times MC-66				8.77	0.89	-0.04			
MC-84 \times MC-49				9.00	1.06	0.99			
MC-84 \times MC-69				8.33	1.02	0.26			
$M C-66 \times M C-34$				7.78	1.05	-0.01			
MC-49 x MC-34				8.79	0.99	1.55			
Pryya							9.64	0.34	0.07
MC-78							8.95	0.44	0.26
MC-84							0. 46	0.71	0.09
MC-66							0. 68	0.36	1.25
MC-49							8. 25	0.28	0.32
MC-69							7.95	0.64	0.08
MC-34							7.07	0.27	-0.01
P=1Ya \times MC-7B							9.64	0.55	0.74
Priya x MC-66							9.75	0.47	0.86
Priya x MC-49							9.47	0.23	0.61
MC-78 \times MC-49							8.98	0.80	-0.04
MC-84 \times MC-34							8.03	0.72	0.71
MC-66 \times MC-49							9. 29	0.33	0.90
MC-49 \times MC-69							-. 15	0.83	0.14
MC-69 \times MC-34							7.12	0.73	1.17

the best result in hybridiation programe (Allard, 1960). selection of best parents based on complete genetic information end knowledge of combining sbility leads to fruitful results in the identification of promising ${ }{ }_{1}$ hybrids. The diallel crosses help in the estimation of general combining ability (gca) and specific combining ablilty (sca) of parents and hybrids respectively. The gea and sca are attributed to additive and non additive gene action respectively (Spragye and Taturn, 1942).

In the present investigation, ten diverse bitter gourd lines were solected based on colour, shape, Bize and yield of fruits and earliness. They were crossed in all possible combinations without reciprocals to develop 45 \mathbb{F}_{1} hybrids. Thase crosses along with the parents were grown for three seesons to study the combining ablilty.

The study rovealed that the variances due to gea were algnificant for all the characters in all the three seasons. The sca veriances were also bignificant for all the cherecters excepting node to firat female flower formation and days to picking maturity in the third season and fruit girth and 100 seed veight in the second senson. The significance of gea and sea variances indicated the role of edditivo sell as non additive gene action in
the control of most of the charecters. Significant gea and sca values were noted for vine length, fruits/plant. yield/plant, length, diameter and weight of fruits, Elesh thickness and seeds/fruit by many workers (Sirohi and Choudhury, 1977; Singh and Joshi, 1979; Pal et al., 1983; Srivastava and Nath, 1983 and Chaudhar1, 1987). For the improvement of such characters, recurrent selection could be resorted to.

It was also noted that parents showing high gea for Yield and other characters also gave good per se performance. The parents like Priya, MC-84, MC-78 and MC-66 which geve high yields also possessed significent gea -ffects for yield.

On analysing the parental ilnes used in developing croases, the parent Priya showed high gea effects for total yield, fruit length, seeds/fruit and per cent of fomale flowers/plant. Other parents with high gea effects for yield wore MC-7B, MC-84, MC-66 and MC-49. The parent MC-84 had the highest gea effects for branches/plant, fruit girth and frult weight. MC-34 possessed the highest negative gea effects for node to firat fomale flower fomat10n. It was observed that wen parents possessing high gea effecti wre crossed, the Γ_{1} hybride geve best performance.

Pooled analysis of Variance for combining ability revealed that the gea variances were highly significant for all the characters. The sca varlances were highly significant for 13 characters. Higher magnitude of gea Indicated the predominance of additive gene action. The interection of gea with environments were significant for all the characters excepting for earliness indicating that the impact of enviromments on gea were considerably high. Interaction of sca with environments were also significant for all the characters, revealing inconsistent sca effects of the crosses. It may, therefore, be suggested that for unblased estimates of combining ability, the studies must be carried out over a range of environments.

The prasent study revealed the importance of both additive and non additive gene effects in the inheritance of majority of the characters. Since additive gene effects were more predominant, pedigreee method would be the most efficient method for obtaining the desireble plant types. Simultaneously, as the sca effects were also significant, diallel selective mating among the parents on the basis of gea would result in greater veriability for recurrent election.

Meterosis

Heterosis was studied in 10×10 diallel set of bitter gourd for 15 characters in three seasons (Table 52 to 59). Significant differences were observed among the genotypes in all the three seasons for all the characters except days to picking maturity in the third season.

Significant heterobeltiosis was observed for branches/ plant by three hybrids in the first, seven in second and four in the third season. Arka Harit \times MC-82 in the first and third (15.15% and 14.63%) and MC-84 \times MC-49 (19.82\%) In the second seasons recorded highest values of heterobeltiosis for this trait. Even though the hybrid Arka Harit x MC-82 excaeded their better parent in first and third seasons, their per se perfomance was not promising. This may be attributed to the poor general combining ability -ffects of the parents. However, in MC-84 x MC-49, the per Be performance also was good, which is attributed to the high gea effects of the parants and high sea effects. The parents in Arka Harit x MC-82 belonged to different clusters. The observed heterobeltiosis in this cross mey be due to high genetic distance. In MC-B4 \times MC-49, the observed hotarobeltiosis is dua to the involvement of the parents

Table 52. Number of hybrids showing heterosis for important characters in bitter gourd

Charactera	Enviromments	RH(\%)	HB (\%)	SH(\%)
Hode of firat female flower	E_{1}	7	4	37
	E_{2}	5	0	23
	E_{3}	6	3	16
Days to opening of first female flower	E_{1}	16	5	17
	E_{2}	10	9	1
	E_{3}	28	10	27
Female flowers/plant	E_{1}	9	4	17
	E_{2}	13	4	16
	E_{3}	9	0	17
Percentage of female flowera	E_{1}	23	0	4
	E_{2}	12	5	1
	E_{3}	8	9	2
Prults/plant	E_{1}	29	5	30
	E_{2}	15	7	22
	E_{3}	3	0	17
Frult waight	E_{1}	10	2	5
	E_{2}	10	8	6
	E_{3}	4	2	3
Xield/plant	E_{1}	32	6	2
	E_{2}	4	4	1
	E_{3}	7	2	2

With high gca effects. Heteroais for branchea/plant was earlier reported by Lal at al. (1976) and Singh and Josh1 (1979).

Fifteen hybrids in the first, one in second and ten in third season recorded significant relative heterosis for vine length. Arka Harit x MC-79 had the hight and consistent per se performance ($7.35 \mathrm{~m}, 6.675 \mathrm{~m}$ and 6.625 m) with high relative heterosis (44.42\%, 57.5\% and 42.9%). The sca effect of the above crosa was high in all the three seasons. MC-79 had the highest gea effect in all the three seasons. The per se performance of the above cross also was $\mathrm{high}(7.35 \mathrm{~m})$.

Several hybrids exhibited relative and standard heterosis as well as haterobaltiosis for node to first fomale flower. Considoring all the three seasons, standard haterosis wes the highest in crosses MC-84 x Arka Harit ($-18.68 \%,-17.2 \%$ and -16.27%) and Arke Herit x MC-82 $(-18.68 \%,-11.83 \%$ and $-15.12 \%)$. The gea effects were highor and negativa for Arka Harit and MC-82. The par Be $^{\text {a }}$ porformance was good in first and third and moderate in the second season for Arks Harlt x MC-82. MC-84 x Arka Harit hed nagative values of sea effect while it was positive for Arle Harit x MC-82. Heterosis for lower
nodea of first female flower formation wes reported earlier by Lal et al. (1976) in bitter gourd.

Significant and negative relative heterosis heterobeltiosis and atendard heterosis for days to first female flower production were exhibited by several hybrids. Standard heterosis was significant for MC-66 x MC-49 (-14.97%) MC-49 \times MC-34 (-13.23%) and MC-79 x MC-34 (-13.17%) in the first and MC-49 \times MC-34 (-17.65%), MC-82 \times KC-49 (-13.53%), MC-66 \times MC-49 (-12.44%), MC-82 \times MC-34 (-11.76%) and MC-79 \times MC- $34(-11.18 \%)$ in the third weason. The significant heterosis in majority of the above crosses is due to involvement of the good general combiner MC-49. In other cases the genetic divergence between parents might have contributed to earliness. Similar observations were made by Agrawal et al. (1957) and Chaudhar1 (1987).

Mine hybrids in first, thirteen in socond and seven in third season exceeded the midparental values Cor femala flowera/plant. It wes observed in the present atudy that in crosses where MC-79 which possessed the highest gea effect $(29.46,25.29$ and 23.27) 13 involved, the hyorids had high heterosis. Standard heterosis was high in crosses where either of the parents possessed
high gca effects. Highest heterosis over the standard variety Priya wa shown by Aria Hart π MC-79 (88.92%) followed by MC-82 xMC-79 (54.98\%) and Priya \times MC-79 (53.5\%) in the first season. These possessed high sea effects and high per se performance. More over, the parents belonged to different clusters.

Standard heterosis for percentage of female flowers was significant mainly in first season. It was the highest In MC -49 \times MC -34 (7.91\%) followed by MC -49 x MC -69 (7.1\%) and MC-78 x MC-49 (4.72\%). In these crosses, the observed high heterosis is attributed to the involvement of MC-49 with the highest gca effect in all the three seasons (1.07 , 0.68 and 0.78). The per se performance was also high. However they were all in the same cluster. This suggested that high genetic distance is not always essential for heterosis in the crosses.

Heterobeltiosis for picking maturity was observed In five r_{1} hybrids in the first and one in the second season. Priya x MC-66 had the highest negative heterobeltiosis and see effect for earliness (-11.11%) in the first season. The par se performance we also good (12 days) for this hybrid. However, the performance of the cross Priya x MC -79 with higher negative hoterobeltiosis

Table 53. Mode to firat female flower in aallent F_{1} hybride

Buvironmants
 Hybrida
 Perse
 sca $\mathrm{RH}(\%) \mathrm{HB}(\%) \quad \mathrm{SH}(\%)$ performance effect

Table 54. Days to first female flowor in salient F_{1} hybrids

Environmants
 Hybrida

Perse parformanca effoct RH (\%) HB(\%)

SH (\%)
MC $84 \times \underset{\text { Harit }}{\text { Arka }}$
Arka Harlt π MC 66
MC $79 \times$ MC 49
\boldsymbol{E}_{1}
MC $79 \times$ MC 69
MC $79 \times$ MC 34
MC $66 \times$ MC 49
MC $49 \times$ MC 34

Priya x MC 49
E_{2}
HC $84 x$ Ar)
Harit
Arka Harit x MC 49

MC $84 \times$ MC 49
Arka Harit x MC 66

Arka
Harit
MC
34
$\mathrm{E}_{3} \quad \mathrm{MC} \mathrm{B2} \times \mathrm{MC} 49$
MC $82 \times$ MC 34
MC $79 \times$ MC 34
MC $66 \times$ MC 49
MC $49 \times$ MC 34

Table 55. Female flowers/plant in salient F_{1} hybride

Environ- Hybrids

performance sca $\mathrm{RH}(\%) \mathrm{HB}(\%) \mathrm{SH}(\%)$

Priya x MC 79	104.00	9.74	19.20	-2.76	
MC $78 \times \mathrm{MC} 49$	68.63	7.35	18.8	12.76	1.11
Arka Harit x MC 79	128.00	4.86	84.50	19.91	88.92
MC $82 \times$ MC 79	105.00	-7.22	0.60	-1. 63	
MC $82 \times$ MC 34	85.50	2.79	-1.58	16.18	26.20
MC $49 \times$ KC 34	79.00	11.70	19.25	10.10	16.60

E_{2}	Arka Harit x MC 49	43.88	1.93	23.51	-11.11	-23.80
	MC $82 \times$ MC 79	99.25	9.75	10.50 ${ }^{\text {* }}$	-10.79	71.86
	MC $79 \times$ MC 66	96.25	10.22	13.24	-13.18	66.67
	MC $79 \times$ MC 49	103.38	17.84	28.77	-6.97	79.22
	MC $49 \times$ MC 34	61.75	8.14	27.65	-48.08	6.93

Table 56. Percentage of female flowera in sallent F_{1} hybrids

Environ- Hybrids mants

Perse sca
 performance effect $\mathrm{RH}(\%) \mathrm{HB}(\%) \mathrm{SH}(\%)$

Priya \times MC 79

Priya x MC 49
MC $78 \times$ MC 49
Arka Harit x MC 69
MC $82 \times$ MC 49
MC $49 \times$ MC 69
MC $49 \times$ MC 34

Priya x MC 79	5.40	1.16	24.10	-9.24	-9.24
Arka Harit x					
MC 66					
Arka Harit x	5.65	0.82	22.80	-6.61	-5.04
MC	5.75	0.96	26.37	-3.36	-3.36

MC 49					
MC	34	6.15	0.81	20.58	3.36

Table 57. Yield/plant in salient F_{1} hybrids

Environ- Hybrids nents

Perse sca
performance effect
$R H(\%) \quad H B(\%) \quad S H(\%)$

MC $78 \times \mathrm{MC} 66$
11.28

Arka Harit x
5.41
2.09
16.83
10.00 17.14
$\begin{array}{llll}0.33 & 23.12 & -30.48 & -30.48\end{array}$ MC 69
E_{3} Arika Harit \boldsymbol{x}
6.31
1.71 21. 音 20 ($10.25-34.50$ MC 34
MC $82 \times$ MC 79
MC $49 \times M^{6} 34$
3.13
9.03
0.38
$\begin{array}{rrr}21.95 & -10.25 & -34.50 \\ 16.30 & 6.24 & -6.18\end{array}$

Table 58. Fruits/plant in salient I_{1} hybrids

Environ-
 ments Hybrida

Perse sca
performance effect
RH

Priya x MC 79	101.00	9.06	23.74	-9.82	97.07
MC $78 \times$ MC 66	71.00	10.02		14.06	38.54
MC $78 \times$ MC 49	64.75	9.42	45.77	$40.7{ }^{\text {* }}$	26.34
Arka Harlt x MC 79	124.50	47.81	90. ${ }^{\text {䓓 }}$	11.16	142.93
MC $82 \times$ MC 79	100.00	-9.84	-0.62	-10.71	95.12
MC $79 \times$ MC 69	B8.00	-0.54	8.64	-21.43	71.71
MC $79 \times$ MC 34	94.50	-1.73	8.93	-21.43	84.39
MC $49 \times \mathrm{MC} 34$	72.00	10.60	33.80	17.07	40.49

MC $7 B \times$ MC 79 Arka Harit x MC 79
MC B2 \times MC 79
E_{2} MC $79 \times$ MC 49
MC $66 \times$ MC 49
MC $49 \times$ MC 69
MC $49 \times$ MC 34
$\begin{aligned} \text { Arka } & \text { Harle } \\ \text { MC } & 34\end{aligned}$
$\mathrm{E}_{3} \quad \mathrm{MC} 82 \times \mathrm{MC} 79$
MC $79 \times$ MC 66
MC $66 \times$ MC49

100.25	17.92	8. ${ }^{\text {¢ }} \mathbf{3}$	0.75	
73.00	0.26	-7.89	-26.63	56.99
50.00	2.44	0.00	-15.25	75.25

Table 59. Fruit weight in salient F_{1} hybrids

Environants

Perse ca
performance effect RH (\%) HB(\%) SH(\%)

and high sea effectg was poor. This may be ascribed to the involvement of the poor general combiner, MC-79 for maturity. This suggested that the combining ability of the parents were more related to per se performance.

Several hybrids exhibited relative heterosis for Yield/plant in all the three seasons. The hybrids MC-78 x MC-66 in the first and second (10.95 kg and 11.275 kg) and Priya \times MC-49 in the second season (9.875 kg) had the highest per se yield with significant relative heterosis. The sca effects of the above crosses where the parents possessed high combining ability offects ware also higher. This suggested that in heterosis breeding programme, gea effects of parents, per se performance of hybrids and their eca effects should be considered.

Six hybrids in first and two each in the second and third seasons had significent heterobeltiosis for yield plant. It was maximum in Arka Harit x MC-79 in the first and second sessens (117.17% and 43.09%) with high sea effects (2.53 and 2.19). However, their par performance was poor in both the sassons $(7.6 \mathrm{~kg}$ and 4.4 kg$)$. This 1s attributed to the involvement of two poor general combiners in this hybrid. This suggested thet the combining abllity of the parents were more related to pex
performance of yield than sca effecte. The hybrid MC-78 x MC-66 and MC-84 \times MC-49 in the first, Priya \times MC-49 in the second and Priya x MC-66, MC-78 \times MC-66 and MC-66 x MC-49 in the third season appeared higher yielding than the standard variety, Priya. It was in general observed that when parenta possessing high gea effects were crossed the F_{1} hybrids gave best performance. Varying extent of heterosis was also reported earlier by Srivastava and Srivastava (1970), Lal et al. (1976), Sirohi and Choudhuri (1977), Pal et 키. (1983) and Chaudhari (1987).

Out of 45 hybrids, 27 in the first, 15 in second and two in the third season exhibited significent relative heterosis for fruita/plant. F_{1} hybride MC-78 x MC-49 (40.76%) and KC-49 xMC-34 (40.54%) had meximum heterobeltiosis with corresponding high sca effects 19.42 and $\mathbf{1 2 . 5 1)}$ in the first and second seesons respectively. Their per ge performances were not however high. The parents ware poor combiners and bolonged to same cluster which in turn might have contributed to the poor per se performance.

Eight hybrids in first, ten in second and four in third exceeded the mid-parental value for frults weight. The crosses with two small frulted lines, MC-82 \times MC- 79
recorded the highest relative heterosis in all the three seasons. Their performance vas not promising due to poor gca effects of the parents. Similar finding of higher heterosis in hybrids between mall fruited varieties than hybrids between large fruited varieties were reported earlier by Pal and Singh (1946).

Other parameters of fruit size such as fruit length, fruit girth and flesh thickness as well as saeds/plant had a similar trend in the present study. Hybrids between the two small fruited types, MC-82 \times MC -79 recorded the highest heterosis for fruit length, fruit girth and flesh thickness in all the three seasons.

Heterobeltiosis for 100 seed weight was observed in three hybrids each in first and third seasons and in five in second season. Hybrids involving parents like MC-69 and MC-49 with good gca effects exhibited higher values of heterobeltiosis. Their sea effects as well as par Be $_{\text {en }}$ performance were high. In crosses of mall \times large seeded lines, all the hybrids had mall seeds. Similar findings ware mede by Esquines-Alcasar and Gullck (1983).

Inheritance of fruit colour, fruit surface end bitterness

In bitter gourd there exists lines with white, green, spiny, nonspiny, highly bitter and less bitter fruits. Preferences of bitter gourd with respect to fruit colour, surface and intensity of bitterness vary with locality and with individual. Colour, surface appearance and size determine the market price considerably. Information on inheritance of such characters is useful in transferring them to a desired variety.

In the present study, an attempt was made to study the inheritance of fruit colour, fruit surface appearance and bitterness and also to detect linkage between colour and surface appearance. Four lines (Priya, MC-49, MC-66 and MC-69) differing in fruit colour (green/white) and surface (Spiny/smooth) were used to develop 6 generations of $P_{1}, P_{2}, P_{1}, P_{2}, B C_{1}$ and $B C_{2}$. In all the crosses, the ${ }^{P_{1}}{ }^{3}$ were green fruited indicating dominance of green over white. In F_{2} the population segregated into a ratio of 3 green : 1 white indicating monogenic inheritance of the character. This was further confined in BC_{2} generation where the segregating population fitted in a ratio of 1 green 1. This was in agreement with the earlier
reports of Esquinas-Alcasar and Gulick (1983) who suggested that the white pericarp is controlled by a single gene ' w '. white being recessive to green.

In crosses involving spiny fruited and smooth fruited lines, all the hybrids were spiny fruited indicating the dominance of spininess over smootheness. The F_{2} generations segregated into a ratio of 3 spiny: 1 smooth fruited, suggesting monogenic inheritance of the character. This vas again confirmed by a 1 : 1 ratio of spiny : moth fruited plants in the BC_{2}. The present finding of monogenic mode of inheritance of fruit surface appears to be the first report.

Out of six crosses used for the studies on
Inheritance of fruit colour and surface separately, two had parents differing for both colour and surface. The F_{2} generations from these two crosses which segregated jointly for fruit colour and surface were used to test the presence of 11 nkage.

The F_{1} from both the crosses were all green aping fruited indicating dominance of green spiny fruits over white moth. The joint segregation of F_{2} population
the study revealed that the fruit colour and surface are independent in inheritance.

Intensity of bitterness is another factor affecting consumer preference in bitter gourd. There exists bitter gourd lines with varying levels of bitterness. Though the exact methodology for the quantitative esthmotion of bitterness and consequent studies on its inheritance is lacking an attempt was made using the ether extract of fruits as suggested by Visratha and Ungsurungsie (1978).

Three parental lines Viz. MC-53, MC-79 and MC- 34 with varying levels of bitterness as revealed by organopeptic tests were used for generating three crosses to study inheritance of bitterness. The mean values of bitterness expressed as percentage of ether extract were used for the study. The normal distribution of the values (ether extract) in the F_{2} and back crosses indicated quantitative inheritance of the character. Using the mean values and variances of $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{\mathbf{2}}$, $B C_{1}$ and $B C_{2}$ generations of the above crosses, components of gene action were estimated (Mather, 1949). The genetic effects were partitioned into additive, dominance
epistasis in the materials studied. The magnitude and type of epistasis were also estimated along with the main effects. Fixable heritability $\left(h^{2}(n)\right)$ and number of unita of polygenes (k) governing the character were also worked out.

Additive effects wore significant in all the crosses, of which MC-79 x MC- 34 had negative effect. In one cross dominance effect was significant and it was negative in all the other crosses. Interaction wes of additive x dominance type in MC-53 \times MC-79. The degree of dominance was positive in one cross and negetive in other two crosses. Estimates of narrow sense heritability was high in two crosses and moderate in the other. Additive. dominance and additive x dominance effects were involved in the inheritance of bitterness in bitter gourd. selection and heterosis breeding method could be resorted to for the improvement of the character.

Crossibility studies among the related apecies of Momordica
The genus Momordics conteins about 60 species of which soven are Indian (Chakrevarthy, 1959). Some are cultivated for edible frults wille others are grown wild. Pruits of majority of the apecies are bitter and a fav are
non-bitter. The species differ in content of nutrients also (Sheshadri, 1986). Information on the crossability association among the various species would help transfer of desirable attributes to the cultivated species Momordica charantia.

In the present study, three related species of Momordica - charantia, dioica and cymbalaria (Syn. Momordica tuberosa, Luffa tuberosa) were used for crossing with Jiverse types of Momordica charantia. Two hundred crosses ware made in all possible combinations including reciprocally. Selfings were also done in all the three species.

In all the selfed flowers, ovary growth and fruit set were normal. However in crossed flowers, more then 70\% of the overies started shrinking and drying even on the third day of pollination. None of the ovaries in the cross remalned green after a weok. Thus the three spectes of Momordica - charantia, dicica and cymbelaria were found cross Incompatible. Trivedi and Roy (1972) aleo reported total Incompatibllity among three species of Momordice charantia, diolca and balsamina. Tracing the cause of fallure of embryo formation in these overies through Pluorascence microspic studies, Dutt and Fandey (1982) observed heavy callose deposition at the tip of pollen
tube and birfurcation of the growing tips. Consequently the pollen tube could not reach the embryo-sac to effect fertilization.

The present investigations on genetic variability. divergence, combining ability, heterosis, stability analysis, inheritance of economic characters and crossability studies were carried out with the objective of overall improvement in bitter gourd. Corresponding to the earlier reports, this study revealed high genetic Variability in the germplasm evaluated. The stability of haterobeltiotic F_{1} hybrids were encouraging. Inheritance of fruit colour surface and bitterness using suitable cross combinations was also studied. An attempt was also mede on the crossability of three species of Momondica in the present work.

Sumnaty

SUPMARY

The present investigation "Homeostatic analysis of components of genetic variance and inheritance of fruit colour, fruit shape and bitternese in bitter gourd (Momordica charentia L.)" was conducted at college of Horticulture during 1981-85. The objectives were estimation of genetic divergence, gene action, inheritance of economic characters, identification of heterobeltiotic and stable F_{1} hybrids and understanding crossability among related species of bitter gourd (Momordica charantia L.).
2. The extent of genetic variability in 50 bitter gourd ilnes were assessed. Ten diverse parents were selected, and $45 F_{1}$ s developed and evaluated alongwith the parents for three seasons. The combining ability and heterosis were estimated. The stability ofthese hybrids were worked out for commercial exploitation of the promising hoterobeltiotic F_{1} hybrids. Inheritance of fruit colour, fruit surface and bitterness using crosses of parents differing for these cheracters was studied. An attempt was also made to understend croseability among the three species of Momordica - charantis. dlolen and cymbalacia.
3. Significant differences were observed among the 50 genotypes for all 18 characters studied, Viz. branches/ plant, vine length, node to first female flower, days to opening of first female flower, female flowers/plant, percentage of female flowers, days to pleking maturity. Yield/plant, fruits/plant, fruit weight, fruit length, fruit girth, flesh thickness, seeds/Eruit, 100 seed weight, T.S.S., Vitamin C content, and protein content. The genotype MC- 34 was the earliest for first female flower formation (33.5 days). MC-79 had maximum fruits/plant (113.25) fruit size being mall. riya had the highest Yield $/$ plant (12.76 kg) which was on par with MC-84 (12.48 $\mathrm{kg}), \mathrm{MC}-78(12.25 \mathrm{~kg})$ and MC-66 (12.17 kg). The highest phenotypic coefficient variation wes observed for fruit weight (48.77) followed by yield/plant (39.91) and fruits/ plant (31.32). It was moderate for fruit length (29.56), percentage of female flowers (28.56) and feniale flowers/ plant (27.33). The pov was low for node to first femala flower formation (8.18) and days to first female flower opening (8,38). The genotypic cofficient of variation resulting in high heritability was of high megnitude for majority of the characters. High heritability coupled with high ganatic gain was observed for fruit weight and

Field/plant. Branches/plant and days to first female flower formation despite with high heritability had only low genetic gain.
4. Ten diverse bitter gourd lines selected from the original germplasm were crossed in all possible combinations to develop $45 F_{1}$ hybrids. Stability of these parents and hybrids was analysed by growing them continuoualy for three seasons. Pooled analysis of variance showed significant genotype x environment interaction for all the characters. The genotypes were significantly different in all the three seasons and the environments were also significantly different among one another. The pooled deviation was highly aignificant for all the characters except for node to first female flower, which indicated presence of interaction of the genotypes with the onviromment.
5. The innear components of genotype x environmental
interaction was highly significant for yield and related characters indicating linear nature of interaction of genotypes with environments and presence of considereble Aleferences among the genotypas themselves. The highest over all mean yield/plant was recorded by MC-78 \times MC-66 $(10.33 \mathrm{~kg})$ followed by Priya $\times \mathrm{MC}-66(9.75 \mathrm{~kg})$. Considering
the regression coefficient approximately equal to unity $(\mathrm{bi} \longrightarrow 1)$ and deviation from regression not significantly different from zero $\left({ }^{2}(\mathrm{~S}(1) \longrightarrow 0)\right.$, Priya x MC-84, MC-78 x MC-69. MC-84 \times MC-66 and MC-84 \times MC-49 were stable hybrids. PriYa \times MC-69, MC-78 x MC-84 and MC- $78 \times$ MC- 34 were above average stable and Priya \times MC-78, Priya x MC-66 and MC-84 x MC-34 were below average stable hybrids.
6. The $45 \mathrm{~F}_{1}$ hybrids alongwith their 10 parents were evaluated for three seasons to study combining ability and heterosis. Analysis of variance for combining ability for separate environments showed significant gea verlances for all the 15 characters in all the three seasons. The sca veriances were also significant for all the characters excepting days to picking maturity, fruit girth and 100 seed weight in the second and node to ifrst female flower in the third season.
7. Analysis over environments for combining obility
veriances showed significance of gea and bca variances indicating role of both additive and non-additive gene action for control of majority of characters. The interaction of gea and with enviroments were high for all the characters, excepting earliness indicating additive role of
environments on combining ability of the parents. Significant sca x environment interaction for all the characters revealed inconsistent sca effectr of the crosses. The parents Priya, MC-78, MC-84 and MC-66 which gave highest Yields found possessed Eignificant gea effects. When parents with high gca effects were crossed, the F_{1} hybrids gave best performance. The present study revealed importance of both additive and non-additive gene effects in the inheritance of majority of characters. Pedigreee system and diallel selective mating among the parents on the basis of gea would result in greater varlability for recurrent selection to be resorted to for improvement in bitter gourd.
e. Several hybrids recorded significant relative heterosis, heterobeltiosis and standard heterosis for majority of the characters in all the three seasons. Signiflcant and negative relative heterosis, heterobeltiosis and standard heterosis were exhibited by several hybrids for days to first fernale flower. MC-66 xMC-49 (-14.97\%) and MC-49 \times MC- $34(-13.20 \%)$ in the first and Arka Harit \times MC-82 (-11.76%) in the third season were significantly earlier for, firat female production than the standard variety priya.

Priya \times MC -49 (7.91\%) and MC-49 \times MC-34 (7.91\%) and MC-49 \times MC-69 (7.1\%) were the important hybrids with high standard heterosis for percentage of female flowers.

Six hybrids in the first and two each in the second and third seasons exceeded their better parents for yield plant. Arka Harit \times MC- 79 had high heterobeltiosis in the first and second seasons (117.17% and 43.09%) MC-78 x MC-66 (7.46\%) and MC-78 \times MC-84 (4\%) in first and MC-78 x MC-66 (17.14%) and Priya \times MC-66 (5.04\%) in the third season had higher yield than the standard variety Priya.

$$
\text { MC -78 } \times \text { MC -49 }(40.76 \%), \text { MC-49 } \times \text { MC- } 34(17.07 \%) \text { in }
$$

the first and MC-49 x MC-34 (40.54%), MC-49 x MC-69 (37.83\%) and Arka Hart \times MC-79 (37.6%) in second season were superfor heterobeltiotic F_{1} hybrids for fruits/plant.
9. Studies on inheritance of fruit colour and
fruit surface using six crosses of four parents with contrasting fruit colour and surface revealed that both the characters are monogenic in inheritance, green and spiny fruits being dominant over white and moth fruits respectively. Both colour and surface are independent in inheritance. Inheritance studies on bitterness using three crosses of highly bitter, and lass bitter types of bitter
gourd ghowed quantitative inheritance of the character. Mon, allelic interaction was present in two crosses. Additive, dominance and additive x dominance types of gene action ware involved in the inheritance of bitterness. Estimatea of narrow sense heritability was high in two crosses and moderate in one.
10. Crossability studies using three species of Momordica - charantia, dioica and cymbalaria showed complete incampatibility among the three species tried.

References

Agrawal. J.S.. Whanna, A.N. and Singh, S.P. 1957. Studies on floral blology and breeding in Momordica charantia L. Indian J. Hort. 14: 42-44.

Agrawal. P.K. and Roy. R.P. 1976. Natural polyploids in cucurbitaceae. 1. Cytological studies in triploid Momordica doica Roxb. Caryloaia 29: 7-13.

Aiyedurai, S.G. 1951. Preliminary studies in bitter gourd. Madras agric. J. 38:245-246.

Allard, R.W. 1960. Principles of Plant Breeding. John Wiley and Sons. Inc. New York pp.89-98.
A.O.A.C. 1960. Official Methods for Analysis of Association of Official Aaricultural Chemista. 9th ed. Association of Official Analytical Chemists. Washington, pp.215-216.

Avdeyov, Y.I. 1979. Inheritance of resistance to concentric cracking. Tomato Oenet $_{\text {Co-op. }}$ Report. 29:20-21.

Briggle. L.M. 1963. Hetomsis in wheat - review. Grop Sc1. 31407-412.

Burton, G.W. 1952. Quantitative inheritance in grass. 6th Int. Gran日ld Cong. Proc. 11277-283.

Burton, G.W. and Devane, E.H. 1953. Eatimating heritability in tall fescue from replicated clonal material. Agron. J. 45:478-481.
Chakravarthy. H.L. 1959. Record of Bot. Surv. of India. 17:88-91.

Chaudhari, S.M. 1987. Studies on heterosis, combining ability and correlation in bitter gourd. Momordica charantia L. Ph.D. thesis, Mahatma Phule Agricultural University, Rehuri, Maharashtra

Choudhury. B. 1967. Veqetables 2nd ed. National Book Trust, New Delhi pp.152-154.

Choudhury. B. and Thakur, M.R. 1965. Inheritance of sex forms in Luffa. Indian J. Genet. 25:188-197.

* Dutt, B. and Pandey, C. 1982. Callose deposition in reletion to incompatibility in Momordica (In) Roy, R.P. and Sinha, U. (Ed). Cytogenetics in Ind1a (in press)

Dutt, B. and Roy, R.P. 1969. Cytogonatic studies in interspecific hybrids of hyffa cylindrica, L. and L. Gravoolene Roxb. Genetica 40:7-18

Eberhart, S.A. and Russell, W.A. 1966. Stability parameters for comparing varieties. Grop Sci. g:36-40.
Esquinas-Alcasar, J.T. and Gullok, P.J. 1983. Genetic Resources of Cucurbitacan. I.B.P.G.R., Rome. Italy. pp. 101.

$$
111
$$

Garrison, W. 1977. The world crops plant germplasm and endangered resources. The Bulletin of the Atomic Scientists 33:9-16.

Griffing, B. 1956. Concepts of general and specific combining ability in relation to dialled crossing systems. Aust. J. Biol. Sci. 91463-493.

Hayes, J.K.. Amer. F.R. and Smith. D.C. 1965. Methods of Plant Breeding. 2nd ed. Mc Graw Hill Book Company Inc. New York, pp. 329-332.

Hayman, B.I. 1958. The seperation of epistasis from additive and dominance variation in generation means. Heredity 12:371-390.

Jinks, J.C. and Jones, R.M. 1958. Estimation of the components of heterosis. Genetics 43:223-234.

Johnson, H.W., Robinson, H.P. and Comstock, R.E. 1953. Estimates of genetical and environmental variab111ty in soybeans. Agron. J. 47:314-318.

Kerala Agricultural University. 1980. Package of Practices Recommendetione. Directorate of Extension, Kerala Agricultural University, Trichu Kerala, pp.199-201.

Kohle. A.R. 1972. Exploitation of hybrid Vigour in cucurbits. Indian J. Hort. 22117-21.

Leal. S.D., Seth. T.N. and Solanki, S.5. 1976. Note on heterosis in bitter gourd (Momordian charantin L. Indian I. marie. Res. 10(3):195-197.

Mahalanobis. P.C. 1928. A statistical study at Chinese head measurements. J. Asiatic Soc. Bengal 25: 301-377.

Manga, J.L.. Dixit, J.. Pandita, M.L. and Singhu, A.S. 1981. Genetic Variability and correlation studies in bitter gourd (Momordica charantia L.). Indian J. Hort. 38:94-99.

Marks, G.E. 1965. Cytogenetics studies in tuberous Solanum species II. Species relationship in some south and central American species. New Phytologist. 64:293-306.

Mather, K. 1949. Blometrical Genetics. Chapman and Hall Ltd.. London. pp.90-118.

Madkarn1, K.M. 1954. Indian Material Medical 3rd ed. Popular Prakasan Private Limited, Bombay. pp.807-810.

Ostle, B. 1966. Statistics in Research. I.B.H. Oxford, pp.363-370.

Pal. A.B., Doljode, S.D. and Biswas, S.R. 1983. Line x tester analysis of combining ability in bitter gourd (Mamordica charantia). South Indian Fort. 3:72-76.

Pal. A.B. and Singh, H. 1946. Studies in hybrid vigour II. Notes on the manifestation of hybrid vigour In brinjal and bitter gourd. Indian J. Genet P1. Brand. 6:19-33.

Pal. U.R.I., Singh, U.R. and Mayura, R.A. 1972. Floral biology of bitter gourd. Indian J. Hort. 29: 73-76.

Panse, V.G. and Sukhatme, P.V. 1954. Statistical Mathods Eor Adricultural Workers. 3rd ed. I.C.A.R.. New Delh1. pp.70-73.

Ramachandran, C. 1978. Genetic variability, correlation studies and path coefficient analysis in bitter gourd (Momordica charantia L.). M.Sc. thesis, Kerala Agricultural University, Trichur, Kerala.

Ramachandran, C. and Gopalakrishnan, P.K. 1979. Correlation and regression studies in bitter gourd. Indian J. agric. Sci. 49:850-854.

Ramachandran, C. and Gopalakrishnan, F.K. 1980. Variability studies for biochemical traiłs in bitter gourd. Aaric. Reg. J. Kerala. $18: 27-32$.

Ranpise, S.A. 1985. Heterosis and combining ebility studies in bitter gourd (Momordica charantia L.) M.Sc. thesis, Mahatma Phule Agricultural University, Rahuri, Maharashtra.

Rao, C.R. 1952. Advanced Statigtical Mothods in Blomatrics. John Willey and Sons. Inc., New Yark, pp.28-56.

Roy, R.P., Mishra, A.R., Thakur, R. and Singh, A.K. 1975. Interapecific hybridisation in the gonus luffa. 5. Cytol. Ganet. 5:16-26.

Sanghi, A.K. and Kandalkar, V.S. 1983. Phenotypic stability of seed yield and its components in fodder cowpea. Indian J. Genet. 43:164-167.

Sheshadri, V.S. 1986. Cucurbits. (I_{n}) Bose, T.K. and Som, M.G. (Ed) Vegetables Crops in India. Mayaprakash, Calcutta. Pp.91-164.

Singh, B. and Joshi, S. 1979. Heterosis and combining ability in bitter gourd. Indian J. agric. Sci. 50: 558-561.

Singh, D. 1973a. Diallel analysis over different environments-1. Indian J. Genet. PI. Breed. 33:127-1 36 .

Singh, D. 1973 b . Diallel analysis for combining ebility over several environments-II. Indian J. Genet. P1. Breod. 33:469-481.

Singh, H.N.. Srivastava, J.P. and Prasad, R. 1977. Genetic variability and correlation studies in bitter gourd. Indian.J. agric. Sci. 47:604-407.

Slroh1, P.S. and Choudhury, B. 1977. Combining abllity in bitter gourd (Momorilen chazantia L.). Veg. Sc1. 4:107-115.

Siroh1, P.S. and Choudhury, B. 1978. Heterosis in blttor gourd (Momordica charentia). Veg. Sci. 5115-22.
Sirohi, P.S. and Choudhury, B. 1979. Gone effects in bltter gourd (Momordice charantia L.). Veg. Be1. 6:106-112.

Siroh1, P.S. and Choudhury. B. 1983. Diallel analyela for variebility in bitter gourd. Indian J. agric. Sci. 53:880-888.

Sprague, G.F. and Tatum, L.A. 1942. General Vs. specific combining ability in aingle cross cron. U. Am. Soc. Agron. 34:923-932.

Srivastava, V.K. 1970. Studies on hybrid Vigour, combining ability and inheritance of some quantitative characters in bitter gourd (Momordica charantia L.). Ph.D. thesis, Univeraity of Udaipur, India.

Srivastava, V.K. and Nath. P. 1983. Studies on combining ability in Momordifa charantia L. Egypt. J. Cytol. 12: 207-224.

Srivastava, V.K. and Srivastava, L.C. 1976. Genetic parameter, corralation coefficients and path coefficient analysis in bitter gourd (Nomordica charantia L.). Indian J. Hort. 33:66-70.

Suresh Babu, K.V. 1981. Phanotypic stablilty analysia in bhindi (Abolmoschus esculentue Moench.) M.sc. thesis, Kerala Agricultural University. Trichur, Kerala.

Trivedi, R. M. and Roy, R.P. 1972. Cytological studies In some species of Momordica. Gonotica 13: 282-292.

Vi11

Ushamani, P. 1987. Phenotypic etability analysis in bacterial wilt resistant lines of brinjal (Solanum melonaena L.). M.Sc. thesis, Karala Agricultural University, Trichur, Kerala.

Visrata, N. and Ungsurungsie, M. 1981. Extracts from Momordica charantia L. Quart. J. Crude Drua Res. 19:75-80.

Whitaker. T.W. and Bemis, W.P. 1976. Cucurbits (In) Simmonds, N.W.(Ed.) Evolution of Crop Plants. Longman, London, pp.64-69.

Appendices

Mean perfor Appendix-I
Mean parformance of 50 bitter gourd genotypea for yiald and componont charetera

	Genotypes	Branches per plant	Main vine length (m)	Node to first female flower	Days to firat female flower opening	Female flowers/ plent	Percentage of female flowers	Days to picking maturity	$\begin{aligned} & \text { Yleld/ } \\ & \text { Plant } \\ & (\mathrm{kg}) \end{aligned}$	Fruita/ plant
1	2	3	4	5	6	7	8	9	10	11
1	NC-4	29.28	4.35	18.50	38.75	75.50	5.47	12.00	6.02	35.50
2	NC-10	28.75	4.53	23.50	39.13	47.00	3.70	13.25	7.54	41.13
3	nc-15	36.25	5.02	20.25	43.50	61.00	3.84	15.38	7.06	56.13
4	Priya	36.13	6.25	24.13	40.75	68.13	6.55	12.75	12.76	56.25
5	Arka Harit	24.00	2.66	20.25	43.75	31.88	3.55	15.38	4.07	17.25
6	nc-34	32.25	5.63	20.50	33.50	71.75	4.65	10.63	8. 28	68.38
7	nc-42	29.25	5.40	21.25	40.38	61.50	5.45	13.25	7.23	49.87
θ	1-48	31.13	4.46	19.88	39.50	65.63	5.71	13.50	8.14	50.38
9	nC-49	33.00	5.45	22.75	37.63	61.50	6.57	13.38	9.67	47.50
10	nc-50	34.00	5.80	22.63	38.50	71.63	3.67	15.63	8.44	54.50
11	MC-51	31.25	5.00	23.63	44.38	71.00	4.79	15.13	7.52	44.75
12	MC5 52	29.75	5.34	24.13	45.12	66.50	6.39	16.50	4.93	42.88
13	HC-53	32.75	5.45	23.00	46.00	54.63	5.58	13.75	5.02	53.75
14	nc-54	34.13	5.72	22.13	43.50	53.88	5.33	13.75	7.49	32.88
15	MC-57	29.00	2.80	18.13	39.63	66.88	5.57	12.38	4.90	40.13

Appendir-I. Continued

1	2	3	4	5	6	7	8	9	10	11
16	MC-60	29.75	4.53	20.63	41.38	43.25	4.36	14.00	4.65	61.50
17	Mc-61	33.38	5.43	23.88	40.50	52.38	3.11	13.25	9.05	49.38
18	‥c-52	33.00	5.58	23.89	37.13	73.63	5.30	13.50	8.94	63.00
19	MC-63	30.00	5.02	23.25	36.75	74.00	5.87	14.00	6.03	49.38
20	MC-64	36.00	4.79	20.75	37.38	60.13	4.25	13.63	6.10	51.63
21	NC-65	36.50	4.92	21.80	37.50	58.00	2.94	14.50	5.14	46.63
22	NC-66	37.13	6.01	22.00	41.38	81.88	6.25	12.38	12.18	60.75
23	MC-67	33.50	3.57	21.75	41.88	59.38	5.40	12.88	5.06	60.50
24	MC-68	27.75	4.53	19.38	45.13	60.00	4.96	13.25	5.42	47.25
25	HC-69	34.25	5.56	20.50	43.63	70.00	6.48	14.25	9.62	50.88
25	MC-70	33.00	4.91	22.88	43.50	55.88	3.23	13.13	4.04	51.50
27	1.-71	32.00	5.03	23.88	45.13	51.50	2.66	12.63	5.05	43.63
28	MC-72	29.00	3.73	21.88	46.50	43.38	2.13	14.25	5.23	31.00
29	NC-73	26.25	5.50	20.63	43.25	48.38	3.21	14.25	3.70	35.88
30	Mc-74	33.50	5.85	21.38	43.13	64.38	3.73	13.00	8.20	50.25
31	MC-75	34.25	5.50	21.75	41.88	63.75	3.35	14.38	9.15	52.25
32	1×6	34.00	5.40	22.38	39.88	65.00	3.80	13.75	10.08	55.25
33	MC-77	34.25	4.99	23.88	39.75	59.00	3.38	13.25	10.29	47.37
34	MC-78	35.50	6.49	22.75	46.38	53.88	5.08	12.50	12.25	44.63

Appendix-1. Continued

1	2	3	4	5	6	7	8	9	10	11
35	$\mathrm{NC}-79$	43.63	7.79	21.50	46.38	120.00	2.76	16.12	4.06	113.25
36	YC-80	20.50	3.13	21.13	47.25	115.25	2.85	13.50	4.82	41.38
37	MC-82	20.00	1.98	22.50	40.38	103.00	2.89	15.75	2.41	89.50
38	Mc-83	34.75	4.55	25.13	40.38	$119 . \mathrm{BB}$	4.79	14.38	7.80	100.00
39	HC-84	36.13	6.86	24.13	47.25	59.75	4.40	15.00	12.49	40.50
40	MC-85	33.50	4.03	21.75	40.38	104.00	6.72	12.38	6.51	90.13
41	MC-86	35.75	4.67	24.25	39.50	91.00	5.28	13.00	3.53	74.75
42	MC-87	36.13	3.50	24.25	37.88	65.25	2.66	13.37	4.83	51.25
43	nc-88	30.75	3.98	23.75	35.88	68.13	3.07	13.50	5.53	55.63
44	MC-89	31.38	3.79	23.13	37.38	71.13	3.97	15.00	4.43	59.50
45	1C-90	30.38	4.78	24.63	37.25	81.63	4.56	14.00	2.47	70.38
46	HC-91	31.38	5.00	23.50	38.75	94.38	5.07	13.00	2.32	79.88
47	YC-92	31.63	5.43	20.13	37.75	65.25	3.47	13.75	7.43	50.00
48	MC-93	32.63	5.75	21.63	39.50	67.88	4.32	13.88	9.13	60.13
49	MC-94	31.13	4.55	25.00	38.00	72.00	3.17	13.50	8. 36	54.50
50	13C-95	29.13	3.49	24.25	37.25	71.88	3.13	13.75	3.53	57.50
	CD (p=0.05)	2.51	0.51	1.80	1.50	4.43	0.32	0.84	0.44	3.20

Appendix-II
Mean performance of 50 bitter gourd genotypes for fruit character

Appandix-II. Continued

1	2	3	4	5	6	7	8	9	10	11
16	MC-60	119.75	31.95	15.22	5.77	20.50	20.00	3.41	55.25	15.60
17	MC-61	150.87	35.65	15.00	5.90	21.00	22.60	3.15	66.87	14.17
18	N.C-62	139.87	36.25	13.90	5.77	22.00	22.00	2.50	72.50	14.27
19	1.C-63	130.75	38.15	13.15	5.57	21.50	22.35	2.22	60.75	14.25
20	nc-64	119.37	36.50	14.12	5.47	17.63	23.10	2.25	94.87	14.00
21	MC-65	129.37	36.20	15.07	5.56	18.00	24.30	2.66	66.12	13.50
22	MC-66	211.00	32.42	16.00	5.80	23.88	27.10	3.16	68.62	16.40
23	MC-67	110.37	34.05	13.15	5.50	24.38	20.80	2.22	73.00	17.12
24	MC-68	98.37	32.15	14.13	5.00	24.38	21.80	2.15	77.12	17.87
25	MC-69	231.00	36.47	16.76	5.47	17.25	23.40	3.75	93.00	13.47
26	1.C-70	109.62	31.95	14.15	5.30	20.75	23.40	3.25	65.95	16.12
27	MC-71	1150.75	37.00	13.94	5.77	23.00	23.00	2.50	55.87	16.27
28	MC-72	140.00	32.92	13.27	5.60	21.26	22.20	3.15	60.50	14.37
29	1c-73	119.87	34.22	12.13	5.82	21.00	21.70	2.66	69.50	13.12
30	MC-74	191.12	36.15	15.15	5.75	21.38	23.00	2.47	61.37	12.27
31	MC-75	200.50	34.95	15.00	5.60	24.00	22.90	3.06	73.62	15.10
32	MC-76	199.25	34.52	15.15	5.60	23.50	21.75	3.16	65.50	13.12
33	MC-77	250.75	34.90	15.20	5.70	20.63	22.00	3.16	60.87	14.07
34	NC-78	289.50	40.52	15.25	5.70	22.50	23.00	3.06	71.20	15.90

Appendix-II. Continued

1	2	3	4	5	6	7	8	9	10	11
35	1.C-79	31.50	7.92	6.43	3.30	17.25	6.60	2.10	76.12	16.20
36	NC-80	119.35	33.05	8.22	4.92	24.25	21.70	2. 34	80.50	16.12
37	MC-82	25.25	6.55	10.04	3.55	12.00	17.40	3.16	122.38	20.15
38	: $C-83$	79.62	22.17	10.03	5.77	24.13	19.70	2.56	92.12	12.67
39	MC-84	311.00	30.02	24.35	6.70	23.38	26.40	3.16	81.75	16.17
40	MC-85	77.50	16.17	12.15	4.75	14.25	19.25	3.00	96.25	12. 35
11	MC-86	50.12	11.25	10.07	4.82	15.50	19.60	2.66	97.25	12.25
42	MC-87	99.87	28.00	13.06	4.20	16.25	21.70	2.56	97.07	13.07
43	15-88	98.00	27.15	14.07	4.25	17.00	22.30	2.84	86.63	12.30
44	MC-99	90.63	22.20	12.09	4.02	16.00	21.40	2.56	54.50	13.50
45	:x-90	38.25	17.22	13.17	4.00	15.75	21.00	2.05	80.19	13.75
46	MC-91	30.37	9.07	13.27	4.25	14.00	18.90	2.31	73.75	12.87
47	MC-92	79.50	24.30	15.29	4.20	17.50	22.40	3.16	65.75	14.05
48	MC-23	79.00	23.55	14.80	4.20	17.75	22.20	2.16	70.63	12.12
49	rc-94	51.00	20.37	14.05	4.35	17.00	21.60	2.25	66.00	12.27
50	HC-95	53.50	50.40	12.24	3.60	14.25	18.00	2. 50	67.00	13.15
	CD (pmo.05)	5.90	1.20	0.43	0.73	2.10	1.25	0.26	3.53	1. 33

S1. Geno[10. type		Source of Appendix III			
		Source		$\begin{aligned} & \text { Geno- } \\ & \text { Type } \end{aligned}$	Source
1	NC-4	Vellanikkara			
2	MC-10	Vellanikkara	27	1c-70	Pilicode
3	NC-15	Vellanikkara	27	C-71	Pilicode
4	Priya	Vellanikkara	0	MC-72	Trichur
5	Arica	I.I.H.R.	29	MC-73	Trichur
	Harit		30	MC-74	Vellanikkara
6	MC-34	Malappuram	31	MC-75	Vellan 1kkara
7	NC-42	Malappuram	32	1C-76	Trichur
8	MC-48	I.A.R.I.	33	HC-77	Vellanikkara
9	NC-49	I.A.R.I.	34	MC-78	Vellanikkara
10	NC-50	I.A.R.I.	35	:c-79	Mannuthy
11	MC-51	I.A.R.I.	36	MC-80	Madavoor
12	MC-52	Trichur	37	MC-82	Madavoor
13	wc-53	Almora	38	1:C-83	Trivandrum
14	MC-54	Trichur	39	HC-84	Mudicode
15	nC-57	Trichur	40	MC-85	N.B.F.G.R.
16	MC-60	Coimbatore	41	MC-86	N.B.P.G.R.
17	NC-61	Vellanikjeara	42	14C-87	H.S.P.G.R
18	NC-62	Vellanikkara	43	NC-88	N.B.P.G.R
19	NC-63	Vellanikkara	44	HC-89	N.E.P.G.R.
20	NC-54	mudicode	45	12.90	R.B.F.G.R.
22	MC-65	N.B.P.G.R.	46	MC-91	N.B.p.a.R.
22	NC-66	M.B.P.O.R.	47	MC-92	H.B.P.G.R.
23	MC-67	Bolan	48	1C-93	11.
24	MC-60	Canannore	49	NC-94	N.B.P.O.R
25	MC-69	Canannore	50	NC-95	M.B.P.G.R.

HOMEOSTATIC ANALYSIS OF COMPONENTS OF GENETIC VARIANCE AND INHERITANCE OF FRUIT COLOUR, FRUIT SHAPE AND BITTERNESS

IN BITTER GOURD (Mamordica charantia L.)

By
M. ABDUL YAHAE

ABSTRECT OF TEE THESIS

Submitted in partial fulfilment of the requirement for the degree

Faculty of Agriculture
Kerala Agricultural University

Department of Olericulture COLLEGE OF HORTICULTURE Vellanikkara-Trichur

ABSTRACT

The present investigations "Homeostatic analysis of components of genetic variance and inheritance of Eruit colour, fruit shape and bitterness in bitter gourd (Momordica charentia L.)" were conducted at the College of Horticulture during 1981-85. Assessment of genetic variability showed significant differences for 18 characters in the 50 bitter gourd genotypes. The highest phenotipic coefficient of varlation was observed for fruit wight, yield and fruits/plant. Earliness had only lor value of pcv. The gcv resulting in high heritability ves of high magnitude for majority of the characteis. High heritability coupled with high genetic gain was pberved for fruit weight, yield and Eruits/plant.

The stability analysis of $45 \mathrm{~F}_{1}$ hybrids along with 10 parentsfor three seasons showed significant genotype x environmont interaction for all the characters. The genotypes affered in interaction which was innear for yield and riatod characters. The study identified hybrids suitable forhigh, medium and low environmente. Combining ability analyis of the above set of F_{1} hybrids and parents for three seatons indicated aignificant gea variances for all the charncers. The sca variancas wera also significent
for mejority of the characters. Analysis over environments showed algnificance of gea and sca variances for most of the charecters. The interaction of gea as well as sca variances with enviromments was also high for all the characters, except earliness. Parents of high gea gave F_{1} s of best performance. Several hybrids possessed significant relative heterosis, standard heterosis and heterobeltiosis for majority of the characters. Hybrids like MC-66 x MC-49, MC-49 xMC-34 and Arka Harit \times NC-82 were earlier. Priya x MC- 34 and KC-49 \times MC-69 possessed standerd heterosis for percentase of female flowers. Arka Harit \times MC-79, MC-78 \times MC-66, MC-78 \times MC-84 and Priya \times MC-66 hed higher yield than the ttandard variety, Priya. MC-78 x MC-48, MC-49 x MC-34, MC-49 x MC-69 and Arka Harit x MC-79 were heterobeltlotic for yield/plant.

Studis on inheritance of iruit colour and surface rovealed that both are monogenic; green and spiny fruits boing dominatt over white and mooth fruits respectively. Inheritance of bitterness auggested involvement of additive. dominant and aldive x dominance type of gene ection.

Crossability atudies uning three species of Momordian - charantia. Alica and cymbalaria revealed complete incompatibility among the three specles.

The atudies recomended heterotic hybrids with green, white, smooth and ribbed types of bitter gourd for year round cultivation.

