exchangeable aluminium as an index of liming FOR THE ACIDIC UPLAND SOILS OF KERALA

By
MEENA, K.

THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE IN AGRICULTURE (SOIL SCIENCE AND AGRICULTURAL CHEMISTRY) FACULTY, OF AGRICULTURE KERALA AGRICULTURAL UNIVERSITY

DECLARATION

I hereby declare that this thesis entitled "Exchangeable aluminium as an index of liming for the acidic upland soils of Kerala" is a bonaride record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title of any other University or Society.

Vellayani,
November 1987.

CERTIFICATE

Certified that this thesis entitled
Exchangeable aluminium as an index of liming for the acidic upland soils of Kerala" is a record of research work done independently by Miss. Mene, R. under by guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

(Alice Abraham). Chairman, Advisory Committee, Professor of Soil Science \& Agricultural Chemistry.

Vellayani.

November 1987.

Approved by:

Chairman
Dr. Alice Abrahan ofluie $\frac{\text { Bforaheo }}{24-12-8 ?}$
Merbers

1. Dr. Mon. Roshy

- 2u.12

2. Sri. P.f. Rabmsubramanias ofang dighannidn! $\frac{4.1 \cdot 85 .}{1}$

ACKNJHZEDGEMENT

I wish to expreas my heartfelt gretitude and indebtednese to Dr. Allce Abraham, Frofessor of the Department of Soll Science and Agricultural Chearisty and Chairan of the Advisory Comattee for the inspiring and critical guidanco offered to during the courge of my studies and in the preparation of this thesis.

I gratefully acknowledge the valuable help rendered during the courso of the study and preparation of thesis by Dr. Mo. M . Koshy, Dean 1/c, College of Acriculture, Sri. P.R. Ramasubramanian, Professor of the Department of Soll Science and Agricultural Chemistry and S51. K.P. Madhavan Nair, Professor of the Department of Agronomy, mambers of the Advisory Committee.

I express my heartielt thanks to Mr. R.S. Ayyer. Professor and Head of the Department of Soll Science and Agricultural Chemistry for his valuable suggestions and for providing necessary laboratory facilities.

My slincore thanks are also due to Sri. Abdul siameed, Professor of the Department of Soll Science and Agricultural

Cheaintry for his help in the analytical aspect.

I an extremely grateful to Sri. P.V. Erabhakarar. Professor and Hend of the Departaent of Agricultural Statistics, and Smt. P. Saraswathi, Associate Professor of the Departient of Agricultural Statistics for the help offered by thers in tho statistical analysis.

I also wich to place on record ay sincere thanks to all the staif members of tho Department of Soll science and Agricultural Cheasetry and to my fellow students for their co-operation and help throughout the course of Investigation.

I an extrenely grateful to the Indian council of Agricultural Reseasch for the fellownhip awarded to ne during the courge of my post graduate atuales.

Ky grateful ecknowedgement is also due to the Rezala Agricultural University for the laboratory and 2ibrary facilities and the funde provided during the course of the investigation.

I also like to record my bound2ess gratitude

vil

and indebtedness to my family menbers for their constant inspleation and help.

Last but not least, I thank God for all help and courage given to ae for coapleting the investigation.

Vellayani,

Hoveaber 1997.
LTST OF TAELES
Tables Page
1 Details of moil samples. $31-34$
2 Physiconchemical characterdstics of the soil used in the pot culture 33 experigent.
3 Chenges in percontage aluainium saturation with different levels 39 of 11se.
4 Chemleal analysis of soil sempies. $51-53$
5 Influenes of different levels of IIEe on soil proporties (crop -cowpea) $56-59$
6 Influence of different levels ofliwe on the plant characters of71cowpea.
7 Intluence of different lavels of
lime on nutrient composition of $77-8 i$
conpes.
8 Influmice of different levels of
11 we on soll propenties $97-100$
(crop - fodder malze)
9 Influence of aifferent levele of lime on plant characters of 110 fodier malzo.
10 Influence of different levels of Itwe on nutrient cosposition of 114 fodder maize.

vil1

COHTENTS

		Pege	
IMRRODUETION	-	1 -	6
REVIEA OF LTTEATUURE	-*	7 -	29
MATERIALS AND METHODS	**	30	49
RESULTS	-••	50	136
DISCUSSION	-**	137	173
SUMMARY ARD COHCLUSION	**	174	184
RETEREMCES	**	1 -	Riv

APPENDICES

1x

LIST OF TABLES

tables Page
1 Details of soil samplos. $31 \cdot 34$
2 Physicj-chemical characteristicsof the soil used in the pot culture38experiment.
3 Chenges in percentage alumintum saturation with different levels 39 of Lint.
4 Chemical anslysis of soil semples. $51-53$
5 Influence of different levels of 1iee on s311 properties (crop - compea) $56-59$
6 Influence of different levels ofliae on the plant characters of.71cowpea.
7 Intluence of different levels oflime on nutrient composition of$77=81$conpes.
8 Influence of different levels oflime on 3011 properties$97-100$(crop - fodder maize)
9 Influence of different levels of lime on plant characters of 110 fodder mize.
10 Influence of different levels of litue on nutrient composition of 114 fodder naize.

Detwaen pagea

Fig. 1	Influence of different levels of exchungeable aluniniun on the top and root length of compea at different stages of grouth.	$71-72$
F1g. 2	Influence of different Levels of exchengeable aluninium on grain yield of cowpea.	$74-75$
19.3	Influence of disferent levels of exchangeable aluminiua on total dry weight of cowpea.	$74-75$
F16. 4	Influence of different levels of oxchangeable aluaniun on nutrient content of cowpea at harvest.	$83-84$
Pig. 5	Influence of different levels of exchangeable aluainiun on nutrient content of cowpen: grains.	$92-93$
P18.6	Influance of different Ievels of exchangeable alutindum on fodder anize at harvest.	$110-111$
F18. 7	Intiuence of different levels of exchengeable aluafniun on the fodder yleld of ndize.	110-111
Fig. 8	Influence of different levels of exchangeable aluminiun on nutrient content of foderes maze.	$114-115$

LIST OF PLATES

Between pages

Plate 1 Influence of different levelsof exchangeable aluminium on$72-73$root grouth of cowpea.
Plate 2 Influence of different levels of exchangeable aluninium on 111-112 raot growth of fodder maize.

INTRODUCTION

INTRODJCTION

The acidity of the humid troplcal sotls is primanily associfed with the presence of hydrogen and aluminium in exehangeable forms. Acsd soils are also cheracterised by a defichenoy and toxicity of several eleaents relsted to plant nutrition. Eventhough aluminiun toxicity is one of the major problens coneronted by the plants in acid goils, it is not fully reoogndged.

Poor crop growth in acia ootls can be directly corpelated with tho aluminiun ceturation of soils and it was shown as early as in 1942 that hydrogen ion concentration as indtcated by pit value hes no direct effect on plant growth oxcept at values below 4.2.

Although alumaium is not an ossential eleasat, an appreciable amount of this element is often present in most plonts, High aluminium lovel. 3 in soll solution Is mown to cause direct hare to roets and decrease root growth and transiocation of ainerals especially calcium and phogphomes to the tops (Jarvis and Hatch,
1986). Aluminiul toxicity may not often be siaply diagonised either frow visual symptoms or from the aluminiua content of the plants. However, the aluainium in soll sollution has been considered to be a real measure of aluminium toxicity potential. Concentration of soil solution aluninituin even above 1 ppa has been reported to cause gield reduction and legumes in general are considered to be high $2 y$ sensitive.

Liming is the widely used practice followed to correct plant stress caused by soil acidity. The purpose of liming is prinarily to neutralise the exchangeable aluainium (Martini et al. 1974) and it is usually achieved when the soll pil is raised to about 5.5: Lume application baxed on ph valuea alone is both uneconomical and unnecessary and it may lead to several undesirable effects from the point of view of plant nutrition.

Many workers have proved in recent years that the aluminium removed from the soil by NKCl , designated as exchangeable aluminiua gives a more rellable and realistic estimate of lime needed to neutralise reactive
alualniun and to nake a favourable soll condition for plant growth. Kaaprath (1970) and Sanchez (1976) have considered the aluminiun saturation of the effective CEC of solis bayed on the content of exchangeable aluainiun to be a more reliable and accurate parameter for defining lime requirement rather than the actual entinate of exchangeable aluahimua.

Sanchez (1976) has consifiered an aluminium gaturation of more than 20% of tho effective CEC of soils as critical for many of the sensitive plants. Cochrane et al. (1900) have proposed the use of minimum amount of lime on acid soils so ea to decrease the percentage eluninium saturation to levels that do not affect production and compensate crop aluaintua tolerance. The concept of use of lime levels only upto the point of elinination of aluminium toxicity has been developed in the light of these.

In the light of the growing recognition of aluminius saturation of soils as a core realistic criteria for 11 ming acid solls, the use of lime based on this principle ensures the maintenance of a silghtly
acidic soil condstion where the aluainiua may not be toric to crop plants and at the sase time perait a better utilization of unavailable plant nutrients like phosphorise Irsm the soil.

More than 70 parcent of tho upland soils of Kernie are acidic. There is no syatemstic liming practice to sult the needs of various crops grown in these solis. Roxicity by alumindum, eventhough is not recognised as an important factor, is ilkely to be one of the main constraints of crop production in them. The inhibition of root growth which is the primary effect of aluminium toxicity to plants is most likely to go unnoticed in view of its subrersamean chazecter. At the same time, poor crop growth resulting from a restricted absorption of mitrients especially phosphorus and calcium is vecy much evident also. The non availability of phosphomis and calciun in acid soils coupied with a poorly developed root system of the plant which cannot onsure a satisfactory state of nutrient absorption may be zesponsible for the poor crop prosuction. Application of lano to suppress
exchangeable alumintur to below oritical level for each crop nay ensure better arop growth and response to added nutrients in such soilo.

In the light of these considerations, the present study has been undertaken with the following objectives.

1. To study the pattern of distribution of water soluble and exchangeable aluminium in the acidic upland soils of Kerala and to cxnpute the percentage aluminiux saturation (PAS) in thea.
2. To teat the response of two acid sensitive cropy (cowpea and fodder maize) to difierent lavels of exchangeable aluminium in soils maintained by the addition of different quanizties of ine.
3. To study the influance of the above on the plant characters yield and nutrient content of cowpea and zodder maize.

1v. To correlate exchangeable aluminuia and percentage aluainium saturation of so1l with the nutrient

content, nutrient uptake, piant characters and yield of the two crops.

Resulto obtained fron this study will help to 1dentify the ainimum level of exchangeable aluminium that can be toherated by these crops and the lime regusrement thereos.

REVIEW OF LITERATURE

The vast majority of the humid tropical soils of the world are acidic due to thw direct and indirect influence of high temperature and seavy rainiall. Soll acidity, lemding to dericiency and toxicity of - leaents has been identified es a major limiting factor in boosting egricultural production in aany of the tropical countries. Eventhough, both exchangexble hydrogen and aluminium, pregent in soils aro considered to be mainly responsible for 3011 acidity; exchangeable aluminiun is identified as the chief factor liwiting the growth and proiuctivity of erop plents in acid soils.

Fhany scientists have considered that bringing down the aluminsun zaturation of acid aoils to below critical levels is the uitinate end to be attained in all liming operations to ameliorate acid soils. Considerable anount of work has been undertaken all over the tropical countries on this subject. Srae of the more inportant work in this direction is reviewed and
subarised below.

Aluminiun is a potentigh mouren of geidity in ecid soiss

Breakdown of clay collondg curing weathering releases aluminium from the alundnosilicate layers. The aluainium ions bo released prowin either attached to the colloidal particlos by eqplacing fydrogen $10 n s$ or are relensed into the soil solution. In the soil solution each trivelent aluminium ion reacts with water to form hydroxy aluainiua compounim, ydelding three hydrggen ions whel further increases soil acidity (Black, 1973). In addition to this, the Pree aluainiun 1ons (which are not hydroxylated) present in highly acidic soil solutions act as a arect toxicant for several crops.
ifaglotad (1925) was the first ons th report on aluminium toxicity symptoms in bariey, corn and soybean and he releted concentration of aluginium in soil solution as a function of soil pH. ite has also reported that the solubility of ($A 1^{3+}$) incroased from 0.3 to 76.4 ppa when the soll pll was shifeed 1 mom 4.5 to 3.1.

Ragland and Coleman (1959) have related poor growth of sorghum roots in unliwed soil to tha amount of exchangeeble aluainiua and they observed an increase in root growth when lime sufficient to cause hyarolysis of the exchangeable alualntun was added.

Accoring to Deewan (1966) exchangeathe aluminiun is the predominant source of acidity in sails containing Raolinite and Veraiculite clay uinerals.

Kamprath (1970) has posinted out that at a pit below 5.4, the buffer capacity of the soils was primarily due to exchangeable aluainium and that soils with bigh exchangeable aluminium possessed only a comparatively lower CEC.

Tripatil and Pande (1971), Andrew and Vandenbers (1973) and coswami et al. (1976) have given convincing evidences to show that at low pir values, uptake of nutrients, particularly $\mathrm{P}, \mathrm{CE}, \mathrm{MB}$ and T were reduced due to the prosence of an oxcess of soluble aluminiua.

Poor orop growth in acid soils has been indirectly correlated with aluninium saturation of solla by Black
(1973). He has shown that phad no direct effect on plant growth except at valueg below pii 4.2. Frink (1973) hac related the amount of exchangeable aluainium in aoil to the concentration of exchangeable hydrogen. His study hes also pointed to the existence of exchangeable hydrogen in the acld sulphate soils at its usual ph.

Bloon et al. (1979) considared the activity of ($\mathrm{A} \mathrm{I}^{3+}$) in soil solution as a function of sos pH and stated that this relationship depended on the oxchange of aluniniui lons irow the orgasic matter to the exchange sites on the clay surfaces.

Salgura et al. (1980), Eranco and Thms (1902) and Adams and Hatchcock (1984) have proposed exchange acidity as a realistic mensure of the aluminium toxicity potential of a soil.

Shamshuddin and Tessens (1933) have indicated the significance of aluminium in controline the acidity or acid soils. They considered that the buffering action of soils is dominated by aluainium below pif 5.5.

Jemes and Rina (1984) have shown that a dacrease of 0.1 to 0.2 unite in solution pH in the range of pH 2.4 to 4.5 has resulted in increases and decreases in the concentration of labile aluminiua. An increase in the solubility of aluminium consequent to increase in soll acidity has been reported by Bache (1985).

Giliman and Sumpler (1986) have attributed the additional lime consuaption in the upper horizons of some soils to the replacenent of nonerehangeable aluninium associated with the organic matter: Rhanna et al. (1985) in a study on the exchange characteristics of come acid organic forest solls found that aost of the exchange sites were occupled by aluminius.

Toxic level of alumintum in the soli
The aluginium concentration of soil solution has been considered to be a real measure of aluainiua toxicity potential. Blair and Frince (1923) heve 1dentified soluble aluminium compounds as one of the causes of toxicity in acid soils. Lockard and Mc Walter
(1956) showed that duminium toxicity occurs at concentrations between 6.7 and 40.5 ppm in rice plants. Tominson (1957) has reported an aluminium level higher than 250 ppa micht be harmful to plents.

Hortengtine and Fiskell (1961) have observed that: aluminiun concentrations above 4 pa carastically decreased helght and weight of tops and roote of sunslower plants.

Nye et al. (1961) and Evins and Kamprath (1970) have reported that the aluminium concentration in the soil solution was generaily less than 1 poa. When the aluainiun saturation increased beyond 603, aluminium in the soil solution also recorded a corpespondingly sharp increase. Presence of organic matter however was tound to reduce aluminium concentration in soil solution.

Cate and Suknal (1964) have shown that water soluble aluminium concentrations as low as 1 to 2 ppa markedly inhibited the grouth of roots while leaf symptoms occurred only at a concentration of 25 ppa.
llsgher concentretions inhibited root erowth and produced green and yellow spots on the leaves.

Adamb and Land (1966) have reported that critical lovels of aluminium vary for disferent crove and solls.

Aecording to Tanaika and Navasers (1966) critical concentrations of aluminium in culture solution was 25 ppm for the rice plant.

Hutchinson and Hunter (1970) have observed a reduced dry matter production in lucerme, clover ark barley then aluniniua concentration vas higher than $100 \mathrm{~kg} / \mathrm{ha}$ and Lee (1971) reported a reduction in the yield of roote of potato crops when the level of aluminium reached 20 ppa. Further increase in alumintun concentration in growth medium, accoralng to him reduced plant growth and tuber yield. but favourably contributed to tuber quality.

Brenes and Pearson (1973) have observed that root growth in corn was not seriousiy affected unlons aluainium saturation exceeded 60 percent. About

60 parcent of alualnium saturation reauced corn rost growth by 50 percent of the maximum.

Abruna et al. (1974(b)) have found that the critical limit of aluainium saturation for corn production was approximately 15 percent for ultisols and 35 percent for oxisols.

PGerl (1974) observed a reduction in nodulation of groundnut when the aluoinium saturation of the exchange complex exceed 30 percent.

Velly (1974) recognised aifferent eritical levels for different plants. Cotton seemed to be damaged at 25 ppm of exchangeable aluainiun, groundnut at 50 to 60 ppo and maize only at about 120 to 130 ppa.

An inverse ralationship was observed between Kikuyu grass growth and aluminium concentrations when present in excess of $1.5 \mu \mathrm{~g} / \mathrm{g}$ in the 3011 and $90 \mu \mathrm{~g} / \mathrm{B}$ In the tops (Awad et al., 1976).

Alley (1981) found that aluainium saturation of 18, 11 and 3 percent of the efiective cec decreased corn, barley and alfalfa yields.

Franco and funns (1982) have stated that aluminium concentrations upto 83 kg did not affect root dry welight, nodule growth and nitrogonase activity of bean cultivar. They have also reported a beneficial effect of low level of aluminiun ($19 / \mathrm{g}$) on tap poot elongation. However, root colonization of rinizobla was reduced at $>33 \mu \mathrm{~g}$.

According to Keefer et al. (1983) plant growth was limited wharever the soils contained $>2 \mathrm{me} / 100 \mathrm{~g}$ of exchangeable aluminium.

Zainf and Mercado (1984) have shown that in susceptable varieties a high concentration of aluminiua reduced phosphorus mobility.

Jamis and Hatch (1986) have reported a reduction In dry weight of roots and shoots of white clover at 50 to 100μ a levels of coluble aluaintum. Less than 10 parcent of the aluminiua absorbed sroa the solution was transported to shosts.

Aluniniun toxicity in Cereals and Pulses

Several crop plants auch as rice, wheat,
barley, oats, sorghum; legumes, potato, tobacco etc. are reported to bo adversely affected by aluainium toxicity. Some of the important work on alualnium toxicity on cereals and pulses are sumarised below.

Cereals

Discolored ans malformed roots and root-lets and worphological abnormalities of roots and reduced uptake of nutrients have been reported to be the general symptoms of aluminium toxicity in cereals.

Ligon and Pierre (1932) have noted that evon 1 ppa of aluainlum in solution produced apparent root injury in com after three days. Howevor, the toxicity syoptons in shoots became apparent only after 2 weeks which was characterised by leaf chlorosis and reduced yield. flution and Fiskell (1965) and Juate (1966) have reported on aluminiua toxicity in maize.

Hoc Lean and Chiassor (1966) demonstrated an inhibitory offect of aluainium on the translocation of phosphorus and calciu: in barley. They also observed chlorveis of leaves, dieback of leaf tips and purple
discoloration of the leaves Fegembling thet of phose phorus deficiency.

Cruz et al. (1967) have pointed out that concentration of 0.2 to 6 ppa aluminiun in the nutrient solution had no effect on the translocation of racioactive phosphorus (p^{32}) to young leaves of wheat, but the phosphorus/aluminium ratio in leaves, stems 'and roots was aifferent.

Ota (1968) and Long and Poy (1970) have came across the ssme type of leaf chlorssiag broneing and petisle collapze in rice and barley respectively, and they attributed this condition to aluminiue induced calciun deficiency.

Fox (1979) observed 90 percent yield reduotion In corn when the bluminium saturation of the soil exceedsa 12 percent.

Accoriing to Foy et al. (1930), aiuminium toxicity resulted in a shallow rooting pattern in cotton maklng the plont more susceptable to drought since such plants can use subsoil water and mutrients

less effectively.

Hugwira et al. (1980) have shown that 0 to 6 ppa aluainium increased the concentration of phosphorus in the roots, sind of potassium in the roots and tops, but reduced the soncentrations of calcium and magnesium in the tops of triticalo wheat, rye and barley. Fogeria and Carvalh (1982) have reported differential behaviour of rice cultivars to aluminiug levels and showed that level of quinintum in the tops of a 21 day old rice plant varied from 100 to 417 ppm.

Abrahian (1984) has reported that 20 ppa of aluminium in nutrient solution suppressed root elongow tion of rice, arxi more then 30 ppa of aluainium reduced the nuaber of productive tillers as well as yield of grain and straw. Aluminium toricity also caused a reduction in the uptake of all nutrienta in rice.

Eennet et a2. (1985) conducted on experiment on the primary site of aluminiun injury on the root
of zan gays; and they have noticed a rapid inhibitory effect on the aetabollc activity of root cella. Alualniua was shown to affect the pattem and intensity of respiratory activity in the root apox.

Fageria (1985) hag reported that increased aluminiun concentration in nutrient solutions inhibited the uptake of $N, P, X, C a, H E, S, F \in, B, C u, Z n$ and Fin in rice.

Legures

Por growth of pulses in acid coils has been directiy correlated with sluminiun saturation of soilse Among the different legumes, cowpea and pigeon peas seen to be more tolerant to aluminiun toxicity. stany of these species havo been evolved in acid solls and possens genes responsible for tolerating conditions asonciated with high aluninium levals.

Ruschel et 21. (1968) studied the affect of excess aluininiua on the growth of beans and. Found that nutrient solution containing 3 pps of aluminiun decreased plant growth and >7 ppe significantly increased aiuminium content of roots and merial parts.

Abruna et al. (1974 (a) have reported a decreasod yield of beans due to a high percantage of aluminium saturation. Sartain and Kamprath (1975) and Zakaira et al. (1977) have reported reduced growth of roots and tops and a reduction in nodule count in legumes dua to high aluainiua saturation of soils.

Nalavolta et al. (1981) studied the relationship between aluminium tolerance, and total dry matter; plant height and root length in different legumes. According to hin total dry natter production of young plants gave the highest correlation with aluminium tolerance.

Franco and Munns (1982) 1dentified aluminium toxicity me the rain reason for the frecuent fallure of beans in acid solis. Nodulation, nttrogen fixation,
shoot and poot growth etc. were mdversely affected by the alumintum present in 0011 oolution.

An apprecieble difference adong compea and blackgram varieties towards tolerance of aluaintun toxicity was noted during screening triais carried out by Suidharrai Devi (1983). Fechcigl et al. (1936) have reported that in the absence of aluminium, root and shoot growth of alfalfa were not affected by a low pif of 4.5. Increasing aluminium concentration in the soil solution prom 0 to 0.2 caused a reduc* tion in roost and shoot growth at the same pH. Suthipradit and Alva (1986) Lound that neither geraination percent nor radicle length were influenced by varying aluminium concentrations in soybeen.

Effect of inging on aluminiun content of soti

Use of line as an ancliorant for reducing aluminiun toxicity and reclanation of acid 8011 s hes been reported by Blair and Prince (1923), Coleman et a1. (1953), Abruna et al. (1964), Foy and Brown (196\%), Reid et al, (1969), Helyar and Anderson (1974), Sartain
and Kamprath (1975), Awad et al. (1976), Coswani et al. (1976), Hormell (1985) and several others.

Evans and Kamprath (1970) showed that small increments of line resulted in relatively rapid decrease in soil solution alumintur.

Reeve and Sumer (1970) and Reld et al. (1971) have reported growth response to 21 re upto the point of elimination of exchangeable aluminiun efter which a significint reduction in yield occurred.

Kabeerathuma and Nair (1973) and Abraham (1984) have roported a reduction in exchangeable aluminium and hydrogen content of the acid coils of Kerala as a result of lining.

Fearson (1975) based on his studies on soil acidity and liaing in the humid tropics reporied that corn yields may be incraased by liaing whan the soil pH is below 5.0 or when the aluminium saturation exceeds 15ipercont.

Martini et al. (1977) have suggested that
liming to bring soil pilan 4.8 to 5.7 so as to reduce exchingeable alumintun to $1.5 \mathrm{~m} / 100 \mathrm{~g}$ was * more valid means of increasing yield thán raising the ph to neutrality.

Cochrane et al. (1930) recowended the use se minimum amount of line in acid solis so as to decrase the aluainium saturation to lovels that do not affect the econony of erop production.

Bache and Crooke (1981) concluded that exchangeable and soluble aluainiun in acid soils were reduced. by liming.

According to Hargrove and Thomas (1931), 11we application incroased plant yleld by neutralizing aluainiun toxicity rather than by increasing solution phosphorus

Haynes and Ladecke (1981) found out a negative but innear relationship between exchangeable calcius and sluainiun. Jones et al. (1982) observed that eventhough therg was no significant effect in increasing the jlëld, lime decreased the exchangeable aluninium
irom 0.12 to $0.01 \mathrm{me} / 100 \mathrm{ge}$

Mukhopedhyay et al. (1984) have suggested that increasine the rate of application of CaCO_{3} decreased exchangeable aluminiua content of soils.

Recently Gurtin and Smillie (1936) have reported that soil concentrations of free Al can be decreased by lising.

Lime requfrement of acid goils in relation to emntraling of alumindug toxicity

Clark and Nichol (1966) have explained the necessity of considering pil and solublilty of aluainum while estimating liae requirement of organic soils. Concentration of alusindum on which lime requirement is based depeni on ph, clay (type and anount) and organic matter present.

Evans and Kamprath (1970) related soil aolution aluainiun to the percentage aluainiun saturation of the effective CEC in minaral solls, but it was wore related to the amount of exchangeable aluminiza

In organic soils. They reported that lime response is related to percentege aluminium saturation, solum tion aluminium and organic matter content.

Ekpete (1972) Cound that lime requirement is influenced by ph, exchangeable aluminium, soil organte matter, clay content, but the buffer capacity of the soils was greatly influenced by soil organic matter.

Oates and Kamprath (1983) have shown that the amount of aluminium removed from the axchange sites depend on the nature of exchanging cation and the pil of the extracting solution.

Helder and Mandal (1935) have shown that Ina requirenent is negatively correlated with pil and posim tively correlated with exchange acidity, extractable acidity, and exchangeable aluainium. 4 we requireaent was Sound to be strongly influenced by tho combined -ffect of all these parameters.

Fal and Mandal (1985) reported that liso requalrement was significantly correlated with exchange, residual and total acidity and exchangeable aluaintur.

According to Gilman and Suapler (1906) 21we requiremant depend on CEC, exchengeable aluminiua, type of soil, base saturation, organic matter content, pite.

Rhanna et al. (1986) showed that when exchange sites are occupied by aluminiug and associated with hish organic matter, unbuffered salt solutions extracted wore aluminiun than could be associated with exchange sites, which will over estinate the lime requirenent values.

Exchangeable aluainiu: as a critorion for line requisement

Pavar and Rasshal (1934) considered exchangenble aluainiua as the criterion of soil acidity rather than hydrogen $10 n$ concentrstion,

Mc Lean et al. (1364) concluded thet exchange acidity 1 a poor index for lime requirement and that the amount of aoluble aluminiua was not closely roleted to base ungaturation or pH .

Kamprath (1970) has proposed ILme aplication based on exchangeable aluniniun to be a realistic mproach for leached aineral soils. He found that lime rates equivalent to the amount of exchangeable aluminiua reduced the aluminium saturation of the effective cLC to < 30 percent. Liee ratos greater than this equivalent amount resulted in neutralization of non-هxchangeable acidity and is generally unecmoailcel.

Since the principal function of line in an acid 6011 "Is to eliainate aluminium toxicity, Reove and suaner (1970) considered exchangeabio aluminiun status as a are suitablo criterion for the measurewent of lime requirement. The amount of lime thus calculeted was only approximately $1 / 6$ th of the anownt required to raise the soil pil to 6.5.

Hoyt and Nyborg (1971) have suggested that extractable elusinius could be a valuable supplement to soil pH in assessing the need for 11 me application or for growing aluminium tolerant varieties.

Amedee and Deech (1976) have pointed out that lime requirement based on exchangeable aluminium concentration was less then the estimate of lime based on the neutralization value.

Sanchez (1976) considered soll acidity as a poorly detined parameter and reconsended that percentage aluminisu saturation of the effective CEC should be taken as a useful metsure of soil acidity.

Martini et al. (1977) have suggested liaing rates to bring soil ph frow 4.6 to 5.7 and to reauce exchangeable aluainiua to 1.5 me/100 g soil as a more valld means of increasing yield than the raising of soll pll to neutrallty.

Mandez and Kamprath (1973) heve demonstrated that liaing rates equivalent to 1.5 times of the exchangeable aluainium content of a soll can neutraIlze nost of the exchangeable aluminiup and adjust the pir aatisfactorily for plant growth. Such liaing rates vere considerably lesser than those requiled to raise the pH to 7.0.

Cochrane at al. (1930) have proposed the use of minimup amount of lime on acid soils so as to decrease the percantage aluminium saturation to levels thet do not affect production and compensato crop aluminum tolerance.

Farina et al. (1930) have concluded that because of considerable variation in the optimum pit requireantsits of the different solls, pH proved to be a poor meagure of 21 ge requireaent. But both highly weachered "and less weathered soils behaved sinilarly when assessed on the basis of aluainium saturation.

Saigura et al. (1980) conducted experiments on exchange vicidity and aluanium toxicity potential and showed that exchange acidity was a useful realistic aeasure of aluminium toxicity potentisi. Fanrique (1986) has found that a pli value <4.0 in 1 M KCl should indicate an aluainiug saturation less than 15 percent.

MATERIALS AND METHODS

MATERIALS AND METHDDS

The present study entitled "Exchangeable aluninitun an andex of liming for the acidic upiand soils of Kerala" was carried out by studying the pattern of diatribution of water solubla and exchangeable aluniniun in the acidic upland soils of Kerala, and by comparing the rasponse of two acid sensitive crops to levels of lize as deterained by conventional methods and that required to lower the percentage of alualnius saturation (PAS) of soils to levels below the tolerance linit for most crops.

The study included the collection and analyais of acidic upland soils and conduct of a pot culture experiment to compare the effectiveness of levels of line based on conventional lime requirement methods and that based on percentage of aluminium saturation values of soils.

Collection of sol. samples.
A total numbar of 90 soil sacgies sepresenting the five nejor acid soil types of Kerala war collected.

They included the laterite, alluvial, red loan, Baidy and forest soils. The types of soil and the location from which they were collected are given in Table 1 .

Table 1 Details of soil semples collected

s1.	Soil types	Location	Total number of samples in each type
1	2	3	4
1	Laterite	Anchal	
2	n	Kallayan	
3	\#	Kulathupuzha	
4	\bullet	Neyymttinkara	
5	"	Ottaselharamanpalan	
6	*	Palode	
7	H	Punelur	
8	H	Thalavoor	
9	n	Uzhamalakkal	
10	θ	Vellarade	
11	"	Vembayas	
12	-	Vithura	
13	${ }^{\prime \prime}$	Pennukkara	

Teble 1 (contd.)

1	2	3	4
14	Laterite	Chengammosr	
15	0	Kadakkamon 2	20
16	\dagger	Pathenapuram	
17	H	Verkala (3 maples) (17-19)	
20	n	goojappura	
21	Alıuvial	Kerusady	
22	\dagger	```Edathwa (7 samples) (22-28)```	15
29	\%	Thalevad: (5 staples) (29-33)	
34	θ	Neerettupuram	
35	\%	Kalangera	
36	Red 100n	```Vizhinjum (5 samples) (36-40)```	
41	n	Theltkeryonam	
42	-	Eottappuram	
43	"	Huiloor (7 samples) ($43-49$)	
50	-	```Radatsulam (2 samples) (50-51)```	25

Table 1 (contd.)

1	2	3	4
52	Red 10 as	Azhakulan (2 aampies) $(52-53)$	
54	\cdots	Muttakedu (2 samples)	
56	\%	Panangadu	
57	!	Venganoor (3 samples) (57-59)	
60	$!$	Kalliyoor .	
61	Sandy	Karuvatta	
62	0	Rerumady	
63	"	Thiruvizha	
64	0	Shertallay	
65	1	Pattanaked	5
66	Forest soil	Anchal (5 saraples) ($66-70$)	
71	1	Arippa (2 samples) (71-72)	
75	m	$\begin{aligned} & \text { Pottamavu (2 semples) } \\ & (73-74) \end{aligned}$	
75	*	```Onnamkuruitku (2 semples) (75-76)```	15

Table 1 (contd.)

1	2	3	4
77	Forest 3011	Sastanada	
78	!	Valiyathodu-Thevarnt	
79	n	Santhimathi Estate	
80	\square	Muthoot Eatate	

Collaction of soll samples.

Soll samples were collected from a depth of $6^{\prime \prime}$ after axking a ${ }^{\text {a }}$ " shaped cut with a sharp apade. The Iresh 0011 yas pacised in polythene bage, labelled and trangported to the laboratory. In the leboratory these saples were dried in shade, powdered with a wooden anllet and sleved tirough 2 am sieve. The sieved soil samples vere stored in air tight contalners after proper labelilng.

Analysis of the soiz sanples

The aherical analysis of these samples was carried out by the mathods described.

$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	Soll property	Ertraction nethod
1	2	3
1	phi (water)	1:2.5 soil water suspension
2	$\begin{gathered} \mathrm{pH}(0.01 \mathrm{~m} \\ \left.\mathrm{CaCl}_{2}\right) \end{gathered}$	$1: 2.5 \text { soil } \mathrm{CaCl}_{2}$ solution
3	Electrical conductivity	1:2.5 3012 water suspenzion
4	Orgmalc carbon	Walkley and Blaci's repid titration rethod
5	Water soluble aluminilat	$1: 10$ sol1 water extract
6	CEC	Meutral normal $\mathrm{NH}_{4}^{\mathrm{O}} \mathrm{AC}$ method

Pertin Elemer
 ph meter

Jeckson (1973)
n

Solu Bridge
$-$

0
?.E. 3030
ANS -
Wave lencth -
309.3 nm

Chenery (1943)

Jackson (1973)
(a)

U

1	2	3
7	Lime requiramant	$1: 2.5 \mathrm{soll}$ buffer sumpension
8	Exchangeable bases a) Potassiun	Neutral asmas amonium acetitate extraction methoà
	b) Calcium	8
	c) Magnesium	Neutiral normal amonium acetate extraction rethod
9	Exahangeable A1 and HI	iftration mexhod
10	Exchangeable fe	KCl extrect

4

Pericin Ilmer	Shoemaker et al.
ph meter	(1961)

EEL Plame- Jackson (1973)
photoneter
E.E. 3330 A:
vave lensth !
422.7 nm
P.E. 3050 AAS

Have 1encth -285.2 nm
? $\because \because$ Yuan (1959)
P.E. 3030 Ans

Have leorth -
243.5 na
ω

Fron the above dates, percentage base saturation and percentage aluninium saturation were computed as follows.

CEC
Porcentage alumiaium = Exchangeable a uminium $\times 100$ saturation (PAS) CEC

Fot culture experiment.

Froa the 80 samples of acidic upland soils studied, one soil containing the maximua anount of exchangeable aluminium and the highest percentage aluninium saturation was selected for the conduct of the pot culture study. This sample was located at Vembayam in Trivandrum district, from where bulk samples were collected and brought to the laboratory. The soil was dried in the shade, the larger clods were broken and rilled in earthenware pots of 13 ca diameter. The data on the physico-cheaical analyais of the soil uged in the pot culture experimont are given in Table 2.

Table 2. Physicomenenical characteristios of the soil used in the pot culture experiment
Location : Veabayan
Type
ph in water (1:2.5 soil water suspension) $\quad-4.2$. pi in $0.01 \mathrm{M} \mathrm{CaCl}_{2}(1: 2.5$ soil solution) -3.0 .

Total nitrogen (\%) - 0.095
Total phosphorus (\%) $\quad=0.043$
Total potassium (\%) - 0.116
Available nitrogen (kg/ha) - 183.4
Avallable phosphorus ($\mathrm{kg} / \mathrm{ha}$) -9.0
Available potassium (kg/ha) - 19.2
Lime requirement (t/ha) - 7.7
Organic carbon ($\$$) $\quad-0.99$
Exchangeable aluniniua (me/100 g) - 2.43
Hater soluble aluninlun (ppm) - 23.4
Erchangeable hydrogen (me/100 g) - 0.47
Exchangeable bases (me/100 g) - 1.902
Cation Exchange Capacity (ne/100 g) - 5.3
Percent aluminium saturation -46.79 .
Percent base saturation - 37.39

Deternination of 11 me required to reduce percentage aluminium asturation to different levels.

The amount of lime required to reduce the percentage aluainium saturation of the soil to different ilevels was deterained by mixing 200 g of the moistened soil with 10, 25, 50, 100, 150 and 200 ms of lime, keeping overnight, and then estimating the content of exchangeable aluminium and exchangeable hydrogen in the treated samples by titration wethod after extracting with N KCl (Yuan, 1959). The results obtained are given in Table 3.
Table 3 Changes in percentage aluminium saturation with different levels of liae

Treatnent	Quantity of lime applied (as/200 g s011)	Total acidity me/ 100 g	$\begin{aligned} & \text { Exch. } \mathrm{A1}^{3+} \\ & \text { ae/100 } \end{aligned}$	$\begin{aligned} & \text { Exch. } \mathrm{H}^{4} \\ & \text { me } / 100 \mathrm{~g} \end{aligned}$	PAS
1	2	3	4	5	6
1	0	2.94	2.45	0.49	46.26
2	10	2.68	2.20	0.48	41.55
3	25	2.47	1.98	0.49	37.73
4	50	1.73	1.25	0.48	23.65
5	100	1.35	0.89	0.46	16.70
6	150	0.90	0.44	0.46	1.36
7	200	0.45	-	0.45	-

Based on these results, the 4th treatment (50 mg of lime $/ 200 \mathrm{~g}$ soil) which worked out to $500 \mathrm{~kg} / \mathrm{ha}$ was selected as the inme required for reducing percentage aluminium saturation to <30 and the 3 rod treatment (25 mg of lime/ 200 g soil) which worked out to $250 \mathrm{~kg} / \mathrm{ha}$ were selected as 11 me required to reduce percentage aluainium saturation to <40.

Lime requirement based on conventional method.
hme requireaent by this method was determined according to the She buffer aethod using the glass olectrode of Perkin Elaer pif meter. Ten grams of soll was mixed with 25 al of buffer solution having a pH of 7.5 and shaken continususiy for 10 cainutes. The 阬 of the suspension was immediately read using the glass eleotrode. From the table given by Shoomaker et al. (1961) the amount of lime required to bring the soil to an indicated pH of 6.4 was deterained. This was found to be $7.7 \mathrm{t} / \mathrm{ha}$.

Experiment I.

Reaponse of Cowpea to difforent levels of exchangeable
Layout of the experiment
Experiantel design : CRD

Four levels of lime treatment were given as follows $1 \mathrm{I}_{1}$ No lime control
$2 \mathrm{~T}_{2}$ Inme based on
conventional line 7.7 t/ha
requirement methods

3	T_{3}	lime to reduce		
pAS to <30			\quad	$500 \mathrm{~kg} / \mathrm{ha}$
:---				

| 4. | $T_{4} \quad$lime to reduce
 PAS to <40 |
| :--- | :--- |$\quad 250 \mathrm{~kg} / \mathrm{ha}$

Number of replications - Four
$N_{9} P$ and K fertilizers at 20:30:10 kg of the respective nutrient/ha were uniforoly applied to oll the pots as urea $(46 \% \mathrm{~N})$, superphosphate $\left(16 \% \mathrm{P}_{2} \mathrm{O}_{5}\right)$ and muriate of potash ($60 \% \mathrm{~K}_{2} 0$) as prescribed in the package of practice recomandations of the KAU (Anon.: 1984) for cowpea.

Earthen' yots of 13 ca diameter were filled each with 10 kg of the soil type selected for this study and nixed with fully burned lime (cao) as per the treatment schedule. The required doses of fertilizers were applied and thoroughly oized with the soil
after two days.

Soll samples were collected from a depth of three inches frow each pot and analysed for ph, exchangeable $\mathrm{H}, \mathrm{Al}, \mathrm{Fe}, \mathrm{Ca}, \mathrm{Mg}$ and K . PAS and FBS were computed from the data by the aethods described earlier after the application of IIme (S_{OD}) as well as after fertilizer application (S_{O}).

Suing of seeds.
Seeds of cowpea Var. Krishnamony were sown at the rate of six seeds per pot. After complete germination and establishaent, thinning was done to maintain three scedilings in each pot. The plants were irrigated every day. There was no serious attack of pests and diseases in the initial growth phase, but after flowering, aphid attaci was a aajor problea. Roger (0.03 percent) was sprayed for the control of aphids.

Blometric observations.
Blomatric observations of the plants were recorded at three stage of growth viz, maximun
flowering $\left(S_{1}\right)$, ald pod filling $\left(S_{2}\right)$ and grain stage (S_{g}) ie. at harvest. Individual plants from each pot pere pulled out carefully at each of the above stages and the following characters were determined.

Height of the plant.

Height of the plant was measured from the bace of the stem to the tip of the youngest leaves using 0 metre scale and expressed in centimetres.
noot length.

Length of the root was measured in centimetrics. from the base of the stem to the tip of the longest root.

Nodule count.
The roots of the uprooted plants were washed carefully in running water and all the soil particles adhering to the root system were reaoved using a jot of water. The root nodules were separated by a pair of forceps and classified into three groups based on the visual observation of their size. the number of baill, mediun and large sized nodules was recorded.

Fresh weight.

Fresh weight of plants was recorded and expreased In grams.

Dry welght.
The plants were dried in the shetie and then dried in an air oven at $80 \pm 5^{\circ} \mathrm{C}$ until constant weight was sbtained. The weight in srara was recorded. Yield

Dried pods were collected potwise, as and when matured erat kept in labelled paper packets. The total weight of the air aried pods from each pot was recorded. Theso pods were later separated into grain and husk and their separate weights were also recorded.

Plant analysis

The difgerent plant parts viz. tops, roots, grain and husk collected at the three stages of the plant were dried in an air oven at $80 \pm 5^{\circ} \mathrm{C}$, powdered and analysed for total $N, P, K, C a, M, F e, A l, Z n$

and Cu in aulphuric acid extract as described by Jacksin (1973).

Sotil anaiysis

Soll samples collected at the three stages from a depth of three inches were analysed for varlous factors such as pH exchangeable $\mathrm{Al}, \mathrm{H}, \mathrm{Ca}$, frg and is by aethods descmbed earlier. $P A S$ and PRS were computed from the data.

Experinent II.

Response of fodder malze to different jevels of exchangeable aluninium

The layout of the experiment and different treatments of lime were the same as in the previous experiment.

Fertilizers were applied as per the package of practice reconsendations of the KAU (Anon., 1984) for fodder maize at the rate of 120:60:40 $\mathrm{kg} / \mathrm{he}$ of $\mathrm{N}, \mathrm{P}_{\text {, }}$ and K. The fortilizers were applied as urea ($46 \% \mathrm{~B}$), superphosphate ($16 \% \mathrm{P}_{2} \mathrm{O}_{5}$) and auriate of potash ($6 \pi \%$ $\mathrm{K}_{2}{ }^{\mathrm{O}}$ 。

Raising of the crop

Medium sized earthen pota (13 on diaseter) Were Eilled with 10 kg of the moll selected and the calculated quantity of Iise wan incorporated into the soll. The fertilizers wers applied after two days.

Soil samplea were collected fron a depth of three inches fros each pot after the application of lime $\left(S_{00}\right)$ as weil as after the application of iertilizers (5_{0}), and analysed for pH, exchangeable Al, re, H, Ca, Mg and K by the methode deacribed earlier. pus and FaS were computed fyon the data as described earlier.

Sowing of seeds.

Three maize seeds of variety Canseas were sown in a triangular manner in each pot. After complete gemalnation of geeds, thinning wes done at foug leai atage to meintain a single healthy plant in each pot.

Biometrio observations

The follouing biometric observations were mado at $30\left(s_{1}\right), 65\left(s_{2}\right)$ and $90\left(s_{3}\right)$ days after $=$ wing. Helght of the plant

Height of the plant was measured iroa the baso of the plent to the tip of the youngest fully openad leat after 30 and 65 days and fron the base of the plant to the tip of the tassel at goth day and recorded in centimetres.

Root length

Length of the root was measured from the base of the stea to the tip of longent root and expressed in cm.

Fresh welght of tops and roots

At fodder harvest stage, each piant was puiled out with utmost care and washed carefully in running water. Soil particles adhering to the roots were renoved with the help of a jet of water. The plante
vere separated into roots and tops which were weighed separately.

Dry welght of tops and roots

Separated root and top samples were itrst aitr dried and then sven dried in an alr oven at $90 \pm 5^{\circ} \mathrm{C}$ till constant weight was obtained: The dry velght of tops and roots were recorded.

Chentcal analysis of plants

Oven dried top and root samples were powdered separately and analysed for $N, P, K, C, N G, F e, A 1$, his. Zn and Cu in sulphuric acid extract (Jackson, 1973).

Soli analysis

Soll samples collected at the three scages were analysed for various factors such as pil, exchangeable A1, $H, C e, M g$ and K by methods described earlier.

Statistical analysis.

The data obtained from the different estimates
of laboratory and pot culture studies were analysed by appropriate statistical methods to bring out the comparative effect of different treatments on plant characters as well as the relationship between levels of exchangeable aluminiun and growth, yieid and nutrient uptaike in cowpea and maize.

RESULTS

RESULTS

The results of cheaical analyais of 80 soil samples representing the five major soil types of Kersla are given in Table 4.

The mean value for pH in water recorded a ainimum of 4.2 in the leterite soil of Vembayam and in the alluvial soil collected from Kalangara. Marimum pH of 7.9 was shown by the red loan 8011 collected from Thekkerkonam. The ph of all the solls showed a reduction of 0.2 to 2.9 units then taken in $0.01 \mathrm{M} \mathrm{CaCl}_{2}$

Line requirenent values also showed wide variation among the aoils. The value for lime requirement wes minimua in the sendy soil of Thiruvizha and some red loam soils of Vizhinjua area. The lime requirement value was maximum ($7.7 \mathrm{t} / \mathrm{ha}$) in the laterite soll of Vembayam which has recorded the lowest value for ph also. Post of the solls collected from Vizhinjum and nearby areas had a neutral reaction and were devoid of any exchangeable aluminium.

Table 4 Chemical analysis of soil samples

Table 4 (Conta..)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
28	5.日	4.5	2.2	0.04	0.24	0.22	1.68	2.79	75.61	17	0.49	0.49	-	\square	trace	6.2
29	5.5	4.0	5.2	0.05	0.33	0.20	1.20	1.38	52.51	22	0.49	0.14	0.31	5.79	2	5.3
30	5.5	5.0	2.7	0.11	1.11	0.21	2.45	2.64	72.56	25	0.90	0.28	0.61	8.39	5	7.3
31	5.4	4.7	4.7	0.27	0.84	0.20	2.24	1.93	67.15	40	0.45	0.44	0.01	\square	trace	6.5
32	5.5	4.7	4.7	0.22	0.75	0.22	2.24	1.77	66.94	30	0.45	0.43	0.02	-	trace	5.3
33	5.5	4.6	4.7	0.26	0.90	0.24	1.92	1.58	65.37	30	0.98	0.50	0.49	8.51	5	5.7
34	4.5	4.3	6.7	0.04	1.11	0.22	1.19	1.91	55.23	27	0.90	0.47	0.43	7.17	3	6.0
35	4.2	3.7	5.7	0.18	0.95	0.23	4.17	0.88	35.61	26	2.94	0.48 ,	. 2.46	38.40	24	5.4
36	6.3	4.9	1.2	0.03	0.99	0.14	2.87	1.57	76.17	17	0.45	0.45	-	-	trace	6.0
37	6.6	5.0	-	0.04	0.90	0.16	2.49	1.08	60.97	17	0.45	0.45	-	-	-	6.1
38	6.1	5.1	-	0.04	0.90	0.17	2.73	0.98	61.59	19	0.45	0.45	-			6.3
39	6.1	4.8	1.7	0.07	1.02	0.18	2.01	1.58	61.72	16	0.45	0.45	-	-	\cdots	6.1
40	7.0	5.2	-	0.15	0.99	0.14	2.73	1.62	72.23	15	0.90	0.66	0.24	3.87	1	6.2
41	7.9	5.3	-	0.10	0.87	0.23	1.25	1.87	52.31	20	0.45	0.45	-	-	-	6.4
42	5.9	5.7	1.2	0.15	0.46	0.12	1.43	1.88	57.70	16	0.45	0.45	-	-	-	6.5
43	6.1	5.2	-	0.03	0.63	0.10	2.00	1.47	72.69	19	0.49	0.49	-	-	trace	4.9
44	6.0	5.0	-	0.02	0.45	0.06	1.89	1.48	71.27	16	0.49	0.49	-	-	trace	4.8
45	6.7	5.6	-	0.06	0.66	0.12	1.90	1.96	82.93	2	0.49	0.49	\rightarrow	$\stackrel{+}{+}$	-	4.8
46	7.4	5.7	-	0.02	0.90	0.09	1.61	1.50	67.98	2	0.49	0.49	-	-	*	4.7
47	6.5	5.4	-	0.02	0.57	0.09	1.97	1.77	76.38	2	0.49	0.49	-	-		5.0
48	7.6	5.9	-	0.13	0.99	0.08	1.76	1.27	70.66	2	0.49	0.49	-	-	-	4.4
49	7.0	6.0	-	0.09	0.57	0.12	2.30	2.10	79.19	2	0.49	0.49	-	-	,	5.7
50	6.6	5.1	-	0.15	1.08	0.08	1.77	2.19	82.41	17	0.49	0.49	-	-	\cdots	4.9
51	7.1	5.5	-	0.03	0.54	0.07	1.93	1.57	71.28	2	0.49	0.49	-	-		5.0
52	7.2	5.9	-	0.09	0.90	0.20	2.15	1.80	76.85	1	0.49	0.49	-	-	-	5.4
53	6.5	5.9	-	0.09	0.87	0.34	1.48	1.78	76.57	1	0.49	0.49	-	-	\cdots	4.7
54	5.7	5.9	-	0.09	0.90	0.11	1.69	1.78	72.92	2	0.49	0.49	-	-	"	4.9

Table 4 (Contd...)

1	2	3	4	5	6	7	8	9	10
55	6.1	4.9	-	0.07	1.14	0.10	1.27	0.80	80.19
56	6.5	4.2	-	0.04	0.93	0.97	1.67	0.84	77.44
57	5.5	5.0	1.2	0.03	0.60	0.05	0.99	1.13	74.79
58	5.5	4.1	2.2	0.04	0.48	0.05	2.00	1.40	75.20
59	5.8	4.2	1.2	0.04	0.66	0.07	1.19	1.25	73.74
60	5.1	4.1	2.2	0.07	0.39	0.11	1.60	0.27	70.43
61	5.2	4.0	3.7	0.04	0.54	0.05	0.71	1.11	66.57
62	6.0	3.8	2.2	0.08	1.11	0.03	1.26	0.92	58.03
63	6.5	5.2	1.2	0.09	0.84	0.05	0.89	0.27	42.96
64	5.6	4.4	2.2	0.05	0.39	0.07	0.23	0.76	55.53
65	5.5	4.1	3.7	0.04	0.45	0.06	0.25	0.69	66.20
- 66	5.1	4.0	5.2	0.03	2.43	0.05	0.92	0.43	66.00
. 67	5.5	4.1	4.7	0.04	2.46	0.07	1.00	0.49	67.87
. 68	5.6	4.3	- 3.7	0.04	2.01	0.09	1.24	0.40	59.86
69	5.3	4.5	4.7	0.05	2.19	0.10	0.82	0.58	60.04
70	4.9	4.0	5.2	0.02	2.43	0.03	0.05	0.54	59.04
71	5.1	4.1	5.2	0.02	0.45	0.22	1.03	0.46	42.75
72	5.2	3.8	4.7	0.01	1.17	0.12	1.55	0.99	45.55
73	5.0	4.0	5.2	0.01	0.62	0.15	1.21	0.66	46.67
74	6.4	4.0	-	0.09	0.63	0.40	1.82	0.41	54.79
/75	5.6	4.8	3.7	0.07	1.62	0.51	1.69	0.88	54.0*
$\checkmark 76$	4.8	4.1	3.2	0.01	0.90	0.25	1.46	0.32	41.43
.77	4.9	4.2	3.7	0.02	0.48	0.05	0.99	0.02	42.40
78	4.5	4.0	3.7	0.01	1.23	0.16	1.35	0.46	37.16
79	5.4	4.1	1.7	* 0.04	1.67	0.32	1.57	0.26	50.00
80	6.1	4.7	-	0.08	2.24	0.20	1.16	0.95	59.75

11	12	13	14	15	16	17
6	0.49	0.49	$=$	-	trace	2.7
2	0.49	0.49	-	-	*	4.5
1	0.49	0.49	\square	-	${ }^{\prime}$	2.9
2	0.49	0.49	-	-	-	3.2
2	0.49	0.49	-	-	\cdots	3.4
1	0.98	0.50	0.25	8.85	2	2.8
1	0.98	0.50	0.25	8.85	2	2.8
15	0.98	0.98	+	-	trace	3.8
1	0.49	0.49	-		-	2.8
9	0.49	0.49	-			1.9
10	0.49	0.49	-	-	\cdots	1.5
5	1.47	0.99	0.49	23.09	4	2.1
1	1.47	0.99	0.49	21.0 O	5	2.3 .
4	0.98	0.50	0.49	16.72	3	2.9
5	1.47	0.99	0.49	19.40	1	2.5.
3	1.95	0.98	0.77	32.17	3	$2.4{ }^{\text {- }}$
1	2.45	0.51	1.49	37.12	3	4.0
3	1.47	0.99	0.49	25.60	1	5.8
1	2.94	1.00	0.97	23.10	4	4.2 -
0	1.47	0.50	0.97	20.20	1	4.8
1	1.49	0.49	1.00	17.59	1	5.7
0	1.47	0.50	0.97	19.20	2	4.9
1	0.98	0.50	0.49	19.40	3	2.5
3	2.45	0.57	1.94	36.60	4	5.3
1	1.96	0.48	0.49	11.28	4	4.3
4	0.98	0.09	0.90	22.25	6	4.0

The maximum value for exchangeable aluminiwa was recorded in the laterite soil of Vambayam ($2.48 \mathrm{me} / 100 \mathrm{~g}$) which has incidentally recorded the loweat ph value of 4.2.

The percentage aluninium saturation was highest in the laterite soil of Vembayam while this value was almost negligible in red loam soils. The status of bases inise K, Ca \& Mg was moderately high in various soils and the percentage base saturation of soils ranged from 35.61 in alluvial soil collected froa Kalangara to 82.93 in red loam soils of Mulloor area.

Sandy soils of Pattanakad recorted the lowest value for cation exchange capacity ($1.5 \mathrm{me} / 100 \mathrm{~g}$) and the highest value of $6.4 \mathrm{me} / 100 \mathrm{~g}$ was obtained in an alluvial soil of Kalangara.

Experiment I.

Pot culture studies with cownea
Influence of different levels of lime on soil properties

Soll reaction
The mean values of pH of the soils in the
different pots traated with lime at different stages of growth of cowpea is presented in fable 5 and the analysis of variance in appendix $1(a)$.

Appilcation of different levels of lime as per the treatments has resulted in a significant shift in pH from 4.4 to 6.2 compared to the value of 4.1 in tho control. Rise in pil was maximum in T_{2} where 7.7 tha of lime was applied, and minimum in T_{4} where only $250 \mathrm{~kg} / \mathrm{ha}$ of lime was applied. T_{3} receiving $500 \mathrm{~kg} / \mathrm{ha}$ recorded a ph of 4.7.

After the application of fertilizers a rise in pil was observed in all the treatments where it ranged from 4.6 in control to 6.3 in $\mathrm{I}_{2} \mathrm{~T}_{2}$ recorded a significantly migher pithan $T_{3} T_{4}$ and T_{1}.

At maximum flowering stage of cowpea, all the treatments showed on increase in pH ranging from 4.8 in control to 6.3 in T_{2}, which was significantly superior to the other treataents. At the ald pod filling stage of cowpea, pH was higher than that at the maximum flowering stage and it ranged from 5.0 in

Table 5 Influence of affergnt levale of 11 men Soll propertien (crop-cowpea)

Sol 2 reaction (pH)

Treatrents	S_{00}	S_{0}	S_{1}	S_{2}	S_{3}
$\mathrm{~T}_{1}$	4.1	4.6	4.8	5.0	4.8
r_{2}	6.2	6.3	6.3	6.4	6.3
$\mathrm{~T}_{3}$	4.7	4.9	5.7	5.9	5.2
T_{4}	4.4	4.7	5.2	5.3	4.9
CD	0.11	0.16	0.23	0.29	0.32

Totel acidity (me/100g soil)

Treatmants	S_{00}	S_{0}	S_{2}	S_{2}	S_{3}
T_{1}	2.94	2.33	1.47	0.49	0.98
\mathbf{r}_{2}	0.49	0.40	0.28	0.16	0.22
\mathbf{T}_{3}	1.73	0.98	0.55	0.31	0.49
\mathbf{T}_{4}	2.45	1.96	0.98	0.49	0.92
$\mathbf{C D}$	0.24	0.19	0.10	0.11	0.11

Table 5 (contd.)
Exchangeable aluminium (me/100 g soil)

Treatment	S_{00}	s_{0}	s_{1}	s_{2}	s_{3}
T_{1}	2.45	1.86	0.74	0.30	0.50
T_{2}	0.09	0.05	0.03	0.01	0.01
T_{3}	1.26	0.50	0.31	0.20	0.25
T_{4}	1.98	0.98	0.62	0.25	0.50
	0.22	0.19	0.15	0.01	0.01

Exchangeable hyarogen (me/100 g soil)

Treatment	s_{00}	S_{0}	s_{1}	s_{2}	s_{3}
T_{1}	0.49	0.47	0.73	0.20	0.48
T_{2}	0.40	0.36	0.25	0.15	0.21
T_{3}	0.47	0.49	0.25	0.11	0.25
T_{1}	0.47	0.98	0.36	0.24	0.42
$C D$	0.04	0.04	0.12	0.11	0.11

Table 5 (contd.)
Exchengeable potassiun (

Treatments	s_{00}	s_{0}	s_{1}	s_{2}	s_{3}
$\mathrm{~T}_{1}$	0.58	0.61	0.39	0.29	0.29
$\mathrm{~T}_{2}$	0.48	0.61	0.46	0.33	0.32
$\mathrm{~T}_{3}$	0.46	0.58	0.43	0.26	0.30
$\mathrm{~T}_{4}$	0.46	0.61	0.47	0.25	0.24
CD	0.10	NS	NS	NB	0.05

Exchangeable calciun (me/100 g zoil)

Treatments	s_{00}	s_{0}	s_{1}	s_{2}	S_{3}
T_{1}	0.31	0.40	0.95	1.11	0.37
T_{2}	11.35	0.45	7.27	5.54	6.64
T_{3}	0.79	0.73	1.37	1.35	1.24
T_{4}	0.61	0.43	1.02	1.11	0.77

Table 5 (cantd.)

Exchangeable magnesium (mi/100 g)

Wreatment	500	30	s_{1}	S_{2}	S_{3}
T_{1}	1.05	0.93	0.63	0.69	0.69
T_{2}	1.16	1.00	0.84	0.81	0.00
${ }_{3}$	1.09	0.95	0.75	0.74	0.67
T_{4}	3.05	0.94	0.65	0.75	0.62
Cb	NS	${ }^{4} \mathrm{~S}$	0.12	iss	0.123

Eschangeabie iron (pma)

Treatront	Dafors cultivation	Arter cultivation
T1	13	<1
T2	5	121
T_{3}	9	<1
74	11	<1
CD	0.937	0.332

control $\left(T_{1}\right)$ to 6.4 in T_{2}. At the harvest stage, however, there was a slight decreasing tendency for this value compared to the previous stages, pH at this stage ranged from 4.8 in T_{1} to 6.3 in $T_{2} ; T_{2}$ being significantly superior to T_{1}, T_{3} and T_{4}. Total acidity.

The effect of different levels of liae on the estinate of total acidity of the soil is given in Table 5 gnd analysis of variance in Appendix I(b).

The total acidity ranged from the lowest value of 0.49 aie in T_{2} to the highest value of 2.94 ne in T_{1}. Application of 11 me at the rate of 7.7 t/he has significantiy reduced the total aciditycompared to the other treatments.

The application of fartilizers, resulted in a further lowering of total aciaity in all the treatments. The lowest value 0.40 we was recorded for ${ }^{2}$. and the highest value 2,33 we was recorded for T_{1}. Sotal acidity in T_{2} was significantly lower than $\mathrm{T}_{3}, \mathrm{~T}_{4}$ and T_{1}.

At the maximum plowering stage of cowpea; values for the total acidity ranged from 0.20 in T_{2} to $1.47 \mathrm{me} / 100 \mathrm{~B}$ in T_{1}. Total acidity in T_{2} was significantly lower than that of $T_{3} \cdot T_{4}$ and T_{1}.

The values for total acidity showed a decreasing trend towards the ald pod filling stage, showing a minimum value of 0.16 me in T_{2} and a mexinum of $0.49 \mathrm{me} / 100 \mathrm{~g}$ in the control and in T_{4}. Total acidity value in T_{2} was significantly lower than that of $T_{3}, T_{4} \& T_{1}$ 。

Unlike the other stages, at the harvest stage, the soils showed an increasing trend in the content of acidity. It was minimum (0.22 me) in T_{2} and aratmun (0.98 me) in T_{1}. Here $01 \mathrm{so}, \mathrm{T}_{2}$ was significantly superior to T_{3}, T_{4} and T_{1} 。

Fxchangerble aluminiur
The effect of different levels of lime on the exchangeable aluminium content of the 5011 is given in Table 5 and analysig of variance in Appendix f(c).
lower value (0.20 ne) compared to T_{4} and T_{9}.
Exchangeable aluminiun content and the corresponding value for percentage aluminium saturation of the soil increased towards the harvest stage. Recorsed value for exchangeable aluminium at this stage ranged from 0.01 in T_{2} to 0.50 in T_{1} and T_{4}. Exchangeable aluminium content was lowest in T_{2} and it was significantly lower than T_{3}, T_{4} and T_{1}.

Exchangeable hydrogen.

Mean values for the exchangeable hydrogen content of the soil due to treatment with aifferent levels of line are given in Table 5 and analysis of variance in Appendix $I(d)$.

The values for exchangeable hydrogen in the 3011 ranged from 0.40 in T_{2} to $0.49 \mathrm{me} / 100 \mathrm{~g}$ of soil in T_{1}. Application of lime at the rate of $7.7 \mathrm{t} / \mathrm{ha}$ significantly reduced the level of exchangeable hydrogen compared to the other treatments. After the application of fertilizers the value of exchangeable hydrogen changed from 0.36 in T_{2} to 0.98 me

In $\mathrm{F}_{4} \cdot \mathrm{~T}_{2}$ recorded a significantly lower value than T_{1}, T_{4} and T_{3}.

At the maximum flowering stage of cowpea all treatments except T_{1} showed a decrease in exchangeable hydrogen. The values for exchangeable hydrogen at this stage ranged from 0.25 in T_{2} and T_{3} to 0.73 ac in T_{1}. Treatments T_{2}, T_{3} and T_{4} were equaliy offective in reducing exchangeable hydrogen content of the soil.

The values for exchangeable hydrogen showed a decreasing trend towards the wid pod filling stage, showing a minimum value of 0.11 we in I_{3} and a maximut value 0.24 ae in T_{4}. The value for exchangeable hydrogen in T_{3} was significantly lower than that of T_{4}, but the effectiveness of T_{2} and T_{3} were almost similar in reducing the exchaageable hydrogen content of the soil.

At the harvest stage, exchangeable hydrogen showed an increasing trend. The values ranged from 0.21 me in T_{2} to 0.48 me in T_{1}. T_{2} and T_{3} were significantly superior to T_{1} and T_{4} in reducing exchangeabie
hydrogen content of the soil.

Exchangeable potassium

The mean values of exchangeable potassium content of the soils in the different treatments at different stages of groith of cowpea axe given in Table 5 and analysis of variance in Appendix $I(e)$.

Decreased level of exchangeable aluminium in $s o 11$ due to liming has resulted in a slight decrease in the content of exchangeable potassium. The valuos ranged from 0.58 in T_{1} to 0.46 ae in both T_{3} and T_{4}. Ti reconded a algnificantly higher amount of exchengeable potessium than X_{3} and I_{4}.

After the application of fertilizers all the treatments ghowed an increase in the content of exchangeable potassium. This increase in the different treatments was not staitistically significant and the mean values for exchangeable potassium ranged fron 0.53 in T_{3} to 0.61 me in $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{4}.

At the masimua flowering stage of cowpea, a reduction in the exchangeable potassiun content was
noticed in all the treatments. Howover, it was not statistically significant. The values ranged from $0.39 \ln T_{1}$ to 0.47 me $\ln T_{4^{\circ}}$

The values for exchangeable potassium further showed a reduction at the mid pod ililing stage where it ranged from 0.25 in T_{4} to 0.33 we in T_{2}. The difecm rence between various treatments was not signipicant.

At the harvest stage the values of exchangeable potassium content was minimum and ranged from 0.24 in T_{4} to 0.32 in $T_{2} \mathrm{~T}_{2}$ was found to contain a signic ficantly higher amount of exchangeable potassium than 7_{4} 。

Exchangeable calcium

The mean values of exchangeable calcium at different stages of growth of coipea in the pots receiving different levels of line are given in Table 5 and the analysis of variance in Appendix $I(f)$.

Application of different levels of ilme has resulted in a reduction in the level of exchangeable aluminiug in $s 011$ and a sigatelcent increase in the
exchangeable calcium ranging. from 0.31 in T_{1} to 11.35 me in $T_{2} \cdot T_{2}$ was found to contain a significantly higher amount of exchangeable calcium compared to troatmonts T_{3}, T_{4} and T_{1} 。

After the application of fertilizers, a slight decrease in exchangeable calciun was observed in all the treatwents except in the control. The values for exchangemble calcium ranged from 0.40 in I_{1} to 8.45 me in T_{2} which maintained a significantly higher level compared to the other treatments T_{3}, T_{4} and T_{1}.

At the maximum flowering stage of cowpea, exchangeable calciun showed an increasing trend in all the treatrents except in T_{2} where the value decreased a little. Exchangeeble calcium content of the soil at this stage renged from 0.95 in T_{1} to 7.27 me in T_{2}.

The values for exchangeable calcium varied Irom $T_{0} 11$ in T_{1} and T_{4} to 5.64 me in T_{2} at the asd pod fililing stage of the crop. Exchangeable calcium content in T_{2} was significantly higher then that in $T_{1} \cdot T_{3}$ and T_{4} *

At harvest stage, the values for exchangeable calciun showed a marked decrease compared to the other two stages, in all treatments except in T_{2} where a slightiy higher content of exchangeable calcium was noticed. Exchangeable calicium ranged Irom 0.77 in T_{4} to 6.64 we in T_{2} at this stage. Exchangeoble magnesium

The maan values for exchangeable magnesium content of the soil receiving different treatments are given in Table 5 and the analysis of variance in Appendix $I(g)$.

Exchangeable magnesium content of the soil' Increased with 1 ime application and the values ranged Irom 1.05 in T_{1} to 1.16 me In_{2}. This variation was, however, not statistically significant.

Exchangeable magnesiun content of the so1l showed a decreasing trend after the application of fertilizers and the values ranged from 0.93 in T_{1} to 1.00 me $\ln \mathrm{T}_{2}$.

The values for exchangeable magrestum decinea at the maximun flowering gtage and ranged from 0.65 in T_{1} to 0.84 me in T_{2}. Exchengeable magnesium content in T_{2} was significantly highar than T_{1} and T_{4} a Tho content of exchangeable magnesium at the mid pod filling stage ranged from. $0.69 \mathrm{in} \mathrm{T}_{1}$ to 0.81 me 1 n T_{2}. The difference between these was not statistically significant.

At the harvest stage, exchangeable magnesiun showed a decreasing trend and it ranged from 0.62 in T_{1} to 0.80 me in T_{2}. Exchangeable magnesium content in T_{2} was significantly higher than that in $\mathrm{F}_{1}, \mathrm{~F}_{3}$ and Ψ_{4}.

Exchangeable Iron

The mean values of exchangeable iron content of soils before and after cowpea culitivation are presented in Table 5 and the analysis of variance in Appendix $I(h)$.

Exchangeable iron content in the soils bef re cultivation showed a sigmificant difference, where

Abstract

it ranged from 5 ppm in T_{2} to 13 ppa in T_{1}. But after the cultivation the exchangeable iron content In the soil decreased drastically and it was nil in T_{2}, and in the other three treatmonts, it was only less than one ppix.

Biometric Observations

Tha mean values on the various plant characters of coupea are given in Table 6. and the analysis of variance in Appendix II.

Height of the plant

Influence of different levels of exchangeable aluminium on plant height is given in Fig.I. No 3icadficant relationship was obtained between the haight of the plant and the different treatments at the maximum flowering stage. However, the mean height of the plant increased ath an increase in inme levels with a corresponding decrease in exchangeable aluminium. The troatment T_{2} which showed the least anount or exchangeable aluminuu recorded the lowest helght of 25.2 ea. In the other treataents the acan height of

Table 6 Blometric obegervations
Influence of different levels of lite on the plant characters or cawpea

Treatment	Keight of the plant (ca)		$\begin{aligned} & \text { Root length } \\ & (\mathrm{cm}) \end{aligned}$		Rumber Ies	$\text { of } 12$		Grain wedght (a) pot	thusk weight (C)	Total. pod weight (g)		cry wei	6ht
	31	$S_{2} S_{3}$	$s_{1} \quad s_{2}$	s_{3}	S_{1}	S_{2}	s_{3}				51	S_{2}	s_{3}
T1	27.1	32.033 .0	$7.0 \quad 8.4$	10.8	2	4	2	0.90	3.35	1.25	1.03	1.47	2.35
$T 2$	25.2	31.533 .3	10.011 .5	11.5	4	7	4	1.63	0.73	2.35	1.05	2.20	2.95
T_{3}	29.3	34.937 .4	10.512 .0	13.3	4	6	6	2.63	J.25	3.99	1.74	2.87	3.88
T_{4}	29.0	32.031 .0	3.511 .4	11.4	3	3	3	0.30	0.45	1.23	1.03	1.83	2.55
CB	146	3 H	1.69 Ns	143	1.3	2.8	2.45	0.71	0.29	0.83	0.27	0.76	NS

Fig. 1.
Influence of different levels of exchangeable aluminium ON THE TOP AND RODT LENGTH OF COWPEA AT DIFFERENT?
stages of growth

the plants ranged from 27.1 ca in T_{1} to 29.3 cm in T_{2}.
At the mid pod filling stage, the kedght of tho plants varied from 31.5 in T_{2} to 34.3 cm in $T_{3^{\circ}}$ None of the treatments was found to alter tho helght of the plant significantly.

At the harvest stage, the ainimum height recorded was 31.0 cm for T_{4} and the neximum was 37.4 ea for T_{3}. But no significant differente in height was noticed between the different treatmento. plants grown in soils having a high exchangeable alusinium and percentage aluminiun saturation of >40 showed leaf curling and chlorosis which are typical sympton of aluminiun toxicity.

Root length
Influence of different levels of exchangeable aluminium on root leneth is given in 21.5 .1 and plate 1.

An increase in the length of roots was observed due to e decreage in the exchangeable aluainiun content of the soil by liming. But the increase in length was

Plate.1. Influence of different levels of exchangeable-

ALUMINIUM ON ROOT GROWTH OF COWPEA.
significant only at the maximun flowerinc stage after which the plants in the different treataents did not show any apprectable variation.

At the maximum flowering stage, the length or roots varied from 7.0 in T_{1} to 10.5 cm in T_{3}. It wes significantly higher than the length of root in treatments T_{1} and T_{4}.

At the mid pod filling stage, the root length varied from 8.4 ca in T_{1} to 12.0 cm in T_{3}. Eventhough the length of roots showed an increasing trend due to a decreased exchangeable aluminiua compared to the control, the difference was not significant and at harvest it ranged from 10.0 in T_{1} to 13.3 cm in T_{5}. Nuaber of nodules.

A significant increase in nodule count was obtained with the reduction of exchangeable aluninium content in the soll by liming as compared to the control. At the maxiaun flowering stage, the number of nodules per plant varied from 2 in T_{1} to 4 in T_{2} and $T_{3} \cdot T_{2}$ and T_{3} were significantly superior to
T_{1} and T_{4} 。
Produle count at the mid pod filling stage shoved an increase and it ranged from 3 in T_{4} to 7 in 2_{2} I_{2} recorded a significantly higher nuaber of nodules conpared to T_{1} and T_{4}. At the harvest stage there was a roduction in the nuaber of nodules per plant and it varied from 2 in T_{1} to 6 in T_{3}. The number of nodules par plant in T_{3} was signiflcantly higher come pared to T_{1} and T_{4} *

Grain fiela

Influence of different levels of exchangeable aluainlum on grain yield is shown in $\mathrm{Fi}_{\mathrm{G}}^{\mathrm{c}} \mathrm{e}$.

The weight of grain was significantly higher in T_{3}, compared to T_{1}, T_{2} and T_{4}. It ranged fron 0.00 in T_{4} to $2.68 \mathrm{~g} /$ pot in T_{3}.

An increase in weight of husk was also noticed in all the three treatents receiving 11 me as compared to the control. The minimum weight of husk was noticod In $T_{1}(0.35 \mathrm{~g} /$ pot $)$ and the maximua in $T_{3}(1.23 \mathrm{~g} / \mathrm{pot})$

Fig.3. Influence of different levels of exchangeable

Abstract

which was significantly higher conpared to T1, T_{2} and T_{4} - gotal dry weinht

Influence of different levels of oxchangeable aluminiua on total dry matter production is given in Fig.3.

At the maximu flowering stage of cowper, maximum dry weight of 1.74 a was recorted in \boldsymbol{T}_{3} conm pared to other treatgents T_{1}, T_{2} and T_{4} ahich were on per ($1.03 \mathrm{~g} /$ plant).

At the mid pod illiling stage, the total dry
筑 recoried a gignificantly higher dry woight compered to T_{1} and T_{4}.

The total dry weight from dieferent treatments at harvest ranged irom 3.60 in Tp to $7.86 \mathrm{~g} / \mathrm{plent}$ in ${ }_{3}{ }_{3} \mathrm{I}_{3}$ recorded the highest value for tatal dry waicht production compared to $\mathrm{T}_{1}, \mathrm{~T}_{2} \& \mathrm{~T}_{3}$

Mutrient composition

The data on the nutrient composition of cowpea at different stages of growth are presented in Table 7 , Fig. 4 and analysis of varlance in ippendix II(a) and II(b).

Tops and mojs.

Nitrogen

The nitrogen content of compea tops showed an increase with a decrease in exchangeable aluminium content at the maximu flowering stage. It ranged from 2.08 in T_{1} to 3.20 percent in T_{2}. Nitrogen content in T_{2} was significantly higher than in $\mathrm{T}_{3}, \mathrm{~T}_{4}$ and T_{1}. But the nitrogen content in the root at the maximullowering stage was significantly higher in ${ }^{2} 3$ When compared to T_{1} and T_{2}. It was minimum (1.21 percent) in T_{1} and T_{2} and maximum (1.37 percent) in T_{3}

The nitrogen content decreased at the mid pod filling stage where it ranged fron 1.89 percent in T_{1} to 2.54 percent in T_{2}. Plants recelving higher

Table 7 Influence of different levels of lime on nutrient composition of cowpen

Percent nitrogen

Treatesnt	Tops			Roots			Grain	Husk
	S_{1}	S_{2}	S_{3}	S_{1}	S_{2}	S_{3}		
T_{1}	2.08	1.83	1.78	1.21	1.22	0.96	3.22	2.54
T2	3.20	2.54	1.99	1.21	1.51	1.09	3.50	1.02
T_{3}	2.31 '	2.53	1.81	1.87	1.40	1.03	3.77	1.33
T_{4}	2.10	2.18	1.78	1.74	1.33	1.02	3.48	0.70
CD	0.35	N3	NS	0.42	NS	NS	NS	0.25

percent phosphorus

Treatment	Tops			Roots			Grain	Husis
	S_{1}	s_{2}	s_{3}	s_{1}	S_{2}	S_{3}		
T_{1}	0.21	0.22	0.17	0.33	0.28	0.29	0.53	0.22
T2	0.22	0.28	0.23	0.43	0.28	0.35	0.57	0.31
T_{3}	0.23	0.23	0.20	0.38	0.35	0.29	0.68	0.40
I_{4}	0.22	0.20	0.19	0.38	0.32	0.29	0.55	0.34
CD	NS	0.03	0.02	NS	NS	NS	0.09	0.11

Table 7 (conta.)
Fercent potessium

Treatment	Tops				Roots		Grain	Huak
	S_{1}	S_{2}	s_{3}	3_{1}	s_{2}	S_{3}		
T_{1}	2.29	3.07	2.86	0.09	0.13	0.18	1.59	1.79
3_{2}	3.62	2.88	2.78	0.10	0.12	0.16	1.45	1.54
T_{3}	2.88	2.53	2.66	0.10	0.11	0.18	1.71	1.85
$\mathrm{T} / 4$	2.67	2.98	2.78	0.09	0.08	0.18	1.39	1.79
CD	NS	NS	NS	NS	NS	NS	N3	NS

Percont calciua

Treatment	Tops			Rosts			Grain	\%ugk
	s_{1}	S_{2}	S_{3}	s_{1}	s_{2}	S_{3}		
T_{1}	0.17	0.25	0.20	0.006	0.008	0.021	0.14	. 0.04
T_{2}	0.53	0.84	0.54	0.008	0.019	0.038	0.28	0.05
T_{3}	0.24	0.39	0.36	0.030	0.022	0.036	0.30	0.04
${ }_{4}$	0.19	0.29	0.23	0.160	0.010	0.033	0.14	0.04
CD	0.03	0.13	0.09	0.006	0.005	0.012	0.05	0.01

Table 7 (contd.)

Percent nagnesium

Treatcent	Tops			Roots			Grain	Etumis
	S_{1}	s_{2}	${ }^{5} 3$	s_{1}	s_{2}	s_{3}		
T_{1}	0.20	0.23	0.24	0.07	0.08	0.07	$0.11{ }^{\circ}$	0.22
T_{2}	0.22	0.24	0.25	0.11	0.09	0.12	0.14	0.20
T_{3}	0.22	0.24	0.26	0.08	0.09	0.09	0.15	0.27
F_{4}	0.20	0.23	0.25	0.08	0.08	0.08	0.12	0.23'
CD	NS	NS	NS	0.02	NS	0.02	0.02	0.04

Iron content (ppa)

Treatment	Tops			Roots			Grain	Husk
	3_{1}	S_{2}	s_{3}	S_{1}	s_{2}	3_{3}		
T ${ }_{1}$	3330	1920	820	2110	3330	2030	72	144
T_{2}	2160	1850	780	2570.	45040	3270	98	173
T_{3}	980	990	510	3450	6140	2110	70	132
${ }_{4}{ }_{4}$	1190	1190	600	2430	7700	2860	120	299
CD	1260	NS	230	380	1590	1010	34	68

Table 7 (contci.)
Aluainluia content (ppu)

Treatwent	Tops			Rosts			Grain	Husk
	S_{1}	S_{2}	S_{3}	s_{1}	s_{2}	${ }_{3}$		
$3{ }^{3}$	1170	1260	850	2093	4060	2695	139	355
T_{2}	830	1090	550	1236	3640	1180	140	256
T3	800	1020	490	1273	3650	1260	113	238
T_{4}	840	1040	600	' 1327	3870	1720	186	310
CD	NS	NS	250	155	249	293	39	$45:$

Zinc content (ppa)

Treatwent	Tops			Roots			Grain	Husk
	S_{1}	S_{2}	S_{3}	3_{1}	S_{2}	3_{3}		
T_{1}	71	71	74	50	60	98	65	34
T2	59	52	48	54	64	102	67	4.4
${ }^{1}$	61	56	54	92	95	216	68	40
T_{4}	62	69	72	35	65	124	55	37
CD	N3	NS	18	NS	NS	66	HS	[

Table 7 (contd.)
Copper content (ppa)

Trestment	Tops			Roots			Grain	Puck
	3_{1}	s_{2}	s_{3}	S_{q}	S_{2}	3_{3}		
T_{1}	15.	15	14	9	9	15	5	10
T_{2}	15	12	15	40	8	15	16	12
${ }^{4}$	16	12	15	7	12	11	15	12
T_{4}	14	15	15	9	12	14	11	11
CD	NS	NS	N6	NS	H	18	4	NS

levels of line shored a comparatively highar anount of nitrogen. A similar trend was obsarved in the nitrogen content of root at this stage. It ranged from 1.22 in T_{1} to 1.51 percent in ${ }^{2} 2^{\circ}$

At harvest, compared to the otber stuges, the nitrogen content of corpes (tops and roots) etill decreased though the values for the different treatnents did not diffor significantly. The values ranged iron 1.78 percent both in T_{1} and T_{4} to 1.99 percent in T_{2} for tops and from 0.05 percent in F_{1} to 1.09 percent in T_{2} for roots.

Phosphorus
At the maximun flowering stage, values for phosphorus content in cowpea (tops) ranged from 0.21 percent in T_{1} to 0.23 percent in T_{3}. The content of phosphorus in the varlous treatments was not uuch different. At this stage, the phosphorus content of the roots showied an increase with a reduction in exchangeable aluminium lavels in soil, the maximua being 0.43 percent in T_{2} and the oinieu* 0.33 percent in T_{1}.

At the ald pod fililng stage, the phosphorus content of cowpea (tops) ranged frow 0.20 in T_{4} to 0.28 percent in $T_{2}{ }^{*} T_{2}$ recorded e signisicantiy higher level of phomphorus compared to Ψ_{4}, T_{1} and $T_{3}{ }^{\circ}$ The level of phosphorus in roote was maxiaun in T_{3} (0.35 percent) and ainiaus in T_{1} and $T_{z}(0.2 \varepsilon$ percent).

The phosphorus content of cowpea tops was minimua at harvest while the content of phosphorus in cougea roots recorded an increase at this stage. Content of phosphorus in cowpea (tops) ranged from 0.17 in T_{1} to 0.23 percent in T_{2}. T_{2} reconded a significantly higher phosphorus content compared to $\mathrm{T}_{3}, \mathrm{~T}_{4}$ and I_{7}. In roots the phosphorus content ranged 1 rom 0.29 percent in T_{1}, T_{3} and T_{4} to 0.35 percent in $T_{2} *$

Potassium
The content of potessium in both cowpea tops and roots at different stages did not show any significant variation between treatments.

At the maxiaum ilowering 8tage, the level of potassium in tops varied fron 2.29 in T_{1} to 3.62 percent

Fig. 4 Influence of different levels of exchangeable 'ALUMINIUM ON NUTRIENT CONTENT OF COWPEA AT HARVEST

PERCENT MAGNESIUM

PERCENT CALCIUM

In F_{2} and the corresponding values in the roots varied from 0.09 in T_{1} and T_{4} to 0.10 percent in T_{2} and T_{3}.

At the ald pod filling stage, the content of potassiun ranged iroa 2.53 in T_{3} to 3.07 percent in T_{1}. in tops and from 0.03 percent in T_{4} to 0.13 percent in r_{1} in roots.

At harvest, the highest value noted in tops was 2.86 percent for T_{1} and lowest for T_{3} being 2.65 percent. For roots the values ranged from 0.16 in T_{2} to 0.18 percent in T_{1}, T_{4} and T_{3}.
calcium

A highly significant increase in calcium content was noticed in cropea tops at all the three stages with a corresponding decrease in exchangeable aluminium and an increase in the lime levels. At the maximun floworing atage, the content of calcium ransed frow 0.17 in T_{1} to 0.53 percent in T_{2} whith hes recorded a significantly higher value for calclum. However calciun content in roots at this stage ranged from
0.006 in T_{1} to 0.03 percent in $T_{3^{\circ}}$, Content of calciua In T_{3} was found to be significantly higher than the other treatments T_{2}, T_{4} and T_{1}.

The content of calcium in the carpea tops furcher showed an inoreasing trend towards the mid pos fililng etage, the maximum being recorted in T_{2} (0.84 percent) and the ainiaum in T_{1} (0.25 percent). The level of calcium in roots at thls stage ranged from 0.006 in T_{1} to 0.022 percent in T_{3}

At harvest, the content of calcivn in topo showed a tendency to decrease compared to that at the aid pod pilling stage. It ranged iron 0.20 in I_{1} to 0.54 percent in $T_{2^{\prime}} \mathrm{T}_{2}$ was found to be significentiy superior conpared to $T_{3} ; T_{4}$ and T_{1}. The content of calciuli in roots at this stage ranged froan 0.021 in Ty to 0.058 percent in T_{2} wich wes significently hieher than Tf.

Magnesium
The content af wagnesilum in compen tops at dsfferent stages did not show any marised variation
between treatments. It ranged from 0.20 In'T, end T_{4} to 0.22 percent in T_{3} and T_{2} at the maximun flowowing stage, 0.23 in T_{1} and T_{4} and 0.24 percent in T_{2} and T_{4} at the ald pod eliling stage and 0.24 in T_{1} to 0.26 pers cent in r_{3} at harvest whergas in cowpea rootw a significantly high content of magnesium was recorded in I_{2} (0.11 percent) at the maximum flowering stage. Tho lovel of the nutrient at this stage varied iron 0.07 pere cont in T_{1} to 0.11 percent in T_{2}. At the nid pod 1121 . Ing atage, the Hagnesilum content of roots varied Iros 0.00 in T_{1} and T_{4} to 0.09 percent in T_{2} and T_{3}. The variation between treatrents was not significant.

At harvest a aignificantiy highor content of magnesium was noticed in roots of treatrant $T_{2}(0.12$ percent) compared to T_{3}, T_{4} and T_{1}. At this stege, In recorded the lowest value of 0.07 percent aegnesiun.

Iron
At the maxinut Flowering stage, the content of iron in cowpea tops renged irot a niminua of 930 in T_{3} to a maximus of 3330 ppo in T_{1}. the treatrent T_{3} has aignificantly reduced the iron content in corpea tops
compared to T_{1}, T_{4} and T_{2}. But it may ve noted that a reduction in exchangeable alurinium content in soil by 2ining has resulted in an accumulation of wore iron in the roots of plants in the lised pots than in control. The level of iron in cowpea poots varied from 2110 in T_{1} to 3450 pph in S_{3}. I_{3} showed. a sianificantly higher amount of iron in the roots than in T_{1}, T_{2} and T_{4}.

At the old pod filling stage, oventhough the lavel of iron in cowpea tops registered a decrease, compared to the previous stage, it was not appreciably different in the different treatments. "It ranged from the lowest value of 990 in I_{3} to the highest, value of 1920 ppin in T_{1}. At this stage, the value for iron in the roots varied froa 3530 in T_{1} to 7700 ppo in T_{4} which was significantly higher than that in T_{1}, T_{2} and T_{3}.

The content of iren in both cowpo tops and roots decreased further at harvest. A minimum value of 510 ppa in $\$_{3}$ and a maximum of 800 ppa in the control was observed in tops. In roots the naximum

content of iron was noticed in I_{2} (3270 ppm) which was significently higher than that in $\mathrm{I}_{1} \mathrm{~T}_{2}$ and T_{3}. The lowest value recoried was 2030 ppm in T_{1}.

Aluminium

The content of alusinium in the top at the Eaxivum flowering stage was lowest (a00 ppa) in T3 and highest (1170 ppa) in T_{1}. None of the troatrente could produce signtificant recuction in aluminium concentration. A low level of exchangeable aluminita In the soil, reduced the accusulation of aluminium in the top. However, at this stage, the content of sluminium in roots showed aignificant linear reduco tion with a reduction in aluainium content in soil. The values ranged fros 1236 in T_{2} to 2093 ppa in T_{1}.

At the mid pod filling stage the content of alusiniun slightly increased in both tops and rootg. Aluminium contant in tops ranged frow 1920 ppin in T_{3} to 1260 ppm in T_{1}. None of the treatments cound produce a gigniticant reduction in aluainium content of the top at this stage also. The difierent 11 na
levels among thesselves also did not show any signtficant difference in reducing the accumulation of aluainium in roote. The treatment T_{4} accualated almost equal amount of aluminium (3370 pha) in root compared to control.

The level of aluminiua in the plant tops and roots further decreased and was minkams at hazvest. It may be noted that the content of aluminium in tops was highest in T_{1} (850 ppm) and lowest in T_{3} (490 pow). sienificant reduction in aluminium content was noticod in T_{3} alone compared to the control $\left(\mathrm{F}_{1}\right)$.

A orrastic and significant reduction in the build up of aluminium in the roots was observed at harvest. A low level of exchangeable aluminium in the soil has significantly reduced the accumulation of aluminiue in root. Values for aluminiug content in root of this stage ranged from 1190 in T_{2} to 2695 ppa in T_{1}.

Zinc
Generally the content of zinc in coupea tops
showed a reduction due to the lowering of exchangeable aluainiun level in soil. The content ranged from 59 In T_{2} to 71 ppm in T_{1} at the maximun slowering stage, from 52 in T_{2} to 71 ppa in T_{1} at the aid pod filing stage and at harvest T_{2} recorded a significantly lowey value of 43 compared to 74 ppa in control.

In the cabe of coupan roots, the zevel of sinc ranged Irom 50 in T_{1} to 92 ppa in T_{3} at the maxiaum flowering stage and from 60 in S_{1} to 95 ppon in T_{3} at the aid pod filling stage. , But the concent of zinc In the differeat treatents did not show any appres ciable difference. The zanc content increased towards hamest and the maximum mount of 216 ppm was observed In I_{3}, and the lowest content of 93 ppa in F_{1}.

Copper

The content of copper an cowpea tops and roots did not show any arked difference between treatments and between stages. The value in compaa topa varied botween 12 and 16 ppm in the different treatments at different stages. In cowpwa roots also it was more or leas uniform (7 to 15 ppe) at the three stages in
ell the treatments.
a) Grain and hurla

The data on the nutrient coaposition of grain and hugk are given in fable 7, Fig. 5 and analysis of variance in Appendix II(c).

Nitrogen
The nitrogen content of the grain was not signiem ficantly affected by the different treatments (eventhough It showed variation in the different tremtments). It ranged from the lowest value of 3.22 in T_{1} to 3.77 perm cent in T_{3}. Eut the nitrogen content of the husk shored a difference in the different treatsents. The level of nitrogen in the husk ranged froa the lowest value of $0.54 \operatorname{In} \mathrm{I}_{1}$ to the highest value of 1.33 percent in I_{3} 。 Treatment T_{3} recorded a significantly higher content of nitrogen compared to T_{1}, T_{2} and T_{4} *

Fhosphorus
The phosphorus content of the grain in the different treatments ranged from $0.53 \mathrm{in} T_{1}$ to 0.63 germ cent in T_{3} and was significantly bigher than that in
T_{1}, T_{2} and $T_{4^{\circ}}$
The content of phosphorus in the husk was coniparatively lower and it ranged from 0.22 percent in T_{1} to 0.40 percent in T_{3} which was significantly higher than in other treatientw.

Potassium

The content of potassium in both grain and husik did not show any marked variation due to the different treataents. The value of potassiun in the grain ranged from 1.39 in x_{4} to 1.71 percent in 3_{3}.

In the husk, the lowest value of potassium was noted for T_{2} (1.54 porcent) and the highest for T_{1} and T_{4} (1.79 percent).

Calctur

A clear and significant difference in the calcium content of grain was noted in all the treatments. The amount of calcium present in the grain in the differently treated pots ranged from 0.14 percent in T_{1} and T_{4} to 0.30 percent in T_{3} which recorded a significantly

Fig.5. Influence of different levels of exchangeable aluminium ON NUTRIENT GONTENT OF COWPEA GRAINS.

higher value when epapared to T_{1} and T_{4}. The lavel of calcium in the husk renged from 0.04 percent in T_{1}, T_{3} and T_{4} to 0.05 percent in T_{2} which was significantly higher than other treatments.

Magnesium
A siguificantly higher anount of magnesiva vas prasent in the grain in T_{3}, conpared to T_{1} and T_{4} and the values ranged eron 0.11 percent in T_{1} to 0.15 pere cent in T_{3}.

The ragneaiun content of husk was higheat in T_{3} (0.27 percent) end 10west in T_{2} (0.20 percent). A aignificantly higher content of negnesiva was present in the treatmont T_{3} coopared to T_{1} and T_{2}

Iron
The level of iron in cowpea grains ranged from 70 ppain in T_{3} to 120 ppm in T_{4}. It wes aignificantly lower in the treatment T_{3} compared to T_{4}.

The content of iron in the husk ranged from 132 ppan in T_{3} to 299 ppa in T_{4}. Hare also the iron
content was significantly lower in T_{3} compared to T_{4}. Aluminilu

The content of aluninilu in grain in the disferont treatments showed a reduction with a decrease in exchongetole aluniniue content in the soil. The level of aluainfun in the grain recorded the lowest value of 113 ppri in T_{3} and the highest value of 189 ppm in T_{I}. Significant reduction in the aluninium content was observed in T_{3} compared to T_{1} and T_{4} *

The aluainius content in the husk from the different tremtments also showed a sinilar trend. It was highest in the control (355 ppa) and in the otiner treatments it ranged fros 238 ppe in Tz to 318 pprin $T_{4^{*}} \quad T_{3}$ was found to be significantly effective in reducing the aluainiun content of the husk compared to T_{1} and T_{4}.

Zinc
The content of zinc in the grain did not exhibit any signiflcant variation between the differant treatments. The values ranged from 55 ppa in T_{4} to 68 gpon in T_{3}

In the husk also, the zinc conterst did not shou any significant difference between treationts, while it showed an incrasing trend with a decraace in exchangeable aluniniun brought about by higher levels of 1100. The levels of zinc ranged from 34 ppm in T_{1} to 44 ppm in T_{2}

Copper
The copper content in the grain reaged from 5 ppa in T_{1} to 16 ppa in T_{2}. The content of coppor in the musk in the different treatments did not ohow any significant variation. Howevery it showed an increasing trend with an increase in levols of lite and a consequent decrease in exchangeable aluainium. The values ranged irom 10 ppm in control $\left(\mathrm{T}_{1}\right)$ to 12 ppn in T_{2} and T_{3}.

Experinent II.
Pot culture studies with iodder asize.
Influence of difforent levels of lime on soli propertioc
Soll reaction

The mean values of the pH of the soils at
different atages of samping in the different treatsents are given in Table a and anglysis of variance in Appendix III(B).

After the application of ferbilizers a rise in pH was noticed and the ph ranged from $4.5 \mathrm{in} \mathrm{T}_{1}$ to 6.3 in T_{2}. phi in T_{2} gas found to be bignificantly higher than the pH in $\mathrm{T}_{1}, \mathrm{~T}_{3}$ and T_{4} *

At thirty days after planting the pH of the soil Increased further and the values ranged iroa 5.1 in T_{1} to 6.4 in T_{2}. The pif in T_{2} was significantiy higher than T_{1}, T_{3} and T_{4} *

At sixty five days after sowing, not much change in pH was noticed conparad to previous stago. The pH at this stage ranged from 5.2 in T_{1} to 6.4 in E_{2}

At fodder harvest, after ninety days of sowing, the values for pH showed a decreasing trend in all tha treatwents compared to the other two stages. The pil at this stage ranged fram 5.0 in T_{1} to 6.3 in T_{2} and it was significantly higher compared to the other treatnents T_{1}, T_{3} and T_{4}.

Table 8 Influence of different levels of Liste on 3021 properties (crop-fodder maize)

BoIl reaction (pH)

Treatment	s_{00}	S_{0}	s_{1}	s_{2}	s_{3}
T_{1}	4.1	4.5	5.1	5.2	5.0
T_{2}	6.2	6.3	6.4	6.4	6.3
T_{3}	4.7	5.3	5.4	5.5	5.2
T_{4}	4.4	4.9	5.2	5.3	4.9
CD	0.11	0.22	0.26	0.25	0.54

Tatal aciaity (mo/100gesil)

Treatment	S_{00}	S_{0}	S_{1}	S_{2}	S_{3}
T_{1}	2.94	2.29	1.47	0.57	0.93
T_{2}	0.49	0.41	0.34	0.23	0.20
T_{3}	1.73	1.16	0.49	0.49	0.57
T_{4}	2.45	1.00	0.98	0.49	0.92
CD_{2}	0.21	0.45	0.05	0.14	0.33

Table a (contd.)
Exchangeable aluainius (ae/100g soil)

Trestments	s_{0}	s_{0}	s_{1}	s_{2}	s_{3}
T_{1}	2.45	1.65	0.74	0.25	0.50
T_{2}	0.03	0.04	0.03	0.02	3.02
T_{3}	1.26	0.50	0.25	0.19	0.25
T_{4}	1.98	0.99	0.49	0.25	0.47
CD	0.27	0.27	0.01	0.01	0.15

Exchangeable hydrogon (me/100 a soil)

Treataents	S_{00}	S_{0}	S_{1}	S_{2}	s_{3}
T_{1}	0.49	0.64	0.73	0.32	0.49
T_{2}	0.40	0.45	0.31	0.21	0.19
T_{3}	0.47	0.65	0.24	0.29	0.33
T_{4}	0.47	0.81	0.49	0.25	0.49
$C D$	$N S$	W	0.05	45	0.29

Table 8 (contd.)
ExChangeable potassius (me/100 g soil)

Treataent:	S_{00}	s_{0}	s_{1}	s_{2}	s_{3}
T_{1}	0.48	0.59	0.44	0.26	0.23
T_{2}	0.49	0.58	0.51	0.27	0.25
$\mathrm{~T}_{3}$	0.44	0.61	0.45	0.27	0.30
T_{4}	0.45	0.67	0.43	0.27	0.27
CD	NS	NS	NS	NS	NS

Exchangeabla calciua (re/105 is soil)

Treateents	S_{00}	S_{0}	S_{1}	S_{2}	S_{3}
T_{1}	0.35	0.42	1.32	1.37	0.82
T_{2}	11.92	8.74	6.82	5.49	6.61
T_{3}	0.83	0.93	1.66	1.45	1.37
$\mathrm{~T}_{4}$	0.53	0.55	1.40	1.62	1.03
CD	0.24	0.78	0.62	0.56	0.71

Table 8 (contd.)
ExChangeable magnesiua (me/100 gespl)

Treataent	S_{00}	S_{0}	S_{1}	S_{2}	S_{5}
T_{1}	1.02	0.93	0.67	0.72	0.55
T_{2}	1.16	0.95	0.74	0.67	0.65
T_{3}	1.10	0.97	0.75	0.62	0.72
T_{4}	1.07	0.90	0.75	0.75	0.71
CD	$N S$	$N S$	N	N	0.11

Exchangeable Iron (ppa)		
Treatannts	Eafore cultivation	After cultivation
T_{1}	13	4
T_{2}	6	0
T_{3}	10	2
T_{4}	11	3
$C D$	1	1

Total acidity

The totel acidity as influenced by the differont levels of lime is given in fable 8 and anmlysis of variance in Appendix III(b).

A reduction in total acidity was observed in all the treatments due to the aplicstion of fertilizers. The values ranged 1 rom 0.41 in T_{2} to 2.29 me/100 g of the soil in T_{1}. Total acidity in T_{2} was significantiy lower then that in $\mathrm{T}_{3}, \mathrm{~T}_{4}$ and T_{1}.

At thirty days after sowing, the total acidity was lowered and recorded a minimum value of 0.34 in m_{2} and a maximua of 1.47 me/ 100 g in T_{1}. Total acidity was reduced to a significantly lower value in the treatment F_{2}. Sixty five days after sowing, the values. for the total acidity showed decreasing trend and st ranged $f^{r o m} 0.23$ in T_{2} to 0.57 we in T_{1}. Total acidity In the soll was reduced to a significantly lower level in T_{2} compared to T_{1}, T_{3} and T_{4}.

At fodder harvest, the values for total acidity
in the soil showed an increasing trend againgt the
decreasing trend sbserved in the previvis stages. The total acidity varied between 0.20 in T_{2} and 0.98 me/ 100 g of the soil in T_{1}. Total acidity in T_{2} was significantly lower compared to T_{3}, T_{4} and T_{1}.

Exchangeable aluminium

The influence of different levels of lime on the exchangeable aluainius content of the soil is given In Table a and analysis of varimes in Appendix III (0).

The exchangeable aluminium content was maximian in $T_{1}(2.45 \mathrm{me} / 100 \mathrm{~g})$ and was minimum in T_{2} (0.03 mo). Percentage aluminium saturation at this otage ranged fron 1.64 in T_{2} to the highest value of 46.28 in T_{1}. Exchangeabla aluainium content and the parcentage aluminium saturation values were lowest in T_{2} compared to T_{3}, T_{4} and T_{1}. A reduction in the exchangeable eluminiun content was observed after the epplication of fertilizers and the values ranged from 0.04 in 2 to 1.65 , we in T_{1}. Percentage aluminium saturation at this stage was negligible in T_{2} while it was 31.13 in T_{1}.

A focreasing trend was observed for both exchangeable aluainium, and percentage aluainium saturation at thirty and sixty five days after sowing.

Exchangeable aluminium content and percentege aluminium saturation showed a slight increase towards the harvest atage. The values for exchangeable aluminiun ranged froa 0.02 in T_{2} to 0.50 mo in T_{1}. The exchangeable aluainium content and percentage aluainlua saturation values in T_{2} was nuch lower compared to T_{3}, T_{4} and T_{1}.

Exchangeabla hydrogen

The mean values of the exchengenble hydrogen content of the goil at different liae level is presented in Table 8 and analysis of variance in Appendix III (d).

The variation in exchangable hydrogen in the different treataents was not found to be significant although it varied from 0.40 in T_{2} to $0.49 \mathrm{me} / 100 \mathrm{~g}$ $\ln \mathrm{T}_{1}$

After the application of fertilizers the valuea
for exchangeable hydrogen showed a slight increase and it. varied irom $0.4 j$ in T_{2} to 0.81 me in P_{4} 。

At thlrty days after sowing the values for exchangeable hydrogen still decreased in the 11 me treated soils and the values ranged from 0.24 in T_{3} to 0.73 we/100 in T_{1}. Exchangeable hydrogen coatent was significantly 1 wer in T_{3} than in T_{1}, T_{2} and $T_{4} *$

Uith the progressive increase in the growth of asize (after 65 days) the exchangeable hydrogen decreased to a lower value in the limed pots than in unlimed pots. The values ranged froa 0,21 in T_{2} to 0.32 me in T_{1}. However, this reduction was not significant.

At fodder harvest, exchangeable hydrogen values ranged Erom 0.18 in T_{2} to 0.49 ae/ 100 is in X_{1} and the treatoent T_{2} recorded a significantly iower content of exchangeable hydrogen than the treatments X_{z}, T_{4} ond T_{1} 。

Exchangeable potassium
The mean values for the exchangeable potassium
content in soil are given in Table 3 and analysis of varlance in Appendix III(e). Different levels of lime did not produce any significant chenge in the exchangeable potassium content of the soil. It ranged from 0.44 in T_{3} to $0.49 \mathrm{me} / 100 \mathrm{~J}$ of the soil in T_{2}. AL ghcs amount of exchangeable potassium was noticed in all treatments after the application of Rertilizers, whore the values varied from 0.58 in T_{2} to $0.67 \mathrm{me} / 100 \mathrm{E}$ in $\mathrm{T}_{4^{\circ}}$.

At thirty days after sowing, a reduction in the exchangeable potessium conteat of solls was observed.以ut this reduction was not significant in any of the treatments. The content of exchangeable potassiua in the soil at this stage ranged from 0.43 in T_{4} to $0.51 \mathrm{me} / 100 \mathrm{~g} \ln \mathrm{I}_{2}$ 。

At 65 days after sowing the exchangeable potassium content still exhibited a decreasing trend and it ranged from 0.26 in if to $0.27 \mathrm{me} / 100 \mathrm{~g}$ in T_{3}, T_{2} and T_{4}.

At fodder harvest, the content of exchangeable potassium in the soll recorded values varied from 0.23
in I_{1} to 0.30 min In^{n} 。

Exchangeable calcium

The mean values for exchangeable calciun in soils at different lise levels are given in Table 9 and the analysis of variance in Appendix III(f).

Application of lime resulted in a significant increase in the content of exchangeable calciun of the soil. It recorded a maximum value of 11.92 in r_{2} and a dinimum of 0.35 me in T_{1}. A significantly higher anount of exchangeable calcium was present in T_{2} than in $\mathrm{T}_{3}, \mathrm{~T}_{4}$ and T_{1}.

Exchangeable calciun recorded a slight increage after the application of fertilizers in all the treatments except in T_{2} where it was reduced to $8.74 \mathrm{me} / 103 \mathrm{~g}$ frow the original value of 11.92.

At thirty days after sowing, exchangeable calcium content of all the so1ls showed a further increase except in the treatment T_{2} where it was reduced to 6.82 we. In the other treatments, it was
much lesser and ranged from 1.32 in T_{1} to 1.66 in $\mathrm{T}_{3}{ }^{\circ}$ At 65 days after sowing, the level of exchangeable calciun was significantly higher in I_{2}. It showed a slight decrease in treatments T_{3} and T_{2} " The valuea ranged iron 1.37 in T_{1} to 5.49 we $\ln T_{2}$ At fodder harvest stage, the exchengeable calcium content of the soil showed reduction in T_{1}, T_{3} and T_{4} while a slight increase fas observed in the cage of $\mathbf{I n}_{2}$. The values for exchangeable calcium at this stage varied $\operatorname{erom} 0.82 \ln T_{1}$ to $6.61 \mathrm{me} / 100 \mathrm{~g}$ of soil in T_{2} 。

Exchangeable magnesium

The mean values for the content of exchangeable Hagnesini in the soil are presented in Table 3 and the analysis of variance in Appendix III (g).

Exchangeable magnesium content of the soil ghowed an increase with increase in levels of 1 ime and the values renged from 1.02 in T_{1} to $1.16 \mathrm{me} / 100 \mathrm{~g}$ of soll in T_{2}. The exchangeable magnesium of the different treatments was not significmntly different.

It showed a decrease alter the application of
fertilizers as well as with the progress in the growing perlod of fodder maize. The values ranged from 0.67 in T_{1} to $0.75 \mathrm{me} / 100 \mathrm{~g}$ in T_{3} et 30 days after sowing, from $0.62 \mathrm{in} \mathrm{T}_{3}$ to $0.75 \mathrm{in}_{4}$ at 65 days after 30 aing and from 0.55 in T_{1} to 0.72 me/ 100 g in T_{3} at tho time of harvest.

Exchangeable 1ron
The aean values of exchangeable iron content in the soil before and after cultivation of fodder naize are given in Table O and the malysis of variance in Appendix III h).

It aay be seen that considerable reduction in exchangeable iron occurred due to the application of different levels of liee. It was aignificantly diffew rent among the different treataents and T_{2} recorded the minimue of 6 ppa iron.

After cultivation of fodder maize, the lavel of exchangeable iron decreased considerably and it was corpletely absent in T_{2}.

Elometric observations

The wean values of plant characters ac influsnced by different levels of exchangeable aluainium in the soil are presented in Table 9 and the analysis of varlance in Appendix IV.

Height of the plant

Influence of different levels of exchangemble aluainiug on plant height is shown in Pig. 6.

Different levels of lime did not show any significant offect in increasing the beight of plont over the control. However, the height of fodder maize plants at thirty days after sowing ranged from 36.0 in T_{2} to 57.7 ca in T_{4}.

Helght of the plants showed an increasing trend at the 65th day after sowing and the average height at this stage varied from 83.7 in T_{2} to 94.7 cm in T_{3}. The aifference between various treatments was ${ }_{3}^{\text {not }} \mathbf{s i g n i t i c a n t .}$

Plant height was maximu at 90 th day after sowing and it ranged fron $104.3 \mathrm{cn} \mathrm{in} \mathrm{T}_{2}$ to 118.0 em

Table 9 Influence of different levels of liwe on plant characters of fodder

Treatanent	Hielght of the plant (ca)			Fieftht of tops (g)	noot length (ct)	Hoot weight (g)	Total dey welght (g)
	30 DAS	65 DAS	90 DAS				
T_{1}	45.7	83.7	105.7	40.40	26.5	32.00	73.20
T_{2}	36.0	85.0	104.3	94.63	47.7	58.03	152.47
T_{3}	56.7	91.7	118.0	64.93	41.4	51.73	116.67
T_{4}	57.7	90.7	116.7	64.77	31.8	37.47	102.13
Cu	NS	HS	HS	29.59	7.7	17.17	30.27

Fig. 6. Influence of different levels of exchangeable aluminium on foddermaize at harvest

Fig. 7. Influence of different levels of. Exchangeable Aluminium on the fodder yield of maize.

Abstract

In inz. But none of the treatments could produce a significant increase in height of the plants over the control. Plants in F_{1} and T_{4} where a higher level of exchangeable aluainiun was present showed interveinal chlorosis and at later stages dark bran streake were found along the margins of the outer legf.

\section*{Root length}

Influence of different levels of exchangeabie aluminiun on root length is ghown in Eig. 6 and alate 2.
fit the time of fodder harvest a significant Incroase in the length of root was observed in the treatsent $T_{2}(47.7 \mathrm{~cm})$ and $T_{3}(41.4 \mathrm{~cm})$ compared to the control (26.5 cn). The length of root recorded in T_{4} was 31.8 cm which was on par with I_{1}.

Yeight of tops and roots

Influence of different levels of exchangeable aluminiua on the weight of tops and roots are shown in Fig. 7.

Decreased exchangeable aluminium content in tho

Plate. 2. Influence of different levels of exchangeable
soil has increased the welght of tops in fodier mat at harvest stage. The values ranged from 40.40 in I_{1} to 94.63 g in T_{2}. A aignificantly higher top weight was observed in T_{2} comparad to T_{1}, T_{3} and T_{4}.

A significantly higher root waight was recorded with $T_{2}(58.03 \mathrm{~g})$ and $\mathrm{T}_{3}(51.73 \mathrm{~g})$ over the control (32.80 g). The treatwent T_{4} produced poots welighing 37.47 g per plant which was on par vith Tq.

Total dry weight production
Influence of different levels of exchangeable aluainium on total fosder yield of maize is shown in Fig.7.

Significant increase in the total dry matter production at harvest on goth day after aswing was observed with a decrease in exchangeable aluminium content of soil due to liming. The total dry axter ranged from 73.20 g in control to 152.47 g in T_{2}, where T_{2} recorded a significantly higher value compared to T_{1}, T_{3} and T_{4}.

Nutrient composition
The data on the nutrient composition of fodfor maize is given in Table 10 and Fig. 8 and analysis $0 \sim$ variance in Appendix V.

Nitrogen

Mo significant effect on the nitrogen content in the maize top was observed between treatments eventhough the values varied from 0.69 in T_{4} to 0.02 percent in T_{3}. A similar trend was noticed in roots also where the values varied 1 from 0.77 in T_{1} to 0.00 $\ln \mathrm{T}_{3}$

Phosphorus

No significant difference between treatments was observed for the phosphorua content in the tops and roots of fodder waize. Treatments T_{2} and T_{3} recorded the highest value (0.20 percent) and T_{1} the lowest (0.18 parcent). In roots the values varied from 0.19 in T_{1}, T_{2} and T_{4} to 0.20 percent in T_{3}. Potessiun

The content of potassium in fodder maize top

Table 10 Influence of different levels of lime on nutrient composition of fodder maize

Treatments	N		'P		\dot{K}		Ca		Mg		$\overline{\mathrm{Fe}}$		Ai		Zn		Cu	
	Tops \%	Roots \%	Tops \%	$\begin{aligned} & \text { Roots } \\ & \% \end{aligned}$	Tops \%	Roots \%	Tops \%	Roots (ppm)	Tops \%	Roots. (ppa)	Tops (ppm)	Roots (ppm)	Tops (ppm)	Raots (ppm)	Tops (ppm)	Roots (ppm)	Tops (ppm)	Roots (ppm)
T_{1}	0.76	0.77	0.18	0.19	1.07	0.45	0.16	9	0.12	200	2360	2280	850	3610	26	43	6	12
T_{2}	0.77	0.78	0.20	0.19	1.49	0.85	0.35	46	0.13	484	1170	2940	690	2920	16	42	4	13
T_{3}.	0.82	0.88	0.20	0.20	1.38	0.67	0.29	28	0.13	216	740	3480	600	3060	36	43	6	14
T_{4}	0.69	0.82	0.19	0.19	1.28	0.46	0.21	19	0.12	202	760	2760	690	3160	28	53	7	12
CD	NS	NS	NS	NS	0.23	0.25	0.07	6	NS	96	260	NS	150	47	13	NS	2	NS

Fig.8. Influence of different levels of exchangeable alumintum on nutrient content of foderer maize.
(1.001

T_{4}

115

ranged from 1.07 percent in T_{1} to 1.49 percent in T_{2} A significantiy higher anount of potessium was found in T_{2} then in T_{3}. In the roots it ohoned an increasing trend with a decreage in the content of exchangeable aluminiua in the soil, and the values renged from 0.45 in T_{1} to 0.85 percent in T_{2}.

Calcium

The level of calcium in the tops and rosts increased with increasing lime levels. The values ranged from 0.16 in F_{1} to 0.35 percent in T_{2} in maize tops. T2 recorded a significantly higher calcium content compared to T_{4} and T_{1}. In roots, the value of calciun content varied from 9 ppia in T_{1} to 46 ppa in T_{2} Caloium content in T_{2} was found to be significantly higher than T_{1}, T_{3} and $T_{4}{ }^{\circ}$

Magnesium

The content of magnesium in the moize tops did not show any significant variation due to different treatmente, and the values ranged from 0.12 in T_{1} and T_{4} to 0.13 percent in T_{3} and T_{2}. However treatment T_{2} has
significantiy increased the aggnesiun content in fodder daize roots congared to T_{1}, T_{4} and T_{3}. Magnesium content in roots ranged from 200 ppa in T_{1} to 484 ppo In T_{2}

Iron
The level of iron in the fodder maize top was significantly reduced by the treatment T_{3} when conpered to T_{1} and T_{2} and the values ranged iroa 740 ppa in T_{3} to 2360 ppoin P_{1}.

The content of iron in fodder maize roots recorded the lowest value of 2280 ppa in r_{1} and the highest valua of 3480 ppi $\ln T_{3}$. Nore of iron accutalated in the maize roots in T_{3} than in T_{1}, T_{2} and T_{4}. But the dixfeo rence was not significant.

Aluminium

The content of mluminum in the fodder maize tops reduced significantly by the reduction of exchangeabie aluainium content in the $s o i l$ brought about by iinaing. The content of aluminiun in the top ranged from 600 ppa in T_{3} to 850 ppain T_{1}. T_{3} was found to be signiffcantly
effective in reducing the aluainiun content of the tops compared to T_{1}.

Aluainiun content of the roots was also reduced significantly by the reduction in exchangeable aluminiun content of soil. Reduction in the concentration of aluminiun in root was linear with the reduction of exchangeable aluminiua in soil and it ranged from 2920 in T_{2} to 3610 ppai in T_{1}.
zinc

A significantly higher amount of zinc was present in the tops in T_{3} than in T_{2}. The values ranged from 16 ppen in T_{2} to 36 ppa in T_{3}. However, no significant difference was obsorved in the content of zinc in roots, where the values ranged from 42 and in T_{2} to 53 ppain $\mathrm{T}_{4^{\circ}}$

Copper

The content of copper in the tops ranged iron 4 ppa in T_{2} to 7 ppa in T_{4}, and in the roots it varjed Irom 12 ppa in T_{1} to 14 ppm in T_{3}. In maize tops. treatment T_{2} has significantly reduced the copper content compared to $\mathrm{T}_{1}, \mathrm{~T}_{3}$ and I_{4} 。

Correlation Studies

I. Gourea

A. Soil properties and nutriont uptake

1. PAS and nutrient uptake.

Results of this correlation is given in Appondis VI(a).

The percentage aluainiun saturation of the 5011 at the maximum flowering stage and at the mid pod aialing stage were found to have a negative effect on N, P, Γ, Ca, Mg and Fe uptake. However, tha correlation was significant only in the case of calciua uptake $r=0.509 \times x$ and $r=0.919^{x \times}$ respectively at the two stages). Λ significent positive correlation was obtained betwoen percentage aluminium saturation and aluminium content In the root at naxisula flowering ($r=0.673^{x}$) and at mad pod filling ($r=0.665^{x}$) stage respectively. But the correlation between percentage aluminium saturation and eluasnium cantent of top and aluninium uptake were positive but non significent.

At the harvest stage a significant negative
correlation existed between percentage aluainiun saturation and the uptake of phosphorus ($r=0.521^{\mathrm{X}}$) and calciun uptake ($r=0.657^{\mathrm{KX}}$), N, K , N3 and Fe uptoke recorded a negative correlation with percentage alumim nium saturation but they were not significant. Aluainiua content of the root was positively and algnificantly correlatad with percentage aluainiun saturation ($r=0.739^{\mathrm{xX}}$). and correlations between percentage aluminiu saturation and aluminiut uptake and aluminium oontent of top wase found to be positive.
2. Exchangeable aluminium and nutrient uptake

The results oi correlation anklysis is given in Appendix VI(b).

The exchangeable aluninium content of the soil at the paximun elowering stage and at the oid pod filling stage was found to be negatively correlated with the uptake of $N, P, K, C a, M g$ and Fe but the correlation was oignificant only in the case of calciua uptake in both the stages ($r=0.909^{x \pi}, r=0.912^{x x}$ respectivoly). A positive significant correlation existed between

120

exchangeable aluminium and aluminium content in the root ($r=0.679^{\mathrm{x}}$) at maximum flowering and wid poid filling stages ($\mathrm{r}=0.661^{\mathrm{x}}$). Though a positive come lations existed between exchangeabie aluminiun and aluminium uptake by plants, it was not sigaiflcant.

Rt the harvent stage, the exchangeable alualniua content showed a significant and negative correlation with the uptake of phosphorus ($\mathrm{r}=0.533^{3}$) and calcium ($r=-0.665^{\mathrm{xx}}$). A negative but non signizicant cosrelation existed between $\mathrm{H}, \mathrm{K}, \mathrm{Mg}$ and Fe uptake. A positive and signiricant relation was observed betwean exchangeable aluminiun content of the soil and the aluainium content of the root $\left(r=0.744^{\mathrm{xx}}\right.$). Correletion between exchangeable aluminium and aluminium uptake and alusinium content of the tope also followed the sead pattern, as above.

B. Soll properties and plant characters

1. Percentage aluminium aturation and plant characters

Results of the correlation analyois are given
In Appendix VII(a).

A significant and negative correlation existed between percentage of aluminium seturation and nodulo count ($r=-0.615^{x}$) as well as poot length ($r=-0.7 \mathrm{SiO}^{\text {tK }}$) at maximum flowering stage. Percentace aluminium saturation though had a negative effect on total dry wation production in cowpea but it was not signilicant.

At the old pod filling stage also, a strong negative correlation was noticed between percentage aluminium saturation and the nodule count ($r=-0.697^{7}$). Percantage aluminiua saturation was negatively corrolated with the root length and total dry matter. However it is not significant.

At the horvest stage, husk, grain and total yieid were found to have a significant and negative correlation with the percentage aluminius saturation $\left(r=0.491^{x}, r=-0.508^{x}, r=-0.51 \varepsilon^{x}\right.$ respectively). A negative but non significant correlation was observed between percentage aluminium saturation and nodule count, root length and dry welght at this stage. 2. Exchangeable aluainium and plant characters

Appendix VII(b).

Exchangenble aluainiua content of the 0011 exhibited a significant negative correlation with the nodule count ($r=0.623^{\mathrm{x}}$) and the root length ($r=0.759^{x X}$) at the inximun flowering atage. n negae tive correlation was also observed between exchangeable aluminiun and dry woight which was not aignificant.

At the aid pod filling stage also exchangeable alusinium was negatively correlated with nodule count. root length and total dry natter. But the relationship was aignificant only in the case of nodule count $\left(r=0.688^{x}\right.$).

At the harvest stage, husit, grain and total yield were significantly and negatively correlated to the exchangeable aluminium content of the soil (r $=0.501^{x}$. $r=0.520^{x}, r=0.589^{\pi}$). Exchangeable aluminiuta in the soll had a negative effect on nodule count, root length and total dry matter but none of then vere gignificant.

C. Aluminiur content of tops

1. Aluainius content of tops and nutrient composition of tops

Results of the correlation study at the three stages of growth of cowpea are given in Appondix VIII(a).

The aluminium content of the tops at the maximum flowering stage exhibited a negative influence on $N, P_{n} K$, Ca, Mg and Cu and a positive relation with the contents of Fe and Zn in the plant top.

At the mid pod eilling stage, the aluainiua content of the top was found to be negatively correlated with $\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Ca}, \mathrm{Hg}$ and $\mathrm{Cu} . \mathrm{Fe}$ and Zn content at this stage was positively correlated to the aluainiua content of the tops. But none of thea were significant.

At harvest also, the same trend was found and N, $\mathrm{P}, \mathrm{K}, \mathrm{Ca}$ and Mg content of tops ware negatively influenced by the aluainium content. Aluainius content was positively correlated ${ }_{A}^{\text {to }} \mathrm{Fe}, \mathrm{Zn}$ and Cu content of the plent, but the correlation was significant only in the case of $\mathrm{Zn}\left(\mathrm{r}={ }^{+} 0.584^{x}\right.$).
2. Aluainium content of tops and plant characters

Resulta of the correlation study at the three stages of growth of cowpea are given in Appendix VIII(b).

The aluminiua content of the tops at all the three stages exibibited a negative influence on charactors like nodule count, root langth and total dry weight. A significant negative correlation wes evident betwoen aluminium content of the tops at the naximun flowering 3tage and the root length ($x=0.727^{5 \times}$). A signtificant negative correlation was also exhibited between aluainium content of the tops at harvest and grain yield ($r^{0.597^{5}}$).
3. Aluninium content of tops and nutrient content of roots

Details of the correlation study are given in Appendix VIII(c).

A significant positive correlation existed botween the content of aluminiun in the tops and roots at the qaximun flowering stage $\left(x={ }^{+} 0.638^{x}\right)$. However, the correlations obtained between aluminium and N, P, K, Ca, Hg, Fe and Cu in the roots were non-significant and negative. At this gtage, a positive relation was
obtained betwean contents of alusinius in the tops and zinc content of roots.

At the aid pod filling stage a slgnificant negative corcelation is seen between the level of aluminiun in tops and phosphorus content in the root ($x=-0.700^{30}$). At this stage aluainiua content in tha tops was negatively correlated to $\mathrm{N}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Zn}$ and $C u$ and positively correlated to K.

At the harvest stage, aluminium content in the tops showed a algnificant negative corralation with the content of calciun ($r=-0.769^{\mathrm{Xx}}$) and eagnesium (r - - 0.552^{x}) in the roots. However, the correlations between the aluminiun in tops and N, P, fe and in in the roots were negative and non-significant. Aluminilum content in the tops showed correlation with potassium and aluminium.
4. Aluminium content of tops and nutrient uptake

Results of the correlation analysis are given in Appendix VIII(d).

At all the three stages, aluminiun content in the
tops exhibited a negative correlation with the uptake of $\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg} \& \mathrm{Fe}$. The correlation between aluminium content of the tops and the uptake of nitrogen and potassium at the naximur flowering stage and that of phosphorus at harvest alone were signipicant.

D. Aluminium content of roots

1. Aluminiua content of roots and nutrient composition of tops

Results of the corrolation analysis are given in Appendix IX(a).

Aluminiun content of the roots at the paximum flowering stage had a negative effect on the content of $\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Ca}$ \& Mg . Aluminium content of the roots at this stage also exhibited a significant positive correlation with the $F e\left(r={ }^{+} 0.741^{x}\right)$ and Al content ($\mathrm{r}={ }^{+} 0.63 \mathrm{~B}^{\mathrm{x}}$) of the tops. The correlation between Al content of roots with Zn and cu was found to be positive and non-3ignificant.

There was a significant and negative correlation between aluniniua content in roots and aitrogen
($r=-0.634^{x}$) and calcium content ($r=0.645^{x}$) in tops at the ald pod filling stage. The negative correlation between aluminiua content of roots and phosphorus content in tops as well as the positive correlation between aluainixio content of roots and $\mathrm{K}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Al}, \mathrm{Zn}$ and Gu content of tops were not significant.

Aluminium content of roots at harvest showed a strongly adverse effect on phosphorus ($r=-0.545^{x}$) and calcius contents ($x=0.745^{x x}$) of tops and to a lesser iextent on the content of nitrogen and magnesiua. Al and Zn content in tops exhibited a highiy significant positive relationship with al content in roots ($r={ }^{+} 0.736^{\mathrm{xX}}$ and $r=0.594^{\mathrm{X}}$ respectively) .
2. Alusinium content of roots and plant characters

Results of this correlation analysis are given in Appendix IX(b).

From the results of correlation analysis it may be seen that the aluainium content of roots at the naximum flowering stage exhibited a highly significant
negative influence on nodule count ($0.0 .597^{\mathrm{x}}$) and root length ($r=0.710^{\mathrm{Kx}}$) while it was non significantly and negatively correlated to the plant height and total dry weight. The correlation between the level of aluminium in root and various growth parameters were negative both at mid pod filling atage and at harvest. Nodule count ($r=0.822^{\mathrm{xx}}$) and total dry weight ($r=0.624^{\mathrm{x}}$) at the mid pod filling stage were found to be significantly and negatively correlated to aluminiun content in roots. similarly aluainium content in roots at harvest exhibited significant negative correlations with nodule count ($r={ }^{-} 0.514^{x}$), husk ($r=-0.607^{x}$), grain ($r=-0.560^{3}$) and total pod yield ($r=0.601^{x}$) and root length ($r=0.529^{x}$).
3. Aluainium and nutrient content of roots

Resulta of the correlation study are given in Appendix IX(c).

Content of aluminium in the plant root exhibited a negative correlation with most of the sther nutricnts. Among the negative correlations, the ralation beiween
aluainium and iron contente in roots ($r=0.596^{\mathrm{K}}$) at the maximus flowering stage, and calcium and wagneeiut contents in roots at aid pod filling ($r=0.645^{2}$. $r=0.670^{x}$) and harvest stage ($r=0.631^{x x}, r=0.737^{x x}$) were significant.
4. Aluainius content of roots and nutilent uptake

Results of the correlation analysis are given In Appendix $I X(d)$.

Results of correlation analysis have shomn that the aluminiun content in rootg at maxiaun flowering
 uptaite. A positive correlation was observed between aluminium conient in root and iron and aluniniua uptake.

At the mid pod silling stage, atrong and significant negative correlation was evident batwenz aluainium content in roots and uptake of nitrogen $\left(r=-0.625^{\%}\right)$, phosphorus $\left(r=0.717^{\pi x}\right)$, calciun ($r=0.747^{x x}$) and magnesiun ($r=0 . G_{4} L_{i}^{x}$). AIunintion content in roots at harvest showed a signiticant negative correletion with phosphorus ($r=0.596^{\mathrm{K}}$) and
calciun uptake ($x=-0.499^{\mathrm{X}}$) , A highly significant. and positiva correlation was also observed between aluainium content in root and aluainiua uptake ($r=0.636^{0 \times x}$).

II. Fodder Malze

A. Soili pronerties and nutrient uptake

1. Percentage aluainium saturation and nutrient ustake

The results of the study are presented in Appendix $X(a)$.

The percentage aluminiua saturation of the $30: 1$ at harvest is found to have a significant negative correlation with the uptake $O \mathbb{N}, \mathrm{P}, \mathrm{F}, \mathrm{Ca}, \mathrm{N}, \mathrm{B}$ and Fe $\left(r=-0.774^{x x}, r=-0.055^{x x}, r=-0.833^{2 x x}, r=0.0044^{20 x}\right.$, $r=-0.797^{x x}, r=0.767^{7 x}$ reapeceively) by the plent. The percentage aluainium saturation showed a aignificant positive correlation with aluainiux content in rosts ($\mathrm{r}=\mathbf{=}^{+} 0.799^{\mathrm{xx}}$) and positive but non significant correm lation with that in fodder maize tops.
2. Exchangeable aluminivi and nutrient uptake

Results of this study are presented in Appendix $X(a)$.

A strong significant negative correletion was obtained between exchangeable aluminium content of the soil at the harvest and uptake of $\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$ and Fe $\left(r=-0.768^{x x}, r=-0.853^{x x}, r=-0.823^{x x}, r=0.89^{x x}\right.$, $\left.r=0.791^{x x}, r=0.763^{x K}\right)$.
3. Percentage base saturation and nutelient uptake

Results of the correlation atudy are given In Appendix $X(a)$.

A significant and positive correlation was obtained between percentage base saturation and uptake or $N, F, X, C a$ and $M g\left(r=0.005^{x y}, r=0.850^{x x}\right.$. $r=0.953^{x x}, r=0.933^{x}, r=0.896^{x}$ respectively). E. Soll properties and plant characters

1. Forcentage aluninium saturation and plant characters

The detalis of the correlation giudy are presented In Appendix $X(b)$.

The percentage aluminiun saturation of the soil at harvest was found to exart a sienificant negative effect on root length ($r=0.676^{x}$), weight of roses
($r=-0.690^{\mathrm{x}}$), weight of tops $\left(r=-0.767^{\mathrm{xx}}\right.$) and total dry matter yield ($\mathrm{r}={ }^{-0} 0.816^{\mathrm{xx}}$).
2. Exthangenble aluainium and plant characters

The exchangeable aluminius content of the soil at harvast was aleo aignificantly and negatively correm lated to the plant characters like length of root ($r={ }^{-0.681^{x}}$), weight of root $\left(r=-0.773^{x x}\right)$, top weight ($r={ }^{-0} 0.680^{x x}$) and total dry matter yleld ($x=0.831^{7 x}$).
3. Percentage base saturation and plant characters

A signifigant and positive correlation was obtained between percentage base saturation and yield paraneters like length ($r=0.656^{\mathrm{X}}$) and weight ($\mathrm{r} \mathrm{m}^{+} 0.632^{\mathrm{X}}$) of poot, weight of top ($r=0.778^{x}$) and total dry matter production ($r={ }^{+} 0.847^{00}$).
C. hluniniun content of tops

1. Aluniniua cantent and nutrient composition of tops

The reaulta of the correlation atudy is presented In Appendix XI(a).

A signiricant negative corralation is observed between aluainius and the content of phosphoms ($r=0.0 .542^{x}$) and calciun ($r=0.598^{x}$) in the plant tops, and a not significant but negative effect on the $\mathrm{N}, \mathrm{Mg}, \mathrm{Zn}$ and Cu content: in the tops.

A significant and positive correlation was evident between alusinium and iron content ($r={ }^{+} 0.746^{x X}$) in the tops and a positive but not significant rolation obtanned with potassium.
2. Rluainium content of tops and plant characters

Results are shown in Appendix XI(b).
A negative correlation wat obtained between the content of aluniniua in the caize tops and the different characters like root length, weight of tops and roots and total dry matter. But none of then were significant.
3. Aluminiun content of tops and nutpient content of roots

Results are given in Appendir YI(c).
A significant negative correlation was noticed
betwecn aluminiua content in tops and 1 ron content in the roots $\left(r=0.632^{x}\right)$ while the negative correlations between aluminium content in the tops and content of other nutrients ($N, P, K, C Q \& M g$) in tho roots were non-significant. zino content in the roote was found to be positively correlated to the aluminiua content in the tops, and aluainiup content in tops positively and signilicantly related to the aluminium content of roots ($r=0.700^{x}$).
D. Aluainiua content of roots

1 Aluminiua content of roots and nutrient composition in the tops

Results obtained iron the correlation studies are presented in Appendix XII(a).

It was observed from the results that a atrong negative carrelation existed between aluainiua content In roots and phosphorus ($x=0.803^{x x}$) and enlelum ($r=0.0 .882^{* x}$) content in tops.

A significant positive correlation was found between the contents of aluainium in the roots with
that of iron ($r \mu^{+} 0.816^{x x}$) and numiniun ($r={ }^{+} 0.700^{x}$)
in the tops. However the negative correlation observed between aluminfum content of roots and N, R and $M g$ contents of tops is not significant.
2. Aluniaius content of roots and plant charactere

Fesults of the correlation analysis is presented in Apponcix XII(b).

Aluminiun content in roots of fodder maize exhibited a gignificant negative correlation with root length ($x=-0.764^{x x}$), weight of tops ($x=-0.749^{x x}$), weight of roots ($r=-0.735^{x x}$) and total dry matter yield ($r=0.045^{x x}$).
3. Nutrient content in the root

Results are presented in Appendix XII(e).
The level of aluminium in the roots of fodder waize plant had a negative influence on $N, P, X, C A$, $\mathrm{Mg}, \mathrm{Fe}, \mathrm{Zn}$ and Cu content in the roots, but the relationship was significant only between the contents of aluminiun in roots and potasaium ($r=0,620^{x}$), calcium
($r=0.849^{x x}$), aagnesium ($r=0.610^{x x}$) and iron $\left(r=-0,624^{x}\right)$.

Mutrjent uptake

Results of correlation analysis are presented 1n Appendix XII(d).

Aluainium content in roots was significantly and negatively correlated to the uptake of nutrients 1ike nitrogen ($r=0.826^{\mathrm{Kx}}$), phosphomus ($\mathrm{r}=0.0 .832^{\mathrm{xx}}$), potassiua ($r=-0.771^{x x}$), calciua ($r=0.038^{x \times}$), magnesiun $\left(r=0.684^{x}\right)$ and iron $\left(r=-0.601^{x}\right)$.

DISCUSSION

DISCUSSION

Numerous studies in recent years have revealed that exchangeable aluminium in acid soils is mainly responsible for crop fallure and other harmful effects associated with acidity. Eventhough the pH of the soil has been widely used as an index to find out the amount of lime required to neutralise the acidity and produce a good crop, this practice may lead to the use of a large amount of lime which is both uneconomical and unnecessary, Complete neutralization of acidity Is often not necessary to bring about significant improvement in the economy of crop production. Yield response to lime is found to be more related to the reduction of exchangeable acidity and exchangeable aluminium in soil rather than to complete neutralization of total acidity. Hence liming upto the point of elimination of aluminium toxicity in soils is considered to be enough for producing a good crop.

Fffect of different levels of lime on parameters of

 acidityAn increase in pH and a reduction in total
aeldity and exchangeable aluninium have been observod as the most iaportant and lixadiate effects consequent to lining. Thus, soils treated with lime at the rate of $259,500 \mathrm{~kg} / \mathrm{ha}$ and $7.7 \mathrm{t} / \mathrm{ha}$ record an increase of $0.3,0.6$ and 2.1 units of pH reapectively. Total acidity is also correspondingly reduced to $0.49,1.73$ and $2.45 \mathrm{~m} / 100 \mathrm{~g}$ soil in these treatments compared to the inftial level of 2.94 ne.

Hifher levels of lise also reduce the exchengeable hydrsgen and aluninium content of the soll. But the extent of reduction in exchangeable hydrogen is much lass compared to that of total acsdity and exchangeable alkniniura. A maximur difforence of only 0.09 ae of exchangeable hydrogen is observed as against 1.96 me of trol acidity and 2.39 ae of exchangeable aluminice. Treateent with lime appears to be more offective in controlling total acldity and exchangeable aluminiua rather then exchangeable hydrogen. Probably the caloluna In lime is not able to fully replace the hydrogen lons strongly held in the exchange conplex while it has peacted with exchangeabie aluminitu and changed it into
a non-extractable form. It also shons that total actaty of the soil is mostly contributed by exchangeable aluminiug rather than by exchangeable hydrogen.

A marked decrease in levels of exchange acidicy and exchangeable aluainium, concomitant with higher Liae level has been reported by Haynes and Ludecke (1981). Rabeerathuma and Nair (1973) and Abraham (1984) have also reported a reduction in exchangeable aluainiun and hyturogen content of the acid solis of Kerala as a result of liming. Cochrane et al. (19e0), Bache and Crooke (1981), Hargrove and Thomas (1931), Mukhopadhyay et al. (1984) and are recently Curtin and Smilite (1986) have also found that exchangeable and soluble aluminius in acid soils could be reduced by liaing. According to them, lime levels sufficient to reduce the aluminium seturation to limits that do not affect the econony of crop production is more importent. The results of this experiment have shown that application of lime to raise the 8011 pH to 6.4 has resulted in almost complete neutralization of exchangeable aluminim in the soik. The variation in exchangeable
aluainium content in the other treatrants is also significant and has helped to maintain a level of 1.26 and 1.98 me of aluminiua/ 100 g soil with corses. ponding percentage aluminium saturation values of 23.75 and 37.78 respectively. The abilisty of different levels of lime in reducing the oxchangeable aluminium content and decreasing porcentoge aluminivm saturation has been considered to be the most sigrificant consequence of liming of acid soils.

The favourable effect of ilming in increasing yield has been cocrelated to the reduction of toxic levels of aixainius then to an incraase in soil pid (flartini et al., 1977). Similarly, feeve and Sursice (1970) and Reid et a.2. (1971) have obtained a better response of lime only upto the point of olimination of Musinium toxicity. Kunshi (1982) hes also given gore stress on the reduction of extractable aluminius rather than an increase in pH for getting a greater reaponse.

Application of fertilizers to the limed sollo before cultivation has resulted in a further rise in pHin all the treatments, Increase in pi is maximua
(0.5 plif units) in unlined and ainimum (0.1 pH unit) in pets which receive the highost arount of lime. This increase in pis may be associated with a corresponcing ireduction in total acidity contributed by both exchangeable hydrogen and aluminiun. is sioilar reduction in exchangeablo aluainium content in apils followe ins phosphate application has teen reported by Awed ot al. (1976), Bache and Crook (1991) and Haynes and Ladecke (1981).

Despandae (1976) has found that application of phosphoric acid to acid soils with very low pis reaulted in the fixation of aluniniun as aluminiun phosphate. An increase in pil of 0.1 to 0.2 units has been observed in some soil samples due to the addition of phosphates. Bache and Crooke (1981) have attributed the increase in priafter the application of fercilizers to a reducition in exchangeable and soluble alumintua by reaction with the phosphorus present in the fertilizer.

Changes in acidity parameters during arowth of plants
Cultivation of compen ae well as, fodderize has

142

caused an increase in pH and a decrease in total, acidity; exchangeable aluminium and exchangeable, hydrogen both in limed and unlimed soils at, the early stages of growth. However, at harvest the pH'vilues. showeda slight decrease and the other values'a tendency to increase. The increase in pH and a decrease in the exchangeable hydrogen and aluminium at the early stages of growth of both cowpea and fodder maize may be indicative of a mechanism of tolerance to aluminfum exhibited by these plants. Foy et al. (1964, 1965 and 1967) have reported a lowering of pH in nutrient solutions by sensitive varieties and a raising of pH around the roots in the case of plants tolerant to aluminium. They were of the view that aluminium tolerant plants may produce some exudates which immobilize the soluble aluminium in the vicinity of growing roots. The complexing of soluble aluminium can also result in an increase in pH.

The silight decrease in pH and increase in total acidity, exchangeable hydrogen and aluminium towards the harvest stage might be due to an increased rate of production of acidity through plant excretions or due to
the production of organic acios through the action of \$011 microbes.

A sligint reduction in pH (by about 0.3 unite) observed in barley hes bean attributed to the nitrification process in the root zone (Bache and Crooke, 1901). A decrease in exchangeable aluainium in the vicinity of plant soots miy arise oue to the formation of complexes of iron or aluninium with organic aattar and their subsequent reaoval froa the soluble pool. Reid et al. (1932) have observed such processes of removal of exchangeeble aluminium fron the vicinity of roots. Effect of exchangegha aluminium on plant characters Cowpea

It nay be seen from Table 6 and frou the results presented eariler that the height of cowpen show a tendency to increase in treatments where the exchangeable aluminium levels have bean lowered by liming. However, the plants in the pots treated with the highest level of lige which has lead to the complete elluinstion of exchangeable aluminium showed only the least height indicating the depressing effect of overilainge

The iength of roots in cowpea also exhibit. c negative relation with exchangeable aluainium contont of the soll as evidenced from Fig. 1 and Plate 1. The treatmont with an exchangeable aluminium level of $1.26 \mathrm{me} / 100 \mathrm{~g}$ and percentege of aluainium gaturation around 30 recorded the maximun value for length of root. The other treatments where either the exchangeable aluminium level is negilgible or where it is more than 1.26 ne recorded only a lower lengeh of roote. This is suggestive of the harmiul effects of both overliaing as woll as underinming. Aluminium io observed to be nore harmiful to roots than tops and an inhibition of root development has been identified as one of the ifrst observable syaptont of aluminium toxicity in plants (Abrahem $: 1984$; Eennet et al., 1985; Kim ot al., 1955; Alve et al., 1906 and Rechcigl et al.. 1986).

It $1 s$ observed fron the results of the present study that the elongation of cowpea roots are adversely affected by exchangeable aluminiua and it is negativaly correlated to percentage aluminium aturation and exchangeable aluninfum throughout its growth period. The roduced

Abstract

length of roots at high aluminium saturation way be due to the irreversible inhibition of root growth correlated with high aluminium content (Aniol et al.. 1979 and Muswira et al., 1980).

A reduction in exchangeable aluminium brought about by inming has resulted in an increase in the number of nodules indicating the specific effect of alualniur on suppression of root nodule formation in cowper. A sinilar raduction in nodule formation due to high aluminium saturation has been reported earlier (PLeri, 1974; Malavolta, 1981 and Franco and Muns, 1982).

The beneficial effects imparted by pulses in general depend on the gain in soil nitrogen through symbiotic nitrogen ifxation, which inturn is related to the number of nodules formed by the rhizobla on the rootg. The highest number of nodules is obtained at the meximum flowering stage which slowly decreases towards the harvest stage. A decline in the number of nodules as the plant reaches asturity has been generiliy observed (Indira, 1985).

The correlation between exchangeable aluminiwa and parcentage aluainium saturation with nodule count is negative and significant both at the maximum : elwering and at the mid pod filling stage. This correlation eventhough continued to be negative became non-signdifcant at the harvest atage. Excessive aluminiun has been considered to be a severe stress to rifzobia than free acidity neasured in terms of ph values (Keyser and munns, 1979).

Total dry matter production

A comparison of the total dry watter production jy cowpea shown in Table 6 roveals that the suppressing offect of exchangeable aluminium is nore prominent at the early stages of grouth than at the later stages. zut in the treatment where the PAS is aaintained at around 30, the dry matter content is highest at all the three stages of growth. Neither the lime levels which saintain the percentage aluainiua saturation around to nor that which raise the pH to noutrallty leading ;o a percentage aluminium saturation of leas than 1 sould produce a sigaificant increment in dry matter
production. The reduction in dry matter in these treatments may be atiributed to the adverse effect of exchangeable alurinium in influencing nutrient absorption (Lae, 1971; Sanchez, 1976; Jarvis and Hatch, 1986) which is essential for maintaining a bighes rate of carbohydrate mynthesis.

The antagonistic relation existing between dry matter production and exchengeable aluminium supports this view.

Grain yield

It may be seen from the results in Table 6 that the maximum grain yield is procuced by the treatment where the percentage aluminium gaturation is less than 30. In the other treataents which have maintained a higher level of exchangeable aluainium as well as percentage alumindum saturation, the yieid is signifigantly lower. Similarly in the treatment where the percentage aluminium saturation is only less than one and exchangeable alumintum $0.09 \mathrm{me} / 100 \mathrm{~g}$ g there also the grain yield is comparatively lower then the treatment where the exchangeable aluainiwn content is
1.26 me but higher than the treatments there the exchangeable aluminium contents are 1.98 and 2.45 me. The attainment of a maximum yield at around 30 percent aluminius saturation of the 5011 is-significant and clearly indicates the possibility of getting a higher yield at this level of exchangeable sluminium. Evonthough a pH of 4.7 in the soil where the pas is around 30 suggests a strongly acidic condition, coupea has been able to produce a higher yield compared to a situation in the treatment where the pil is near neutrality. This observation points to the fact that it is surficient to reduce the percentage sluminium saturation to values around 30 to obtain a better yield. Instead of taking pH as a criteria for liming, the exchanteable aluminilan values and corresponding percentage aluainium saturation values may be looked upon as better indscators for the need of lime in highly acid soils.

A recuction in grain yield noted at the highest lime level (Table 6) though not significant, night be due to the undesirable effects like phosphorus and micronutrient deficiency oonsequent to overliaing
(Holford, 1985 and Timaer, 1985). It is possible thai the strong negative influence exerted by exchangeabic aluminium on root elongation and nodulation aight have adversely affected the avallability and uptake of nitrogen as well as most other nutrients in the treatwents where there is a high level of exchangeable aduadnium in the soil. It appears that a certain amount or exchangeable aluminium which maintain a moderately acidic state of soil has promoted plant growth by indirectly influencing the release of more of the fixed nutrients into the avaliable pool. This might have led to greater absorption, resulting in a higher yield of grain as well as total dry matter production.

It is evident from the present study that a percentase aluminium saturation of above 30 has conciderably reduced the weight and length of root, nodule count, heizht of plant as well as yield. Such instances of lower crop yield, reduced nodulation ant root grovih and poor nutrient uptake associeted with aluninium toxicity in soils have been amply reported in literature (Abruna et al., 1974; Sartain and Kapprath, 1975;

Dionne and Pesant, 1985). However, Andrew et al. (1973) heve reported an increase in yield of pasture legunes at 0.5 ppil aluminiua. Beneficial affects of low concentration of aluminium ($19 \mu \mathrm{~h}$) on tap root elongation in phameolus and the non inhibitory effect of aluminium upto 83 M on root dry welght, nodule growth and nitrogenase activity in beans are also reported (Franco and Hunns, 1982).

Fodder Maize
Plant characters such as wolght of tops and roots, length of rooto and total dry matter production exhibit a linear; negative relationship with exchangeable alusinium content. However, plant height alone is highor at an exchangeable aluminium level of 1.25 me and percentage aluminium saturation around 30. The favourable effect on all the other plant characters at the highest level of liae may be due to the beneficial effects imparted by the reduction of toxic levels of exchangeable aluainium in the soil (Teble 9).

A conparison of the response by cowpea and fodder maize to various levels of exchangeable aluminium
resulting from the use of different levels of line, reveals a greater tolerance of cowpen to aluminiua than fodder maize. It is clearly evident from the results that while yield and other plant characters are better at 30 porcent aluminius saturation in cowpea, such situation is attained in fodder malze only by the use of a higher level of lime which cen reduce the percentage miuniniua saturation to a minimam. Various acientists have proposed difforent linits of tolerance of alumintua saturation of aolls for cereal crops such as wheat, barley and corn. Kamprath (1970) has found that an aluainlua saturation of eore then 45 percent reduced corn yield while alley (1981) observed an unfavourable effect on corn yields at an aluminiven saturation of 18 percent of the effective CEC. FOX (1979) on the other hand obtained 90 porcent yfeld reduction in corn when the alumiaium saturation exceeded 12 percent.

Laming to reduce the aluminium saturation to 40 percent is not that auch effective in increasing the yleld of compea compared to the levels of lime needed to reduce the percentage aluminium saturation to 30 . At
the sane time, lime levels to raise the pH to around 6.4 and reduce percentage aluminium saturation to <1 is unecononical in view of the huge quantity of lime required. The yield of grain as vell as the total dry matter production in cowpea attained at this level of liaing may not commensurate with the cost involved. It is clear that since cowpea can perform well at a percentage aluminiun saturation of 30 , there is no further need to reduce it to less than 30 by applying more of lime. The optimum level of lime to attain this condition is found to be $500 \mathrm{~kg} / \mathrm{ha}$. But in tho case of fodder maize, almost all the growth characters except the height of the plant recorded maximun values in the treatment T_{2} where the pH 136.4 and effect of aluninium in soils is negligible. The other two treatments which reduce the aluminius saturation to 30 and 40 percent are found to be not effective in increasing the yield parameters. From these results it appears that a better performance with fodder alize may be expected in soils which are either liaed to the point of complete elimination of exchangeable aluainium or a particular level which may be tolerated by the crop.

A comparison of the perforaance of fodder maize and cowpea under different levels of exchangeable aluminium brings out the fact that fodder maize is highly sensitive to aluminiua toxicity while eowpen is soxewhat tolerent to it.

Influence of different levels of exchangeable alunintun on the rutrient content of cowpen and fodder malze

It way be seen from the results that the nitrogen content in tops and roots show a linear increase with a decrease in exchangeable aluminiun content of soil throughout the growth of eswpea. Nitrogen content is highest in the treatmont where the exchangeable aluminiua is ainiaua.

The higher content of nitrogen in cowpea grown in soils of lowest exchangeable aluminium content may be the consequence of a higher rate of nitrogen absorpo tion which has been sade available through a better association between the acoro and micm symbionts. This is evidenced by the higher nodulation of cowpea in treatnents giving a low level of exchangeable alureinium.

A negative correlation is also found to exist
between aluminium content in tops ana nitrogen content, eventhough it is not significant at any of the growitl stages of cowpea. The adverge effect of aluminius on the absorption of nitrogen by the plant is thus reilected in this relationship. The effect seems to be more prominent at the rid pod filling stage as indicated by the signipicant and negative correlation exiating between aluminium content in roots and nitrogen content in the tops at the aid pod filining atage.

The adverse effect of excessive aluminium on nodulation and nftrogen fixation as reported in neny instances (Malavolta et al., 1981; Franco and Munns, 1982) may be the reason for this negative correlation betwoen aluainium concentration and nitrogen content in compea.

Nitrogen content. In the tope and roots of fodder maize also shows an increase due to a reduction in the exchangeable aluainiun content of the soil. However, maximum content of nitrogen is observed in the treatant with a percentage aluainium aaturation of 30 which contain a higher level of exchangeable
aluninium than in the trestment where the exchangeable eluninius is minimin. The lewier content of nitrogen in the treatment whore exchangeable aluminiui is ainimum may be attributed to the adverse effects of overliming.

A negative correlation also exists between aluainius content in soil end nitrogen content of topo and roots. A sinilar melationship between theme two -lements in rice roots has been observed by Fageric and Carraino (1982).

In general a higher content of phosphorus in the tops and roots of plants is noticed at the lower levels of exchangeable aluminiun and percentage aluminium saturation values. But the different treatments are not eignificant in increasing the phosphorus content in tops and roots over unlinad treatments except at the aid pod filling stage and at harvest. At higres percentage aluaindua aturation values, the concentiontion of phosphorus in tops show a reduction probably due to the strong antagonistic relation waich is believed to exist between aluninium and phosphorus (Zains and Mercado, 1984; Engeria, 1985).

A decrease in the phosphorus content of botin tops and roots has been obsorved with an increase in the aluninium content of the soil. However, the correlation between aluminiun and phosphorus in tops and roots is not constant always. This inding is in agreement with the observations made by lhugwira et ol. (1900) and Fageria and Caxvalho (1982) on the rolationship between Eluminiuq and phosphorus. However, Sartain and Ramprath (1975) did not observe any relation between aluminium content of soil and plant phosphorus concentration.

Eventhough a reduction in percentage aluainium saturation of goils has resulted in an incrase in the content of phosphorus, the phosphorus in the treatont Where the percentage aluminiud saturation is 30 is iound to be equal to that in the treatnent where exchangeable cluminium is miniman. A greater absorption of phosphorus in the treatant where exchangeable aluainium content is 1.26 me, inspite of a higher exchangeable aluminium and acidity then in the treatment where exchangeable aluminium is minimum, pointa to a greater solubilization of phosphorus in these so11s. The
rhizosphere of fodder maize plants which has bec:ore pore acidic towafds the harvest stage aight have holjed In the greater absorption of phosphorus in this treatment.

Reduction of exchangenble aluminium in soils by liaing has not produced any marked increase in the potassium content of roots and tops of cospea. However, potassium content at the maximum flowering stage records highest value in heavily lined treatnencs with lowest aluniniua saturation.

However, at the mid pod filing stage and at harvest, potassiua in roots and tops is meximun in plants grown in the presence of the nighest concentration of exchangeable alusiniun. Mugwira et al. (1980) and Pageria and Carvalio (1932) have reported a fivourable effect of hlgher concentracion of aluainium on potagsiun absorption while inac Leoad and Jackson (1967) have reported an spposite effect.

Alualnius content of tops show a negative correlation to potassium in tops at all the three stages and at oid pod filling stage aluminium in tops
is found to be positively correlated to potassium contont in roots. Thus the effect of aluminium elther in the soil or plant appears to be inconsistent and it appears that a high sluminius content is not likely to reduce potassium absorption and translocation in compea. In lact, low levels of aluminiun have boen reported to act as a atimulant for potassium absorption (Andrew et al. 1973; Fegeria and Cervalho, 1982).

A general increase in potassium content in both roots and tops of foddar maize is obtained due to a reduction in exchangeable aluminium stacus indicating a greater menaitiveness of fodder maize to absorb potassium in the prosence of high levels of aluainium. The highest level of lime has produced the maximu content of potassiun in tops (1.49 percent) as well as ${ }_{1}^{\text {in roots }}$ (0.85 percent).

Calciua content in plant tops and roots also show a linear increase with a decrease in exchangeabio aluminium and percentage aluntniwa saturation values at all the three stages of growth of cowpea. Eventhouch the calcium content in tops record a maximum value in
the treataent having the least content of exchangeabie aluminium, its content in the roots record a maximun value in the treatment where the exchangeable aluainsum In soil amounts to 1.26 and percentege aluminiun seturation is <30. The strong antagonistic effect prevailing between these two elements (Mugwira et al. 1980) may lead to a lesser uptake of calcium in the presence of alumintum. The treatment where exchangeable aluminium is ainimua has increased the calcium content of the eoil to a considerable level way also account for the highest content of calclum observed in the plants in this treatment. The decrease in the content of calcium in tops towards harvent may be due to a greater accumulation of calcium in the roots at this stage as evidenced from Table 7 compared to the other two stages. The reduction in calciun content In tops at harvest may also be attributed to the dilution effect in the plant as proposed by Maritini and Mutters (1985).

Aluainium content in tops and roots reveal a consistent negative correlation with caleium content in tops and roots throughout the growing period.

However, correlation between gluainiun content in tops and calciua content in roots is significant only at harvest. This behaviour may be explained in the light of the strong negative correlation that exists between alusiniur content in roots and calcium content in tops and roots as well as aluainium and calcius content in tops. The results also indicate the greater sensitiveness of fodder walze compared to cospea in absorbins calciua in the presence of eluminium.

An increase in alanesium content in tops and roots with a reduction in the percentage aluralnium saturation and exchangeabie aluainiun is also evident from the results. A higher content of magnesium in plant tops and roots as a result of 11 aing mey be attributed to the increased absorption and translocation of the element at.reduced percentage aluainium saturation and exchangeable aluminium values (Mac Looed and Jackeon, 1967; Kugwira at al. 1980). These findings also indicate a greater senmitiveness of fodder malze to aluminium than cowpea.

The content of iron in the tops of cowpea and

Rodier malze show tendency to decrease with decreasing levels of exchangeable aluninium in the soil. A lomera ing of the exchangeable iron in soil due to the treatnent with lime hes naturally reaulted in a lower upteke of this elenent by both the plents. A decrease in the status of exchangeable iron in the soil due to lime application is evident from the results presented earlier. Iron content in the roots of cowpea and fodder maize show a negative relationship indicating the ability of these planta to prevent the translocetion of toxic levels of irn to the tops.

A higher content of zinc is noticed in fodder mize due to a reduction in exchangeabla aluainiua by liming. However, inspite of the use of a very high level of liae leading to the complete suppression of exchangeable aluminium; this treatment has recorded the lowest content of zinc. The precipitation of zinc In the presence of very high amount of lime tight have led to a greater unavailabllity of zinc to the plant. A decrease in the availablifty of zinc at figh lime levels has been reported in many instances (Lee, 1971; Fageria and Carvaino, 1932).

But in the case of cowpea, the availability of zinc does not seem to be much affocted by the application of lige, eventhough the observed tendency 15 for a lesser uptake of zinc in the presence of limo. Here also the plants in the treatment where exchangeable aluminium is minisua, record the lowest content of zine guggesting a gituation where the availability of zine has been reduced due to overilining.

Copper content in both tops and roots of cowpes and maize are not much affected by a reduction in exchangeable aluminium content in the 8017.

It may be noted from the results presented in Table 7 that the content of aluminiun in both tops and roots decrease $\begin{aligned} & \text { dith a decrease in the percentage aluai- }\end{aligned}$ niun saturation and exchangeable aluainiun content of the soil. The oontent of aluminiug in cowpen tops record the lowest value in the treatoent with parcentage aluainiun saturation around 30 and exchangeablo aluminium $1.26 \mathrm{ma} / 100 \mathrm{~g}$ soil.

Aluminius content in roote also exhibit a innear decrease with a reauction in exchangeable aluniniun content of the soil. The content of aluainium in both tops and roots record maxinum values at the nid pod filling stage and then decrease as the crop attain maturity. Martini and Mutters (1993) have observed a siailar reduction in the content of cluainiua in soybean after four weeks.

Eventhough the treatenent with percentage aluminiun saturation value around 30 has recorded the least amount of aluminiun in the tops, the other two treatuents with a highor percentage alusinius saturation and exchangeable aluginiua value than the treatment with percentage aluainiun saturation around 30 maintain a higher level of aluminium in tops. The treatment with the lowest percentage aluainium saturation and exchangeable aluaindum show oniy the mininum content of aluginium in the roots at all the thre stages.

Aluainium content in roote is found to be significantly higher than that in the tops. The accumiation of more aluninium in roots conpared to
tops any be due to a lesser degree of transport of the absorbed aluainium to the tops in order to abintain a non toxic level of aluminiua in the tops. Accumalation of aluginium in the roots has been observed as a mechanisa exhibited by plants tolerant to aluminiua toxicity. A higher content of aluminium in roots of plants grown in highly acidic solls has been reported (Andrew et al. 1973). Jarvis and Hatch (1986) have observed that only less than 10 percent of aluminium absorbad from solution alone is transported to shoots.

It may be noted that a strons positive correlation exists between aluainium content of tops and roots at the maxinum flowering stage and at harvest. Inspite of the retention of appreciable anounta of aluninlum in the roots of coripea, translocation to the aerlal parts seom to have taken plece as suggested by the strong positive correlation between the aluminiun content of tops and roots. This indicates the plant's inability to prevent translocation from roots beyond a cortain iinit, which eay result in an expression of alumintum toxicity symptoms in the leaves. The marginal leaf
chlorosis and leaf curling observed in plants in the control and in the treataent with a percentage aluanium saturation of wore than 40 support this finding. Recently firuman et al. (1986) have obtained a similar type of positive relation between aluminium content in tops and roots.

A reduction in the exchangeable eluainium content and percentage aluminius saturation velues bring about a decrease in the content of aluminium in the tops of fodder maize. Here also the treatnent with a percentage aluninium saturation of around 30 is found to be more effective in reducing the level of aluminium in plant tops than in the troatment with a negligible percentage aluminiun beturation value or the treatment with a percentage aluminiun saturation around 40. The content of aluminium in the roots also decreases linearly with a corresponding decrease in the parcentase aluminiua saturation values. The treatment with the lowest level of percentage aluminiua saturation is observed as the most effective in reducing aluminium content in roots. A strong significant positive correlation between the content of aluainiua in the tops and roots is obtained
as in the case of cowpea. As mentioned earlier, the accumulation of alurainium in the roots is indicative of a tolerant mechanism exhibited by plants growing In soila with high exchangeable aluniniun values.

Nutrient content in grain and husk of cowpes

A reduction in the exchangeable aluminiuw content of the soil has resulted in an increase in concentration of $N, P, C a$ and $M g$ in bsth grain and husia. Treatment with an exchangeable aluainiun level
 30 record the highest value for gil these nutrienta in grain and husk compared to the treatments where the level of exchangeable aluminiun is either lesser or greater than this treatment. Neither the lime levels to bring the percentage aluniniun maturation to around 40 nor that caused a reduction of percentage aluminiun saturation to less than one could increase the content of $N . P$ and $M g$ in grain and husk compared to the treatment with an exchangeable aluminium level of 1.26 we. But calciun content of both grain and husk is highest in the treatment where exchangeable
aluminiun content and percentage aluminium saturation is mintmun. This may be explained in the light of a greater amount of calcium available in the treatment where exchangeable aluminium 18 minimus, Potassive contents in the grain and husk do not show any variation due to the reduction in percentage aluminium saturation or exchangeable aluminium content of the $s 011$.

Aluminiu(content in grain and husk is reduced to a considerable extent by a reduction in exchangeable aiusiniua and percentage aluminiun saturation of the s011. The treatment where the exchangeable aluminiua content is 1.26 has accunulated the least content of aluminiuf in grain and husk compared to the treatment where exchongeable aluginium is ainimua and in the control. Zinc content in the grain and husk also register an inorease with a decrease in exchangeable aluainium.

From these results it may be concluded that reducing the percentage aluminiua saturation to aroma 30 by the application of $500 \mathrm{~kg} / \mathrm{ha}$ Ince is most optioum
to increase the content of nutrients $14 \mathrm{He} \mathrm{N}_{\mathrm{F}} \mathrm{P}$, Hg and Zn in the grain. Freatments with percentage aluminiun saturation around 40 and the treatment witis negligible percentage aluninium saturation have produced grains of auch lower nutrient value in terms of their content of $N, P, K g$ and $Z n$. The content of calciun in grain is, however, maximum in the treatment with mininum exchangeable aluminitw and percontage aluminiun saturation, which may be attributed to a comparatively higher content of calcium in the soil due to the application of a very high level of lime.

Fulses are the most important source of proteinaceous food and the nutritive value of this diet mainly depends on the protein content of the grain which in turn depends on its content of nitrogen. Lime level which raduce the percentage aluninius saturation to 30 has helped to accumulate more of nitrogen as well as other nutrients in the grain. This in tum will saprove its quality.

Influence of exchangeable aluniniun on nutrient uptake
It may be noted that the inhlbitory effect op.
aluminium is are prominent on calcium and phosphome uptake in cowpea compared to the other elements as geen from the aignificant negative correlation that exists between exchangeable aluminium content and percentage aluminium saturation of soils and uptake of phosphorus and calcium. Guerrier (1977) has observed a similar effect of aluilinium on the uptake of calcium and phose phorus in pulses.

A higher content of exchangeable aluminiun in the soil adversely affects the uptake of $N, P, X_{,}$ Ca, Mg and Fe in fodder maize. Such an appreciable reduction in the uptake of mitients under aluminiun toxic conditions in several cereals have been reporited (Fagerla and Carvalho, 1982; Abraham, 1984).

Influence of aluminium content in plant on growth and nutrient uptake

A significant nogative correlation is sbserved between aluminium content in plant and total pod as vell as grain yield in corpea. The concentration of aluminum in plants seems to exert a depressing effect on other plant characters such as root leagth, nodule
count, dry welght etc, as seen from the negative correlation between these characters and aluminlum'.

In the case of fodder maize also aluminium content is negatively correlated to nutrient uptake and various yield parameters. Thls azy be attributed to the direct toxic effects of aluminium on nutrient uptake and yield in fodder maize.

Such undesirable affects produced by high levels of aluminiun on the growth of root and fts elongation, nodulation, dry matter prociuction etc. are evident from the reports of Franco and Munns (1902); Kim et al. (1935) and Alva et al. (1985).

It aay be noted from the results discussed here that aluninium can reduce the uptake of many of the nutrients assential for plant growth as well as for maintaining the nutritive quality of the produce. Possibly, the reduced absorption of wany of the nutrients aight be due to the compotition of aluminiun for comion binding sites at or near root surface thereby redueing the uptake of calcium, priessium, magnesium and copper.

A reduced nutrient uptake in rice due to similar competition has been observed by Fageria and Carvalio (1382).

A strong negative relationship is noted beitseen aluminium content of root and its length, weleht of tops and total dry matter production. The unfavourable influence of aluminiumi on these plant characters may possibly be related to a reduced nutrient uptake resulting from a higher contant of aluminium in the root. The antagonistic influence of aluainium on nutrient uptake is further supported by the significent and negative correlation that exists between the uptake of nitrogen, phomphorus, potassiun, calcilin, magnesium and iron and the aluminium content of roots.

In the light of the results obtained from the present study, it nay be concluded that exchangeable aluminium in the soil which contributes to the percentage aluainium saturation exhibits a strong antagonistic influence on the growth and yield as well as nutrient uptake in cowpea and fodder maize.

Control of exchangeable aluminius to tolerant
liaits is thus iminent and it is only a matter of identifying and fixing the liaing rates to achieve this. It is imperative thet liaing is done only upto the point of eliaination of aluminium toxicity for various crops. Plants differ in their capacity to tolerate levels of exchangeable aluainium in the soil and cowpea is seen to tolerate a higher level of eischangeable aluminium ($1.26 \mathrm{me} / 100 \mathrm{~g}$) while fodder malze is not. Thus it follows that the sase lovel of Liosing cannot be recomaended for cowpea amd fodder maize. A better criteria in this respect will thorefore, be to deteraine the level of lime that any reduce the exchangeable aluninium to $1.26 \mathrm{me} / 100 \mathrm{~g}$ eoll in the case of cowpea and its complete elimatnation in the case of fodder maize. Since fodder maize is more sensitive to aluminiun, a better performance is possible only in soils lised upto the point of total elimination of exchangeable alueiniun. Lieing to reduce percentage aluminiun saturation to around 20,30 or 40 has recorded only a poor response compared to the complete eilainam tion of exchangeable aluainium. While 500 kg lima/ha is sufficient to bring down the exchangeable aluminitm
to a tolerable indit for cowpea, this is not enough for fodder maize which neads a higher lovel of Inae to completely eliminate axchangeable aluminium. At the same time the use of $7.7 \mathrm{t} / \mathrm{ha}$ of lime to raise the pf to near neutrality is also unnecessary since a much lower amount alone would be needed to nullify the Effect of exchangeable aluainium. Computation based on exchangeable aluminum content of soil at different 11aing rates indicate that $54 / 4 \mathrm{~kg} / \mathrm{ha}$ would be the

SUMMARY AND CONCLUSION

SUHMARY AND CORRLUSION

A gtudy has been undertaken to find out the suitability of using exchangeable aluainius as an Index of liaing for the acidic upland solls of Kerala. The investigation was carried out on the following aspects.

A total number of 00 soil samples representing the five major uplend soil types of Kerale viz. laterite, alluvial, red loas, sandy and forest solls were collected and chenical nature of these soils was deterwined with a view to find out the status of exchangeable aluniniua and other factors contributing to soil acidity. One soil sample containing the highest amount of exchangeable aluminiua and higheat percentage aluninium saturation was selected for a pot culture experiment. The growth, yield and nutrient uptake of two acid sensitive crops namely cowper and fodder naize were tudied in this soil after anintaining different levels of exchangeable aluainium by applying different levels of 21 me. The levels of lime based on conventional lime requiteaent aethod and that required to bring down the exchangeable
aluniniun content of the soil to tolerant liaits for the two crops was also selected. the performance of the orops in the presence of different levels of exchangeable aluminiun was conpared by making bion setric observations and by chenically analysing the plant and soil aamples at different stages of their growth and at harvest.

Fron the results obtained, the effect of differ rent levels of exchangeable aluainiun on the growth and mutrient uptake of these plenta could be brought out and the comparative sensitivity of cowpea and Podder maize to exchangeable aluminium content in ooil could be revealed.

The important findings frow this investigations are sumarinised below.

1. The pif of the upland soils Varied from 4.2 to 7.2 and was lowest in laterite and alluvial soil and highest in red loan aoils. pH when determined in $0.01 \mathrm{~K} \mathrm{CaCl}_{2}$ solution recorded a lowering of 0.2 to 2.9 units compared to phin water.
2. Lute tequireaent and cation exchange capacity wore
minimum in sandy soil. Lise requirement was maximum In the laterite soil and CEC was maximum in alluvial soil, Exchangeable aluainiun content and PAS were maximuid in laterite soil while a few of the red loam soils recorded almost nil velues.
3. Application of different levels of 1100 as per the treatnents resulted in a significant rime in pH and a significant lowering of total acidity, exchangeable aluninium and exchangeable hydrogen content of the so11. Addition of fertilizers to the limed soils also lead to an increase in pH and a corresponding reduction in total acidity as well as both exchangeable aluminium and hydrogen.
4. Cultivation of fodder naize and cowpea hes resulted In an increase in ph and a decrease in total acidity and esthangeable aluainiua and hydrogen content of the 3011 at their early stages of growth. But at harvest. both these plants slightly reduced the pll of the soll leading to a corresponding rise in acidity, exchangeable aluniniun and hydrogen content.
5. Maximum height of plant as well as length of root in cowpea is observed in soils with an exchangeable aluminium level of $1.26 \mathrm{me} / 100 \mathrm{~g}$. Complete elimination of exchangeable alumindum showed: a depressing effect on both these characters. A reduction in exchangeable aluisiniun brought about by liwing has albo resulted in a Inear increase in the maber of root nodules. The number of nodules in plants in all the treatments decreased towards harvest.
6. Maximum dry eatier production and grain yield in cowpea were recorded at an exchangeable aluainiua content of $1.26 \mathrm{~m} / 100 \mathrm{~g}$. A further increase or decrease in exchangeable aluminiuia showed a depressing affect on both these characters.
7. Correlation between exchangeable aluainium content of soils and characters like height of the plant, root length, nodule count, grain yield, total pod yield and total dry matter production in cowpea were negative and significant. Kaintenance of exchangeable aluminiun at 1.26 ea/100 g with a corresponding percentage aluainium saturation value of around 30 appeared
to be the optimum for maxinising the yield in cowpee. Complete elimination of exchnngeable aluainium appore to be unnecessary and uneconouical as indicated from the negative effect of this treatment on the growth and yield of csapea.
 a reduction in exchangeable aluainius content of the 8011. The maximux height was recorded when the exohangeable aluminium was 1.26 me with percentage aluminius saturation value around 30.
8. Other plant characters of fodder malze such as welelut of tops and roots, length of roots and total dry adeter production etc. exhibited a linear negative celati3nship with exchangeable aluminiue content maximua values for each of these characters being recorded at the minimur level of exchangeable aluanium. The suppressing effect of aluminiu on root growth was evident: Pron the negative and aignificant correlation that existed between exchangeable aluminium and root Iength of fodder malze.
9. The nutrient upteke in both cowpea and fodder maize
showed a Blmilar behaviour towards levels of exchangeable aluminium in soils. Among the different nutrients, the nitrogen content in tops and roots showed a innear increage with a decrease in exchangeable aluminium content of the soll throughout the growth of cowpea and fodder maize. Aluminium content in tops and roots was adversely related to the nitrogen content in tops and roots.
10. At higher values of exchangeable aluminiun in soil the concentration of phosphorus in tops showed a reduction due to the strong antagonistic relation between aluainium and phosphorus. Aluminiun content In the tops and roots of cowpea and fodder matze recorded a negative correlation to phosphorus content in tops and roots.
11. A reduction in exchangeable aluminius in soile did not produce any marked difference in the potassiun content of roots and tops of cowpea. However, a general incroase in potassium content in fodder malze has beon obtelned due to a reduction in exchangeable aluminiun. A high aluainium content was not found to inhibit the absorption
and translocation of potassium in cowpea, eventhough in fodder maize a strong negative correlation prevalied between aluminium and potassius content in roots.
12. Calcium content in tops of cowpea recostad the higheot value with the coaplete elinination of exchangeable aluminiua content in soil, but the content in root was maximum when soils contained about 1.26 ae exchangeable aluninium: Thus, fodder maize was found to be more sensitive conpared to cowpea in the absorption of calcium in the presence of aluminiua. A strong negative relation was also found to exist between aluminiun content and calciun content in tops of fodder naize.
13. Hagnesium cantent in the tops and roots of both cowpea and fodder maize increased with a reduction in the level of exchangeable aluminium in the goil. Corpea was found to be are tolerant in absorbing magnesitu in presence of aluainiun than fodder maize as ovident from the highar magnesium oontent at a higer level of exchangeable aluminium in cowpea compared to fodder maize which recorded the highest value for magnesium only after complete elimination of exchangeable alunisniun in the soil.
14. A reduction in the level of exchangeable aluminium in 3011 has reduced the content of irm in the tops of cowpan and fodder maize. Iron content in roots of cowpea and fodder anize exinbited a negative relotionship with the iron content in the tops.
15. The uptake of zinc by cowpea wal not much affected due to a reduction in the exchangeable aluminium content. But a higher content of zinc is noticed in fodder waize, where the exchangeable aluminiua has been completely reduced by liming. however in both plants, the uptake of zinc has been reduced die to over 11 ming. But copper content in cowpea and fodder maize was not affected by a reduction in exchangeabic eluminiua in 5011.
16. Aluminium content in both tope and roots of cowpea and foddar naize decreased with a reduction in the exchangeabie aluainius content of soil. Aluminiun concentration in root was found to be algnificantly higher than that $1 n$ tops and a atrong positive correlation between aluminiun content in tops and roots was eviderit.
17. A reduction in exchangeable mainium and percentego aluminium saturation values has resulted in an incrased uptake of $\mathrm{M}, \mathrm{B}, \mathrm{Ca}$ and Mg in both grain and huek of cowpea. Solls having an exchangeable eluminium content of 1.26 me/100 g recorded the highest value for all
 appears to be more prominent on the uptolte of calcium and phosphorus compared to other elements in both cowpea and fodder maize.
18. The content of aluminium in the grain and husk recomded the lowest value in solls with an exchangeable aluminam of $1.26 \mathrm{ma} / 100 \mathrm{~g}$.
19. Reducing the exchangeable aluminiua level to 1.26 me/i00 g by the application of 500 kg liae has helped to increase the yield and nutrient uptake in cowpea. But in fodder maize this level of lime has been found to be insufeicient and complete elimination of aluminium toxicity appars to be essential.

From the results of the present investigation it may be concluded that higher levels or exchangeable aluninium adversely affect the growth and yield of
coupea and foddar adize. It can adversely affect their quality by influencing the uptake of nutrients and their content in roots, tops and grains. It appoapt that codpea can be cultivated profitably in presence of 500 kg Inme/ho which permits to mantain a certain amount of exchangeable aluninut level in soils, while fodder anize is more senditive to exchengeable luminita than cowpea and porformed better only when the excess muninium was completely eliminated. Compea exhibtod a greater tolerpance to aluminium at in 26 ac of exchanm geabla aluminiun.

It follows fron the results that a level of 1200 higher than $500 \mathrm{~kg} / \mathrm{ha}$ any prectically effective In completely eliminating the level of exchangeabla aluminium in the soil. This level of 21 me has been arrived by calculation as $544 \mathrm{~kg} / \mathrm{he}$ which is yory much less than the 2lee requirement based on conventional wethods to bring the soll pis to neutrality. Applicetion of 544 kg lime/ha which can completely suppress the exchangeable aluminiun instead of full lime reguifow nent values of the soil may therefore be constered
to be optimuw for fodder maize in producing maxinum drymatter and permit a greater uptalse of nutriento.

Since the critical levels of exchangeable aluainiua appears to be different for different crops, it is desirable that lime levels to reduce exchangeable aluminium to such a critical level alone be applied. The results of the present study thus point to the advantege in adopting the exchangeable alualnium level of soll as a better index of ining for various crops grown in the upland acidic soils of Kerala.

REFERENCES

Abrabam Alice. 1984. The releage of aluminium in soils under submerged conditions and its effect on rice. Ph.D. Thesis, Kerala Agricultural University.

Abruna, R.F., Chandler, V.J. and Pearson, Rö̈. 1964. Effects of liming on yields and composition of heavy fertilized grasses on soil properties under huyid tropical conditions. Erog. Soli

Abruna, R.F.f Escolar, P.R., Chandler, VoJe, Figaralle, J. and Silva, S. 1974(a). Response of green beans to acidity factors in six tropical soils. J. Agric. Unl. Peurto R1co, 5e: 44-57.

Abruna, RePe: Escolor, P.Re, Chandler, Vov., Dearson, Ret. and silva, S. 1974(b). Response of corn to acidity factors in eight tropical soils. I. Anrl. Uni P Puerto Rice, 58, 57-59.

Adama, F. and Lund, Z.F. 1966. Effect of chemical activity of soil solution aluainium on cotton root penetration of ecid sub soils. Soll Sci." 101: 193-198.

Adans, F. and Hetchcock, PoJ. 1994. Aluminium toxicity and Ca deficiency in acid sub soil horizons of two coastal plains soil series. Soll Sci. Soc. An. J.: 48: 1305-1309.

Alley, 信M. 1981. Short term soll chesical and crop yield response to lime stone application. Agron. I.: 73: 687-689.

Alva, A.R., Asher, C.J. and Edwards, D.G. 1986. The role of Ca in alleviating aluminiun toxicity. Augt. J. Agri. Res. 37 : 375-382.

Amedee, G. and Peech, M. 1976. The aignificance of KCl-extractable A1 (III) as an index to linae requirement of soils of the huma tropics. Sog 2 Sci., 121: 227-233.

Andrew, C.S. and Vandenberg, PoJ. 1973. The influence of aluminium on phosphate sorption by whole plents and excised roots of some pasture legumes. Aust. I. Agric. Res., $24: 341$-351.

Andrew, C.S., Johnson, A.D. and Sandiand, R.L. 1975. Esfect of aluminiua on the growth and chealcal composition of some tropical and temporate pasture legumes. Aust. J. Agri. Reso, 24: 325-339.

Aniol, A., Hill, R.D. and Larter, E.N. 1979. Al tolem rance of spring rye inbred lines. Crop Sei. 20: 205-208.

Anonymous. 1984. The package of practice recomendations of the Kerala Agricuitural University.

Awad, A.S., Edwards, D.G. and Milhem, Po3. 1976. Effect of pH and phosphate on soluble soll alumintua and on growth and composition of Kikuyu graes. Plant go17. 45: 531-542.

Bache, Boif. 1985. Soll acidification and aluminium wobillty. Soll use and nanagement, 1: 10-14.

Bache, Bow. and Crooke, W.M. 1981. Interaction between Al, P and pH in the response of barley to 8011 acidity. plant Soil. 61: $365-375$.
*Bennet, M.J., Breen, C.M. and Fey, M.V. 1985. The primery site of aluminium injury in the root of zea gays L. South African I. of Mant and Sols.

Black, C.A. 1973. Soll plant relationships, Uiley Eastern Private Lipited. New Delhi, 273-355.

Blair, Aoti. and Prince, A.L. 1923. Studies on the toxic properties of 8011 s . Soil sci. $15:$ 109-129.

Bloon, PoR., Mc Bride, M.B. and Weever, ReM. 1979. Aluminium and organic matter in acio soils. Euffering and solution aluniniun activity. So11 Sci. Soc. Am. Jo. 43: 488-493.

Brenes, E . and Pearson, Roit. 1973. Root responses of three graainae species to soil acidity in an oxisol and ultisol. Soil Scl.: 116: 295-302.

Cate, R.B. and Sukhas, A.P. 1964. A study of aluniniun in rice soils. Soil Sci. 98 : 85-93.

Chenery, E.f. 1948. Thioglycolic acid as an inhibitor for iron in the calorimetric datermination of aluminium by means of aluminon. Anelyst, 73: 501-502.

Clark, J.S. and Nichol, W.E. 1966. The lime potential percent base saturation relations of acid surface horizon of mineral and organic soils. Can. J. So11 Sci. : 46: 281-285.

Cochrane, T.T., Selinas, J.G. and Sanchez, P.A. 1990. An equation for liming acid minaral soils to compensate crop $\Lambda 1$ tolerance. Tropical Asedce, 57: 113-140.

Coleman, N.T., Kamprath, E.J. and Heed, S.B. 1958. Lining. Adv. Agron. . 10: 475-517.
*Cruz, A.D., Hag. H.P. and Sarmuge, J.R. 1967. F and Aa interactions in two wheat varieties (Triticum vulgare) grown in nutrient solution. Anais. - . Sup. Agric. Luiz Cueivoz.: 24: 119-129.

Curtin, D. and Suillie, G. $\mathrm{H}_{\text {. }}$ 1985. Effects of liming on 8011 cheascal characteristics and gross grosth in laboratory and long tern field amended sosis. Plant So11, 95: 15-22.

Dasapandae, T.I. 1976. Acid soils of Mahareshtra. Eug. Indien Soc. Soli sel. 11: 47-53.
*Dewan, H. 1966. Aciciity of certain Vireinia soil ab related to their ainerology and chemistry: Liss. Abstr.- 26: 3575.

Dionne, JiL. and Pesant, A.R. 1985. Effects of applicetion of Mn and A , soil ph and moisture regimes on alfalfa yields and the evallability of in cma A1. Can. J. Soil Sci., 65: 269-282.

Ekpete, D.M. 1972. Assessment of the 11me requirement of Eastern Nigeria solis. Soin Gci. 113:

Evans, C.E. and Ramprath, E.J. 1970, iAme response as related to percent aluminium saturation, solution aluminiun and orgenic matter content. proc. So12 Sci. Soc. An. 34: 893-896.

Fageria, N. N_{i} 1985. Influgnce of aluminium in nutrient solutions on chemical composition in two rice cultivars at different growth stages. plant S011. 85: 423-429.

Fageria, Nok. and Cervalho, J.R.P. 1982. Influence of elumindua in nutrient solutions on chemical composition in upland rice cultivars. plant So1.2. 69: 31-44.

Farina, M. P. H., Suener, M.E., Plank, C.O. and Zotzach, W.S. 1980. Exchangeable iuminium and pH as indicators of 11 re requirement for corn. Soli Sci- Soc. A포. J.: 44: 1036-1041.

Fox, R.H. 1979. Soll pit, aluminium saturetion and corn grain yield. Soll Sct.: 127: 330-334.

Foy, C.D. and Brown, J.C. 1964. Toxic factors in aeld soils II. Differential aluminiun toleranco 0^{\prime} plant species. Erac. So17 Sck. Soc. Ames. 29: 27-32.

Foy, C.D.e Burns, G.Re, Brown, J.C. and rieming, A. . . 1965. Differential aluniniun tolerance of too wheat varieties associated ith plant induced ph changes around their roots. pueg. Soin pea. Soc. Am. 29: 64-67.

Foy, C.D., Floning, A.I., Durns, G.R. and Ameger, V. H_{A} 1967. Characterisation of differential aluninium tolerance anong varieties of wheat and barley. Proc. Soll Sci. 3De. Ase: 31: 513-521.

Foy, C.D., Jones, J.E. and Webb, H.W. 1980. Adaptation of cotton genotypes to an ació, aluminium toxic so11. Agron. … 72: 833-839.

Franco, A.A. and Munns, D.N. 1982. Aeidity and aluninium restraints on nodulation, mitrogen fixation and growth of paseolus vulgaris in solution culture. Soil Sci. Soc. An. J., 46: 296-301.

Frink, C.R. 1973. Aluminium cheaistry in acid sulphate soils. Prog. Int. Sym. Acid sulphate Soils. Wageningen, 1: 131-168.

G111man, G.P. and Sumpler, E.A. 1986. Surface chargo charscteristics and lime requirement of soils derived from Basaltic, Granitic and Matamorphic rocks in high rainfall tropical queensiand. Aust. J. Sofl Res.: 24: 173-192.

Goswan, N.N., Leelavathi, LoR. and David, M.S. 1976. Response of cereals to live as aifected by 1 tis rate of application and fertilizer treatments in acid soils. Eull. Indian Soc. Soil Sele. 11: 238-245.

Guerrier, G. 1977. Absorption of aineral elements in presence of alusiniun. plant 5oll, 51: 275-273.

Halder, B. R. and Mandal, 苚. 1985. Lime sequirement of acid soils in relation to pH , exchange acidity, extractable acidity and exchangeable AL contont. of the soils. J. Indian Soc. Soli Sci. 33 : $528-535$.

Hargrove, W.L. and Thonss, G.ti. 1981. Tatration properties of aluniniun organic matter. Soil Sci. 134: 216-225.

Haynes, RoJ. and Ludecke, T.E. 1931. Effect of lime and phosphorus application on the concentrations of avallable nutrients and on $P, A l$ and Mn uwtake by two pasture legures in an acid soil. plost 3041, 62: 117-123.

Helyar, K.R. and Anderson, A.J. 1974. Efiect of Celcium Carbonate on the availability of nutrients in an acid soil. Proc. Soll Sci. Soc. Am. 38: 341-346.

Holford, I.C.R. 1985. Effects of lime on yields and phosphate uptake by clover in relation to chencres in soil phosphate and related characteristics. Aust. J. Spil Res. 23: 75-63.

Horsnoll, L.J. 19a5. The growth of improved pastures on acid soils. 1. The effect of superphosphato and line on soil pH and on the estabilshment and growth of phalaris and lucerne. Aust. J. Expt. Agric. . 25: 149-156.

Hortenstine, C.C. and Fiskell, J.G.A. 1961. Effecta of aluminium on sunflower growth and uptake or boron and calciun fron nutrient solution. Peoc. So11 Sct. Sac. Am. 25: 304-307.

> Hoyt, P.B. and Nyborg. H. 1971. Toxic metals in medd ssil'1. Estination of plant available aluainium. Proc. Sp11 Sci. Soc. Am., 35: 236-240.

Hutchinson, F.E. and Kunter, A.S. 1970. Exchangeablo gluminium levels in two 3011 s as related to line treataent and growth of six crop species. Agron. J., 62; 702-704.

Wutton, C.E. and Fiskell, J.G.A. 1965. Soll acidity factors affecting corn production in wast Florida. Proc. Soil Croo Sci. Sjc. Fla. 2 2 : 36-46.

Indira, M. 1985. Nitrogen fixation by cowpea as
intluenced by the gtage of growth ond duration
of Grop. H.Sc. (Ag) Thesis, Kerala Agricultural
University.
Jackson, M.L. 1973. Soil Chenical Analysis. Prentice Hall of India (P) Ltd., New Deahi.

James, B. Re and Rina, S.T. 1984. Soluble aluminium in the acidified organic horizons of forest 5011s. Can. J. Spil Sei. 64: 637-646.

Jarvis, S.C. and Hatch, D.J. 1986. The effects of 10w concontrations of aluainium on the growth and uptake of nitrate-nitrogen by white clover. Plant Soll, 95: 43-45.

Jones, U.S.. Samonte, H.P. and Jariel. D.F. 1982. Response of corn and inoculated legumes to urea, lime, F and \S an Guadalupe clay. Soll sod. Soc. Ag. J. 46: 296-301.
*Juste, C. 1966. Contribution to the study of the aluminiut cycle in the acid soils of the South liest Atlantic area. II. Application to their reclanation. Annls. agron. 17: 251-341.

Kabeerathuma, S. and Nair, C. 1973. Effect of 11ming on exchangeable cations and pH of acid solla 0 : Suttanad. Agri. Fes. J. Kerale, 11: 9-13.

Kamprath, E.J. 1970. Exchangeable A1 as a criterion for 11elng leached mineral soils. Proc. Soil Sci. Soc. Ano: 34: 252-254.
*Keefer: R.F., Singh, R.N., Bennett. O.C. and Horrath, D.J. 1983. Chenical composition of plants and so1ls from ravegetated aine soils. In proceeding 198\%. Syaposiua on surface aining, hyurology, sedimontology and reclenation; 155-167.

Keyser, H.hi, and Munns, D.N. 1979. Tolerance of Rhizobia.to acidity, aluminium and phosphete.

Khanna, P.K., Raison, RoJ. and Falkiner, R.A. 1935. Exchange characteristics of sone acid organic rich forwst soils. Aust. J. Soll Rese 24 : 67-80.

Kim, M.K., Edwards, D.G. and Asher, CoJ. 1985. Tolerance of Trifoliun subterranium cultivars to $10 w \mathrm{pH}$. Aust. t Agrt. Res. $36: 569-578$.

Kumishi, H.H. 1982. Combined effects of lime, phosphate fertilizer and aluminium on plant yield from an acid soil of the South-eastern United States. Soll Sci. 134: 233-238.

Lae, C.R. 1971. Influence of aluniniun on plant growth and tuber yield of potatoes. Agron. J.: 63. $353-364$.

Ligon, W.S. and Plerre, F.H. 1932. Soluble aluminium studies - II. Minimin concentrations of aluminium found to bo toxic to corn, sorghus and barley in the culture solution. Soli Sele. 34: 307-321.

Lockard, R.G. and Mc Walter, A.R. 1956. Effect of toxic levels of Sodiun, Arsenic. Iron and Aluminiun on the rice plants. Mplayan Agme. Jo: 39: 256-267.

Long, B.L. and Foy, C.D. 1970. Plant varieties as indicators of aluminiun toxicity in the A_{2} horizon of a Norfolk so11. Agron. J. G2: 679-681.

Mac Lean, A.A. and Chiasson, T.C. 1966. Differential performance of two barley varieties to varyireg aluainium concentrations. Can. J. 3ail Scie. $46:$ 147-153.

Mac Leod, L.B. and Jackson, L. P. 1967. Aluminius tolerance of two barley varieties in nutrient solution, peat and enl culture. Agron. J. 59: 359-363.

Magistad, O.C. 1925. The aluminium content of the soil solution and its relation to soil reaction and plant growth. Soil Sci. 20: 181-226.

Malavolta, E., Nogueira, F. D., Olivetra, I. P., Nakayanna, I. and Elnori. I. 1931. Aluminium tolerance of sorghum and bean-Hethods and results. J. Plant Mutre: $3: 667 \rightarrow 694$.
*Manrique, L.A. 1986. The relationship of soil pH to $\lambda 1$ saturation and axchangeable aluminiun in Uitisola and Oxigols. Cominn In. Soil Sci. Plant Absies 17: 439-455.

Martini, J.A. and Muttere, R.G. 1935. Effect of lime rates on nutrient avallability, mobility and uptake during the soybean - growing season. 1. Aluminium, Manganese and Ehosphorus. Soil Sgt., 139: 219-226.

Fartini, J, A., Kochinan, K.A., Siqueire, $0 . J_{0}$ and Boritet, C.M. 1974. Response of soybeans to liming es related to aoll acidity, A1 and in toxicities, and ? in some Oxisols of Brazil. Sof. Sci. Soc. Am. Proc. 33: 616-620.

Mertint, J.A., Kochhann, Ref., Gomes, Fope and Langer, F. 1977. Response of wheat cuitivars to lining in some high Aluminium Oxisols of Rio Grande do Sul, Brazil. Amon. J. $69:$ 612-616.

Mo Lean, E.O., Hourlgan, H. R_{A}, Shooantrer, H, E. and Bhumbla, D.R. 1964. Aluminium in goils v Forms of aluninium as a cause of soil acidity and a complication in its neasurement. Soll Sci.s 97: 119-126.

Mendez, J. and Kamprath, EsJ. 1978. Lining of Latosals and the offect on phosphorus response. Soll Scl. Soc. A3. J. 42: 86-88.

Mugnira, L.M., Patel, SoU. and Fleming, A.L. 1980. Aluminium effects on growth and $A 1, \mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$ and. p levels in Triticale, wheat and Rye Flant Sol1, 57: 467-470.
*蚂ukhopadhyay, Po, Haldar, N. and Mandal, LoN. 1934. Effect of Calcium carbonate on the availability of A1, Mo, P , Ce and Hg in waterlogged acidic rice soils. Agro. Chenicg, 23: 125-132.

Nye, P., Craig. D., Colenan, N.T. and Ragland, J. L. 1961. Iron exchange equilibria involving aluminium. Proc. Soll Sel. SOc. Ame. $25: 14-17$.

Dates, K.f. and Kamprath, E.J. 19B3. Soll acidity and 1ining. I. Effect of extracting oolution cation and ph on the renoval of aluminium from acid 3011s. So12 Sci. Soc. Am- J., 47: 636-639.

Ota, Y. 1968. Rode of occurrence of bronzing in rico plant. Jip. Agric. Res. Q. 2: 1-5.

Pal. A.K. and Mandal. L.N. 1935. Lima requirement of alluvial acid soils in relation to bufter pid acidity measured by different methods. I. iodlon Soc. S211 3ci.: 33: 271-277.

Pavar, H. and Marshall, C.E. 1934. The role of alumingum in the reaction of the clays. J. Soc. Chere Inde. 53: 750-760.
*Pearson, R.H. 1975. Soill acidity and 1iming in the hunid tropics. Cornell Intl. Azric. Bull. 30. Comell Univ. Itbacs, H.Y.
*Piert, C. 1974. Proinainary experimental studies on tho sensitivity of ground to aluminiun toxicity. Agronomic Troplcale. 29: 685-696.

Raglend, J.L. and Colean, N. T. 1959. The effect of soll solution aluainum and calcium on root growthe Eroe. Soll Sci Soc. Ait. 23: 355-360.
 and Van Scoyoe, $5, W_{\text {. }}$ 1986. Alfalfa seedling growth in nutrient solutions as influenced by A1, Ca and pH. Compun. in Soil Sci. plant anoz. 17: 27-44.

Reave, No. and Sunner, Mo K_{o} 1970. Effects of alumie nlum toxicity and P Pixation on crop growth an oxisols in Hatal. Pxoc. Soil Se1. Soc. Ag. 34 , 263-267.

Reid. D.A.p Jonss, GoDo, Aroiger, Woito Foy, CoD. Koch, E.J. and Sturling. T.M. 1969. Uleferential Al tolerance of winter barley varieties and selection in associated green house ami piezs experiments. Agron. J. $61: 210-222$.

Reid, D.A*p FIeaing, A.L. and Foy, C.D. 1971. A etetwod of deternining aluainlum respsnse of berloy in nutrient solution in comparison to responge in aluminium toxic soils. AeEDR. I* $63 \% 600=633$.
 tionship between the decrase in soil atability effected by the growth of malze roots and change in organically bound Fe and A2. J. Soll Bctog 33: $397-410$.

Fruschel, A.P. AIvahyda, M, and Gampaio, I.B.f. 1968. Effect of excess siluniniun m growth of beans (Phaseolus qulearis L) in mutrient culture. Espg- agropec. brat. 3: 229-233.

Salgura, fo, Shojl, S. and Takthashi, S. 1980. Planz rost. growth in acid andisols from north eagtoris Japan. Exchange acidity X, as a realistic nearure of aluainlut toxicity potantial. Soll Sed. 130: 242-200.

Sanchez, P.A. 1976. Properties and management of soils in the tropios. John wiley a Sonts, New Yort.

Sertain, J.B. and Kamproth, E.J. 1975. Lifect of ilwing a highly A1 saturated soil on the top and root growth and soybean novulation. Agari. む. : 67: 507-510.
*Shamshulding J. and Teasons, E. 1993. Eotentionetric titration of cid soile Irom Penninsular Melasie. Pertantia, 6: 71-76.

Shoemaker, H.E.O., HC Latan, E.O. and Pratt, P.F. 1961, Buiter methods for determining lime requiremert of coils with appreciable amount of extractable

Sudhareai Devi, C.R. 1983. The nature of ectdity in upland and rice fallone in relation to response of pulse crop to liming. H.Sc. Thesis, Kerolo, Agricultural University.

Suthipradit, S. and Alva, S.K. 1936. Aluninium and ph limitations for germination and fudicle grouth of soybern. J. jf plant Nutr. : 9: 67-73.

Tanaka, A. and Navasero, A.A. 1965. Growth of rice plant on ecid sulphate soils. Soli ScI. P1.

Tinger, VoR. 1985. Response of hybrid popler clone to soil acidification and 1ising. Cane I. Soit Scte. 65: 727-735.

Tomlinson, T.E. 1957. Relationship botween mangrovo vegetution soil texture and reaction of surgace soll. ExOpic. 6ari. 34 : 41-50.

Tripathl, R.S. and Pande, H.K. 1971. Studies on toxicity factors and nutritional iqbalance in 3011 for wheat culture in acid lateritic soil. Int. Syop. Spil Fert. Evaluation 1: 821-830.

Truman, - Reis, Hunphreys, $\mathrm{Fa}_{0} \mathrm{i}_{\mathrm{o}}$ and Ryan, PoJ. 1906. Effect of varying golution ratiog of aluminium to calciun and magnesius on the uptake of phese phorus by pinus radiata elant soin, 96: 100-123.
*Ve2ly, J. 4974. Observations on the acidification of sole soils of Hadasescer. fgrononic Tryolcola, 20: 1249-1262.

Yuan, T.L. 1959. Deternination of exchangeable hyipojen in 9011 by titration method. Soif Scie 33^{2} 164-167.

2skaria, Z.Z., Schroder, V.N. and Boota, K.J. 1977. Soybean response to calcium and phosphorus under aluminium saturation. Eroc. Sodi Capp Sci. Egc. Elox. 敢6: 178-181.
*Taini, 2. and Mercado, 3.T. 1984. Pho3phorus nutrition and phosphate activity of young cice plants ancon in culture solution - II Ehosphorus - aluainita interaction and phosphatase activity of r3obe. 2h1lipgine Agriculturist. 68: 217-224.

* Originals not seen

APPENDICES

Appendix I(a)
Influence of different levels of lime on the soil reaction at different stages of growth of cowpea

Source	di	65	M5S	E

1. After applica-
tion 0 different levels of lime
Total $15 \quad 11.0200$
$\begin{array}{lrrrr}\text { Treat } & 5 & 10.9569 & 0.6523 & 609.1132^{\mathrm{xK}} \\ \text { Brror } & 12 & 0.0631 & 0.0053 & \end{array}$
2. After application of fertilizers

Total	15	8.1844			
Treat	3	8.0319	2.6773	242.472^{Kx}	
Error	.	12	0.1325	0.0110	

3. At the maxinul flowering stage

Total	15	5.7494		
Treat	3	5.4919	1.8306	$03.3335^{8 x}$
Error	12	0.2573	0.0215	

4. At the ald pod ellilng stage

Total	15	5.2975		
Treat	3	4.3725	1.6242	$45.0304^{x X}$
Trror	12	0.4250	0.0354	

5. At the harvest

Total	15	6.4940		
Treat	3	6.0165	2.0055	$50.3894^{8 x}$
Error	12	0.4775	0.0398	

xx Slgnificant at les level

Appendix I(b)
Influence of different levels of lise on the total acidity of the soil at different steges of growth of cowpea

Source	df	SS	NSS	P
1. After the application of different levela of liae				
Total	15	13.8629		
Treat	3	13.6449	4.5483	
Error	2	0.2179	0.0102	$250.4526^{\text {xx }}$
2. After the application of fertilizers				
Total	15	9.5386		
Treat	3	9.3531	3.1177	$201.7092^{8 x}$
Error	2	0.1855	0.0155	

3. At the aximum flowering stage

Total	15	3.2959		
Treat	3	3.2457	1.0818	$253.5981^{\text {x }}$
Error	12	0.0502	0.0042	

4. At the mid pod filling atage

Total	15	0.3758		
Treat	3	0.3111	0.1037	$19.2268 \times x$
Error	12	0.0647	0.0054	

5. At the harvest stage
Total 151.6205

Treat 3
Error
12

1.5633	0.5210	$109.386^{x x}$
0.0572	0.0048	

Acpendisx I (c)

 awchargstaze auntnium content of tha toil at difiterent gteges of gxowbh of compon
SCuECe di BS

1. After the application of diteszont leveis of 24 nto

Fotal	15	13.3931		
stest	3	12.9314	4.3105	
Error	12	0.2518	0.0209	$205.4567^{88 x}$

2. After tha apitcathon or fertilizers

Toki $15 \quad 7.3850$
3xeat 3.1991 2.3097
Erisor
12
0.1350 0.0195
3. At the maximua thoweriry thage

Totel	15	1.3207		
rrate	3	1.2005	0.4008	
Errot	22	0.1092	0.0091	44.0996^{3}

4. At the nu poo silling stage
Total 85 0.1837

Freat 30.18360 .6612
Emros 220.00020 .00002 4250.69206
5. Ae tive harwant gtag

70tal	15	0.6452		
rrost	3	0.6450	0.2250	
\$ryor	12	0.0002	0.00001	$24169.34^{3 x}$

$3 \times \operatorname{signtin}$ ant at 2\% 2evel

Anpenclite $I(d)$

 grocrik of corpan

sexifoe	de	53	14.5	r

1. Attex tha mplication of attegrent leveli of kim

gotel	25	0.0203		
Treat	3	0.0177	0.0059	
	12	0.0036	0.0007	9.2044 ${ }^{\text {E }}$

2. Aitur tive epplication of Eactilamer

yotal	15	0.9363		
Trest	3	0.9201	0.3094	
Exrot	12	0.0080	0.0007	402.2920

Total 250.6924
Trest 3 0.8252 0.2083

12
9.0673
0.0056 37.2154^{355}
4. At elve sid pod ailitng stage

Total	15	0.1024		
Treat	$: 3$	0.0408	0.0135	
grart	12	0.0818	0.0005	$2.6239^{N S}$

S. At the manyest

rotal	15	0.2763		
rrest	3	0.2164	0.0721	
Error	12	0.0635	0.0050	$14.3168^{x 0 x}$

x 3fgntzleant at 5\% loval

Agperatis $I(0)$

Taslumos of differont Ievals of ifme on minanceato potesium content of the whi at differant stajes of aromth of conata
Souro EE FS

1. Aftar applitation ot affergit lewele of Lina

Towal	35	0.0400		
Tzeet	3	0.0353	0.0419	
5actit	12	0.0050	0.0004	29.94×0

2. Aftar the applicattin of tertilinare

rotey	15	0.0152		
reat	3	0.0029	0.0009	
Emar	32	0.0123	0.0010	0.0404

3. At the machexat ficwering ategi

rotel	28	0.0950		
Treat	3	0.0165	0.0085	
Exccos	12	0.0793	0.0064	$0.0325^{\text {N5 }}$

4. At the mal pod tiselng steg*

Toba2	25	0.0422		
Treat	3	0.0444	0.0079	
Erree	12	0.0277	0.0023	2.0720^{615}

5. At tho hasventing etage

roced	15	0.0269		
Treat	3	0.0161	0.0054	
2rens	12	0.0208	0.0009	5.2596^{2816}

mig zontinwont at 1\% leved

 oxtant of tue wid at Atsferent tugen of gxcwin os cowgest

Hotes	25	$3 \mathrm{SG} .07 \mathrm{H7}$		
3rate	3	340.3272	156.1092	
Etrois	22	0.7498	0,0025	1050.1433 ${ }^{30 \%}$

2. After the apizcation ow certilismge
rewal $\$ 5 \quad 190.3280$
Treet 3 359.0645 63.0282

EWHOF 12.02740 .1022
$616.1930^{80 x}$

Fota2 25 222.1939
Trate 3 214 2743 30.094
Exyor $12 \quad 7.9224$ 0.0602 57.0969^{706}
4. At the nid pox eliling begat

Hetal	25	62.4647		
meat	3	50.5153	19.8396	
mrgor	12	2.9499	0.2457	$00.7299^{5 \pi}$

S. At tha harvate stege
T0482 15 99.9967

Tiset 3 97.1773 32.3024

Appondis I(g)

InElumoe af different lovel of inm en exehameabie magnasium content of the molz at cilferent etagos of grouth of corpeat

E0unce	64	59	HES	F
3otal	25	0.0720		
T2tat	3	0.0296	0.0099	
5	12	0.0430	0.0036	2.7000^{185}
T0xay	35	0.0496		
Trase	3	0.0012	0.0035	
SELCE	12	0.0390	0.0033	3.0939^{415}
3. At tha moximm slowesting otose				
Towal	35	0.2027		
Trest	3	0.3204	0.0403	
Efrct	12	0.0783	0.0063	$6.3901{ }^{2}$
4. At tino mid pan tioling neveo				
Totel	15	0.1237		
Tesat	3	0.0331	0.0209	
区itcer	12	0.0636	0.0070	$3.4800^{t i s}$
5. At the harveat				
- cotaz	15	0.1099		
drase	3	0.3570	0.0324	
Ex408	12	0.0329	Casez	3.3272^{x}

[^0]
mppencilx $\mathbf{2 (n)}$

Influence of altfarent levels of liwe an ompinergenble tron content of the soll betiore cind after mompes culduatica
Corace 3 HI HSS

1. Desore cuttivation
rotel 25
2rest
3239.1639
46.3673
wrien
12
4.4225 0.3485 125.6814^{205}
2. Artex cultivation

Totel 15
2.0868

THeat	3	2.1600	0.7200	
Ergor	12	0.7367	0.0061	11.7232^{20}

xe zigasetoant at $2 ;$ Level

Appendix II

Influence of different lovels of lime on the plant characters of cowpea at different stages of growth of cowpea
Helght of the plant

Source	ds	SS	MSS	F
1. At the aeximum ilowering stage				
Total	15	114.52		
Treat	2	44.56	14.352	2.547^{183}
Error	13	69.965	5.830	
2. At the mid pod is2ling stage				
Total	15	130.86		
Treat	2	29.38	9.792	$1.15 \mathrm{~s}^{178}$
Error	13	101.49	8.457	
3. At the harvest				
Total	15	290.124		
Treat	2	84.652	28.217	$1.648^{\text {NS }}$
Error	13	205.473	17.123	

Root length

Source	df	3	MSS	F
1. At the maximua flowering atage				
Total	11	28.52		
Treat	3	22.61	7.536	
Error	8	5.91	0.739	$10.19^{* 0 t}$
2. At the ald pod fiming stage				
Total	11	45.747		
Treat	3	22.76	7.587	$2.64{ }^{\text {IVS }}$
Error	8	22.986	2.673	
3. At the harvest				
Total	15	70.03		
Treat	3	13.95	4.648	$0.395^{\text {NS }}$
Error	12	56.09	4.674	

Appendix II (contd.)
Number of nodules

Source	di	33	HSS	F
1. At the merimum flowering stage				
Total	11	8.366		
Treat	3	4.552	1.517	3.583^{103}
Error	8	3.814	0.477	
2. At the mid poditiling stage				
Total	11	46.842		
Treat	3	29.054	9.685	$4.35{ }^{\text {x }}$
Error	8	17.787	2.223	
3. At the harvest				
Total	15	56.089		NS
Treat	3	25.569	8.523	3.355
Error	12	30.486	2.541	

Grain yield

Source	dif	SS	163	F
1. Grain yield				
Total	15	11.5		
Treat	3	8.935	2.995	$14.29^{8 *}$
Error	12	2.515	0.2096	
2. Huak yleld				
Total	15	2.529		
Treat	3	2.117	0.7056	$20.5273^{* x}$
Error	12	0.413	0.0344	
3. Total pod yleld				
Total	15	23.56		
Treat	3	20.11	6.702	23.2764 88
Error	12	3.455	0.283	

xx Significant at 1 fis level
x Significent at 5\% level

Appendix II (contd.)
Total dry weight

Source	di	58	053	F
1. At the maximum flodering stage				
Total	11	1.269		
Treat	3	1.103	0.363	17.640^{80}
Error	8	1.667	0.021	
2. At the ald podilling stage				
Total	11	4.509		
Treat	3	3.209	1.070	6.58%
Error	8	1.300	0.1625	
3. At the narvest				
Total	15	39.274		
Treat	3	5.497	1.332	$0.651{ }^{\mathrm{N}}$
Error	12	33.777	2.815	

2x Significent at if level
x Sigaificant at 5is lavel

Appencix $\operatorname{IT}(a)$
Influence of different levels of: live on nutrient composition of owpea tops at different gtages of growth of cowpea

Nitrogen

Source	df	35	MSS	p
1. At the enximum flowering stage Total 11 2.7807				
Trest	3	2.5033	0.8344	$24.064^{3 x}$
Error	8.	0.2774	0.0369	
2. At the enid podililing stage				
Total	11	1.7486		
Treat	3	0.9095	0.3032	2.898^{3}
Error	8	0.8391	0.1049	
3. At the harvest				
Total	15	0.3540		
Treat	3	0.1184	0.0393	2.011^{1+13}
Error	12	0.2555	0.0196	

Fhosphorts

Source	dt	SS	MES	F
1. At the maximus flowering stage				
Fotal	11	0.0038		$0.1235^{* 3}$
Treat	3	0.0002	0.00005	
Error	8	0.0036	0.0005	
2. At the mid pod filling stage				
Total	11	0.0113		$12.712^{x x}$
Treat	3	0.0094	0.0031	
Error	8	0.0020	0.0002	
3. At the harvest				
Total	15	0.0090		7.9677^{x}
Trest	3	0.0060	0.0020	
Error	12	0.0030	0.0003	

xx Significant at 1腐 level
x Significent at 5\% level

Appendis II(e) contd.

Potasmilu

Source di SS GSS

1. At the marinua flowering stage

Total	11	8.6319		
Treat	3	2.7986	0.9329	$1.27944^{\text {LiS }}$
Error	8	5.8333	0.7292	

2. At the aid pod filling stage
Total 111.0047

Treat	3	0.4908	0.1636	$2.5455^{5 S}$
Error	8	0.5139	0.0642	

3. At the harvest

Total	15	2.3656		
Treat	3	0.0816	0.0272	$0.1172^{W 5}$.
Error	12	2.784	0.232	

Calctum

Source	df	SS	M3S	F
1. At the maximum flowering stage				
Total	11	0.2587		$404.06^{\text {xx }}$
Treat	3	0.2570	0.0086	
Error	8	0.0017	0.0002	
2. At the ald pod filling stage				
Total	11	0.6978		$46.36{ }^{\text {7x }}$
Treat	3	0.6599	0.2200	
Error	8	0.0380	0.0047	
3. At the harvest				
Total	15	0.3343		
Treat	3	0.2929	0.0976	$28.136^{\times x}$
Error	12	0.0414	0.0035	

Appendix II(e) contd.
Magnesium

Source	de	$5 s$	Wes	F
1. At the maximum flowering stage				
Total	11	0.0016		
Treat	3	0.0006	0.0002	1.7437 fis
Error	8	0.0009	0.0301	
2. At the sid pod pililing etage				
Total	11	0.0032		
Treat	3	0.003008	0.000005	$0.0063^{\text {W9 }}$
Error	3	0.0032	0.0004	
3. At the harvest				
Total	15	0.0140		
Treat	3	0.0010	0.0003	0.2943^{383}
Error	12	0.0130	0.0011	

tron

Source	di	Ss	WS	F
1. At the maximus 1 lowering stage				
Total	11	139337		
Treat	3	104057	34685.667	7.755^{x}
Error	8	35779	4472.375	
2. At the aid pod filling stage				
Total	11	518606.6		
Treat	3	195886.6	65295.5	1.61963^{18}
Brror	8	322720	40340	
3. At the harvest				
Total	15	529192.75		
Treat	3	261068.75	37022.92	$3.9393^{\text {a }}$
Error	12	267125.00	22250.42	

xx Slgnificant at 1% level
x Slgniflcant at 5 5 level

Appendix II(a) contd.
Aluminiun

Source	di	55	IUS	F
1. At the maximum flowering stage				
Total	11	527291.67		
Treat	3	268491.67	89497.2	$2.7665^{8 / 3}$
Error	8	258500	32350	
2. At the aid pod filling stage				
Total	11	223625		
Treat	3	106691	35563.657	$2.433^{N S}$
Error	8	116933	14616.625	
3. At the harvest				
Total	15	614943.8		
Treat	3	305918.8	101972.93	$3.95{ }^{x}$
Error	12	309025	25752.1	

2inc

Source	d	SS	MSS	F
1. At the maximum 11 wering stage				
Total	11	1592.667		$0.487{ }^{\text {NS }}$
Treat	3	246.00	82	
Error	8	1346.66	163.33	
2. At the nid pod filling stage				
Total	11	1840.916		$1.979^{\mathrm{N} 3}$
Treat	3	734.250	'261.416	
Error	8	1056.666	132.083	
3. At the haryest				
Total	15	3551.75		$4.995{ }^{8}$
Treat	3	1972.25	657.42	
Error	12	1579.5	131.625	

x Significant at 5% level

Appendix II(a) contd.

Copper

Source	di	Ss	MSS	F
1. At the maximum flowerins stage				
Total	11	32		
Treat	3	6.67	2.22	0.702^{45}
Error	8	25.33	3.167	
2. At the mid pod filling stoge				
Total	11	96.667		
Treat	3	33.333	11.111	$1.40{ }^{143}$
Error	8	63.333	7.916	
3. At the harvest				
Total	15	93.438		
Treat	3	2.1875	0.7291	$0.096^{\text {i45 }}$
Error	12	91.25	7.6041	

Appendix II(b)

Influence of different levels of lime on the nutrient composition of cowpea roots at different stages of growih of cowpea

Nitrogen

Source	df	SS	MSS	F
1. At the maxiaum flowering btage				
Total	11	1.4904		7.1209°
Treat	3	1.0844	0.3614	
Error	3	0.4061	0.0508	
2. At the mid pod filling stage				
Total	11	0.7135		0.6229^{183}
Treat	8	0.1351	0.0450	
Error	3	0.5783	0.0723	
3. At the harvest				
rotel	15	0.7463		$0.1931{ }^{103}$
Treat	3	0.0344	0.0115	
Error	12	0.7119	0.0593	

Phosphorus

Source	df	SS	F1SS	E
1. At the maximum flowering stage				
Total	11	0.0438		
Treat	3	0.0156	0.0052	1.46 $6^{\text {Pas }}$
Error	8	0.0282	0.0035	
2. At the mid pod illing stage				
Total	11	0.0200		
Treat	3	0.0097	0.0032	2.5164^{317}
Error	8	0.0102	0.0013	

3. At the harvest

Total	15	0.07432		
Treat	3	0.01090	0.0036	0.637
Error	12	0.0634	0.0053	

Appendix II (b) contd.

> Potasolum

Source	df	SS	H3S	F
1. At the maximua flowering atage				
Total	11	0.0027		
Treat	3	0.0002	0.00006	0.2033×3
Error	8	0.0025	0.00031	
2. At the mid pod ililing stage				
Total	11	0.0094		
Treat	3	0.0046	0.0015	$2.48{ }^{163}$
Error	8	0.0049	0.0006	
3. At the harvent				
Total	15	0.0484		
Treat	3	0.0005	0.0002	$0.0415^{\text {83 }}$
Error	12	0.0479	0.0040	
Calciun				
Source	df	35	MS3	F
1. At the maximua 1 lowering etage				
Total	11	1.15128		
Treat	3	1.06843	0.35614	
Ercor	8	0.03285	0.01356	$34.388^{x x}$
2. At the mid podifiling stage				
Total	11	0.52744		
Treat	3	0.45458	0.15486	$19.7065^{\text {xx }}$
Estor	8	0.06285	0.00789	
3. At the harvest				
Totel	15	1.39011		
Treat	3	0.65724	0.21908	$3.587^{\text {x }}$
Error	12	0.73286	0.06107	

xex Significant at $1 ; 2$ level
x Significant at 5 s level

Appendix II(b) ontd.

> Magresiun

Source	df	35	MSS	F
4. At the maximun tlowering stage				
Total	11	0.0031		
Treat	3	0.0026	0.0009	12.826^{4x}
Error	8	0.0005	0.00007	
2. At the mid pod filling stage				
prtal	11	0.0014		
Treat	3	0.0004	0.00012	0.3908^{48}
Error	8	0.0310	0.00013	
3. At the harvest				
Total	15	9.0066		
Treat	3	0.0049	0.0016	$12.90^{8 x}$
Error	12	0.0016	0.0001	

Iron

Source	df	53	HSS	F
1. At the maximus flower stage				
Total	11	326389.2		
Treat	3	293549.2	97849.72	$23.3367^{8 \pi}$
Error	3	32940	4105	
2. At the mid pod filling stage				
Total	11	417796.6		
Treat	3	360539.5	120179.777	16.7915^{83}
Error	8	57257	7157.125	
3. At the harvest				
Total	15	94839.75		
Treat	3	43539.25	14513.1	$3.391{ }^{\text {NS }}$
Error	12	51300	4275	

xx Significant at 1of level

Apyenclis zind eoned．
Aluainku

Sonmes	d	45	1795	5
1．At eho maxtmim slowering seage				
rotas	13	1553025		．
\％ases	3	1504790．3	5025ent	
Emas	0	54056．67	6763.33	74.47^{32}
2．At the mut pot sillsng menge				
Total	11	510000		
Treat	3	371400	123003	
EtEOM	9	140000	27500	$7.074^{25 x}$
3．At the haverst				
T0才边	35	6270000		
Trese	3	5020000	1980000	
ExE0t	42	450000	37800	$51.73{ }^{30}$

BInc

sounco	de	DS	13.39	F
A．At the paxdmum flotatano atage				
3btel	衰意	11627		
Treat	3	3369	3223	
Emere	9	8250	1032．25	2．0379
2．At tha mid poa willimg atage				
\％otsd	12	9262．92		
2reat	3	2362.02	780.57	NS
Etsox	\square	5820	727.5	1.073
3．Ate chat mavoest				
gotas	35	50677．75		
Trcas	3	36864.25	12644．5	
E2TOE	12	22213．5	1851． 225	6． $5662 \times$

Apparxile $21(b)$ contd.

Copper

appandex Ex(a)

tarlugne of afesurent leval of 21 m on the mutelent oumpoition of grefn and iung of compen
istrogen

gancee	cte	35	HS3	\%
1. Orxin				
TOtal	15	2.0227		1.090^{885}
Reast	8	0.6021	0.2007	
Extom	12	1.4203	0.2103	
2. taitic				
20tos	35	$2 . \operatorname{ceg}$		
creat	3	1. 3667	0.4593	13.068 ${ }^{205}$
Cutar	12	0.3020	0.0252	

Phosphorus

303nes	de	43	MSS	7
1. Gxadn				
Tenaz	15	0.0911		0.026^{368}
qreat	3	0.0547	0.0102	
ETHOE	12	0.0384	0.0030	
2. tusim				
70ten	15	0.1230		4.7922 ${ }^{70 x}$
Tzeat	3	0.0659	0.0223	
1,8xot	12	0,0532	0.0047	

sex Efonietcent at 34 lovel

Appenatx II(o) conted.

Fot rasiblum

Eource	as	58	M53	F
1. Gratin				
cotal	25	1.0300		$1.203^{\text {HS }}$
Freat	3	0.2476	0.0925	
mamer	12	0.7520	0.0600	
2. 以1439		,		
motel	15	0.4002		
TEPat	3	0.2779	0.0593	3.1976^{415}
Extest	22	0.2224	0.0285	

Calalta

source	84	S0	H5s	F
1. Gretn				
T3taz	15	0.00064		
Trect	3	0.00057	0.00025	
Terice	12	0.00087	0.000000	35.390
2. Husto				
Tueal	25	0.1020		
Txase	3	0.0390	0.0297	$3 \times$
Erioz	12	0.0120	0.0010	29.509

ver aigntimosnt ote lis level

ADperdixa $2 x(c)$ conta.

Solutee	Himerasura			F
	dit	Ss	415	
1. Geatio				
Total	15	0.00479		
creat	3	0.00283	0.000594	5.095^{x}
critor	12	0.00212	0.000176	5.095
2. 相號				
motal	15	0.3826		
creat	3	0.3726	0.1212	149.93
Erexer	12	0.0100	0.0000	148.93
Eran				
Epu1se	49	53	145	8
1. Graln				
20tal	25	12692.94		
Treat	3	6760.19	2256.08	
Errox	12	5924.75	493.729	4. 5093
2. Funk				
20tal	15	109653		
Truat	3	70374.5	23450. 27	
35003	12	30279.5	3273.21	7.1667^{805}

x shonifzcant at $5: 4$ iovel
xx glgutelcont at is levol

Appardix II(c) contd.
Alumatilum

courct	48	ss	H5s	F
1. Grain				
Total	15	23370.44		
sreat	3	16225,69	3403.56	
Eeror	12	7644.75	637.06	$0.49^{30 x}$
2. fluak				
Total	15	45951.7		
Treat	3	35787.2	21965.733	- ${ }^{30 x}$
Brerar	12	10234.5	852.075	3.95
Sinc				
cource	\%	53	439	F
2. Grata				
rotal	25	1518.687		
Tewat	3	460.107	153.395	
Extse	12	1058. 5	08.200	1.739^{18}
2. โusk				
Tetal	15	893.75		
Treat	3	202.25	68.4167	
Error	12	600.5	57.375	1.1024

yox signteicant at 1\% lorel

Apxeruats Ir (c) contu.

Cogyet				
Cource	de	03	Sms	ε
1. ceein				
coeal	25	339.430		
treat	3	209.600	96.563	
[EMOE	12	99.78	0.313	11.637
2. :usit				
20ted	15	53		
Trept	3	7.5	2.5	
Exios	12	45.5	3.792	0.69

Xx Gigntelcant ot lis Level

Appendix III(a)
Infiumee of afferent levels of lure on ont
 mater

Spurce	de	55	H39	F
2. Attor the amplaten of aticerent lovele of Lime				
3ceaz	21	0.6092		
greate	3	0.6625	2.8675	806.249^{205}
Errom	0	0.0267	0,0033	

2. Aftor the aplicstion of Eortillacxes

rotal	11	5.6292		
3reat	3	5.5225	2.0400	$130.06^{* 2 k}$
Brect	3	0.2007	0.0133	

3. 30 days after coutimg
Tatal 213.38

theat	3	3.220	3.0755	56.135
merox	0	0.153	0.01910	

4. 65 adoy extor soxdang

Total	21	2.9692		
recest	3	2.8292	0.9431	80
Erroz	6	0.1400	0.0175	

5. 90 dayo cetoz sonding (at hariogt)

To6at	11	4.230		
Treat	3	3.636	$\mathbf{4 . 2 1 2 2}$	$14.0447^{2 \%}$
Ereor	0	0.6533	0.03166	

Apyendis Ry

 growth git goxiton mitho

Emucen	4t	23	Hos	5

1. Afteg tho application of atpercnt Levels of lime
metill 12.4327
zewat 3 10.2720 3.424 170.28384
Esrof $0 \quad 0.20070 .0202$
2. Aster the application of forthizars

TEbal 216.4205

Extos 9 . 0.46630 .0534
3. 30 tays attex scwim

20cal 12 2.3557
ruest $3.2 .3509 \quad 0.78361301 .006^{20 \%}$
$\operatorname{crg} \quad 8 \quad 0.00400 .00004$
A. 65 deys after moring

Total 110.2477

Troat	3	9.3015	0.0672	$11.014^{\text {xif }}$
E850\%	c	0.0443	0.0050	

S. 90 dayo aster meting

20tal	12	9.2573		
reast	3	1.0509	0.3503	$13.546^{3 \times x}$
Ercor	0	0.2089	0.0259	

xx alganisicant at 3 g Ieval

Appeadix IIx (o)
Tnfluance of affertat levele of 14ne on the exchaingeble alumintum exotent of the soll th different jeeges of greuth of matea

source	d	Se	435	7

1. After the application of disiexint levels of han

T0tal	12	10,0347		
3xbat	3	8.8365	3,2739	155.956
2ticom	E	0.11838	0.0210	

2. neter coctilitur apelioaetor

Totel	11	4.4372		
TKest	3	4.2737	1.4246	69.711^{206}
HECO5	8	0.2635	0.0204	

3. 30 days efter sontry

Tatad	12	0.84604		
Thest	3	0.345030	0.3520	$16260.92^{3 x}$
Exices	8	O.0001.3	0.00002	

4. 65 days attex mowing

| rotal | 32 | 0.1037 | |
| ---: | ---: | ---: | :--- | :--- |
| retat | 3 | 0.1036 | 0.0345 |
| Eryer | 0 | 0.0001 | 0.000015 |

5. 90 daye attar scithe
motel
22
0.4336

Treat
3
Errat
B
$0.3937 \quad 0.13124$
$20.295^{20 x}$
met stanificant of 18 Lovel

 ablo iydrogen content of the goil at didesrent atages of grouth al focker matze

cource	de	vic	4 cts	F

Ho4al	11	0.0257		
Creat	3	0.0072	0.0024	2.041^{115}
Errox	0	0.0109	0.0023	

2. MEOT tin thetilzos application

sotal	22	0.6588		
7reat	3	0.1929	0.064	$1.2033^{N 6}$
Lercor	θ	0.4653	0.0532	

3. 30 dayd eftat EOTHIT

gheas	12	0.4277		
rweed	3	0.8224	0.2400	175.08^{84}
rever	3	0.0354	0.0006	

C. 65 days aster combng

rotez	32	0.0705		
Trcat	3	0.0234	0.0070	1.3260^{835}
Extor	B	O.0472	0.0059	

crata	31	0.2449		
creat	3	0.2563	0.0529	4.9200^{3}
Iners	8	0.6062	0.0408	

[^1]
Appmadix III(e)

EEtanci of atiferment lovele of lime on exchangeale potasabu content of tive mall at different utagoe of grovth of Eodier meste
Bource ds SS MSS F

1. Bheme tha application of cheserant levels of lime

wotal	11	0.0264		
rreat	3	0.0044	0.00145	$0.5275^{\text {HS }}$
Bruter	8	0.0220	0.00275	

Total 11 0.0231
reat $30.01350 .00449 \quad 3.7112^{15}$
Errox 80.00970 .0012
3. 30 cays aftur bring

rotal	11	0.0328		
2xetet	3	0.0090	0.00299	N_{3}
Exton	8	0.0239	0.002982	

4. 65 days after mowing

Total	11	0.0108		
Treat	3	0.0002	0.00006	$0.045^{\text {NS }}$
Ertor	6	0.0107	0.0013	

S. 90 any attat oowlog (at hatwe th

notel	11	0.0281		
2xeat	3	0.0098	0.0027	2.38 ${ }^{14}$
Extor	8	0.0170	0.0021	

 ablo calcint ©ontent of the mil et different etaget of anovith of coidior sulte

23 zrea	ds	59	H293	1

1. AEteri tha oplication of ditacrent lovel ov Lime
motat
11
239.744
 Escer

8
0.130
0.0268
2. Astax the apolenticn of terthlisert

500n	31	149.762		
Streot	3	148.405	49.468	
Exror	8	2.35	0.170	

3. 30 ange ofters omuleg
ratat $12 \quad 05.659$

2feat	3	64.794	22.533	199078
	6	$\cdot 0.365$	0.1008	

4 46 dyy atcer moutng

Total	12	36.994		
	3	36.276	13090	134.7898x
Extur	6	0.718	0.090	

S. 90 daye neter cming (et maryenti)

critel	11	70.132		
74*8t	3	69.000	23.0025	163.690\%
EmEOE	8	1.1242	0.2405	

Appanalx $\mathrm{xII}(\mathrm{g})$

Zntlumose of different levela of lime on sxenwore wile megraniun contont of the achl it alsteront stages of growth of focior maler
Souree IT 35 MSS F

1. After the appitcation of difforment lavele of Lime

rotel	12	0.0931		
Frant	3	0.0300	0.0100	2.501 ${ }^{\text {M3 }}$
Erase	-	0.0531	0.6060	

2. after tim application of tertilimars

rotel	11.	0.0236		
rimut	3	0.0027	0.0009	0.338
Error	0	0.0209	0.0025	

3. 30 days after moulng

Tratel 11 0.0349

| rrat | 3 | 0.0122 | 0.0041 | $0.4479^{\text {tis }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

4. 63 daya after sowing

Total	21	0.0576		
rreat	3	0.0317	0.0106	3.259^{855}
Etror	8	0.0259	0.0032	

5. 90 day after cowing

Total	12	0.0314		
Treat	3	0.0542	0.0181	5.3599^{2}
Ferrox	8	0.0212	0.0034	

Appendes III(a)

Intiuerse of aiffexent lovele os 2100 on oxmpangem able dron content of the gati bogor and after fodan madae cultivation

sourres	dif	65	HSS	8
1. Bafore cultivation				
Total	11	90.9467		
Treat	3	50.9000	29.6333	$115.340^{80 \%}$
Evaror	0	2.0467	0.2550	
2. Atter cultustion				
2tead	11	25.6225		
Treat	3	21.7492	7.2497	14,974
Ercor	3	3,0733	0.4842	

xa stgnifleant at 18 lovel

Appendix IV

Intluence of different levels ot exchangeable aluminiun on plont characters of fodder maize

Height of the plant

Source	df	55	M3S	F
1. 30 days after mowing				
Total	11	1634		
Treat	3	942	314	3.63 NS
Error	8	692	85.5	
2. 65 days after sswing				
Total	11	1172.25		
Treat	3	144.25	48.083	$3.74{ }^{\text {NS }}$
Error	8	1028.00	120.500	
3. 90 days after sowing (at the harvest)				
rotal	11	2715.667		
Treat	3	416.667	153.689	0.5462^{18}
Error	8	2254.0	281.75	

Root length

Source	df	SI	PSS	F
Total	11	638.839		
Treat	3	503.709	167.9030	$9.9365^{8 x}$
Error	8	135.180	16.8975	

xx Significant at 4 hevel

Appenatis IV contd.

sonaree	0 (t)	58	MSS	7
Fotal	32	6403.169		5.990°
treat	3.	4434.129	1478.04	
2mror	8	2974.04	246.755	
Hatoht of motan				
soures	$4 \pm$	85	HES	F
2beat	21	1927.689		
Matat	3	1262.339	420.7983	5.0800^{5}
Exyox	8	65.5	03.1825	

wotal dixy welght

source	d5	ss	\$5s	F
Totat	12	12944.227		
Treat	3	9778.997	3258.999	22.6127^{3}
EEEOE	C	2067.32	258.39	

x signidicant at 5\% Iavel
appenctise V
Influence of different levels of exchungaable aluminium on mutrient omporition of todiar metra

Thexogen				
scumes	d	58	2tss	F
Top-3tat	41	0.1727		
Treem	3	0.0257	0.0098	0.467^{45}
Eteres	0	0.1470	0.0104	
Hoct-7xaz	11	0.2244		
treat	3	0.0224	0.0072	0.282^{178}
Extow	6	0,2020	0.0025	

Phosphorus

Sourye	as	gS	H3s	F
Top-Totad	11	0.00449		
truat	3	0.00093	0.00028	$0.600^{1 / 5}$
Smerer	8	0.00357	0.00045	
Foot-Totel	11	0.09149		
2rieat	3	0.00003	0.000003	$0.0495^{8 / 8}$
EETOC	B	0.00147	0.00018	

Appendilx ocontd.

potasstum

cource		Ss	Mess	F
Tep - Motal	11	0.41367		
Tresit	3	0.29367	0.0395	6.9135^{*}
Ermor	8	0.1152	0.0144	
Mrot-rotal	11	0.4704		
mreat	3	0,3296	0.1099	6. 2399^{x}
Exicer	0	0.1400	0.0176	

calclum

touns	$4{ }^{1}$	53	HSs	P
mop-rotal	11	0.07144		
ricak	3	0.06174	0.0206	790x
Estax	8	0.00970	0.0012	
Fuoct-Tote3	81	2036.92		
Treat	3	1940.25	649.412	59, 5939×0
Etrone	8	88.667	11.0033	

[^2]

Source	de	$\theta 9$	HSS	$\%$
Tep-sotal	11	535576.6		
Fraat	3	520510	273503.33	92.1257 ${ }^{\text {xx }}$
Exroc	8	15066.6	1093. 33	
Root-Total	11	550509.1		
7reat	3	218989.2	72963	1.759^{NS}
Errox	B	331700	41462.5	

3es Efgifilcant at 3s zwol

Alunintum				
Soutce	(i)	55	1355	\pm
209-Tots1	11	144329		
Treat	3	86158	32052.07	5.2609^{8}
Exror	6	48667	6093.375	
Root-rotal	21	343000		
- Troat	3	033000	279333	$186.93^{50 x}$
ExEOE	0	5000	625	

ind

Eource	ds	$5 s$	495	F
Top-rotal	21	1027		
Treat	3	633.67	211.222	4.296^{*}
Exior	8	39.33	69.267	
Foot-cotal	11	506.25		
rreat	3	240.92	80.3050	2.42
beror	3	265.33	33.167	

[^3]
x slgnteleant at 5 多 1 evel

Appencilx ve

Corrolation petwean soli properties and mutilent uptaise at different stages of gronth of conpeat
a) Eersenkego Aluminum saturaticn

x signiftcant at 5% level
xx atgnificant at lt ievel
appencilx VII
Correlation betwen soll properties and plant chacecters at different Btages of grouth of compan
a) Percontege sivainium eaturation

	notule eount	Root length	bry welght	Grain weight	musk welght
s_{1}	0.618^{x}	0.750 ${ }^{80}$	-0.297	-	-
s_{2}	-0.697\%	-0.450	-0.389	-	- ${ }^{3}$
3_{3}	-0.ent	*0,260	-0.192	. 5008^{38}	0.402^{x}

b) Exchangeabis Aiuminiua ecritent

	freluy coun	Root lang	Dry weld	Gratn met	ak me	$\begin{gathered} \text { Totul as } \\ \text { matter } \end{gathered}$
\mathcal{S}_{1}	-0.623 ${ }^{x}$	-0.759	${ }^{+0.310}$			
5_{2}	-0.608 ${ }^{\text {K }}$	0.0 .463	-0.348			
s_{3}	-0.420	0.174	$\bigcirc 0.100$	$0.920{ }^{2}$	0.501^{3}	0.589 ${ }^{\text {x }}$

x stgaiticent ate 5% level
x gigniEicarce of it level

Appendix VIII(a)
Correlation between aluminium content and nutrient composition of tops

	N	$?$	K	Ca	Mg	Fe	AI	Zn	Cu
S_{1}	0.196	-0.910 ${ }^{\text {RX }}$	-0.493	0.328	-0.441	${ }^{+} 0.494$	-	${ }^{+} 0.200$	0.129
S_{2}	-0.345	-0.070	-0.432	-0.072	-0.466	${ }^{+0.483}$	-	+0.359	-0.015
s_{3}	-0.294	-0.344	-0.042	0.493	0.072	${ }^{+} 0.481$	-	${ }^{+} 0.534^{\text {x }}$	${ }^{+0.007}$

Appendix VIII(b)
Correlation between aluminius content of tops and plant characters

	Nodule count	noot length	Dry weight	Grain yleld	Husk yield
s_{1}	-0.325	$-0.727^{x x}$	-0.451		
s_{2}	-0.409	-0.113	-0.269		
s_{3}	-0.316	-0.480	-0.343	-0.597^{2}	-0.450

kx Significant at 1s' level
x 3ignificant at 5\% level

Appendix VIII(c)
Correlation between aluminium content of tops and nutrient content of root

	N	P	K	Ca	Ifg	Fe	U1	2n	Cu
5_{1}	-0.509	-0.444	"0.069	0.0 .474	-0.452	-0.409	*0.638 ${ }^{\text {x }}$	${ }^{+} 0.293$	-0. 261
S_{2}	- 0.515	$0.700^{\text {x }}$	${ }^{+} 0.558$	-0.237	-0.124	-0.464	+0.536	-0.311	-0.202
s_{3}	-0.016	-0.045	${ }^{+} 0.052$	-0.769 ${ }^{\text {xx }}$	-0.552^{x}	-0.481	$+0.736^{3 x}$	-0.354	${ }^{+} 0.188$

Appendix VIII(d)
Correlation between aluainiua content of tops and nutrient uptake

	N	p	K	Ca	सg	Fe	A1
s_{1}	-0.576	-0. 552	-0.610 ${ }^{\text {x }}$	-0.566	-0.533	-0.201	50.540
s_{2}	-0.359	-0.363	-0.171	-0.134	-0.197	-0.372	${ }^{4} 0.130$
S_{3}	-0.476	-0.546 ${ }^{\text {x }}$	-0.394	0.488	-0. 262	-0.361	*0.396

[^4]Appendix IX(a)
Correlation between the aluninium content of roots end nutrient composition of tops

	N	P	R	Ca	Mg	Fe	A1	20	Cu
S_{1}	"0.479	-0.170	-0.383	-0.509	-0.350	${ }^{+0.7479 x}$	+0.635 ${ }^{x}$	${ }^{+} 0.278$	+0.095
S_{2}	0.634^{x}	-0.463	${ }^{+} 0.488$	-0.645^{x}	0.019	${ }^{+0.378}$	${ }^{+} 0.536$	${ }^{+} 0.093$	${ }^{+0.518}$
s_{3}	-0.248	$-0.545^{\text {x }}$	${ }^{+} 0.119$	$-0.748^{5 x}$	-0.114	${ }^{+} 0.427$	+0.736 ${ }^{88}$	$+0.594^{x}$	-0.063

Appendix $I X(b)$
Correlation between the aluiniun content of root and plant characters

	Nodule count	Root length	Dry weight	Plant nelght orain weight Husk weight		
s_{1}	-0.597^{x}	$-0.710^{x x}$	-0.284	-0.070	-	-
s_{2}	$-0.822^{x x}$	-0.569	-0.624^{x}	-0.392	-	-
s_{3}	-0.514^{x}	-0.529^{x}	-0.171	-0.101	-0.563^{x}	-0.607^{x}

xx Significant at 1% level
x Significant at 5:3 level

Appendis IX(c)
Correlation between the aluminiun content and nutrient content of roots

	17	p	K	Ca	Mg	Fe	Zn	Cu
S_{1}	-0.460	0.0 .491	-0.065	0.502	0.0 .554	0.586^{4}	$\bigcirc 0.409$	0.038
s_{2}	$=0.323$	-0.412	-0.059	0.643^{K}	0.670°	-0.17a	-0.170	-0.036
s_{3}	0.0 .165	0.071	+0.086	-0.631 ${ }^{2 \times x}$	$0.0 .737^{x x}$	-0.317	-0.336	-0.002

Appendix IX(d)
Correlation between the aluminium content of goots and nutrient uptake

	N	P	K	Ca		Fe	A1
5_{1}	0.529	-0.422	0.456	0.636^{π}	-0.102	${ }^{+0.090}$	+0.413
S_{2}	-0.625 ${ }^{\text {x }}$	$-0.717^{8 x}$	-0.405	-0.747 ${ }^{\text {xx }}$	-0.644 ${ }^{3 x}$	-0. 0.446	${ }^{+} 0.398$
S_{3}	-0.411	$0.596^{\text {x }}$	-0.223	-0.499	-0.269	-0.278	${ }^{4} 0.636^{3 \times}$

x Signiflcant at 5;5 level
sx Significant at lis level

Appendix $X(a)$
Correlations between soll properties and nutrient uptake by maize

Appendix XI Correlation between the aluminiun content of fodder naize tops and
(a) nutrient content of tops

| N | P | K | Ca | Ng | Fe | Zn | Cu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.371 | -0.642^{x} | ${ }^{4} 0.144$ | -0.598^{x} | -0.278 | $+0.746^{\mathrm{xx}}$ | -0.374 | -0.212 |

(b) plant characters

Root length	Top weight	Root weight	Total weight
-0.544	-0.167	-0.464	-0.310

(c) nutrient content of roots

N	p	K	$C a$	M_{8}	F	$A 1$	Zn	Cu
-0.405	-0.203	+0.309	-0.447	-0.168	-0.632^{x}	${ }^{+} 0.700^{x x}$	+0.120	0.321

x Significant at 5% level
xx Significant at 1% level

Appendix XII Correlation between the aluninium content of daize roots and
(a) nutrient content of tops

N	$\mathrm{P} \quad \mathrm{K}$	Ca	F1g	Fe	A1	Zn	Cu
*0.020	-0.803 ${ }^{\mathrm{xx}}-0.100$	$-0.882^{x x}$	0.292	$70.818^{2 x}$	t0.700 ${ }^{\text {x }}$	+0.310	+0.312

(b) Plant paraceters

Root Iength	noot welght	Fop lensti	Top weleht	Total dry matter
-0.764	$-0.733^{x \pi}$	-0.037	-0.749	$-0.845^{x x}$

(c) nutrient content of roots

N	P	K	Ca	MB_{B}	Fe	Zn	Cu
-0.173	-0.055	-0.620^{x}	$-0.549^{x x}$	-0.610^{x}	-0.624^{x}	-0.039	0.394

(d) nutrient uptake

N	P	K	Ca	14 C	Fe
$0.826^{8 x}$	$-0.892^{x \times}$	$-0.771^{2 x}$	$-0.838^{8 x}$	-0.684^{x}	-0.601^{x}

exchangeable aluminum as An index of iiming FOR THE ACIDIC UPLAND SOILS OF KERALA

By
MEENA, K.

ABSTRACT OF THE
THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT
FOR THE DEGREE OF
MASTER OF SCIENCE IN AGRICULTURE
(SOIL SCIENCE AND AGRICULTURAL CHEMISTRY)
FACULTY OF AGRICULTURE
kERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF SOIL SCIENCE AND AGRICULTURAL CHEMISTRY COLLEGE OF AGRICULTURE VELLAYANI, TRIVANDRUM

ABSTRACT

Aluminium toxicity is the major factor $11 m i t h g$ crop production in the acidic soils and the usual practice of alleviating aluninium toxicity is lining. The present investigation was carried out to find out the distribution of water soluble and exchangeable aluainium in the acidic upland soile of Kerala end to test the suitability of exchangeable aluminiua es an Index for lining then. It was further programed to ind out the growth, yield and nutrient uptake pattern of two acid sensitive crops nesely cowpen and fodder maize in soils under different levels of exchangeable aluainiun brought out by the use of difiorent levels of 11ex.

Chemicel malysis of elghty soil spinples representing the Iive mejor upland soil types of Rerale viz. laterite, lluvial, red loan, sandy and foreat aoll have indicated the kighest amount of exchageabie aluainius and percentage aluninium saturation in the laterte soile.

The aoil with a high level of exchangeable aluainiua and percentage miuminiua saturation was selected for conducting a pot culture experiment to test the suitability of using exchangeable aluminiun as an index of ilaing. The exchangeable sluainium content of this soil was maintained at different levels by applying different levels of lime and the perform mance of these crops in this soll was compared by making biometric observations and by chemically analysing plant and soil samples.

From the results of the atudy it was seen that higher levels of exchangeable aluninium adversely affected the growth, yield and nutrient uptake in cowpea and fodder maize.

Maintenance of exchangeable aluminiua at $1.26 \mathrm{me} / 400 \mathrm{~g}$ with a corresponding percentage aluminiva saturation velua of around 30 , by the use of 500 ks 1ime/ha appeared to be the optisua for maximising the yield of compea. But in fodder malze this level of lime vas found to be insufficient and complete elinination of aluniniua toxicity appeared to be essential for maxinising production.

Since the critical levels of exchangeable aluainium appears to be different for different crops. it is desirable that ling levels to reduce exchangeable aluminium to such a critical level alono be applied. The results of the present study thus point to the edvaniage in adopting the exchangeable aluminiua level of soil as a better index of liming for various crops grown in the upland acidic soils of Kerala.

[^0]: z signtedcant at 5\% ioval

[^1]: x significant at 5\% Level
 \%x gitgnsiscont at 19 devel

[^2]: x Cigniticant at 5% level
 $x \times$ slgnificant te ix level

[^3]: x signidicant at 5, Lovel
 xx signifacont at 1 st Level

[^4]: x Significant at jgs level
 xx Significant at 1\% Ievel

