MOLECULAR CLONING AND CHARACTERIZATION OF THE GENE ENCODING β-1,3-GLUCANASE IN *Trichoderma* spp.

By

NIHARIKA NATH (2006-11-109)

THESIS

Submitted in partial fulfillment of the requirement for the degree of

Master of Science in Agriculture

(PLANT BIOTECHNOLOGY)

Faculty of Agriculture

Kerala Agricultural University, Thrissur

Centre for Plant Biotechnology and Molecular Biology

COLLEGE OF HORTICULTURE

VELLANIKKARA THRISSUR-680 656 KERALA, INDIA

2008

DECLARATION

I hereby declare that the thesis entitled "Molecular cloning and characterization of the gene encoding β -1,3-glucanase in *Trichoderma* spp." is a bonafide record of research work done by me during the course of research and the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, or other similar title, of any other university or society.

Vellanikkara

Niharika Nath (2006-11-109)

CERTIFICATE

Certified that the thesis entitled "Molecular cloning and characterization of the gene encoding β -1,3-glucanase in *Trichoderma* spp." is a record of research work done independently by Ms. Niharika Nath (2006-11-109) under my guidance and supervision and that it has not previously formed the basis for the award of any degree, diploma, fellowship or associateship to her.

Vellanikkara

Dr. Sally K Mathew

(Major Advisor, Advisory Committee) Professor and Head Department of Plant Pathology College of Horticulture

Vellanikkara

CERTIFICATE

We, the undersigned members of the advisory committee of Ms. Niharika Nath (2006-11-109), a candidate for the degree of Master of Science in Agriculture, with major field in Plant Biotechnology, agree that the thesis entitled "Molecular cloning and characterization of the gene encoding β -1, 3 - glucanase in *Trichoderma* spp." may be submitted by Ms. Niharika Nath in partial fulfillment of the requirement for the degree.

> Dr. Sally K Mathew (Major advisor) Professor and Head Department of Plant Pathology College of Horticulture Vellanikkara

Dr. P.A. Nazeem

(Member, Advisory Committee) Proffesor and Head Centre for Plant Biotechnology and Molecular Biology (CPBMB) College of Horticulture Vellanikkara.

. Dr. R. Keshavachandran

(Member, Advisory committee) Professor Centre for Plant Biotechnology and Molecular Biology (CPBMB) College of Horticulture Vellanikkara

Dr. D. Girija

(Member, Advisory committee) Professor Centre for Plant Biotechnology and Molecular Biology (CPBMB) College of Horticulture Vellanikkara

Dr. P. U. Krishnaraj

(External Examiner) Associate Professor Department of Biotechnology University of Agricultural Science Dharwad

Acknowledgement

I humbly bow my head before the lord **Almighty** who blessed me with the power and courage to complete this endeavour successfully in spite of the most difficult times face by me during the period of my study.

Words cannot express my deep sense of gratitude and indebtedness to **Dr. Sally K**. **Mathew**, Professor and Head, Department of Plant Pathology and chairperson of my Advisory Committee. I wish to place my heartfelt thanks to her for her inspiring guidance, untiring help, patience, encouragement, constructive criticism and valuable suggestions during the period of the investigation and preparation of the thesis. My sincere and heartfelt gratitude ever remains with her.

I owe a great debt of gratitude to **Dr. P.A. Nazeem**, Professor and Head, CPBMB and member of my advisory committee for her unwavering support and enthusiasm, relevant suggestions and whole hearted cooperation during my academic career.

I am ever grateful to **Dr. D. Girija**, Professor, CPBMB and member of my advisory committee for her invaluable help, guidance and critical assessment throughout the period of the work. I thank her for all the help and cooperation she has extended to me.

I express my sincere gratitude to **Dr. R. Keshavachandran**, Professor, CPBMB and member of my advisory committee for his valuable suggestions and guidance rendered me for the completion of the research programme and preparation of the thesis.

I also avail this opportunity to pay my sincere obligations and heartfelt thanks to Valsala madam, Augustin sir, Rajendran sir and Sujatha madam of CPBMB for their encouragement and kind help offered at different stages of the study.

I thank Mr. P. K, Sreekumar, Farm Assistant, CPBMB, for the help in photography.

I wish to express my sincere thanks to all the non-teaching staff members and labourers of CPBMB for their whole hearted cooperation and timely assistance.

Special thanks go to **Santhosh chettan**, Students Computer Club, COH, for rendering necessary help whenever needed.

I express my deep sense of gratitude to research workers of Dept. of Plant Pathology, CPBMB and Bioinformatics Centre, Gleena chechi, Suma chechi, Amrathaa chechi, Anu chechi, sunanda chechi, Shruthi chechi, Alisha chechi, Reena chechi, Shailaja chechi, Jini chechi, Shiba chechi, Soumya chechi, Sherin chechi, Simi chechi, Firoz chettan, Sunil chettan and Sharjahan, who helped me in several ways for the completion of this venture. Words of gratitude fall short of expressing the care and concern rendered to me by my most esteemed sister Praveena chechi and Rekha chechi.

Words fall short as I place on record my indebtedness to my seniors and class mates, Neema chechi, Likhitha chechi, Sameera chechi, Anjali chechi, Geena chechi, Ramya chechi, Saisree chechi, Liffey chettan, Fayas chettan, Shiji, Asha, Jusna, Ragina, Renu, Rashmi, Sindhu, Kimi, Hema, Sangeetha, Thenmozhi, Swapna, Julie, Nisha, Sathish, Thiagarajan, Rahul, Dinesh, Jaba, Alok, Suja, Kiran and Shivaji for their prompt help and cooperation for the entire period of study.

I am in dearth of words to thank my friends Tusar, Sagarika, Swarnalata, Swetaleena, Shrabani, Sujata, Tanushree, Sarika, Usha for their encouragement and lively support.

With gratitude and affection, I recall the boundless affection, constant encouragement, warm blessings and motivations from my parents, sisters and brothers without which this endeavour would never have become a reality.

Niharika Nath

ABBREVIATIONS

А	Adenine		
AASTATS	Amino acid statistics		
ARI	Agarkar Research Institute		
bp	Base pair		
β	Beta		
BLAST	Basic local alignment search tool		
cm	Centimeter		
cfu	Colony forming unit		
CPBMB	Centre for Plant Biotechnology and Molecular Biology		
°C	Degree Celsius		
DNA	Deoxyribo Nucleic Acid		
DNSA	3,5 – dinitrosalicylicacid		
EDTA	Ethylene Diamine Tetra Acetic acid		
G	Guanine		
g	Gram		
h	Hour (s)		
IARI	Indian Agricultural Research Institute		
IISR	Indian Institute of Spices Research		
IPTG	Isopropylthio-β-D-galactoside		
KAU	Kerala Agricultural University		
kb	Kilo base pairs		
kDa	Kilo Dalton		
1	Litre		
LB	Luria Broth		
LBA	Luria Bertani Agar		
ml	Millilitre		
mM	Millimolar		
μg	Microgram		
μl	Microlitre		
μΜ	Micromolar		
min	Minute(s)		
NASTATS	Nucleic Acid Statistics		
NCBI	National Centre for Biotechnology Information		

NCFT	National centre for Fungal Taxonomy		
ng	Nanogram		
nm	Nanometer		
OD	Optical Density		
ORF	Open reading frame		
PAGE	Polyacrylamide gel electrophoresis		
PCR	Polymerase Chain Reaction		
PDA	Potato Dextrose Agar		
pН	Hydrogen ion concentration		
%	Percentage		
pI	Isoelectric point		
RNA	Ribo Nucleic Acid		
RNase	Ribonuclease		
rpm	Rotations per minute		
SDS	Sodium Dodecyl Sulphate		
sec	Second (s)		
Т	Thymine		
TAE	Tris Acetate EDTA		
TE	Tris EDTA		
TS	Trichoderma selective		
TSB	Trichoderma special broth		
U	Unit		
UV	Ultra violet		
V	Volts		
v/v	Volume by volume		
w/v	Weight by volume		
X-gal	5-bromo-4-chloro-3-indolyl-β-D-galactoside		
5 ^{ml}	5 515mo-4-emoto-5-maory1-p-D-galactoside		

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NUMBER
1.	INTRODUCTION	1 – 2
2.	REVIEW OF LITERATURE	3 – 25
3.	MATERIALS AND METHODS	26-48
4.	RESULTS	49 – 71
5.	DISCUSSION	72 - 85
6.	SUMMARY	86 - 89
	REFERENCES	I - XXXVI
	ANNEXURES	
	ABSTRACT	

LIST	OF	TA	BL	ES
------	----	----	----	----

Table No.	Title			
1	Recognized families of pathogenesis-related proteins			
2	Sequence information of β -glucanase gene isolated from some of the fungi			
3	Details of Trichoderma isolates used in present study	28		
4	Details of β -1, 3- glucanase gene sequences used for primer designing	36		
5	Identification report of Trichoderma isolates used in the study	51		
6	Estimation of glucanase activity in various Trichoderma isolates	52		
7	7 Quality and quantity of total DNA extracted from <i>Trichoderma</i> isolates			
8	Details of gene specific primers designed and used in the study			
9	9 Details of annealing temperature and amplicon size expected for selected primers			
10	Details of amplicons obtained in β -1, 3- glucanase gene profile	57		
11	Recombination efficiency in <i>E. coli</i> cells transformed with different amplicons	60		
12	Nucleotide statistics of sequences from Trichoderma isolates	64		
13	Open reading frames of glucanase genes cloned from different isolates			
14	 A) Theoretical restriction analysis of GT311 B) Theoretical restriction analysis of GT322 C) Theoretical restriction analysis of BPT822 			
15	15 Amino acid composition of different glucanase protein sequences			

LIST OF FIGURES

Figure No.		
1	Standard curve of glucose	31
2	pGEM-T Easy Vector used for cloning	42
3	Phylogram showing evolutionary relationship	63

LIST OF PLATES

Plate No.	Title			
1	Trichoderma isolates used for the study			
2	 A) Growth of <i>Phytophthora capsici</i> on agar plate B) Growth of <i>Phytophthora capsici</i> in carrot broth C) Growth of <i>Trichoderma</i> spp. in <i>P. capsici</i> cell wall amended TSB medium D) Growth of <i>Trichoderma</i> spp. in minimal media for DNA isolation 			
3	Agarose gel electrophoresis of genomic DNA from <i>Trichoderma</i> isolates	53		
4	4 Multiple sequence alignment of β-1,3-glucanase gene of <i>Trichoderma</i> spp. The conserved sequences used for designing forward and reverse primers			
5	5 PCR amplification with different primer combinations			
6	6 PCR amplification with F1R2 primer combination			
7	7 Eluted fragments and plasmid isolated from blue and white colony			
8	Competent cells of <i>E. coli</i> JM 109 and transformants growth	59		
9	PCR confirmation of recombinant clones	60		
10 (A-P)	Sequence analysis for the clone GT-311	71		
11 (A-N)	Sequence analysis for the clone GT-322	71		
12 (A-P)	Sequence analysis for the clone BPT-822	71		

Introduction

1. INTRODUCTION

Plant pathogens continue to reduce the availability of food resources on a global scale as well as to diminish the economic potential of green house and nursery industries (Pinstrup-Anderson, 2000; Oerke and Dehne, 2004). As fungi are one of the major causal agents of plant diseases, modern agriculture still highly depends on the use of fungicides to control plant diseases. Over dependence on chemical pesticides has become untenable in view of the health hazards and environmental pollution leading to elimination of several non target beneficial fauna like natural enemies, bees, pollinators, birds, reptiles, small mammals and microorganisms. Numerous advantages have been described for the development of biocontrol agents for fungal diseases including being environmentally compatible, presenting the potential for a sustainable long-term diverse disease control, promoting nursery and field work safety and reducing the development of pest resistance (Mathre *et al.*, 1999; Alabouvette *et al.*, 2006).

Species of the genus Trichoderma have been used world-wide as effective biocontrol agent for a wide range of economically important plant pathogens with more than 50 registered Trichoderma based bioproducts available in the market (Woo et al., 2006). Even though Trichoderma spp. are usually considered free living saprophytes in soil, they are known to be opportunistic, avirulent plant symbionts as well as being parasites of other phytopathogenic fungi (Harman et al., 2004). Potential native Trichoderma spp. antagonistic against major soil borne pathogens of Kerala have been isolated and reported by many workers. The mechanisms that have been described to account for biocontrol of plant disease by Trichoderma spp. include mycoparasitism, induced resistance in the plant host, competition for the substrate and space and antibiosis (Howell, 2003). Mycoparasitic activity of Trichoderma is due to the production of several cell wall degrading enzymes such as glucanases, chitinases, cellulases and proteases (Cortes et al., 1998; Sanz et al., 2004; Steyaert et al., 2004). A considerable amount of research has been aimed at elucidating the β -1,6-glucanase system of *Trichoderma* spp., mainly *T*. harzianum. A search on literature revealed many reports regarding the research on

chitinase activity of *Trichoderma* in India. However, the reports on the glucanase activity are meagre and scanty.

β-1,3-glucan is one of the main structural component of the cell wall of oomycetes fungi. Thus, β-1,3-glucanases (EC 3.2.1.39) protein secreted by *Trichoderma* spp. have been suggested as the key enzymes in the lysis of phytopathogenic fungal cell walls during mycoparasitic action (Elad *et al.*, 1982; Sivan and Chet, 1989). β-1,3-glucanases have also been reported to be pathogenesis related proteins in plants and proposed to have a major role in the defense reaction against pathogens (Bowler, 1990; Broglie *et al.*, 1991). The antifungal activity is synergistically enhanced when different *Trichoderma* cell wall degrading enzymes act together or in combination with PR proteins, commercial fungicides, cell membrane affecting toxins or biocontrol bacteria (Lorito *et al.*, 1993, 1996, 1998). For these reason, the genome of mycoparasites, which has evolved specifically to attack other fungi but not plants, represents a potential source of powerful antifungal gene.

Genetic transformation with the gene in plant has been reported to impart resistant to different fungal pathogen. Also the over expression of this gene in antagonistic *Trichoderma* spp. has resulted in increased biocontrol activity (Migheli *et al.*, 1998; Djonovic *et al.*, 2007). Gene encoding β -1,3-glucanase enzyme have been isolated from many plants. Any work regarding the molecular characterization of glucanase gene in *Trichoderma* has not been reported so far from Kerala. Hence the present study entitled 'Molecular cloning and characterization of the gene encoding β -1,3-glucanase in *Trichoderma* spp.' was undertaken with the following objectives:

- 1. Biochemical characterization for determining the glucanase activity of potential antagonistic *Trichoderma* isolates.
- 2. Isolation & characterization of β -1,3-glucanase gene in *Trichoderma* spp. which exhibit maximum enzyme activity.

Review of Literature

2. REVIEW OF LITERATURE

India, acknowledged as a growing economic giant with a growth rate of 12.5 per cent in the year 2006-07 is poised for a quantum leap into the global market. With a target of 16 per cent growth in its GDP, India is set to shine brighter in the coming year (Rabindra, 2006).

Modern agriculture is highly dependent on chemical pesticides. India accounts for one-third of the total pesticides poisoning cases in the world. During the onset of green revolution period, the consumption of pesticides went up to 289 g/ha in 1974-78 while it was just 16 g/ha in 1950-51 and in 1992-92, it became 431 g/ha. However the consumption declined to 288 g/ha in 1999-2000 due to the increasing awareness of the negative impact of use of pesticides on environment and health (Ramkumar and Chavan, 2004).

Even though chemical control is a promising method under intensive cropping programme, their use poses problems of residue left over on crop which seriously cause many health hazards. Combined with the continued public concern regarding the safety of pesticides and the effect of these compounds on the environment, a tremendous opportunity exists to develop biocontrol agents as direct substitutes for chemicals or as key components in integrated management systems that are more biointensive or ecologically based (Martin, 2003; Fravel, 2005). Chemicals used to control soil borne diseases are uneconomical, less effective and leave residues in soil and plants. So in recent years, scientist's attention has been shifted to the control of diseases using biocontrol agent, which are environmentally safe and promising alternatives to chemical pesticides.

During the past few years, the development of plant genetic engineering as a tool for crop improvement has led to the development of crop plants resistant to fungal pathogen using different molecular tools and transformation techniques. *Trichoderma* has been demonstrated to be a potential biocontrol agent against several phytopathogenic fungi. Mycoparasitism has been described as the main process involved in the antagonistic action of *Trichoderma*. It is a complex process that includes release of lytic enzymes like chitinase, glucanase, cellulose and protease by *Trichoderma* for degradation of cell wall of fungal pathogen. β -1,3glucan is a cell wall component of most fungi and β -1,3-glucanases have been found to be directly involved in the mycoparasitic interaction between *Trichoderma* species and its host.

A comprehensive review of the previous research studies related to the topic had been done in accordance with the objectives of the present study.

2.1. BIOLOGICAL CONTROL

According to Baker and Cook (1974), biological control is defined as "the reduction of inoculum density or disease producing activities of a pathogen or parasite in its active or dormant state, by one or more organism, accomplished naturally or through manipulation of environmental, host or antagonist or by mass introduction of one or more antagonists". Cook (1987) defined "Biological control" as the use of natural or modified organisms, genes or gene products to reduce the effects of undesirable organisms (pests) and to favour desirable organism such as crops, trees, animals, beneficial insects and micro-organisms. Biological control, using micro organisms against the plant pathogens is an effective and alternative tool in managing the disease and is gaining importance in recent years.

It aims at biological destruction of soil borne pathogens without impairing ecological balance. Although concerted efforts on biocontrol of pathogens were made since 1930's (Weindling, 1932), pragmatic approach to tackle the problem was made only in recent years. The interactions between biocontrol and pathogens have been studied intensively and the application of biocontrol agents in the protection of some commercially important crops is promising (Papavizas, 1985; Weller, 1988). A number of fungi belonging to the genera *Gliocladium*, *Trichoderma*, *Coniothyrium*, *Latesaria*, *Sporodesmium*, *Aspergillus* and *Fusarium* and several bacteria and actinomycetes are known for their potential biocontrol activities against soil borne pathogens (Majezak, 1983; Adams, 1990; Naik and Sen, 1992).

Biological control, especially using fungal antagonists against fungal pathogens has gained considerable attention and appears to be promising as viable supplement or alternative to chemical control (Natarajan and Manibhushanrao, 1996). Dube (2001) described biological control as a mysterious natural phenomenon which operates in disease suppressive soil and is not easy to comprehend and initiate with success.

2.2. Trichoderma spp.

Originally, the taxonomy and identification of *Trichoderma* was introduced by Persoon (1794). *Trichoderma* pers. Extr., a genus under Deuteromycotina, Hyphomycetes, Phialospora, Hyphales, Dematiaceae has gained immense importance since last few decades due to its biological control ability against several plant pathogens (Liu and Baker, 1980; Papavizas, 1985; Liu *et al.*, 1995; Mukhopadhyay and Mukherjee, 1996; Hjeljored and Tronsmo, 1998; Kubicek and Harman, 1998).

The anamorphic fungal genus *Trichoderma* contains cosmopolitan soil borne fungi frequently and found on decaying wood as a saprophytic fungus (Samuels, 1996; Klein and Eveleigh, 1998). The researchers are interested on this genus because of its novel biological properties and biotechnological application. Benefits of *Trichoderma* includes their significance as economically important producers of industrial enzymes and antibiotics, usage in fabric detergent, animal feed and fuel production, alternative to conventional bleaching, effluent treatment, degradation of organochloric pesticides and more importantly as biocontrol agent and is harmful as parasite in mushroom cultivation and as pathogen in immunocompromised patients (Samuels, 1996; Kubicek and Pentila, 1998; Sivasithamparam and Ghisalberti, 1998; Hjeljored and Tronsmo, 1998). *Trichoderma* has been recognized to comprise a significant amount of fungal biomass in soil (Widden and Abitol, 1980; Nelson, 1982) and is frequently present as indoor contaminant (Tharne *et al.*, 2001). More recently, *T. longibrachiatum* has also become known as opportunistic pathogen of immuno compromised mammals including humans (Kredier *et al.*, 2003).

Strains of different taxons from the *Trichoderma* genus (Hermosa *et al.*, 2000) have invited agronomic interest not only because of their potential use as biocontrol agents against several fungi (Howell, 2003), but also a plant avirulent symbionts that can trigger plant induced resistance and promote plant growth (Harman *et al.*, 2004).

Martinez *et al.* (2008) assembled 89 scaffolds to generate 34 Mbp of nearly contiguous *T. reesei* genome sequence comprising 9,129 predicted gene models. *Trichoderma reesei* is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol.

2.3. Trichoderma as a potential biocontrol agent

The most exhaustively studied microorganism as a biocontrol agent is *Trichoderma* sp. The antagonistic potential of this fungus was first demonstrated by Weindling (1932), who demonstrated the antagonistic action of *T. viride* on *Rhizoctonia solani*.

Some species of *Trichoderma* have been extensity tested and described as biological control agents against wider range of plant pathogens *viz. Rhizoctonia*, *Fusarium, Sclerotium, Macrophomina, Sclerotinia, Pythium, Phytophthora, Ralstonia* spp. etc. (Papavizas, 1985; Chet, 1987; Hornby, 1990; Deacon, 1991).

Wells *et al.* (1972) first demonstrated antagonistic action of *T. harzianum* against *Sclerotium rolfsii* under field conditions. The antagonism of *Trichoderma*

spp. against *Rhizoctonia solani* was observed by various workers (Hardar *et al.*, 1979; Kim and Row, 1987; Hazarika and Das, 1998; Mathew and Gupta, 1998).

Hardar *et al.* (1979) observed that *T. harzianum* could directly attack *R. solani* and could control damping off of bean, tomato and egg plant seeding caused by this pathogen. The fermenter biomass production of *T. viride* applied as dust to the seed potatoes infected with sclerotia of *R. solani* before planting reduced disease incidence in field by 50 per cent (Beagle-Ristanio and Papavizas, 1985).

Critinzio (1987) noticed *in vitro* antagonistic effect of *Trichoderma* sp. on *Phytophthora capsici* in capsicum. Sarma *et al.* (1994) noticed predominance of *Trichoderma* spp. antagonistic against *P. capsici* of black pepper. Thomas *et al.* (1996) observed various antaganostic mechanisms of *Trichoderma* spp. and concluded *Trichoderma* as a potential bioagent against *Phytophthora* of small cardamom. Dipping of black scurf infected potato tuber in two per cent aqueous suspension of *T. viride* grown on wheat straw–wheat bran substrate significantly reduced black scurf incidence for three years in field experiments (Singh *et al.*, 1997).

According to Mahanty *et al.* (2000), although biological control approach was not better than chemical control in terms of per cent disease incidence caused by *Phytophthora* in betel vine, the use of highly effective isolate of *T. harzianum* was much safer and gave equivalent yield in terms of number and weight of leaves produced.

Gupta *et al.* (2002) observed drastically inhibition on the growth of *Fusarium oxysporum* f.sp. *ciceri, S. rolfsii* and *R. solani* by *T. viride* under *in vitro* conditions. Vyas and Mathur (2002) also observed effective inhibition on the growth and sporulation of *F. oxysporum* with the effect of volatile and non-volatile antibiotics of *Trichoderma* spp. The cell lytic enzymes like β -1,3-glucanase and chitinase play a major role in inhibiting the cell wall synthesis of *F. culmorum* (Witkowska and Maj, 2002).

According to Rajan *et al.* (2002), *T. viride* and *T. harzianum* were found more effective to control the foot rot disease of black pepper. The isolates of *Trichoderma* viz., *T. viride, T. aureoviride, T. harzianum, T. pseudokoningii, T. polysporum, T. longibrachiatum* and *T. koningii* were able to inhibit, over grow and lyse the mycelia of *P. capsici* of black pepper to varying degree (Saju *et al.*, 2002). He also reported that the percent inhibition of foot rot by different species of *Trichoderma* varied from 20-81.

2.4. Mechanism of antagonism

A number of parasitic fungi capable of penetrating thick walls of both chlamydospores and oospores have been identified (Snahe *et al.*, 1977). The mechanisms by which *Trichoderma* spp. control diseases include their competitive saprophytic ability, antibiotic production, direct parasitism and lysis (Ayers and Adams, 1981; Bell *et al.*, 1982). Initially the mycoparasite grows directly towards its host and often coils around it or attaches to it by forming hook like structures and appressoria (Elad *et al.*, 1983). Elad *et al.* (1984) observed that *Trichoderma* spp. penetrating the host mycelium, by partially degrading its cell wall. Finally, he assumed that, *Trichoderma* spp. utilize the intracellular content of the host. From further works, it appears that *Trichoderma* mycoparasitism is a complex process involving several successive steps (Chet, 1987).

2.4.1. Induction of systemic resistance in plants by Trichoderma

Recent discoveries indicate that *Trichoderma* spp. can also induce systemic and localized resistance to a variety of plant pathogens. Certain strains also have substantial influence on plant growth and development both in axenic system (Lindsey and Baker, 1967; Yedidia *et al.*, 2001) and natural field soil (Chang *et al.*, 1992; Harman, 2000).

According to Harman (2000), *Trichoderma* spp. exhibited two types of mechanism like rhizosphere competence, which is the ability of the micro organism

to grow and function in the developing rhizosphere and induce systemic acquired resistance (SAR), which gave long term protection at a substantial distance from the infection court.

The first clear demonstration of induced resistance by *Trichoderma* was given by Bigirmana *et al.* in 1997. They showed that treating soil with *T. harzianum* strain, T-39, impart resistance in bean plants to *B. cinerea* and *Colletotrichum lindemuthianum*, even though T-39 was present only in the rhizosphere of the crop. Evans *et al.* (2003) reported that a strain of *T. stromaticum* (T-203) is endophytic in the vascular system in cocoa. Mathew (2006) reported two endophytic *Trichoderma*, *T. viride* and *T. pseudokoningii* from black pepper.

2.4.2. Lytic enzymes

Mycoparasitism by enzymatic lysis of pathogenic fungal hyphae through the production of enzymes like β -1,3-glucanase, chitinase, cellulase and protease has been reported by many scientists (Elad *et al.*, 1983; Papavizas, 1985; Inbar and Chet, 1997; Cortes *et al.*, 1998; Vazquez-Garciduenas *et al.*, 1998; Zeilinger *et al.*, 1999; Sanz *et al.*, 2004; Steyaert *et al.*, 2004).

Phaff *et al.* (1979) reported classification of β -glucanases as β -1,3glucanase, β -1,6 and β -1,4-glucanase based on the type of glycosidic linkages cleaved by them. Fungal cell walls contain different kinds of β -glucans as structural component. These β -glucans are generally composed of a major component of predominantly β -1,3–linked glucans with branches of β -1,6–glycosidic linkages (Peberdy, 1990). However, these β -glucanases such as β -1,3-glucanase, β -1,6glucanase enzymes may be involved in the effective and complete degradation of mycelial or conidial walls of phytopathogenic funi by *Trichoderma*. Cellulose, the homopolymer of 1,4- β -glucan, is used as an energy source for *Trichoderma* spp. The cellulolytic system of *Trichoderma* spp. consist of three classes of enzymes such as 1,4- β -D-glucan cellobiohydrolases, endo-1,4-D-glucanases and 1,4- β -Dglucosidases, which were hydrolyse cellulose. The cellulolytic system of *T. ressei* RUT C30, which is known to be very high cellulase producing strains, was characterized by Migheli *et al.* (1998).

 β -1,3-glucanases are widely distributed among bacteria, fungi, yeasts, actinomycetes, insects, fish and higher plant (Boller, 1985; Pan *et al.*, 1989).They are classified as exo- β -1,3-glucanases [β -1,3-glucan glucohydrolase (EC 3.2.1.58)] and endo- β -1,3-glucanases [β -1,3-glucan glucanohydrolase (EC 3.2.1.6 or EC 3.2.1.39)]. These enzymes can hydrolyse the substrate by two possible mechanisms (Pitson *et al.*, 1993). Those are, exo- β -1,3-glucanases hydrolyze β -glucans by sequentially cleaving glucose residues from the non-reducing end, and endo- β -1,3-glucanases cleave β -linkages at random sites along the polysaccharide chain, releasing smaller oligosaccharides and glucose.

2.4.3. Role of β-1,3-glucanase

Distinct physiological roles of β -1,3-glucanases in different organism has been proposed by different scientists.

2.4.3.1. In fungi

Peberdy (1990) reported that β -1,3-glucanases have physiological role in morphogenetic-morpholytic process during development and differentiation in fungi. He also found that chitin and β -1,3-glucan are the main structural components of fungal cell wall except the class oomycetes, which contain β -1,3-glucan and cellulose. Oomycetes like *Phytophthora infestans, P. capsici* and *Pythium* spp. have a cell wall that is comprised of 80-90 per cent β -D-1,3-glucan. It has been suggested that β -1,3-glucanases play a nutritional role in saprophytes and mycoparasites (Chet, 1987; Lorito *et al.*, 1994).

According to Rapp (1992) and Stahmann *et al.* (1992), β -1,3-glucanases have been related to the mobilization of β -glucans under conditions of carbon and energy source exhaustion, functioning as autolytic enzymes. Schaeffer *et al.* (1994) reported that β -1,3-glucanases are also involved in fungal pathogen-plant interactions, degrading callose (β -D-1,3-glucan) in host's vascular tissues during pathogen attack.

The fungal cell wall composed of chitin, β -D-1,3-glucans, β -D-1,6-glucans, lipids and peptides embedded in a protein matrix. It is important to note that fungi have significant internal turgor pressure so that even slight perturbation of the cell wall results in fungal cell lysis (Harold and Caldwell, 1990; Kaminsuyi *et al.*, 1992; Money and Harold, 1993).

Thus, β -1,3-glucanases produced by *Trichoderma* spp. are key enzymes in the lysis of cell walls during their mycoparasitic action against phytopathogenic fungi (Shen *et al.*, 1991; De la Cruz *et al.*, 1995; Noronha *et al.*, 2000; Montero *et al.*, 2006).

2.4.3.2. In bacteria

Watanabe *et al.* (1993) reported that β -1,3-glucanases have metabolic function in bacteria. These enzymes are polysaccharide endohydrolases (Chen *et al.*, 1993; Varghese *et al.*, 1994). β -1, 3-glucanases hydrolyze 1,3- β -glucanase linkages, but they usually require a region of unsubstituted, contiguous 1,3- β -linked glucosyl residues. Henrissat and Bairoch (1996) found that the bacterial β -1,3-glucanases was included in the family 16 of glucosyl hydrolases.

2.4.3.3. In plant

 β -D-1,3-glucan (called callose in plants) is also a cell wall component of certain cell types during specific developmental stages of plants (Abeles and Forrence, 1969; Kauss, 1987, 1992; Kotake *et al.*, 1997).

As the substrate for β -1,3-glucanases exists in plants, these enzymes are involved in various physiological and developmental processes such as cell elongation (Masuda and Wada, 1967; Heyn, 1969), cell division (Fulcher *et al.*,

1976), fruit ripening by cell wall degradation leading to fruit softening (Hinton and Pressey, 1980), fertilization (Ori *et al.*, 1990), pollen germination and tube growth (Roggen and Stanley, 1969; Meikle *et al.*, 1991), bud dormancy (removal of phloem callose) (Krabel *et al.*, 1993), microsporogenesis (dissolution of pollen tetrads into free microspores) (Bucciaglia and Smith, 1994), somatic embryogenesis (Helleboid *et al.*, 2000), seed germination (Morohashi and Matsushima, 2000; Buchner *et al.*, 2002), and flower formation (Neale *et al.*, 1990; Akiyama *et al.*, 2004).

Based on the hydrolytic activities of β -1, 3-glucanases and their relationships to pathogen infections, β -1, 3-glucanases have been suggested as an important component of plant defense mechanisms against pathogens (Kauffmann *et al.*, 1987; Mauch and Staehelin 1989; Linthorst, 1991; Cordero *et al.*, 1994). Plant β -1,3-glucanases are pathogenesis related proteins as synthesis of these enzymes can be induced by pathogen or other stimuli. In addition, these enzymes may play an indirect role in plant defense by causing the formation of oligosaccharide elicitors, which elicit the production of other PR proteins or low molecular weight antifungal compounds, such as phytoalexins (Keen and Yoshikawa, 1983; Ham *et al.*, 1991; Klarzynski *et al.*, 2000).

2.5. PR Proteins

Plants, when exposed to pathogens such as fungi and viruses produce low-molecular weight antimicrobial compounds called phytoalexins, antimicrobial peptides and small proteins and up-regulate a number of antimicrobial proteins. These plant proteins are called as pathogenesis related (PR) proteins (Van Loon, 1985).

PR proteins were originally identified in tobacco plants infected by tobacco mosaic virus (Van Loon and Van Kammen, 1970). These proteins were subsequently detected in a wide range of plant species. PR protein can be acidic or basic proteins depending on their isoelectric points (pI). Acidic PR proteins are predominantly located in the intercellular spaces. Basic PR proteins, while having similar functions to acidic PR proteins, are mainly located intracellularly in the

vacuole (Legrand *et al.*, 1987; Niki *et al.*, 1998; Van Loon and Van Strien, 1999). Most PR proteins are acid soluble, low molecular weight and protease-resistant proteins (Leubner-Metzger and Meins, 1999; Neuhans, 1999).

Based on amino acid sequence similarities, serologic relationships and/or enzymatic or biological activities, PR protein can be categorized into 17 families (Shi, 2005)

Families	Type member	Properties		
PR-1	Tobacco PR-1a	antifungal		
PR-2	Tobacco PR-2	β-1,3-glucanase		
PR-3	Tobacco P, Q	chitinase type I,II, IV,V,VI,VII		
PR-4	Tobacco 'R'	chitinase type I,II		
PR-5	Tobacco S	thaumatin-like		
PR-6	Tomato Inhibitor I	proteinase-inhibitor		
PR-7	Tomato P ₆₉	endoproteinase		
PR-8	Cucumber chitinase	chitinase type III		
PR-9	Tobacco 'lignin-forming peroxidase'	peroxidase		
PR-10	Parsley 'PR1'	'ribonuclease-like'		
PR-11	Tobacco 'class V' chitinase	chitinase, type I		
PR-12	Radish Rs-AFP3	Defensin		
PR-13	Arabidopsis THI2.1	Thionin		
PR-14	Barley LTP4	lipid-transfer protein		
PR-15	Barley OxOa (germin)	oxalate oxidase		
PR-16	Barley OxOLP	'oxalate oxidase-like'		
PR-17	Tobacco PRp27	unknown		

Table 1. Recognized families of pathogenesis-related proteins

2.5.1. PR-2 proteins

The PR-2 proteins encoded by different β -1,3-glucanase gene show differences in size, isoelectric point (pI), primary structure, cellular localization and pattern of regulation (Meins *et al.*, 1992). Based on these differences especially primary amino acid sequence differences, β -1,3-glucanases can be divided into four different classes (Payne *et al.*, 1990; Ward *et al.*, 1991; Leubner-Metzger and Meins, 1999). Class I β -1,3-glucanases are basic, vacuolor, pathogenesis inducible proteins of ~33kDa (Castresana *et al.*, 1990; Beerhues *et al.*, 1994). Class II, Class III and Class IV are acidic, extra cellular proteins of about 36 kDa (Beffa *et al.*, 1993; Bucciaglia and Smith, 1994). Class II and Class III isoforms are induced upon pathogen attack but class IV isoforms are non responsive.

Class I proteins are synthesized as preproteins that are processed prior to being enzymatically active. Premature class I β -1,3-glucanases contain a signal peptide and C-terminal extension. Uknes *et al.* (1992) found that two *Arabidopsis* β -1,3-glucanases, BG1 and BG3 showed structural homology to tobacco class I proteins which are basic vacuolar enzyme except for the absence of a C-terminal extension.

PR-2 proteins (β -1,3-glucanases) have been found in a wide variety of plants inducing tobacco (De Loose *et al.*, 1988), soybean (Takeuchi *et al.*, 1990), *A. thaliana* (Uknes *et al.*, 1992), rubber tree (Chye *et al.*, 1995), pepper (Kim and Hwang, 1997), banana (Peumans *et al.*, 2000), rice (Yamaguchi *et al.*, 2002), strawberry (Shi, 2005) etc.

There proteins are active *in vitro* at micromolar levels (450 μ g/ml) against a wide number of phytopathogenic fungi. The antifungal activity of PR-2 proteins has been convincingly demonstrated by a number of *in vitro* enzyme and whole cell assays as well as in planta using transgenic plants over expressing a PR-2 protein (Stinzi *et al.*, 1993; Jach *et al.*, 1995; Zadoks and Waibel, 2000).

2.5.1.1. Induction of β -1,3-glucanases by pathogen and pathogen derived elicitors

Acidic and basic β -1,3-glucanases were induced in the presence of various polysaccharides.

De la Cruz *et al.* (1995) suggested that β -1,3-glucanase in *Trichoderma harzianum* was specifically induced by autoclaved yeast cell walls or filamentous fungi. Noronha and Ulhoa (2000) studied the activity β -1,3-glucanase of *T*.

harzianum by using different fungal cell walls from *R. solani, Sclerotium rolfsi* and *Pythium* spp. as inducer. They found high levels of β -1,3-glucanase activity in the culture medium containing purified cell walls of *Pythium* spp. β -1,3-glucanase activity was higher with laminarin (β -1,3-glucan) than with pastulan (β -1,6-glucan) or pullulan (α -1,6-glucan), suggesting that the induction patterns of the enzyme may vary in response to the glucan structure and type of linkage (Vazquez-Garciduenas *et al.*, 1998). Montero and Ulhoa (2006) reported that the highest activity was obtained in *T. koningii* when cell wall of *R. solani* was used as inducer rather than chitin, chitosan, cellulose, starch and glucose.

Many studies have shown that β -1,3-glucanases are constitutively expressed at low levels in plants, but are dramatically increased when plants are infected by fungal, bacterial or viral pathogens. Van Kan *et al.* (1992) reported that the mRNA for a tomato acidic β -1,3-glucanase accumulated to a higher level in leaves infected by the fungal pathogen *Cladosporium fulvum*.

Different β -1,3-glucanases may be induced in different ways. It was studied in tobacco plant that class I β -1,3-glucanases were induced as a local response while classes II and III were induced both locally and systemically (Lusso and Kuc, 1995; Bol *et al.*, 1996).

There are many findings which showed higher expression levels of these enzymes after infected with pathogens such as barley infected by powdery mildew (Ignatius and Chopra, 1994), maize infected with *Aspergillus flavus* (Lozovaya *et al.*, 1998), soybean infected with *Pseudomonas syringae* (Cheong *et al.*, 2000), pepper infected with *Xanthomonas campestris* pv. *vesicatoria* and *Phytophthora capsici* (Jung and Hwang, 2000), wheat infected with *Fusarium graminearum* (Li *et al.*, 2001), chickpea infected with *Ascochyta rabiei* (Pass.) *Labr*. (Hanselle and Barz, 2001), and peach infected with *Monilinia fructicola* (Zemanek *et al.*, 2002).

Induction of β -1, 3-glucanases by pathogens also depends on the plant clones. The production of β -1, 3-glucanase upon infection with *Corynespora*

cassiicola was compared in different clones of *Hevea brasiliensis*. Considerable variability of the enzyme's activity was observed among different clones during pathogenesis. Increased enzyme activity was found in the tolerant clone, while a decrease was observed in the susceptible clone (Philip *et al.*, 2001).

Some components of pathogens or degraded components of pathogens can serve as elicitors of β -1,3-glucanases. These elicitors may be component of the cell surface of the pathogen that are released by host enzymes including fungal β -glucan, chitin, chitosan, glycoproteins and N-acetyl chito oligosaccharides (Chang *et al.*, 1992; Kaku *et al.*, 1997; Muench-Garthoff *et al.*, 1997).

Three classes of biochemical elicitors, those are produced by *Trichoderma* strains and induce resistance in plants. These are proteins with enzymatic on other functions, homologues of protein encoded by the avirulence (*Avr*) genes and oligosaccharides and other low-molecular weight compounds, that are released from fungal or plant cell walls by the activity of *Trichoderma* enzyme (Hammand-Koshak *et al.*, 1995; Baker *et al.*, 1997).

A 22 kDa xylase, that is secreted by *Trichoderma* spp. was shown to induce ethylene production and plant defense responses (Lotan and Fluhr, 1990). It produced ony localized resistance and necrosis. Hanson and Howel (2004) reported that six peptides ranged from 6.2 to 42 kDa size of *T. virens* were shown to have elicitor activity. Woo *et al.* (2006) reported *Avr* gene from *T. atroviride* function as race or pathovar specific elicitor for inducing hypersensitive responses and defence reaction in plant corresponding to resistance gene.

2.5.1.2. Synergistic action

Lorito *et al.* (1994) reported that the antifungal activity is synergistically enhanced when different *Trichoderma* cell wall degrading enzymes are used together. It has also reported about mycoparastic activity of *Trichoderma* spp., that was increased when β -1, 3-glucanase and other plant PR protein act synergistically (Lorito *et al.*, 1996). There were many reports about the compatibility of biocontrol agent *Trichoderma* with different fungicides, insecticides and chemical fertilizers (Sharma *et al.*, 2001; Sarma, 2003; Jayaraj and Rambadran, 1998). Synergism among lytic enzymes and between enzymes and antibiotics suggests formulations to test mixtures of *Trichoderma* transformants that produce different enzymes, in order to improve the antagonistic effects of BCAs on phytopathogenic fungi (Benitez *et al.*, 1998). It has been shown that β -1,3-glucanases inhibit spore germination or the growth of pathogens in synergistic cooperation with chitinases (Benitez *et al.*, 1998; EI-Katany *et al.*, 2001) and antibiotics (Howell, 2003; Harman *et al.*, 2004). Chawla (2003) reported increased resistance to fungal pathogens by β -1,3-glucanase genes in association with chitinase genes in plants.

2.6. BIOCHEMICAL CHARACTERISATION

Tangarone *et al.* (1989) purified a laminarinase (endo- β -1,3-glucanase) from *T. longibrachiatum* and characterized through 12.5 per cent SDS-PAGE. He found the molecular weight of protein as 70 kDa and pI was 7.2.

Pan *et al.* (1991) found the elevation of β -1, 3-glucanase activity in the systemically protected leaves of both *Peronospora tabaciana* and TMV induced tobacco plant. He also studied the localization of β -1,3-glucanase isoforms (G₁, G₂ and G₃) in 15% PAGE gel. A study on groundnut showed that three isozymes of β -1,3-glucanase existed in the plant and the activities of these isozymes increased after infection by *Cercospora arachidicola* (Roulin and Buchala, 1995).

De La Cruz *et al.* (1995) characterized the β -1,3-glucanase protein from *T. harzianum* by SDS-PAGE after purification. He also sequenced N-terminal and internal peptide of the enzyme from Western blots. Vazquez-Garciduenas *et al.* (1998) characterized β -1,3-glucanase in *T. harzianum*. He found that seven extracellular β -1,3-glucanase produced upon induction with laminarin, a soluble β -1,3-glucanase and the molecular weight ranged from 60 to 80 KDa with pI 5 to 6.8. He also estimated β - 1,3 – glucanase activity produced by *T. harzianum*, grown in

PDB supplemented with the mycelium of *Phytophthora citrophthora* as the sole carbon source and reported to be 700 mU/ mg of protein/ min.

Noronha and Ulhoa (2000) characterized a 29 KDa β -1,3-glucanase from *T. harzianum* by 10% SDS-PAGE after it was being purified in sequential steps by gel filtration, hydrophobic interaction and ion exchange chromatography. They estimated β -1,3–glucanase activity of *T. harzianum* grown in the culture medium containing cell walls of *Pythium* spp. and reported to be 14.62±0.06 U/ mg of protein/ min. They found the K_m and V_{max} values for β -1,3-glucanase, using laminarin as substrate were 1.72 mg/ ml and 3.10 U/ml respectively and also suggested that the enzyme was strongly inhibited by HgCl₂.

Parab (2000) and Jabekumar *et al.* (2001) observed that β -1,3-glucanase activities were significantly higher in *P. capsici* infected black pepper leaf tissue. They compared their activities in healthy and infected plants by colourimetric assay and SDS-PAGE. They detected high levels of enzyme in tolerant cultivar.

 β -1,3-glucanase from *T. koningii* induced by cell wall of *R. solani* was characterized. The molecular weight of the purified enzyme was 75 kDa was estimated by SDS-PAGE (Montero and Ulhoa, 2006).

Montero *et al.* (2007) characterized the three different isoform of β -1,6-glucanase (BGN16.1, BGN 16.2, BGN 16.3) of *T. harzianum* through SDS-PAGE and Western blotting.

2.7. MOLECULAR CHARACTERIZATION

The PCR process was originally developed to amplify short segments of a longer DNA molecule (Saiki *et al.*, 1985). β -1,3-glucanase gene was isolated from different *Trichoderma* spp., fungi, bacteria and plants by PCR based methods. The details of β -glucanase gene isolated from some of the fungi are given in Table 2.

Sl. No.	Fungus name	Accession No.	Gene name	Source	Size (bp)	Authors
1	Aspergillus fumigatus	XM_747722	exo-beta-1,3-glucanase (Exg0)	mRNA	2844	Nierman et al., 2005
2	Trichoderma asperellum	EU314718	beta -1,3 - exoglucanase	mRNA	3096	Bara et al., 2003
3	T. harzianum	X84085	endo-1,3(4)-beta-glucanase	mRNA	2484	De la Cruz <i>et al.</i> , 1995
4	T. reesei	AF282243	beta-1,3-1,4-glucanase	mRNA	285	Xu et al., 2000
5	Hypocrea virens	EF633613	endo-beta -1,3-glucanase (bgnI)	DNA	2345	Mohammadzadeh et al., 2007
6	T. viride	EF176582	beta-1,3-glucanase (glu) gene	DNA	2410	Gao <i>et al.</i> , 2008
7	T. longibrachiatum	X60652	endo-1,4-beta-glucanase (egll)	DNA	1845	Perez-Gonzalez, 2006
8	Piromyces communis	EU314936	endo-1,3-1,4-beta-glucanase (licWF3)	mRNA	934	Duan <i>et al.</i> , 2008
9	T. harzianum	X79197	endo-beta-1,6-glucanase	mRNA	1452	Lora <i>et al.</i> , 1995
10	Hypocrea virens	EU149643	beta-1,6-glucanase	DNA	1351	Shaikh, 2007
11	Hypocrea virens	AF395756	beta-1,3-glucanase precursor (bgn2)	DNA	3027	Kim <i>et al.</i> ,2002

Table 2. Sequence information of β -glucanase gene isolated from some of the fungi

The isolation and characterization of an endo- β -1,3-glucanase namely BGN 13.1 from the mycoparasitic fungus *T. harzianum* was carried out by synthetic oligonucleotide primer by PCR technique. The expression pattern was studied at cDNA and mRNA level through southern and northern blotting (De la Cruz *et al.*, 1995).

In *Trichoderma* spp., a number of gene encoding bydrolytic enzymes were cloned and characterized viz. Proteinase gene (Prb1) from *T. harzianum* (Geremia *et al.*, 1993), endochitinase gene (ThEn-42) from *T. harzianum* (Hayes *et al.*, 1994), α -1,3-glucanase (AGN 13.2) from *T. asperellum* and aspartic protease (SA 76) from *T. harzianum*.

Liu *et al.* (2004) reported the cloning and expression of the endo-βglucanase II (EG III) cDNA gene of *T. viride* through RT-PCR and yeast expression vector pYES2.

George (2005) isolated β -1,3-glucanase gene by PCR with gene specific primer from two species of *Piper* namely *P. nigrum* and *P. colubrium* and cloned. Djonovic *et al.* (2007) reported a gene (gluc 78) encoding β -1,3-glucanase from *T. atroviride*. Using degenerated primed PCR and cDNA library screening, the three isozyme of β -1,6-glucanase from *T. harzianum* were cloned and sequenced.

Gao *et al.* (2008) designed a pair of primers according to fungal glucanase genes obtained from GenBank and cloned a novel beta-1,3-glucanase gene (glu) from *Trichoderma viride* LTR-2 cDNA by PCR. Then they cloned the fragment in pMD18-T vector and sequenced.

2.7.1. Polymerase chain reaction (PCR)

The PCR process was originally developed to amplify short segments of a longer DNA molecule (Saiki *et al.*, 1985). According to Mullis *et al.* (1986), PCR is a ubiquitous technique which amplifies a specific region of DNA, so that enough copies of that region is available to be adequately tested or sequenced.

In the original description of PCR method, Klenow DNA polymerase was used and because of heat-denaturation step, fresh enzymes had to be added during each cycle (Saiki *et al.*, 1985; Mullis *et al.*, 1986; Mullis and Faloona, 1987). A break through came with the introduction of *Taq* DNA polymerase from the thermophilic bacterium *Thermus aquaticus* (Lawyer *et al.*, 1987). The *Taq* DNA polymerase is resistant to high temperature and so does not need to be replenished during the PCR (Saiki *et al.*, 1988; Erlich, 1989)

Primer length and sequence are of critical importance in designing the parameters of a successful amplification. The melting temperature of a nucleotide increases both with its length and with increasing (G+C) content. The annealing temperature (Ta) should be about 5°C below the lowest melting temperature (Tm) of the pair of primers to be used (Innis and Gelfard, 1990). Rychlik *et al.* (1990) suggested that if the Ta is increased by 1°C every cycle, both the specificity of amplification and yield of products <1kb in length, were increased. While the PCR is a simple in concept, practically there are a large number of variables which can influence the outcome of reaction (Pavlov *et al.*, 2004).

2.7.1.1. Degenerate primers and primer designing

The degeneracy of the primer is the number of unique sequence combinations it contains. Lee *et al.* (1988) described the common use of degenerate oligonucleotides, when the amino acid sequence of a protein is known. It can be employed to search for novel members of known family of genes and homologous gene between species (Wilks, 1989; Nanberg *et al.*, 1989). Compton (1990) describes using 14-mer primer sets with 4 and 5 degeneracies as forward and reverse primers, respectively, for the amplification of glycoprotein B (gB) from related herpesviruses. A PCR primer sequence is called degenerate if some of its positions have several possible bases (Kwok *et al.*, 1994). De la Cruz *et al.*(1995) designed

the specific primer for β -1,3-glucanase on the basis of the amino acid sequence of the internal peptide of the protein β -1,3-glucanase (BGN 13.1) for PCR. Montero *et al.* (2007) designed degenerated primer from the sequences of glucanase from different *Trichoderma* spp. available in the database for amplification of β -1,6glucanase (*bgn* 16.3) by degenerate primed PCR.

2.7.1.2. Cloning of PCR product

PCR products generated using a non proof reading DNA polymerase such as *Taq* DNA polymerase, which lacks $3' \rightarrow 5'$ exonuclease activity, have a single template-independent nucleotide at the 3' end of the DNA strand (Clark, 1988; Newton and Graham, 1994). This single-nucleotide overhang, which is most commonly an A residue, allows hybridization with and cloning into T vectors, which have a complementary 3' single T overhang. PCR products generated using a proofreading DNA polymerase, such as *Pfu* DNA polymerase, have blunt ends and must be cloned into a blunt-ended vector or need a single 3'A overhang added to ligate into a T - vector (Knoche and Kephart, 1999).

2.7.2. Transformation in E. coli

Mandel and Higa (1970) found that treatment with CaCl₂ allowed *E. coli* cells to take up DNA from bacteriophage λ . Cohen *et al.* (1972) showed that Calcium chloride treated *E.coli* cells are effective recipients for plasmid DNA. During transformation, a restriction deficient strain of *E.coli* is used as a transformable host. It is found that *E.coli* cells and plasmid DNA effectively interact in an environment of calcium ions and low temperature (0 – 5°C). A subsequent heat shock (3°C – 45°C) is important. The calcium chloride influences the cell wall permeability, which plays an important role in binding of DNA to the cell surface (Hanahan, 1983). The actual uptake of DNA is stimulated by the brief heat shock (Old and Primrose, 1994).

Inoue *et al.* (1990) have optimized the conditions for the preparation of competent cells. They stored cells up to 40 days at -70°C while retaining efficiencies of $1-5 \times 10^9$ cfu/µg, but competency was affected only minimally by salts in the DNA preparation. Liu and Rashdbaigi (1990) reported the optimum efficiencies of transformants are 10^7 to 10^9 cfu/µg.

Sambrook *et al.* (1989) reported restriction analysis of plasmid DNA as a method of finding the desired recombinants within a small number of randomly chosen transformed cells. Many of the cloning vectors carry a short segment of *E.coli* DNA that contains the regulatory sequences and the coding information for the first 146 amino acids of the β -galactosidase gene (*lac Z*). This coding region contains a polycloning site that does not disrupt the reading frame but results in the harmless interpolation of a small number of amino acids into amino terminal fragment of β -galactosidase. The carboxy terminal portion of β -galactosidase is coded by the host cells of this type of vectors. The host encoded and vector encoded proteins together constitute the active protein (Ullmann *et al.*, 1967).

The recognition of lac⁺ bacteria that result from α complementation is easy because they form blue colonies in presence of the chromogenic substrate X-gal (Horwitz *et al.*, 1964). The insertion of a fragment of foreign DNA into the polycloning site of the plasmid results in the production of an amino terminal fragment that is not capable of complementation. White colonies are formed by the bacteria carrying recombinant plasmid while the non-recombinants produce blue colonies. Screening of these colonies can be done visually to recognize bacteria that carry putative recombinant plasmids.

2.8. Sequence analysis

The cloned cDNA of BGN 13.1 from *T. harzianum* has a size of 2484 bp and 2288 bp corresponding to open reading frame. The translation of ORF has 762 amino acids with predicted molecular weight of 81,246 Da (De la Cruz *et al.*, 1995). The comparison of the nucleotide and amino acid sequence of BGN 13.1 has not

shown any significant homology to any α or β glucanases or other related protein families. Hence, it represented a new class of β -1,3-glucanase of glycosyl hydrolase 55 family.

Kim *et al.* (2002) cloned the β -1,3-glucanase of *T. virens*, sequence length 3027 bp named (bgn1). The protein is β -1,3-glucanase precursor belonged to the same family of BGN 13.1 i.e. glycosyl hydrolase of 55 family.

The sequence analysis of beta-1,3-glucanase gene (*glu*) from *Trichoderma viride* LTR-2 indicated that *glu* was composed of 2289 nucleotide residues and the fragment contained an Open Reading Frame coding 762 amino acids. By nucleotide blasting in NCBI glu showed high homology to β -1,3-glucanase genes from *Trichoderma* spp., especially with *T. harzianum* (bgn3.1) and *Hypocrea virens* (bgn13.1), which the homology reached 93%. The sequence was submitted to GenBank having Accession Number is EF176582 (Gao *et al.*, 2008).

2.9. Genetic transformation

Several studies have have demonstrated that the integration of multiple copies of genes encoding hydrolytic enzymes increases targeted enzyme activity and biocontrol activity of the transformed strain. Examples include integration of multiple copies of the Prb1 gene into the genome of *T. atroviride* (Flores *et al.,* 1997) and *T. virens* (Pozo *et al.,* 2004), endochitinase Chit33 in *T. harzianum* (Limon *et al.,* 1999), and endochitinase Chit36 in *T. harzianum* (Viterbo *et al.,* 2001).

Lorito *et al.* (1998) transferred the gene encoding endochitinase (chit 42) from *T. harzianum* (P1) into tobacco and potato and demonstrate a high level and broad spectrum of resistance against a number of plant pathogen viz. *R. solani, A. solani, B. cinerea* and *A. alternata*.

Bolar *et al.* (2000) demonstrated enhanced resistance to apple scab incited by *Venturia inaequalis* in transgenic apple plants that had been transformed with genes encoding both endo and exo-chitinases from *T. atroviride* (P1).

Mora and Earle (2001) reported that transgenic broccoli plants expressing a *T. harzianum* endochitinase gene were obtained by *Agrobacterium tumefaciens* mediated transformation, showing resistance to *Alternaria brassicicola*.

Liu *et al.* (2004) showed the enhanced resistance to fungal pathogens by transformation in rice with the genes encoding cell wall degrading enzymes, endochitinase (*ech 42, nag 70*) and β -1,3-glucanase (*glu 78*) from *T. atroviride*.

Transgenic tobacco lines that over expressed the endochitinase CHIT 33 and CHIT 42 from *T. harzianum* and showed enhanced resistance to biotic and abiotic stress agents (Dana *et al.*, 2006).

Djonovic *et al.* (2007) generated transformants of *T. virens* in which β -1,3-glucanase (TvBgn2) and β -1,6-glucanase (TvBgn3) were constitutively coexpressed in the same genetic *T. virens* GV29.8 wild type background. The higher enzymatic activity of double over-expression transformants positively correlated with observed *in vitro* inhibition of *P. ultimum* and *R. solani* mycelia and with enhanced bioprotection of cotton seedling against *P. ultimum, R. solani* and *Rhizopus oryzae.*

3. MATERIALS AND METHODS

The present study on "Molecular cloning and characterization of the gene encoding β -1,3-glucanase in *Trichoderma* spp." was carried out at the Centre for Plant Biotechnology and Molecular Biology (CPBMB) and Department of Plant Pathology, College of Horticulture, Vellanikkara during the period from 2006 to 2008. Description of the materials used and methodology adopted in the study has been furnished in this chapter.

3.1 MATERIALS

3.1.1 Chemical, glassware and plastic ware

The chemicals used for the study were of good quality (AR grade) from various agencies including MERCK, SRL and HIMEDIA. Molecular Biology Grade enzymes and buffers were supplied by Banglore Genei Ltd. All the plastic wares used were obtained from Axygen and Tarson India Ltd. The primers were synthesized from Integrated DNA Technologies, USA.

3.1.2 Equipments and machinery

The equipments available at Centre for Plant Biotechnology and Molecular Biology were used for the present study. Incubator Shaker (Dai Ki-S1010) was used for the incubation of cultures and centrifugation was done in KUBOTA centrifuge. DNA amplification was carried out in Eppendorf Master Cycler, Gradient (Eppendorf, Germany). UVP Geldoc IT- Imaging system (U.K.) was used for imaging the gel

3.2 MAINTENANCE OF Trichoderma CULTURES

Fifteen *Trichoderma* isolates maintained in the Department of Plant Pathology were used for the present study. Of these, twelve *Trichoderma* isolates viz. BPT -7, BPT - 8, BPT -9, CT-29, CT-30, CT -143, CT-145, GT-1, GT-2, GT-3, GT – 4, VT -1 were collected from different crops and locations. All these isolates except BPT-8 and BPT-9 were isolated from the rhizosphere soils of various crops, whereas BPT-8 and BPT-9, the endophytic fungi were isolated from roots and stems of black pepper. In addition, reference cultures of *T. viride*, *T. virens* and *T. harzianum* were also used in this study (Plate 1). *Trichoderma* isolates selected were antagonistic to soil borne pathogens such as *Pythium aphanidermatum*, *Phytophthora capsici*, *P. meadii and Ralstonia solanacearum*, causing rhizome rot of ginger, *Phytophthora* rot of black pepper and vanilla and bacterial wilt of chilli and ginger respectively. Cultures kept in refrigerated conditions were further cultured on *Trichoderma* selective medium (Annexure I). It was then purified by hyphal tip method and subcultured on PDA slants (Annexure I). These pure cultures were used for further studies (Table 3).

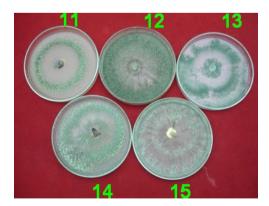
3.2.1 CULTURAL CHARACTERS AND IDENTIFICATION OF *Trichoderma* ISOLATES


Cultural characters viz. growth, colour and pigmentation of various *Trichoderma* isolates on PDA medium were observed and recorded. For the confirmation of the isolates, cultures were sent to Agarkar Research Institute, Pune; Indian Agricultural Research Institute, New Delhi and National Centre for Fungal Taxonomy, New Delhi.

3.3 **BIOCHEMICAL CHARACTERIZATION**

 β -1, 3- glucan is one of the main structural component of the cell wall of oomycetes fungi like *Phytophthora* and *Pythium*. *Phytophthora capsici*, the major pathogen, causing *Phytophthora* rot of black pepper in Kerala is selected for this particular study.

Sl No.	Isolate No.	Source	Locations
1	BPT – 7	Black pepper	Nilambur, Malappuram
2	BPT-8	Black pepper	Cherumkuzhy, Thrissur
3	BPT – 9	Black pepper	Nilambur, Malappuram
4	CT – 29	Chilli	Vellanikkara, Thrissur
5	CT - 30	Chilli	Ozhalapathy, Palakkad
6	CT – 143	Forest soil	Nilambur, Malappuram
7	CT – 145	Forest soil	Nilambur, Malappuram
8	GT – 1	Ginger	Nenmara, Palakkad
9	GT – 2	Ginger	Nenmara, Palakkad
10	GT – 3	Ginger	Mudappallur, Palakkad
11	GT – 4	Ginger	Mudappallur, Palakkad
12	VT – 1	Vanilla	Vellanikkara, Thrissur
Reference cultures			
13	T. viride		KAU, Thrissur
14	T. harzianum		IISR, Calicut
15	T. virens		PDBC, Bangalore


Table 3. Details of *Trichoderma* isolates used for the present study

1. *T. viride*-1 (KAU), 2. *T. harzianum* – 30, 3. *T. aureoviride*, 4. *T. viride* – 8, 5. *T. piluliferum*

6. *T. pseudokoningii* – 143, 7. *T. harzianum* – 1, 8. *T. harzianum* – 4, 9. *T. harzianum* (IISR), 10. *T. flavofuscum*

11. *T. virens* – 1, 12. *T. virens* (PDBC), 13. *T. harzianum* – 29, 14. *T. pseudokoningii* – 9, 15. *T. virens* – 2

Plate 1. Trichoderma isolates used for the study

3.3.1 Isolation of *P. capsici*

The pathogen, *P. capsici,* was isolated from *Phytophthora* infected black pepper leaves, adopting standard protocol (Zentmyer, 1960). The fungus isolated on carrot agar medium was purified, subcultured and maintained on PDA slants.

3.3.2 Preparation of *Phytophthora* cell wall extract

P. capsici was inoculated on PDA mediated Petriplates (Plate 2A). Four mycelial discs of size six mm from seven day old culture were inoculated to 50ml sterile carrot broth and incubated at room temperature with constant shaking at 150 rpm for seven days (Plate 2B). After the required incubation, the mycelial mat was removed by filtration, washed repeatedly with distilled water and then ground to a paste with mortar and pestle. This was treated with methanol and chloroform in the ratio of 1:1 and later with same volume of acetone and dried in oven at 50°C for 48 h. The dry weight was estimated and stored at 4°C.

3.3.2 Enzyme production in liquid culture

Trichoderma isolates were tested for glucan utilization in *Trichoderma* special broth (TSB) with *P. capsici* cell wall extract as sole carbon source instead of glucose. Five mycelial discs (six mm in diameter) were cut from the periphery of seven day old culture of the test fungus with the help of cork borer and then inoculated separately to 50ml of 0.2% *P. capsici* cell wall amended *Trichoderma* special liquid medium and incubated at room temperature with rotary shaking at 100 rpm for seven days (Plate 2C). After the incubation, the mycelial mat was removed by centrifugation and the supernatant was used as crude enzyme for the assay of glucanase activity.



A. Growth of *P. capsici* on PDA medium

B. Growth of *P. capsici* in carrot broth

C. Growth of Trichoderma spp. in P. capsici cell wall amended TSB medium

D. Growth of Trichoderma spp. in minimal media for DNA isolation

1. *T. viride* – 1, 2. *T. harizianum* – 30, 3. *T. aureoviride*, 4. *T. viride* – 8

Plate 2. Cultures of Phytophthora capsici and Trichoderma spp. in different media

3.3.3 Assay of β-1, 3- glucanase enzyme

The glucanase activity was assayed colorimetrically as suggested by Pan *et al.*(1991). The principle of the assay is that, the enzyme, β -1,3-glucanase, released by *Trichoderma* binds to the substrate molecule (laminarin) and produce glucose which on react with colouring cum stopping reagent, 3,5-dinitrosalicylicacid (DNS), give reddish yellow colour (Annexure II). Then absorbance (A) was measured spectrophotometrically at 500 nm.

Protocol

- For the glucanase assay, the assay mixture, contained 0.5 ml of 50 mM sodium acetate buffer (pH 5.2), 62.5 μl of 4% laminarin and 62.5 μl crude culture filtrate was prepared.
- 2. The reaction mixture was incubated for 10 min at 37°C
- 3. Then reaction was stopped by addition of 375 μ l 3, 5-dinitrosalicylicacid (DNS) and the mixture was kept in boiling water bath for 5 min for stabilization.
- Then the volume of the reaction mixture was made up to 5.5 ml of using double distilled water and mixed properly
- 5. Simultaneously blanks were prepared for each sample in which the samples were boiled to inactivate the enzyme activity and followed the same steps as mentioned earlier.
- 6. The absorbance was read at 500 nm.

The enzyme activity was calculated from the standard curve of glucose using laminarin as substrate (Fig 1). One unit of enzyme is defined as the amount of enzyme necessary to produce one micro gram of glucose released per 10 min.

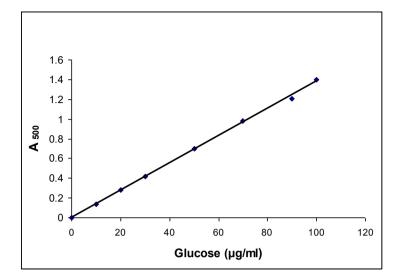


Fig.1. Standard curve of glucose

3.4 AMPLIFICATION OF β-1, 3- GLUCANASE GENE FROM *Trichoderma* spp.

Four *Trichoderma* isolates viz. *T. viride*-1, *T. harzianum*-30, *T. aureoviride* and *T. viride*-8 having high glucanase activity were selected for gene isolation. Total DNA was isolated from these selected *Trichodrma* spp., in order to amplify the β -1,3-glucanase genes. Specific primers for the amplification of β -1,3-glucanase genes were designed based on the conserved regions obtained after multiple sequence alignment. PCR was carried out using the specific primers at annealing temperatures specified for each primer.

3.4.1 Isolation of total genomic DNA from *Trichoderma* spp.

The total genomic DNA was isolated from *Trichoderma* isolates following the method as suggested by Cenis (1992), Cassago *et al.* (2002) with slight modification.

Reagents used

- 1. Extraction buffer
- 2. TE buffer

- 3. Chilled Isopropanol
- 4. 7.5M Ammonium acetae
- 5. Phenol:chloroform:isoamyl alcohol mixture (25:24:1, v/v/v)
- 6. RNase
- 7. 3M Sodium acetate
- 8. Ethanol (100% and 70%)

(Chemical composition of media and reagents used are given in Annexure III)

Protocol

- 1. For genomic DNA extraction, the selected four *Trichoderma* isolates were grown in minimal liquid medium for five days at room temperature (Plate 2D).
- 2. The mycelium was separated from the medium, washed with distilled water and dried.
- 3. One gram mycelium was ground in excess liquid nitrogen and six ml extraction buffer.
- 4. The ground tissue was transferred to 50 ml oakridge tube.
- 5. Phenol: chloroform: isoamyl alcohol mixture (25:24:1, v/v/v) was added and placed in a shaker in horizontal position at 200 rpm for 30 min at 37^{0} C.
- 6. The homogenate was then centrifuged immediately at 15,000 rpm for 5 min at 37^{0} C.
- 7. The upper aqueous phase was transferred to fresh oakridge tube after checking the volume.
- 8. To this, equal volume of chilled isopropanol and 1/10th volume of 7.5M ammonium acetate were added.
- The contents were mixed gently by inversion and then incubated at -20^oC for 30 min for complete precipitation of DNA.
- 10. The precipitated DNA was pelleted by centrifugation at 15,000 rpm for 15 min at 4^oC.

- 11. The supernatant was discarded and the pellet was washed with 70 per cent alcohol by giving a centrifugation at 10,000 rpm for 5 min at 4^oC. The supernatant was discarded.
- 12. The pellet was air dried and resuspended in 1 ml TE buffer.
- 13. 20 μ l of RNase was added from a stock of 10 mg/ml and incubated at 37^oC for 30 min.
- 14. Equal volume of phenol: chloroform: isoamyl alcohol mixture (25:24:1, v/v/v) was added, mixed gently and centrifuged at 10,000 rpm for 10 min.
- 15. The upper aqueous phase was transferred to a fresh centrifuge tube and equal volumes of absolute alcohol and 1/10th volume of 3M sodium acetate were added.
- Incubated at -20^oC for 30 min followed by centrifugation at 12,000 rpm for 15 min at 4^oC.
- 17. The pellet was washed with 70 per cent alcohol by giving a centrifugation at 10,000 rpm for 5 min at 4^oC. The supernatant was discarded.
- 18. The pellet was air dried and dissolved in 100-120 µl TE buffer.
- 19. The DNA sample was stored at -20° C for further utilization.

3.4.2 ESTIMATION OF THE QUALITY OF DNA

3.4.2.1 Agarose Gel Electrophoresis

Agarose gel electrophoresis was performed based on the method described by Sambrook *et al.* (1989) to check the quality of DNA and also to separate the amplified products.

Materials

- 1. Agarose (Bangalore Genei, Low EEO)
- 2. 50X TAE buffer (pH 8.0)
- 3. Electrophoresis unit (Biorad, USA), power pack, casting tray, comb
- 4. 6X Loading/ Tracking dye (Bangalore Genei, Bangalore)

- 5. Ethidium bromide solution (stock 10mg/ml; working concentration, 0.5µg/ml)
- 7. Gel documentation and analysis system (UVP Geldoc IT- Imaging system, U.K.)

3.4.2.2 Protocol

3.4.2.2.1 Preparation of agarose gel

- 1. 1X TAE buffer was prepared from 50 X TAE stock solution.
- Agarose (1.0 per cent (w/v) for genomic DNA and 0.8 per cent (w/v) for PCR) was weighed and added to 1X TAE. It was boiled till the agarose dissolved completely and then cooled to lukewarm temperature.
- 3. Ethidium bromide was added to a final concentration of $0.5\mu g$ ml⁻¹ as an intercalating dye of DNA and mixed well.
- 4. The open ends of the gel casting tray were sealed with a cellophane tape or kept in the respective stand and placed on a perfectly horizontal leveled platform.
- 5. The comb was placed properly and molten agarose was poured into the tray, allowing it to solidify.
- 6. After the gel was completely set (20 to 30 min at room temperature), the comb and cellophane tape were carefully removed.

3.4.2.2.2 Loading the DNA sample

- 1. The gel was placed in the electrophoresis tank with the wells near the cathode and submerged in 1 X TAE to a depth of 1cm.
- 2. A piece of cellophane tape was pressed on a solid surface and 1 μl 6X loading dye was dispensed in small quantity on the tape. A quantity of 3 to 5 μl of DNA was added to each slot (in the case of PCR products, 15.0 to 25.0 μl) mixed well by pipetting in and out for 2 to 3 times. Then the mixture was loaded in the wells, with the help of micropipette. λ DNA/*Eco* R1+ *Hind* III double digest (Bangalore Genei) was used as the molecular weight marker.

- 3. The cathode and anode were connected to the power pack and the gel was run at a constant voltage of 60 volts.
- 4. The power was turned off when the tracking dye reached at about 3cm from the anode end.

(Chemical composition of the buffer and dyes are given in Annexure IV).

3.4.2.2.3 Gel documentation

The DNA bands separated by electrophoresis were viewed and photographed and documented using UVP Geldoc IT- Imaging system.

3.4.3 QUANTIFICATION OF DNA

The quantity and purity of DNA was further analysed by using NanoDrop® ND-1000 spectrophotometer (NanoDrop Technologies Inc., USA). The absorbance of nucleic acid samples was measured at a wavelength of 260 nm and 280 nm. OD_{260}/OD_{280} ratio was used to assess the purity of nucleic acids. A ratio of 1.8 to 2 indicated good quality DNA.

3.4.4 PRIMER DESIGNING

The sequence information available in the public domain NCBI was accessed for collecting the recent information about β -1,3-glucanase genes. The following steps were used:

- Complete nucleotide sequences encoding β-1,3-glucanase gene reported for different species of *Trichoderma / Hypocrea* were downloaded from NCBI Genbank (<u>http://www.ncbi.nlm. nih.gov</u>) and copied in FASTA format into a notepad. The accession numbers of selected sequences are provided in Table 4.
- Multiple sequence alignment of nucleotide sequences downloaded was done using 'Clustal W1.83' (www.ebi.ac.uk./clustalw/; Thompson et al., 1994).
- 3. Based on the homology, conserved boxes of 18 to 24 bases were selected throughout the sequence.

Table 4. Details of β -1, 3- glucanase gene sequences used for primer
designing

Sl. No.	Fungal strain Sequence details		Accession number in NCBI
1	Hypocrea virens	Endoglucanase (bgn13.1) gene, complete sequence	EF426721.1
2	Hypocrea virens	Endoglucanase (bgn13.1) mRNA, complete cds	EF426722.1
3	Trichoderma harzianum	mRNA for endo – 1,3 (4)-β -glucanase	X84085.1
4	Trichoderma viride	β-1,3- glucanase (glu) gene, complete cds	EF176582.1
5	Hypocrea virens	β-1,3- glucanase precursor (bgn2) gene, complete cds	AF395756.1

- 4. The forward and reverse primers were selected from conserved boxes in such a way that
 - a) The conserved boxes should have GC content not less than 50 per cent
 - b) Melting temperature (Tm = 4GC + 2AT; Suggs *et al.*, 1989) should range between 60° C and 70° C.
 - c) The distance between the primers should range from 500 to 1000 base pairs.
 - d) It is preferable to have GC content at 3' end.
 - e) There should not be any complementarity between forward and reverse primers.
 - f) Repeats of single base should not appear within the primer sequence.
 - g) The distance between forward and reverse primer should be greater than 500bp.
 - h) Each primer should be 18 to 24bp long
 - 5. For designing primers, the sequence of the forward primer was taken as such and for the reverse primer, the reverse complementary sequence was taken.

3.4.5 PCR Reaction

The total DNA extracted from *Trichoderma* isolates were amplified by polymerase chain reaction. PCR was carried out using β -1,3-glucanase gene specific primers designed during this study, at different annealing temperature in Eppendorf Master Cycler, Personal (Eppendorf, Germany).

3.4.5.1 Composition of the reaction mixture for PCR (25.0µl)

a) Genomic DNA (25ng)	-	1.0µl
b) 10X Taq assay buffer	-	2.5µl
c) d NTP mix (10mM)	-	1.0µl
d) Forward primer (8pM)	-	1.0µl
e) Reverse primer (8pM)	-	1.0µl

		25.0µl
g) Sterile distilled water	-	16.5µl
f) Taq DNA polymerase (0.3 U)	-	2.0µ1

The total volume for one PCR reaction was 25.0μ l. The reaction was set in a 200 μ l microfuge tube chilled over ice flakes. A momentary spin was given for the reaction and set in thermal cycler for polymerase chain amplification under suitable programme. A negative control was kept using water as template.

3.4.5.2 Thermal cycler programme

The following programme was set in order to amplify β -1, 3- glucanase gene from the template DNA.

Step 1: 9	94 ⁰ C	for 2 min	- initial denaturat	ion
Step 2: 9	94 ⁰ C	for 45 sec	- denaturation	
Step 3: 5	55°C	for 1 min	- annealing	> 30 cycles
Step 4: 7	72 ⁰ C	for 2 min	- extension	
Step 5: 7	72 ⁰ C	for 10 min	- final extension	
Step 6:	4 ⁰ C	for infinity to	hold the sample	

The PCR product was checked on 1.0 per cent agarose gel and documented.

3.5 GEL ELUTION OF PCR AMPLIFIED FRAGMENTS

Products obtained in different PCR reactions were loaded separately on 1.0 per cent (w/v) agarose gel and desired band in each case was eluted using AxyPrep DNA Gel Extraction Kit (Axygen, Biosciences) as per manufacturer's guide lines.

- 1. DNA fragment of interest was excised from the gel using a sterile, sharp scalpel while avoiding much exposure to UV transilluminator.
- 2. Gel slice was weighed in a colourless 1.5 ml micro centrifuge tube.
- 3. 3X gel volume of solubilization buffer (w/v) was added.

- 4. The gel was resuspended in gel solubilization buffer by vortexing. It was heated at 75°C until the gel was completely dissolved. Intermittent vortexing was given every 2 to 3 min to accelerate gel solubilization.
- 5. 0.5X gel solubilization volume of binding buffer was added and mixed properly.
- Once the gel slice was completely dissolved, DNA fragments less than 400 bp was supplemented by adding 1X gel volume of isopropanol and mixed briefly by inversion.
- 7. A spin column was placed in a 2 ml collection tube.
- 8. Solubilized gel slice was transferred into the spin column that was assembled in the 2 ml collection tube and centrifuged at 12,000g for 1 min.
- The filtrate was discarded. 500 μl of wash buffer was added to the spin column and centrifuged at 12, 000g for 30 sec.
- 10. The filtrate was discarded. 700 µl of desalting buffer was added.
- 11. Centrifugation was carried out at 12,000g for 30 sec.
- 12. As a second wash, 700 µl of desalting buffer was added
- 13. Centrifugation was carried out at 12,000g for 30 sec to ensure the complete removal of salt.
- 14. The filtrate was discarded. The spin column was again placed on collection tube.
- 15. Column was again centrifuged for 1 min at 12,000g to remove any residual buffer.
- 16. Spin column was transferred to a fresh 1.5 ml centrifuge tube. The eluent was prewarmed at 65^{0} C to improve the elution efficiency. To elute the DNA, 15 µl of eluent was added to the centre of the spin column. It was allowed to stand for 1 min at room temperature. Then it was centrifuged at 12,000g for 1 min.
- 17. Eluted DNA fragments were checked on 0.7 per cent (w/v) agarose gel and stored at 20^{0} C.

3.6 CLONING OF GENE ENCODING GLUCANASE

3.6.1 Preparation of competent cells

Competent cells for plasmid transformation were prepared following the protocol of Mandel and Higa (1970). Both LB and LBA media (Annexure V) were used.

The steps followed for competent cell preparation were as follows:

Day 1:

• Single colony of 18 h old *Escherichia coli* JM 109 strain was inoculated to 3 ml LB medium in sterile condition and incubated overnight at 37^oC on a shaker set at 160 rpm.

Day 2:

- Three ml culture was transferred aseptically to 50 ml sterile LB broth and incubated for 4 h at 37^oC on a shaker set at 160 rpm until OD₆₀₀ reached 0.4 to 0.5. The growth of culture was monitored at every 30 min.
- The cells were then aseptically transferred to a sterile disposable ice-cold 50 ml polypropylene tube.
- The culture was cooled on ice cubes for 20 min.
- The cell suspension was centrifuged at 3500 rpm for 10 min at 4° C.
- The supernatant obtained was carefully discarded and the pellet was gently resuspended in 10 ml ice-cold, filter sterilized 0.1M CaCl₂.
- The tubes were kept on ice for 20 min and the cell suspension was centrifuged at 5000 rpm for 10 min at 4^oC.
- The supernatant was decanted and the pellet was resuspended in 2 ml of ice cold filter sterilized 0.1M CaCl₂. The tubes were kept on ice for 18 h.

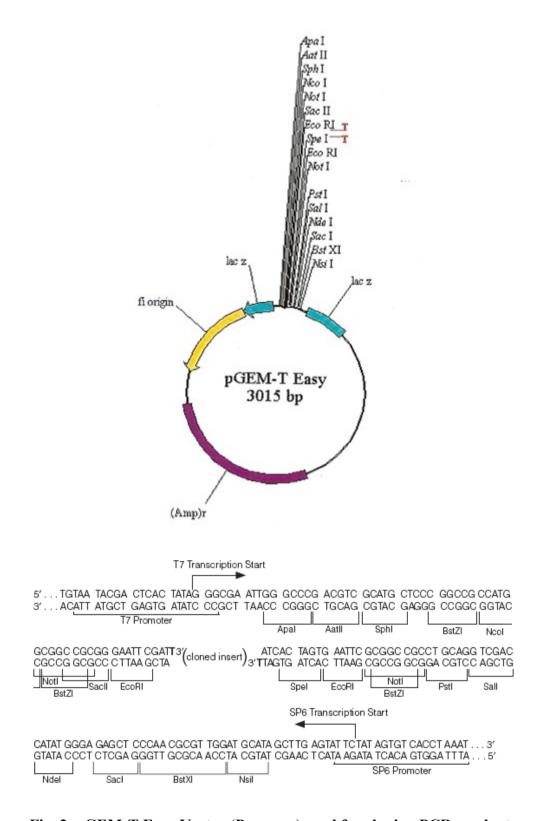
Day 3:

• Four ml chilled glycerol was added to the cell suspension and mixed well using a sterile microtip.

• The competent cells prepared were stored at -80° C as aliquots of 100 µl in chilled 1.5 ml microfuge tubes covered with aluminium foil for further use.

3.6.2 Screening of competent cells

Transformation of competent cells with a plasmid having ampicillin resistance (pUC18) was carried out to check the competence and purity of competent cells. The procedure followed for screening of plasmid is as follows,


- The competent cells stored at -80° C were thawed over ice for 10 min.
- Plasmid DNA (10 µl) was added to 100 µl competent cells. Negative control was placed simultaneously without adding plasmid.
- The cells were kept on ice for 40 min. Heat shock was given at 42°C for 90 sec in a water bath and plunged in ice for 5 min.
- LB medium (250 μl) was added to the cells and incubated at 37⁰C for one hour on a shaker set at 120 rpm.
- The transformed cells (100 μ l) were plated on LBA/ampicillin and incubated overnight at 37^oC in a shaker (100 rpm) and the recombinant clones were grown on ampicillin plate.

3.6.3 Ligation

The eluted product was ligated in pGEM-T vector (Fig. 2.) using pGEM-T Easy Vector System (Promega Corporation, USA) as per manufacturer's protocol.

1. Reaction mixture was prepared as described below:

2X rapid ligation buffer	-	5.0µl
pGEMT Easy Vector (50ng)	-	1.0µl
Eluted product	-	3.0µl
T4 DNA ligase (3 units/µl)	-	1.0µl

Fig. 2. pGEM-T Easy Vector (Promega) used for cloning PCR product. The *lacZ* region, promoter and multiple cloning sites are shown in the figure. The top strands of the sequence shown corresponds to the RNA synthesized by T7 RNA polymerase and bottom strands corresponds to the RNA synthesized by SP6 RNA polymerase.

 The reaction mixture was incubated for one hour at room temperature. Then it was kept at 4^oC overnight. Next day it was taken for transformation of competent cells of *E. coli* JM 109.

3.6.4 Cloning of ligated product into competent cells

Reagents prepared:

- 1. Ampicillin 5mg/ml in water
- 2. IPTG 200mg/ml in water
- 3. X-gal 10mg/ml in DMSO

The procedure followed for DNA transformation and blue white screening is as follows:

- 1. The vial containing competent cells was thawed on ice.
- 2. The ligated product was added to the competent cells, contents mixed gently and kept on ice for 40 min.
- The tube was rapidly taken from ice; heat shock was given at 42^oC exactly for 90 sec without shaking and placed back on ice for 5 min.
- 4. 250µl of LB broth was added and the tube was inverted twice.
- 5. The tube was incubated at 37^{0} C for one hour with shaking.
- 6. 100 μ l and 250 μ l aliquots of the transformed cells were plated on LB/ ampicillin plates layered with IPTG (6 μ l) and X-gal (60 μ l) and incubated overnight at 37^{0} C.
- 7. The recombinant clones were selected based on blue-white screening.

3.7 ISOLATION OF RECOMBINANT PLASMID DNA

Plasmid DNA was isolated from single white colonies using alkaline mini- prep procedure as given by Birnboim and Doly (1979). Composition of the reagents used, are given in Annexure V.

3.7.1 Procedure for plasmid isolation

- Cells were pelleted from overnight grown recombinant *E. coli* JM 109 culture containing plasmid DNA by centrifugation at 12,000 rpm for one minute at 4⁰C.
- 2. 100 µl of ice cold solution I was added to the bacterial pellet and resuspended.
- 3. 200 μl of freshly prepared lysis buffer was added, mixed gently by inverting the tube for five times.
- 150 μl of ice cold solution III was added to the tubes, mixed well and kept on ice cubes for five minutes.
- 5. The contents were centrifuged at 12,000 rpm for 5 min at 4^oC and the pellet was discarded.
- 6. To the supernatant, 0.6 volume of ice cold isopropanol was added and kept at room temperature for 5 min.
- 7. The contents were centrifuged at 12,000 rpm for 5 min at 4^oC and the supernatant was discarded.
- 8. The pellet was rinsed with 1 ml of 70 per cent (v/v) ethanol and mixed gently.
- 9. The tube was centrifuged at 12,000 rpm for 10 min at 4° C.
- 10. The supernatant was discarded and the pellet air dried for 10 min.
- 11. Pellet was finally dissolved in 30 µl TE buffer.
- 12. Plasmids isolated were checked by electrophoresis on 0.8 per cent agarose gel and documented.

3.8 CONFIRMATION OF PRESENCE OF INSERT

3.8.1 PCR amplification of recombinant plasmid DNA

Polymerase chain reaction was carried out as described in section 3.4.5., using the designed gene specific primer except that the recombinant plasmid DNA isolated by alkali lysis method was used as template in place of fungal DNA. The recombinant plasmid DNA isolated by alkali lysis method was amplified by PCR as described in section 3.4.5., using T7 forward and SP6 reverse universal primer but the annealing temperature was set at 41^oC in thermal cycler programme.

The PCR products were analysed on 1.0 per cent (w/v) agarose gel as described in Section 3.4.2.

3.9 MAINTENANCE OF CLONES

3.9.1. Preparation of pure culture of recombinant bacteria

Materials prepared

LBA medium and Ampicillin (5 per cent)

In a laminar flow, single white colony from the transformed plate was taken by using flame-sterilized bacterial loop. This was streaked on LBA plate containing ampicillin (50 mg/l). The plate was incubated overnight at 370C and further stored at 40C.

3.9.2. Preparation of stabs

Materials prepared

LBA medium and ampicillin (5 per cent)

The LBA medium containing antibiotic ampicillin (50 mg/l) was melted and poured into storage vial, aseptically and allowed to solidify. Single colony of recombinant bacterial colony was carefully lifted with a sterile bacterial loop. The loop loaded with bacteria was plunged into the solid medium and incubated at 370C overnight in the culture tube. The stabs showing good growth of bacteria were further stored in refrigerator at 40C.

3.9.3. Glycerol culture

Materials prepared LB liquid and ampicillin (5 per cent) In a laminar flow, recombinant colony from the transformed plate was taken using flame-sterilized loop. This was plunged into LB medium containing the antibiotic, ampicillin (50mg/l). It was incubated at 370C in a shaker at 120rpm overnight. On the next day aliquots (600µl) of cell culture was added to 100 per cent glycerol (400µl) aseptically and stored at –800C.

3.10 SEQUENCING OF CLONES

The recombinant clones from the isolates GT3-1, GT-322, BPT-822, T-112 and CT-3012 were sent to Banglore, Genei for sequencing. Sequencing was carried out using T7 forward primer to obtain 5'-3'sequence information of the insert from the forward region, in automated sequencer (ABI–31100 Genetic Analyzer, USA).

3.11 THEORETICAL ANALYSIS OF SEQUENCE

Theoretical analysis of the sequence was done using different bioinformatics tools to know the details of the sequence obtained.

3.11.1 Vector screening

The sequence obtained was subjected to vector screening using Vecscreen programme of NCBI to remove vector regions from the clones.

3.11.2 Nucleic acid sequence analysis

3.11.2.1 Homology search

The nucleotide sequences 'GT-311, GT-322 and BPT-822' were compared with the sequences available in the database using BLAST tool offered by NCBI after removing the primer sequence. Nucleotide-nucleotide blast (blastn) was carried out for homology search. The BLAST programme 'blastn' (Altschul *et al.*, 1997) provided by NCBI (<u>www.ncbi.nlm.nih.gov/Blast/Blast.cgi</u>) was utilized for the purpose. The nucleotide sequence of the insert was pasted in the BLAST web page and the programme was run at default settings. The best sequence alignment of the search results were noted and saved.

3.11.2.2 Detection of Open Reading Frame (ORF)

The programme 'ORF finder' (www.ncbi.nlm.nih.gov/gorf/gorf.html) of NCBI was used to find the open reading frame of the insert nucleotide sequence. The nucleotide sequence was copied and pasted in the displayed box and clicked on 'OrfFind'. The displayed web page showed ORF sequence in all reading frames. Open reading frames available in the entire region were noted and saved. The displayed amino acid sequence of the reading frames were pasted in a notepad and BLASTp search was performed. The results obtained were saved for further interpretation.

3.11.2.3 Detection of nucleotide statistics

Nucleotide composition of the sequence obtained was determined by nucleotide statistics tool provided by Biology Workbench (<u>http://seqtool.sdsc.edu/</u>). Initially, the nucleotide sequence of the insert was saved in the workbench. The site was entered and the nucleotide tool NASTATS was selected to obtain the details of nitrogen bases in the DNA fragment.

3.11.2.4 Restriction analysis

Restriction sites available in the DNA fragment for the restriction enzymes were detected by restriction analysis tool offered by NEB cutter (http;//tools.neb.com/NEB cutter 2). Important sites available for manipulation were selected and interpreted.

3.11.3 Amino acid analysis

Physical and chemical properties of the given protein from the deduced amino acid sequence were determined using amino acid statistics tool (AASTATS) offered by Biology Workbench. The site was entered and selected for protein tools. Deduced amino acid sequence of the DNA sequence was saved in this Biology Workbench. The sequence was selected and appropriate tools were chosen as per instructions in the site. Protein sequence homology was analysed through protein blast tool (Blastp) from the NCBI.

Other analyses carried out were Kyte and Doolittle (Kyte and Doolittle, 1987) hydropathy plot using Hydrophobicity plot tool of Molecular tool kit (www.vivo.colostate.edu/molkit.html) and secondary structure prediction using SOPMA programme (Geourjon and Deleage, 1995) of ExPASY tool (www.expasy.org/tools).

Results

4. RESULTS

The results of the present study on 'Molecular cloning and characterization of the gene encoding β -1,3- glucanase in *Trichoderma* spp.' undertaken during the period 2006-2008 at the Centre for Plant Biotechnology and Molecular Biology and Department of Plant Pathology, College of Horticulture, Vellanikkara are presented below.

4.1 CHARACTERIZATION AND IDENTIFICATION OF Trichoderma ISOLATES

4.1.1 Cultural characterization

Cultural characters of *Trichoderma* isolates, such as colony colour, growth rate and pigmentation, observed are furnished below:

T. aureoviride – Colonies were observed to grow slowly on PDA medium as watery white mycelial mat with very few aerial hyphae. Conidial area at first, were white, gradually the centre became whitish green and ultimately the whole area appeared as dull grass green. The reverse side of the colony was dark brownish.

T. *flavofuscum* – Colonies grew rapidly, 6.5 to 8 cm in diameter in four days. The colony colour was white or greyish at first and changed to yellowish after conidiation.

T. harzianum – Colonies grew rapidly and reached upto 9 cm in four days at room temperature. Smooth surfaced watery white mycelial mat was observed first. The colour of the colony changed from whitish green to dull green or yellowish green with the development of conidia. They formed distinct ring like conidial zone. The reverse of the colony remain uncoloured.

T. piluliferum - Colonies grew slowly and reached upto 4 cm in four days. Smooth, translucent mycelial mat was formed on the surface of the medium. The reverse of the colony remain uncoloured.

T. pseudokoningii – Colonies grew fairly rapidly at room temperature covering 9 cm in five days. The surface of the colony was smooth and translucent. The colour changed from white to greenish white and then to bright green and the reverse of the colony became yellowish.

T. virens - Colonies grew rapidly, covering 9 cm in four days. The aerial mycelium appeared floccose, white to green. The colour of the colony changed from dark green to dung green shades after conidiation. The reverse of the colony was brownish.

T. viride – Colonies grew rapidly, reached upto nine cm in four days. The mycelium was smooth, watery white and became hairy due to the formation of loose scanty aerial hyphae. The colonies became dark green to dark bluish green in maturity and reverse remain uncoloured.

Identification reports of various *Trichoderma* isolates obtained from Agarkar Research Institute, Pune; Indian Agricultural Research Institute, New Delhi and National Centre for Fungal Taxonomy, New Delhi are presented in Table 5.

4.1.2 Biochemical characterization

For the induction of glucanase enzyme in *Trichoderma*, it was grown in *Phytophthora capsici* cell wall amended medium for seven days. The crude culture filtrate was used as the enzyme source and incubated 10 min with laminarin at 37°C for releasing glucose from the substrate. β -1,3- glucanase enzyme specific activity of different *Trichoderma* isolates estimated is presented in Table 6. From the table, it is observed that, the 15 isolates have a wide range of glucanase activity ranged from 1.3U to 205.3U per 50ml culture filtrate. Among the fifteen isolates, seven isolates showed high enzyme activity of more than 100U and the maximum enzyme activity was observed *T. viride* – 1 (205.3U) followed by *T. harzianum* – 30 (157.8U), *T. aureoviride* (139.2U), *T. viride* - 8 (121.9U) and lowest enzyme activity of 1.3U was observed in *T. virens* – 2. The four isolates which showed maximum glucanase activity were selected for gene isolation.

SI No.	Isolate No.	Identification No. of isolates	Trichoderma species identified
1	BPT – 7	ITCC-6436.06	Trichoderma piluliferum
2	BPT – 8	NCFT-1302.07	<i>T. viride</i> (Endophytic fungus)
3	BPT – 9	ITCC-6437.06	T. pseudokoningii (EF)
4	CT – 29	NCFT-1297.07	T. harzianum
5	CT – 30	ARI-7	T. harzianum
6	CT – 143	ARI-8	T. pseudokoningii
7	CT – 145	ITCC-6435.06	T. flavofuscum
8	GT – 1	NCFT-1292.07	T. virens
9	GT – 2	NCFT-1293.07	T. virens
10	GT – 3	ITCC-6433.06	T. aureoviride
11	GT – 4	ITCC-6434.06	T. harzianum
12	VT - 1	ARI-11	T. harzianum

Table 5. Identification report of *Trichoderma* isolates used in the study

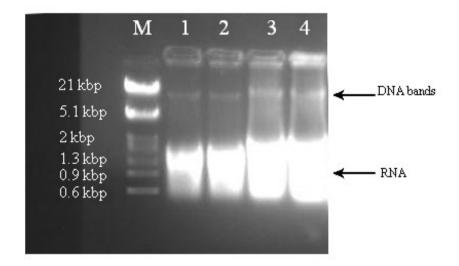
Isolates No.	Trichoderma isolates	Enzyme activity (U/50ml/10min)
T-1	<i>T. viride</i> - 1	205.3
CT-30	T. harzianum - 30	157.8
GT-3	T. aureoviride	139.2
BPT-8	T. viride - 8	121.9
BPT-7	T. piluliferum	116
CT-143	T. pseudokoningii- 143	104.5
VT-1	T. harzianum -1	103.3
GT-4	T. harzianum - 4	37.2
T-2	T. harzianum (IISR)	21
CT-145	T. flavofuscum	18.7
GT-1	T. virens - 1	17.5
T-3	T. virens (PDBC)	14
CT-29	T. harzianum -29	10.5
BPT-9	T. pseudokoningii- 9	3.6
GT-2	T. virens - 2	1.3

Table 6. Estimation of glucanase activity in various *Trichoderma* isolates

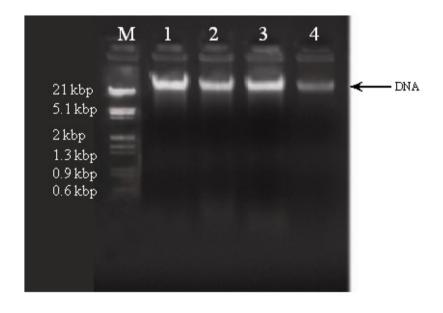
4.1.3 Molecular characterization

4.1.3.1. Isolation and quantification of genomic DNA from Trichoderma isolates

The protocols suggested by Cenis (1992) and Cassago *et al.* (2002) were adopted with slight modifications for the isolation of genomic DNA from selected *Trichoderma* spp. The quality of DNA isolated was tested using agarose gel electrophoresis. The electrophoretic profile on 0.8 per cent agarose gel revealed uniform discrete bands from all the samples indicating good quality DNA free from RNA and other contaminants (Plate 3).


The quality of DNA present in the sample was determined using NanoDrop® ND-1000. The ratio of optical density value at 260nm to that at 280nm ranged from 1.77 to 1.81 indicating relatively pure DNA in the samples without protein contamination. The ratio OD_{260}/OD_{280} was highest for the isolate *T. viride* - 1 and least for the isolate *T. aureoviride*. The details of OD_{260}/OD_{280} value and quantity of DNA isolated from each isolates are given in Table 7.

The quantity of DNA as assessed by spectrophotometry using nanodrop varied from 164.82 μ g g⁻¹ to 204.08 μ g g⁻¹ of mycelia for various isolates. The quantity of DNA was found to be high in isolate *T. viride* - 1 which recorded 204.08 μ g g⁻¹ of mycelia where as *T. viride* - 8 recorded the lowest value 164.82 μ g g⁻¹ of mycelia.


4.1.3.2. Primer designing

Based on the parameters described in Section 3.4.4, three pairs of primers were designed for β -1,3- glucanase gene.

Multiple sequence alignment of the nucleotide sequences (Table 4) was done using ClustalW 1.83 available from European Bioinformatics Institute (www.ebi.ac.uk/clustal).

a. Without RNase treatment

b. After RNase treatment

M - λ DNA/ *Eco*R I/ *Hind* III double digest marker, 1. *T. viride* - 1, 2. *T. harizianum* - 30, 3. *T. aureoviride*, 4. *T. viride* - 8

Plate 3 . Agarose gel electrophoresis of genomic DNA from *Trichoderma* isolates

Sl. No.	Trichoderma spp.	Optical Density Ratio (OD260/OD280)	Quantity of DNA (μg g ⁻¹ of mycelia)	Remarks on quality
1	<i>T. viride</i> – 1	1.81	204.08	Good
2	T. harzianum - 30	1. 79	191.55	Good
3	T. aureoviride	1.77	196.35	Good
4	T. viride – 8	1. 78	164.82	Good

Table 7. Quality and quantity of total DNA extracted from Trichodermaisolates

The conserved boxes selected through multiple sequence alignment at nucleotide level are provided in Plate 4. Based on these conserved regions, forward and reverse primers were designed. The details of the bases from conserved regions used for designing forward and reverse primers and details of the annealing temperature (Ta = Tm - 5) were given in Table 8. For different primer combinations with different annealing temperature, the expected amplicons sizes were provided in Table 9.

4.1.3.3. Amplification of β-1, 3- glucanase gene from *Trichoderma* isolates

All the four selected *Trichoderma* isolates were screened by PCR for the presence of β -1,3-glucanase gene using three sets of primers designed during the study and the result is presented in Table 10. In the screening of *Trichoderma* isolates using the first set of primer (Glucan F1 and Glucan R1), amplification of a single band of expected amplicon size about 550bp was obtained for two isolates *T. aureoviride* and *T. viride* - 8 (Plate 5a) and no amplification was obtained for isolates *T. viride* - 1 and *T. harzianum*-30. Amplicon size of the fragment being nearly 550 bp obtained for isolate *T. aureoviride* was used for cloning so as to confirm the gene sequence. This amplicon was named as GT-311.

All *Trichoderma* isolates were screened for β -1, 3- glucanase gene with second set of primer (Glucan F2 and Glucan R2). PCR amplification of glucanase gene with second set of primer showed a single band of expected amplicon size 600bp (Plate 5b). Amplification for glucanase gene was obtained for isolates *T*. *aureoviride* and *T. viride* - 8 as single band and no band was observed for isolate *T. viride* - 1 and *T. harzianum*-30. Amplicons of desired molecular weight from these isolates were sequenced. These amplicons were named as GT-322 and BPT-822.

Screening was also carried out for β -1, 3- glucanase gene with third set of primer (Glucan F3 and Glucan R3). Amplicon of expected size 550bp was obtained for the isolates of *T. aureoviride* as single band and for *T. viride* - 8 as two bands with less intensity (Plate 5c). Hence it was not selected for cloning.

CLUSTAL W (1.83) multiple seque	ence alignment	
gi 143692495 gb EF426722.1		
gi 143692444 qb EF426721.1		
gi 1167491 emb X84085.1		
=		
gi 121511559 gb EF176582.1		E 0
ji 19072996 gb AF395756.1	GGTGGGGTG <mark>AA</mark> TGC <mark>AA</mark> TCCACCCGGCAGCCGCCCAGTCACATTAGACATC	50
ji 143692495 gb EF426722.1		
i 143692444 gb EF426721.1		
i 1167491 emb X84085.1		
i 121511559 gb EF176582.1		
i 19072996 qb AF395756.1	AATGCTTCCTGGACCCTTGATACTTCCAAGATTCCACCATGCCCTCCGGA	100
1 1 1 9 0 7 2 9 9 0 GD AF 3 9 5 7 3 0 1 1		100
i 143692495 gb EF426722.1		
i 143692444 gb EF426721.1		
i 1167491 emb X84085.1		
i 121511559 qb EF176582.1		
11/12/07/2996/qb/AF395756.1/	GTAATTCACGCCACATCAAGTACTGCCTCTTTGGACAATGACGCCGACAT	150
1 + 1 > 0 + 2 > > 0 + 92 + 111 > 3 > 0 + 0 + 1 +		100
i 143692495 gb EF426722.1		
i 143692444 gb EF426721.1		
i 1167491 emb X84085.1		
ji 121511559 qb EF176582.1		
ji 19072996 gb AF395756.1	TTGGGCTAGATCCGGGCCGAATGGTGGTCGAGTCTGATGCGGAGTTGTGG	200
ji 143692495 gb EF426722.1		
143692444 qb EF426721.1		
j 1167491 emb X84085.1		
ji 121511559 qb EF176582.1		
ji 19072996 gb AF395756.1	GCTGACCGGCAGACTCCAACGAGACCACGATGGTTGCATAAACAATCGAT	250
ji 143692495 gb EF426722.1		
ji 143692444 gb EF426721.1		
ji 1167491 emb X84085.1		
ji 121511559 gb EF176582.1		
i 19072996 gb AF395756.1	GAGGGGTGAAGACGAAAGGAACTTGAATTTGGCAGGGGTTATATATTTGT	300
i 143692495 gb EF426722.1		
i 143692444 gb EF426721.1		
ji 1167491 emb X84085.1		
i 121511559 gb EF176582.1		
i 19072996 gb AF395756.1	AGGCATTGATTGCAATATAAAGAGGCAGTTGTCCCGCCACTTTGGGTGCT	350
1143692495 qb EF426722.1		
gi 143692444 gb EF426721.1		2.0
ji 1167491 emb X84085.1	GTTGCTGTCGTGTTG <mark>A</mark> TC <mark>A</mark> TTG <mark>A</mark> CCGGC	28
gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1	ATCTTGACGATCGTCCTTCTTCATCCCGCAACTGTTGATTATCGACCGGC	

Plate 4. Multiple sequence alignment of β-1,3-glucanase gene of *Trichoderma* spp. The conserved sequences used for designing forward and reverse primers are shown in brackets

gi 143692495 gb EF426722.1	ATGTTGAAGCTCACGGCGCTCGTTGCGCTCTTGCTGGGCGCGCGC	47
gi 143692444 gb EF426721.1	ATGTTGAAGCTCACGGCGCTCGTTGCGCTCTTGCTGGGCGCGCGC	47
gi 1167491 emb X84085.1	ATCATGTTGAAGCTCACGGCGCTCGTTGCGCTCTTGCTGGGCGCGCGC	78
gi 121511559 gb EF176582.1	ATGTTGAAGCTCACGGCGCTCGTTGCGCTCTTGCTGGGCGCGCGC	
gi 19072996 gb AF395756.1	AACATGTTGAAGCTCACGGCGGTTGTTGCGCTCCTGCTGGGCGCGCGC	
g1+190,1990+32+11090,000+1	******************	100
gi 143692495 gb EF426722.1	TGCTACGCCGACTCCTAGCCCTCCTGCCAGCGATGAGGGCATCACAAAGC	97
gi 143692444 gb EF426721.1	TGCTACGCCGACTCCTAGCCCTCCTGCCAGCGATGAGGGCATCACAAAGC	97
gi 1167491 emb X84085.1	AGCTACGCCGACTCCTAGCCCTCCTGCCAGCGATGAGGGCATCACCAAGC	128
gi 121511559 gb EF176582.1	TGCTACGCCGACTCCTAGCCCTCCTGCCAGCGATGAGGGCATCGCAAAGC	97
gi 19072996 gb AF395756.1	TGCTTCGCCAACACCTAGTCCTCCTGCCAGTGATGAGGGCATTACGAAGC	500
9111901199019211090100111	*** **** ** ***** *********************	000
	D 1	
	\sim F1 \sim	
gi 143692495 gb EF426722.1	GTGCCACCAGCTTCTACTATCCTAACATGGACCATGTCAATGGGCCCAGG	147
gi 143692444 gb EF426721.1	GTGCCACCAGCTTCTACTATCTAACATGGACCATGTCAATGCGCCCAGG	147
gi 1167491 emb X84085.1	GTGCCACCAGCTTCTATTACCCTAACATGGACCATGTTAATGCGCCCAGG	178
gi 121511559 gb EF176582.1	GTACCACCAGCTTCTATTACCCTAACATGGACCATGTCAATGCGCCTAGG	147
gi 19072996 gb AF395756.1	GTGCGACTAGTTTCTACTACCTAACATGGACCATGTCAATGCTCCTCGG	550
	** * ** ** ***** ** *******************	
gi 143692495 gb EF426722.1	GGTTTCGCTCCTGACCTGGATGGAGACTTCAACTACCCAATCTATCAGAC	197
gi 143692444 gb EF426721.1	GGTTTCGCTCCTGACCTGGATGGAGACTTCAACTACCCAATCTATCAGAC	
gi 1167491 emb X84085.1	GGTTTCGCTCCTGACTTGGATGGCGACTTCAATTACCCAATCTATCAGAC	
3	GGTTTCGCTCCTGACTTGGATGGCGACTACAGCTACCCAATCTATCAGAC	
gi 121511559 gb EF176582.1		
gi 19072996 gb AF395756.1	GGTTACGCTCCTGACCTTGATGGCAACTTCAACTACCAAGTCTATCAGAC	600
	**** ******** * ***** *** *** *** ******	
gi 143692495 gb EF426722.1	TGTCAATGCAGGAGATGGAAATGCTCTCCAGAATGCTATCAACACTGATG	
gi 143692444 gb EF426721.1	TGTCAATGCAGGAGATGGAAATGCTCTCCAGAATGCTATCAACACTGATG	
gi 1167491 emb X84085.1	TGTCAACGCAGGAGATGGAAATGCTCTCCAGAATGCTATCACCACTGATG	278
gi 121511559 gb EF176582.1	TGTCAACGCAGGAGATGGAAATGCTCTCCAGAATGCTATCACCACTGATG	247
gi 19072996 gb AF395756.1	AGTCAACCCAGGAGATGGAGGTGCTCTCCAGCGAGCTATTACCAGTGATG	650
	***** ********* ***********************	
gi 143692495 gb EF426722.1	GAAAGGGTGGCTCTCGTCACCCACAGTGGTTCGCCTCACAGCCACGAGT-	296
gi 143692444 gb EF426721.1	GAAAGGGTGGCTCTCGTCACCCACAGTGGTTCGCCTCACAGCCACGAGTA	297
gi 1167491 emb X84085.1	GAAAGGGTGGCTCTCGTCACCCACAGTGGTTTGCTTCACAGCCACGAGT-	327
gi 121511559 gb EF176582.1	GAAGCGGTGGCTCTCGTCACCCACAGTGGTTTGCTTCACAGCCACGAGTA	297
gi 19072996 gb AF395756.1	GAAGTGGCTCTCGTCACCCACAGTGGTTTGCATCACAGCCACGTGTA	697
	*** ***********************************	
gi 143692495 gb EF426722.1		
gi 143692444 gb EF426721.1	TGACTTCTTTGATTTAAATACTTGTACAGACGGGTATCTAACGTTAGTGT	347
gi 1167491 emb X84085.1		
gi 121511559 gb EF176582.1	TGACTTTGATGTAAATCCTTGTACAGACGGGTATCTAACGTTGGTGT	344
gi 19072996 gb AF395756.1	TGTTT-CCCAGATGAAAATACGAGTACGAGTGGTTGCCTAACTTTGATGC	
g1 1 5 6 7 2 5 5 6 1 g 5 1 m 5 5 6 7 5 6 1 1		/ 10
gi 143692495 gb EF426722.1	TGTTTACATTCCTCCGGGAACATATACCATCTCCAAGACTCTGA	340
gi 143692444 gb EF426721.1	CCAGGTTGTTTACATTCCTCCGGGAACATATACCATCTCCAAGACTCTGA	
gi 1167491 emb X84085.1	TGTTTACATTCCCCCGGGAACATATACCATCTCCCAAGACTCTGA	
5		
gi 121511559 gb EF176582.1	CCAGGTTGTTTACATTCCTCCGGGAACATATACCATCTCTAAGACTCTGA	
gi 19072996 gb AF395756.1	CCAGGTTGTTTATATCCCTCCGGGAACATATACCATTTCTCAGACTCTGA	190
ai 1143602405 ab EEE426722 1	GATTCAACACTGATACCATTTTAATGGGTGACCCAACTAATCCTCCCATT	300
gi 143692495 gb EF426722.1		
gi 143692444 gb EF426721.1	GATTCAACACTGATACCATTTTAATGGGTGACCCAACTAATCCTCCCATT	
gi 1167491 emb X84085.1	GATTCAACACTGATACCATTTTAATGGGTGACCCAACTAATCCTCCCATT	
gi 121511559 gb EF176582.1	GATTCAACACTGATACCATTTTAATGGGTGACCCAACCAA	
gi 19072996 gb AF395756.1	GATTCAACACCGATACCGTGTTGATGGGTGACCCCACAAACCCTCCCATC	846
	******* ***** * ** ********************	

Plate 4. Multiple sequence alignment contd...

gi 143692495 gb EF426722.1	ATTAAGGCTGCTGCCGGTTTCTCAGGCGATCAGACTCTTATCAGCGCTCA	440
gi 143692444 gb EF426721.1	ATTAAGGCTGCTGCCGGTTTCTCAGGCGATCAGACTCTTATCAGCGCTCA	497
gi 1167491 emb X84085.1	ATTAAGGCTGCTGCCGGTTTCTCAGGCGATCAGACTCTTATCAGTGCTCA	471
gi 121511559 gb EF176582.1	ATTAAGGCTGCTGCCGGTTTCTCGGGCGATCAGACTCTTATCAGCGCTCA	494
gi 19072996 gb AF395756.1	ATCAAGGCCGCTGCCGGCTTCTCTGGTGACCAGACTCTTGTCAGCGGTCA	896
	** ***** ******* ***** ** ** ** *******	
	$\sim \rightarrow F3$	
gi 143692495 gb EF426722.1	AGACCCCTCCACCAACGAGAAGGGAGAGCTTTCTTTCGCCGTAGCTATTA	490
gi 143692444 gb EF426721.1	AGACCCCTCCACCAACGAGAAGGGAGAGCTTTCTTTCGCCGTAGGTATTA	
gi 1167491 emb X84085.1	AGACCCCTCCACCAACGAGAAGGGAGAGCTTTCTTTCGCCGTAGCTATTA	
gi 121511559 gb EF176582.1	AGACCCCTCCACCAACGACCAGGCAGAGCTTTCTTTCGCCGTAGCTATCA	
gi 19072996 gb AF395756.1	AGATCCCACCACCAACGAGAAGGGAGAGCTTTCTTTCGCCGTTGCTCTCA	946
	*** *** ********* *********************	
gi 143692495 gb EF426722.1	AGAACTTGGTATTGGACACTACGGCTATACCAGGTGGAAATTCATTTACT	
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1	AGAACTTGGTATTGGACACTACGGCTATACCAGGTGGAAATTCATTTACT	
qi 121511559 qb EF176582.1	AGAACGTGGTATTGGACACTACCGCTATACCAGGTGGAAATTCATTTACT AGAACTTGGTATTGGACACTACGGCTATACCAGGTGGAAATTCATTTACT	
gi 19072996 gb AF395756.1	AGAACGTTATTCTTGATACTACTGCCATTCCCGGTGGTAACCAGGTCACT	
g1 1 5 0 7 2 5 5 0 1 g5 1 ff 5 5 5 7 5 0 • 1 1	***** * * * ** ***** ** ** ** *****	550
gi 143692495 gb EF426722.1	GCCCTATGGTGGGGTGTTGCTCAAGCTGCGCATCTGCAGAATGTACGCAT	590
gi 143692444 gb EF426721.1	GCCCTATGGTGGGGTGTTGCTCAAGCTGCGCATCTGCAGAATGTACGCAT	
gi 1167491 emb X84085.1	GCCCTATGGTGGGGTGTTGCTCAAGCTGCGCATCTGCAGAATGTACGCAT	621
gi 121511559 gb EF176582.1	GCCCTATGGTGGGGTGTTGCTCAAGCTGCGCATCTGCAGAATGTACGCAT	644
gi 19072996 gb AF395756.1	GCCCTGTGGTGGGGTGTTGCTCAAGCTGCTCAGCTGCAGAATGTCAAGAT	1046
	***** *********************************	
		6.4.0
gi 143692495 gb EF426722.1	TACTATGAGTTCTTCCTCGGGCGGAAACGGCCATACCGGCATCCGGATGG	
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1	TACTATGAGTTCTTCCTCGGGCGGAAACGGC-ATACCGGCATCCGGATGG TACTATGAGTTCCTCTTCGGGTGGAAACGGCCATACCGGCATCCGGATGG	
gi 121511559 gb EF176582.1	TACTATGAGTTACTCCTCGGGTGGAAACGGCCATACCGGCATCCGGATGG	
gi 19072996 gb AF395756.1	CACAATGGCTTCGTCCCAGAACGGCCAACGGCCACACGGCATCCGAATGG	
g1 1 5 0 7 2 5 5 0 1 g5 1 fff 5 5 5 7 5 0 • 1 1	** *** ** ** ** ** ** ** *****	1000
	(
gi 143692495 gb EF426722.1	GTCGCGGCTCAACACTCGGCCTCGCCGACGTTCGCGTTGAACGCGGCCAG	690
gi 143692444 gb EF426721.1	GTCGCGGCTCAACACTCGGCCTCGCCGACGTTCGCGTTGAACGCGGCCAG	746
gi 1167491 emb X84085.1	GTCGCGGCTCAACACTCGGCCTCGCCGACGTTCGCGTTGAACGCGCCCAG	721
gi 121511559 gb EF176582.1	GTCGCGGCTCAACACTCGGCCTCGCCGACGTTCGCGTTGAACATGGCCAG	
gi 19072996 gb AF395756.1	GCCGCGGTTCCACCCTCGGTCTCGCTGATGTTCGCATTGAACGTGGTCAG	1146
	* ***** ** ** ***** ***** ** ****** ****	
	• R1	
gi 143692495 gb EF426722.1	AACGGTATTTGGATTGATGGACATCAACAAGCATCATTTCACAACATTTA	
gi 143692444 gb EF426721.1	AACGGTATTTGGATTGATGGACATCAACAAGCATCATTTCACAACATTTA	
gi 1167491 emb X84085.1	AACGGTATTTGGATTGATGGCCATCAACAAGCATCATTTCACAACATTTA	
gi 121511559 gb EF176582.1	AACGGTATTTGGATTGATGGACATCAACAAGCTGCATTTCATAACATTTA	
gi 19072996 gb AF395756.1	AACGGTATTTGGATTGACGGCCATCAGCAGGCTGCTTTCCACAATATTTA	1196
gi 143692495 gb EF426722.1	CTTCTTTCAAAATACCATAGGCATGCTCATCAGCGGCGGCAATACCTTCA	790
gi 143692444 gb EF426721.1	CTTCTTTCAAAATACCATAGGCATGCTCATCAGCGGCGGCAATACCTTCA	
gi 1167491 emb X84085.1	TTTCTTTCAAAATACTATAGGCATGCTCATCAGCAGTGGCAATACCTTCA	
gi 121511559 gb EF176582.1	TTTCTTTCAAAATACTATAGGTATGCTCATCAGCGGCGGCAATACCTTTA	844
gi 19072996 gb AF395756.1	TTTCTATCAAAACACCGTTGGTATGCTCATCAGCGGCGGCAACACCTTCA	1246
	**** ***** ** * ** *********** * ******	
		0.4.0
gi 143692495 gb EF426722.1	GCATTTTCTCGTCAACCTTCGACACCTGTGGAACCGGCATTTCAAACACT	
gi 143692444 gb EF426721.1	GCATTTTCTCGTCAACCTTCGACACCTGTGGAACCGGCATTTCAAACACT	
gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1	GCATTTTCTCGTCGACCTTCGACACCTGTGGAACCG-CATTTCCCAACACT	
gi 121511559 gb EF1/6582.1 gi 19072996 gb AF395756.1	GCATTTTCTCGTCAACCTTCGACACCTGTGGAACCGGCATTTCAAACACT GCATCTTTTCATCCACATTCGACACCTGCGGCACCGGAATTTCCAACACG	
ATIT20152201AD10E222120.T1	GCAICIIIICAICCACAIICGACACCIGCGCACCGGAAIIIICCAACACG **** ** **** **	1270

Plate 4. Multiple sequence alignment contd...

qi 143692495 qb EF426722.1		
	GGC-GGTTCACCCTGGATTGCCCTGATTGACGCAAAGTCAATTAACTCTG	889
qi 143692444 qb EF426721.1	GGC-GGTTCACCCTGGATTGCCCTGATTGACGCAAAGTCAATTAACTCTG	
qi 1167491 emb X84085.1	GGCCGGTTCACCCTGGATTGCCCTGATTGACGCAAAGTCAATTAACTCTG	
gi 121511559 gb EF176582.1	GGC-GGATCACCCTGGATTGCCCTGATTGATGCAAAGTCAATTAACTCTG	
gi 19072996 gb AF395756.1	GGC-GGTGCTCCATGGATTGCCCTGATTGATGCCAAGTCAATTAACTCTG	
5 1	*** ** * ** ****	
	F2	
gi 143692495 gb EF426722.1	GTGTTACCTTTACAACCAATCAATTTCCTTCATTTATGATTGAGAATCTG	939
gi 143692444 gb EF426721.1	GTGTTACCTTTACAACCAATCAATTTCCTTCATTTATGATTGAGAATCTG	995
gi 1167491 emb X84085.1	GTGTTACCTTTACGACCAATCAATTTCCTTCATTTATGATTGAGAATCTG	970
gi 121511559 gb EF176582.1	GTGTTACCTTTACAACCAATCAATATCCTTCATTTATGATCGAGAATTTG	993
gi 19072996 gb AF395756.1	GTGTTACTTTTACCACCACCGGGATGGCCTCGTTCATGATTGAGAACTTG	1395
	***** ***** **** * ** ** ***** ***** **	
qi 143692495 qb EF426722.1	ACTAAAGATAATGGCACACCTGTCGTTGTTGTCCGAGGCTCAACTTTGGT	989
gi 143692444 gb EF426721.1	ACTAAAGATAATGGCACACCTGTCGTTGTTGTCCGAGGCTCAACTTTGGT	
gi 1167491 emb X84085.1	ACTAAAGATAATGGCACACCTGTCGTTGTTGTCCGAGGCTCAACTTTGGT	
gi 121511559 gb EF176582.1	ACTAAAGATAATGACACCACCTGTCGTTGTTGTCCGAGGCTCAACTTTGAT	
gi 19072996 gb AF395756.1	ACCAAGGACAATGGCACCCCTGTTGTTGTCGCCCGAGGCTCTACCCTGGT	
5-1	** ** ** **** *** **** ***** * ***** * *	
	C	
gi 143692495 gb EF426722.1	TGGCGCTTCTAGCCATGTCAACACTTACTCTTACGGCAACACCGTGGGCA	1039
gi 143692444 gb EF426721.1	TGGCGCTTCTAGCCATGTCAACACTTACTCTTACGGCAACACCGTGGGCA	1095
gi 1167491 emb X84085.1	TGGCGCTTCCAGCCATGTCAACACTTACTCTTACGGCAACACCGTG	1070
gi 121511559 gb EF176582.1	TGGCGCTTCTAGCCATGTTAACACTTACTCTTACGGCAACACCGTGGGCA	1093
gi 19072996 gb AF395756.1	TGGTGCTTCCAGCCATGTTAACACTTACTCTTACGGAAATACTGTCGGTA	1495
	*** ***** ******** ********************	
gi 143692495 gb EF426722.1	GAAACCCTACTTATGGCGATGTTACTTCTAGTAACACGAGACCTGGTGCT	1089
gi 143692444 gb EF426721.1	GAAACCCTACTTATGGCGATGTTACTTCTAGTAACACGAGACCTGGTGCT	1145
gi 1167491 emb X84085.1	GAAACCCTACTTACGGCGATGTTACGTCTAGTAACACGAGACCTAGTGCT	1120
gi 121511559 gb EF176582.1	GAAACCCTACTTACGGCGATGTTACATCTAGTAACACGAGACCTGGTGCT	1143
gi 19072996 gb AF395756.1	GAAACCCTACTTACGGCCATGTTACGTCCAGTAACACGAGGCCTAGTGGT ************* ********************	1545
	R3	
gi 143692495 gb EF426722.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA	1139
Q1 143092493 QD EF420722.1		
	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA	
gi 143692444 gb EF426721.1		1195
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCTACTTATGGAGA	1195 1170
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA	1195 1170 1193
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCTACTTATGGAGA	1195 1170 1193
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCTACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTTGCTCCCCCCACCTATGGAGA	1195 1170 1193 1595
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCTACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ** **	1195 1170 1193 1595 1189
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCCACCTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ** ****	1195 1170 1193 1595 1189 1245
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCCACCTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1189 1245 1220
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1189 1245 1220 1243
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCTATGTTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1189 1245 1220 1243
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1245 1220 1243 1645
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1189 1245 1220 1243 1645 1239 1295
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCTATGTTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1189 1245 1220 1243 1645 1239 1295 1270
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 143692444 gb EF426721.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCTATGTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1189 1245 1220 1243 1645 1239 1295 1270 1293
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 143692444 gb EF426721.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCTATGTTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1189 1245 1220 1243 1645 1239 1295 1270 1293
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692444 gb EF426722.1 gi 167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCTTACGTGGCTCCCCCCACTTATGGAGA ** ***** ***** ** ***** ** ** *** ******	1195 1170 1193 1595 1245 1220 1243 1645 1239 1295 1270 1293 1695
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 12072996 gb AF395756.1 gi 19072996 gb AF395756.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTGCTCCCCCCACCTATGGAGA ** ***** ***** ** ***** ** ** ** ******	1195 1170 1193 1595 1245 1220 1243 1645 1239 1295 1270 1293 1695
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 121511559 gb EF176582.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692495 gb EF426722.1 gi 143692495 gb EF426722.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426722.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTGCTCCCCCAACTTATGGAGA TCTGCCCATCTCCAGCTTCCTCAACGTCAAAGACCCTGCGCAGAATGGAA TCTGCCCATCTCCAGCTTCCTCAACGTCAAAGACCCTGCGCAGAATGGAA TTTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TTTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA ACCGTCAGGTCAAAGGGGATAACACGATTGATGAAGCAGCACAATTAAAT ACCGTCAGGTCAAAGGGGATAACACGATTGATGAAGCAGCACACATTAAAT ACCGTCAGGTCAAAGGGGATAACCACGATTGATGAAGCAGCACACATTAAAT ACCGTCAAGTTAAGGGGATAACCACGATTGATGAGACCAGGACACCTTAAT ACCGTCAAGGTCAAAGGGGATAACCACGATTGATGAGACCAGGACACCTTAAT CGCACCGTCAAAGGCGATAACACGATTGGAGGACCCGGGACCCCTGAAT CA ** ** ****** ** ***** ** ***********	1195 1170 1193 1595 1245 1220 1243 1645 1239 1295 1270 1293 1695
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 121511559 gb EF176582.1 gi 121511559 gb EF176582.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTGCTCCCGGTGGTCGTCACCCTATGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTGCTCCCCCAACTTATGGAGA TCTGCCCATCTCCAGCTTCCTCAACGTCAAAGACCCTGCGCAGAATGGAA TCTGCCCATCTCCAGCTTCCTCAACGTCAAAGACCCTGCGCAGAATGGAA TTTGCCCATCTCGAGCTTCCTCAACGTCAAAGACCCTGCGCAGAATGGAA TTTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA CCTGCCCATCTCGAGCTTCCTCAACGTGAAGGACCCTGCGCAGAACGGCG **************************	1195 1170 1193 1595 1245 1220 1243 1645 1239 1295 1270 1293 1695 1289 1345 1320
<pre>gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 19072996 gb AF395756.1 gi 143692495 gb EF426722.1 gi 1167491 emb X84085.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 gi 12511559 gb EF176582.1 gi 121511559 gb EF176582.1 gi 121511559 gb EF176582.1 gi 121511559 gb EF176582.1 gi 143692495 gb EF426722.1 gi 143692495 gb EF426722.1 gi 143692495 gb EF426722.1 gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1 </pre>	CTTGCTCCTGGTGGCCGTTACCCTTATGTGGCCCCCCCTACTTATGGAGA CTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCCAACTTATGGAGA CTGCTCCTGGTGGTCGTTACCCTTACGTGGCTCCCCCAACTTATGGAGA CTAGCTCCCGGTGGTCGCTACCCCTATGTGCTCCCCCAACTTATGGAGA TCTGCCCATCTCCAGCTTCCTCAACGTCAAAGACCCTGCGCAGAATGGAA TCTGCCCATCTCCAGCTTCCTCAACGTCAAAGACCCTGCGCAGAATGGAA TTTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TTTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA TCTGCCCATCTCGAGCTTCCTCAACGTCAAGGACCCAGCGCAGAATGGAA ACCGTCAGGTCAAAGGGGATAACACGATTGATGAAGCAGCACAATTAAAT ACCGTCAGGTCAAAGGGGATAACACGATTGATGAAGCAGCACACATTAAAT ACCGTCAGGTCAAAGGGGATAACCACGATTGATGAAGCAGCACACATTAAAT ACCGTCAAGTTAAGGGGATAACCACGATTGATGAGACCAGGACACCTTAAT ACCGTCAAGGTCAAAGGGGATAACCACGATTGATGAGACCAGGACACCTTAAT CGCACCGTCAAAGGCGATAACACGATTGGAGGACCCGGGACCCCTGAAT CA ** ** ****** ** ***** ** ***********	1195 1170 1193 1595 1295 1220 1243 1645 1239 1295 1270 1293 1695 1289 1345 1320 1343

Plate 4. Multiple sequence alignment contd...

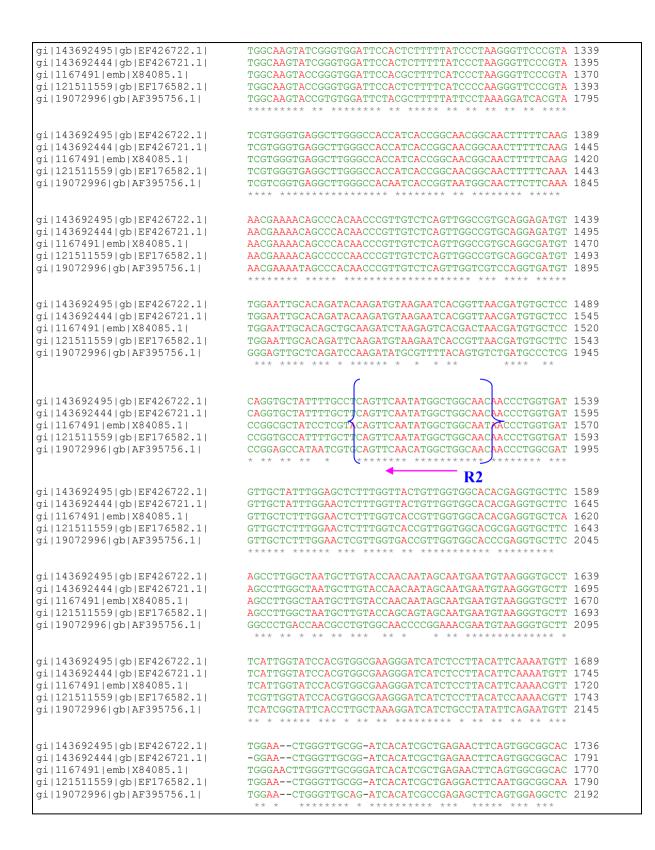


Plate 4. Multiple sequence alignment contd...

gi 143692495 gb EF426722.1	CTCG-ATCGCAGGCAAAGGGGGGCATCTTGGTCGAATCT-ACGAAA	1779
gi 143692444 gb EF426721.1	CTCG-ATCGCAGGCAAAGGGGGGCATCTTGGTCGAATCT-ACGAAA	1834
gi 1167491 emb X84085.1	CTCCCATCGCAGGGAAAGGTGGAATTTTGGTCCAATCCGACGAAA	1815
gi 121511559 gb EF176582.1	CGGCCACTCGATTGCAGGGAAAGGCGGAATTTTGGTGCAGTCG-ACGAAG	1839
gi 19072996 gb AF395756.1	TTCGATCGCCGGAAAAGGTGGTGTGCTCGTTGAATCTAATGGAA	2236
	** ** ** *** * * * * * * * * * * *	
		1004
gi 143692495 gb EF426722.1	GCAACCTGGCTGTATGCGATAGGAAGTGAGCATTGGTGGTTGTAC	
gi 143692444 gb EF426721.1	GCAACCTGGCTGTATGCGATAGGAAGTGAGCATTGGTGGTTGTAC	
gi 1167491 emb X84085.1	CGCAACGTGTCTTTATCCCATAGGAAGTGGGCATTGGTGGTTGTAC	
gi 121511559 gb EF176582.1	GCAACGTGGCTTTATGCGATAGGAAGTGAGCATTGGTGGTTGTAC	1884
gi 19072996 gb AF395756.1	ATAAAGGAACCTGGTTATATGCCCTTGGAAGTGAGCATTGGTGGTTGTAT * *** ** * **** * * ****************	2286
gi 143692495 gb EF426722.1	CAACTCAATCTTCACAATGCCGCCAACGTTGTTGTGTCTCTGCTTCAGGC	
gi 143692444 gb EF426721.1	CAACTCAATCTTCACAATGCCGCCAACGTTGTTGTGTCTCTGCTTCAGGC	
gi 1167491 emb X84085.1	CAACTCAATCTTCACAATGCCGCCAACGTTGTTGTGTCTCTGCTTCAGGC	1911
gi 121511559 gb EF176582.1	CAACTCAATCTTCACAATGCTGCCAACGTTGTTGTGTCTCTGCTCCAGGC	1934
gi 19072996 gb AF395756.1	CAACTCAATTTGCACAATGCCAACAACGTGGTTGTGTCTCTGCTTCAGTC	2336
	******* * ******* ****** **************	
gi 143692495 gb EF426722.1	GGAGACCAACTACCACCAAGGCGCCAACACGCAGCAGATTCCTCCCGCTC	1924
gi 143692444 gb EF426721.1	GGAGACCAACTACCACCAAGGCACCAACACGCAGCAGATTCCTCCCGCTC	1979
gi 1167491 emb X84085.1	GGAGACCAACTACCATCAAGGCGCCAACACGCAGCAGATTCCTCCCGCTC	1961
gi 121511559 gb EF176582.1	GGAGACCAACTACGACCAAGGCGCCAACACGCGGCAGATTCCTCCCCAAC	
gi 19072996 gb AF395756.1	CGAGACCAACTATGAACAGGGCTCCAACACTCAGCAGATTCCCCCCTGCTC	
g+++>0+2>>0+g2+m2>0+00+1	******** * ** *** *********************	2000
gi 143692495 gb EF426722.1	CTTGGGTTGCAAATGTTGGCACTTGGGGTGATCCTGATTTTGCTTGGTGC	1974
gi 143692444 gb EF426721.1	CTTGGGTTGCAAATGTTGGCACTTGGGGTGATCCTGATTTTGCTTGGTGC	
gi 1167491 emb X84085.1	CTTGGGTTGCAAATGTTGGCACTTGGGGGCGATCCTGATTTCTCTTGGTGC	
gi 121511559 gb EF176582.1	CTTGGGTTGCAAATGTTGGCACTTGGGGCCGATCCTGATTTCTCTTGGTGC	
qi 19072996 qb AF395756.1	CTTGGGTTGCAAATGTTGACACCTGGGGGGGGGGGCGACCCTAACTTCTCTTGGTGC	
GT 190 / 2990 GD AF 393 / 30 . 1	**************************************	2430
gi 143692495 gb EF426722.1	AACGGCGGCGATAAAAGATGCCGTATGGGCCCTGCAAACTTCATCAACGG	2024
gi 143692444 gb EF426721.1	AACGGCGGCGATAAAAGATGCCGTATGGGCCCTGCAAACTTCATCAACGG	2079
gi 1167491 emb X84085.1	AACGGTGGCGATAAACGATGCCGTATGGGCCCTGCAAACTTCATCAACGG	2061
gi 121511559 gb EF176582.1	AACGGTGGCGATAAAAGATGCCGCATGGGCCCTGCAAACTTCATCAACGG	2084
gi 19072996 gb AF395756.1	AACGGTGGCGATAAAATTTGTCGCATGGGTTTCGGAAACTACATCAACGG	2486
	**** ******* ** ** ***** * *****	
gi 143692495 gb EF426722.1	AGGTTCCAACATCTACACATATGCCTCCGCGGCATGGGCGTTCTTCAGCG	2074
gi 143692444 gb EF426721.1	AGGTTCCAACATCTACACATATGCCTCCGCGGCATGGGCGTTCTTCAGCG	2129
gi 1167491 emb X84085.1	AGGTTCCAACATCTACACATATGCCTCCGCGGCATGGGCTTTCTTCAGCG	
qi 121511559 qb EF176582.1	AGGTTCCAACATCTACACATATGCCTCCGCGGCATGGGCTTTCTTCAGCG	
gi 19072996 gb AF395756.1	AGGTTCCAACATCTACACCTATGCCTCTGCTTCATGGGCTTTCTTCAGGG	
9+1+90/29901901AE999/90.11	***************************************	2000
qi 143692495 qb EF426722.1	GGCCTGGCCAGGGCTGCGCTCAATTCGAATGTCAAC	2110
qi 143692444 qb EF426721.1	GGCCTGGCCAGGGCTGCGCTCAATTCGAATGTCAACGTAAGCTCTAA	
	GCCCTGGCCAGGGCTGCGCTCAATTCGAATGTCAACGTAAGCTCTAA GCCCTGGCCAGGGTTGCGCTCAATTCGAATGTCAACGTAAGCTCTAA	
gi 1167491 emb X84085.1		
gi 121511559 gb EF176582.1	GCCCTGGCCAGGGCTGCGCTCAATTCGAATGTCAACGTAAGTTCTGA	
gi 19072996 gb AF395756.1	GCCCTGGCTACCAGGGCTGTTCTCAATTCAACTGTCAACGTAAGTCACAA * ***** **** ** ******* * *******	2300
gi 143692495 gb EF426722.1		
qi 143692444 qb EF426721.1	CATCTCTTTCATTTATTAGAATATGACTAACATTGAA	2213
	CITED OF THE CONTRACT OF THE CONTRACT OF CONTRACT.	
gi 1167491 emb X84085.1		2231
	TATCTCTTTCAAAAATCTCTTTCATTTCTTTGAATGTGACTAACATTGAA ACACAATTAAACTCTAATATATATCTGGCACGTGATTAACAATGAA	

Plate 4. Multiple sequence alignment contd...

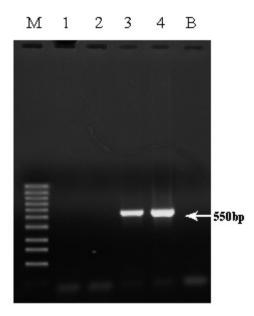
		0154
gi 143692495 gb EF426722.1		
gi 143692444 gb EF426721.1	TAACAGAAACCATGCACTGGATTGCTAGCACCCCAAGCAACCTTCAGGCT	
gi 1167491 emb X84085.1		
gi 121511559 gb EF176582.1	TAACAGAAACCATGCACTGGATTGCCAGCACCCCAAGCAACCTTCAGGCT	
gi 19072996 gb AF395756.1	TTATAGAAACCATGCATTGGATTGCTAAGACCCCAAGCAACCTTCAGGCA	2082
gi 143692495 gb EF426722.1	TTTGGACTCTGCTCCAAGGATTCCGTCAACACACTGCGTCTGGGCGACGG	2204
gi 143692444 gb EF426721.1	TTTGGACTCTGCTCCAAGGATTCCGTCAACACACTGCGTCTGGGCGACGG	2313
gi 1167491 emb X84085.1	TTTGGACTCTGCTCCAAGGATTCCGTCAACACACTGCGTCTGGGCGACGG	2241
gi 121511559 gb EF176582.1	TTTGGACTCTGCTCCAAGGATTCTGTCAACACGCTGCGTCTGGGCGACAA	
gi 19072996 gb AF395756.1	TATGGAATATGCTCCAAGGATTCCGTCAACACACTGCGTCTCGGTGATGG * **** * *********** ******* ******* ****	2732
gi 143692495 gb EF426722.1	CACATTTATCAACACCCAGAATGGATACACTGGCGGCTGGCCTCTACT	2252
gi 143692444 gb EF426721.1	CACATTTATCAACACCTAGAATGTTGAAGCTCACGGCGCGCGTTGACTACT	
gi 1167491 emb X84085.1	CACATTTATCAACACCCAGAATGGATACACTGGCGGCTGGACTCC	
gi 121511559 gb EF176582.1	CACATTTATCAACACCCAGAATGGATACACAGGCGGCTGGCCTGG	
gi 19072996 gb AF395756.1	AACATTTATTAATACCCAGAATGGATATACTGGCAGTTGGTCACC	
	****** ** *** *** * * * * * *	
gi 143692495 gb EF426722.1	GACTTGTACGTGCGTTGCCCGTTATACTACTTAA	2286
gi 143692444 gb EF426721.1	GACTTGTACGTGCGTTGCCCGTTATACTACTTAA	
gi 1167491 emb X84085.1	CGGAGGTGGTGACGTTGCCCCGTTATACTACTTAATCGACGTTTCGAATGA	
gi 121511559 gb EF176582.1	CGGAGGTGGTGACGTTGCCCCGTTATACTACTTAA	
gi 19072996 gb AF395756.1	AGGAGGCGGTGATGTCGGCCGTTATACCACGTAAATAGGTTCATACCACA	2827
	* ** * ****** ** ***	
gi 143692495 gb EF426722.1		
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1	GCTCAACATCTTGAGGCCAGAAGGTAGTGTATGAAGTGCCCATATATAAG	2206
gi 121511559 gb EF176582.1		2300
gi 19072996 gb AF395756.1	CATGTATATATCATGACCATTTACATTGATGGAGCACGACTTCTTGAGTC	2877
gi 143692495 gb EF426722.1 gi 143692444 gb EF426721.1		
gi 1167491 emb X84085.1	CGCGCTATGGAGATGGCTGCGCAAAAAAGCCCTCCAATTGTACATATCTA	2436
gi 121511559 gb EF176582.1		0007
gi 19072996 gb AF395756.1	TACACCGTGGGTTCATCGAGGGTAGCTTGTATATAATACAAAATAAAACA	2921
gi 143692495 gb EF426722.1		
gi 143692444 gb EF426721.1 gi 1167491 emb X84085.1	TTTAAATGCCAATATCAATATATGCACATAAAAAAAAAA	2484
gi 121511559 gb EF176582.1		2404
gi 19072996 gb AF395756.1	TCTGATGTCAAATTATATCCATTGCAGCTTCTTTTCCCCCCTGCTTTGCC	2977
gi 143692495 gb EF426722.1		
gi 143692444 gb EF426721.1		
gi 1167491 emb X84085.1		
gi 121511559 gb EF176582.1		
gi 19072996 gb AF395756.1	TTATTAATGCACTCTGTACATATGTACGTTTAACTACGCCGTGAGTAAAT	3027

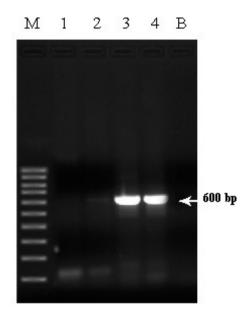
Plate 4. Multiple sequence alignment contd...

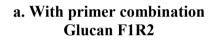
Sl. No.	Primer	Primer sequence	Length (bp)	Та (⁰ С)
1	Glucan F ₁	5' CCTAACATGGACCATGTYAATGC 3'	23	62
2	Glucan R ₁	5' CCRTCAATCCAAATACCGTTCTG 3'	23	62
3	Glucan F ₂	5' TTGCCCTGATTGAYGCMAAGTC 3'	22	60.5
4	Glucan R ₂	5' RTTGCCAGCCATRTTGAACTG 3'	21	55.6
5	Glucan F ₃	5' AGAGCTTTCTTTCGCCGTWG 3'	20	55
6	Glucan R ₃	5' GCCRTAAGTAGGGTTTCTRC 3'	20	55

 Table 8. Details of gene specific primers designed and used in the study

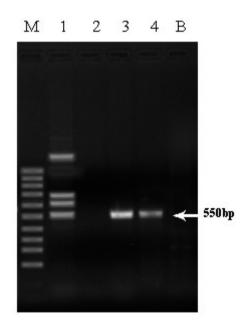
Glucan F1	-	Forward primer 1, Glucan R1 - Reverse primer 1
Glucan F2	-	Forward primer 2, Glucan R2 - Reverse primer 2
Glucan F3	-	Forward primer 3, Glucan R3 - Reverse primer 3


IUB codes used for degenerate codes : Y - C/T, R - A/G, M - A/C, W - A/T


Table 9. Details of annealing temperature and amplicon size expected for selectedprimers


Sl. No.	Primer	Annealing Temperature (⁰ C)	Expected amplicon size (bp)
1	Glucan F1R1	62	548
2	Glucan F2R2	55	629
3	Glucan F3R3	55	553
4	Glucan F1R3	56	1360

SI.	Primer combination	Annealing temperature (⁰ C)	Presence of amplicon			No. of	Size of	Expected Size of	
no.			<i>T. viride</i> - 1	T. harzianum	T. aureoviride	T. viride - 8	amplicons	amplicons (bp)	amplicons (bp)
1	Glucan F1R1	62	-	-	+	+	1, 1	~ 550, ~ 550	548
2	Glucan F2R2	52	-	-	+	+	1, 1	~ 600, ~ 600	629
3	Glucan F3R3	52	+	-	+	+	4, 1, 1	>1000, 700,550, 500, ~ 600, ~ 600	553
4	Glucan F1R2	56	+	+	+	-	1, 1, 1	~ 1300, ~ 1300	1360


Table 10. Details of amplicons obtained in β -1, 3- glucanase gene profile

b. With primer combination Glucan F2R2

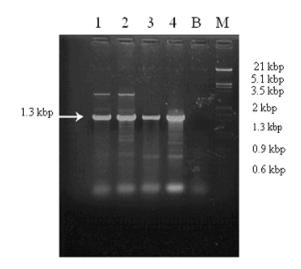
c. With primer combination Glucan F3R3

M - 100 bp ladder, Lane 1. *T. viride* – 1, Lane 2. *T. harzianum* – 30, Lane 3. *T. aureoviride*, Lane 4. *T. viride* -8, Lane B. blank

Plate 5. PCR amplification with different primer combinations

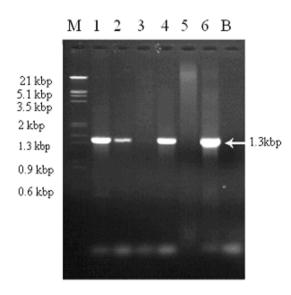
Another primer combination of Glucan F1 and Glucan R2 were used for the screening of *T. viride* - 1, *T. harzianum*-30 and *T. viride* - 8 showed multiple bands in all isolates, when the amplification was carried out at annealing temperature 52° C. Whereas single and discrete band was observed, when the annealing temperature was increased to 56° C. Amplicon of expected size 1.3 kbp was obtained for isolates *T. viride* - 1 both in 1:10 dilution and without dilution, whereas in case of *T. harzianum*-30 and *T. aureoviride*, amplification was obtained only in 1:10 dilution as single band (Plate 6a, 6b). Amplicons of desired molecular weight from *T. viride* -1 and *T. harzianu*-30 were taken for cloning. These amplicons were named as T- 112 and CT – 3012.

4.1.3.4. Gel elution of PCR products


The amplicons GT-311, GT-322, BPT-822, T–112 and CT-3012 were eluted from the gel of PCR product. The eluted products when observed on agarose gel showed good concentration indicating good recovery from the gel slices (Plate 7Aa, 7Ab, 7Ac).

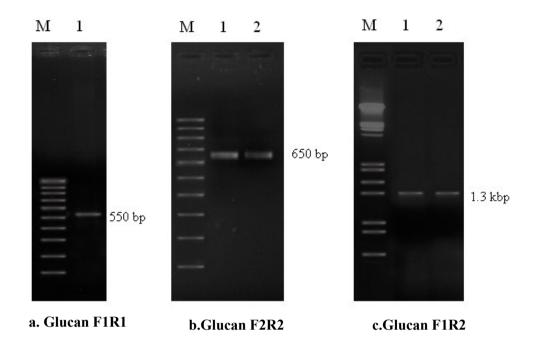
4.1.3.5. CLONING OF GENE ENCODING GLUCANASE

4.1.3.5.1. Preparation and screening of competent cells


Competent cells were prepared from *E.coli* JM 109 strain. Large numbers of colonies were obtained when the competent cells were checked for competence by transformation using the pUC18 plasmid containing ampicillin resistance marker. The transformation efficiency of competent cells was calculated as 4.2×10^8 cfu µg⁻¹ DNA. The cells were competent and showed a high degree of transformation efficiency. The colonies showed luxuriant growth, with no other contamination in LBA ampicillin plates (Plate 8a). Thus the competent cells prepared were found to be efficient for transformation and further cloning purposes.

The eluted bands corresponding to each isolate was ligated into pGEMT vector. After confirmation of competence, the ligated product was transferred into competent *E. coli* JM 109 cells using the heat shock method at 42° C. When the transformed *E.coli* JM 109 cells

a. At annealing temperature 52°C


M - λ DNA/ *Eco* RI/ *Hind* III double digest marker, Lane 1. *T. viride* - 1, 2. *T. harizianum*-30, 3. *T. aureoviride*, 4. *T. viride* – 8, B. Blank

b. At annealing temperature 56°C

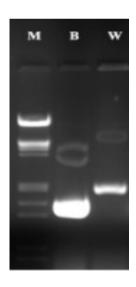

M - λ DNA/ *Eco* R I/ *Hind* III double digest marker, Lane 1. *T. viride* – 1 without dilution,
2. *T. viride* – 1 with 1:10 dilution, 3. *T. harizianum*-30 without dilution,
4. *T. harizianum*-30 with 1:10 dilution, 5. *T. aureoviride* without dilution,
6. *T. aureoviride* with 1:10 dilution, B. blank

Plate 6. PCR amplification with Glucan F1R2 primer combination

A. Eluted fragments from different primer combinations on agarose gel

M - 100 bp ladder,	M - 100 bp ladder,	M - Molecular weight marker,
1. <i>T. aureoviride</i> (GT-311)	1. T. aureoviride (GT-322),	1. <i>T. viride</i> – 1 (T-112),
(01-311)	2. <i>T. viride</i> – 8 (BPT-822)	2. <i>T. harizianum</i> (CT-3012)

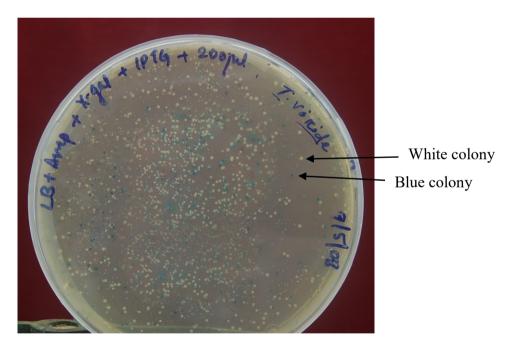
B. Isolation of the plasmid containing the amplicon, CT-3012

M - λ DNA/ *Eco*R I/ *Hind* III double digest marker, Lane W- Recombinant plasmid, Lane B- Non recombinant plasmid

Plate 7. Eluted fragments and plasmid isolated from blue and white colony

were grown in LBA ampicillin plates overlaid with X-gal and IPTG, a combination of blue and white colonies were obtained after overnight incubation confirming successful transformation (Plate 8b). The transformation efficiency varied from 66 per cent to 73.5 per cent indicating successful transformation (Table 11).

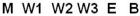
4.1.3.5.2. Screening of transformed colonies


The LB ampicillin agar plates containing the transformed colonies were screened for recombinant plasmid. Three white colonies were picked from each plate and grown in LB ampicillin media separately. One blue colony was also inoculated in order to set the negative control. Plasmids were isolated and checked on 0.7 per cent agarose gel (Plate 7B). The plasmids isolated from white colonies had high molecular weight when compared with plasmid isolated from blue colonies. This confirmed presence of the insert in white plasmid.

4.1.3.5.3. Confirmation of insertion by PCR

The plasmid was additionally checked for the presence of fragment insert by PCR confirmation. The plasmid DNA was used as template and insert was amplified using gene specific primers. Amplification was obtained in the plasmids isolated from white colonies where as no amplification was detected in the plasmids isolated from blue colonies. The PCR products were checked on 1.0 per cent agarose gel (Plate 9Aa, 9Ba). The insert used for transformation was also loaded along with the amplified plasmid PCR products, to confirm the presence of insert in the plasmid. The plasmid was again confirmed by PCR using T7 forward and SP6 reverse universal primer. Higher amplicon sizes of about 800 bp, 900 bp and 1.5 kb of bands were obtained from the white plasmid of the clone of primer combinations Glucan F1R1, Glucan F2R2 and Glucan F1R2 respectively, which were little higher than the insert size and lower amplicon size than the white plasmid was obtained from blue plasmid by the primer (Plate 9Ab, 9Ba, 9Ca).

a. Competent cells grown in X-gal/IPTG plated ampicillin medium



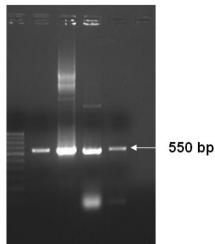
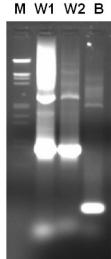
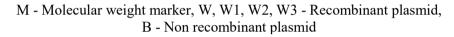
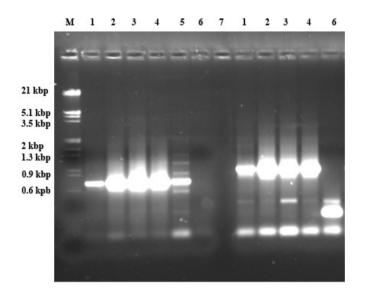

b. Blue and white colonies grown in X-gal/IPTG plated ampicillin medium

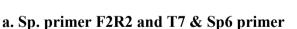
Plate 8. Competent cells of E. coli JM 109 and screening of transformants

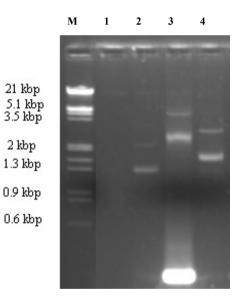

Table 11. Transformation efficiency in E. coli JM 109 cells with different
amplicons

SI. No.	Details of No. of white amplicons colonies		No. of blue colonies	Total no. of colonies	Transformation efficiency (%)
1	GT-311 69		30	99	70
2	GT-322 186		79	283	66
3	BPT-822	212	96	308	68.8
4	T-112 263		112	375	70.1
5	CT-3012 248		89	337	73.5

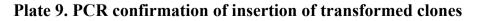








B. GT-322 (T. aureoviride) and **BPT-822** (*T. viride* – 8)


M - λ DNA/ *Eco*R I/ *Hind* III double digest marker, Lane 1,2 - Recombinant plasmid (GT-322), 3,4 - Recombinant plasmid (BPT-822), 5- PCR product of genomic DNA of T. viride-8 (BPT-8) with F2R2 primer, 6- non recombinant plasmid without dilution, 7 - Blank

a. T7 & SP6 primer

C. T – 112(*T. viride*-1) and CT – 3012 (T. harzianum-30)

M - λ DNA/ EcoR I/ Hind III double digest marker, Lane 1- Blank, 2- Recombinant plasmid (T-112), 3- Non recombinant plasmid, 4 - Recombinant plasmid (CT-3012)

4.2. SEQUENCING OF THE CLONE AND AMPLICONS

The screened colonies in which the presence of insert was confirmed were used for automated sequencing using T7 universal primer. Of the four isolates, five recombinant clones were sent for sequencing to Genei, Bangalore, two sequences were obtained from the isolate *T. aureoviride* (GT-311 and GT-322) and only one sequence (BPT-822) from the isolate *T. viride* - 8.

4.3. THEORITICAL ANALYSIS OF SEQUENCE USING BIOINFORMATIC TOOLS

The nucleotide sequence of the clones obtained from the isolates T. aureoviride and T. viride – 8 were named as GT-311, GT-322 and BPT-822. The electropherograms of each sequence are presented in Annexure VI.

4.3.1. Nucleotide sequence analysis

4.3.1.1. Vector Screening

The nucleotide sequences were screened for the presence of vectors using VecScreen program of NCBI. The sequences cloned from isolate *T. aureoviride*, GT-311 and GT-322 showed significant similarity with vector regions. Both the sequences showed similarity to vectors starting from the region 1 to 47 bases. The sequence BPT822 from the isolate *T. viride* - 8 showed similarity to vectors starting from 1 to 52 bases and from 651 to 706 bases. Results of vector screen of cloned sequences are displayed in Plates 10B, 11B, 12B. The sequences after deletion of vector sequences and primer sequences were ready for further analysis. The sequences of amplicons obtained are given in Plates 10A, 11A, 12A and red colour region showing the vector sequence.

4.3.1.2. Homology search

Homology search of nucleotide sequences of clones GT-311, GT-322 and BPT-822 with other reported glucanase gene sequences were carried out. The sequences showed significant homology with different glucanase gene sequences of various species of *Trichoderma* or *Hypocrea* present in NCBI databank. Query coverage for GT-311 was 76 per cent, showing maximum identity of 93 per cent and 92 per cent to endoglucanse gene (bgn13.3) of *H. virens* and β -1,3-glucanase (glu) gene of *T. viride* respectively. For GT-322, 92 per cent homology was found to β -1,3- glucanase (glu) gene of *T. viride* and 90 per cent to endo–1,3(4)- β -glucanase of *T. harzianum*-30 and endoglucanase gene(bgn13.3) of *H. virens* with 79 per cent query coverage. The sequence BPT-822 had shown maximum homology of 96 per cent and 94 per cent to two accessions namely, EF176582.1 and X84085 respectively with minimum E–value. There were 24, 36 and 12 blast hits reported for sequences GT-311, GT-322 and BPT-822 respectively (Plates 10D, 10E, 11D, 11E, 12D, 12E).

Homology search through protein-protein BLAST (Blastp) using deduced amino acid sequence showed all three sequences had high similarity with endoglucanses of *H. virens*. GT-311 showed 87 blast hits and significant similarity to glucan endo-1,3- β -glucosidase (BGN13.1) of *T. harzianum*-30, β -1,3-glucanase and laminarinase of *T. viride* (Plates 10F, 10G). Similarity was also observed with protein β -1,3-glucanase and laminarinase of *T. viride* for GT-322 (Plate 11F, 11G). The sequence BPT8-22 showed similarity with β -1,3-glucanase precursor of *H. virens* and β -1,3-glucanase of *T. viride* (Plates 12F, 12G).

Diversity analysis of three glucanase sequences *viz*. GT-311, GT-322 and BPT-822 with glucanase genes of *Trichoderma* spp. reported in the public domain was carried out by constructing phylogram. GT-322 and BPT-822 showed close similarity with β -1,3-glucanase (glu) gene of *T. viride* having accession number EF176582.1 and GT-311 with endoglucanase (bgn13.1) gene of *H. virens* (accession

no. EF426721.1) and further connected to the gene β -1,3-glucanase precursor (bgn2) of *H. virens* (accession no. AF395756.1) in phylogenetic tree. The phylogram showing evolutionary relationship was given in fig. 3.

Fig. 3. Phylogram showing evolutionary relationship

4.3.1.3. Nucleic acid statistics

Nucleotide composition of the above sequences was determined using Biology Work Bench (<u>http://seqtool.sds.edu/</u>). Both the sequence GT-322 and BPT-822 were rich in A+T base pair composition (51.3%) as compared with C+G (48.7%), while GT-311 had equal proportion of AT and GC basepair. The details of nucleotide composition of sequences are given in Table 12. After deleting vector sequence and primer sequences, the nucleotide sequence length of cloned sequences GT-311, GT-322 and BPT-822 were 725 bp, 749 bp and 616 bp respectively (Table 12).

4.3.1.4. Detection of Open Reading Frame (ORF)

The sequences were translated in all six opening reading frames (<u>http://www.ncbi.nlm.nih.gov.ORF</u>finder). There were six open reading frames in GT-311, with the longest one located on +2 strand starting from base 14 to 277, having a length of 264 bases and the other four were on +1 strand and rest one located on -2 strand (Plate 10H). When the longest significant open reading frame was subjected to BLASTp search, it detected homology with hypothetical protein of

SI.	Gene	Sequence	Nitrogen base percentage (%)								
No.	sequence	length (bp)	А	Т	G	С	A and T	G and C			
1	GT-311	725	25.5	25.0	25.5	24.0	50.5	49.5			
2	GT-322	GT-322 749		27.0	24.8	23.9	51.3	48.7			
3	BPT-822	616	23.7	27.6	26.6	22.1	51.3	48.7			

Table 12. Nucleotide statistics of sequences from *Trichoderma* isolates

Rattus norvegicus (Plate 10I). GT- 322 had seven open reading frames, both +2 and +3 strand had two ORFs each and +3, -1 and +1 strands had one ORF each. The longest one was with a length of 423 bases coding 140 aminoacid residues, starting from base 68 to 490 located on +2 strands (Plate 11H). The result of the BLASTp showed 88 blast hits and homology to β -1,3-glucanase of *T. viride* and endoglucanse of *H. virens* (Plate 11I). BPT-822 possessed four open reading frames (Plate 12H) with the longest one located on +3 strand with a length of 441 bp, starting from base 72 to512, coding 146 aminoacid residues. The +1 strand possessed two ORFs and another one was located on +2 strand. The longest one was subjected to BLASTp and its result showed significant homology to β -1,3-glucanase of different *trichoderma* spp. and *Aspergillus fumigatus* (Plate 12I). The location and length of ORFs are specified in Table 13.

4.3.1.5. Restriction analysis

All the sequences were analyzed for the presence of restriction sites for ten enzymes (http://seqtool.sdsc.edu/). The restriction enzyme *Alu*I had four sites, followed by *Hae*III, three sites were present in GT311, whereas *Acl*I, *Dpn*I, *Mbo*I, *Nae*I and *Pvu*I had only one site (Plate 10J). There were no restriction sites for *Bam*HI and *Taq*I but only two restriction sites were seen in case of *Mse*I. In GT322, there were four restriction sites for *Dpn*I I and *Mbo*I. It had two restriction sites for *Taq*I and *Mse*I and one restriction site for *Alu*I, *Bam*HI, *Acl*I and *Hae*III (Plate 11J). Restriction enzymes *Nae*I and *Pvu*I lacked restriction sites both on GT-322 and BPT-822. The sequence BPT-822 was found to possess four restriction sites for *Taq*I, three restriction sites for *Alu*I, two restriction sites each for *Dpn*I and *Mbo*I, whereas there was only one restriction site for *Bam*HI, *Hae*III and *Mse*I (Plate 12J). Details of the restriction analysis of the sequences are given in Table 14 A, 14 B and 14 C.

SI .No.	Gene	ORF location	ORF length (bp)	Reading frame
		14- 277	264	+2
		7-183	177	+1
		1-156	156	+2
1	GT-311	475 - 612	138	+1
		631 - 747	117	+1
		301 - 417	117	+1
		68 - 490	423	+2
	GT-322	93-470	378	+3
		337 - 645	309	-3
2		616 - 768	153	+1
		573 - 713	141	+3
		566 - 706	141	+2
		624 - 752	129	-1
		72 – 512	441	+3
3	BPT-822	97 - 405	309	+1
3	DF 1-022	427 - 627	201	+1
		506 - 627	123	+2

 Table 13. Open reading frames of glucanase genes cloned from different isolates

Sl. No.	Restriction enzyme	Recognition sequence	No.of cut(s)	Position of restriction sites	Fragment sizes(bp)
1	Alu I	AGLCT	4	312, 381, 396, 472	312, 67, 13, 74, 255
2	Bam HI	G [•] GATC _• C	0	-	-
3	Acl I	AA [•] CG _• TT	1	197	197, 530
4	Taq I	T [▪] CG _▲ A	0	-	-
5	Dpn I	GALTC	1	334	334, 393
6	Hae III	GGLCC	3	575, 656, 725	575, 79, 67, 2
7	Nae I	GCCTGGC	1	320	320, 407
8	Mbo I	Ğ ATC ▲	1	332	332, 419
9	Mse I	T [▼] TA _▲ A	2	277, 497	277, 218, 237
10	Pvu II	CAGCTG	1	472	472, 256

 Table 14 A. Theoretical restriction analysis of the clone GT-311

 Table 14 B. Theoretical restriction analysis of the clone GT-322

Sl. No	Restriction enzyme	Recognition sequence	No.of cut(s)	Position of restriction sites	Fragment sizes(bp)	
1	Alu I	AGCT	1	278	278, 472	
2	Bam HI	G GATC C	1	294	294, 456	
3	Acl I	AA [▼] CG _▲ TT	1	710	710, 41	
4	Taq I	T [•] CG₄A	2	53, 274	53, 219, 477	
5	Dpn I	GATC	4	52, 296, 562, 573	52, 242, 264, 9, 178	
6	Hae III	GGLCC	1	632	632, 119	
7	Nae I	GCCLGGC	0	-	-	
8	Mbo I	GATC	4	50, 294, 560, 571	50, 242, 264, 9, 180	
9	Mse I	T [•] TA _• A	2	5, 534	4, 527, 224	
10	Pvu II	CAGCTG	0	-	-	

Sl. No	Restriction enzyme	Recognition sequence	No.of cut(s)	Position of restriction sites	Fragment sizes(bp)	
1	Alu I	AGCT	3	291, 415, 614	291, 122, 197, 5	
2	Bam HI	G [•] GATC _• C	1	307	307, 312	
3	Acl I	AA [•] CG _• TT	0	-	-	
4	Taq I	T [•] CG₄A	4	66, 287, 376, 599	66, 221, 89, 223, 20	
5	Dpn I	GATC	2	65, 309	65, 244, 310	
6	Hae III	GGLCC	1	420	420, 199	
7	Nae I	GCCTGGC	0	-	-	
8	Mbo I	•GATC.	2	63, 307	63, 244, 312	
9	Mse I	T [*] TA _• A	1	18	18, 601	
10	Pvu II	CAGCTG	0	-	-	

 Table 14 C. Theoretical restriction analysis of the clone BPT-822

4.3.1.6. Gene prediction

Gene prediction analysis of the sequence was carried out using the tool Genscan (www.genes.mi.edu/genscan/). GT-311 had an initial exon with a length of 130bp, starting from base 7 to 136 and a terminal exon of 191bp, starting from 334 to 524 bases (Plate 10K). There was no initial and terminal exon in GT-322, only two internal exons were present having a length 293bp (145 - 473) and 126bp (472 - 597), as shown on Plate 11K. BPT-822 possessed two internal exon having a length of 224bp (149 - 372) and 201bp (407 - 607), which presented on Plate 12K.

4.3.2 Amino acid sequence analysis

The deduced amino acid sequence was obtained from the nucleotide sequence using Molecular Tool Kit. The proportions of each amino acid in cloned sequences were calculated using 'AASTAT' tool (http://seqtool.sdsc.edu/). GT-311 had aminoacid serine with highest molar per cent of 11.3, followed by glycine (8.7%) as well as both leucine and alanine (8.3%). Glutamine and methionine content were least (1.3%) in GT-311 and GT-322 respectively. Both amino acids arginine and leucine content was highest (8.5%), followed by serine (7.2%) in GT-322. The BPT-822 sequence had leucine with the highest share of 19.70 per cent, whereas aspartic acid, tryptophan and tyrosine share was the least, 1.5 per cent each (Table 15).

The functional domains of GT-311 sequence were located as two transmembrane helices of 20 bp size in transmembrane region ranging from the amino acid sequence 37 to 57 and 140 to 160 using 'InterProScan' (www.ebi.ac.uk/InterProScan). In the sequence BPT-822, one signal peptide and two transmembrane helices were found through 'InterProScan'. The sequence region 1 to 52 amino acids coded for signal peptide and 36 to 56 and 71 to 91 amino acids coded for transmembrane helix. The graphical output of 'InterProScan' and 'TMHMM' are given in Plates 10L, 10M; 12L, 12M.

	Amino acid		Molar percentage of amino acid (Mol%)					
			GT-311	GT-322	BPT-822			
		Gly	8.7	5.9	3.4			
		Ala	8.3	4.2	7.4			
		Val	4.3	5.5	5.9			
		Leu	8.3	8.5	19.7			
Non	polar	Ile	3.9	3.8	4.9			
	P	Met	1.7	1.3	3.9			
		Pro	7.0	6.4	7.4			
		Phe	3.0	4.2	3.4			
		Trp	2.6	5.9	1.5			
		Ser	11.3	7.2	8.9			
		Thr	6.1	5.1	6.4			
		Cys	3.9	5.9	2.0			
	Uncharged	Tyr	4.3	3.8	1.5			
		Asn	4.3	2.5	3.0			
Polar		Gln	5.7	5.5	3.4			
		Lys	3.5	2.5	2.0			
	Basic	Arg	6.5	8.5	7.4			
		His	3.0	5.9	2.5			
	Acidic	Asp	2.2	3.4	1.5			
	Aciuic	Glu	1.3	3.4	3.4			

Table 15. Amino acid composition of different glucanase protein

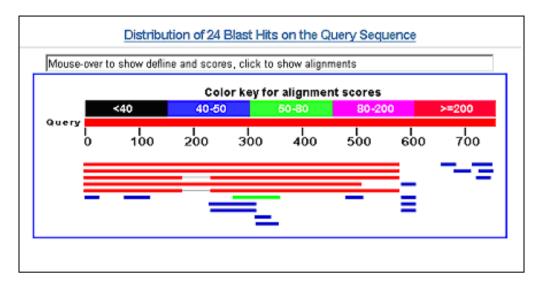
sequences

The 'Motif Scan' of aminoacid sequence of GT-311, GT-322 and BPT-822 revealed similarity with protein kinase and casein kinase phosphorylation site. BPT-822 had leucine rich region motif ranging from 6 to 87 amino acid sequence.

The secondary structure prediction of proteins was done using SOPMA programme provided by Expasy tools. The proportion of each structure type was found out. The sequences GT-311 and GT-322 were comparatively richer in random coils (47.83%, 47.03 %), where as BPT-822 was the richest in alpha helices (48.77%). The share of extended strands came to about 27.39 per cent in GT-311, 28.81 per cent in GT-322 and 12.81 per cent in BPT-822. The contributions of beta turns were 11.74, 7.20 and 4.43 per cent in GT-311, GT-322 and BPT-822 respectively. The proportion of random coil was 33.99 per cent in BPT-822 and the proportion of alpha helices were 13.04 and 16.95 per cent in GT-311 and GT-322 respectively. The results are displayed in Plates 10O, 10P; 11M, 11N; 12O, 12P).

Hydropathy plot of the sequences was constructed by means of Kyte and Doolittle Hydropathy Profile. All the three sequences were hydrphobic in nature being rich in hydrophobic amino acids. But GT-311 and BPT-822 had both hydrophobic and hydrophilic amino acids. Graphical outputs of the results were displayed in Plates 10N, 11L, 12N.

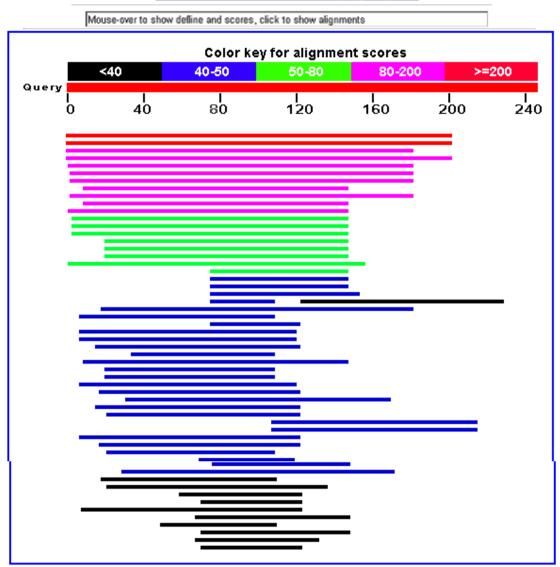
A. Nucleotide sequence


Query= Length=795			
Distribution of Vector Matches	on the Query Seque	ence	
1 198	397	596	795
Match to Vector: Strong	Moderate Wea	ak	
Segments matching vector: Strong match: 9-47 Suspect origin: 1-8			

B. VecScreen Output

>GT_1 311 AQGSRS*PGWRLQLPNLSDCQRRRWKCSPECYQH*WKGWLSSPTVVCFTARSMTLM*ILV QTGI*R*CPGCLHSSGNIYHLQDSEIQH*YHFNG*PNQSSHY*AAAGFSGDQTLISAQDP PPTRRRAVFRVAIRTCIGHYGYTSGNSFTAYGGVLLSCASAMYALL*FFSGETAYGSGWS VQTRSAKLVDRPTN*LTNPMAAPAVPLGSPA*SN*ISRPKWNLQVLGIYANSKKTQKCKL GP

C. Deduced amino acid sequence

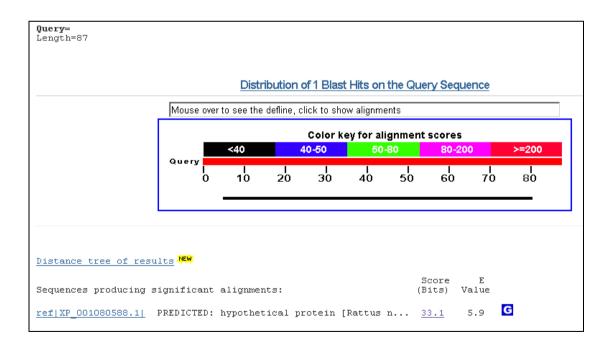

Plate10. Sequence analysis for the clone GT-311

D. Blastn graphical output

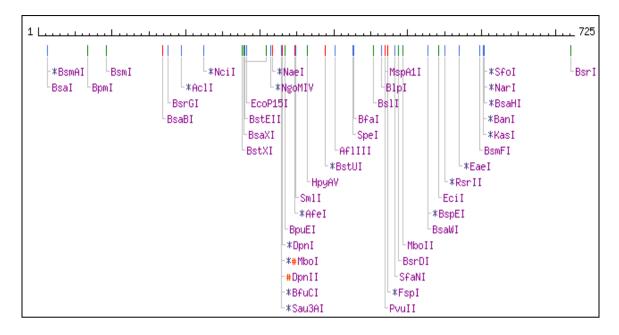
Accession	Description	Max score	Total score	Query coverage	≜ E value	Max ident
EF426721.2	Hypocrea virens endoglucanase (bgn13.1) gene, complete sequence	<u>832</u>	832	76%	0.0	93%
EF176582.1	Trichoderma viride beta-1,3-glucanase (glu) gene, complete cds	<u>814</u>	814	76%	0.0	92%
EF426722.2	Hypocrea virens endoglucanase (bgn13.1) mRNA, complete cds	<u>466</u>	758	69%	6e-128	96%
AF395756.1	Hypocrea virens beta-1,3-glucanase precursor (bgn2) gene, complete	<u>452</u>	452	67%	1e-123	80%
<u>X84085.1</u>	T.harzianum mRNA for endo-1,3(4)-beta-glucanase	448	749	69%	2e-122	97%
XM 657364.1	Aspergillus nidulans FGSC A4 chromosome III	51.8	51.8	11%	0.004	73%
BX284752.1	Neurospora crassa DNA linkage group II BAC contig B23B10	48.2	48.2	11%	0.052	72%
XM 001761597.1	Physcomitrella patens subsp. patens predicted protein (PHYPADRAFT	44.6	44.6	6%	0.63	83%
CU633872.1	Podospora anserina genomic DNA	42.8	42.8	3%	2.2	92%
AC198144.2	Nomascus leucogenys BAC clone CH271-99L21 from chromosome unl	42.8	42.8	4%	2.2	90%
NM 001048558.1	Oryza sativa (japonica cultivar-group) Os01g0149200 (Os01g014920C	42.8	42.8	3%	2.2	92%
AP008207.1	Oryza sativa (japonica cultivar-group) genomic DNA, chromosome 1	42.8	42.8	3%	2.2	92%
AL157783.15	Human DNA sequence from clone RP11-134A8 on chromosome 10 Co	42.8	42.8	4%	2.2	86%
AP002540.2	Oryza sativa Japonica Group genomic DNA, chromosome 1, PAC clon	42.8	42.8	3%	2.2	92%
XM 951998.1	Neurospora crassa OR74A chromosome VI	42.8	42.8	11%	2.2	71%
AK069318.1	Oryza sativa Japonica Group cDNA clone:J023014M14, full insert sequ	42.8	42.8	3%	2.2	92%
XM 001866486.1	Culex pipiens quinquefasciatus conserved hypothetical protein, mRNA	41.0	41.0	4%	7.7	90%
AC198108.4	MACACA MULATTA BAC clone CH250-293L3 from chromosome 2, con	41.0	41.0	4%	7.7	88%
AC124250.11	Mus musculus chromosome 12, clone RP24-286P13, complete sequen	41.0	41.0	3%	7.7	92%
AC083799.17	Homo sapiens 3 BAC RP11-332M2 (Roswell Park Cancer Institute Hum	41.0	41.0	3%	7.7	92%
BX001032.12	Zebrafish DNA sequence from clone CH211-14K18 in linkage group 12	41.0	41.0	3%	7.7	93%
CP000155.1	Hahella chejuensis KCTC 2396, complete genome	41.0	41.0	5%	7.7	80%

E. Blastn text output

Distribution of 87 Blast Hits on the Query Sequence

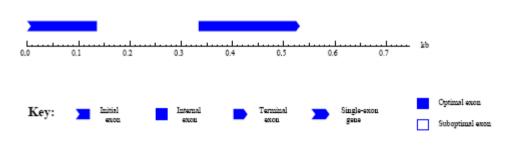

F. Blastp graphical output

ref XP_001400449.1 hypothetical protein An02g13180 [Aspergil	45.1	0.005 🗳
ref XP_389621.1 hypothetical protein FG09445.1 [Gibberella z	44.7	0.006 <mark>G</mark>
<pre>ref XP_001273111.1 exo-beta-1,3-glucanase, putative [Aspergi</pre>	43.9	0.009 <mark>G</mark>
ref XP_001798617.1 hypothetical protein SNOG_08298 [Phaeosph	43.9	0.010 <mark>G</mark>
gb ABY19519.1 beta 1,3 exoglucanase [Trichoderma asperellum] emb CAA05375.1 beta-1,3 exoglucanase [Hypocrea lixii]	43.9 43.9	0.011 0.011
ref[XP_001243734.1] hypothetical protein CIMG_03175 [Coccidio	43.1	0.015 <mark>G</mark>
ref XP_001265597.1 exo-beta-1,3-glucanase, putative [Neosart	43.1	0.018 <mark>G</mark>
sp P49426 EXG1_COCCA_Glucan 1,3-beta-glucosidase precursor (E gb EDP53707.1 _exo-beta-1,3-glucanase, putative [Aspergillus	42.7	0.019 0.019
ref XP 749179.1 exo-beta-1,3-glucanase [Aspergillus fumigatu	42.7	0.019 0.019 G
<u>gb AAP33112.1</u> beta-1,3-exoglucanase [Trichoderma hamatum]	42.7	0.022
ref XP_001554182.1 hypothetical protein BC1G_07319 [Botryoti	42.4	0.025 <mark>G</mark>
ref XP_365150.1 hypothetical protein MGG_09995 [Magnaporthe	42.4	0.025 <mark>G</mark>
<u>gb ABH10634.1 </u> exo-1,3-beta-d-glucanase [Coccidioides posadasii] <u>dbj BAE48426.1 </u> glucan 1,3-beta-glucosidase [Phanerochaete ch	$\frac{42.4}{42.0}$	0.026 0.035
ref XP_001707939.1 Hypothetical protein GL50803_111871 [Giar	41.6	0.045 <mark>G</mark>
ref XP_001707303.1 Hypothetical protein GL50803_114392 [Giar	41.6	0.050 <mark>G</mark>
ref[XP_001907222.1] unnamed protein product [Podospora anseri	41.6	0.052
ref XP 001591947.1 hypothetical protein SS1G 07393 [Scleroti gb AAF80600.1 AF253421 1 glucan 1,3-beta-glucosidase GLUC78 p	41.2 41.2	0.054 G 0.055
ref XP 001259034.1 hypothetical protein NFIA 004970 [Neosart	40.8	0.085 G
ref XP 368585.1 hypothetical protein MGG 00659 [Magnaporthe	40.8	0.089 UG
ref XP 959395.2 hypothetical protein NCU04947 [Neurospora cr	40.4	0.10 UG
ref XP 368981.2 hypothetical protein MGG 00263 [Magnaporthe	39.7	0.19 UG
ref XP 001222844.1 hypothetical protein CHGG 06749 [Chaetomi	38.9	0.29 G
Terrin consistent appointed protein and other indecomments		

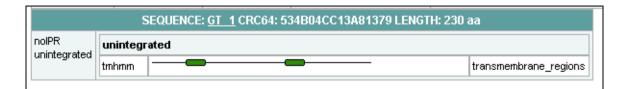

G. Blastp text output

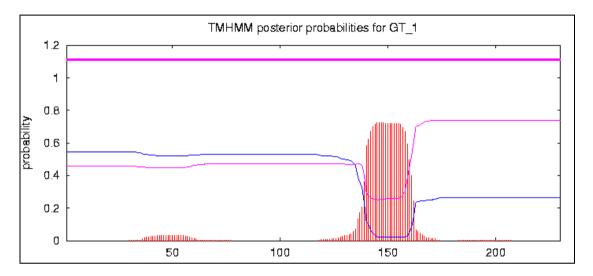
	₩ 1	GenE	3ank 💌		edrav	W [1(0 🔽	Six	Frame			+2 +1 -2 +1 +1	 14 47: 63 	n to 1 4277 7183 1156 5612 1747 1417	Length 264 177 156 138 117 117
-						Len	gth:	87	aa						
	Α	.cce	pt		1	Alteri	nativ	/e In	itiati	on C	>odo	ns			
14	at	att	aat	aca	ccc	aqq	aat	ctc	get	cct	qac	ctq	qat	qqco	gact
	м	L	м	R	Р		v	s	-		T	ພື	м	A	Т
59		aac	tac	cca	atc	tat	cag	act	gtc	aac	gca	gga	gat	ggaa	atg
	S	т	т	Q	s	I	R	L	S	Т	Q	E	м	E	м
104			-		_				-		-				gtc
140	L	s	R	M	L	S	Т	L	M	E	R	. v	A	Г.	v
149	T	сса Н	.cag S	cgg G	ссс т.	get I.	сса н	cag S	O	igga E	igta Y	uga D	יים. ד	D	ogta V
194	-			-	-	-			_	-	-	-	-	-	, attt
1	N	P	C	T	D	G	y y	L	T	L	v	ິສ	R	L	,000 F
239	ac	att	cct	ccg	gga	aca	tat	acc	atc	tcc	aag	act	ctg	a 21	77
	т	F	L	R	Ē	н	I	Р	s	Р	R	L	*		

H. Open reading frame

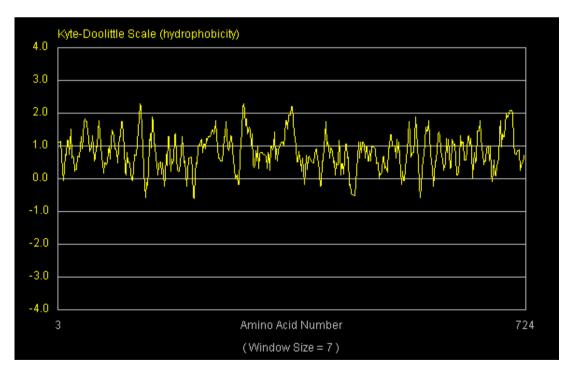

I. Blast result of Open Reading Frame

J. Restriction map


Predicted genes/exons:														
Gn.Ex 	Туре 	s -	.Begin	End	.Len	Fr 	Ph 	I/Ac 	Do/T 	CodRg 	P	Tscr		
1.01	Init	+	7	136	130	0	1	84	1	109	0.956	7.11		
	Term PlyA		334 720	524 725	191 6	2	2	33	37	143	0.247	6.31 -0.45		

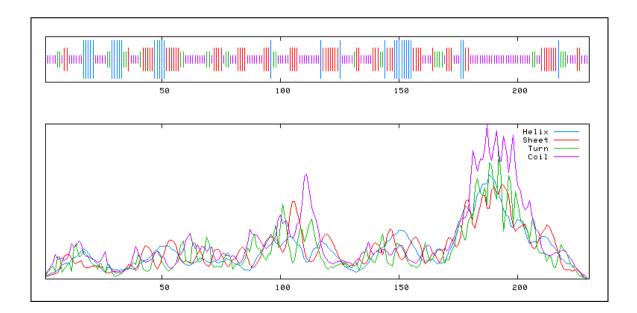


K. Genscan output


Plate10. Sequence analysis for the clone GT-311 contd...

L. InterProScan output

M. Transmembrane region



N. Kyte Doolittle Hydropathy Plot for deduced proteins

Plate10. Sequence analysis for the clone GT-311 contd...

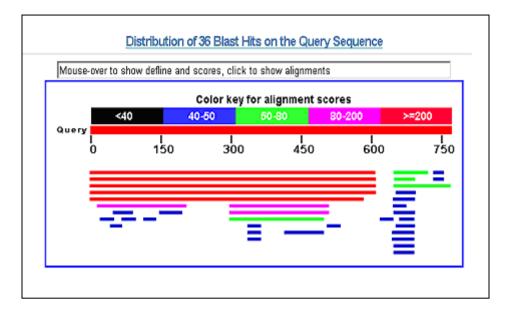
10 2	20		30		40	50	60	70
1	1		1		1	1	1	1
AQGSRSPGWRLQLPNLSDO	QRRRI	JKC	SPECY) DHWR	GWLSSPTV	VCFTARSMTLI	MILVQTGIRC	PGCLHSS
cccccttceeccccch	hhhee	cc	ctthh	hht	tecccte	eeeehhhhhe	eeeettoco	ccccct
GNIYHLQDSEIQHYHFNGH	NQSSE	IYA	AAGFSC	GDQT	LISAQDPP	PTRRRAVFRV.	AIRTCIGHYG	YTSGNSF
tceeeecttccceeeecco		eee	httccc	ccce	eeeccccc	cccc heeeee e	eehcccccte	ecccce
TAYGGVLLSCASAMYALLF	FSGET	ΓΑΥ	GSGWSV	/QTF	SAKLVDRP	TNLTNPMAAP.	AVPLGSPASN	ISRPKWN
eettheeehhhhhhhheee	eccco	et	tttcee	ecc	c hhee ccc	cccccccccc	ccccccccc	cccttcc
LQVLGIYANSKKTQKCKLC	ĢΡ							
eeeeeehtttcccceeco	c							
Sequence length :	230							
SOPMA :								
Alpha helix	(Hh)	:	30	is	13.04%			
3 ₁₀ helix	(Gg)	:	0	is	0.00%			
Pi helix	(Ii)	:	0	is	0.00%			
Beta bridge	(Bb)	:	0	is	0.00%			
Extended strand	(Ee)	:	63	is	27.39%			
Beta turn	(Tt)	:	27	is	11.74%			
Bend region	(<mark>S</mark> s)	:	0	is	0.00%			
Random coil	(Cc)	:	110	is	47.83%			
Ambigous states	(?)	:	0	is	0.00%			
Other states		:	0	is	0.00%			

O. Predicted secondary structure

P. Graphical representation of secondary structure

Plate10. Sequence analysis for the clone GT-311 contd...

A. Nucleotide sequence

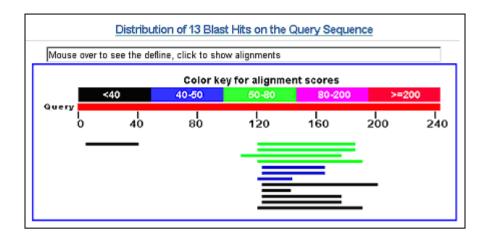

Query= Length=817										
Distribution of Vector Matches on	n the Query Seg	uence								
1 204	408	612	817							
Match to Vector: Strong Moderate Weak Segment of suspect origin:										
Segments matching vector: Strong match: 9-47 Suspect origin: 1-8										

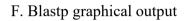
B. VecScreen Output

>GT_1 322 N*LWCYLYN*SISFIYDREFD*R*WHTCRCCPRLNFGWRF*PCQHLLLRQHRGQKPYLRR CYV**HET*CSCSWWSLPLCGSPYLWRFAHLELPQRQGSSAEWKPSGSWR*HD**VRDA* CYPGTCSKPE*VAYFPFGKYRVDSTLFIPKVPVSWVRLGHHHGNGTFQTKTATAVSQWRA GDVECTDQM*ITVRCARALLGQHGWHIHMRPLQVNIWEVHAWMLLEILSTNTWQQQRFCD VSPIPHSGIX

C. Deduced amino acid sequence

Plate 11. Sequence analysis for the clone GT-322

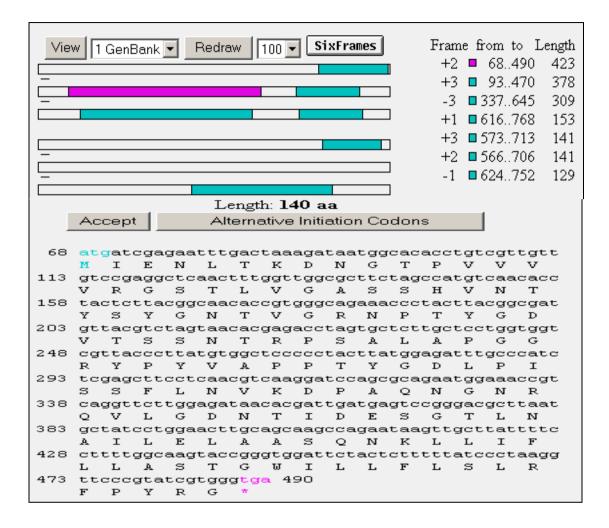

D. Blastn graphical output


Sequences producing significant alignments: (Click headers to sort columns)

Accession	Description	Max score	Total score	Query coverage	∆ E value	Max ident
EF176582.1	Trichoderma viride beta-1,3-qlucanase (qlu) gene, complete cds	<u>883</u>	883	79%	0.0	92%
<u>X84085.1</u>	T.harzianum mRNA for endo-1,3(4)-beta-glucanase	<u>818</u>	818	79%	0.0	90%
EF426722.2	Hypocrea virens endoqlucanase (bqn13.1) mRNA, complete cds	803	803	79%	0.0	90%
EF426721.2	Hypocrea virens endoglucanase (bgn13.1) gene, complete seguence	803	803	79%	0.0	90%
AF395756.1	Hypocrea virens beta-1,3-glucanase precursor (bgn2) gene, complete	527	527	75%	2e-146	81%
BX284752.1	Neurospora crassa DNA linkage group II BAC contig B23B10	98.7	98.7	27%	3e-17	71%
XM 951998.1	Neurospora crassa OR74A chromosome VI	98.7	98.7	27%	3e-17	71%
AF395755.1	Hypocrea virens beta-1,3-glucanase precursor (bgn1) gene, complete	89.7	89.7	24%	2e-14	70%
AJ543749.1	Phanerochaete chrysosporium partial mRNA for putative polyketide sy	69.8	69.8	9%	2e-08	82%
D0450434.1	Uncultured denitrifying bacterium clone S35 nitrite reductase-like (nir	59.0	59.0	5%	3e-05	90%
XM 001219444.1	Chaetomium globosum CBS 148.51 hypothetical protein (CHGG 0022	55.4	55.4	26%	4e-04	66%
AY769624.1	Labeo rohita isolate B-9 transposon Tc1, complete sequence	51.8	51.8	15%	0.004	71%
DQ450428.1	Uncultured denitrifying bacterium clone S21 nitrite reductase-like (nir:	50.0	50.0	5%	0.015	90%
AJ879680.1	uncultured ectomycorrhiza (Tuber) partial ITS1, 5.8S rRNA gene and	50.0	50.0	6%	0.015	85%
AJ132700.1	Caenorhabditis elegans mRNA for centaurin gamma 1A	48.2	48.2	3%	0.054	96%
XM 001750843.1	Monosiga brevicollis MX1 predicted protein MONBRDRAFT 30400 mRN			3%		96%
	Siluania monomastiga 18S small subunit ribosomal RNA gene, partial	46.4	46.4		0.19	
<u>AF072883.1</u>	Aspergillus niger CBS 513.88 contig An01c0470, complete genome >¢	<u>46.4</u>	46.4	5%	0.19	83%
<u>NW 001594046.1</u>		<u>44.6</u>	44.6	3%	0.65	93%
DQ450438.1	Uncultured denitrifying bacterium clone S24 nitrite reductase-like (nir:	<u>44.6</u>	44.6	5%	0.65	85%
AJ277968.1	Drosophila melanogaster TRPgamma gene for TRPgamma cation char	<u>44.6</u>	44.6	6%	0.65	84%
<u>AJ277967.1</u>	Drosophila melanogaster TRPgamma gene for TRPgamma cation char	<u>44.6</u>	44.6	6%	0.65	84%
<u>XM 594793.3</u>	PREDICTED: Bos taurus similar to olfactory receptor Olr223 (LOC516)	<u>42.8</u>	42.8	2%	2.3	100%
<u>XM 542465.2</u>	PREDICTED: Canis familiaris similar to olfactory receptor Olr223 (LOC	<u>42.8</u>	42.8	2%	2.3	100%
<u>AJ420890.1</u>	Entandrophragma cylindricum microsatellite DNA, clone pEcCIR156	<u>42.8</u>	42.8	5%	2.3	86%
<u>AJ420887.1</u>	Entandrophragma cylindricum microsatellite DNA, clone pEcCIR84 Zebrafish DNA sequence from clone CH211-9F20 in linkage group 4 C	42.8	42.8	5%	2.3	86%
CR792454.8	Trichoderma viride lamAI mRNA for laminarinase, complete cds	42.8	42.8	5% 10%	2.3	85%
<u>AB179717.1</u> AE004969.1	Neisseria gonorrhoeae FA 1090, complete genome	<u>42.8</u> 42.8	42.8 42.8	6%	2.3	71% 80%
XM 001358731.1	Drosophila pseudoobscura GA20950-PA (Dpse\GA20950) mRNA, parti	41.0	41.0	4%	8.0	87%
CP000312.1	Clostridium perfringens SM101, complete genome	41.0	41.0	4%	8.0	90%
CP000356.1	Sphingopyxis alaskensis RB2256, complete genome	41.0	41.0	3%	8.0	92%
AC097354.12	Mus musculus strain 129/Sv clone ct7-297f7 map X, complete sequen	41.0	41.0	3%	8.0	90%
<u>XM 741429.1</u>	Aspergillus fumigatus Af293 exo-beta-1,3-glucanase (AFUA 4G03350)	<u>41.0</u>	41.0	3%	8.0	90%
<u>AE010299.1</u>	Methanosarcina acetivorans str. C2A, complete genome	<u>41.0</u>	41.0	3%	8.0	92%
<u>AC096621.9</u>	Mus musculus clone ct7-257p24, complete sequence	<u>41.0</u>	41.0	3%	8.0	90%
AL672082.15	Mouse DNA sequence from clone RP23-67B21 on chromosome X Cont	<u>41.0</u>	41.0	3%	8.0	90%

E. Blastn text output

Plate 11. Sequence analysis for the clone GT-322 contd...



Sequences producing significant alignments:	Score (Bits)	E Value
gb ABO93399.2 endoglucanase [Hypocrea virens]gb ABM55269.1 beta-1,3-glucanase [Trichoderma viride]sp P53626 E138 TRIHA Glucan endo-1,3-beta-glucosidase BGN13.1gb AAL84695.1 AF395756 1beta-1,3-glucanase precursor [Hypocremb CAD70430.1 probable GLUCAN ENDO-1, 3-BETA-GLUCOSIDASE BG		3e-06 4e-06 5e-06 2e-05 0.012
<pre>ref XP_957091.1 glucan endo-1,3-beta-glucosidase BGN13.1 pre</pre>	43.5	0.013 <mark>G</mark>
<pre>ref XP_001219445.1 hypothetical protein CHGG_00224 [Chaetomi</pre>	41.2	0.055 G
<pre>ref XP_001540220.1 predicted protein [Ajellomyces capsulatus</pre>	<u>38.9</u>	0.30 G
<pre>ref NP_869682.1 probable outer membrane protein [Rhodopirell</pre>	<u>38.1</u>	0.48 <mark>G</mark>
ref XP_391182.1 hypothetical protein FG11006.1 [Gibberella z gb AAL84694.1 AF395755_1 beta-1,3-glucanase precursor [Hypocr dbj BAD67019.1 laminarinase [Trichoderma viride] ref XP_001907222.1 unnamed protein product [Podospora anseri	$\frac{37.4}{35.8}$ $\frac{35.4}{33.9}$	0.98 2.4 3.3 8.7

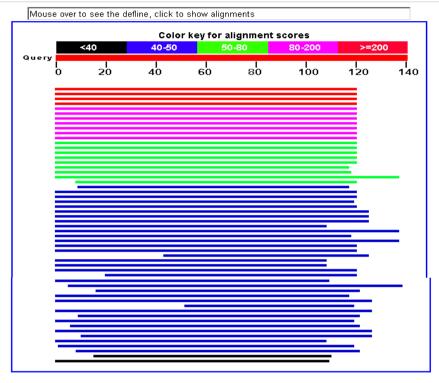
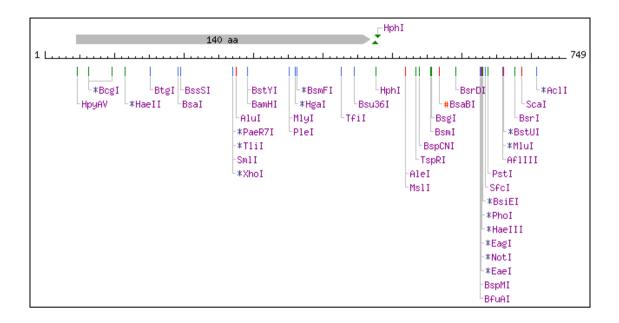

G. Blastp text output

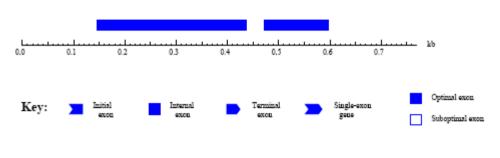
Plate 11. Sequence analysis for the clone GT-322 contd...

H. Open reading frame

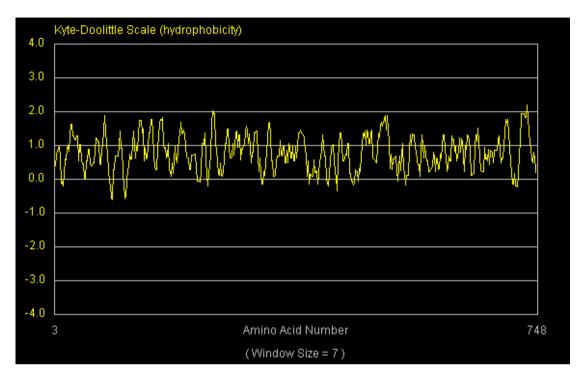

Plate 11. Sequence analysis for the clone GT-322 contd...

Distribution of 88 Blast Hits on the Query Sequence

Sequences producing significant alignments:	Score (Bits)	E Value
gbABM55269.1beta-1,3-glucanase[Trichoderma viride]spP536261E13ETRIHAGlucan endo-1,3-beta-glucosidaseBGN13.1gbAB093399.2endoglucanase[Hypocrea virens]gbAA84695.1AF395756beta-1,3-glucanaseprecursorgbAAL846954.1AF395755beta-1,3-glucanaseprecursorgbAAL84694.1AF395755beta-1,3-glucanaseprecursor	230 229 228 227 147	2e-59 3e-59 1e-58 2e-58 2e-34
<u>ref[XP_001219445.1]</u> hypothetical protein CHGG_00224 [Chaetomi <u>gb[ABR23667.1]</u> endo-beta 1,3-glucanase [Hypocrea virens] >gb[<u>dbj[BAD67019.1]</u> laminarinase [Trichoderma viride]	<u>138</u> <u>130</u> 130	1e-31 G 2e-29 2e-29
ref XP 391182.1 hypothetical protein FG11006.1 [Gibberella z emb[CAD70430.1] probable GLUCAN ENDO-1, 3-BETA-GLUCOSIDASE BG	<u> 123</u> 109	3e-27 G 6e-23
ref XP 957091.1 glucan endo-1,3-beta-glucosidase BGN13.1 pre gb EDP47369.1 exo-beta-1,3-glucanase, putative [Aspergillus	$\frac{109}{69.3}$	6e-23 G 7e-11
ref XP_746522.1 exo-beta-1,3-glucanase [Aspergillus fumigatu	69.3	7e-11 🖸
<pre>ref XP_001262477.1 conserved hypothetical protein [Neosartor</pre>	67.8	2e-10 G
<u>ref XP_001820924.1</u> [Aspergillus oryzae] >dbj BAE58922.1 unn <u>sp P49426 EXG1_COCCA</u> Glucan 1,3-beta-glucosidase precursor (E <u>ref XP_001906371.1 </u> unnamed protein product [Podospora anseri	$\frac{58.9}{56.2}$	1e-07 G 7e-07 1e-06
<pre>ref XP_001226829.1 hypothetical protein CHGG_08902 [Chaetomi</pre>	53.1	6e-06 <mark>G</mark>
<pre>ref XP_001227389.1 hypothetical protein CHGG_09462 [Chaetomi</pre>	51.2	2e-05 G
<pre>ref XP_001589225.1 hypothetical protein SS1G_09858 [Scleroti</pre>	50.1	5e-05 G
ref XP 960189.1 hypothetical protein NCU09791 [Neurospora cr gb ABY19519.1 beta 1,3 exoglucanase [Trichoderma asperellum]	$\frac{49.7}{49.3}$	6e-05 G 8e-05
<u>ref XP_751203.1</u> exo-beta-1,3-glucanase [Aspergillus fumigatu <u>ref XP_001905866.1</u> unnamed protein product [Podospora anseri <u>emb CAA05375.1</u> beta-1,3 exoglucanase [Hypocrea lixii] <u>gb EDP52988.1</u> exo-beta-1,3-glucanase, putative [Aspergillus	$\frac{49.3}{48.5}$ $\frac{48.5}{47.8}$	8e-05 G 1e-04 1e-04 2e-04
<pre>ref XP_001263693.1 exo-beta-1,3-glucanase, putative [Neosart</pre>	47.8	2e-04 G

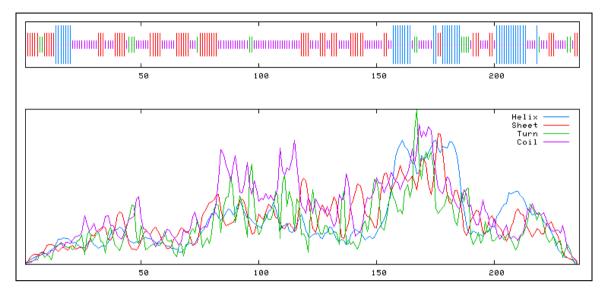

I. Blast result of Open Reading Frame Plate 11. Sequence analysis for the clone GT-322 contd...

J. Restriction map


Predi	Predicted genes/exons:													
Gn . Ex	c 1	Гуре 	s -	.Begin	End	.Len	Fr 	Ph 	I/Ac 	Do/T 	CodRg 	P	Tscr	
		Intr Intr		145 472	437 597	293 126			51 56			0.637 0.650	26.88 8.65	

K. Genscan output

Plate 11. Sequence analysis for the clone GT-322 contd...



L. Kyte Doolittle Hydropathy Plot for deduced proteins

10 2	20		30		40	50	60	70
	I		I I		I	I	I	I
NLWCYLYNSISFIYDREFI	RUHT	CRCC	PRLNI	GWF	FPCQHLLL	RQHRGQKPYL:	RRCYVHETCSC	SWWSLP
heeeeetteeeehhhhh	hheed	ccc	cccc	eee	cccceeee	ectttccccc	c eeeee ccccc	ceeeee
LCGSPYLWRFAHLELPQR	GSSAR	CWKF	SGSWI	RHDV	RDACYPGT	CSKPEVAYFP:	FGKYRVDSTLF	IPKVPV
ecccteeeeeeecccccc	cccc	cet	tecc	cee	cccccccc	ccccceeeec	ccceeecceee	ccccce
SWVRLGHHHGNGTFQTKT	TAVS(QWRA	GDVE	CTDQ	MITVRCAR	ALLGQHGWHI	HMRPLQVNIWE	VHAUML
eeeecccccccceecch	hhhh	hct	tecco	cer	heehhhhh	hhhtttcee	ecccceechhh	hhhhh
LEILSTNTWQQQRFCDVSH	IPHS	JIX						
hhhhcccchtccceeecco	cette	ee						
Sequence length :	236							
······································								
SOPMA :								
Alpha helix	(Hh)		40	is	16.95%			
3 ₁₀ helix	(Gg)			is	0.00%			
Pi helix	(Ii)		0					
Beta bridge	(Bb)		0	is				
Extended strand	• •			is				
Beta turn	(Tt)			is				
Bend region	(Ss)	:	0	is	0.00%			
Random coil	(Cc)	:	111	is	47.03%			
Ambigous states	(?)	:	0	is	0.00%			
Other states		:	0	is	0.00%			

M. Predicted secondary structure

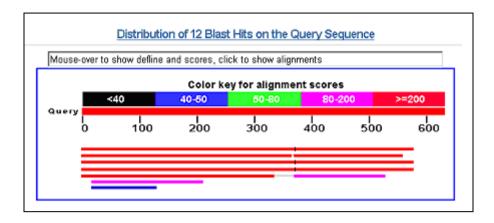
Plate 11. Sequence analysis for the clone GT-322 contd...

N. Graphical representation of secondary structure

Plate 11. Sequence analysis for the clone GT-322 contd...

>BPT-822 GCAACGATTGGGCCGACGTCGCATGCTCCCGGCCGTCCATGGCCGCGGGATTTTGCCCTGATTGTATC CGCCAAGTCAATTAACTCTGGTGTTACCTTTACAACTAATCAATATCCTTCATTTATGATCGAGAATT TGACTAAAGATAATGGCACACCTGTCGTTGTTGTCCGAGGCTCAACTTTGGTGGCGCTCTAGCCAT GTCAACACCTACTCTTACGGCAACACCGTGGGCAGAAACCCTACTTACGGCGATGTTACGTCTAGTAA CACGAGACCTAGTGCTCTTGCTCCTGGTGGTCGTTACCCTTATGTGGCTCCCCTACTTATGGAGATT TGCCCATCTCGAGCTTCCTCAATGTCAAGGATCCAGCGCAGAATGGAAACCGTCAGGTTCTTGGAGAT AACACGATTGATGCAAGTACCGGGTGGATTCGACTCTTTTTATCCCTAAGGTTCCCGTATCGTGGTGA GCTTGGCCACCATCACCGGCAACGGCAACTTTTTCAAGAACGAAACAGCCACAGCCCGTTGTCTCAG TTGCCGTGCAGCGATGTTGAATTGCACAGATTCAGATGTAAAATCCCGTTACGATGTGCTTCCCGTGC ATTTGCTTCAGTTCACCTGCTGCAAAATCCATATGCGGCGCCTGCAGGTCGACCATTGGGAAAGCTCC CACGCGTTGGATGCAAACCCTGGAAAC

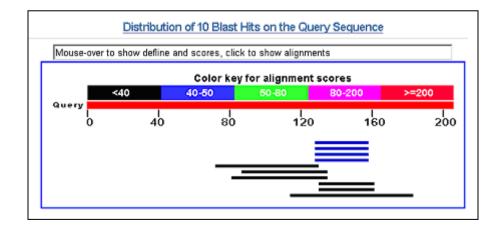
Query= Length=706 Distribution of Vector Matches on the Query Sequence 1 176 353 529 706 Match to Vector: Strong Moderate Weak Segment of suspect origin: Strong match: 13-52, 651-695 Suspect origin: 1-12, 696-706


A. Nucleotide sequence

B. VecScreen Output

>BPT_1 822 YPPSQLTLVLPLQLINILHL*SRI*LKIMAHLSLLSEAQLWLALLAMSTPTLTATPWAET LLTAMLRLVTRDLVLLLLVVVTLMWLPLLMEICPSRASSMSRIQRRMETVRFLEITRLMQ VPGGFDSFYP*GSRIVVSLATITGNGNFFKNENSHSPLSQLPCSDVELHRFRCKIPLRCA SRAFASVHLLQNPYAAPAGRPLGKLX

C. Deduced amino acid sequence


Plate 12. Sequence analysis for the clone BPT-822

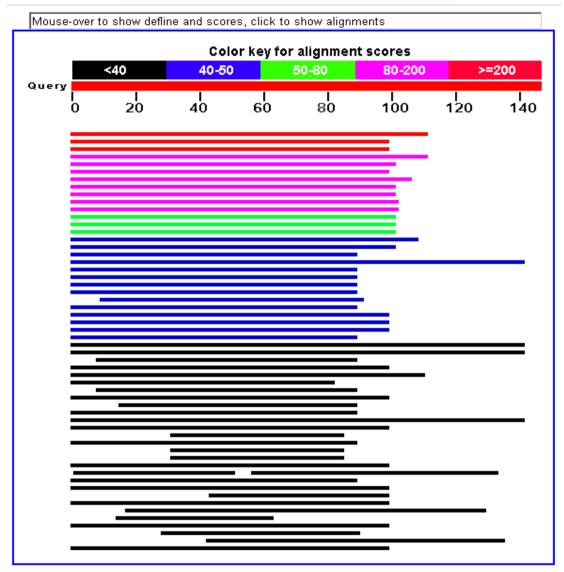
D. Blastn graphical output

Accession	Description	Max score	Total score	Query coverage	≜ ^E value	Max ident
EF176582.1	Trichoderma viride beta-1,3-qlucanase (qlu) gene, complete cds	<u>601</u>	853	91%	9e-169	96%
<u>X84085.1</u>	T.harzianum mRNA for endo-1,3(4)-beta-glucanase	560	781	88%	3e-156	94%
EF426722.2	Hypocrea virens endoglucanase (bgn13.1) mRNA, complete cds	542	785	91%	8e-151	92%
EF426721.2	Hypocrea virens endoglucanase (bgn13.1) gene, complete sequence	542	785	91%	8e-151	92%
AF395756.1	Hypocrea virens beta-1,3-glucanase precursor (bgn2) gene, complete	352	498	78%	8e-94	84%
AF395755.1	Hypocrea virens beta-1,3-glucanase precursor (bgn1) gene, complete	93.3	93.3	30%	1e-15	70%
AB179717.1	Trichoderma viride lamAI mRNA for laminarinase, complete cds	42.8	42.8	17%	1.8	68%

E. Blastn text output

F. Blastp graphical output

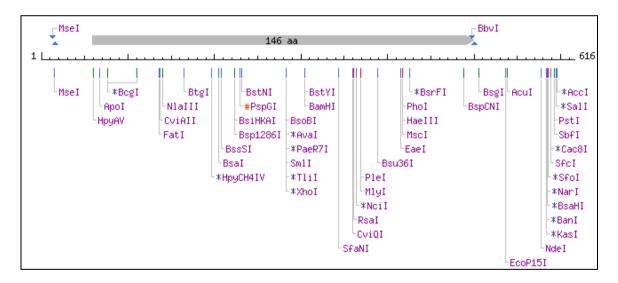
Plate 12. Sequence analysis for the clone BPT-822 contd...


Sequences producing significant alignments:	Score (Bits)	E Value
gb ABO93399.2] endoglucanase [Hypocrea virens] gb ABM55269.1] beta-1,3-glucanase [Trichoderma viride] gb AAL84695.1 AF395756 1 beta-1,3-glucanase precursor [Hypocr sp P53626 E13B TRIHA Glucan endo-1,3-beta-glucosidase BGN13.1	$\frac{43.1}{43.1}$ $\frac{43.1}{43.1}$ 43.1	0.011 0.011 0.011 0.011
ref YP 001471290.1 protein of unknown function DUF187 [Therm gb EA223863.1 hypothetical protein OsJ 007346 [Oryza sativa gb EAY86750.1 hypothetical protein OsI 007983 [Oryza sativa	$\frac{35.8}{35.4}$ 34.7	1.8 G 2.2 4.2
<pre>ref XP_001597035.1 hypothetical protein SS1G_01229 [Scleroti</pre>	<u>33.9</u>	6.2 G
ref XP_001556598.1 hypothetical protein BC1G_03983 [Botryoti ref ZP_01055293.1 hypothetical protein MED193_13612 [Roseoba	<u>33.9</u> 33.5	7.3 G 7.9

E. Blastp text output

F. Open reading frame

Plate 12. Sequence analysis for the clone BPT-822 contd...

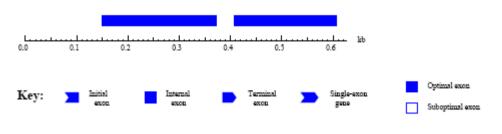

Distribution of 85 Blast Hits on the Query Sequence

G. Graphical output of Blast of Open Reading Frame

Plate 12. Sequence analysis for the clone BPT-822 contd...

gb[EDP52988.1] exo-beta-1,3-glucanase, putative [Aspergillus	41.2	0.022
ref XP 001263693.11 exo-beta-1,3-glucanase, putative [Neosart	41.2	0.022 <mark>G</mark>
ref [XP 754859.1] exo-beta-1,3-glucanase [Aspergillus fumigatu	41.2	0.022 <mark>G</mark>
<pre>ref XP 001258465.1 exo-beta-1,3-glucanase, putative [Neosart gb EDP49765.1] exo-beta-1,3-glucanase, putative [Aspergillus</pre>	$\frac{40.0}{39.7}$	0.048 G 0.063
<pre>ref[XP_751077.1] exo-beta-1,3-glucanase [Aspergillus fumigatu</pre>	<u>39.7</u>	0.063 <mark>G</mark>
<pre>ref[XP_001940876.1] glucan 1,3-beta-glucosidase [Pyrenophora</pre>	<u>38.9</u>	0.11 G
<pre>ref[XP_001556598.1] hypothetical protein BC1G_03983 [Botryoti</pre>	<u>38.9</u>	0.11 G
<pre>ref XP_001227389.1 hypothetical protein CHGG_09462 [Chaetomi</pre>	<u>38.9</u>	0.11 <mark>G</mark>
ref XP 001905866.1 unnamed protein product [Podospora anseri	<u>38.5</u>	0.14 <mark>G</mark>
<pre>ref XP_001589225.1 hypothetical protein SS1G_09858 [Scleroti</pre>	<u>38.5</u>	0.14 <mark>G</mark>
<u>ref XP_001273111.1 </u> exo-beta-1,3-glucanase, putative [Aspergi <u>gb AAC09172.1 </u> exo-beta-1,3-glucanase [Ampelomyces quisqualis]	$\tfrac{38.1}{37.7}$	0.18 G 0.24
<pre>ref[XP_001888863.1] glycoside hydrolase family 55 protein [La</pre>	37.4	0.31 <mark>G</mark>
<u>ref XP_001258312.1</u> conserved hypothetical protein [Neosartor <u>gb EDP53707.1</u>] exo-beta-1,3-glucanase, putative [Aspergillus	$\frac{37.4}{36.6}$	0.31 G 0.53
ref [XP_955880.2] hypothetical protein NCU03493 [Neurospora cr	36.6	0.53 UG
<pre>ref XP 368585.1 hypothetical protein MGG 00659 [Magnaporthe</pre>	36.6	0.53 UG

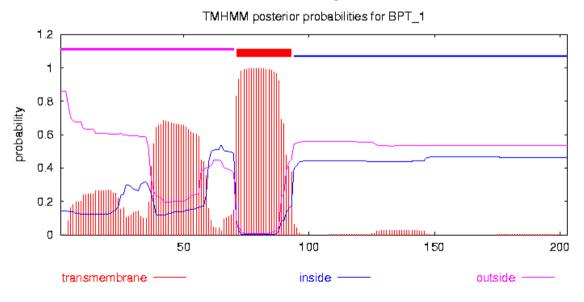
H. Text output of Blast of Open Reading Frame



J. Restriction map


Plate 12. Sequence analysis for the clone BPT-822 contd...

Gn.Ex	Туре	s	.Begin	End	.Len	\mathbf{Fr}	Ph	I/Ac	Do/T	CodRg	P	Tscr
		-										
1.01	\mathbf{Intr}	+	149	372	224	2	2	51	25	297	0.675	22.47
1.02	Intr	+	407	607	201	0	0	47	24	194	0.951	13.16


GENSCAN predicted genes in sequence 00:08:23

K. Genscan output

L. InterProScan output

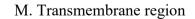
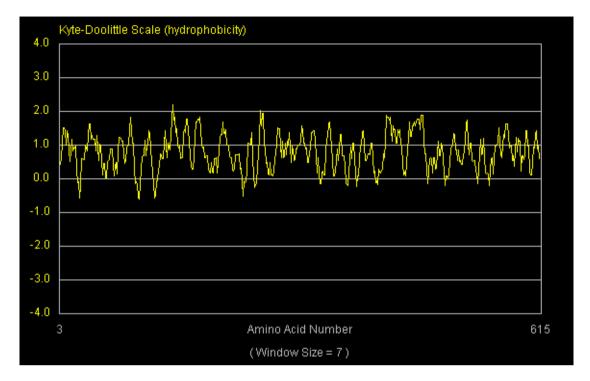
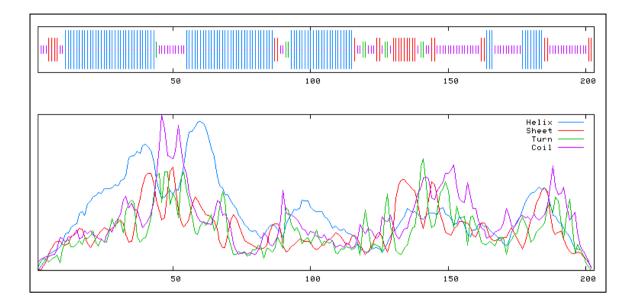



Plate 12. Sequence analysis for the clone BPT-822 contd...



N. Kyte Doolittle Hydropathy Plot for deduced proteins

10 2	:0	30	40	50	60	70
1	I	I	I	I	1	1
YPPSQLTLVLPLQLINILH	HLSRILKIM	AHLSLLSE	AQLULALLAM	STPTLTATPW	AETLLTAML	RLVTRD
ccccceeeecchhhhhhh	hhhhhhhh	hhhhhhhh	hhhhhhhht	ccccccccc	hhhhhhhh	hhhhh
LVLLLLVVVTLMWLPLLM	CICPSRASS	MSRIQRRM	ETVRFLEITR	LMQVPGGFDS	FYPGSRIVV:	SLATIT
hhhhhhhhhhhhhhhhh	cctthhhh	hhhhhhh	hhhhhhhhh	heccttccce	ecttceeeee	eeeec
GNGNFFKNENSHSPLSOLF	CSDVELHR	FRCKIPLR	CASRAFASVH	LLONPYAAPA	GRPLGKLX	
ttcceeccccccccccccc	ccceehhh	ccccccc	cchhhhhhhh	eecccccccc	cccccee	
Seguence length .	203					
Sequence length :	203					
SOPMA :						
Alpha helix	(Hh)	99 is	48.77%			
3 ₁₀ helix	(Gg) :	0 is	0.00%			
Pi helix	(Ii) :	0 is	0.00%			
Beta bridge	(Bb) :	0 is	0.00%			
Extended strand		26 is	12.81%			
Beta turn	(Tt) :	9 is	4.43%			
Bend region	(Ss) :	0 is				
Random coil	(Cc) :	69 is	33.99%			
Ambigous states	(2) :	0 is	0.00%			
Other states		0 is	0.00%			
Other States	•	0 15	0.00%			

O. Predicted secondary structure

Plate 12. Sequence analysis for the clone BPT-822 contd...

P. Graphical representation of secondary structure

Plate 12. Sequence analysis for the clone BPT-822 contd...

Discussion

5. DISCUSSION

The focus on the management of plant disease has been shifted from chemical pesticides to more ecofriendly biopesticides to reduce environmental hazards and to minimize the risk of development of pesticide resistant strains of plant pathogens. Research since the last few decades has clearly demonstrated that microorganisms possess a great potential for the management of many crop diseases. Trichoderma had been established as a potential biocontrol agent during past few decades, have created a new milestone in nonchemical plant disease management system and organic farming in Kerala. There is good evidence to support several mechanisms of disease control by Trichoderma species including mycoparasitism, cell lysis, antibiosis, induced resistance, competition for nutrient or space, inactivation of pathogen's enzyme etc. (Harman et al., 2004). Trichoderma spp. are known to produce many extracellular hydrolytic enzymes viz. β -1,3-glucanase, chitinase, cellulase, proteinase etc. by which they cause lysis or degradation of cell wall of many plant pathogenic fungi. In Kerala, *Phytophthora* is a major pathogen causing considerable damage to economically important crops. β -1,3-glucan is the main structural components of cell wall of oomycetes fungi particularly *Phytophthora* spp. and *Pythium* spp. β -1,3-glucanase has been proposed as one of the key enzyme in the lysis of cell wall of these fungi during the antagonistic action of Trichoderma (De la Cruz et al., 1995). A perusal of literature revealed many information regarding the characterization and cloning of chitinase and β -1,6glucanase of *Trichoderma* spp. However, the reports on β -1,3-glucanase are rather meagre and scanty. Moreover no work has been reported from Kerala related to either chitinase or glucanase gene isolation and cloning in Trichodrma spp. So, in the view of above facts, the present investigation was carried out to study β -1,3glucanase activity, total genomic DNA, molecular cloning and sequencing of different native antagonistic *Trichoderma* isolates. The results obtained during the present study are discussed in the light of earlier reports and possible interpretations are presented in this chapter.

5.1 **BIOCHEMICAL CHARACTERIZATION**

The production of extracellular β -glucanase was induced during the growth of Trichoderma isolates in TSB medium, when supplemented with 0.2 per cent *Phytophthora capsici* cell wall as the sole carbon source. The present findings revealed wide variation of glucanase enzyme activity with different native Trichoderma isolates. This variation was observed among the species and within the species, which might be due to the genetic variation among different strains. The glucanase enzyme activity of various Trichoderma isolates in the present study ranged from 1.3 U to 205.3U per 50 ml culture filtrate per 10 min. Of fifteen isolates, seven isolates showed high enzyme activity of more than 100 U and the maximum enzyme activity was observed in T. viride-1 (205.3U), T. harzianum-30 (157.8U), T. aureoviride (139.2U) and T. viride-8 (121.9U). De la Cruz et al. (1995), estimated β -1,3–glucanase activity produced by *T. harzianum*, grown in PDB supplemented with the mycelium of Phytophthora citrophthora as the sole carbon source and reported to be 700 mU/ mg of protein/ min. Noronha and Ulhoa (2000), also estimated β -1,3–glucanase activity of *T. harzianum* grown in the culture medium containing cell walls of Pythium spp. and reported to be 14.62±0.06 U/ mg of protein/ min. It is also interesting to note that T. viride-8, an endophytic Trichoderma isolated from black pepper has shown high glucanase enzyme activity, which can be further exploited for the gene isolation for the development of transgenic plants resistant to Phytophthoa capsici.

5.2 MOLECULAR CHARACTERIZATION

Molecular characterization of the gene encoding β -1,3-glucanase was carried out by polymerase chain reaction (PCR) with specific primer from the selected four *Trichoderma* isolates which were showing maximum enzyme activity.

5.2.1 Isolation of Genomic DNA

Good quality DNA without any contamination is a pre-requisite for PCR. For isolation of genomic DNA, *Trichoderma* isolates were grown in minimal medium for 5 days at room temperature as suggested by Geysens *et al.* (2005), which was found to be suitable for their growth. Large amounts of RNA in the DNA sample can chelate Mg^{2+} ions and reduce the yield of polymerase chain reaction (PCR). In order to overcome the problem of RNA contamination, the DNA samples were treated with RNaseA. As a result, good quality DNA with intact, discrete bands was obtained without any contamination, as visualized in 0.8 per cent agarose gel electrophoresis.

The quantity of DNA was estimated by Nano Drop® ND-1000 spectro photometer. The quantity of DNA isolated ranged from 164.82 to 204.08 μ g g⁻¹ of fresh mycelia. Since one PCR reaction requires only 25-50 ng template, the DNA recovered was found to be sufficient for further PCR reaction. The reaction of optical density value at 260 nm to that at 280 nm ranged from 1.77 to 1.81. The value of OD₂₆₀ /OD₂₈₀ between 1.8 and 2 indicates relatively pure DNA. Whereas according to Cenis (1992) method, the DNA yield from *T. harzianum* was reported to be 1040±22 μ g g⁻¹ of dry mycelia of OD₂₆₀ /OD₂₈₀ value 1.42±0.03.

Summing up the result already observed, it is revealed that, among the various *Trichoderma* isolates selected for the study, *T. viride* -1 showed maximum glucanase activity and yielded high DNA concentration.

5.2.2 Primer Designing

When multiple sequence alignment of glucanases sequences from different fungi was done, the homology in conserved boxes was very less. Hence

only the sequences from different species of *Trichoderma/Hypocrea* were taken for further alignment and it showed a good number of conserved regions.

Oligonucleotides homologous to two regions in the gene of interest are used to amplify an intervening gene. While designing primers, complementary sequences and repeats of single nucleotide were avoided as much as possible. Primers were designed from conserved regions based on the degeneracy of amino acids to amplify the distance between forward and reverse primers and to get an amplicon of expected size. Degenerate oligonucleotides were designed considering codon bias and selection of aminoacids that require the least amount of degeneracy. From the glucanase gene specific primer, designed during this study, Glucan F1, Glucan R1 and Glucan R3 had degeneracy at single base, whereas Glucan F2, Glucan R2 and Glucan R3 had degeneracy at two bases. Even though degeneracies observed in primer sequences, but successfully amplified the β -1,3-glucanase gene from the genomic DNA of Trichoderma spp. Montero et al. (2007) also designed degenerate primer for the amplification of β -1,6-glucanase in T. harzianum and successfully able to amplify the gene from chromosomal DNA. Primer degeneracies of 10^5 to 10^6 or greater have been used successfully to isolate the correct gene from diverse species (Gould et al., 1989).

The primers, designed and synthesized have GC per cent about 50 per cent and Tm greater than 59°C. Highest annealing temperature was noticed for the primer combination Glucan F1R1 and lowest for Glucan F2R2 and Glucan F3R3.

5.2.3 Polymerase chain reaction

The PCR involves two origonucleotide primers, 17-30 nucleotides in length which flank the DNA sequence that is to be amplified. The primers hybridise to opposite strands of the DNA after it has been denatured and are oriented so that DNA synthesis by the polymerase, proceeds the region between two primers. By repeated cycles of heat denaturation, primer hybridization and extension, there follows a rapid exponential accumulation of the specific target fragment of DNA (Mullis *et al.*, 1986). PCR facilitates amplification of specific gene efficiently with gene specific primers.

While the PCR is simple in concept, practically there are a large number of variables which can influence the outcome of reaction (Pavlov *et al.*, 2004). Therefore various PCR parameter like DNA concentration, Taq DNA polymerase concentration, annealing temperature and primer concentration were standardized for the specific amplification of β -1,3-glucanase. Good quality DNA template was found to be necessary for amplification of specific gene. Optimization of template DNA dilution was therefore to be carried out for each template lot. The pH of the reaction buffer should be optimum (8.3), which is necessary for the working of each reagent in reaction mixture. Taq DNA polymerase concentration was found to be effective at 0.6 units.

The primer combination Glucan F1R1 gave amplification for two species *T. aureoviride* and *T. viride-8* and no amplification for *T. viride-1* and *T. harzianum-30*. For two species specific region corresponding to the primer combination has amplified whereas for other two isolates, no amplification could be obtained. Since most of the primers designed were derived from complete coding sequence of mRNA or cDNA, there exists the possibility of introns in the priming site. It is supposed that, mismatch of template and primer particularly had occurred at the 3' end of the primer or the occurrence of large introns immediately after priming region and hence amplification got disrupted. The same results were obtained with primer combination of Glucan F2R2.

Glucan F3R3 primer combination yielded single band in *T. aureoviride* and multiple bands in *T. viride*-1. It was also found that primer combination Glucan F1R2 yielded multiple bands in all isolated at 52°C annealing temperature, while increasing Ta to 56°C, there was only one discrete band in all isolates. It may be due

to the lower annealing temperature leads to non-specific binding. Since β -1,3glucanase belongs to complex gene families (Beerhues *et al.*, 1994) and different isoforms have a unique amino acid sequence that was encoded by a different gene. These genes shares conserved regions and might have amplified with this primer combination. There is also possibility of amplifying target DNA with varying repeat numbers, these yielding a population of PCR products differing slightly in size because of the variation in repeat number.

5.3 CLONING OF PCR PRODUCT

The cloning of PCR products is extremely valuable for sequencing, for mutation analysis, for *in vitro* mutagenesis as an intermediate in genetic engineering, in studies of gene expression and other applications. Amplification by PCR with Taq DNA polymerase lacking 3' - 5' exonulcease activity yields products that contain a single 3'-terminal nucleotide overhang, typically an A residue (Clark, 1988; Hu, 1993). Hence these PCR products can be frequently cloned into T-vectors, which contain a single T overhang. Amplicons obtained by PCR cloned into pGEM-T (Promega) Easy Vector System I.

5.3.1. CLONING OF GENE ENCODING GLUCANASE

Transformation may be described as the stable, heritable uptake of exogenous DNA into a host cell. In order to undergo transformation, the cell must be competent and bacteria such as *E. coli* may be artificially induced to become competent. The success of transformation is measured in terms of transformation efficiency. Many β -1,3-glucanases have been isolated, but only a few genes have been cloned, e.g. *bgn13.1* (De la Cruz *et al.*,1995) and *lam1.3* (Cohen-Kupiec *et al.*, 1999) from *T. harzianum*, *glu78* (Donzelli *et al.*, 2001) from *T. atroviride*, and *Tv-bgn1* (Kim *et al.*,2002) and *Tv-bgn2* (Djonovic *et al.*, 2007) from *T. virens*.

The cells were made permeable to plasmid DNA by chilling the cells in presence of divalent cations such as CaCl₂. CaCl₂ affects the cell walls and might be responsible for binding of DNA to the cell surface (Hanahan, 1983). The uptake of DNA is also stimulated by the brief heat shock (Old and Primrose, 1994). E. coli cells were given a shock treatment by abruptly increasing the temperature from zero to 42°C for a short period of 90 seconds. The treated bacteria are more likely to take up foreign DNA. The temperature is an important factor to obtain the highest transformation efficiency. Competence of E. coli JM 109 cells was confirmed by transforming them with an uncut plasmid (pUC18) containing ampicillin resistance marker. High efficiency of transformation of 4.2×10^8 cfu μ g⁻¹ DNA was obtained with the competent cells prepared. This was in accordance with Liu and Rashdbaigi (1990) as they reported the optimum efficiencies of transformants were 10^7 to 10^9 cfu μ g⁻¹. The competent cells harbouring the plasmid alone could grow in ampicillin containing medium. If any other ampicillin resistant bacteria thrive in the transformation plate, they will give white colonies that could be misinterpreted as transformed cells. Strict aseptic condition was maintained through out the preparation of competent cells, since contamination in competent cells can produce white colonies after blue-white screening.

The cloning vector used was pGEM-T easy vector having a size of 3kb, which is the convenient system for the cloning of PCR products. The vector was custom made by cutting with *Eco*RV and adding 3'-terminal thymidine to both ends. These single 3'-T overhangs at the insertion site improve the efficiency of ligation of a PCR product into the plasmid by preventing recircularization of the vector and providing a compatible overhang for the product generated by *Taq* polymerase. This thermostable enzyme often adds a single deoxyadenosine, in a template independent fashion, to the 3' ends of the amplified fragments (Clark, 1988). The high copy number pGEM-T Easy Vector contain T7 and SP6 RNA polymerase promoter flanking a multiple cloning site within the *lacZ* region. This facilitates blue-white screening or selection of recombinants by insertional inactivation of β -galactosidase. The amplified DNA fragments of GT-311, GT-322, BPT-822, T–112 and CT–3012

were eluted from the gel and ligated into pGEM-T Easy Vector. It was found that incubation of ligation reaction at room temperature for one hour followed by overnight incubation at 4°C yields maximum number of transformants.

Ligated product containing the specific amplicon was used to transform E. coli JM 109 cells, which could be later picked up from the media containing 5-bromo-4-chloro-3-indolyl-β-D-galactosidase (X-gal) and isopropyl thiogalactoside (IPTG) based on blue white screening. E. coli cells after transformation when plated on LBA plate overlaid with X-Gal and IPTG; produced blue and white colonies after overnight incubation. The pGEM-T Easy Vector contained polycloning sites inside the β -galactosidase encoding gene (*lacZ*). Insertion of a foreign sequence will disrupt the reading frame of β -galactosidase encoding gene. During transformation, the host encoded and vector encoded protein regions of β-galactosidase undergoes α -complementation to form enzymatically active proteins. E. coli cells that are not transformed with the recombinant plasmid can further utilize the chromogenic substrate X-Gal and appear as blue colonies (Ullman et al., 1967). Colonies which have not taken up the plasmid can further utilize the substrate and appear as blue colonies on X-gal chromogenic substrate (Horwitz et al., 1964). E. coli cells carrying recombinant plasmid were not capable of a-complementation and developed into white colonies.

It is observed from the above result that, all transformants showed high transformation efficiency more than 65 per cent. Among all transformants, CT–3012 showed maximum and GT–322 showed lowest transformation efficiency.

5.3.2. CONFIRMATION OF INSERTION

Plasmids isolated from blue and white colonies gave bands with different molecular weights. All the plasmids isolated from white colonies had higher molecular weight than the pGEM-T vector alone. Plasmid from blue colony was self-ligated vector alone, since no transformation has occurred. A band corresponding to 3.1 kb corresponding to the actual size of plasmid was obtained.

PCR with gene specific primers amplified fragments of expected size obtained in white colonies only and there were no amplification in blue colonies. This confirmed the presence of insert in the vector. But in clones T-112 and CT-3012, multiple bands were observed in recombinant clones with the expected size of band, when PCR was carried out with gene specific primer Glucan F1R2. It was further confirmed with T7 forward and SP6 reverse universal primer. Higher amplicon sizes of about 800 bp, 900 bp and 1.5 kb of bands were obtained from the white plasmid of the clone of primer combination Glucan F1R1, Glucan F2R2 and Glucan F1R2 respectively, which were little higher than the insert and lower amplicon size than the white plasmid was obtained from blue plasmid by the primer.

5.3.3. SEQUENCING AND THEORETICAL SEQUENCE ANALYSIS

5.3.3.1. Sequencing of the cloned fragment

The cloned fragment when sequenced by automated sequencing with T7 forward primer provided the 5'-3' sequence data in the downstream direction since it is a forward primer. The sequences obtained after cloning, were subjected to vector screening to delete the sequences of vector, if any present. Vector screening of the sequence GT-311 and GT-322 showed significant similarity starting from the region 1 to 47 bases. The vector screen of sequence BPT-822 showed strong match to vectors starting from region starting from 1 to 52 bases and from 651 to 706 bases. Hence, the regions showing similarity to the vector and the primer sequences which were externally supplied during PCR, were deleted and only the insert sequence was retrieved. The actual insert sequences data obtained were further analysed. It is worthwhile to mention that, this is the first attempt on biochemical characterization and molecular cloning of *T. aureoviride*.

5.3.6.2. Theoretical analysis of sequence using bioinformatics tools

The analysis of sequence using bioinformatics tools was theoretically relevant to know the details of the sequence obtained, which can be helpful for isolating the full length gene. Basic Local Alignment Search Tool (BLAST) is the tool most frequently used for calculating sequence similarity. BLAST comes in variations for use with different query sequences against different databases. Homology search through BLAST is a heuristic method to find the highest scoring locally optimal alignments between a query sequence and a database sequence (Altschul *et al.*, 1990, 1997). The BLAST analysis can determine the sequence homology to predict the identity and function of the query sequence.

When the cloned sequences were subjected to Blastn, they were identified as partial glucanase genes. The sequences showed significant homology with different glucanase gene sequences of various species of Trichoderma or Hypocrea present in NCBI databank. Query coverage for GT-311 was 76 per cent, showing maximum identity of 93 per cent and 92 per cent to endoglucanse gene (bgn13.3) of H. virens and β -1,3- glucanase (glu) gene of *T. viride* respectively. For GT-322, 92 per cent homology was found to β -1,3- glucanase (glu) gene of *T. viride* and 90 per cent to endo-1,3(4)- β -glucanase of *T. harzianum* and endoglucanase gene(bgn13.3) of *H.* virens with 79 per cent query coverage. The sequence BPT-822 showing maximum homology of 96 per cent and 94 per cent to two accessions namely, EF176582.1 and X84085 respectively with minimum E-value. There were 24, 36 and 12 Blast hits reported for sequences GT-311, GT-322 and BPT-822 respectively. This report was in accordance with the result obtained by Gao et al. (2008). They found that cloned beta-1,3-glucanase gene (glu) from Trichoderma viride LTR-2 cDNA sequence showed 93 per cent homology to β -1,3-glucanase genes from *T. harzianum* (bgn3.1) and Hypocrea virens (bgn13.1).

Homology search through protein-protein BLAST (Blastp) using deduced amino acid sequence showed all three sequences had significant similarity with endoglucanses of *H. virens*, glucan endo-1,3- β -glucosidase (BGN13.1) of *T. harzianum*, β -1,3-glucanase and laminarinase of *T. viride*, β -1,3-glucanase precursor of *H. virens*. GT-311, GT-322 and BPT-822 showed 87, 13 and 10 blast hits respectively.

The phylogram of GT-311, GT-322 and BPT-822 with glucanase genes of different species of *Trichoderma/Hypocrea* in NCBI databank showing evolutionary relationship was constructed. The result of phylogram revealed that GT-322 and BPT-822 showed close similarity with beta-1, 3-glucanase (glu) gene of *T. viride* having accession EF176582.1 and GT-311 with endoglucanase (bgn13.1) gene of *H. virens* (accession EF426721.1) and further connected to the gene beta-1,3-glucanase precursor (bgn2) of *H. virens* (AF395756.1) in phylogenetic tree.

When the sequences were subjected to nucleotide statistics tool, both the sequences GT-322 and BPT-822 were rich in A+T base pair composition (51.3%) as compared with C+G (48.7%), while GT-311 had C+G (49.5%) and A+T (50.5%).

Open reading frame (ORF) is the part of protein coding gene and the longest ORF of the DNA sequence contains the protein-coding region. It starts with an initiation codon and ends with a termination codon (Old and Primrose, 1994). When the ORFs of the cloned sequence were examined, GT-311 encoded the longest ORF on +2 reading frame, with a length of 264bp of nucleotide and 87bp of aminoacids. When subjected to BLASTp search, it detected homology with hypothetical protein of *Rattus norvegicus*. The longest ORF was located on the +2 reading frame for GT-322 sequence, with a length of 423 bases coding 140 aminoacid residues, starting from base 68 to 490. The result of the BLASTp showed 88 blast hits and homology to β -1, 3- glucanase of *T. viride* and endoglucanse of *H. virens*. The ORF analysis of BPT-822, revealed that the longest ORF (441bp) was encoded on +3 reading frame. The longest one was subjected to BLASTp and its result showed significant

homology to β -1,3-glucanase of different *Trichoderma* spp. and *Aspergillus fumigatus*. A gene fragment of 453bp was obtained from *bgn16.3* by ORF (Montero *et al.*, 2007). Even though ORF is detected from the sequence obtained by ORF finder, it can only be confirmed after the cloning of full length gene.

The theoretical restriction analysis for ten enzymes showed that *Alu*I had four sites, followed by *Hae*III three sites in GT-311, whereas *AcI*I, *Dpn*I, *Mbo*I, *Nae*I and *Pvu*I had only one site and only two restriction sites for MseI. In GT-322, there were four restriction sites for *Dpn*I I and *Mbo*I. It had two restriction sites for *Taq*I and *Mse*I and one restriction site for *Alu*I, *Bam*HI, *AcI*I and *Hae*III. The sequence BPT-822 was found to possess four restriction sites for *Taq*I, three restriction sites for *Alu*I, two restriction sites each for *Dpn*I and *Mbo*I, whereas there were only one site for *Bam*HI, *Hae*III and *Mse*I. Restriction enzymes *Nae*I and *Pvu*I lacked restriction sites both on GT-322 and BPT-822 and there was no restriction site for *Bam*HI and *Taq*I in GT-311.

'Genscan' tool was used to analyze the exons present in the cloned sequence. In GT-311, initial exon of 130bp and terminal exon of 191bp separated by 198bp of intron. Both GT-322 and BPT-822 possessed only two internal exons each of 293bp, 126bp and 224bp, 201bp respectively. Poly A tail region of 6bp present in GT-311. Even though the exonic regions were found from the cloned sequences, it will be practically more relevant after the cloning of full length gene.

Aminoacid analysis revealed composition of different aminoacids in glucanase gene sequences cloned. The molar percentage of serine was found to be highest (11.3%, 26 residues), followed by glycine (8.3%, 20 residues) in GT311 sequence. Both amino acids arginine and leucine content was highest (8.5%, 20 residue), followed by serine (7.2%, 17 residue) in GT-322. The BPT-822 sequence had leucine with the highest share of 19.70 per cent with 40 residues.

Functional aspects of domains of GT-311 sequence discovered through 'InterProscan' revealed two transmembrane helix of 20bp region ranging from the amino acid sequence 37 to 57 and 140 to 160. Transmembrane domain is a three dimensional protein structure, which is thermodynamically stable. This can be predicted on the basis of hydrophobicicity. Using hydrophobicity analysis, transmembrane helices enable prediction of membrane topology of a protein. In the sequence BPT-822, one signal peptide and two transmembrane helices were found through 'InterProScan'. The sequence region 1 to 52 amino acids coded for signal peptide and 36 to 56 and 71 to 91 amino acids coded for transmembrane helix. The cleavage site of signal peptide located between A-52 and T-53 was predicted. This was in accordance with the findings of Nobe *et al.* (2004). He got only one signal peptide cleavage site at A-17 and S-18 by SignalP from the 33 residue of N-terminal sequence of LAMI from *T. viride.* Montero *et al.* (2007) also found a typical signal peptide region comprising 18 amino acid residues in *bgn16.3* sequence from *T. harzianum*. The sequence GT-322 has no functional domain.

The 'Motif Scan' of aminoacid sequence of GT-311, GT-322 and BPT-822 revealed similarity with protein kinase and casein kinase phosphorylation site. The protein sequence BPT-822 from *T. viride*–8 had a Leucine rich motif region of 82 residue length through 'Motif Scan' search. While it was reported that β -1, 3- glucanase contain a cysteine rich motif from *T. harzianum* (De la Cruz *et al.*, 1995).

The secondary structure prediction of the cloned sequences showed the proportion of different structures namely alpha helix, beta sheet and random coils. The sequences GT-311 and GT-322 were comparatively richer in random coils (47.83%, 47.03 %), where as BPT-822 was the richest in alpha helices (48.77%). The proportion of random coil was 33.99 per cent in BPT-822 and the proportion of alpha helices were 13.04 and 16.95 per cent in GT-311 and GT-322 respectively. The beta turns were contributed to 11.74, 7.20 and 4.43 per cent in GT-311, GT-322 and BPT-822 respectively.

When the sequences are subjected to hydropathy plot by means of Kyte Doolittle Hydropathy Profile, all the three sequences were showing hydrphobic in nature, rich in hydrophobic amino acids. But GT-311 and BPT-822 had both hydrophobic and hydrophilic amino acids. All the sequences were analysed for the transmembrane helices.

Summing up the discussion presented so far, it may be concluded that, the present findings have enriched our knowledge on various molecular aspects of *Trichoderma* isolates of Kerala, particularly the glucanase enzyme activity, glucanase gene isolation, cloning and its sequencing which provided the pioneer steps not only for the genetic manipulation of valuable crops for developing disease resistance but also for the enhancement of biocontrol activity of microorganisms.

Summary |

6. SUMMARY

An investigation on "Molecular cloning and characterization of the gene encoding β -1, 3- glucanase in *Trichoderma* spp." was conducted at the Centre for Plant Biotechnology and Molecular Biology and Department of Plant Pathology, College of Horticulture, Vellanikkara, Thrissur from 2006 to 2008. The objectives of the study were biochemical and molecular characterization of the enzyme β -1,3glucanase in *Trichoderma* spp. The salient findings of the study are summerized in this chapter.

- Twelve antagonistic *Trichoderma* isolates with three reference cultures of *T. viride*, *T. virens*, *T. harzianum*, having potential antagonistic activity against the major soil borne pathogens of Kerala viz. *Pythium* spp., *Phytophthora capsici*, *P. meadii*, *Ralstonia solanacearum* were used for the present study.
- Biochemical characterization of fifteen *Trichoderma* isolates was done by determining the glucanase activity. Among the 15 *Trichoderma* isolates, four isolates such as *T. viride-1*, *T. harzianum-30*, *T. aureoviride* and *T. viride-8* showed high β-1,3- glucanase activity ranging from 205.3U to 121.9U per 50ml culture filtrate at 10 min incubation, were selected for genomic DNA isolation.
- 3. Genomic DNA was isolated from the four selected *Trichoderma* isolates. The quantity of DNA in the sample varied from 164.82 μ g g⁻¹ to 204.08 μ g g⁻¹ of mycelia. The OD₂₆₀/OD₂₈₀ ranged between 1.77 and 1.81 indicating the good quality of DNA without any contamination.
- 4. Three pairs of primers for β -1,3-glucanase genes were designed, based on the homology within the conserved regions of glucanase genes present in

different species of *Trichoderma / Hypocrea*. All Primers had melting temperature more than 56° C and sequence length of 20 to 23 bp.

- 5. The PCR amplification with primer combination Glucan F1R1 and Glucan F2R2 yielded discrete bands both in *T. aureoviride* and *T. viride* 8. The expected amplicon sizes of 550bp and 600bp were obtained in both cases respectively. To confirm the gene sequence, the amplicons were eluted and cloned.
- Multiple bands were obtained for primer combination Glucan F1R2 at annealing temperature 52^oC in all four isolates. When the annealing temperature increased to 56^oC, single and discrete band of expected size (1.3 kbp) was observed. To confirm the gene sequence, the amplicons of *T. viride* 1 and *T. harzianum*-30 were eluted and cloned.
- 7. The amplicons were effectively eluted, ligated in pGEM-T vector and competent *E.coli* JM 109 cells were transformed with the ligated product.
- 8. Plasmid was isolated from blue and white colonies and the electrophoretic profile confirmed the presence of insert in it. Further confirmation tests were done using PCR amplification with the same gene specific primer and T7 forward and SP6 reverse universal primer.
- The cloned insert of β-1,3-glucanase genes were sequenced using T7 universal primer. After removing the vector sequence and primer sequence, the nucleotide sequence of 725 bp, 749 bp and 616 bp were obtained for GT-311, GT-322 and BPT-822 respectively.

- Theoretical analysis of the sequence using blastn and blastp progammes showed 90-96 per cent identity with glucanase genes and protein present in different species of *Trichoderma*.
- 11. Phylogram of three cloned sequences with glucanase genes of different species of *Trichoderma/Hypocrea* from NCBI databank showed GT-322 and BPT-822 had lower phylogenetic distance and closely related to beta-1, 3-glucanase (glu) gene of *T. viride* having accession number EF176582.1. Where as GT3-11 is more divergent from other two sequences and closely related to endoglucanase (bgn13.1) gene of *H. virens* (accession EF426721.1).
- 12. Restriction analysis revealed that the GT-311, GT-322 and BPT-822 fragment have restriction sites for frequent cutter *AluI*, *Dpn* I, *Mbo* I and *Taq* I respectively. All the three sequences were rich in A+T base pair composition as compared with C+G.
- 13. The cloned fragments had largest ORF of size 264, 423 and 441 bases that coded 87, 140 and 146 amino acids in GT-311, GT-322 and BPT-822 respectively.
- 14. GT-311 had an initial exon with a length of 130bp and a terminal exon of 191bp. GT-322 and BPT-822 possessed two internal exons each of 293, 126 and 224, 201 base pairs respectively.
- 15. The amino acid composition of the cloned sequences was analysed using AASTAT tool available in Biology Workbench. Leucine content was high both in GT-322 and BPT-822 where as GT-322 was rich in serine content.

- 16. No conserved domain was detected for any of the three sequences. The 'Motif Scan' of aminoacid sequence of GT-311, GT-322 and BPT-822 revealed similarity with protein kinase and casein kinase phosphorylation site. BPT-822 had leucine rich region motif ranging from 6 to 87 amino acid sequence.
- 17. The 'InterProScan' result showed that GT-311 had two transmembrane helices where as BPT-822 had one signal peptide of 52bp long and two transmembrane helices.
- 18. Kyte and Doolittle hydropathy plot analysis revealed the presence of transmembrane regions in the deduced amino acid sequences of GT-311 and BPT-822 clones. All the three sequences were hydrphobic in nature being rich in hydrophobic amino acids.
- 19. The secondary structure prediction of the sequences were done using SOPMA programme. The sequences GT-311 and GT-322 were comparatively richer in random coils (47.83%, 47.03 %), where as BPT-822 was the richest in alpha helices (48.77%).

References

REFERENCES

- Abeles, F.B. and Forrence, L.E. 1969. Temporal and hormonal control of β-1, 3glucanase in *Phaseolus vulgaris*. *Pl. Physiol*. 45: 395–400
- Adams, P.G. 1990. The potential of mycoparasites for biological control of plant disease. *A. Rev. Phytopathol.* 28: 59-72
- Akiyama, T., Pillai, M.A. and Sentoku, N. 2004. Cloning, characterization and expression of OsGLN2, a rice endo-1,3-β-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. *Planta* 220: 129–39
- Alabouvette, C., Olivain, C. and Steinberg, C. 2006. Biological control of plant diseases: the European situation. *Eur. J. Pl. Pathol.* 114: 329–341
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. "Basic local alignment search tool". J. Mol. Biol. 215 (3): 403–410
- Altschul, S.F., Thomas, L.M., Schaffer, A.A., Zhang, J., Zhang, S., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25: 3389-3402
- Ayers, W.A. and Adams, P.B. 1981. Mycoparasitism and its application of biological control of plant diseases. In: Papavizas G.C. (ed.), *Biological control of crop production*. Altanhold, Osmum & Co., New Jersy, pp.91-93

- Baker, K. F. and Cook, R. J. 1974. *Biological control of plant pathogen*. Freeman, W.H. & Co., San Francisco, 443p
- Baker, B., Zambriynski, P. and Dinesh, S. P. 1997. Signaling in plant microbe ineraction. *Science* 276: 726-733
- Bara, M. T., Lima, A. L. and Ulhoa, C. J. 2003. Purification and characterization of an exo-beta-1,3-glucanase produced by *Trichoderma asperellum*. *FEMS Microbiol. Lett.* 219(1):81-85
- Beagle-Ristanio, J.E. and Papavizas, G.C. 1985. Biological control of *Rhizoctonia* stem canker and black scurf of potato. *Phytopathology* 75: 560-564
- Beerhues, L., Kombrink, E. and Bucher, P. 1994. Primary structure and expression of mRNAs encoding basic chitinase and 1,3-β-glucanase in potato. *Pl. Mol. Biol.* 24: 353–367
- Beffa, R.S., Neuhaus, J-M., Meins, F. Jr. 1993. Physiological compensation in antisense transformants: Specific induction of an ersatz glucan endo-1,3-ß-glucosidase in plants infected with necrotizing viruses. *Proc. Natl. Acad. Sci.* U. S. A. 90: 8792–8796
- Bell, D.K., Wells, H.D. and Markham, C.R. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology 72: 379-382

- Benitez, T., Limon, C., Delgado-Jarana, J. and Rey, M. 1998. Glucanolytic and other enzymes and their genes. In: Harman G.E. and Kubicek C. P. (eds.), *Trichoderma and Gliocladium*, Willey Press, New York, pp. 101–127
- Bigirimana, J., Elad, Y. and Hofte, M. 1997. Induction of systemic resistance on bean by *Trichoderma harzianum* T 39. *J. Pl. Pathol.* 104: 279-286
- Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res.* 7: 1513-1523
- Bol, J.F., Buchel, A.S., Knoester, M., Baladin, T., van Loon, L.C. and Linthorst,
 H.J.M. 1996. Regulation of the expression of plant defense genes. *Pl. Growth Regulator* 18: 87–91
- Bolar, J. P., Norelli, J. L., Harman, G. E., Brown, S. K. and Aldwinckle, H. S. 2000.
 Synergistic activity of endochitinase and exochitinase from *Trichoderma* atroviride (*T. harzianum*) against the pathogenic fungus (*Venturia* inaequalis) in transgenic apple plants. *Transgenic Res.* 10: 533–543
- Boller, T. 1985. *Cellular and Molecular Biology of Plant Stress*, Willey Press, New York, pp.247-262
- Bowler, D. J. 1990. Defense-related proteins in higher plants. A. Rev. Biochem. 59:873-907

- Broglie, K., I. Chet, M. Holliday, R. Cressman, P. Biddle, S. Knowlton, C. J. Mauvals, and R. Broglie. 1991. Transgenic plants with enhanced resistance to the fungal pathogen *Rhizoctonia solani*. *Science* 254:1194–1197
- Bucciaglia. P.A. and Smith, A.G. 1994. Cloning and characterization of Tag1, a tobacco anther β-1, 3-glucanase expressed during tetrad dissolution. *Pl. Mol. Biol.* 24: 903–914
- Buchner, P., Rochat, C., Wuilleme, S. and Boutin, J. P. 2002. Characterization of a tissue specific and developmentally regulated β-1,3-glucanase gene in pea (*Pisum sativum*). *Pl. Mol. Biol.* 49: 171–186
- Cassago, A., Panepucci, R. A. and Silva, F. H. 2002. Cellophane based mini-prep method for DNA extraction from the filamentous fungus *Trichoderma ressei*. *BMC Microbiol.* 2: 14-18
- Castresana, C., De Carvalho, F., Gheysen, G., Habets, M., Inze, D., van Montagu, M 1990. Tissue-specific and pathogen-induced regulation of a *Nicotiana plumbaginifolia* β-1, 3-glucanase gene. *Pl. Cell* 2: 1131–1144
- Cenis J. L. 1992. Rapid extraction of fungal DNA for PCR amplification. *Nucleic Acids Res.* 20: 2380
- Chang, M.M., Hadwiger, L.A., Horovitz, D. 1992. Molecular characterization of a pea β-1, 3-glucanase induced by *Fusarium solani* and chitosan challenge. *Pl. Mol. Biol.* 20: 609–618

- Chawla, H.S. 2003. *Introduction to Plant Biotechnology*. Oxford and IBH publishing Co. Pvt. Ltd., New Delhi. 530p
- Chen, E.Y., Schlessinger, D. and Kere, J. 1993. Ordered shotgun sequencing: A strategy for integrating mapping and sequencing of YAC clones. *Genomics* 17: 651-656
- Chet, I. 1987. Trichoderma application, mode of action and potential as a biocontrol agent of soil-borne plant pathogenic fungi. In: Chet I (ed.), *Innovative Approaches to Plant Disease Control*, Johan Wiley and Sons, Inc., New York, pp.137-177
- Cheong, Y.H., Kim, C.Y., Chun, H.J., Moon, B.C., Park, H.C., Kim, J.K., Lee, S.H., Han, C.D., Lee, S.Y. and Cho, M.J. 2000. Molecular cloning of a soybean class III β-1, 3-glucanase gene that is regulated both developmentally and in response to pathogen infection. *Pl. Sci.* 154: 71–81
- Chye, M.L., Cheung, K.Y. and Chun, M. 1995. β-1,3-glucanase is highly-expressed in laticifers of *Hevea Brasiliensis*. *Pl. Mol. Biol.* 29: 397–402
- Clark, J.M. 1988. Novel non-templated nucleotide addition reactions catalyzed by prokaryotic and eukaryotic DNA polymerases. *Nucleic Acids Res.* 16: 9677-9686
- Cohen, J.D., Chang, A.C.Y. and Hsu, L. 1972. Non chromosomal antibiotic resistance in bacteria: genetic transformation of *E.coli* by R factor DNA. *Proc. Nat. Acad. Sci.* USA. 69: 2110-2114

- Cohen-Kupiec, R., Broglie, K. E., Friesem, D., Broglie, R. M., Chet, I. 1999. Molecular characterization of a novel β-1,3-exoglucanase related to mycoparasitism of *Trichoderma harzianum*. *Gene* 226:147-154
- Compton, T. 1990. Degenerate primers for DNA amplification. In: Innis, Gelfand, Sninsky and White (ed.), *PCR Protocols*, Academic Press, New York. pp. 39-45
- Cook, R. J. 1987. Research Briefing Panel on Biological control Engineering and Public Policy, National Academy Press, Washington, 12p.
- Cordero, M.J, Raventos, D., San Segundo, B. 1994. Differential expression and induction of chitinases and β-1, 3-glucanases in response to fungal infection during germination of maize seeds. *Mol. Pl. Microbe Interaction* 7: 23–31
- Cortes, C., Gutierrez, A., Olmedo, V., Inbar, J., Chet, I. and Herrera-Estrella, A. 1998. The expression of genes involved in parasitism by *Trichoderma harzianum* is triggered by a diffusible factor. *Mol. Gen. Genet.* 260: 218–225
- Critinzio, G. 1987. Studies on biological control of *Phytophthora capsici* on pepper. *Capsicum Newsl.* 6: 65
- Dana, M. M., Pintor-Toro, J. A. and Cubero, B. 2006. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. *Pl. Physiol.* 142: 722-730

- Deacon, J.W., 1991. Significance of ecology in the development of biocontrol agents against soil borne plant pathogens. *Biocontrol Sci. Technol.* 1: 5-20
- De la Cruz, J., Pintor-Toro, J.A., Benitez, T. and Llobell, A.1995. Purification and characterization of an endo-beta-1,6-glucanase from *Trichoderma harzianum* that is related to its mycoparasitism. *J. Bacteriol.* 177: 1864–1871
- De Loose, M., Alliotte, T., Gheysen, G., Genetello, C., Gielen, J., Soetaert, P., Van Montagu, M. and Inze, D. 1988. Primary structure of a hormonally regulated β-glucanase of *Nicotiana plumbaginifolia*. *Gene* 70: 13–23
- Djonovic, S., Vittone, G., Mendoza-Herrera, A. and Kenerley, C. M. 2007. Enhanced biocontrol activity of *Trichoderma virens* transformants constitutively coexpressing β-1,3- and β -1,6-glucanase genes. *Mol. Pl. Pathol.* 8 (4): 469–480
- Donzelli, B. G., Lorito, M., Scala, F. and Harman, G. E. 2001. Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase from *Trichoderma atroviride* (*T. harzianum*). *Gene* 277:199-208
- Duan, C. H., Liu, J. R. and Cheng, K. J. 2008. Cloning of a lichenase gene from rumen fungus and its expression in *Escherichia coli*. <u>http://www.ncbi.</u> <u>nlm.nih.gov/entrez/viewer</u> [12 Jan 2008]
- Dube, H. C. 2001. Rhizobacteria in biological control and plant growth promotion. J. Mycol. Pl. Pathol. 31: 9-21

- El-Katatny, M.H., Gudelj, M., Robra, K.H., Elnaghy, M.A. and Gubitz, G.M. 2001.
 Characterization of a chitinase and an endo-beta-1,3-glucanase from *Trichoderma harzianum* Rifai T24 involved in control of the phytopathogen *Sclerotium rolfsii. Appl. Microbiol. Biotechnol.* 56:137–143
- Elad, Y., Chet, I. and Henis, Y. 1982. Degradation of plant pathogenic fungi by *Trichoderma harzianum. Can. J. Microbiol.* 28:719-725
- Elad, Y., Chet, I., Boyle, P. and Henis, Y. 1983. Parasitism of *Trichoderma* sp. on *Rhizoctonia solani* and *Sclerotium rolfsii* - scanning electron microscopy and fluorescence microscopy. *Phytopathology* 73 : 85-88
- Elad, Y., R. Barak, and I. Chet. 1984. Parasitism of sclerotia of *Sclerotium rolfsii* by *Trichoderma harzianum. Soil Biol. Biochem.* 16:381–386
- *Erlich, H.A. 1989. *PCR technology: Principles and Applications for DNA amplification.* Stockon Presss. London, 267p.
- Evans, H.C., Holmes, K.A. and Thomas, S.E. 2003. Mycobiota of an indigenous *Theobroma* species in Ecuador: assessing its potential for biological control of cocoa diseases. *Mycol. Prog.* 2: 149-160
- Flores, A., Chet, I. and Herrera-Estrella, A. 1997. Improved biocontrol activity of *Trichoderma harzianum* by over-expression of the proteinase-encoding gene prb1. *Curr. Genet.* 31:30-37

- Fravel, D. R. 2005. Commercialization and implementation of biocontrol. *A. Rev. Phytopathol.* 43: 337–359
- Fulcher, R.G., Mc Cully, M.E., Setterfield, G. and Sutherland, J. 1976. β-1, 3glucans may be associated with cell plate formation during cytokinesis. *Can. J. Bot.* 54: 459–542
- Gao,W., Yang,H.T. and Wu,Y.Z. 2008. Cloning and expression of beta-1, 3glucanase gene from *Trichoderma viride* in *Pichia pastoris*. Acta Microbiol. 48(2):239-243
- Geremia, R.A., Goldman, G. H., Jacobs, D. and Ardrtes, W. 1993. Molecular characterization of the proteinase encoding gene, *prb1*, related to mycoparasitism by *Trichoderma harzianum*. *Mol. Microbiol.* 8(3): 603 - 613
- George, M. 2005. Isolation and characterization of β-1, 3-glucanase gene from *Piper* spp. M. Sc. (Ag) thesis. Kerala Agriculture University, Thrissur. 87p.
- Geourjon, C. and Deléage, G. 1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. *Bioinformatics* 11(6):681-684
- Geysens, S., Pakula, T. and Contreras, R. 2005. Cloning and characterization of the glucosidase II alpha subunit gene of *Trichoderma ressei*. Appl. Environ. Microbiol. 71: 2910-2924

- Gould, S.J., Subramani, S. and Scheffler, I.E. 1989. Use of the DNA polymerase chain reaction for homology probing: isolation of partial cDNA or genomic clones encoding the iron-sulfur protein of succinate dehydrogenase from several species. *Proc. Natl. Acad. Sci.* USA, 86: 1934-1938
- Gupta, S.B., Thakur, M.P., Tedia, K., Singh, K.A., Bachkaiya, K.K. and Thakur, K. 2002. Studies on local isolates of *Trichoderma viride* and their relationship with wilt/root rot causing fungi of chick pea (*Cicer arietinum L.*). *J. Mycol. Pl. Pathol.* 32: 404
- Ham, K.S., Kauffmann, S., Albersheim, P., Darvill, A.G. 1991. Host-pathogen interactions. A soybean pathogenesis-related protein with β-1, 3-glucanase activity releases phytoalexin elicitor-active heat stable fragments from fungal walls. *Mol. Pl. Microbe Interaction* 4: 545–552
- Hammand-koshak, K. E., Staskawzi, B. and Jones, J. D. 1995. Functional expression of a fungal avirulence gene from a modified potato virus X genome. *Mol. Pl. Microbe Interaction* 8:181-185
- Hanahan, D. 1983. Studies on transformation of *Escherichia coli* with plasmids. J. Mol. Biol. 166: 557-580
- Hanselle, P. and Barz, M. B. 2001. Molecular characterization of endochitinase gene from chickpea infected with *Ascochyta rabiei*. *Pl. Sci.* 160: 87-95
- Hanson, L.E. and Howel, C.R. 2004. Biocontrol efficacy and other characteristics of protoplast fusants between *Trichoderma koningii* and *T. virens. Mycol. Res.* 106: 321–328

- Hardar, Y.I., Chet, I. and Henis, Y. 1979. Biological control of *Rhizoctonia solani* damping off with what bran culture of *Trichoderma harzianum*. *Phytopathology* 69: 64-68
- Harold, F., and Caldwell, J. 1990. Tips and currents: electrobiology of Aprical growth. In: Health I (ed.), *Tip growth in plant and fungal cells*. Academic Press, San Diego, California. p. 59–90
- Harman, G. E. 2000. Myths and dogmas of biocontrol: Changes in perceptions derived from research on *Trichoderma harzianum* T- 22. *Pl. Dis.* 84:377-393
- Harman, G.E., Howel, C.R., Viterbo, A., Chet, I. and Lorito, M. 2004. *Trichoderma* species–opportunistic, avirulent plant symbionts. *Nat. Rev. Microbiol.* 1: 43 –56
- Hayes, C. K., Pietro, A., Woo, S.L., Lorito, M. and Harman, G.E. 1994. Characterization of the gene encoding endoglucanase in *Trichoderma*. *Gene* 138: 143-148
- Hazarika, P.K. and Das, K.K. 1998. Biological management of root rot of French bean (*Phaseolus vulgaris* L.) caused by *Rhizoctonia solani*. *Pl. Dis. Res.* 13: 101-105
- Helleboid, S., Chapman, A., Hendricks, T., Inze, D., Vasseur, J. and Hilbert, J. L. 2000. Cloning of β-1, 3-glucanases expressed during *Cichorium* somatic embryogenesis. *Pl. Mol. Biol.* 42: 377–386

- Henrissat, B. and Bairoch, A. 1996. New families in the classification of glycosyl hydrolases based on aminoacid sequence similarities. *Biochem. J.* 293: 781-788
- Hermosa, M.R., Keck, E., Chamorro, I., Rubio, B., Sanz, L., Vizcaino, J.A., Grondona, I. and Monte, E., 2000. Genetic diversity shown in *Trichoderma* biocontrol isolates. *Mycol. Res.* 108: 897–906
- *Heyn, A.N.J. 1969. Glucanase activity in coleoptile of Avena. Arch. Biochem. Biophys. 132: 442–449
- *Hinton, D.M. and Pressey, R. 1980. Glucanase in fruits and vegetables. J. Am. Soc. Hort. Sci. 105: 499–502
- Hjeljored, L. and Tronsmo, A. 1998. *Trichoderma* and *Gliocladium* in biological control: an overview. In: Harman G.E. and Kubicek C.P. (eds.), *Trichoderma* and Gliocladium, Taylor and Francis, London. pp. 131–151
- Horwitz, J.P., Chua, J., Curby, R.J., Tomson, A.J. and Fisher, B.E. 1964. Substrates for cytochemical demonstration of enzyme activity. J. Med. Chem. 7: 574-576
- Hornby, D. 1990. Biological control of soil borne plant pathogens. CAB International. 479p.

- Howell, C.R. 2003. Mechanisms employed by *Trichoderma* species in the biological control of plant diseases: the history and evolution of current concepts. *Pl. Dis.* 87: 4–10
- Hu, G. 1993. DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3' end of a DNA fragment. *DNA Cell Biol*. 12: 763–770
- Ignatius, S.M.J. and Chopra, R.K. 1994. Effects of fungal infection and wounding on the expression of chitinase and β-1, 3-glucanases in near-isogenic lines of barley. *Pl. Physiol.* 90: 584–592
- Inbar, J. and Chet, I. 1997. The role of recognition in the induction of specific chitinases during mycoparasitism by *Trichoderma hamatum*. *Microbiology* 141: 2823–2829
- Innis, M. and Gelfard, D. 1990. *PCR protocol: A guide to methods and applications*. Academic press, San Diego 134p.
- Inoue, H., Nojima, H. and Okayama, H. 1990. High efficiency transformational of *Escherichia coli* with plasmids. *Gene* 96: 23-28
- Jach, G., Gornhardt, J., Mundy, J., Logemann, E., Pinsdorf, R., Leah, J., Schell, J and Maas, C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. *Plant* 8: 97–109

- Jayaraj, J. and Ramabadran, R. 1998. Effect of certain nitrogenous sources on the *in vitro* growth, sporulation and production of antifungal substances by *T. harzianum. J. Mycol. Pl. Pathol.* 28: 23-25
- Jabekumar, R.S., Anandaraj, M. and Sarma, Y.R. 2001. Compatibility of phorate and chlorpyriphos with *Trichoderma harzianum* Rifai applied for integrated disease management in black pepper (*Piper nigrum* L.). J. Spices Arom. Crops 9: 111-115
- Jung, H.W. and Hwang B.K. 2000. Pepper gene encoding a basic β-1, 3-glucanase is differentially expressed in pepper tissues upon pathogen infection and ethephon or methyl jasmonate treatment. *Pl. Sci.* 159: 97–106
- Kaku, H., Shibuya, N., Xu, P.L., Aryan, A.P. and Fincher, G.B. 1997.
 Nacetylchitooligosaccharides elicit expression of a single (1,3)-β-glucanase gene insuspension-cultured cells from barley (*Hordeum vulgare*). *Pl. Physiol.* 100: 111–118
- Kaminsuyi, S., Garrill, A and Heath, B. 1992. The relationship between turgor and tip growth in *Saprolegnia ferax*: turgor is necessary, but not sufficient to explain apical extension rates. *Exp. Mycol.* 16:64–75
- Kauffmann, S., Legrand, M., Geoffroy, P. and Fritig, B. 1987. Biological function of pathogenesis-related proteins: four PR proteins of tobacco have 1,3-βglucanase activity. *EMBO J. Biochem.* 6: 3209–3212
- Kauss, H. 1987. Some aspects of calcium-dependent regulation in plant metabolism.*A. Rev. Pl. Physiol.* 38: 47–72

- Kauss, H. 1992. Callose and callose synthase. *Molecular Plant Pathology A Practical Approach*. Taylor and Francis Ltd., London. pp1–8
- Keen, N. T. and Yoshikawa, M. 1983. β-1, 3-Endoglucanase from soybean releases elicitoractive carbohydrates from fungal cell walls. *Pl. Physiol.* 7: 460–465
- Kim, H.K. and Row, M.J. 1987. Isolation, identification and evaluation of biocontrol potential of rhizosphere antagonists against *Rhizoctonia solani*. Korean J. Pl. Prob. 26: 87
- Kim, D.J., Baek, J.M., Uribe, P., Kenerley, C.M. and Cook, D.R. 2002. Cloning and characterization of multiple glycosyl hydrolase genes from *Trichoderma virens. Curr. Genet.* 40: 374–384
- Kim, Y. J. and Hwang, B. K. 1997. Isolation of a basic 34 kilo Dalton beta-1,3glucanase with inhibitory activity against *Phytophthora capsici* from pepper stems. *Physiol. Mol. Pl. Pathol.* 50:103–115
- Klarzynski, O., Plesse, B., Joubert, J-M., Yvin, J-C., Kopp, M., Kloareg, B. and Fritig, B. 2000. Linear β-1,3-glucans are elicitors of defense responses in tobacco. *Pl. Physiol.* 124: 1027–1037
- Klein, D. and Eveleigh, D.E. 1998. Ecology of *Trichoderma*. In: Kubicek C.P. and Harman G.E. (eds.), *Trichoderma and Gliocladium*. *Basic Biology*, *Taxonomy and Genetics*, Taylor and Francis Ltd., London, pp57-74

- Knoche., M. and Kephart, T. 1999. A simple ligation step improves the efficiency of T-overhang vectors. *Trends Genet.* 10: 225-226
- Kotake, T., Nakagawa N., Takeda, K. and Sakurai, M. 1997. Purification and characterization of wall-bound exo-1,3-β -D-glucanase from barley (Hordeum vulgare L.) seedlings. Pl. Cell Physiol. 38: 194–200
- Krabel, D., Eschrich, W., Wirth, S. and Wolf, G. 1993. Callase-(1,3-β-D-glucanase) activity during spring reactivation in deciduous trees. *Pl. Sci.* 93: 19–23
- Kredier, L., Antal, Z., Doczi, I., Manczinger, L., Kevei, F. and Nagy, E., 2003. Clinical importance of the genus *Trichoderma*, A review. *Acta Microbiol. Immunol. Hung.* 50:105-17
- Kubicek, C.P. and Harman, G.E. 1998. *Trichoderma* and *Gliocladium*. *Basic Biology, Taxonomy and Genetics*. Taylor and Francis Ltd., London, 345p.
- Kubicek, C.P. and Penttila, M.E., 1998. Regulation of Production of Plant Polysaccharide Degrading Enzymes by *Trichoderma*. In: Harman G.E. and Kubicek C.P. (eds.), *Trichoderma and Gliocladium*. *Enzymes, Biological Control and Commercial Applications*. Taylor and Francis Ltd., London, p.49-71
- Kwok, S., Chang, S.Y., Sninsky, J. J., and Wang, A. 1994. A guide to the design and use of mismatched and degenerate primers. *PCR Methods Appl.* 3:39-47

- Kyte, J. and Doolittle, R.F. 1987. A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.* 157: 105–132
- Lawyer, F.C., Liu, X. and Gorovsky, M. A. 1987. High-level expression, purification, and enzymatic characterization of full-length *Thermus* aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. *PCR Methods Appl.* 2: 275–287
- Lee, C.C., Wu, X., Gibbs, R.A., Coot, R.G., Muzey, D.M. and Caskey, C.T. 1988. Generation of cDNA probes directed by amino acid sequence: cloning of cerate oxidase. *Science* 239: 1288-1291
- Legrand, M., Kauffmann, S., Pierrette, G., Fritig, B. 1987. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. *Proc. Natl. Acad. Sci.* 84: 6750–6754
- Leubner-Metzger, G. and Meins, F.Jr. 1999. Functions and regulation of plant β-1,
 3-glucanases (PR-2). In: Datta S.K. and Mathukrishnan S. (eds.),
 Pathogenesis-Related proteins in Plants, CRC Press, Boca Raton. pp. 49–76
- Li, W.L., Faris, J.D., Muthukrishnan, S., Liu, D.J., Chen, P.D. and Gill, B.S. 2001.
 Isolation and characterization of novel cDNA clones of acidic chitinases and β-1,3-glucanases from wheat spikes infected by *Fusarium graminearum*. *Theor. Appl. Genet.* 102: 353–362
- Limon, M.C., Pintor-Toro, J.A. and Benitez, T. 1999. Increased antifungal activity of *Trichoderma harzianum* transformants that overexpress a 33-kDa chitinase. *Phytopathology* 89: 254–261

- Lindsey, D.L. and Baker, R. 1967. Growth of beans, tomatoes and corn under genotobiotic conditions. *Phytopathology* 57: 960
- Linthorst, H. J. M. 1991. Pathogenesis-related proteins of plants. Crit. Rev. Pl. Sci. 10: 123–150
- Liu, B.D., Yang, Q., Zhou, Q., Song, J.Z., Chen, D.F. and Liu, H. 2004. Cloning and expression of endo-beta-glucanase III cDNA gene from *Trichoderma viride* AS3.3711. *Appl. Environ. Microbiol.* 69(2): 555-563
- Liu, H. and Rashidbaigi, A. 1990. Comparison of various competent cell preparation methods for high efficiency DNA transformation. *Biotechiques* 8: 21-25
- Liu, L., Kloepper, J.W. and Tucun, S. 1995. Induction of systemic resistance in cucumber against *Fusarium* wilt by plant growth promoting rhizobacteria. *Phytopathology* 85: 695-698
- Liu, S. and Baker, R. 1980. Mechanism of biological control in soils suppressive to *Rhizoctonia solani*. *Phytopathology* 70: 404-412
- Liu, W., May, G.S., Lionakis, M.S., Lewis, R.E. and Kontoyiannis, D.P., 2004. Extra copies of the *Aspergillus fumigatus* squalene epoxidase gene confer resistance to terbinaWne: genetic approach to studying gene dose dependent resistance to antifungals in *A. fumigatus. Antimicrob. Agents Chemother.* 48: 2490–2496

- Lora, J.M., De la Cruz, J., Llobell, A., Benitez, T. and Pintor-Toro, J. A. 1995. Molecular characterization and heterologous expression of an endo-beta-1,6glucanase gene from the mycoparasitic fungus *Trichoderma harzianum*. *Mol. Gen. Genet.* 247 (5): 639-645
- Lorito, M., Harman, G. E., Hayes, C. K., Broadway, R. M., Troncoso, A., Woo, S. L. and di Pietro, A. 1993. Chitynolytic enzymes produced by *Trichoderma harzianum*: antifungal activity of purified endochitinase and chitobiase. *Phytopathology* 83:302-307
- Lorito, M., Hayes, C.K., di Pietro, A., Woo, S.L and Harman, G.E. 1994. Purification, characterizationa and synergistic activity of a glucan 1,3-βglucosidase and Nacetyl- β-glucosaminidase from *Trichoderma harzianum*. *Phytopathology* 84:398-405
- Lorito, M., Farkas, V., Rebuffat, S., Bodo, B. and Kubieck, C. Y. 1996. Cell wall synthesis is a major target of mycoparasitic antagonism by *Trichoderma harzianum*. J. Bacteriol. 178:6382-6385
- Lorito, M., Woo., S.L., García Fernández, I., Colucci, G., Harman, G.E., Pintor-Toro, J.A., Filippone, E., Muccifora, S., Lawrence, C.B., Zoina, A., Tuzun, S. and Scala, F. 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. *Proc. Natl. Acad. Sci.* 95:7860-7865
- Lotan, M. and Fluhr, P. 1990. The role of *Trichoderma* xylase in the biocontrol of plant diseases. *J. Pl. Pathol.* 102: 177-185

- Lozovaya, V.V., Waranyuwat, A., Widholm, J.M. 1998. β-1,3-glucanase and resistance to *Aspergillus flavus* infection in maize. *Crop Sci.* 38: 1255–1260
- Lusso, M. and Kuc, J. 1995. Evidence for transcriptional regulation of β-1, 3glucanase as it relates to induced systemic resistance of tobacco to blue mold. *Mol. Pl. Microbe Interaction* 8: 473–475
- Mahanty, B., Roy, J.K., Dasyapta, B. and Sen, C. 2000. Relative efficacy of promising fungicides and biocontrol agent *Trichoderma* in the management of foot rot of betel vine. *Phytopathology* 131: 453-458
- *Majezak, N. 1983. Microbial antagonism to Phytophthora. In: Erwin D.C., Bartnick G. and Tsao P.H. (eds.), Phytophthora – Its Biology, Taxonomy, Ecology and Pathology, American Phytopathological Society, St. Paul, Minnesota, pp.197-218
- Mandel, M. and Higa, A. 1970. Calcium dependent bacteriophage DNA infection. J. Mol. Biol. 53: 159-162
- Martin, F. N. 2003. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. A. Rev. Phytopathol. 41:325–350
- *Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M., Cullen, D., Danchin, E.G., Grigoriev, I.V., Harris, P., Jackson, M., Kubicek, C.P., Han, C.S., Ho, I., Larrondo, L.F., de Leon, A.L., Magnuson, J.K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A.A., Schmoll, M., Terry,

A., Thayer, N., Westerholm-Parvinen, A., Schoch, C.L., Yao, J., Barbote, R., Nelson, M.A., Detter, C., Bruce, D., Kuske, C.R., Xie, G., Richardson, P., Rokhsar, D.S., Lucas, S.M., Rubin, E.M., Dunn-Coleman, N., Ward, M., Brettin, T.S. 2008. Genome sequencing and analysis of the biomass-degrading fungus *Trichoderma reesei* (syn. *Hypocrea jecorina*). *Nat. Biotechnol.* 10:1038-1403

- Masuda, Y. and Wada, S. 1967. Effects of β-1, 3-glucanase on the elongation growth of oat coleoptile. *Bot. Mag.* 80:100–102
- Mathew, K.A. and Gupta, S.K. 1998. Biological control of root rot of French bean caused by *Rhizoctonia solani*. J. Mycol. Pl. Pathol. 28: 202-205
- Mathew, S. K. 2006. Annual report on biocontrol consortium for the management of bacterial wilt of chili and *Phytophthora* rot of black pepper and vanilla. Annual Report, KCSTE Project, Kerala Agriculture University, Thrissur 23p.
- Mathre, D. E., Cook, R. J. and Callan, N. W. 1999. From discovery to usetraversing the world of commercializing biocontrol agents for plant disease control. *Pl. Dis.* 83: 972–983
- Mauch, F. and Staehelin, L. A.1989. Functional implication of the subcellular localization of ethylene-induced chitinase and β-1, 3-glucanase in bean leaves. *Pl. Cell* 1: 447–457
- Meikle, P.J., Bonig, I., Hoogenraad, N.J., Clarke, A.E. and Stone, B.A. 1991. The location of (1-3)-β-glucans in the walls of pollen tubes of *Nicotiana alata* using a (1,3)-β-glucanspecific monoclonal antibody. *Planta* 185: 1–8

- Meins, F., J. M. Neuhaus, C. Sperisen, and J. Ryals. 1992. *Genes involved in plant defense*. Springer-Verlag, Vienna, Austria, 282p.
- Migheli, Q., Gonzalez-Candelas, L., Dealessi, L., Camponogara, A. and Ramon-Vidal, D. 1998. Transformants of *Trichoderma longibrachiatum* overexpressing the beta-1,4-endoglucanase gene egl1 show enhanced biocontrol of *Pythium ultimum* on cucumber. *Phytopathology* 88: 673–677
- Mohammadzadeh, R., Zamani, M. R. and Motallebi, M. 2007. *Hypocrea virens* endo-beta 1,3-glucanase (bgnI) gene, complete cds. <u>http://www.ncbi.nlm.</u> <u>nih.gov/entrez/viewer [12</u> Jan 2008]
- Money, N. and F. Harold. 1993. Two water molds can grow without measurable turgor pressure. *Planta* 190: 426–430
- Montero, M., Sanz, L., Rey, M., Monte, E. and Llobell, A. 2006. BGN16.3, a novel acidic β-1,6-glucanase from mycoparasitic fungus *Trichoderma harzianum* CECT 2413. *FEBS J.* 272: 3441–3448
- Montero, V. N. and Ulhoa, C. J. 2006. Biochemical Characterization of a β-1,3-Glucanase from *Trichoderma koningii* Induced by Cell Wall of *Rhizoctonia solani*. *Curr. Microbiol*. 52: 92–96
- Montero, M., Sanz, L., Rey, M., Liobell, A. and Monte, E. 2007. Cloning and characterization of bgn16·3, coding for a β-1,6-glucanase expressed during *Trichoderma harzianum* mycoparasitism. J. App. Microbiol. 103 (4): 1291-1300

- Mora, A. A. and Earle, E. D. 2001. Resistance to Alternaria brassicicola in transgenic broccoli expressing Tricoderma harzianum endochitinase gene. Mol. Breed. 8(1): 1-9
- Morohashi, Y. and Matsushima, H. 2000. Development of β-1, 3-glucanase activity in germinated tomato seeds. *J. Exp. Bot.* 51: 1381–1387.
- Muench-Garthoff, S., Neuhaus, J-M., Boller, T., Kemmerling, B., Kogel, K-H. 1997. Expression of β-1, 3-glucanase and chitinase in healthy, stem-rustaffected and elicitor treated near-isogenic wheat lines showing Sr5- or Sr24specified race-specific rust resistance. Planta 201: 235–244
- Mukhopadhyay, A.N. and Mukherjee, P.K. 1996. Exploitation of *Gliocladium virens* and *T. harzianum* for biological seed treatment against soil borne disease. *Indian J. Mycol. Pl. Pathol.* 25: 124
- Mullis, K., Faloona, F. A., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harb Symp. *Quant. Biol.* 51: 263-273
- Mullis, K.B. and Faloona, F.A. 1987. Specific synthesis of DNA *in vitro* via a polymerase catalysed chain reaction. *Methods Enzymol.* 155: 335-350
- Naik, M.K. and Sen, B. 1992. Biocontrol of plant diseases caused by *Fusarium* species. In: Mukherji K.G., Tewari J.P., Arora D.K. and Saxena G. (eds.), *Recent Developments in Biocontrol of Plant Diseases*. Aditya Books Pvt. Ltd., New Delhi, India, pp.37-51

- Nanberg, J.H., Wright, D.K., Cole, G.E., Petrovskis, E.A., Post, L.E., Compton, T. and Gilbert, J.H. 1989. Identification of the thymidine kinase gene of feline herpesvirus: use of degenerate origonucleotides in the polymerase chain reaction to isolate herpervirus gene homologs. J. Virol. 63: 34240-34249
- Natarajan, K. and Manibhushanrao, K. 1996. Fungi as biocontrol agents against fungal plant pathogens. In: Manibhushanro K. and Mahadevan A. (eds.), *Current Trend in Life Sciences: Recent Developments in Biocontrol of Plant Pathogens*. Today and Tomorrows Printers and Publishers, New Delhi, India, pp.83-91
- Neale, A. D., Wahleithner, J. A., Lund, M., Bonnett, H. T., Kelly, A., Meeks-Wagner, D. R., Peacock, W. J., Denis, E. S. 1990. Chitinase, β-1, 3glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. *Pl. Cell* 2: 673–684
- Nelson, E. E. 1982. Occurrence of *Trichoderma* in a Douglas-fir soil. *Mycologia* 74:280-284
- Neuhaus, J. M. 1999. Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta S.K. and Muthukrishnan S. (eds). *Pathogenesis-Related Proteins in Plant*. CRC Press, Boca Raton, Florida. pp77–105
- Newton, G. and Graham, P. 1994. Use of PCRs in Plant Molecular Biology. *Science*. 301: 1253-1262

Nierman, W., Worman, J., Pain, A., Anderson, M. J., Arroya, J., Hall, N.
2005. Genomic sequence of the pathogenic and allergenic filamentous fungus *Aspergillus fumigatus. Nature* 438 (7071): 1151-1156

- Niki, T., Mitsuhara, I., Seo S., Ohtsubo, N. and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. *Pl. Cell Physiol.* 39: 500–507
- Nobe, R., Sakakibara, Y., Ogawa, K. and Suiko, M. 2004. Cloning and expression of a novel *Trichoderma viride* laminarinase AI gene (lamAI). *Biosci. Biotechnol. Biochem.* 68(10):2111-2119
- Noronha, E. F. and Ulhoa, C. J. 2000. Characterization of a 29-kDa beta-1, 3glucanase from *Trichoderma harzianum*. *FEMS Microbiol*. *Lett*. 183 (1):119-123
- Noronha, E. F., Kipnis, A., Junqueira-Kipnis, A. P. and Ulhoa, C. J. 2000. Regulation of 36-kDa beta-1,3-glucanase synthesis in *Trichoderma harzianum. FEMS Microbiol. Lett.* 188 (1):19-22
- Oerke, E.C. and Dehne, H.W. 2004. Safeguarding production—losses in major crops and the role of crop protection. *Crop Prot.* 23: 275–285
- Old, R.W. and Primrose, S.B. 1994. Priciples of Gene manipulation: An Introduction to Genetic engineering. Oxford Blackwell Scientific Publications, London, 474p

- Ori, N., Sessa, G., Lotan, T., Himmelhoch, S., Fluhr, R. 1990. A major stylar matrix polypeptide (Sp41) is a member of the pathogenesis-related proteins superclass. *EMBO J.* 9: 3429–3436
- Pan, S. Q., Ye, X.S. and Kue J.1989. Direct detection of b-1,3-glucanase isoenzymes on polyacrylamide electrophoresis and isoelectrofocusing gels. *Anal. Biochem.* 182:136–140
- Pan, S.Q.; Ye, X.S. and Kuc, J. 1991. A technique for detection of chitinase, β-1,3glucanase and protein patterns after a single separation using polyacrylamide gelelectrophoresis and isoelectrofocusing gels. *Phytopathology* 81:970-974
- Papavizas, G.C. 1985. *Trichoderma* and *Gliocladium*: biology and potential for biological control. *A. Rev. Phytopathol.* 23: 23–54
- Parab, G. V. 2000. Evaluation of pathogenesis related proteins in relation to *Phytophthora* foot rot of black pepper. M. Sc. (Ag) thesis. Kerala Agriculture University, Thrissur 100p.
- Pavlov, A.R., Pavlora, N.V., Kozyavkin, S.A. and Slesakev, A.I. 2004. Recent developments in the optimization of thermostable DNA polymerases for efficient applications. *Trends Biotechnol.* 22: 253-260
- Peumans, W.J., Barre, A., Derycke, V., Rouge, P., Zhang, W., May, G.D., Delcour, J.A., Van Leuven, F. and Van Damme, E.J. 2000. Purification, characterization and structural analysis of an abundant β-1, 3-glucanase from banana fruit. *Eur. J. Biochem.* 267: 1188–1195

- Payne, G., Ward, T., Gaffney, P. A., Goy, M., Moyer, A., Harper, F., Meins, J. and Ryals, J. 1990. Evidence for a third structural class of beta -1,3- glucanase in tobacco. *Pl. Mol. Biol.* 15:797–808
- *Peberdy, J. F. 1990. Fungal cell wall—a review. In: Kuhn A. P. J., Trinci M. J., Jung M. W., Goosey M. and Copping L. G. (ed.), *Biochemistry of cell walls and membranes in fungi*, Springer-Verlag, Heidelberg, Germany. pp. 5–24
- Perez-Gonzalez, J. A. 2006. *T. longibrachiatum* egll gene for endo-1,4-betaglucanase. <u>http://www.ncbi.nlm.nih.gov/entrez/viewer [12</u> Jan 2008]
- *Persoon, C.H., 1794. Disposito Methodica Fungorum in Classes, Ordines, Familias Genera Neues Magazin fur Botanik. Ziegler und Sohne, Zurich, 128pp
- *Phaff, L., Baliance, G. M., Moyer, A., Harper, F., Meins, J. and Mannels, V. 1979. β-glucanases: structure and classification. *Phytochemistry* 18: 1734-1739
- Philip, S., Joseph, A., Kumar, A., Jacob, C., Kothandaraman, R. 2001. Detection of β-1, 3-glucanase isoforms against *Corynespora* leaf disease of rubber (*Hevea brasiliensis*). *Indian J. Nat. Rubber Res.* 14: 1–6
- Pinstrup-Andersen, P. 2000. The future world food situation and the role of plant diseases. *Can. J. Pl. Pathol.* 22: 321–331
- Pitson, S.M., Seviour, R.J. and McDougall, B.M. 1993. Non cellulolytic fungal βglucanases: their physiology and regulation. *Enzyme Microbial Technol*. 15:178-192

- Pozo, M.J., Baek, J.M., Garcia, J.M. and Kenerley, C.M. 2004. Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent *Trichoderma virens. Fungal Genet. Biol.* 41: 336–348
- Rabindra, R. J. 2006. Intensive efforts taken up. In: Ram N. (ed.), *Survey of Indian Agriculture*. National Press, Chennai. pp 195-198
- Rajan, P.P., Sarma, Y.R. and Anandaraj, M. 2002. Management of foot rot disease of black pepper with *Trichoderma* spp. *Indian Phytopathol*. 55: 34-38
- Ramkumar, R. and Chavan, P. 2004. Revival of agricultural credit: An explanation. *J. Agric. Econ.* 23: 45-49
- Rapp, P. 1992. 1,3-b-Glucanase, 1,6-b-glucanase and b-glucosidase activities of *Sclerotium glucanicum*: synthesis and properties. *J. Gen. Microbiol*. 135:2847–2858
- Roggen, H.P and Stanley, R.G. 1969. Cell-wall-hydrolyzing enzymes in wall formation as measured by pollen-tube extension. *Planta* 84: 295–303
- Roulin, S. and Buchala, A.J. 1995. The induction of 1, 3-β-glucanases and other enzymes in groundnut leaves infected with *Cercospora arachidicola*. *Physiol. Mol. Pl. Pathol.* 46: 471–489
- Rychlik, N., Barner, F., Tindall, J. and Kunker, M. 1990. Polymerase chain reaction. *Nucleic Acid Res.* 12: 2535-2541

- Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis,K.B. and Erlich, H.A. 1988. Primer directed enzymatic amplification ofDNA with a thermostable DNA polymerase. *Science* 239: 487-491
- Saiki, R., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A. and Arnheim, N. 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. J. Gen. Microbiol. 27: 6008-6013
- Saju, K.A., Anandraj, M. And Sarma, Y.R. 2002. Evaluation of *Trichoderma* spp. For controlling foot rot of black pepper caused by *Phytophthora capsici*. *Indian Phytopathol.* 55: 373
- Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. Second ed. Cold Spring Harbor Laboratory Press, New York, USA, 1322p.
- Samuels, G. J. 1996. *Trichoderma*: A review of biology and systematics of the genus. *Mycol. Res.* 100:923-935
- Sanz, L., Montero, M., Grondona, I., Vizcaino, J.A., Hermosa, R., Llobell, A. and Monte, E. 2004. Cell wall degrading isoenzyme profiles of *Trichoderma* biocontrol strains have correlation with rDNA taxonomical species. *Curr. Genet.* 46: 277–286

- Sarma, Y.R., Anandaraj, M. and Rajan, P.P. 1994. *Phytophthora* A threat to black pepper, present status and future strategies of disease management. *Spice India* 7: 10-13
- Sarma Y.R. 2003. Global scenario of disease and pest management in black pepper. *Int. pepper news bull.* pp69–74
- Schaeffer, H. J., Leykan, J. and J. D. Walton. 1994. Cloning and targeted gene disruption of *EXG1*, encoding exo-b-1,3-glucanase, in the phyt phytopathogenic fungus *Cochliobolus carbonum*. *Appl. Environ. Microbiol*. 60:594–598
- Shaikh, Z. J., Bhat, S. and Kuruvunashetti, M. S. 2007. Cloning and characterization of endoglucanase genes from *Trichoderma* spp. <u>http://www.ncbi.nlm.nih.gov</u> / entrez/viewer [12 Jan 2008]
- Sharma, S.D., Mishra, A., Pandey, R.N. and Patel, S.J. 2001. Sensitivity of *T. harzianum* to fungicides. *J. Mycol. Pl. Pathol.* 31: 251-153
- Shen, H., Sakakibara, Y., Ogawa, K. and Suiko, M. 1991. Cell wall degrading enzymes secreted by *Trichoderma*. *Phytopathology* 131: 68-73
- Shi, Y. 2005. Isolation, characterization and expression analysis of β-1,3-glucanase genes from strawberry plants. Ph.D. (Biotech.) thesis. North Western University, China pp.124

- Singh, R.S., Singh, H.V., Singh, Y. and Jindal, A. 1997. Efficacy of *Trichoderma* based biofungicide against Rhizoctonia solani causing black scurf of potato. *Proc. Third agric. Sci. Congr.*, Punjab Agricultural University, Ludhiana, pp.300
- Sivan, A. and Chet, I. 1989. Degradation of fungal cell walls by lytic enzymes of *Trichoderma harzianum. J. Gen. Microbiol.* 135: 675-682
- Sivasithamparam, K. and Ghisalberti, E.L., 1998. Secondary metabolism in *Trichoderma* and *Gliocladium*. In: Kubicek C.P. and Harman G.E. (eds.), *Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics*. Taylor and Francis Ltd., London, pp.139-191
- Snahe, B., Humble, S.J. and Lockwood, J.L. 1977. Parasitism of oosperes of *Phytophthora megasperma* var. *Sojae, P. cactorum, Pythium* sp. and *Aphanomyces euteienes* in soil by oomycetes, chitridiomycetes, hyphomycetes, actinomycetes and bacteria. *Phytopathology* 67: 622-668
- Stahmann, K. P., K. I. Schimz, and H. Sahm. 1992. Purification and characterization of four extracellular 1,3-b-glucanases of *Botrytis cinerea*. J. Gen. Microbiol. 139: 2833–2840
- Steyaert, J. M., Stewart, A., Jaspers, M. V., Carpenter, M. and Ridgway, H.J. 2004. Co-expression of two genes, a chitinase (chit42) and proteinase (prb1), implicated in mycoparasitism by *Trichoderma hamatum*. *Mycologia* 96: 1245–1252

- Stintzi, A.,Heitz, V., Prasad, S., Wiedemann-Merdioglu, S., Kauffmann, P., Geoffroy, M., Legrand, M. and Fritig, B. 1993. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. *Biochemistry* 75:687– 706
- * Suggs, S.V., Hirose, T., Myake, E.H. and Wallale, R.B. 1989. Using purified genes. ICN-UCLA Symp. *Mol. Cell Biol.* 23: 683-693
- Takeuchi, Y., Yoshikawa, M., Takeba, G., Tanaka, K., Shibata, D. and Horino, O. 1990. Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor releasing factor, β-1, 3-endoglucanase, in soybean. *Pl. Physiol.* 93: 673–682
- Tangarore, B., Royer, J. C. and Nakas, J. P. 1989. Purification and characterization of an endo-1,3-b-glucanase from *Trichoderma longibrachiatum*. *Appl. Environ. Microbiol.* 55:177–184
- Tharne, U., Poulsen, S.B., Nirenberg, H.I., Lieckfeldt, E., 2001. Identification of *Trichoderma* strains by image analysis of HPLC chromatograms. *FEMS Microbiol. Lett.* 203:249-255
- Thomas, J., Bhai, S.R., Vijayan, A.K. and Dhanapal, K. 1996. *Trichoderma* A potential bioagent for control of soil borne diseases of small cardamom (*Elettaria cardamomum* Maton). In: Rao K.M. and Mahadevan K. (eds.), *Current Trend in Life Science*, Today and Tomorrow's Printers and Publishers, New Delhi, pp.43-52

- Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22: 4673-4680
- Uknes, S., Mauch-Manl, B., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. 1992. Acquired resistance in *Arabidopsis. Pl. Cell* 4: 645–656
- Ullmann, A., Jacob, F. and Monod, J. 1967. Characterization by *in vitro* complementation of a peptide corresponding to an operator-proximal segment of the β-galactosidase structural gene of *Eschersia coli*. *J. Mol. Biol*. 24: 339-345
- Van Kan, J.A.L., Joosten, M.H.A.J. and Wagemakers, C. A. M. 1992. Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of *Cladosporium fulvum*. *Pl. Mol. Biol.* 20: 513–527
- Van Loon, L. C. 1985. Pathogenesis-related proteins. Pl. Mol. Biol. 116:111-116
- Van Loon, L.C. and Van Kammen, A. 1970. Polyacrylamide disc electrophoreses of the soluble leaf proteins from *Nicotinan tabacum* var. "Samsun" and Samsun NN" II. Changes in protein constitution after infection with tobacco mosaic virus. *Virology* 40:199–206

- Van Loon, L. C. and Van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. *Physiol. Mol. Pl. Pathol.* 55: 85–97
- Varghese, J.N., Garrett, T.P.J., Colman, P.M., Chen, L., Hoj P.B. and Fincher, G.B. 1994. Three-dimensional structures of two plant b-glucan endohydrolases with distinct substrate specificities. *Proc. Natl. Acad. Sci.* 91: 2785–2789
- Vazquez-Garciduenas, S., Leal-Morales, C. A. and Herrera-Estrella, A. 1998. Analysis of the β-1,3-glucanolytic system of the biocontrol agent *Trichoderma harzianum. Appl. Environ. Microbiol.* 64:1442–1446
- Viterbo, A., Haran, S., Friesem, D., Ramot, O. and Chet, I. 2001. Antifungal activity of a novel endochitinase gene (chit36) from *Trichoderma harzianum* Rifai TM. *FEMS Microbiol. Lett.* 200: 169–174
- Vyas, R.K. and Mathur, K. 2002. Distribution of *Trichoderma* spp. in cumin rhizosphere and their potential for suppression of wilt. *Indian Phytopathol*. 55: 451-457
- Ward, E. R., Uknes, S. C., Willians, S. S., Dincher, D. L., Wiederhold, D. C., Alexander, P., Ahl-Goy, J. P., Metraux, J. and Ryals, J. A. 1991. Coordinate gene activity in response to agents that induce systematic acquired resistance. *Pl. Cell* 3:1085–1094
- Watanabe, T., N. Kasahara, K. Aida, and H. Tanaka. 1993. Three N-terminal domains of b-1,3-glucanase A1 are involved in binding to insoluble b-1,3glucan J. Bacteriol. 174:186–190

- *Weindling, R. 1932. *Trichoderma lignorum* as a parasite of other soil fungi. *Phytopathology* 22: 837-847
- Weller, D.M. 1988. Biological control of soil borne plant pathogens in the rhizosphere with bacteria. A. Rev. Phytopathol. 26: 379-407
- *Wells, H. D., Bell, D. K. and Jawaski, C. A. 1972. Efficiency of *Trichoderma* harzianum as a biocontrol agent of *Sclerotium rolfsii*. *Phytopathology* 62: 442-447
- Widden, P. and Abitbol, J.J., 1980. Seasonality of *Trichoderma* species in a spruceforest soil. *Mycologia* 72:775-784
- Wilks, A.F. 1989. Two putative protein tyrosine kinases identified by application of the polymerase chain reaction. *Proc. Nat. Acad. Sci.* USA., 86: 1063-1067
- Witkowska, D. and Maj, A. 2002. Production of lytic enzymes by *Trichoderma* spp. and their effect on the growth of phytopathogenic fungi. *Folia Microbiologica* 47: 279 – 282
- Woo, S.L., Scala, F., Ruocco, M. and Lorito, M. 2006. The molecular biology of the interactions between *Trichoderma* spp., phytopathogenic fungi, and plants. *Phytopathology* 96: 181–185

- Xu, Z., Sun, J., Liao, Y. and Li, W. 2000. Cloning of beta-1,3-1,4-glucanase in *Trichoderma reesei*. <u>http://www.ncbi.nlm.nih.gov/entrez/viewer</u> [12 Jan 2008]
- Yamaguchi, T., Nakayama, K., Hayashi, T., Tanaka, Y., Koike, S. 2002. Molecular cloning and characterization of a novel β-1,3-glucanase gene from Rice. *Biosci. Biotechnol. Biochem.* 66: 1403–1406
- Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. and Chet, I. 2001. Concomitant induction of systemic resistance to *Pseudomonas spingae* pv. *lachrymans* in cucumber by *Trichoderma asperellum* (T-203) and accumulation of phytoalexins. *Appl. Environ. Microbiol.* 69:7343–7353
- Zadoks, J.C. and Waibel, H. 2000. From pesticides to genetically modified plants: history, economics and politics. *Neth. J. Agric. Sci.* 48:125–149
- Zeilinger, S., Galhaup, C., Payer, K., Woo, S.L., Mach, R.L., Fekete, C., Lorito, M. and Kubicek, C.P. 1999. Chitinase gene expression during mycoparasitic interaction of *Trichoderma harzianum* with its host. *Fungal Genet. Biol.* 26: 131–140
- Zemanek, A., Ko, T.S., Thimmapuram, J. And Korban, S. 2002. Changes in β-1,3glucanase mRNA in peach in response to treatment with pathogen culture filtrates, wounding and other elicitors. *J. Pl. Physiol.* 159: 877-889
- Zentmyer, G. A., Gilpatrick, J. D. and Thorn, W. A. 1960. Methods of isolating *Phytophthoa cinnamomi* from soil and host tissue. *Phytopathology* 50: 87
 *Originals not seen

Annexures

ANNEXURE I

Composition of different media used in the study

1. Trichoderma Selective Medium (TSM)

MgSO ₄	-	0.20 g
K ₂ HPO ₄	-	0.90 g
NH ₄ NO ₃	-	1.00 g
KCl	-	0.15 g
Glucose	-	3.00 g
Rose Bengal	-	0.15 g
Agar	-	15 g
Water	-	11

2. Trichoderma Selective Broth (TSB)

MgSO ₄	-	0.2 g
K ₂ HPO ₄	-	0.9 g
NH ₄ NO ₃	-	1 g
KC1	-	0.15 g
Cell wall extract	-	2.0 g
(Phytophthora cap	osici)	
Water	-	11

3. Potato Dextrose Agar medium (PDA)

Potato	-	200 g
Dextrose	-	20 g
Agar	-	20 g
Water	-	11

4. Carrot agar medium

Carrot	-	200 g
Agar	-	20 g
Water	-	11

5. Carrot broth

Carrot	-	200 g
Water	-	11

ANNEXURE II

I. Reagents used for glucanase assay

1. Sodium acetate buffer (50mM and pH - 5.0)

Sodium acetate	_	0.68 g
Distilled water	-	100ml

2. Sodium hydroxide (4.5%)

NaOH	—	4.5 g
Distilled water	_	100ml

3. Dinitrosalicylic acid (DNS)

DNS	_	8.8 g
Sodium patasium tartarate	_	2.55 g
NaOH (4.5%)	_	30 ml
Distilled water	-	80 ml

4. Laminarin (4%)

Laminarin	—	40 mg
Distilled water	_	1 ml

ANNEXURE III

I. Medium used for DNA isolation

1. Minimal medium

Dextrose	monohydrate	-	20 g
$(NH_4)_2SO_4$	Ļ	-	5 g
KH ₂ PO ₄		-	15 g
CaCl ₂		-	0.3 g
MgSO ₄		-	0.3 g
FeSO ₄ .7H	$_{2}O$	-	5 mg
ZnSO ₄ .7H	[₂ O	-	1.4 mg
CoCl ₂		-	3.7 mg
MnSO ₄ .7	H ₂ O	-	1.6 mg
Distilled	Water	-	11

I1. Reagent used for DNA isolation

1M Tris Cl (pH -8.0)	-	1ml
Distilled water	-	100 ml

2. Extraction buffer

200mM Tris HCl	_	3.152 g
250mM NaCl	-	1.461 g
25mM EDTA	-	0.930 g
SDS (0.5%)	-	0.5 g
Distilled water	-	100 ml

3. TE buffer

(Tris Cl- 50mM; EDTA - 20mM)

Tris Cl05 M (pH -8.0)	-	0.394 g
.02M EDTA (pH -8.0)	-	0.372 g
Distilled water	-	100 ml

4. RNase stock

RNase	-	10 mg
Distilled water	-	1 ml

Stock was prepared by dissolving 10 mg RNase in 1 ml water and was stored under refrigerated conditions at -20° C.

5. Phenol : Chloroform : Isoamylalcohol (25:24:1, v/v/v)

To 25 parts of Tris saturated Phenol, 24 parts of chloroform and 1 part of isoamylalcohol were added and mixed properly. The mixture was stored in refrigerator before use.

6.	5M Ammonium acetate	(pH 7.4)	
	Ammonium acetate	-	57.75 g
	Distilled water	-	100 ml

7. 3M sodium acetate

Sodium acetate	-	20.412 g
Distilled water	-	50 ml

- 8. Chilled isopropanol
- 9. 70% ethylacohol

To 70 parts of absolute ethanol, 30 parts of double distilled water was added.

ANNEXURE IV

Buffers and dyes used in gel electrophoresis

1. 6x Loading/ tracking dye

Bromophenol blue	-	0.25%
Xylene cyanol	-	0.25%
Glycerol	-	30%

The dye was prepared and kept in fridge at 4^oC

2. Ethidium bromide (intercalating dye)

The dye was prepared as a stock solution of 10 mg/ ml in water and was stored at room temperature in a dark bottle.

3. 50x TAE buffer (pH 8.0)

Tris base	-	242.0 g
Glacial acetic acid	-	57.1 ml
0.5M EDTA (pH 8.0)	-	100 ml
Distilled water	-	1000 ml

The solution was prepared and stored at room temperature.

ANNEXURE V

I. Media used for competent cell preparation

1. Luria Bertani (LB) broth

Tryptone	-	10 g
Yeast Extract	-	5 g
NaCl	-	5 g
pH adjusted to	-	7± 0.2
Distilled water	-	11

2. Luria Bertani Agar (LBA) medium

Tryptone	-	10 g
Yeast Extract	-	5 g
NaCl	-	5 g
Agar	-	20g
pH adjusted to	-	7 ± 0.2
Distilled water	-	11

II. Reagent used for competent cell preparation

1. Solution A

Ice- cold 100mM CaCl₂

III. Reagents used for plasmid isolation

1. Solution I (Resuspension buffer)

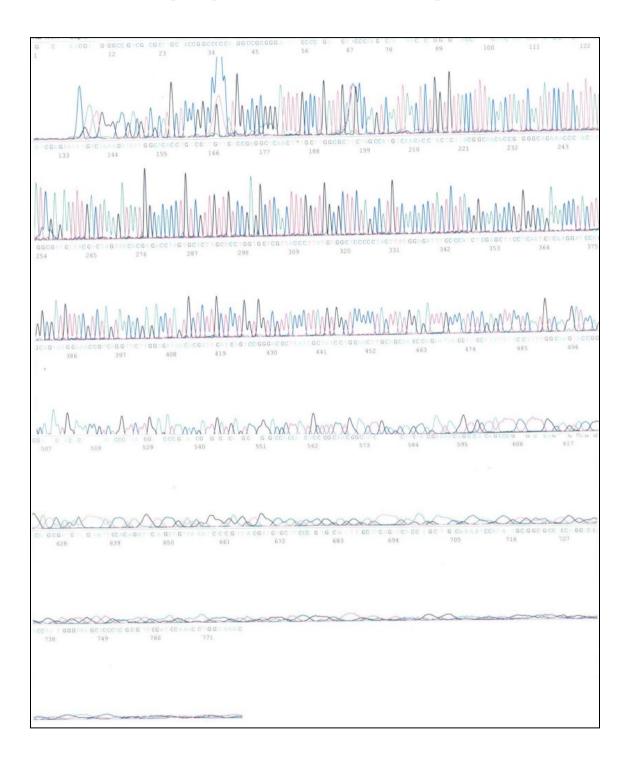
Glucose	-	50mM
Tris	-	25mM
EDTA	-	10mM
pН	-	8.0

2. Solution II (Lysis buffer)

NaOH	-	0.2 M
SDS	-	1 %

3. Solution III

CH ₃ COOK	-	5M
pН	-	5.5


ANNEXURE VI

Electropherogram obtained for the cloned fragment GT-311

10 20 30 40 50 60 70 80 C G A TT G G G C C G A CG T CG CA T G C T CC C G G C CG T CA T G G C CG C G G G A TT C T AA CA T G G A C CA T G T T AA T G C G C C CA G G G G T
\bigwedge
80 90 100 110 120 130 140 140 150 160 160 160 160 160 160 160 160 160 16
and another and and a second of all and a second of all and a second and a
MAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
M250 T T G T A CA C
330 340 350 360 370 380 380 380 390 310
410 420 430 440 450 460 470 480 T CTTATCAG CGCT CAA GA C C C C CCA CCAA CGA GAA GG AGAG CT GT CTTT CG C GT AG CT ATT A GAA CGT G TATT GG AG
490 CA CT A C GG CT A TA CT A G TGG ANA TT CA TTT A CT G CCT A T GG TGG GG T G TT GC T C A G CT G CGC AT CT G CA A T GT A C
560 570 580 590 590 600 610 610 620 CG CATA C GG C T C C GG AT G G T C G G T C A AC T C G G T C C G C T C C G AT G G T C C G C T C C G C T C C G C T C C G C T C C G C T C C G C T C C G C C C C
630 CC AA G TT G G TT G A CC G G C C A A C G AA TT G A TT G A C G AAT C CT A T G G C G G C G C C C G G C C C A 1
690 720 730 730 730 TT GGGÀ ÀG TC C À C T GÀ À TT TC À À GG C C C À À A T GG À TCT G
40 250 270 270 270 270 270 270 270 270 270 27

Electropherogram obtained for the cloned fragment GT-322

C G A TT G G G C C G A CG T CG CA TG C T C C C G G C C G C C G C G G G G
20 100 110 120 120 120 120 130 130 130 130 140 140 140 140 140 140 140 14
MMMAMMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR A CONTRACT
SOU STATE CENTRE A CONTRACTOR OF THE CONTRACTOR
570 TITEA GA CGAAAACAG EEACAG EEG TGTCTCAG TGG CGTG CA GGCGATG TGGAA TGCACAGA T CAGATG
640 650 660 660 670 660 690 690 690 671 GC T C G G G C A T T GC T C GG T CAACAT GG CT GG C A T A T ACATA TG CG G C
$\begin{array}{c} 700 \\ c \ c \ c \ c \ c \ c \ c \ c \ c \ c$
770 780 790 800 810 A A C A G C A A C GT TT CT GT G A T GT TT C C C C C A T C C C A C A C A G OG G A A T A G A

Electropherogram obtained for the cloned fragment BPT-822

MOLECULAR CLONING AND CHARACTERIZATION OF THE GENE ENCODING β-1, 3- GLUCANASE IN *Trichoderma* spp.

By

NIHARIKA NATH (2006-11-109) ABSTRACT OF THE THESIS

Submitted in partial fulfillment of the requirement for the degree of

Master of Science in Agriculture

(PLANT BIOTECHNOLOGY)

Faculty of Agriculture

Kerala Agricultural University, Thrissur

Centre for Plant Biotechnology and Molecular Biology

COLLEGE OF HORTICULTURE

VELLANIKKARA THRISSUR-680 656 KERALA, INDIA

2008

ABSTRACT

 β -1,3-glucanase enzyme is widely distributed among bacteria, fungi and higher plants. Fungal β -1,3-glucanase produced by *Trichoderma* spp. is the key enzyme in the lysis of cell wall during their mycoparasitic action against several phytopathogenic fungi. This creates the potentiality of *Trichoderma* to be used as biocontrol agent.

Biochemical characterization of the enzyme β -1,3–glucanase from different *Trichoderma spp*. has been reported. The gene encoding β -1,3–glucanase has been cloned and sequenced in several plants, bacteria and fungi. The study entitled "Molecular cloning and characterization of the gene encoding β -1,3glucanase in *Trichoderma* spp." was carried out at the Centre for Plant Biotechnology and Molecular Biology (CPBMB) and Department of Plant Pathology, College of Horticulture, Vellanikkara during the period from 2006 to 2008. In the present study an attempt was made to determine the glucanase activity and to characterize β -1,3–glucanase gene of *Trichoderma* spp.

Fifteen *Trichoderma* isolates, antagonistic to *Phytophthora capsici*, *P. meadii*, *Pythium aphanidermatum* and *Ralstonia solanacearum* were used for the present study. The enzyme activities of different isolates were found to be ranged from 1.3 U to 205.3 U per 50 ml culture filtrate for 10 min incubation. Among the fifteen isolates, the highest enzyme activity was found in *T. viride*–1 (205.3U) followed by *T. harzianum*-30 (157.8U), *T. aureoviride* (139.2U), *T. viride*-8 (121.9U) and these four were selected for gene isolation.

The informations on glucanase gene sequences of different species of *Trichoderma* available in the public domain NCBI were collected and subjected to multiple sequence alignment to detect conserved boxes of the gene among species.

Based on the data, three pairs of gene specific primer were designed for amplification of β -1,3-glucanase gene fragment of about 500 - 1400bp in *Trichoderma* spp.

Genomic DNA was isolated from the four selected *Trichoderma* isolates. Amplification was obtained from two isolates by the primer combination of Glucan F1R1 and Glucan F2R2, whereas by Glucan F1R2, the amplification was obtained in all isolates. The amplicons obtained by Glucan F1R1 from *T. aureoviride*, by Glucan F2R2 from *T. aureoviride* and *T. viride*-8, by Glucan F1R2 from *T. viride*-1 and *T. harzianum*-30, were used for cloning.

The amplicons were eluted, cloned in pGEM-T Easy Vector and transformed into *E. coli* JM 109 competent cells. High level of recombination was observed on blue-white screening. Recombination of the insert was confirmed by PCR of the plasmid, isolated from white colonies. The cloned fragments were sequenced to obtain the nucleotide sequence information.

The sequences obtained after vector screening were named as GT-311, GT-322, BPT-822 and were subjected to Blast search. All the three sequences revealed significant levels of homology with glucanase genes of different *Trichoderma* spp. The sequences were also subjected to various theoretical sequence analysis using bioinformatics tools, which include ORF finder, GENSCAN, SOPMA, NEB cutter, Hydropathy plot, Interproscan, Motifscan, NASTATS and AASTATS tools of Biology Workbench.

Sequences diversity of β -1,3-glucanase gene among different species of *Trichoderma/Hypocrea* was determined. The evolutionary distance of GT-322 from *T. aureoviride* and BPT-822 *T. viride*-8 was much lower and closely related to β -1,3-glucanase (glu) gene of *T. viride* having accession number EF176582.1. The

two sequences cloned from *T. aureoviride* showed divergence, indicating the divergence of β -1,3-glucanase within the species.

The sequence information obtained from the *Trichoderma* isolates during the present study can be further exploited for full length gene isolation to develop transgenic black pepper and ginger plants with resistance to *Phytopthora capsici* and *Pythium aphanidermatum* and can also be exploited to develop transgenic microorganism with high biocontrol potential.