800567

NAME OF THE PROJECT

ALL INDIA CO-QRDINATED RESEARCH PROJECT ON AGRICULTYRAL DRAINAGE UNDER ACTUAL FARMING CONDTAIONS "ON. WMTERSHED BASIS.

KARRUMADY
(I.C.A.R.)

198ラ-'86

CENTRE
AICRP ON AGRICUTLURAL DRA INAGE
KARUMADY - 688564

KERALA AGRICULTURAL UNIVERSITY

800567

KAU/AICRD/IR
CONTENTS
SECTION
TITIEPAGE NO.
A General Information
project Area - A Brief Description 13 objectives of the project 14
Technical programme for the year 1985-86 94
E summary
problems Encountered During the 96
Technical programme - 1986-37 96
H Appendices

$3(10)$	Discharge versus time curve ($8 \mathrm{E}_{30}$)	52
$3(11)$	Hydraulic head versus time curve ($8 \mathrm{E}_{30}$)	53
3 (12)	Discharge versus hydraulic head curve ($3 \mathrm{E}_{15}$)	54
$3(13)$	Discharge versus hydraulic head curve ($8 \mathrm{E}_{30}$).	53
3 (14)	$\frac{\text { Discharge }}{\text { Hydraulic head }} \text { versus hydraulic head curve }$	56
3 (15)	Discharge Hydraulic head	巨7
3 (16)	Water table at different times of pumoing	64
3 (17)	Nater samples from drain at fortnightly interval $=E C$ analysis	31
$3(18)$	Water samples from drain at fortnightly interval - pF analysis	82
3 (19)	EC of da-ly water samples collected from drainage sump du:ire cultivation	84
3 (20)	p^{H} of daily water sampies collected from drainage sump during cultivation.	86
3 (21)	Weekly comparison of EC between irrigation and crained water	88
3 (22)	Weekly comparison of pH between irrigation and drained water.	89
3 (23)	EC of soil samples taken at different time	91
3 (24)	pH of scil samples taken at different time	93

ANNUAL REPORT FOR THE YEAR 1985-86

SECTION A

8. Financial information
i) Expenditure statement from the year of comencement to 1985-86

$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$	Year	Sanctioned grant for the year	university sanction	Experditure	Expenditu as \% of th sancticne grant
1.	1981-82	1,28,100.00	36,000.00	7.242 .85	5.55
2.	1982-83	4,78,200.00	$4,37,000.00$	1,26, 509.58	26.45
3.	1983-84	3,83,800.00	3,83,800.00	2,44,951.89	63.82
4	1984-85	3,80,200.00	3,80,200.00	3,38,008.35	88.90
5.	1985-86	2,86,800.00	2,86,800.00	2,61,094.23	91.0 0%

ii) Expenditure statement of the year 1985-86 from 1-4-1985 to 31-3-1985.

sl.	Buaget Head	Sanctioned grant for the year	ICAR sanc tion	University sanction	Total Expenditure	Expenditure as \% of the sanctio ned grant

A. Pay and Allowances

1. Pay of Officers
2. Pay of Estt.
3. Allowances l

Total 1,95,300 .. 1,95,30J 178002.48 91.14\%
B. TA 10,000 .. 10,00 J $3905.8039 .05 \%$
C. Recurring 31,500 .. 31,50J 31454.90 99.85\% Contingencies
D $\begin{aligned} & \text { Non-Recurring } \\ & \text { Contingencies }\end{aligned} \quad 50,000 \quad$.. $50,00 〕 \quad 47731.05 \quad 95.45 \%$ Contingencies _ .

Grand Total 2,86,800 .. $2,86,800 \quad 261094.23$ 91.04\%

SECTION B

PROJECT AREA - A Brdef Description

B.i. Kuttanad

Kuttanad tract is a deltaic alluvium formation of four river systems viz. 'Meenachil', 'pampa', 'Manimala', and 'Achen Coil' and the low lying area in and around 'vembanadu Lake'. The total area of kuttanad tract is about $870 \mathrm{sq} . \mathrm{km}$. out of which $290 \mathrm{sq} . \mathrm{km}$. is under garden lands, scattering all over the tract and is lying 1 to 2 m above the sea level, used mainly for coconut cultivation and habitation. The remaining portion which was under submergence was progressively reclaimed as polders by constructing ring bunds. These polders lie about 0.5 to 2 m below mean sea level and the impounded water is drained out by using locally manufactured axial-flow pumps. The area of each polder unit ranges from 75 to 500 ha and the total area under polder cultivation is estimated as about $520.89 \mathrm{sq} . \mathrm{km}$. The whole area is criss-crossed by rivers, channels, canals and other waterways. The general topography of the area is flat and level.

The total watershed area of the above four rivers is nearly $5,000 \mathrm{sq} . \mathrm{km}$. and discharge their water into Kuttanad region. After flowing through a net work of canals and channels, they join the vembanad Lake. The catchment area has an annual rainfall varying between 280 cm to 380 cm . A good part of the rains, 60% to 70% are received during south west. monsoon resulting in floods and most often submerging the low lands. The kuttanad region experiences fairly uniform temperature throughout the year ranging between $21^{\circ} \mathrm{C}$ and $36^{\circ} \mathrm{C}$. The mean relative humidity is high and is about 70%.

The vembanad Lake which is the non reclaimed part of the Kuttanad extends between Alleppey and Cochin with an area of $80 \mathrm{sq} . \mathrm{kms}$. This lake is connected to Arabian sea at cochin. The water in the lake is saline except during the monsoon season when the surface water is sweetened by flood water. When the flow in the rivers dwindles from the month of necember. the saline water from the sea intrudes the entire arca duc to
tidal action. The salinity in the northern parts of Kuttanad goes beyond limits of tolerance for rice cultivation from January onwards and it spreads rapidly to the southern parts. The surface water remains saline till the first flood washes it during the succeeding south West monsoon.

The soil is acid sulphate in nature and is having high acidity. Three major problems encountered during cultivation in this area are

1) high acidity
2) damage caused by floods and
3) intrusion of saline water during the fag end of crop period.

B.ii. Kari Lands

The whole Kuttanad tract is differentiated into three types of lands, ramely Karappad. Kayal lands and Kari lands. The Kari land occupies an area o nearly 7,000 ha. They are located in the Taluks of Shertala., Ambalapuzha and Kuttenad of Alleppey District and vaikon and Kottayam of Kottayam District.

The Kari lands are a unique agrfcultural tract wich Kari soils - black charcol coloured organic soil. These lancis are quite similar to that of Kuttanad region with respect to topography, formation, climate and vegetation, but the organic matter content of the soil is very high.

It is believed that this soil was formed and developed in the distant geologic past when the afea was covered by dense forest vegetation. In the sucdeeding geological ages, the sea advanced and engulfed nany places. After thousands of years, the sea receded exposing the doastal region and pert of the present midlands. During this geological upheavals, the entire forest area was submerged for below the ground and thereafter silted upto varying levels.

The profile of Kuttanad alluvium consists essentially of alternating layer of clay and sand, admixed with varying proportions of organic matter. The cleq is usually a grey, dark or bluish black in colour. This 制lluvial formations exist ir layer varying upto 30 metres m depth underlain by sand stone and mottled clay of tertiary formation. Still distinct, the Kari soils can be readily be discerned by the
deep black charcoal colour, due to high organic matter content. The top soil is admixed with well decomposed organic matter to the tune of $10-30 \%$. But, underneath, the top layer is the partially decomposed, fibrous plant residues containing less than 50% mineral matter. Hence, these soils are both mucky and peaty in nature. In some places, large logs of wood locally known as 'Kandamarem' occur embedded in the sub soil. Beneath this layer, the soil is an admixture of sand, organic matter and clay and still ceeper it becomes river sand.

Kari soils are extremely acidic in reaction with pH ranging $3-4.5$ and the pH reduces further when the soil gets dried up. It is found that the extremely low pr on drying is due to the production of free sulphuric acid by oxidation of sulphur compounds in the soil. The fertility status of the soil is poor. Besides, the soil contains toxic concentrations of $F e^{\prime}$ Al and toxic organic products.

Biii. The project Area : Kavil Therwmpuran Fadasekharam
Biii.
Location and Area
The project area is a typical repicsentative tract of Kari land with an area of 89.99 ha. The project area comes under Ambalapuzha Village and Talu's of Alleppoy District. It lies 4 Kms . east of Ambalapuzha. Jurction on National Highway 47. The padasekharam is eacircled by Ambalapuzha--Thakazhy road at north, Kalathil thodu at east, kari thodu at south and Karumady thocu at west.

Biii. Physiography and Hydroloci
b.

The project fjeld is locater 1 to 1.5 m below mean sea level. The water collected in the project area is drained out by pumping to nearby canals using axial flow pumps (petty and parah). There are two pumping cutlets, one with a $30 H P$ and the other with 20HP axilal flow pum. The former is installed on the ring bund of karumady thodu and the latter on the ring bund of Kari thodx. Two drainage channels, with an
average width of 2.5 m and a depth of 0.7 m , are inter connected and lead water to the pumping bays. There is a net work of small drainage channels which opens out into the main drainage channel.

The land has got a.most an even topography.
The water level in the surrounding water ways will be higher by 1 to 1.5 m than that in the paddy fields during the season of cultivation. The havoc of flood, over topping and breaching of bunds and flooding of paddy fielas are anticipated during the period of SW monsoon. Inundation of salt water and damage of crops are experienced during the period January to March.

Biii.Climate

c.

The project area experiences a typical tropicell climate. The monthly mean of the weather parameters for the period from 1976 to 1984 and that fior the period from 1985 January to March 1986 is given in table A. The monthly changes in climatic parameters have also been illustrated through fig. A. and B.

Biii. Land Holding and Utilymation
d.

From the survey conducted at this station and from the records available with Rerenue Department, it is found that altogether 125 cultirators are there in the project Area, farming 75.238 ha of paddy fields. When the tenureship of the land is classified "based on the extent of holding, it was seen that a substantial number of holding fell below 1 acre. out of 125 Nos. of holdings, 75 holding were with an average extent of 1 acre or below that and 35 noldings were with an average extent between 1 thare and 2.5 acre. Only 15 holdings were with mean acreage above 2.5 acre. Tiney ay ragedsinge afi boilding dise0.601 ha (1.47 acres).

The total area of the project field is 88.919 ha and actual paddy field is 75.238 rk . The rest of the land is occupicd by roacis, trenches ard reclaimed dry lands. The dry lands are used :Eor human habitation and for the cultivation of perennial crop3*: mainly coconut.

$\therefore 9:$
 IABTE -2

MONTHLY VARIATIONS OF TAEATITR PARAMETERS IN TIT PROJECT AREA
（A）Total Rainfali cm ．

	JAN。	ワ区う。	MAR	APRL。	MAY	JUNE	JULY	AUG	SEP．	OCT．	NOV ．	DEC．	Total Mean
A	0.35	3.77	4.96	12.56	31.42	61.67	54.97	41.39	28.11	29.59	21.80	6.95	300.5
B	7.08	1.2	0.898	7.73	1.83	85.02	43.89	24.81	32.05	29.51	12.48	4.05	225.74
C	0.05	－	． 6.08	\cdots	－	\cdots	－	－	－	－	\cdots	－	－

（b）Monthly mean maximum Temp ${ }^{\circ} \mathrm{C}$

A．	34.0	33.52	34.55	35.04	33.92	30.86	30.35	30.05	31.85	32.44	31.87	33.75	32.74
B	32.19	32.29	33.74	32.2	31.7	28.37	28.74	28.87	29.57	30.26	30.77	32.32	30.92 ＊
C	32.16	32.89	33.03	－－	\cdots	－	\ldots	－	－	－	\cdots	－	－

（c）Monthly mean minimum Temp ${ }^{\circ} \mathrm{C}$

	JAN。	FEB．	MAR 。	APR。	MAY	JUNE	JULY	AUG。	SEPT。	OCT。	NOV．	DEC．	Total
A	22.12	23.38	25.23	25.58	25.96	24.73	23.95	24.41	24.87	25.61	24.60	23.49	24.52
B	21.38	22.5	23.68	24.0	22.4	22.2	23.32	23.61	23.5	23.48	22.67	21.81	22.28
C	21.65	22.64	24.45	－	\cdots	－－	－	－	－	－	－．	－	－

（d）Monthly mcan cvaporation（mm）

A	3.77	4.14	4.78	4.94	4.96	4.24	4.31	4.14	4.38	4.36	4.01	3.6	4.30
B	\cdots	5.05	4.51	5.62	4.73	4.17	5.17	3.95	4.22	3.36	3.29	3.35	4.31
C	3.43	4.78	4.94	－	－	－	－	－	－	－	－	－	－

$A=$ Monthly mean for the year 1976 to 1984
$B=$ Montinly mean for the year 1985
$\mathrm{C}=$ Monthly mean for the year 1986

Biii. Cropping

The one and the only crop raised in the wet land is paddy and there is 100% coverage under Hyvs.

Biii Soil Characteristics

f。
The soil of the project area is typical kari soil. A soil monolith from $0-2 m$ depth has been drawn from the project area and has been displayed in a glass/depth, the soil is clayey and black in colour due to high organic matter content. The clay type is the cxpanding one and large cracks are formed on drying. From 60-90m ciepth, lot of wooden debris, undecomposed organic material, are scen embedded. Below that, the soil is an admixture of clay, sand and organic matter. From the depth of 1.5 m onwards, the soil is almost of the river sand type.
/box. From the visual observation it is seen that from SECTION C
objectives of the project

1. To comprehend the effect of a surface and subsurface drainage system on the movement of soil liquids.
i. To study the effect of surface and subsurface drains in preventing the rise of toxic products from sub-surface soil into root zone.
ii. To study the effect of surface drains in removing the toxic products already present in the root zone.
iii. To study the influence of sub-surface drains on lowering water table and its effect on growth and development of roots.
2. To study the pattern of hydrological cycle occuring in the water-shed area and its importance and influence on the drainage.
3. To develop a feasible technology for the layout of sube surface drainage system suitable to peat and muck soils.
i. To develop the criteria for the design of sub surface drains in peat and muck soils.
ii. To evaluate the types of drains (such as tile drains, PVC pipes etc.) and size and spacing of slots on drains suitable for the lay out of subsurface drains.
iii. To evaluate the filter materials to be vised for the layout of subsurface drains.
iv. To decide upon the depth and spacing of the layout of subsurface drains.
v. To develop the criteria for the design of auxiliary structures of subsurface drains.
4. To develop criteria for design parameters of surface drainage
5. To develop the drainage pattern required for different crops
i. To determine the drainage requirement of rice crop under static and fluctuating conditions of water levels.
ii. To study the feasibility of changing monocropping pattern to diversified cropping and to develop agro-techniques required for the diversified cropping.
iii. To fix up the drainage requirements of the competent crops of ditersified cropping.
6. To evaluate the feasibility of using the return flow from drainage for irrigation in relation to watar quality ratings.
7. To evaluate the socio-economic benef its acorued from the drainage projects.

SECTION D

TEC INICAL PROGRAMME FOR THE YFAR 1985-86
I. Techicalporograme for the year 1985-86 as approved in the previous annual workshop.

1. Continuation of ongoing projects for collextion, analysis and interpretaion ofdata on soi, properties, drain functioning, pump outlet, crop growtin and yield.
2. Evaluation on the suitability of different filter materials for sub-surface drainage.
3. Analysis of drain discharge and water table data under different spacings and lengths with a view to find the diameter requirements of tile drains.
II. BRIEF TECHNICAL PROGRAMME OF THE PROJECTS TAAKEN UP AT THE CENTRE DUR ING 1985-86.
Sl. Title of the

No. project \quad| Title of the |
| :--- |
| problem |\quad Season

RESEARCH PROUECT NO. 1

1. Title of the Project
: Survey and characterisation of
quality of water in the project
area.
: Periodical changes in quality o三 surface anc sub surface water in the project area
2. objectives:
1) To assess the periodic changes in the quality of floodirg water, drainage water and ground water.
2) To identify tre fluctuat:on in the quality of water during the periods of fallowing and culcivation.
4. Practical utility

The study will give useful information the quality of water moving in the project area ard enable to study the impact of quality of water on the ecology of the area. The information thus obtained can serve effectively in the planning of cultivation in the project area.
5. Technical Programme

Water samples will ke Jrawn at weekly intervals from the observation wells, piezome=ers, drainage channels and waterways and its quality such as pH ana EC will be assessed.
6. Observations Taken
pH and EC Df the water samples torbe estimated at weekly intervals.
7. Date of starting
: December. 19غ2
3. Date of Completion
: Throughout
9. Progress of Work

Water samples were draw at weekly intervals from the waterways surrounding the project area and from the

Table 1 (1)
pH of water samples at weekly Intervals.

Karumady Karithodi Kalathil Drainage Date thodu thodu channel				
- - -		5.80	6.13	6.25
8-1-86	6.23	5.80	6.56	6.44
15-1-86	6.82	6.10		6.33
30-1-86	6.86	6.79		. 81
6-2-86	7.23	7.28	6.88	6.91
13-2-86	6.94	6.30	7.01	6.
19-2-86	6.87	6.90	6.36	5.46
$27-2-86$	7.12	7.29	6.00	5.15
$6 \div 3-86$	6.78	6.50		4.21
$13-3-86$	6.55	6.36	6.40	5.40
20-3-86	6.83	6.70	90	.
26-3-86	5.99	5.60	7.36	

Table 1(2)
EC of Water samples at weekly Intervals

Date	Karumedy thodu.	Karithodu	Kalathil thodu	Drainage channel
- - -	- - - -	3.30	3.90	3.68
$18 \cdots-4-85$	2.60	1.20	4.05	3.00
$27 \mathrm{~m}-\mathrm{m}-85$	1.05	1.20	2.10	1.50
4-5-85	1.05	1.20	2.55	1.50
15-5-85	1.05	1.05		2.18
$22-5-85$	1.85	3.15	1.20	2.18
29-5-85	1.78	1.80	1.20	1.28
5-6-85	1.55	2.40	2.10	1.6
15-6-85	1.25	1.5	1.35	1.
21-6-85	1.30	1.80	2.10	1.6
17-7-85	0.90	1.05	0.90	1.05
24-7-85	1.05	1.05	0.90	0.98
31-7-85	1.30	1.05	1.05	1.05
23-3-85	0.87	0.34	0.90	0.81
2-9-85	0.91	0.90	0.90	. 8
9-9--85	0.34	0.66	0.84	
16--9-85	1.27	. 1.20	1.35	1.29

Dete	rarumady	Kar thodu.	$\begin{aligned} & \text { Kalathil. } \\ & \text { thodu } \end{aligned}$	Drainage channel
23-0-55	1.26	0.96	1.17	1.07
30-9-85	0.98	1.14	1.17	1.08
8-10-85	1. 11	1.17	1.20	1.09
14-10-85	1.13	1.23	1.17	1.16
18-10-85	2.09	1.14	3.78	1.25
26-10-85	0.74	1.17	1.20	1.16
31-10-85	1.29	1.14	1.17	0.95
6-11-85	0.24	0.30	0.15	0.120
23-11-85	0.32	0.15	0.40	0.20
20-11-85	0.39	0.27	D. 58	0.39
23-11-85	50.44	1.56	1.50	1.47
6-12-85	2.79	2.25	1.89	2.19
11-12-85	-1.27	2.22	2.07	2.07
2.8-12-85	51.24	2.90	0.74	2.28
$27 \cdots 12-85$	50.50	1.34	1.08	2.01
1-1-36	0.42	2.64	1.89	1.58
8-1:36	0.38	0.19	1.11	0.56
25-1-85	0.32	1.50	0.69	1.51
30-1-86	0.25	0.39	0.57	0.91
6-2-86	0.53	0.53	1.44	\% 0.81
13-2-86	0.18	0.33	0.27	0.65
19-2me6	0.13	0.19	0.39	0.69
27-2-85	0.17	0.14	0.28	0.19
$5-3-\ldots 6$	0.20	0.48	0.39	1.35
$\therefore 3.3-86$	0,26	0.28	0.22	1.29
20-3-36	0.59	0.66	0.35	1.61
25-53080	3.13	3.40	0.41	2.75

Figure 1(1)
periodic changes in pH of water in different water bodifs wrt time Karumady thodu and Karithodu

Per-odic changes in pH of water in different water bodies w.r.t time - Kalathil thodu and Drainage channel

Figure $1(3)$
Pericdic changes in EC of water inc different water bodies wrt time Karumadythodu and Karithodu

Cropping season

Figure 1 (4)

Periodic changes in EC ©́f water in different water bodies wrt time -

ficla itself．They were then enalysed for the pH and $E C$ values，the data 0 which are presented in table 1 （i）and （2）．The graphical representetion of the data is shown in fig．I（I）to $I(4)$ ．The pH values fluctuated between 5.5 to 7.5 and at times crossed these limits．The pH conditions during this cropping season were better than the previous yoars and has reflected in the overall yield obtained from the project area．The heavy reins occured from late June to midale september has irmproved the soil conditions by way of leaching the acidity of the soil．The EC values fluctuated botweer 0.5 to $2.5 \mathrm{mmhos} / \mathrm{cm}$ while occassionally they went beyond these limits．The EC of the drainage channel was found to follow the same fluctuations of that of the outside vater bodies．This couid be because of the good leaching cocored during the heavy rains prior to the cropping season． Flooding the field prior to the cropping season can provide retter soil conditions for crop growth in Kari lands．

RESEAFCH PROJECT NO． 2

Ti゙k of the project ：Preparation of water table contour map and hydraulic map of the project area．

2．Matis o三 the Froblem ：Seasonal fluctuations of ground water table with reference to surface water level and characteri－ sation of aquifer in the project area＂Kavil Thekkumpuram padase－ kharam＂。

3．Nojectiver
a）Study on the seasonal changes in ground weter with reference to surface water movement in water ways outside．

B）Secsonal changes on the level and movement of water in weternays．
c) Identification and characterization of aquifer, if any, existing in the project area.
4. Practical Utility

This study will enable to understand the changes that take place in ground water after the layout of the surface and sub surface drainage system.
5. Technical Programme

In order to record ground water table fluctuations, observation wells will be installed at a depth of 1 m . using 40 mm or 50 mm pvc pipes at 100 m apart. The pipes will be perforated with 6 mm holes at 10 x 5 cm . spacing and will be wound with nylon ropes/coir to prevent clogging. Water level in these wells will be recorded at weekly intervals.
5. Observation to be Taken

Water levels in observation wells, waterways and piezometers will be recorded at weekly intervals.
7. Date of Start : June 1982
8. Date of Completion : Till the scheme work is completcd
9. Progress of Work

Twenty four observation wells had been installed in three bands to monitor ground water table fluctuations. Since then observation have been recorded on water levels in these tubes at weekly intervals. The locations of the observation wells are shown in fig. 2(1).

The field was flooded from April 85 to Sept. 85 and hence no observation was possible during that period. However, readings were recorded from Oct. 85 to $F \in b$. 86. The data is presented in table 2(1). The surface water level in the project area was always lower by 0.5 to 1 .Om. than that of the water bodies outside the project area during the cropping season. The movement of groundwater with reference to the water level of the surrounding water body is graphically shown through fig. 2(2) and 2(3) for the cropping period. The upward

Figure $2(1)$

Location of observation wells in the project area

Month	OBW1	OBW 2	OBW3	OBW4	OBW5	OBW 6	OBW 7	OBW 8	OBW 9	OBW10	OBW11	OBW12	Mean
1	2	- 3	4	5	6	7	8	9	10	11	12	13	14
April 85					---	--- Fl	od Fal	lowing	---...	---			
May "							"	1					
June "							"	\pm					
July "							"	"					
-Aug. "							"	"					
Sept. "							"	"					
Oct. "	814.5	817.9	807.0	825.1	810.2	818.0	815.0	813.2	810.3	819.3	Floom	816.2	815.2
NOV.	814.4	820.2	811.8	829.3	811.6	824.6	820.6	820.6	812.8	821.9	ded	820.9	819.3
Dec. "	819.E	824.4	815.3	813.0	815.8	824.0	823.7	822.7	819.2	821.8	"	825.5	822.0
Jan. 86	812.0	816.4	805.5	821.3	803.5	802.5	804.5	812.0	816.0	814.0	"	819.0	811.5
Felo. "	820.6	822.2	803.8	828.3	813.5	820.5	822.5	382.8	025.0	821.5	"	324.0	820.4
March "	Floo- ded	Floo- cled	Flooded	Flooded	Floo ded	Flooded	$\begin{aligned} & \text { Floo } \\ & \text { ded } \end{aligned}$	Floos ded	Flo0ded	Floom ded		Floo- ded	Fiooded
Mean	817.1	820.2	808.7	826.8	810.9	817.9	817.3	818.3	816.7	819.7		821.0	817.7

Table 2(2)
Surface water level in waterways, which surrounds the project area (As read from surface bench mark olevation $=1000 \mathrm{~cm})$

Tavie 2(3)
Burrace twater lovel in tha Drajnage Channel (as read from sench mark Elevation $=1000 \mathrm{~cm}$)

Month	W_{1}	WL_{4}	$D C_{1}$	$D C_{2}$
April 85	858.5	854.5	855.0	854.0
May !	973.1	866.3	867.5	878.9
June "	882.0	880.7	863.7	877.8
July "	873.5	869.3	372.8	886.0
Aug. "	881.5	877.5	876.0	850.0
Sept. "	864.9	860.6	834.8	849.0
Oct. "	877.8	872.9	792.0	807.8
Nov. "	889.4	883.9	796.5	810.1
Dec. "	883.1	878.5	808.5	819.8
Jan. 86	873.6	869.9	790.0	804.9
Eeb. "	859.8	854.8	819.8	831.8
March *	852.4	847.6	837.3	845.5
Mean	872.44	868.04	834.9	847.22

Movement of Ground water table in the project area w.r.t time and

xojo

$\therefore 33$

movement of water in the soil due to the hydrostatic pressurs exerted by the high water ievel of the outside water bodies could not be quantified because of the intermittent flooding and dewatering of the field practiced by the farmers for leaching the field during the cropping season. Thus, the contribution to the groundwater by the components of the flooding water and the contribution by the hydrostatic pressure tend to make the water level in the observation wells to an equili= prium with the water level in the field. Honce, a definite plettern of sub-surface water movement in the project area could not be traced. Fowever, it was noticed that the weter levcls in the observation wells were higher as the distance of these wells increased from the main drainage channels. The above facts can be easily visualised from $\overline{\text { fig }} 2(4)$. The monthly average values of water talle elevations are given in table 2(2) to 2(3).

RESEARCH PROJECT NO. 3a

1. Title of the project : Development of a suitable technology for the sub-surface drainage system in the kari lands of Kuttanad.
2. Title of the prcblem : Assessment of hydraulic properties of the tile drainage system.
3. Objectives
a) To estinate cifferent parameters of hydraulics of the tile drainage system in Kari lanćs.
b) To evaluate the performance of tile drainage system in the project area.
c) To collect information to develop a vialle technology for the sub surface drainace system in the project area.
4. practical Utility

This is the basic study for gatherin all parameters of hydraulics of tile drainage system. The information collected and compiled car be utilized for deriving a suitable
technology for sub-surface drainage system in Kari lands. Further, this will serve as the basic data for further field experimentation on tile drainage.
5. Technical programme

Considering the locations and availability of farmers' field for in situ experimentation, it has been planned to lay 9 lines of lateral tile drains. The first six lines will be at 15 m . apart (15 m . spacing) and the remaining at 30 m . apart. The first five lines will be of 75 m . long and the rest 100 m . each. The initial line designated as $1 \mathrm{~B}_{15}$ will be a buffer line and so are the 6 th and 9 th designated as $6 B_{15 / 30}$ and $9 B_{30}$ respectively. 'The 2nd, 3rd, 4th and 5 th lines designated as $2 \mathrm{E}_{15}, 3 \mathrm{E}_{15}, 4 \mathrm{E}_{15}, 5 \mathrm{E}_{15}$ are the experimental lines of 15 m . spacing. The 7 th and 8 th lines designated as $7 \mathrm{E}_{30}$ and $8 \mathrm{E}_{30}$ are also the experimental lines for 30 m . spacing. Further replication for lateral drains of 30 m . spacing or some other else cannot be planned because of the geometry of the location.

All lateral drains will run at a slope of 0.2% and at an average depth of 0.875 m . The drains will be prowided with a sand filter of an dverage thickness of $10-15 \mathrm{cms}$ all around the drain. All lateral drains will open into collection drums separately. The drums will be inter connected by collector drains (PVC pipes) of $110 / 160 \mathrm{~mm}$. dia laid at 0.4% slope and this colléctor drain will drain into a sump from where the drainage water will be pumped out in to the adjoining canal using a suitable pump.

The tile drain is of baked clay, 0.6 m . long, with bell mouth at one end (125 mm . outer dia and 100 mm . inner dia). "They are provided with 15 nos of 6 mm . holes in three bands of 5 holes each, on the one third periphery area.

A series of the field to record subsidence of groundwater.
6. Observations to be Recorded
a) Rate of discharge of draining water of the individual
c) Time elapsed for achieving steady state condition of ground water.
d) Computation of $h_{e}, h_{\text {tot }}, k$ of soil, q, effective porosity (P), drainage intensity factor (a), transmissivity (t).
e) Maping of water table
f) Graphical reprosentatiors (i) q vs t, h vs t, q vs h g vs h . h
7. Date of start
8. Date of Completion
: December 1984
: Till the scheme ends
9. Progress of work

A suitable location was first selected in the project area 'Kavil Thekkumpuram Padasekharam' for conducting the above experiment. The representative area is of about 2.5 ha. The area was then subjected to compass survey and the alignment of tile drains, collector drain and sump etc. were demarked. The lay our of the drains shown in fig.3(1).

Laying of Tile Drains

It was planned to lay 9 lines of lateral drains out of which 5 lines are of 75 m . long and four lines of 100 m . each, considering the geometry and availabiljity of the land. Lines were marked on the field and excavations donc as per specifications. The trench cross sections initial and final points are shown in fig 3:2). The trench elevations at zero length and 75 m . length of 75 m . lines ere fixed at 7.435 m and 7.285 m . respectively, thereby giving a slope of 0.2%. The trench elevations at zero length and 100 m . length of 100 m . lines were fixed at 7.485 and 7.285 respectively, thereby giving a slope of 0.2%.tothem also. After fiving:efical levelfing to the trench bottom, river sand was pread to a 10 cm . thickness all along the trench bottom. Letels were taken at frequent intervals to see that the slope was maintajined throughout. After spreading the filter, tilesdrains of baked clay, 60 cm . long, with bell mouth at one end $(125 \mathrm{~mm}$. outer dia and

100 mm . inner dia) provided with 15 nos. of 6 mm . holes in three bands of 5 holes each, on the $1 / 3$ rd periphery area were laid with the tail of one into the beil mouth of tre other. The bell mouth of the first drain was covered with gunn- bag to prevent entry of soil into it. A close watch with the dumpy level was done throughout the laying process to ascertain that the correct slope was maintained. After laying the tile drains, filter was spread again over the drains to approximately a thickness of 8 cm . as shown in fig. 3(2). The trench was then back filled. Nine such lines were laid as above with the first five lines having 75 m . length and the rest four lines with 100 m . length. The lines $18_{B_{15}}, 6 B_{15 / 30}$ and $9 B_{30}$ will serve as buffer lines while the rest as experimentai lines. The laying of all the drains were done in such a way that their outlets are at same elevations.

Laying of collector Drain
The collector dwain was laid in a line perpendicular the drain lines. The trench was excavated and a 0.4% slope was given Eor the colleator pipes. Based on the design calculations and the availability of pipes in the market, 110 mm . pipes were used for the first 60 m . and 160 mm . pipes were used for the rest of the length.

Installation of collection Drums
Empty Bitumon barrels (50 cm . dia) were used as collection drums. All the tile drains (bottom) enter into the collection drum at an elevation 7.385. The point at which the collector enters at different drain line ends differ and is a function of the collector line slope. Figure 3(3) illustrates the entry of the drain line pipe and the collector line pipes into the collection drum at $5 \mathrm{E}_{15}$. Table $3(1)$ shows the different elevations at the collection drum and fig. 3(4) shows the vertical scction of the collector line. The collection drums facilitate the measurement of drainage flow from each tilc drain line. After installing the colection drums at pre-determined

Table 3(1) Elciadion on collector Line

elevations, the collector pipes and the tile drains were joined to the drum and the trench was back filled.

Drainage Sump Construction
A drainage sump was constructed with a view to collect the drainage flow from the collector drain and to pump it out from there to the adjacent 'Karithodu'. The sump was designed subject to the space limitations available at the site. The collector drain enters the sump at an elevation of 6.34 m . The sump was constructed with concrete rings of 110 cm . outer dia and 100 cm . inner dia with a height of 40 cm . Figure $3(5)$ illustrates the installed sump. The deepest ring acts as a stilling basin (40 cm .) and the effective storage depth is 1 metre. A $5 \mathrm{H} . \mathrm{P}$ electric motor pump is used to drain the water.

Installation of Observation Wells
A series of observation wells were installed in the experimental site to record the fluctuations in the water table elevations on the event of dfainage. The general pattern of the installation of the observation wells are shown in figure $3(6)$. They have been spaced perpendicular to the drain at $0.4 \mathrm{~m} . \mathrm{S} / 8$, and $\mathrm{S} / 2$ where S is the spacing. Three such lines of observation walls have been installed at $\mathrm{L} / 4, \mathrm{~L} / 2$ and $\frac{3}{4} \mathrm{~L}$, where L is the Length of each drain line. The observation wells have been made with 1.5 m . long, 40 mm . PVC pipes. Five mm holes with a sparing of 10 cm . have been drilled in 6 bands at the bottom 50 . length and coir was wound around it with the bottom of the tube covered with polythene covering.

Sieve Analysis
Sieve analysis of the river sand and the base material was done in decicing the suitability of the river sand used. Tables 3(2) and (3) show the result of the analysis and figure $3(7)$ shaws the grading curves drawn. Spalding (1970) suggested that the most reliable criteria for the design of filter dqsign are those of the united States waterways Experimental sltation. Tra

Table 3(2) - Sieve Analysis of River Sand Filter

Sieve								
size/	5.6	2	1	500	106	45	45	Total
wt.re-								
tained (gm)	mm	mm	mm	icron	micron	micron	micron	
$\begin{array}{lllllllll} \text { Sample } 1 & 121 & 207.5 & 380.5 & 24 \$.5 & 457.5 & 4.25 & 13.5 & 1429.75 \end{array}$								
Sample 2	72.5	214.5	357	199	295.5	2.42	10.58	1151.5
Sample 3	99	229	412.5	265.5	413.5	3.83	18.17	1441.5
Sample 4	69.5	209.75	380.5	23\%. 5	377.5	2.92	12.83	1284.5
Total	362	860.75	1530.5	941. 5	1544	13.42	55.08	5307.25
\% Retained	6.82	16.22	28.84	17.74	. 29.09	0.25	1.04	-
$\begin{array}{llllllll}\text { cumulative } & 6.82 & 23.04 & 51.88 & 69.62 & 98.71 & 98.96 & 100 \\ \% \text { retained }\end{array}$								

Table 3(3) Sieve Analysis of Base Material

The design criteria are
$D_{15} F \leqslant 5 D_{85^{S}} \ldots-\cdots$ (i)
$\mathrm{D}_{15} \mathrm{~F} \leq 20 \mathrm{D}_{15} \mathrm{~S} \quad \cdots-\cdots$ (ii)
D50F $\leq 25 \mathrm{D}_{50} \mathrm{~S}$ - -
$D_{50} F=5 D_{15^{S}} \Rightarrow$ (iv) where $D_{15^{F}}$ is the size of particle in filter, 15% passing sieve and D_{85} s is the size of particle in soi-, 85% passing sieve.

The first three criteria represent the filtration quality and the last one represents the adequacy of the hydraulic conductivity. The different particle sizes as per the above criteria is given below.

$\mathrm{D}_{15}{ }^{\mathrm{F}}$	$=0.25 \mathrm{~mm}$	$\mathrm{D}_{15}{ }^{\text {S }}$	$=0.125 \mathrm{~mm}$
$\mathrm{D}_{50}{ }^{\mathrm{F}}$	$=1.05 \mathrm{~mm}$	$\mathrm{D}_{50}{ }^{\text {S }}$	$=0.25 \mathrm{~mm}$
$\mathrm{D}_{85}{ }^{\text {F }}$	$=2.75 \mathrm{~mm}$	$\mathrm{D}_{85}{ }^{\text {S }}$	$=0.40 \mathrm{~mm}$

From the above particle sizes it can be seen that all the above criteria have been satisfied and the filter used is adequate in terms of filtration quality and hydraulic condum ctivity.

Data Processing
Just after the completion of haryest of the paddy crop in the experimental area, continuous drainage pumping started on 21-1-86 which was continued upto 26-1-86. Observations like drainage flow through the tile drains and water table recession in the 122 observation wells were recolded at hourly intervals. The =eadings interpolated from this data at 5-hour interval are given in appendix I. The above data was then subjected to vigourous analysis for finding the hydraulic conductivity using steady state equations since the water table movement and drain discharce conditions showed a relatively constant behavious towards the later part of the continuous drainage. The steady state conditions are because of the continuous recharge from the outside water bodies into the experimental area which is peculiar to the kuttanad conditions.

The analysis was bused on Hoochoudt's equation whith is
$q=\frac{3 k \operatorname{ch}}{s^{2}}+\frac{4 K^{2}}{s^{2}}$ where
$q=$ discharge in may
$d=$ equivalent depth (m)
$\mathrm{K}=$ hydraulic condactivity in $\mathrm{m} /$ day
$h=h y d r a u l i c$ head in m at mid poin's of the drains
$s=$ spacing of the crains in m
The above equation winen dirided by a trill give an equation to a siraicht line which is
$q / h=\frac{3 \mathrm{Kd}}{S^{2}}+\frac{4 \mathrm{Kn}}{S^{2}}$. where $\frac{\Delta \mathrm{K}}{2}$ is che slope of the line from where K value can be calchated since spacing is known and $\frac{3 \mathrm{Kd}}{\mathrm{K}}$. is the in:eraet from wine: ke velue and subsequently ${ }^{2}$ ' d^{\prime} value oen be calculeted.

The observations such as discharge and hydravlic head at mid spacing were drawn egainst time. The discharge and the hydraulic head at mic spacirc of drains vele interpoiated at 5 -hour incervals from the akove arap ard tyrical samples are represchted through fig. No. $3(3)$ to 3.11). The (ischarge versus hydraulic head rejationehio a': corresponding time is also drawn and is shown it Efy. $3(12$) ard $3(13)$. The of versus h relationship almust Eoilonod the fooyoude's equeuior and thus the K value and a ralue wore coloutated. A typions q / h versus h relationshif is shown in $\leq i 9.3$ ist and 3 (15)。

The computed values of different paramoters are siown in table No. 3(4),

Table 44
Computed values of hy raulio peramot oxs

Figure 3(10)

ITble NO. 3 (5)

Vajues of hydraulic head and discharge at different time

Time	$\mathrm{mm} / \frac{\mathrm{d}}{\mathrm{~d}} \mathrm{ay}$	$\begin{array}{r} \mathrm{h} \\ \mathrm{~cm} \end{array}$	$\begin{gathered} \mathrm{h} \\ \mathrm{~cm} \end{gathered}$	$\stackrel{\mathrm{q}}{\mathrm{~mm} / \mathrm{dey}}$	$\text { I j.t, }{ }_{\text {minute }}$
14	-	62.4	42	6.5	5.08
19	10	60.1	43	6.65	5.19
24	9.1	56.7	44	6.78	5.30
29	8.5	53.9	45	6.95	5.43
34	8.1	51.6	46	7.1	5.55
39	7.8	49.8	47	7.23	5.65
44	8.6	48.4	48	7.43	5.80
49	7.5	47.2	49	7.58	5.92
54	7.5	46.3	50	7.73	6.04
59	7.4	45.6	51	7.83	5.16
64	7.4	44.9	52	8.08	5.31
69	7.4	44.3	53	8.28	5.47
74	7.4	43.8	54	8.48	6.63
79	7.3	43.4	55	3.68	6.78
84	7.3	43.1	56	8.90	5.95
89	7.3	42.8	57	9.3	?. 13
94	7.3	42.7	58	9.38	?. 33
99	7.2	42.5	59	9.68	7.56
1104	7.2	42.3	60	9.75	?.5?
109	7.1	42.2			
114	7.1	42.1			
119	7.1	42.0			
124	7.1	41.9			

Lable NO. 3(6)

Values of hydraulic hear and discharge at different time.
for $3 E_{15}$

Time	$\frac{q}{\mathrm{~mm} / \mathrm{day}}$	$\begin{array}{r} \mathrm{n} \\ \mathrm{~cm} \end{array}$	$\begin{array}{r} \mathrm{h} \\ \mathrm{~cm} \end{array}$	$\frac{q}{\mathrm{~mm} / \mathrm{day}}$	$\frac{q}{\text { lit./minute }}$
11	\cdots	59.3	38	4.85	3.79
19	10.2	56.8	39	5.05	3.95
24	9.1	53.4	40	5.25	4.1
29	8.2	51.0	41	5.45	4.25
34	7.5	49.1	42	5.65	4.41
39	6.9	47.3	43	5.85	4.57
44	6.5	45.7	44	6.05	4.73
49	6.2	44.5	45	6.3	4.92
54	6.0	43.5	46	6.55	5.12
59	5.8	42.6	47	6.8	5.31
54	5.8	41.7	48	7.1	5.55
69	5.8	40.9	49	7.4	5.78
74	5.7	40.3	50	7.75	6.05
79	5.6	39.8	51	8.1	6.03
84	5.6	39.4	52	8.45	6.6
89	5.6	39.0	53	6.85	6.91
94	5.6	38.7	54	9.2	7.19
99	5.5	38.5	55	9.6	7.5
104	5.5	38.3	56	10.0	7.81
109	5.4	38.1	57	10.35	8.09
114	5.4	37.9			
119	5.4	37.7			
124	5.4	37.6			

Table No. 3(7)
Valuss of hydraulic heaa and discharge at different time
Eor 4tit 5

Time	$\begin{gathered} \mathrm{q} \\ \mathrm{~mm} / \mathrm{day} \end{gathered}$	$\begin{array}{r} \mathrm{h} \\ \mathrm{~cm} \end{array}$	$\begin{array}{r} \mathrm{h} \\ \mathrm{~cm} \end{array}$	$\begin{gathered} q \\ \mathrm{~mm} / \mathrm{day} \end{gathered}$	lit/ minute
14	-	55.5	36	3.7	2.89
19	7.5	51.0	38	3.95	3.09
24	6.5	47.5	38	4.15	3.24
29	5.9	45.3	39	4.35	3.40
34	5.9	43.7	40	4.55	3.55
39	5.0	42.3	41	4.78	3.73
4 4.	4.8	41.1	42	4.98	3.89
49	4.6	40.3	43	5.20	4.56
54	4.5	39.6	44	5.48	4.28
59	4.3	38.8	45	5.73	6.48
64	4.2	33.3	46	6.03	4.71
00	4.1	$3 \% .8$	47	6.38	4.78
7%	4.0	- 37.3	48	6.52	5.33
19	4.0	36.9	49	7.35	5.74
24.	3.9	35.6	50	7.93	6.20
EG	3.9	36.7	51	8.53	6.66
94	3.8	36.2			
9.9	3.8	35.9			
104	3.7	35.8			
109	3.6	35.5			
114	3.6	35.3			
119	3.6	35.1			
124	3.6	35.0			

Table No. 3 (8).
Values of hydraulic head and discharge at different time
for $5 E_{15}$

Tine	$\mathrm{mm} / \frac{\mathrm{d}}{\mathrm{~d} a y}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~cm} \end{aligned}$	$\begin{array}{r} \mathrm{h} \\ \mathrm{cmin} \end{array}$	$\stackrel{q}{\mathrm{rmm} / \mathrm{day}}$	lit/minute
1.4	-	58.3	41	3.23	2.52
19	6.9	54.3	42	3.4	2.66
24	6.0	52.0	43	3.58	2.80
29	5.4	50.5	44	3.73	2.91
34	4.9	49.3	45	3.95	3.09
39	4.6	48.4	46	4.20	3.28
44	4.3	47.6	47	4.43	3.46
49	4.2	45.8	48	4.7	3.67
54	4.0	46.2	49	5.0	3.91
59	3.8	45.5	50	5.38	4.20
54	3.7	45.0	51	5.73	4.48
59	3.6	44.5	52	6.18	4.83
74	3.5	43.9			
79	3.4	43.4			
84	3.3	43.0			
89	3.3	42.6			
94	3.2	42.3			
99	3.1	41.9			
104	3.1	41.5			
109	3.0	41.1			
114	3.0	40.7			
119	3.0	40.4			
124	3.0	40.4			

Table NO. 3(9)
Values of hydraulic inead and discharge at different time
for 7530

Time	$\frac{\mathrm{q}}{\mathrm{~mm} / \mathrm{day}}$	ch	$\begin{array}{r} \mathrm{h} \\ \mathrm{~cm} \end{array}$	$\begin{gathered} q \\ \mathrm{~mm} / \mathrm{day} \end{gathered}$	1it/ minute
14.	1.53	49.8	29	0.42	0.88
19	1.41	49.2	30	0.46	0.96
24	1.31	47.9	31	0.49	1.02
29	1.21.	46.6	32	0.53	1.10
34	1.14	45.5	33	0.57	1.19
39	1.08	42.2	34.	0.61	1.27
44	1.01	43.0	35	0.65	1.35
49	0.96	41.7	36	0.69	1.44
54	0.91	40.5	37	0.73	1.52
59	0.86	39.4	33	0.78	1.63
64	0.81	38.4	39	0.83	1.73
69	0.76	37.5	40	0.87	1.81
74	0.71	36.5	41	0.91	1.92
79	0.68	35.5	42	0.97	2.02
84	0.64	34.6	43	1.01	2.10
89	0.60	33.8	44	1.06	2.21
94	0.58	33.0	45	1.11	2.31
99	0.54	32.2	46	1.16	2.42
2. 04	0.51	31.4	47	1.23	2.56
109	0.49	30.8	48	1.31	2.73
11.4	0.46	30.1	49	1.39	2.90
119	0.45	29.5	50	1.54	3.21
124	0.44	29			

Table No. 3(10)
Values of hydraulic head and discharge at different time

$$
\text { for } 8 \mathrm{E}_{30}
$$

Time		Cm	$\begin{array}{r} \mathrm{h} \\ \mathrm{~cm} \end{array}$	$\stackrel{q}{\mathrm{~mm}} / \mathrm{day}$	$\begin{gathered} \text { lit/ } \\ \text { minute } \end{gathered}$
14	1. 65	43.0	22	0.55	1.15
19	J. 5.4	42.0	23	0.57	1.19
24	1.44	40.5	24	0.6	1.25
29	1.34	39.10	25	0.63	1.31
24	1.25	37.80	26	0.65	1.38
35	$\therefore .18$	36.50	27	0.58	1.42
44	2. 10	35.40	28	0.71	1.48
49	1.03	31.2	29	0.75	1.56
54	0.96	33.0	30	0.79	1.65
59	0.9	32.0	31	0.84	1.75
64	0.84	31.0	32	0.9	1.88
69	0.8	30.10	33	0.96	2.0
74	0.76	29.20	34	1.01	2.10
79	0.73	23.20	35	1.07	2.23
84	0.7	27.40	36	1.13	2.35
\&9	0.68	25.5	37	1.19	2.48
94	0.66	25.70	38	1.26	2.63
99	0.63	2\%.90	39	1.33	2.77
104	0.61	24.2	0	1.4	2.92
109	0.6	23.5	41	1.47	3.05
11.4	0.59	22.8	12	1.54	3.21
119	0.56	22.1	43	1.63	3.4
124	0.55	21.5			

The average value of hydraulic conductivity is thus computed as $1.453 \mathrm{~m} /$ day. The values of discharge and hydraulic head at identical values of time and values of q in $m m / d a y$ and litres per minute at identical hydraulic heads are given for each tile drain in table No. $3(5)$ to $3(10)$. Another important Eeature noticed in the project area is that the water table at zero pumping is not level and showed a slope towards the Earther sicie from the outside waterbody. When tile drains arc instailed in this area there is always a backflow through the drains towards the Earther side since the tile drains offers rolatively no resistence to flow. This cen be easily identified from the fig. 3(16). The values corresponding to the figures are given in appendix II.

RESEARCH PROJECT NO. 36

2. Title of the project
3. Titie of the problem
: Development of a suitable technom logy for the sub-surface drainage system in the Kari lands of Kuttanad.
: Effectiveness of tile drainage system in the performance of paddy crop in the Kari land.
4. objectives
a) To assess the incremental yicld of paddy due to tile drainage syst $\in \mathrm{m}$.
b) To study the influence of the tile drainage in the pattern of growth of roots of paddy crop.
c) To study the growth pattern of paddy crop under tile drainage system.
d) To study the effect of tile drainage in the improvement of root zone profile of Kari lands.
5. practical Utility:

A remarkable improvement on the growth and yield of paddy $=n 0$ and also on the fertility of root 20 he has been revealed from the pilot study on sub surface tile drainage system in the project area. Hence, this detailed experiment will bring out the magniwude of incremental productivity
of Kari lands with laying of a suitable tile drainage system. The study hill taiso help to evaluate the economic feasibility of the project.
-

5. Technical programme

paddy crop will be raised in the field laid out with the lateral drains, siving uniform package of practices in the whole experimental area (2.5 ha). The standing crop will be divided into different strips of 5 n . wich along the drain line. The first strip designeted as T_{1} will fall 2.5 m . on either side of the centre of the drain line. The second strip, T_{2}, will fall between 2.5 m . and 5 m . from the drain Iine on either side and T_{3} will fall between 5 m . and 7.5 m . from the drain line on either side. Hence, lateral drains of 15 m . spacing will have three treatments T_{1}, T_{2}, T_{3} and 4 replications (4 experimental.lines). For drain lines with 30 m . spacing will have 6 treatments $\left(T_{1}{ }^{-T_{6}}\right)$ rith 2 replications. The different attributes of growth and yiold of paddr crop will be recorded for each strip. Thc pattern of growth of roots will be studjed at different stages of growth. The pre and post cropping soil curlities will be eswimatad ton assess the improvement of soil fertility.
6. Observations to be Recorded
a) Growth and yield attributes of paddy
b) Assessment of growth of paddy roots at different intervals.
c) Physio-chemical analysis of soil.
d). Monitoring of quality of drainage and irrigation water.
7. Date of start
8. Date of Completion
: December 1984
: December 1987
9. Progress of work

The essential layout of tho experiment is as given in project No. 3a except for the type of observations. Day and night pumping throughout the cultivation season was started along with the broadcasting of the paddy seeds and were continued upto 10 days before harvest. Observations like hoight of the plant, number of hills/sq.m, number of panicles/Sq.m, average penicle/hill, grain weight/ha and
straw weight/ha were taken and subjected to statistical analysis. The analysis was done separately for 15 m . and 30 m . spacing. The results of the analysis are represented through table $3(11)$ to $3(22)$.

It has been found that there was no significant variation for any parameters in between the drain lines (15 m . spacing) and all the parameters except number of hills/ Sq.m. were significantly superior to the control plot. In the case of 30 m . spacing the grain weight upto 15 m .
 upto 30 m . from drain was found superior to the control plot while all other parameter were found insignificant. It could be concluded that a 15 m . spacing will give an additional yield of $1.93 \mathrm{t} / \mathrm{ha}$ of gr in and $10.3 \mathrm{t} / \mathrm{ha}$ of straw. The effect of drainage was statistically superior to the control plot upto 15 m . and then started declining.
water samples from each tile drain were collected at fortnightly intervals and they were analysed for its EC and pH. Figure No. 3 (17) is a graph of EC versus time and it could be scen and concluded that the soils which were closer to the outside natural bodies of water drained less salts than the one which is farther. This is because of the higher water level outside the farming area creating a natural internal drainage and to some xtent washes the soil. The graph of pH versus time, fig. $3(18)$, gave almost identical values of pH for each drain excent for $7 E_{30}$ where the acidity level was comparatively very high.
water samples from the drainage sump were also collected daily and were analysed for EC and pH . The values are drawn against time and are shown as Fig. 3(19) and 3(20). It could be seen that the EC values of the drained water were between 2 to $4.5 \mathrm{mmhos} / \mathrm{cm}$ and pH values were between 6.5 to 8.5.

A comparison of the weekly average values of EC of the drained water and the irrigation water shown in fig. 3(21) indicated that a substantial amount of salts can be leached

Table 3(11)

Item: Height of the plant in cm. (15m spacing)

Variance Table

Total 231272.215

$$
\begin{aligned}
& C D=5.07 \mathrm{~cm} \\
& ========
\end{aligned}
$$

䨝but 3(12)
Item: for of h111e/m m^{2} (15 m spacing)

$$
\text { Gross }=2544
$$

variance table

DF	SS	MS	Pratio	F table	e Remarks
Block 5	2616	523.2	1.244	2.9	Non signi-
					ficant
Treat 3	1521.333	507.111	1.205	3.29 N	on signi
					ficant
Error 15	6310.667	420.711			
Total 23	10448.00				

Table 3(13)
Item No. of panicles $/ \mathrm{m}^{2}(15 \mathrm{~m}$ spacing $)$

| | R_{1} | R_{2} | F_{3} | R_{4} | R_{5} | R_{6} | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Tl 568 | 752 | 764 | 592 | 636 | 760 | 678.67 |
| | $\mathrm{~T}_{2} 746$ | 586 | 740 | 500 | 870 | 700 | 690.33 |
| | $\mathrm{~T}_{3} 606$ | 534 | 664 | 778 | 772 | 620 | 662.33 |
| Control | $\mathrm{T}_{4} 420$ | 220 | 480 | 392 | 576 | 616 | 450.67 |
| | | | | | | | |

$$
\text { Gross }=14892
$$

	DF	SS	MS	Fratio	F table Remarks		
Block	5	108100	21620	1.952	2.9	-	
Treat	3	233120.667	77705.889	7.016	3.29	T-Signi	
Error	15	166141.333	11076.089				
Total	23	507362.00					

$C D=129.48$ panicies $/ \mathrm{m}^{2}$

Table 3(14)

Item: Average panicles/hill (15 m spacing)

	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	Mean
	T_{1}	6.45	5.97	6.70	6.88	6.91	5.51
T_{2}	5.11	6.23	6.49	6.94	7.37	5.22	5.23
T_{3}	7.21	5.04	5.63	7.20	6.89	6.20	6.36
control $T_{4} 5.0$	3.67	4.61	4.67	4.5	6.42	4.81	
Total							

$$
\text { Gross }{ }^{\circ} \% 148.82
$$

$$
\begin{aligned}
\mathrm{CD} & =1.00 \text { panicle/hill } \\
& ==========
\end{aligned}
$$

Table 3(15)
Grain wt. (t/ha) - 15 m spacing

$$
\begin{aligned}
C D & =1.23 \mathrm{t} / \mathrm{ha} \\
& ==========
\end{aligned}
$$

Table 3(16)
 Straw wt $(t /$ ha $)-15$ m spacing

Zariance table

| | DF | SS | MS | F ratio | F table | Remarks |
| :--- | :--- | :--- | ---: | :--- | :---: | :---: | :---: |
| Block | 5 | 100.64 | 20.13 | 1.26 | 2.9 | - |
| Treat | 3 | 487.47 | 162.49 | 10.20 | 3.29 | TwSig. |
| Error 15 | 238.99 | 15.93 | | | | |
| Total 23 | 827.10 | | | | | |

$$
C D=4.91 \mathrm{t} / \mathrm{ha}
$$

$$
\text { Gcoss }=2580.07
$$

Variamce table

	DF'	SS	MS	F ratio	taole	Renarks
Block	3	153.37	51.12	2.96	3.16	NS
Treat	6	688.01	114.67	6.63	2.66	Signiftran
Error	18	311.20	17.29			
Total	27	1152.59				

$$
C \cdot D=6.18 \mathrm{~cm}
$$

$\frac{\text { Table } 3(18)}{2}-30 \mathrm{~m}$ spacing
No. of hills $/ \mathrm{m}^{2}-30$

	R_{1}	R_{2}	R_{3}	R_{4}	Mean
$T_{2} 80$	104	144	132	115	
T_{2}	88	148	108	160	126
$T_{3} 120$	104	112	88	106	
$T_{4} 148$	96	92	100	109	
$T_{5} 128$	56	92	104	95	
$T_{6} 136$	120	92	108	114	
Control					
T_{7}	84	136	120	96	109
Total	784	764	760	788	

$$
3 \operatorname{cose}=3096
$$

	DF	SS	MS	Pratio	F table	Remarks
Block	3	84.57	28.19	0.14	3.16	NS
Treat	6	2150.86	358.48	0.47	2.56	NS
Error	18	13803.43	766.86			
Total	27	16038.86				

Tble 3(19)
Average panjclo/hil-30m spacing

Table 3(21)
Grain wt. t/he - 30m spacing

"ariance table

	DF	SS	MS	F ratio	F taple	Remarks
Block	3	9.07	3.02	2.52	3.15	NS
Treat	6	33.34	5.56	4.63	2.65	gnificant
Error	18	21.61	1.20			
Total	27	64.02				

$$
C . D=1.63 \mathrm{t} / \mathrm{ha}
$$

Table 3(22)

Straw wt. $t / \mathrm{ha}-30 \mathrm{~m}$ spacing

		R_{1}	R_{2}	R_{3}	R_{4}	Mean
	T_{1}	24.52	20.64	22.00	19.52	21.67
	$\mathrm{~T}_{2}$	31.44	30.32	25.64	24.68	28.02
	$\mathrm{~T}_{3}$	30.88	26.56	20.28	19.20	24.23
	$\mathrm{~T}_{4}$	27.40	24.32	15.20	24.60	22.88
	$\mathrm{~T}_{5}$	22.28	20.84	21.64	23.16	21.98
	$\mathrm{~T}_{6}$	26.44	25.88	21.64	23.76	24.43
Control	T_{7}	16.60	12.12	10.08	16.52	13.83
Total		179.56	160.68	135.48	151.44	628.16

variance table

	DF	SS	MS	F ratio	F table	Remarks
Block	3	139.21	46.40	6.3	3.16	Significant
Treat	6	453.72	75.62	10.26	2.66	"
Error	18	132.68	7.37			
Total	27	725.61				

$$
C . D=4.03 \mathrm{t} / \mathrm{ha}
$$

: 80:
Table 3(23)
Water Sample Data Taken at Fortnightly Intervals (collected from tile)

EC(nmhos/on) values

Location	Date				
	21-10-85	5-11-35	25-11-85	10-12~85	6-1-86
1B	2.67	1.80	2.10	2.6	2.1
	3.30	2.40	2.40	2.50	2.50
$2 \mathrm{E}_{15}$	3.30				
$3 \mathrm{E}_{15}$	2.94	3.30	3.00	3.50	2.40
$4^{4} \mathrm{E}_{15}$	2.13	4.20	3.90	5.20	2.40
$5 \mathrm{E}_{15}$	2.27	4.80	4.80	5.70	3.50
	4.80	4.510	5.10	5.0	2.70
${ }^{68} 15 / 30$	4.80				
$7 \mathrm{E}_{30}$	6.06	6.30	6.30	\cdots	4.80
$8 \mathrm{E}_{30}$	4.92	4,80	4.80	-	4.40
$9 \mathrm{E}_{30}$	4.35	-	--	\cdots	-

Table $3(24)$
Water Sample Data aken at Fortnightly Interval
(collected from tilas)
pH values

Figure 3(17)
water samples from drain at fortnightly interval - EC analysis

: 83 :
Table 3(25)
Water sample data taken daily from the drainage sump
EC. (mminos/cm)

Date	EC	Iate	EC	Date	EC
		21-11-85	3.30	22-12-85	4.5
2.-10-82	\cdots	22-11-85	4.05	23-12-85	4.55
22-10-85	\cdots	22-11-85	.	23-12-85	4.75
$23-10-85$	2.45	23-11-85	3.75	12	4.75
24, 10-85	4.1	24-11-85	3.06	25-12-85	
$25-10-85$	1,8	25-11-85	4.20	26-12-85	4.38
25-10-85	2.4	26-11-85	3.70	$27-12-85$	4.10
	0.69	27-11-85	3.85	28-12-85	4.23
$27-10-85$	0.69	27-11-85	3.8	29-12-85	4.55
28-10-85	2.17	28-11-05		30-12-85	4.90
29-10-85	4.0	29-11-85	3.9	30-12-85	4.90
30-10-85	1.8	30-11-85	3.75	31-12-85	5
31-10-85	1.98	1-12-85	3.95	1-1-85	3.95
1-11-85	2.93	$2-12-35$	3.19	$2-1-86$. 03
$1-1-85$	1.8	$2-12-85$	2-94	3-1-86	\square
$3-11-83$	2.63	4-12-85	4.8		
4-11-835	2.70	$5-12-35$	4.95		
$5-11-85$	2.01	6-12-85	6.65		
$5-11-85$	2.20	$7-12-85$	\%.60		
7-11-85	2.34	8..12-35	4.70		
3-11-85	2.77	9-12-85	4.48		
$9-11-85$	-	10-12-85	4.85		
10-11-85	--	11-12-85	4.25		
1.1-11-85	2.73	12-12-85	4.55		
12-11-35	2.54	13-12-85	4.25		
13-11-85	3.38	14-12-85	3.78		
1坴-11-35	3.50	15-12-85	4.33		
15-11-25	-	16-12-35	4.60		
16-11-85	3.9	17-12-85	4.15		
17-11-85	3.88	18-22-85	3.44		
18-11-85	3.98	19-12-85	\cdots		
19-11-85	3.90	20-12-85	2.87		
20-11-85	5.4 .05	21-12-85	4.45		

Table $3 \quad(26)$

Water sample data taker daily from the drainage sump
pHivalues

Date	pH	Date	p^{H}	Date	pH
21-10-85	-	15-11-85	-	9-12-85	6.9
22-10-85	6.5:	15-11-35	5.4	10-12-85	7.5
23-10-85	5.67	17-11-35	7.8	11-12-35	7.1
24-10-85	6.4	18-11-85	8.6	12-12-35	6.8
26-10-85	7.1	19-11-85	7.6	13-12-85	6.6
27-10-85	7.5	20-11-85	7.6	14-12-85	6.4
28-10-85	$7.0{ }^{\prime}$	21-11-35	7.9	15-12-85	6.5
29-10-85	7.1	22-11-85	7.5	16-12-85	6.3
30-10-85	7.2	23-11-85	7.7	17-12-85	7.1
31-10-65	7.9	24-11-35	7.9	18-12-85	6.7
1-11-35	7.8	25-11-85	7.5	19-12-85	5.9
2-11-85	8.2	26-11-85	7.7	20-12-85	6.6
3-11-85	7.7	27-11-85	7.7	21-12-85	7.3
4-11-85	8.1	28-11-85	7.3	22-12-85	7.2
$5-11-85$	8.4	29-11-85	6.9	23-12-85	7.5
5-11-85	8.0	30-11-85	7.0	24-12-85	6.7
7-11-85	7.6	1-12-85	7.6	25-12-85	6.7
3-11-85	7.7	2-12-85	6.7	26-12-85	6.6
9-11-35	7.4	3-12-85	7.1	27-12-85	6.5
10-11-85	-	4-12-85	7.6	28-12-85	7.0
11-11-85	7.6	5-12-85	7.6	29-12-85	7.2
12-11-85	7.4	6-12-35	7.1	30-12-85	6.6
13-11-85	8.1	7-12-05	6.6	31-12-85	6.8
14-11-85	7.8	3-12-i5	7.3	1-1-36	6.9
				2-1-86	7. 1
				3-1-86	-

Table 3 (28)
Weekly averages of EC anu pH of irrigation and drained water

$88:$

Figure 3(22)

Weekly comparison of pH between irrigation and drained water

Table 3(28)
Soil sample oata okken at different time
$\mathrm{EC}(\mathrm{mmhos} / \mathrm{cm})$

| | | Da.ze | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
: 91:
$$

Figure 3(23)

Table 3(29)
Soil sample data taken at different time
pH values

Location	Date		
	21-10-85	10-12-85	7-1-86
18_{15} on the line	6.05	5.60	5.54
${ }^{1 .}{ }_{15}$ middle	6.32	5.90	5.57
$2 \mathrm{E}_{15}$ on the line	6.75	5.80	6.06
$2 \mathrm{E}_{15}$ middle	5.39	5.80	5.78
$3 \mathrm{E}_{15}$ on the line	4.32	5.50	5.70
$3 \mathrm{E}_{15}$ middle	6.21	4.80	5.69
$4 \mathrm{E}_{15}$ on the line	5.90	4.20	5.80
$4 \mathrm{E}_{15}$ middle	4.88	5.50	6.14
$5 \mathrm{E}_{15}$ on the line	6.52	4.30	6.10
$5 \mathrm{E}_{15}$ middle	5.94	5.50	5.66
$6 \mathrm{~B}_{15 / 30}$ on the line	5.26	5.80	5.26
$6^{6} 15 / 30$ midale	5.77	4.90	5.70
$7 \mathrm{E}_{30}$ on the line	5.56	4.60	5.50
$7 \mathrm{E}_{30}$ midale	5.15	4.40	5.50
$8 \mathrm{E}_{30}$ on the line	6.26	4.30	5.56
$8 \mathrm{E}_{30}$ middle	6.20	5.40	5.05
$9 \mathrm{E}_{30}$ on the line	5.32	4.80	5.43
Control	4.50	5.90	5.05

through the sub surface drainage system. while the EC of the irrigation water fluctuated between $0.3 \mathrm{mmhos} / \mathrm{cm}$ to $2.2 \mathrm{mmhos} / \mathrm{cm}^{-}$ the EC of the drained water ranged between 2.4 to $4.7 \mathrm{mmhos} / \mathrm{cm}$. The same comparison of pH values, as can be seen from fig. 3(22), shows relatively same pH values wich ranged between 6 to 7.5 .

Soil samples were also collected at fortnightly intervals from pre determined spots to monitor the changes in its quality. They were taken from a 15 cm depth. The EC and pH values are drawn against time and are shown in fig. 3(23) and $3(24)$. The EC values continued to reduce since pumping and started rising towards the end of the season as the pumping intensity reduced. It was also noted that the EC values for the soil samples on the drain line were comparatively less than the EC values of soil samples at the mid spacing. The pH values of the scil, though remained at acidi= Ievel, were not very harmful for rice prcluction. It could be noticed that the pH was comparatively more acidic at drain Iocations than that at the mid spacing winich might be because of the aeration at drain locations due to the drastic lowering of water tables at that locatior on pumping.

SECTION E

SUMMARY

Investigation of the quality variation of the water in the project area was continued. The assessment was mainly focussed on the acidity and salinity of flooding water and the groundwater. The pH values fluctuated between 5.5 to 7.5 and the EC values fluctuated between 0.5 to $2.5 \mathrm{mmhos} / \mathrm{cm}$ and at times crossed these limits. Seasonal fluctuations of groundwater table with reference tq surface water level was also monitored Juring the reporting year. The field was flooded from April 85 to Sept. 85 and hence no observation was possible during that poriod. During the cropping period the field was almost saturated and the surface and the ground water in the field was found to keep the same elevation and hence a clear cut groindwater movement was pot traceabie. The water It' ' $=$
levels in the polders were always lower by 0.5 to 0.75 m than that in the nearby waterways.

The experiment on the "Development of a suitable technology for the sub surface drainage system in the Kari lands of Kuttanad" has revealed that the average hydraulic conductivity of the area is $1.468 \mathrm{~m} /$ day. The discharge and the hydrauiic head relationships were established. It was found that there was no significant variation for any crop growth parameters in between the drain lines for a 15 m spacing and all the parameters except number of hills $/ \mathrm{m}^{2}$ were signif $i \cdots$ cantly superior to the control plot. In the casc of 30 m spacing only the grain weight upto 15 m from the drain line and the straw weight upto 30 m from the drain line was found superior to the control plot. It could be concluded that the 15 m spacing will give on additional yield of 1.93 tons/ha of grain and 10.3 tons/ha of straw. The effect of drainage was statisticellyy superior to the control plot upto 15 m and then started declining.

It was found during the analysis of data that the soils which were closer to the outside natural bodies of water drained less salts that the soils which were farther. This could be because of the higher water level outside the farming area dereating a natural internal drainage.

The analysis of the water samples from the drainage sump has shown that the EC values of drained water were between 2 to 4.5 mmhos/cm and the pH values were between 6.5 to 8.5.

A comparison of veekly average of EC of the drained water and irrigation weter has indicated that a substantial amount of salts can be leached through the subsurface drainage system. While the EC of the irrigation water fluctuated between $0.3 \mathrm{mmhos} / \mathrm{cm}$ to $2.2 \mathrm{mmhos} / \mathrm{cm}$, the $E C$ of drained watcr ranged between 2.4 to $4.7 \mathrm{mmhos} / \mathrm{cm}$.

Soil samples were also collected at fortnightly intorvals from the expcrimental area to monitor the changes in the quality. The EC values coltinued to reduce since pumping and started rising towards the end of the season as the pumping intensity reduced. It was als, noted that the EC values on the
drain lines were comparatively less than that at the mid spacing. The pH values of scil, though remains at acidic level, were not very harmful for rice production.

SEC'ION F

problems Encountcred during the year under report

There was only one acpping season due to the flood during Junewsopt. and hence the research activities in the field had to be limited tc during that period. The field activity was mainly centered around the observations on crop data and drainage data of the already laid tile drains. The experiment on filter studies colld not be taken up for the want of favourable time.

SECT TVN G

Təchnical programme 1986-87

1) continuation of the ongoing projocts.
a) Monitoring of periodical changes in the quality of surface and subesurface water in the project area.
b) Monitoring of seasonai f: uctuations of ground water table with reference to surface water level.
c) Assessment of hydraulic properties of the tile drainage system.
d) Theoretical prediction o. drain performance in terms of water entry quality of the drain.
e) Effectiveness of tile drainage system in the performance of paddy croo in the Kari, land.
2) Evaluation of the suitailizy of different filter materials for the sub-surface drainag?.

Since the experiments conducted by sub-surface tile drains were found effective, it is very essential to deepen the existing channels to serve as a collector drain for the tile drains. The tile drains are didic at a depth of 75090 cm below the ground level and the existing open channels are below 1m depth. An appioximate estimate of Rs. $80,000 /$ - has already been submitted for approval.

APPENDTX I

Discharge at 5hour interval in mm/day for different tilo drains

* 15 m spacing
@ 30 m spacing

The suloscrips of observetior wells denotes the following

1) First digit indicates the OBW line.
2) Second digit indicates the drain line.
3) Third digit indicates the position of the OBW from the

	OBV゙ 121	OB ${ }^{\text {a }} 122$	Or 6103	OBticis 124	On7 0.025
14	55.9	57.5	62.0	57.4	57.0
19	45.5	48.8	59.3	52.3	51.8
24	39.0	43.6	55.7	47.0	46.0
29	34.0	80.8	53.4	≤ 2.0	42.0
34	30.4	37.7	51.4	39.7	38.8
39	27.4	35.8	49.6	37.3	36.4
44	25.0	34.4	48.1	35.3	34.0
49	23.0	33.2	46.9	33.7	32.0
54	21.5	32.4	46.0	32.5	30.4
59	20.2	32.0	45.2	31.4	29.0
64	19.0	31.6	44.4	30.5	27.6
69	18.3	31.4	43.7	29.8	26.6
74	17.6	31.1	43.1	29.4	25.4
79	17.2	31.0	42.6	28.9	24.4
84	16.8	30.8	42.3	28.4	23.4
89	16.2	30.7	41.8	28.1	22.6
94	15.8	30.6	41.5	27.7	21.8
99	15.7	30.4	41.45	27.4	21.2
104	15.2	30.3	41.2	27.2	20.5
1.09	15.0	30.0	41.1	27.0	20.0
114	14.7	29.9	40.9	26.8	19.5
119	14.4	29.8	40.8	26.7	19.0
124	14.0	29.8	40.7	26.7	18.6

800567

Time \qquad
OBW 131 OBW 132 OBサ 133 OBW 134 OBW 135

14	27.8	54.8	56.5	55.6	22.2
19	17.4	46.2	5.2	50.3	20.8
24	13.7	40.1	51.0	47.2	20.6
29	11.5	36.2	43.6	44.9	20.4
34	10.4	33.7	46.7	42.6	20.0
39	10.2	31.8	44.9	40.5	19.6
44	9.9	30.4	43.3	38.6	18.8
$\angle 9$	9.7	29.2	42.1	37.0	18.5
54	9.5	28.6	41.0	35.4	18.2
59	9.3	28.2	39.9	34.2	17.8
64	9.2	27.9	38.9	33.0	17.7
69	9.1	27.6	33.1	31.6	17.6
74	9.1	27.4	37.4	30.5	17.4
79	9.0	27.0	36.9	29.5	17.3
84	9.0	26.8	35.5	28.6	17.3
89	8.9	26.6	35.1	28.0	17.2
94	8.9	25.5	35.8	27.3	17.2
99	8.9	26.4	35.5	25.7	17.0
104	8.9	25.2	-5.4	26.2	17.0
209	8.9	26.0	35.1	25.7	17.0
114	8.9	25.9	$=4.8$	25.2	17.0
119	8.9	25.8	34.6	25.0	16.8
124	8.9	25.7	34.4	24.8	16.8

Time	Head (Cm)				
	OBW 151	OBW 152	OIW 153	OBW 154	OBW 155
14	12.2	56.0	62.0	56.2	53.0
14	12.2	49.4	60.9	54.5	48.7
19	9	49.4		5	45.1
24	8.9	44.6	59.9	52.	45.1
29	8.7	40.8	59.0	51.4	42.3
	8.3	37.8	58.0	50.0	40.1
34	8.3	37.8	57.1	48.7	38.3
39	8.2	35.4	37.	48.7	
44	8.2	33.6	56.2	47.3	5.
49	8.0	31.8	55.2	46.2	34.8
54	7.9	30.4	54.3	45.1	33.5
59	7.8	29.2	53.3	44.1	32.3
64	7.8	28.4	52.4	43.2	31.1
69	7.8	27.6	51.5	42.3	30.0
69			50.7	41.4	29.0
74	7.8	26.8	20,7	41.4	
79	7.8	25.2	19.9	40.5	28.
84	7.8	25.8	19.3	39.8	27.2
89	7.8	25.4	48.6	39.2	26.5
94	7.8	25.0	48.0	38.5	25.7
99	7.8	24.8	47.4	37.9	25.1
104	7.8	24.7	46.8	37.3	24.5
109	7.8	24.4	46.2	36.8	24.0
114	7.8	24.0	45.7	36.3	23.6
119:	7.8	24.0	45.7	36.3	23.6
124	7.8	23.6	14.6	35.5	22.7

OBW 171 OBW 172 OBW 173 OBW 174 OBW 175

14	19.1	43.9	44.0	41.0	41.9
19	17.4	39.5	43.0	38.2	37.2
24	16.5	35.9	<1.0	35.1	32.6
29	15.9	33.4	39.3	32.8	29.0
34	15.5	31.6	37.3	31.0	26.6
39	15.4	30.0	36.2	29.4	24.6
44	15.2	28.6	34.7	27.7	22.8
49	14.9	27.5	33.2	25.1	21.2
54	14.7	26.6	31.8	24.7	19.9
59	14.5	25.7	30.6	23.4	18.6
64	14.3	25.2	29.5	22.3	17.5
59	14.1	24.5	28.5	21.2	16.5
74	13.9	24.0	27.4	20.3	15.7
79	13.7	23.5	26.4	19.3	14.9
84	13.6	23.0	25.5	18.6	14.1
89	13.4	22.5	24.6	17.9	13.5
94	13.2	22.1	23.7	17.3	12.8
99	13.0	21.7	22.9	16.7	12.3
104	12.8	21.4	22.1	16.2	11.7
109	12.6	21.1	21.5	15.7	11.4
114	12.5	21.0	20.3	15.2	11.0
119	12.5	20.7	20.2	14.8	10.6
124	12.5	20.6	? 9.7	14.5	10.5

	UEW 18.	OBW 182	OBW 183	OBW 184	OBW 185
14	42.2	40.5	42.0	39.3	36.5
19	38.8	36.8	41.0	38.3	34.6
24	35.6	34.1	40.0	37.4	32.8
2.9	32.7	31.8	38.9	36.4	31.0
34	30.5	29.8	37.8	35.5	29.4
39	28.6	28.1	36.9	34.2	28.0
44	27.0	26.5	36.0	33.8	26.7
49	25.4	25.2	35.1	33.0	25.5
54	24.1	24.0	34.2	32.1	24.3
53	22.7	23.0	33.3	31.3	23.2
64	21.3	22.0	32.5	30.15	22.1
69	20.1	23.1	31.6	29.5	21.1
74	19.0	20.3	30.9	28.6	20.1
79	18.0	1.9.5	30.0	27.8	19.1
84.	17.0	18.9	29.2	27.0	18.2
89	16.0	18.3	28.4	26.2	17.4
94	15.2	17.7	27.6	25.4	16.5
99	14.5	17.2	26.9	24.8	15.6
104	13.8	15.5	26.2	21.3	15.0
109	13.2	16.0	25.5	23.8	14.4
114	12.7	15.6	24.8	23.4	13.7
119	12.3	15.2	24.0	23.0	13.3
124	12.0	14.8	23.3	22.7	13.0

The subscrips of oberv tion wells denotes the following

1) First digit indicate tho OBW Iine
2) Second digit indicat is tle drain line
3) Third digit indicates the position of the OBW from the drain line towards tre left

Time $\begin{array}{lllll} \\ \text { OBW } 211 & \mathrm{Hec} \text { (} \mathrm{Cm} \text {) } \\ \text { OBW } 212 & \text { OFW } 213 & \text { OBW } 214 & \text { OBW } 215\end{array}$

14 *	37.0	68.4	66.5	67.0	74.2
19	27.2	66.4	63.7	61.6	71.8
24.	23.0	65.1	61.0	59.0	69.8
29	21.2	64.5	58.7	57.2	68.8
34	20.2	64.2	56.8	56.0	68.0
39	20.0	64.2	55.4	54.9	67.4
44	20.0	64.0	54.0	54.0	66.9
49	20.0	64.0	52.8	53.1	66.6
54	20.0	64.0	51.8	52.3	66.2
59	20.0	63.6	51.1	51.5	66.0
64	19.8	63.3	50.5	50.7	65.5
69	19.8	52.6	50.0	50.0	55.0
74	19.7	61.6	49.5	49.2	54.2
79	19.6	60.2	49.0	48.4	63.4
84	19.5	57.4	48.5	47.6	62.2
89	19.5	54.5	48.2	46.9	59.6
94	19.5	52.2	47.9	46.2	53.0
99.	19.4	50.4	47.8	45.4	47.4
104	19.4	49.0	47.6	44.7	42.0
109	19.4	47.7	47.5	44.0	38.0
114	19.3	45.4	47.4	43.4	34.6
119	19.3	45.1	47.4	42.7	32.0
124	19.3	44.1	47.4	42.1	29.9

	OBW 221	OBW 222	OBW 223	OBW 22.4	OBW 225
14.	22.8	45.2	67.0	71.9	63.6
19	21.1	38.0	63.5	69.9	58.5
24	20.4	35.0	60.2	68.2	54.4
29	20.1	33.0	57.2	66.7	50.5
34	19.8	32.0	55.1	65.1	47.0
39	1.9 .7	31.6	53.3	63.4	44.2
44	19.5	31.4	52.0	51.6	41.6
49	19.2	31.2	50.8	59.8	39.4
54	19.0	31.0	49.9	58.2	37.2
59	18.7	30.8	49.2	56.5	35.5
54	18.2	30.7	48.6	54.5	33.8
59	17.0	30.4	48.2	52.4	32.4
74	15.5	30.2	47.8	50.2	31.2
79	14.3	30.0	47.5	48.0	30.0
84	13.4	29.6	47.3	46.1	29.0
89	12.8	29.4	47.0	44.5	28.0
94	12.3	29.3	46.7	42.9	$27 . \%$
99	12.0	29.2	45.6	41.5	26.13
104	11.8	29.0	46.5	40.5	25.0
109	11.4	28.7	46.5	39.5	25.5
11.4	11.2	28.5	46.5	$38.7{ }^{\circ}$	25.0
119	11.0	28.4	45.5	38.4	24.8
124	10.8	28.4	46.4	38.3	24.4

Head (Cm)

14	13.0	63.0	68.0	57.4	58.6
19	9.8	57.8	65.9	52.4	51.7
24	9.0	53.6	63.8	47.3	44.0
29	9.0	50.2	61.9	44.0	39.0
34	9.0	47.0	60.2	41.4	33.8
39	9.0	44.4	58.7	39.1	31.4
44	9.0	42.0	57.2	37.3	29.0
49	9.0	40.0	55.8	35.8	26.8
54	9.0	38.2	54.5	34.6	25.0
59	9.0	36.4	53.2	33.5	23.4
64	9.0	35.2	52.0	32.7	22.4
69	9.0	34.2	51.0	32.2	21.4
74	9.0	33.2	50.0	31.7	20.6
79	9.0	32.4	49.2	31.3	19.8
84	9.0	31.4	48.3	30.9	19.2
89	9.0	30.8	47.5	30.6	18.8
94	8.8	30.0	46.7	30.4	18.4
99	8.8	29.4	45.9	30.2	18.0
104	8.8	28.9	45.3	30.0	17.8
109	8.7	28.4	44.6	29.7	17.5
114	8.7	28.0	44.1	29.6	17.0
119	8.6	27.4	43.6	29.5	16.9
124	8.5	27.3	43.2	29.4	16.9

Time \qquad Head (Cm)					
	OBW 241	OBW 2	OBW 2	OBA 24	OBW 2
14	54.6	61.5	63.7	54.6	50.0
19	50.4	59.5	63.0	62.5	38.6
24	46.8	57.6	62.4	59.5	33.0
29	43.4	55.5	61.8	55.8	29.0
34	40.0	53.4	61.2	52.6	26.0
39	36.8	51.4	60.6	49.8	23.6
44	34.2	49.4	59.9	47.4	21.6
49	31.9	47.6	59.2	45.4	20.4
54	29.6	45.7	58.6	43.4	19.6
59	27.4	44.2	57.9	41.6	19.0
64	25.5	42.8	57.3	40.2	18.6
69	23.9	41.5	56.6	38.6	18.2
74	22.4	40.2	55.9	37.3	17.9
79	21.0	39.0	55.1	36.2	17.5
84	19.6	37.8	54.4	35.2	17.4
89	18.4	36.9	53.7	34.2	17.2
94	17.2	35.9	53.0	33.5	17.0
99	16.2	35.2	52.4	32.9	17.0
104	15.4	34.5	51.6	32.3	17.0
109	14.6	33.8	51.1	31.7	16.9
114	13.8	33.3	50.5	31.1	16.9
119	13.1	32.8	49.9	30.5	16.8
124	12.5	32.5	49.4	30.1	16.8

Time

Time	OBW 281	ORTW 282	OBW 283	ORW 284	OBW 285
14	46.2	46.9	46.3	40.2	37.6
19	43.1	45.1	45.3	39.3	35.0
24	40.2	43.2	44.3	38.3	32.3
29	37.0	41.3	43.3	37.0	30.0
34	34.3	39.4	42.4	35.6	29.6
39	32.0	37.9	41.5	34.4	25.7
44	30.2	36.4	40.5	33.1	24.0
49	28.4	34.8	39.6	32.0	22.6
54	26.4	33.4	38.6	31.0	21.1
59	25.0	32.1	37.8	30.0	19.8
64	23.6	30.9	37.0	29.1	18.5
59	22.3	29.7	36.2	28.3	17.3
74	21.0	28.6	35.2	27.5	16.2
79	20.0	27.6	34.3	26.8	15.3
84	19.0	26.7	33.4	26.1	14.3
89	18.2	25.7	32.6	25.4	13.4
94	17.4	24.8	31.8	24.8	12.8
99	16.6	24.0	31.0	24.2	12.2
104	16.0	23.1	30.2	23.6	11.2
109	15.3	22.4	29.4	23.0	11.0
114	14.6	21.6	28.6	22.6	10.4
119	14.0	21.0	27.8	22.0	99.8
124	13.4	20.2	27.0	19.8	9.3

Time	OBN 311	OBW 312	OBW 313	OBW 314	OBN 315
		-	- -	\cdots	\cdots
14	64.8	69.2	74.7	70.6	71.0
19	56.8	66.5	73.6	66.3	66.0
24	51.4	63.9	72.7	61.1	61.8
29	4.7 .6	61.1	71.8	56.9	57.6
34	44.8	58.8	70.8	53.2	54.2
39	42.5	56.5	69.8	49.6	50.6
44	40.5	54.4	68.9	46.8	47.6
49	39.0	52.7	68.1	44.4	44.8
54	37.5	51.1	67.2	42.5	42.4
59	36.3	49.6	66.3	40.8	40.4
64	34.8	48.3	65.4	39.6	38.4
69	33.8	47.0	64.7	38.8	36.6
74	32.8	45.8	64.1	38.0	35.0
79	31.9	44.6	63.4	37.2	33.4
84	31.0	43.6	52.8	36.6	32.0
97	30.2	42.8	62.2	35.8	30.6
94	29.5	42.1	61.7	35.2	29.4
99	28.9	41.5	61.3	34.6	23.4
100	28.3	40.9	60.8	34.2	27.5
109	27.9	40.4	60.5	33.7	26.5
11.4	27.6	38.9	60.0	33.4	25.7
11 l	27.2	39.4	5.9 .0	33.0	25.0
124	27.0	39.0	59.3	32.8	24.4

Time	OBW 321	OBW 322	OBW 323	OBU 324	OBW 325
14	65.6	72.3	75.4	70.2	67.0
19	57.8	79.9	74.5	67.2	61.0
24	51.9	68.4	73.6	63.6	55.6
29	4.7 .5	66.1	72.7	50.2 "	50.6
34	43.8	64.1	71.7	57.1	46.4
39	40.0	62.0	70.8	53.9	42.5
44	36.6	60.0	69.8	51.0	39.2
49	33.8	58.1	68.8	43.2	36.0
54	31.3	56.3	67.9	45.9	33.4
59	29.0	54.6	66.9	43.6	30.8
64	27.0	52.9	66.0	4-. 8	28.8
69	25.0	51.5	65.0	40.0	27.0
74	23.6	50.1	64.2	38.7	25.3
79	22.1	48.8	63.3	37.4	24
84	20.6	47.7	62.5	35.2	22.6
89	19.3	45.7	61.8	35.2	21.6
94	18.3	45.7	61.1	34.2	20.5
99	17.4	44.8	60.4	33.4	19.6
104	16.6	44.0	59.8	32.4	18.3
109	16.0	43.3	59.1	31.9	18.0
114	15.4	42.6	58.4	31.4	17.4
119	14.8	42.0	57.7	31.0	16.8
124	13.9	41.5	57.0	30.8	16.4

	OBW331	OBW 332	OBW 333	OBW 334	OBW 335
- -	--..- -	- - - -	- - - -	- - - -	- . - -
14	62.3	70.3	74.5	72.1	61.0
19	50.2	67.3	73.2	70.3	54.0
24	43.7	63.5	71.7	68.6	46.0
29	38.6	60.0	70.6	65.9	40.0
34	34.2	56.6	69.3	65.3	35.4
39	30.5	53.4	68.1	63.7	31.6
44	27.3	50.4	66.9	62.2	28.4
$\triangle 9$	24.2	47.5	65.7	60.7	25.4
54	21.7	44.7	64.4	59.1	23.0
59	19.8	42.4	63.0	57.5	21.0
64	1.8 .0	40.5	61.6	56.0	19.0
69	16.7	38.6	60.2	54.5	17.8
74	15.6	37.0	59.0	53.2	16.8
79	14.6	35.6	57.9	51.9	15.3
84	13.9	34.1	56.8	50.7	15.0
89	13.4	32.17	56.0	49.4	14.2
84	12.8	31.9	55.2	48.2	13.8
99	12.3	30.9	54.3	47.0	13.2
104	11.8	30.0	53.7	45.9	12.6
109	11.3	29.2	53.2	44.8	12.3
114	10.8	28.4	52.7	43.8	12.0
119	10.4	27.7	52.2	42.9	11.5
124	10.0	27.3	51.8	42.3	11.2

Time	OBW 351	OBW 352	OBW 353	OBW 354	OBN 355
14	65.6	68.8	59.4	68.9	66.4
19	61.6	67.3	58.6	68.3	65.3
24	57.3	65.6	57.9	67.8	64.1
29	53.4	63.8	57.1	67.1	63.3
34	50.0	62.0	56.4.	56.2	62.1
39	47.2	59.9	55.5	64.9	60.7
44	44.4	57.8	54.7	63.4	59.0
49	41.8	55.9	53.8	62.0	57.2
54	39.6	54.2	53.0	50.4	54.8
59	37.5	52.4	52.0	59.0	53.0
64	35.4	50.6	51.0	57.2	51.0
69	33.4	48.9	49.9	55.5	48.8
74	31.7	47.2	48.8	53.9	47.0
79	30.0	45.7	47.8	52.3	45.2
84	23.4	44.3	46.7	50.7	43.3
89	26.8	43.0	45.6	49.0	41.7
94	25.4	41.6	44.4	47.4	39.8
99	24.0	40.4	43.3	45.1	38.2
104	23.0	39.2	42.3	44.3	36.7
109	21.8	38.2	41.2	42.6	35.4
114	21.0	37.2	40.2	41.0	34.1
119	20.0	36.2	38.9	39.3	33.0
124	19.4	35.2	37.7	27.6	32.2

14	61.1	60.6	60.5	57.0	58.2
19	53.6	60.2	60.5	56.0	54.9
24	48.5	59.8	60.5	55.0	51.4
29	43.8	59.4	50.5	54.0	48.0
34	40.0	58.8	50.5	53.2	44.9
39	36.8	58.3	60.5	52.6	42.0
44	33.8	57.9	60.5	52.2	39.4
49	31.5	57.1	60.5	51.c	37.5
54	29.5	56.5	60.5	51.6	35.7
59	27.7	55.8	60.5	51.3	34.2
64	25.3	55.1	60.5	51.0	32.7
69	-24.7	54.3	60.5	50.5	31.4
74	23.3	53.6	60.5	49.8	30.0
79	22.2	52.8	60.5	49.1	28.7
84	21.0	51.9	58.5	48.5	27.6
89	20.0	50.9	58.5	47.5	26.4
94	19.2	50.0	58.5	46.5	25.4.
99	13.5	49.2	58.5	45.4	24.4
104	17.8	48.2	58.5	44.2	23.4
109	17.1	47.2	58.5	43.1	22.6
114	16.7	46.3	58.5	42.1	21.9
119	16.4	45,4	57.5	41.0	21.2
124	16.1	4.4 .2	56.3	40.0	20.5

APPENDIX II

Hydraulic heads at different times of pumping

OBW N	$0 \mathrm{hrs}$.	24 hrs	74 hrs.	124 hrs	
111	61.25	38.6	24.7	22.5	
112	63.25	57.4	45.5	41.3	
113	63.75	57.6	44.5	43.0	
114	63.25	45.6	35.2	34.6	
115	62.50	43.5	21.0	16.1	
121	61.75	39.0	17.6	14.0	
122	62.75	43.6	31.1	29.8	
123	62.75	55.7	43.1	40.7	
124	61.25	47.0	29.4	26.7	
125	55.75	46.0	25.4	18.5	
131	62.25	13.7	9.1	8.9	
132	61.25	40.1	27.4	25.7	
133	57.50	51.0	37.4	34.4	
134	60.25	47.2	30.5	24.8	
135	58.75	20.6	17.4	16.8	
141	58.25	16.0	10.8	9.6	
142	59.25	49.8	32.4	26.4	
143	58.25	44.0	37.1	35.5	
144	60.25	37.9	27.2	25.3	
145	--	40.8	24.0	16.6	
15E	59.75	8.9	7.8	7.8	
152	60.75	44.6	26.8	23.6	
153	62.75	59.9	50.7	44.6	
154	58.00	52.8	41.4	35.5	
155	56.00	45.1	29.0	22.7	
161	54.00	44.6	29.5	23.5	
162	55.50	52.1	42.3	37.7	
163	56.00	54.7	45.5	38.2	
164	45.50	40.8	30.0	24.6	
165	48.50	39.1	21.6	16.3	
171	47.50	16.5	13.9	12.5	
172	47.50	35.9	24.0	20.6	
173	44.00	41.0	27.4	19.7	
174	42.50	35.1	20.3	14.5	
175	44.50	32.6	15.7	10.5	
181	45.50	35.61;	19.0	12.0	
182	42.50	34.1	20.3	14.8	
183	42.50	40.0	30.9	23.3	
184	40.00	37.4	28.6	22.7	
185	38.00	32.8	20.1	13.0	

