
SULPHATE OF POTASH FOR MULBERRY CULTIVATION

M.A. SHANKAR RAJE GOWDA

AGRICULTURAL COLLEGE HASSAN UAS, BANGALORE

2010

SULPHATE OF POTASH FOR MULBERRY CULTIVATION

Editors Dr. M.A.SHANKAR Dean (Agri), Agricultural College, Hassan

Dr. RAJE GOWDA Asst. Professor of Sericulture, KVK, VC Farm, Mandya

Cover page Photo : Paired Row Planting of Mulberry raised by using SOP

634-38 SHA|SU

806653

Copies: 250

Printed at RAMAN PRINTS B'Iore - 40

FOREWORD

The silk industry in India has been playing an important role in enchancing the economic and social life of large number of people through ages. Sericulture in India is an important agro-based cottage industry providing employment to millions of people in the villages and earning foreign exchange to the tune of 600 crores per annum. Indian sericulture is mulberry-based; the climatic and edaphic conditions in the country are very conducive for the growth of mulberry in trun silk production.

Mulberry is a heavy feeder of nutrients attributing to its profuse vegetative leaf biomass production. The leaf quality is an important parameter in deciding the quality and sustainability of sericulture industry. The leaf quality is greatly influenced with different levels of inputs like irrigation, levels and sources of plant nutrients.

As an essential plant nutrient, potassium is known to have several functions inside the plant body and it has been associated with such roles as an enzyme activator, food former, root booster, stalk strengthner, breathing regulator, water stretcher, starch transporter, protein builder, wilt reducer, disease retarder, crop quality improver, chemical traffic policeman and so on.

The technical bulletin entitled "Sulphate of Potash for Mulberry Cultivation" comprises the outcome of the experiments on use of potassium sulphate in mulberry cultivation and impact on cocoon production, silk quality and grainage parameters considering all aspects systematically. This bulletin is based on the research efforts of Dr. M.A. Shankar, Dean (Agri), Agricultural College, Hassan, UAS, Bangalore. He has systematically documented the influence of different sources of potassium fertilizers on quality and sustainability of mulberry production. Hence, this publication will be of immense use to extension workers and farmers for improving the sustainability of sericulture industry in the country.

l'in

(P.G. CHENGAPPA)

Bangalore 25.09.2009

ACKNOWLEDGMENT

The technical bulletin on "Sulphate of Potash for Mulberry Cultivation" comprises of results of the study on the influence of sources and levels of potassium, on the growth, development, yield and quality of mulbery in relation to silkworm, quality of seed cocoons, fecundity, filament length, rate of moth emergence and disease incidence, has been intensively studied over a span of five years.

The authors specially acknowledge the advice, guidance and support of Dr. P.G. Chengappa, Former Vice - Chancellor, UAS, Bangalore. Further, we would place on record our heartfelt thanks to Dr.T.K. Prabhakara Setty, Former Director of Research, UAS, Bangalore for his inspiration, support and encouragement.

We would like to place on records their profound gratitude to . Dr. von Braunchweig, Head, Late Dr. Maibaum (Agronomist in-charge India) and Dr. Joseph Weibel (Agronomist), Kali und Salz, Germany, Area Manager and Officers of the Indian Potash Limited and Mr. Shenoi, Manager, Indian Potash Limited who have rendered invaluable guidance in shaping the present study and their critical suggestions during the project period are gratefully acknowledged.

It is a pleasure to thankfully acknowledge the authors of the scientific literatures and source of information, which we have referred in this bulletin and the farmers of Kolar and Bangalore Districts for their cooperation in conducting the field experiments.

Indeed we place on record our profound gratitude to Messrs. Kali und Salz, Germany and International Plant Nutrition Institute, Canada-India Programme for funding this project.

Last but not the least, we sincerely thank M/s Raman Printers, Bangalore for their timely and quality work carried out in bringing out this bulletin.

Authors

CONTENTS

FOREWORD

ACKNOWLEDGEMENT

I	SUI ITS	PERIMENTS ON USE OF POTASSIUM _PHATE IN MULBERRY CULTIVATION AND IMPACT ON COCOON PRODUCTION, SILK ALITY AND GRAINAGE PARAMETERS	1
	1.	EXPERIMENT 1 to VI - Treatment Details	5
	2.	MULBERRY LEAF YIELD	5
	3.	TOTAL LEAF YIELD	9
	4.	QUALITY PARAMETERS	14
	5.	MACRONUTRIENTS	1 4
	6.	SECONDARY NUTRIENTS	19
	7.	MICRONUTRIENTS	20
	8.	MOISTURE CONTENT	22
	9.	CHLOROPHYLL CONTENT	22
	10,	TOTAL SOLUBLE SUGAR	22
	11.	TOTAL SOLUBLE PROTIENS	23
11	ÓΝ	LUENCE OF POTASSIUM SULPHATE SILK- WORM GROWTH, COCOON ODUCTION AND POST COCOON PARAMETERS	24
	1.	SILKWORM GROWTH AND DEVELOPMENT	24
	2.	MATURE LARVAL WEIGHT	24
	3.	COCOON WEIGHT	27
	4.	SHELL WEIGHT	32
	5.	FILAMENT LENGTH	
	6.	NUMBER OF COCOONS PER KILOGRAM	33
	7.	FILAMENT DENIER	33
111	GR	AINAGE PARAMETERS	35
	1.	RATE OF MOTH EMERGENCE	35
	2.	FECUNDITY	37
	З.	DISEASE INCIDENCE	39
HIGI	HLIG	iHTS	40
REF	ERE	NCES	41

LIST OF TABLES

Table 1	:	Physico-chemical properties of the soil at the experiment sites	4
Table 2	:	Leaf yield parameters of mulberry as influenced by different sources of potassium in different locations under farmer's field condition.	6
Table 3	:	Average fresh leaf yield per plant and total leaf yield per hectare of mulberry as influenced by N & K ₂ SO ₄ levels at Main Research Station, Hebbal	7
Table 4	:	Yield parameters of mulberry as influenced by N & $K_{2}SO_{4}$ levels at M.R.S. Hebbal	8
Table 5	:	Fresh leaf yields per plant and total leaf yield per hectare of M5 mulberry as influenced by N and K_2SO_4 levels at farmer's field	10
Table 6	:	Fresh leaf yield per plant of M_s mulberry as influenced by N and $K_z SO_4$ levels in combination with different levels of Mg saturation	11
Table 7	:	Mulberry leaf yield of different varieties as influenced by sources of potassium	12
Table 8	;	Leaf quality parameters of mulberry as influenced by N and K_2SO_4 1evels at Main Research Station, Hebbal	15
Table 9	:	Leaf quality parameters of mulberry as influenced by N and K_2SO_4 levels.	16
Table 10	:	Nutritional status of M_5 mulberry leaf as influenced by N and K_2SO_4 levels in combination with different levels of Mg saturation	18
Table 11	:	Nutritional status of mulberry leaf as influenced by N and K_2SO_4 levels in combination with different levels of Mg saturation	21
Table 12	:	Silkworm growth, cocoon and post-cocoon parameters as influenced by feeding of mulberry leaf obtained by application of different sources of potassium at different levels.	25

Table 13 ;	Silkworm growth and cocoon parameters as influenced by feeding of mulberry leaves obtained by application of different levels of N and K_2SO_4	26
Table 14 :	Silkworm growth and cocoon parameters of PM and NB_4D_2 silkworm breeds as influenced by feeding of mulberry leaf obtained by application of N and SOP in different levels	29
Table 15 :	Silkworm growth and cocoon parameters of PM and NB_2D_2 silkworm breeds as influenced by feeding on leaf raised by application of different levels of N and K_2SO_4 at farmer's field	31
Table 16 :	Silkworm growth, cocoon and post-cocoon parameters as influenced by feeding on leaves obtained from different mulberry varieties grown under different potassium sources in rainfed condition	34
Table 17 :	Grainage parameters of PM, NB_4D_2 and PM x NB_4D_2 breeds as influenced by feeding of silkworms on mulberry leaf obtained by application of N and K_2SO_4 in different levels	36
Table 18 :	Grainage parameters of PM, NB_4D_2 and PM x NB_4D_2 breeds of silkworms as influenced by feeding of M_5 mulberry leaf obtained by application of N and K_2SO_4 at different levels	38

I. EXPERIMENTS ON USE OF POTASSIUM SULPHATE IN MULBERRY CULTIVATION AND ITS IMPACT ON COCOON PRODUCTION, SILK QUALITY AND GRAINAGE PARAMETERS

Different studies were carried out on the use of potassium sulphate in mulberry cultivation and in turn its impact on nutrition quality of leaf and cocoon production at the University of Agricultural Sciences, Bangalore. In addition, experiments were laid out in farmer's field in different locations in and around Bangalore (Table 1) to study the efficacy of two main sources of potassium *i.e.*, potassium Chloride (MOP) and Potassium Sulphate (SOP) on growth, yield and quality of mulberry in relation to cocoon production and silk quality.

EXPERIMENT I

The efficacy of potassium sources on growth, yield and quality of mulberry in relation to cocoon production and silk quality under irrigated condition.

The treatments consisted of application of K as K_2SO_4 at 120, 160 and 180 kg/ha/yr in five splits in addition, two more treatments with K at120 kg/ha/yr each KCl and K_2SO_4 application in two splits were also evaluated.

Mulberry variety : M_5 , spacing: 90 x 90 cm, Age of the garden: 3 years, Soil characters : Table 1

EXPERIMENT II

The efficacy of potassium sources on growth, development and yield of different mulberry varieties in relation to cocoon production and silk qulity under rainfed condition. The treatment includes 4 varieties of mulberry $(S_{34}, RFS_{175}MR_2$ and M_5) and two sources of potassium (Potassium Sulphate and Potassium Chloride) at 50 kg/ha/yr planted at 90 x 90 cm spacing in two years old mulberry garden. Soil characters : (Table 1)

EXPERIMENT III

Effect of nitrogen and potassium levels on growth, yield and quality of mulberry in relation to young silkworm growth, cocoon production and silk quality.

The treatments were N:P:K @Tl;180:120:160 kg/ha/yr K as K_2SO_4 , T2; 240:120:180 kg/ha/yr K as K_2SO_4 , T3; 300:120:200 kg/ha/yr K as K_2SO_4 in five splits, T4; 300:120:120 kg/ha/yr K as K_2SO_4 . (2 splits) and T; 5:300:120:120 kg/ha/yr K as KCl (2 splits).

Mulberry variety; S_{36} , spacing: 60 x 60 cm, Age of the garden: 3 years, Soil charecters : (Table 1)

EXPERIMENT IV

Effect of nitrogen and different levels of potassium sulphate on growth, yield and quality of mulberry in relation to seed cocoon production.

The treatments were N:P:K at T1; 200:120:160 kg/ha/yr K as K_2SO_4 (5 splits), T2; 250:120:180 kg/ha/yr K as K_2SO_4 (5 splits),T3; 300:120:120 kg/ha/yr K as Kcl (2 splits), T4; 300:120:120 kg/ha/yr K as K_2SO_4 , T5; 350:120:160 kg/ha/yr K as K_2SO_4 (5 splits) and T6; 400:120:180 kg/ha/yr K as K_2SO_4 (5 splits)

2

Mulberry variety: M_s, spacing 60 x 60 cm, Age of the garden; 3 years, Soil characters : (Table 1)

EXPERIMENT V

Effect of nitrogen and varied potassium sulphate levels on growth, yield and quality of mulberry in relation to seed cocoon production at farmer's field.

The treatments were: N:P:K at T1; 300:120:120 kg/ha/yr K as KCl, T2; 350:120:160 kg/ha/yr K as K_2SO_4 , T3; 400:120:180 kg/ha/yr K as K_2SO_4 and T4; 300:120:120 kg/ha/yr K as K_2SO_4 .

Mulberry variety: M_s, spacing :90 x 90 cm, Age of the garden: 4 years, Soil characters : (Table 1)

EXPERIMENT VI

Effect of graded levels of potassium and magnesium saturation of soils in relation to growth, yield and quality of mulberry.

The nitrogen, potassium and magnesium saturation levels of the experiments were NPK and Mg at T_1 ; 300:120 kg/ha/yr + 0 per cent Mg, T_2 ; 300:120:120 kg/ha/yr + 10 per cent Mg, T_3 ; 300: 120:120 kg/ha/yr K_2SO_4 . + 20 per cent Mg, T_4 ; 300:120:120 kg/ha/yr + 30 per cent Mg, T_5 ; 300:120:160 kg/ha/yr + 0 per cent Mg, T_6 ; 350:120:160 kg/ha/yr + 10 per cent Mg, T_7 ; 350:120:160 kg/ha/yr + 20 per cent Mg, T_8 ; 350:120:160 kg/ha/yr + 30 per cent Mg, T_9 ; 400:120:200 kg/ha/yr + 0 per cent Mg, T_{10} ; 400: 120:200 kg/ha/yr + 20 per cent Mg, T_{11} ; 400:120:200 kg/ha/yr + 20 per cent Mg, T_{12} ; 400:120:200 kg/ha/yr + 30 per cent Mg, T_{12} ; 40

Particulars	M.R.S Hebbal	Anekal seed	Kunigal area	-	Sathanur	Sreenivasa- pura	Venkatagiri kote	i- Method followed
1) Course sand (%)	38.50	34.00	43.00		41.65	41.00	42.31	International
2) Fine sand (%)	41.70	32.00	12.92		30.75	34.51	36.51	pipette method
3) Silt (%)	14.0	10.06	29.52		10.50	18.48	10.32	
4) Clay (%)	8.0	25.62	19.20		17.10	7.38	10.36	
Chemical properties p	prior to co	mmence	ement of	expe	eriments	;		
1) Soil pH 2) EC dms/cm²	7.2	7.5	6.9		6.9	6.5	7.1	Piper, 1996
(Electrical conductivity)	0.21	0.11	0.17	0.09	0.09	0.05	0.07	Piper, 1966
3) Organic matter (%)	0.40	0.66	0.55	1.02	2 1.02	0.54	0.56	Walkie & Black
4) Available N (kg/ha)	357	492	462	462	300	275	295	Subbraih & Asija 56
5) Availae P ₂ O ₂ (kg/ha/)	42	35	32	32	45	45	35	Bray's method
6) Available K ₂ O (kg/ha)	122	114	92	92	126	112	210	Jackson, 1973
Chemical properties a	after comp	oletion of	f the exp	erim	ents			
1) Soil pH 2) EC dms/cm ²	7.00	7.3	6.9					
(Elecrical conductivity)	0.24	0.21	0.2					
3) Organic matter (%)	0.41	0.60	0.53					
4) Available N (kg/ha)	300	439	427					
5) Availae P ₂ O, (kg/ha/)	39	33	35					
6) Available K₁O (kg/ha)	119	110	90					

 Table 1 : Physico-chemical properties of the soil at the experiment sites

The experiments were conducted on the use of potassium sulphate in combination with different nutrients on growth, development, yield and quality of mulberry in relation to silkworm growth, cocoon production and silk quality are presented in the succeeding chapters.

MULBERRY LEAF YIELD

The mulberry leaf yield showed significant difference due to application of two different sources of potassuim at different levels along with nitrogen.

Fresh Leaf Yield per plant

Application of potassium at 180 kg/ha yr in the form of potassium sulphate gave significantly higher fresh mulberry leaf yield per plant in all the locations tried (Main Research Station 501 g, Sathanur 620 g, Venkatagiri Kote 624 g, Sreenivasa Pura 563 g per plant) (Table 2) when compared to normal farmers practice wherein the potassium chloride was used as K source at 120 kg/ha/yr (in 2 splits) (448, 509, 547 and 435 g per plant respectively in the above mentioned locations). (Shankar, 1997)

Leaf yield per plant (g)						Total leaf yield (t/hayr)		
Treatement (kg/ha/yr)	MRS. Hebbal	Sathanur	Ventakata girikote	Sreenivasa- pura	MRS. Hebbal	Sathanur	Ventakata- giri Kote	Sreenivasa pura
T1 120 kgK K ₂ SO ₄	436	546	546	533	31.1	37.8	36.3	33.0
T2 160 kgK K_2SO_4	448	580	572	567	32.1	39.5	40.2	34.6
T3 180 kgK K ₂ SO ₄	501	620	624	563	36.1	40.1	41.1	35.6
T4 120 kgK Kcl	464	508	. 544	478	33.3	40.6	34.9	29.9
T5 160 kgK Kcl	480	56 5	570	487	34.5	38.3	40.1	30.0
T6 180 kgK Kcl	478	583	616	543	34.4	37.6	40.4	33.5
T7*120 kgK K ₂ SO ₄	432	524	5 67	472	30.8	37.4	33.6	29.2
T8 * 120 kgK KCl	448	509	547	⁻ 435	32.1	34.2	33.3	26.9
f test C.D. at 5%	* 35.62	* 37.75	* 33.10	* 25.99	••••• • 0.93	* 2.10	2.11	*.

Table 2 : Leaf yield parameters of mulberry as influenced by different sources ofpotassium in different locations under farmer's field condition.

* 2 splits

6

Rajegowda and Shankar (2000) observed that fresh leaf yield per plant of mulberry was higher to the extent of noteworthy when nitrogen and potassium in the form of SOP was applied at 300:200 kg/ha/yr recorded higher leaf yield per plant in both the years of experimentation at Main Research Station, Hebbal, Bangalore (141 g in the first year and 487g in the second year) (Table 3). In addition, in another experiment with other combinations of nitrogen and potassium also confirmed the fact that the application of higher quantity *i.e.*, 400 kg/ha/yr nitrogen with 180 kg/ha/yr potassium as SOP resulted in higher leaf yield per plant (223 and 512 g/plant in the first and second year respectively) when compared to normal practice of application of nitrogen and potassium (MOP) (Table 4)

Table 3	: Average fresh leaf yield per plant and total
	leaf yield per hectare of mulberry as influenced by
	N & K ₂ SO ₄ levels at Main Research Station,
	Hebbal.

Treatments kg/ha/yr		h leaf blant (g)	Total leaf yield (t/ha/yr)		
0 ,	• •	2nd year	•	2nd year	
TI 180:120:160 K ₂ SO ₄	127	409	18.7	27.2	
T2 240:120:180 K ₂ SO ₄	140	423	21.0	30.3	
T3 300:120:200 K ₂ SO ₄	174	511	25.6	34.2	
T4 300:120.120 K ₂ SO ₄	141	487	21.5	32.9	
T5 300: 120: 120 KCl	171	482	23.6	31.6	
F test	*	*	*	*	
CD at 5%	29.9	22.1	3.80	0.89	

The studies carried out in different locations at Anekal and Kunigal seed area under farmers field condition on use of SOP. Magnesium along with nitrogen revealed that application of

7

3

higher nitrogen at 400 kg/ha/yr with 180 kg/ha/yr potassium as SOP gave higher leaf yield per plant (614 g in Kunigal and 237 g in Anekal) when compared to normal practice N & K (as MOP) application at 300:120 kg/ha/yr (598 g in Kunigal195 g in Anekal) (Table 5)

A pot culture experiment with different combinations of nitrogen and potassium along with different levels of magnesium saturation noticed higher leaf yield per plant when nitrogen and potassium (SOP) was applied at 400:180 kg/ha/yr with 20 per cent magnesium (75.88 g plant) when compared to other combinations (Table 6). (Rajegowda and Shankar, 2000)

Table 4 :	Yield parameters of mulberry as influenced
	by N & K_2SO_4 levels at M.R.S. Hebbal

Treatment		Leaf yiel	d/plant (g)	Total leaf yield/t/ha/yea		
kg/ha/yr	K source	l year	ll year	I year	II year	
200:120:160	K ₂ SO ₄	151	311	20.9	23.1	
200:120:180	K₂SO₄	163	384	21.5	24.6	
300:120:120	Kel	180	478	25.1	29.3	
300:120:120	K ₂ SO ₄	196	499	26.8	30.4	
350:120:160	K,SO4	212	503	27.8	31.75	
400:120:180	K ₂ SO,	223	512	30.6	32.3	
F lest		*	*	净	¢	
C.D.at 5%		2.5	29.6	2.7	2.20	

The study initiated in dryland condition to study the response of different mulberry varities to the sources of potassium revealed that the variety RFS;175 with SOP as K source (344g per plant) performed better than other varities when compared to use of MOP as K source. All the varities respond better to SOP when used as K source instead of MOP (Table 7)

Use of SOP as K source in splits along with higher levels of nitrogen is highly beneficial for obtaining higher mulberry leaf yield per plant.

TOTAL LEAF YIELD

Shankar (1997) observed that application of potassium in the form of SOP at180 kg/ha/yr gave higher total leaf yield per hectare per year in all the locations, wherein the experiments were conducted in farmers field and at Main Research Station, Hebbal, on use of SOP in graded levels. The leaf yield obtained was 36.1 t/ha/yr in MRS, 40.2 t/ha/yr in Sathanur, 41.0 t/ha/yr in Venkatagirikote and 35.6 t/ha/yr in Sreenivasapura (Table 2)

The total leaf yield per hectare per year was significantly higher (8%) when nitrogen and potassium (SOP) was applied in 5 splits at 300:200 kg/ha/yr (25.6 and 34.2 t/ha/yr in the I and the II year respectively), when compared to control *i.e.* nitrogen and potassium (MOP) applied at 300:120 kg/ha/yr (23.6 and 31.6 t/ha/yr) (Table 3). Further, in another two year study conducted on use of graded levels of nitrogen and potassium, once again application of higher dose of nitrogen along with higher rate of potassium (SOP) at 400:180 kg/ha/yr gave higher (21.7 and 31.44 % in I and II years) leaf yield. When compared to existing package of practice *i.e.* nitrogen and potassium (MOP) application at 300:120 kg/ha/yr² (25.1 t/ha/yr in 1 year and 33.5 t/ha/yr in the II year) (Table 4) (Rajegowda and Shankar, 2000)

Treatment	Fresh le	eaf yield (g)	Leaf yield (t/ha/yr)		
kg/ha/yr	Kunigal seed area	Anckal seed area	Kunigal secd area	Anekal seed area	
T1 300:120:120 Kel	500	195	16.8	16.2	
T2 350:120:160 K ₂ SO ₄	567	225	19.0	18.8	
T3 400:120:180 K ₂ SO ₄	614	237	20.4	19.7	
T4 300:120:120 K,SO,	543	201	18.3	16.8	
F test	*	¥	*	*	
C.D.at 5%	37.6	7.7	1.1	0.60	

Table 5 : Fresh leaf yields per plant and total leaf yield per hectare of M5 mulberry as influenced by N and K,SO₄levels at farmer's field

Multilocation farmer's field trials revealed that application of nitrogen and potassium (as SOP) at higher rate *i.e.*, 400: 180 kg/ ha/yr gave higher yield 21 per cent higher leaf biomass (20.4 t/ha/ yr in Kunigal seed area and 19.7 t/ha/yr in Anekal seed area) when compared to growing of mulberry with normal practice *i.e.*, application of nitrogen and potassium (as MOP) at 300:120 kg/ha/ yr (16.8 and 16.2 t/ha/yr in the above locations) (Table 5)

Treatments		f yield/plant lg%
T1 300:120:120	0	60.70
T2 300:120:120	10	65.99
T3 300:120:120	20	68.30
T4 300:120:120	30	70.40
T5 350:120:160	0	65.97
T6 350:120:160	10	69.96
T7 350:120:160	20	73.35
T 8 3 50:120:160	30	71.70
T9 400:120:180	0	68.26
T10 400:120:180	10	71.66
T11 400:120:180	20	78.88
T12 400:120:180	30	71.58
F test		*
C.D.at 5%	1	0.84

Table 6 : Fresh leaf yield per plant of M_5 mulberry as influenced
by N and K_2SO_4 levels in combination with different
levels of Mg saturation

(Nagaraju and Shankar, M.A., 1997)

4

Treatment Leaf yield/plant	Leofvi	eld kg/ha/yr
(g)	(g)	(t/ha/yr)
V ₂ K ₁	209	9.9
V_2K_2	237	11.8
V ₂ K ₁	277	13.7
V ₂ K ₂	295	14.0
V ₃ K	317	15.7
V ₃ K ₂	3 44	17.7
V ₄ K ₁	154	7.6
V ₄ K ₂	172	8.5
F test	*	*
C.D.at 5%	0.98	5.42

Table 7 : Mulberry leaf yield of different varieties asinfluenced by sources of potassium

 $V_1:MR_2 V_2:S_{34}, V_3:RFS_{175}, V_4:M_5$

K₁:KCl, K₂:K₂SO₄

(Nagaraju and Shankar, M.A., 1997)

An experiment with different varieties of mulberry with two sources of potassium under dryland condition recorded higher leaf yield in the RFS 175 variety with potassium sulphate as K source (17.7 t/ha/yr) which was 132 per cent higher over ruling mulberry variety M_s with normal practice where in MOP as K source was used (Table 7) (Nagaraju and Shankar, 1997)

The significant increase in leaf yield in the treatments when higher rates of nitrogen along with potassium was applied may be due to application of sulphate of potash which contributes potassium and sulphur in additon to application of nitrogen which have a role in carbohydrate synthesis and as a co-factor and constitute enzymes. Further, to increase the foliage yield balanced application of nutrients is very much essential which was done in these studies. Further, high rates of N can be utilised by the plants and transformed into high yields is possible only in the presense of higher K levels (Macleod, 1969; Bhavanandan and Mahipura, 1969) and sulphur involved in nitrogen metabolism improves the efficiency of nitrogen fertilizer (Anon, 1999).

Application of potassium in the form of sulphate of potash along with increased levels of nitrogen is highly beneficial for increasing (8 to 32 %) Mulberry leaf yield.

QUALITY PARAMETERS

All the macro and micronutrient content of the mulberry leaf was influenced to the extent of noteworthy due to the application of major sources of potassium at different levels along with other nutrients.

MACRONUTRIENTS

Nitrogen, phosphorous and potassium

Rajegowda and Shankar (2000) reported that different levels of potassium along with nitrogen had significant influence on major nutrient status of mulberry leaf. Nitrogen content of leaf was significantly higher when potassium as (MOP) was applied at 300: 120 kg/ha/yr (3.53%). The phosphorous (0.347%) and Potassium (2.16%) status in leaf was higher when 300:200 kg/ha/yr of nitrogen and potassium (as SOP) was applied to mulberry when compared to lower levels of nitrogen and potassium application (Table 8)

Further, in another experiment, a higher leaf nitrogen (2.99%), phosphorous (0.56%) and potassium (2.18%) was recorded when mulberry was supplimented with 400:180 K kg/ha/yr of nitrogen and potassium as (SOP) when compared to other lower levels of nitrogen and potassium sulphate application including control (Table 9).

14

Treatment kg/ha/yr		Moisture content (%)	Total chlorophyll content (mg/g)	N ▲	P	К	Ca Per cent	Mg	<u> </u>		Total soluble proteins (%)
TI 180:120:160 K	K ₂ SO ₄	73	1.83	2.75	0.26	1.96	2.19	0.41	0.32	11.47	12.72
T2 240:120:180 K	K₂SO₄	72	1.85	2.84	0.28	2.00	2.41	0.43	0.34	12.42	13.54
ТЗ 300:120:200 К	ζ₂SO₁	73	1.93	2.81	0.35	2.16	2.61	0.49	0.35	13.02	16.21
Т4 300:120:120 К	K₂SO₄	72	2.31	3.34	0.34	2.05	2.84	0.56	0.36	13.19	14.26
Т5 300:120:160 К	CI	72	2.10	3.53	0.33	2.06	2.58	0.49	0.34	12.69	14.81
F test		N S	*	*	*	*	*		*	*	*
C.D.at 5%			0.15	0.18	0.01	0.07	0.0Ż	0.01	0.01	0.34	0.36

Table 8 : Leaf quality parameters of mulberry as influenced by N and K, SO, levels at
Main Research Station. Hebbal.

Treatment kg/ha/yr	Moisture content (%)	Total chlorophyll content (mg/g)	N ∢—	P	К	Ca Per cer	Mg nt ———	<u> </u>	TSS ——▶	Total soluble proteins (%)
T1 200:120:160 K ₂ SO ₄	70	1.92	2.24	0.44	1.69	1.76	0.51	0.25	12.49	13.61
T2 250:120:180 K,SO,	71	2.02	2.64	0.50	1.86	1.77	1.51	0.26	12.42	13.46
T3 300:120:120 KCl	72	2.13	2.82	0.53	1.97	2.09	0.52	0.26	13.10	14.51
T4 300:120:120 K ₂ SO ₄	71	2.31	2.99	0.55	2.11	1.99	0.49	0.24	13.06	14.44
T5 350:120:160 K ₂ SO ₄	72	2.29	2.97	0.56	2.13	1.99	0.40	0.30	′ 13.05	15.54
T6 400:120:180 K ₂ SO ₄	72	2.37	<u>2.99</u>	0.56	2.19	2.02	0.39	0.31	13.27	16.08
F test	N S	 *	*	*	*	*	*	*	*	*
C.D.at 5%		0.16	0.13	0.03	0.08	0.01	0.01	0.01	0.60	0.35

Table 9 : Leaf quality parameters of mulberry as influenced by N and K, SO, levels.

A study on magnesium saturation in combination with nitrogen and SOP revealed that supply of higher rates of nitrogen (400 kg/ ha/yr) and potassium (180 kg/ha/yr) as SOP along with 30 per cent Magnesium recorded higher nitrogen (2.73%) phosphorous (0.45%) and potassium (2.93%) content in leaf (Table 10)

The results clearly indicate the fact that, application of SOP with nitrogen helps in increasing the major nutrient status in leaf. These results are in confirmity with the findings of Pain (1965), Ray *et al.* (1973). The treatments receiving higher this can be explained by the fact that K has synergestic interaction with N. Application of K_2SO_4 along higher N and P may lead to uptake of their nutrients more efficiently. In line with the present finding, Mangel *et al.* (1976) observed higer combination of N and K in the solution favoured the translocation N from roots resulting in higher N content in leaf. Further, higher K content in leaf may be due to increased quantity of potassium application to soil and its uptake by mulberry. Similar observations were made by Akune and Koga (1959), Aoki and Yamomoto (1968) and Ikuo and Takagishi (1985).

Treatment		Mos- ture(%)	N	Р	К	Ca	Mg	S	Fe	Zinc	Mn
			←			Per cent			→	🔶 (ppn	n) 🛶
kg/ha/yr	Mg(%)										
T1 300:120:120	0.	68	2.46	0.44	2.67	2.54	0.42	0.21	569	59	144
T2 300:120:120	10	70	2.54	0.44	2.67	2,50	0.44	0.23	547	54	147
T3 300:120:120	20	72	2.55	0.44	2.71	2.60	0.49	0.20	565	55	148
T4 300:120:120	30	72	2.60	0.46	2.71	2.60	0.56	0.23	546	55	155
T5 350:120:160	0	70	2.69	0.47	2.72	2.56	0.46	0.25	564	60	155
T6 350:120:160	10	72	2.72	0.44	2.72	2.70	0.48	0.24	550	60	158
T7 350:120:160	20	72	2.72	0.44	2.71	2.60	0.50	0.24	561	58	156
T8 350:120:160	30	71	2.75	0.43	2.71	2.65	0.49	0.26	584	61	156
T9 400:120:180	0	70	2.79	0.44	2.72	2,55	0.37	0.25	566	58	147
T10 400:120:180	10	71	2.88	0.44	2.72	2.50	0.47	· 0.24	557	44	144
TII 400:120:180	20	72	2.92	0.44	2.72	2.60	0.48	0.25	574	52	154
T12 400:120:180	30	72	2.93	0.45	2.73	2.67	0.47	0.27	591	58	156
F test		*	*	*	*0.0178	NS	*	*	N S	NS	NS
C.D. at 5%		0.49	0.08	0.03		-	0.0971	3.1071	-	-	-

Table 10 : Nutritional status of M_5 mulberry leaf as influenced by N and K_2SO_4 levels in combination with different levels of Mg saturation

SECONDARY NUTRIENTS : CALCIUM, MAGNESIUM AND SULPHUR

The calcium (2.84%) and magnesium status (0.56%) of mulberry leaf was significantly higher when mulberry was supplimented-with 300 kg/ha/yr N along with 120 kg/ha/yr K (as SOP) was applied, when compared higher levels of potassium applications. Further, the sulphur (0.38%) content of leaf was higher 300:200 kg/ha/yr N and K (as SOP) was applied (Table 8). In another experiment, same trend was noticed when 300:120 kg/ha/yr nitrogen and potassium was applied to mulberry showed significantly higher calcium (2.09%) and magnesium (0.52%) content in leaf. However, the sulphur content was higher in the treatment when 400:180 kg/ha/yr nitrogen and potassium (as SOP) was applied to mulberry (Table 9). (Rajegowda and Shankar, 2000)

The data recorded on calcium and magnesium content in leaf showed an inverse relationship with the higher levels of potassium application which shows antagonistic effect of potassium on calcium and magnesium (Embleton, 1966). In line with this results Ikuo and Takagishi (1985) reported decreased calcium and magnsium content in the leaf with higher levels of potassium application (Rangaswamy, 1997)

Sulphur content in leaf increases (5%) with external supply of higher quantity of sulphur through sulphate of potash (Table 8, 9) which indicates that sulphur application helps in improving leaf sulphur status which is the constituent of essential amino acids *viz*. Cystene and methionine which are also the constituents of silk protien. This sulphur improvement helps in better silkworm growth, cocoon production and grainage parameters.

MICRONUTRIENTS

The micronutrient content of mulberry leaf was not much altered due to use of sulphate of potash at higher rates along with higher levels of nitrogen (Table 11). In turn, sulphate of potash application at 180 kg/ha/yr with 400 kg/ha/yr N along with 30 per cent magnesium saturation helped in increasing the iron content in leaf (Table 11) (Rajegowda and Shankar, 2000) which is a worth and most cautioned one while using the higher rates of nutrients.

The results clearly show that to increase the mulberry leaf yield, balanced proportion of major nutrients may be used without affecting the micronutrient status of leaf.

Treatment		N	Р	к	Ca	Mg	Ş	Fe	Zn ,	Mn
				— Pe	er cent —		>		(ppm)	·
kg/ha/yr	Mg(%)									
T1 300:120:120	0	2.46	0.44	2.67	2,54	0.42	0.21	569	59	144
T2 300:120:120	10	2.54	0.44	2.67	2.50	0.44	0.23	547	54	147
T3 300:120:120	20	2.55	0.44	2.71	2.60	0.49	0.20	565	55	148
T4 300:120:120	30	2.60	0.46	2.71	2.60	0.56	0.23	546	55	155
T5 350:120:160	0	2.69	0.47	2.72	2.56	0.46	0.25	564	60	155
Гб 350:120:160	10	2.72	0.44	2.72	2.76	0.48	0.14	550	60	158
Г7 ^{350:120:160}	20	2.75	0.43	2.71	2.65	0.49	0.26	561	58	156
Γ8 350:120:160	30	2.79	0.44	2.72	2.55	0.37	0.25	566	61	156
T9 400:120:180	0	2.88	0.44	2.72	2.50	0.47	0.24	557	54	147
T10 400:120:180	10	2.92	0.44	2.72	2.50	.0.47	0.24	566	54	144
Г11 400:120:180	20	2.92	0.44	2.72	2.60	0.48	0.25	574	52	154
T12 400:120:180	30	2.93	0.54	2.73	2.67	0.47	0.27	591	58	156
F test		+	*	*	N S	*	*	N S	NS	N S
C.D. at 5%		0.08	0.01	0.05		0.03	0.09			

Table 11 : Nutritional status of mulberry leaf as influenced by N and K₂SO₄1evels in combination with different levels of Mg saturation

MOISTURE CONTENT

Moisture content of leaf did not differ to the extent of noteworthy due to application of two different sources of potassium to mulberry with other nutrients (Rajegowda and Shankar, 2000).

CHLOROPHYLL CONTENT

The total chlorophyll content differed significantly with the different levels of nitrogen and potassium application to mulberry. It was significantly higher when N and K (as SOP) was applied at 300:120 kg/ha/yr (2.31 mg/g fresh weight) compared to control (2.10 mg/g fresh weight) (Table 8). Further, in another study significantly higher chlorophyll content was noticed once again in the same level of nitrogen and potassium (as SOP) at 400:120 kg/ha/yr application (2.37 mg/g fresh weight) when compared to other higher or lower levels of nitrogen and potassium application (Table 9)

The results indicates that application of N and K_2SO_4 at higher rates enhanced the total chlorophyll content of leaf which may be due to more availability of sulphur which is required for chlorophyll formation (Anon., 1999) and also increase in ribulose biophosphate carboaxylase enzyme activity which is responsible for photosynthetic Co_2 fixation (Yamashita and Hisaka, 1998). This increase in chlorophyll will in turn have been equivalent in providing greater nutrients of higher quality fresh leaf to silkworms.

TOTAL SOLUBLE SUGAR

The total soluble sugar content in the mulberry leaf was significantly higher when mulberry was grown by application of nitrogen and potassium (as SOP) at 400:180 kg/ha/yr (13.27%) when compared to lower levels of N and K application including control (13.10%) (Table 9). In another study, total soluble sugar content was significantly higher when 300:200 kg/ha/yr (13.02%) and 300: 120 kg/ha/yr (13.19%) of nitrogen and potassium (as SOP) was applied to mulberry, in control when mulberry was grown by applicatin of N and K (as SOP) at 300:120 kg/ha/yr (12.69%) (Table 8).

The higher total soluble sugar content in leaf may be due to the fact that higher chlorophyll content in leaf and increased supply of potassium which leads to higher synthesis of sugars (Yamashita and Hisaka, 1998).

TOTAL SOLUBLE PROTIENS

The marked difference in soluble protien content in mulberry leaf was noticed due to application of nitrogen and potassium (as SOP) at higher levels. It was higher when N and K (as SOP) was applied at 350:160 kg/ha/yr (15.54%) and 400:180 kg/ha/yr (16.08%) when compared to raising of Mulberry on normal package *i e.* 300:120 kg/ha/yr N and K (as MOP) application (14.51%) in the above two studies respectively (Table 9) (Rajegowda and Shankar, 2000).

The increase in soluble protein may be due improvement in leaf nitrogen content due additional supply of sulphur through sulphate of potash which is the constituent of essential amino acids which is required for protein synthesis.

The results thus indicate an improvement in the quality of mulberry leaves in terms of improved nutrient status and leaf quality due to use of higher dose of potassium sulphate which is highly beneficial to sericulture industry in order to harvest cocoons with higher yield through better growth of silk worms and cocoons.

II INFLUENCE OF POTASSIUM SULPHATE ON SILK-WORM GROWTH, COCOON PRODUCTION AND POST COCOON PARAMETERS

SILKWORM GROWTH AND DEVELOPMENT

The silkworm growth was significantly influenced by feeding on leaf raised by application of two different sources of potassium along with different doses of nitrogen to mulberry.

MATURE LARVAL WEIGHT

The mature larval weight was significantly higher when worms were fed on mulberry leaf grown by application of 180 kg/ha/yr in the form of sulphate of potash in five splits (3.49g) when compared to application of potassium at lower levels including feeding of silkworms on leaf grown by application recommended package of practice *i.e.* 120 kg of potash (as MOP) (3.09g) (Table 12) (Shankar, 1997).

Studies carried out on feeding of different breeds of silkworm to evaluate the efficacy of potassium sources on growth of silkworm reveals that rearing of worms on mulberry leaf raised by application of nitrogen and potassium (as SOP) at 300:200 kg/ha/yr recorded significantly higher mature worm weight (17.80, 40.37 and 35.34g in PM, NB₄D, and PMxNB₄D, breeds respectively) when compared to rearing of silkworms on leaf grown by following normal package of practice *i.e.* 300:120 kg nitrogen and potassium (as MOP) application (16.26, 38.15 and 33.64g in PM NB₄D, and PM NB₄D, breeds respectively (Table 13). In addition, another study on pure races (PM and NB₄D₂) confirmed the fact that feeding of silkworms with leaf grown by higher dose of nitrogen and higher rates of potasium in the form of sulphate of potash at 400:180 kg/ha/yr showed higher mature worm weight (17.1 and 38.21g in PM and NB₄D, breeds) when compared to feeding on leaf grown in control plot (15.6g in PM and 30.3 g in NB₄D₅) (Table 14) (Rajegowda and Shankar, 2000).

Treatment kg/hr/yr	Mature worm weight(g)	Single cocoon weight(g)	Shell weight (g)	Filament	Non breakable filamen length(m)
TI 120kg K K,SO4	3.15	1.72	0.268	780	496
Tl 160kg K K ₂ SO ₄	3.42	1.73	0.288	817	509
T1 180kg K K,SO,	3.49	1.76	0.300	831	553
T1 120kg K KCl	3.01	1.65	0.266	771	490
T5 160kg K KCl	3.05	1,58	0.253	772	499
T6 180kg K K _. CI	3.27	1.63	0,281	784	511
T7 120kg K K ₂ SO,	3.13	1.63	0.252	778	486
T8 120kg K K ₂ SO.	3.09	1.65	0.230	777	492
F test	*	NS	*	*	*
C.D. at 5%	0.14	-	0.04	36.80	27.51

 Table 12 : Silkworm growth, cocoon and postcocoon parameters as influenced by feeding of mulberry leaf obtained by application of different sources of potassium at different levels.

* Two splits

К

Freatment cg/hg/yr	Matre worm wt. (g)			cocoon weight (g)			Shell weight(g)			No. of cocoons/kg		Filament length (m)		
	PM	ΒV	СВ	РМ	ΒV	СВ	PM	BV	СВ	РМ	BV	PM	BV	CB
T1 180:120:160 K ₂ SO ₄	13,46	24.0	22.8	0.82	1.53	1.28	0.10	0.28	0.19	1218	911	298	830	642
T2 240:120:180 K ₂ SO ₄	13.79	26.7	23.6	0.82	1.62	1.30	0.10	0. 2 9	0.20	1217	858	300	867	69 8
T3 300:120:120 K ₂ SO;	16.03	34.9	34.3	0.90	1.72	1.34	0.11	0.33	0.21	1103	803 _	341	963	750
T4 180:120:200 K ₂ SO ₄	17.00	40.4	35.3	1.07	2.01	1.51	0.14	0.38	0.24	937	625	359	968	780
T5 300:120:120 KCl	16.26	38.2	33.6	0.94	1.71	1.28	0.13	0.30	0.20	1061	798	350	927	751
F test	*	· *	*	*	*	; *	*	*	*	*	*	*	*	*
C.D at 5%	0,70	0.86	0.64	0.07	0.09	0.01 .	0.01	0.01	0.01	40.49	30.20	22.1	49.5	1.8

Table 13 : Silkworm growth and cocoon parameters as influenced by feeding ofmulberry leaves obtained by application of different levels of N and K2SO4

The mature worm weight was significantly influenced by mulberry variety and potassium sources. RFS-175 variety grown by application of sulphate of potash as potassium source noticed higher mature worm in weight (33.33 g in cross breed) when compared to feeding on leaf grown by application of muriate of potash to other varities (Table 16) (Nagaraju and Shankar, 1997,.

The results clearly indicate that the silkworm larval weight increase with the external supply of nitrogen and potassium sulphate when compared to potassium chloride application to mulberry. This may be due to feeding of silkworms with fresh leaves containing more chlorophyl content which in turn increase the total soluble protein content in the mulberry leaf. In line with the present study Sidhu.*et.al.* (1969) reported that silkworms reared on leaves fertilized with K, the weight of full grown larva was more. Radha *et al.* (1988) reported a decrease in larval weight when worms was fed with K deficient leaves. Yakoyama (1954) indicated that the fifth instar larva having sufficiently grown silk glands for secreting silk and spinning cocoons require protein rich mulberry leaf. Thus, this improved leaf quality may have aided in sturdier development of silkworm.

COCOON WEIGHT

The cocoon weight was influenced by the graded levels of potassium sources along with graded levels of nitrogen application.

The weight of cocoons spun by worms fed on leaf obtained by application of 180 kg/ha/yr potassium as sulphate of potash in five splits recorded significantly higher single cocoon weight (1.76g) when compared with other lower levels of potassium application including same level of potassium application as muriate of potash (1.63g) and normal recommended package 120 kg/ha/yr K application in two splits (1.65) (Table 12) (Shankar, 1997).

The cocoons spun by silkworm fed on mulberry leaf grown by application of 300:200 kg/ha/yr nitrogen and potassium recorded higher cocoon weight of all three popular breeds of silkworms (1.07 in 'PM, 2:01 'NB₄D₂ and '1.51 in cross breed silk worms) when compared to cocoons spun by worms fed on leaf obtained by control plots (0.94, 1.74 and 1.2 g in PM, NB₄D₂ and cross breed silk worms respectively) (Table 13).

Treatments kg/hg/yr	Mature worm Wt.(g)		Cocoon Wt.(g)		Shell Wt.(g)		No. of Cocoons/kg		B:C Ratio	
	PM	BV	РМ	BV	ΡΜ	BV	PM	BV	РМ	BV
200:120:160 K ₂ SO ₄	14.5	27.4	0.80	1.50	0.10	0.27	1200	841	• 1,4	4.6
250:120:180 K ₂ SO ₄	14.8	28.9	0.80	1.87	0.10	0.28	1259	839	1.4	3.2
300:120:120 KCI	15.6	30.3	0.97	1.59	0.11	0.29	~1030	764	2.0	3.9 [.]
300:120:120 K ₂ SO ₄	15.4	30.7	1.04	1.71	0.11	0.34	9 69	720	2.3	4.8
350:120:160 K ₂ SO ₄	16.6	37.0	1.00	1.92	0.13	0.36	949	698	2.4	4;5
400:120:180 K ₂ SO ₄	17.1	38.21	. 1.11	2,01	0.14	0.37	930	647	2.6	3.5
Flest	*	. *	*	*	*	*:	**	*		
C.D. at 5%	0.02	0.47	0.05	0.03	0.01	0.01	53 <u>.7</u>	26.5		

Table 14 : Silkworm growth and cocoon parameters of PM and NB4D2 silkworm breeds as influencedby feeding of mulberry leaf obtained by application of N and SOP in different levels

١.

A study on pure breeds of worms confirmed the fact that heavier weight of cocoons (1.11 and 2.01g in PM and NB_4D_2) breeds was noticed wherein cocoons spun by the worms fed on mulberry grown by application of higher rates of nitrogen and sulphate of potash (*i.e.* 400: 180 kg/ha/yr (Table 14) (Rajegowda and Shankar, 2000).

In farmers field study on pure breeds of silkworms revealed that the cocoons spun by worms fed on leaf raised by application 400:180 kg/ha/yr nitrogen recorded higher single cocoon weight (1.07g in PM and 1.86g in NB₄D₂ breeds) (Table 15) (Rajegowda and Shankar, 2000).

Treatments	Mature worm Wt.(g)		Cocoon Wt.(g)		Sh Wt	ell .(g)	 No. of cocoons/kg 		
kg/hg/yr	PM	BV	PM	BV	РМ	BV	PM	BV	
T1 300:120:120 KCl	1.56	2.90	0.85	1.56	0.10`	0.29	1180	842	
T2 350:120:160 K ₂ SO ₄	1.77	3.77	1.07	1.63	0.11	0.30	95 9	748	
T3 400:120:180 K ₂ SO ₄	1.87	4.13	1.07	1.86	0.15	0.37	943	714	
T4 300:120:120 K ₂ SO ₄	1.67	3.33	0.99	1.66	0.43	0.31	1006	718	
F test	*	*	*	*	*	*	*	*	
C.D. at 5%	0.07	0.15	0.03	0.06	0.01	0.01	75.1	50.2	

Table 15 : Silkworm growth and cocoon parameters of PM and NB₄D₂ silkworm breeds as influenced by feeding on leaf raised by application of different levels of N and K₂SO₄ at farmer's field

SHELL WEIGHT

The cocoon spun by the worms fed on mulberry leaf grown by application of 180 kg/ha/yr showed higher shell weight (0.300g) followed by 160 kg/ha/yr (0.288g) when compared to growing mulberry on normal practice *i.e.* application of 120 kg/ha/yr (as KCl) (0.23g) (Table 12) (Shankar, 1997).

The study conducted by Rajegowda and Shankar (2000) on feeding of different breeds of silkworm feeding on mulberry leaf, silkworms grown by application of higher rates of nitrogen and potassium (as SOP) at 300:200 kg/ha/yr recorded higher shell weight (0.14g in PM, 0.3 g in BV and 0.24 g in CB) as compared to rearing of silkworms on mulberry leaf grown by normal practice (0.13g in PM, 0.31g in BV and 0.20g in CB) (Table 13). In another experiment on pure breeds of silkworms showed increase in shell weight with feeding of PM and NB₄D₂ breeds on leaf grown by application of N and K (as K₂SO₄) at 400:180: kg/ha./yr (0.14g in PM and 0.37g in NB₄D₂) In control it was 0.11 g in PM and 0.29g in NB₄D₂ (Table 14).

Farmers field trial confirmed the fact that feeding of worms on mulberry leaf grown by higher rates of nitrogen and potassium in the form of sulphate of potash at 400:180 kg/ha/yr showed higher shell weight (0.15g in PM and 0.37g in NB_4D_2 breeds) when compared to feeding of worms on leaf grown on normal practice with 300:120 kg/ha/yr N and K (as MOP) (0.10g in PM and 0.29g in NB_4D_2 breeds) (Table 15).

FILAMENT LENGTH

The increase in single cocoon filament length was noticed due to feeding of worms on leaf grown by application of higher rates of nitrogen and potassium sulphate. The filament length was significantly higher in the cocoons spun by worms fed on mulberry leaf grown by application of potassium (as SOP) at 180kg/ha/yr (817 m) and 160 kg/ha/yr in five splits when compared to feeding on control plots (777m) (Table 12) (Shankar, 1997)

Study on feeding different breeds of silkworms on leaf grown by application of varied rates of N and K (as SOP) revealed that application of 300:200 kg/ha/yr showed higher filament length (359m in PM,968 m in NB₄D₂ and 780m in CB) (Table 13) (Shankar and Rajegowda, 2000). Further in another experiment on different variety RFS-175 with application of sulphate of potash showed higher filament length (834m) (Table 16) (Nagaraju,1997)

NUMBER OF COCOONS PER KILOGRAM

Number of cocoons per litre were lesser when cocoons were spun by worms fed on mulberry leaf grown by supply of 300:200 kg/ha/yr N and K (as K_2SO_4) (937 in PM, and 625 in NB_4D_2 breeds) (Table 13). Further, the lesser number of cocoons per kg was noticed when worms were reared on leaf grown by application of 400:180 kg/ha/yr nitrogen and potassium (as SOP) (930 in PM and 647 in NB_4D_2 breeds)(Table 14). In farmer's field experiment the lesser number of cocoons per kilogram were noticed when nitrogen and potassium as sulphate of potash was applied at higher rates *i.e.* 400:180: kg/ha/yr (943 in PM and 714 in NB_4D_2) when compared to other lower levels of nitrogen and potassium sulphate application including control (Table 15)

FILAMENT DENIER

The higher filament denier was noticed when higher rates of nitrogen and potassium (as sulphate of potash) was applied to mulberry.

Treatment	Mature worm Wt(g)	Cocoon Wt. (g)	Shell Wt. (g)	No. of cocons/Kg. (No.)	No. of breaks in filament (No.)
VIK1	3.20	l <i>.</i> 72	0.284	751	10.05
V 1K2	3.23	1.75	0.296	78 2	7.16
V2K1	3.29	1.77	0.308	805	6.49
V2K2	3.30	1.81	0.318	811	3.72
V3K1	3.25	1.83	0.328	812	3.66
V3K2	3.33	1.86	0.336	834	1.49
V 4K1	3.12	1.67	0.267	713	12.55
V4K2	3.18	1.73	0.281	742	9.83
F test	NS	NS	NS	NS	NS

Table 16 : Silkworm growth, cocoon and post cocoon parameters as influenced by feeding on leaves obtained from different mulberry varieties grown under different potassium sources in rainfed condition

VI= MR₂V2=S₃₄ V3=RFS-175 V4=M₅ K1=KC1 K2=K₂SO₄

The cocoon weight, shell weight and silk filament length was increased by feeding of worms on leaf grown by supply with increased nitrogen and potassium through SOP may be due to improvement in nitrogen content of leaves along with soluble protein and sugars. The mulberry leaf proteins are the source for silkworms to biosynthasize silk which is made up of two proteins namely fibroin and sericin. The increase in nitrogen levels increased the protein content which in turn increase silk content in silk glands and ultimately cocoon yield. These results are in confirmity with the findings of Sengupta *et al.* (1972) and Das *et al.* (1993).

Indeed, these findings reveal the importance of nutrient status in the leaf for the silkworm growth, development and subsequently to improvement in the cocoon parameters which is a step in right direction to achieve the quality and to harvest higher cocoons yield, which in turn maximise the profitability of Sericulture.

III GRAINAGE PARAMETERS

RATE OF MOTH EMERGENCE

Moth emergence rate noticed marked difference when pure races of silkworms *viz*. Pure Mysore and NB_4D_2 breeds of silkworms, reared on mulberry leaf grown by application of different levels of nitrogen and potassium (as SOP)

Treatment	Rate of month	emergence (%)	Fecundity (Nos)			Unfertilized egg (%)			Dead egg (%)			Hatching percentage		
kg/hg/yr	РМ	BV	PM	ΒV	СВ	PM	BV	CB	PM	BV	СВ	РМ	BV	CB
T1 180:120:160 K ₂ SO ₄	73.3	59.8	395	476	373	2.5	1.7	2.1	3.7	2.5	2.4	84	68	87
T2 240:120:180 K ₂ SO ₄	73.3	60.3	430	505	420	2.7	1.7	1.7	3.3	2.5	<u>,</u> 1.6	89	74	90
T3 300:120:200 K ₂ SO ₄	83.1	70.0	466	605	499	1.6	0.6	0.5	1.7	0.6	0.5	94	91	<u>.94</u>
T4 300:120:120 K ₂ SO ₄	7 6.9	62.5	425	- 549	470	2.5	1.7	1.4	2.9	2.61	1,4	92	90	93
T5 300:120:120 KCl	80.8	64.6	451	527	452	1.9	1.1	1.7	1.7	2.1	2.4	93	89	89
F test	*	*	*	*	*	*	*	*	*	*	*	*	*	*
C. D. at 5%	0.02	5.60	38.9	.42,0	14.8	2.25	2.39	1.87	0.21	0.07	1.7	0.64	1.51	2,59

Table 17 : Grainage parameters of PM, NB₄D₂ and PM x NB₄D₂ breeds as influenced by feeding of silkworms on mulberry leaf obtained by application of N and K₂SO₄ at different levels

The moth emergence rate was significantly higher when silkworms were reared on leaf grown by application of higher rates of nitrogen (300 kg/ha/yr) along with potassium (180 kg/ha/yr) as sulphate of potash (83.1 % in PM and 70.0% in NB₄D₂) when compared to application of lower levels of nitrogen and potassium (Table 17). Further, in another experiment the rate of moth emergence was higher when silkworms were reared on leaf raised by 400:180 kg/ha/yr N and K (as SOP) application (87.67% in PM, 76.75% in NB₄D₂ breeds). In control plots the rate of moth emergence was 83.33 per cent in PM and 70.5 per cent in NB₄D₂ (Table 18).

FECUNDITY

The fecundity in different breeds of silkworms noticed significant difference due to feeding of worms on leaf grown by application of different levels of nitrogen along with two potassium sources.

The fecundity was significantly higher in the eggs laid by the moths obtained by rearing on mulberry leaf grown by application of nitrogen and potassium (as SOP) at 300:.200 kg/ha/yr (466 in PM, 605 in NB₄D₂ and 490 in CB) (Table 17). Further, the higher fecundity in another experiment was noticed when mulberry was grown by application of 400:180 kg/ha/yr N and K (as SOP) and same leaf fed to silkworms and the moths obtained from this treatment recorded higher fecundity PM 436 NB₄D₂ 636 and CB 484 (Table 18).

In farmer's field study, the fecundity was higher when silkworms were reared on mulberry leaf grown by application of N and K_2SO_4 at 400:180 kg/ha/yr (399 in PM and 504 in NB_4D_2) and the cocoons spun by these worms subjected to moth emergence. In the normal practice followed control plot the fecundity was 348 in PM and 413 in NB_4D_2 , (Table 18).

Treatment	Rate of month emergence (%)			Fecundity	(Nos)	Hatching percentage			
kg/hg/yr	PM	NB_4D_2	РМ	NB,D,	$PM \ge NB_4D_2$	РМ	NB_4D_2	PM x NB ₄ D ₂	
T1 100:120:160 K ₂ SO ₄	73,3	63.63	334	486	404	81	75	91	
T2 250:120:180 K ₂ SO ₄	74.42	60.10	356	478	431	90	79	91	
T3 300:120:120 KCl	83.33	70.50	409	520	421	92	87	92	
T4 300:120:120 K ₂ SO ₄	84.99	70.49	447	582	442	93	88	93	
T5 350:120:160 K ₂ SO ₄	87.17	75.75	432	631	466	93	91	· 92	
T6 400:120:180 K ₂ SO ₄	87.67	76.75	436	636	484	94	91	93	
F test	÷	*	*	*	*	*	*	*	
C. D. at 5%	8.74	2.72	2.24	40.12	11.82	2.40	1.00	2.43	

Table 18 : Grainage parameters of PM, NB₄D₂ and PM x NB₄D₂ breeds of silkworms as influenced by feeding of M₅ mulberry leaf obtained by application of N and K₂SO₄ at different levels

The increase in fecundity and hatching percentage is may be due to feeding of worms on nutrients rich leaves (macro and micro nutrients) along with higher soluble sugars and protiens. In addition, due to increased nutrient status of leaf, the moth were able to encapsulate higher portion of sulphur which has relevence to state the outer cover of the silkworm eggs shell called as Corian layer which contain sulphur which is the first food for silkworm ants (newly hatched worm) which has proved beyond doubt, it would help in development of disease resistance capacity to grownup worm if the young worms had fed on sulphur rich Corian layer, immediately after hatching.

Indeed, like in any other industry the silkworm eggs production is also basic input in Sericulture which contribute to the tune of 15 to 20 per cent for successful completion of economic rearing. The present findings have proved beyond doubt that the supplying S through SOP along with higher levels of N is highly beneficial in improving the post cocoon parameters, specially the grainage parameters, nevertheless, by extending this technology in the seed areas, the Sericulture progress and development will be on sustainable scale.

DISEASE INCIDENCE

The disease incidence was lesser when mulberry grown by application of higher quantity of potassium (as SOP) when compared to lower levels of potassium application.

HIGHLIGHTS

- * The Mulberry leaf yield increased to the extent of noteworthy
- (8 to 32%) when mulberry was grown by application of higher rates of nitrogen and potassium in the form of SOP.
- * The increased rates of nutrient application specially SOP in balanced proportion improves the nutritional status and biochemical parameters of leaf.
- * Feeding of silkworms with mulberry leaves grown by application of higher quantity of sulphate of potash along with nitrogen improves the silkworm growth, cocoon production and post cocoon parameters.
- * The grainage parameters *viz.* rate of moth emergence, fecundity, hatching percentage and egg weight improved with the feeding on leaf grown by application of higher rates of potassium sulphate along with nitrogen and the moths obtained from these improves the grainage. parameters.

REFERENCES

Akune, S. and Koga. K., 1959, Studies on the relationship between the potassium contents and aspiration and catalase action of mulburry, *pot. rev.*, **3**:1-10

Aoki, S. and Yamamoto, A., 1968, Mulberry and potassium, pot, rev, 16:1-10

Bhavanandana, V.P. and Mahipura, W.B. 1969, N/K interactions in tea production. *The Tea quarterly*, 40:4

Das, P.K., Choudhary, R.C., Gupta Y.K., Ghosh, A. and Datta, R.K., 1993, Effect of different levels of nitrogen, phosphorus and spacing in the growth and nutritional quality of mulberry under rainfed conditions, *Indian J. Seric*, **30** (1):83-87

Embelton, T.W. 1966, *Magnesium in Diagnosis criteria for plants and Soils*, H.D. Chapman (Ed) Univ. of California, Division of Agriculture Sciences, PP 225-263

Ikuo, K. and Takagishi, H., 1985, Diagnostic indices of phosphorus nutritional status of mulberry trees, based on water culture expriment with increasing potassium concentrations, *J. seric sci.*, Jpn: **54**:290-296.

Macleod, L.B., 1969, The effect of increasing N supply at three districts K levels on the grain yield of barely. Agronomy J, 61:1

Mangel, K., Viro, M and Hehal, G.R., 1976, Effect of potassium on uptake and incorporation of ammonium nitrogen of rice plants, *Plants and Soil*, 44(4); 547-558

Nagaraju and Shankar, M.A., 1997, Efficiency of potassium

sources on growth, yield and development of mulberry in relation to cocoon production and silk quality under rainfed condition. *M.Sc., (Seri) thesis, Univ. Agril Sci., Bangalore, PP:140*

Pain, A.K., 1965, Effect of NPK fertilizers and their combination on the yield and nutritive value of Mulberry, *Indian J. seric*, 4:1-8

Radha, N.V., Nagarajan, P. and Jayaraj, S., 1988, Mineral deficiency in mulberry plants (*Morus alba*) and its effect on economic characters of silkworms. *Madras Agric.J.*, **75**(2):384-390

Rajcgowda and Shankar, M.A., 2000, Nitrogen and potassium management in mulberry in relation to cocoon production and grainage parameters. *Ph.D, thesis,* University of Agril Sciences, Bangalore, 2000

Rangaswamy, B.T., 1994, Maximisation of mulberry leaf yield and quality through nitrogen and potassium levels at farmers field. *M.Sc. (Seri) thesis*, Univ. Agril. Sci., Bangalore. PP 127

Ray, Mandal, Lal, Pain, A.K. and Mandal, S.K., 1973, Effect of NPK and farm yard mannre on the yield and nutritive values of mulberry leaf, *Indian J. Seric.*, 12:7-12

Sengupta, K., Ray, D., Sing, B.D. and Krishnaswamy, S., 1972, Studies on the effect of high dose of nitrogen fertilization of soil on the chemical composition and nutritive value of mulberry leaf as evaluated from rearing results. *Indian J. Seric*11:28-31

Shankar, M.A., 1997, Handbook of Mulberry Nutrition,

Multiplex, Karnataka Agri. Chemicals, Bangalore, PP:121

Sidhu, N.S., Kasiviswanathan, K. and Sitaram Iyengar, M.N., 1969, Effect of feeding leaves grown under N.P. and K fertilization on the development and cocoon characters of Bombyx mori. *Indian J. Seric*, 8: 55-60

Yokayama, T., 1954, Sericulture, Ann. Rev. Entol., 18:287-288

Yamashita and Hisaka, 1998, Effect of fertilization on leaf yield, quality of Mulberry. Bull. Seric.exp. Stn. Jpn, 20:66-72

