KERALA AGRICULTURAL UNIVERSITY
 B.Tech (Food . Engg) Degree Programme 2012 and Previous Admission
 II ${ }^{\text {d }}$ Semester Re-Examination- June - July 2016

Cat. No: Basc 1205
 Title: Engineering Mathematics II (3+0)
 Marks: 80.00
 Time: 3 hours

Answer all the Questions
$10 \times 1=10$

1. The geometric series $\mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}+\ldots$ to ∞ is \qquad if $\mathrm{r}<1$.
2. For the series $u_{1}+u_{2}+\ldots+u_{n}+\ldots$, the condition $\underset{n \rightarrow \infty}{L t} u_{n}=0$ is a necessary and sufficient condition. (True/ false)
3. If $L t \frac{u_{n}}{n \rightarrow \infty} v_{n}=0$ and $\sum v_{n}$ is divergent, then $\sum u_{n}$ is also \qquad
4. The \qquad of a differential equation is the order of the highest differential coefficient which occurs in it.
5. Given the differential equations $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$. If $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)$ is a function of x, alone say $f(x)$, then \qquad is an integrating factor.
6. The general solution of Cliraut's equation $y=c x+f(c)$ can be interpreted geometrically as family of \qquad , c being the parameter
7. Bessels function of order n of the second kind is also called the \qquad
8. An equation involving partial differential coefficients of a function of two or more variables is known as \qquad
9. One dimensional heas equation is
10. The complete solution of $y "-4 y+4 y=0$ is \qquad ;

Write short notes on ANY TEN

$10 \times 3=30$

1. Define Divergence of series.
2. Define alternative series.-
3. Define Cauchy's root test.
4. Define Raabe's test
5. Define Integrating factor.
6. 'Befine Bernoulli's equation.
7. Define Bessel's function of the second kind of order n
8. \quad Solve $(y-p x)(p-1)=p$
9. Find a complete integral of $z=p q$
10. Express $2-3 x+4 x^{2}$ in terms of Legendre polynomial.
11. Anrod 30 em long has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. Find the steady state temperature in the rod..
12. Write any two solutions of the Laplace equation $u_{x x}+u_{y y}=0$ involving exponential terms in x or y .
13. Prove that the series $\sum_{n=0}^{\infty} \frac{n^{3}+a}{2^{n}+a}$ is convergent by using D'Alembert's ratio test.
14. Test the convergence of the $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+$
15. Solve $\left(y e^{x y}-2 y^{3}\right) d x+\left(x e^{x y}-6 x y^{2}-2 y\right) d y=0$
16. Explain the rules for finding integrating factors.
17. Solve $p^{3}+2 x p^{2}-y^{2} p^{2}-2 x y^{2} p=0$.
6.. Solve $\frac{d x}{d t}-\frac{d y}{d t}-y=-e^{t}, x+\frac{d y}{d t}-y=e^{2 t}$
18. Obtain the solution of the wave equation using the method of separation of variables.
19. Solve $\quad(x-y)=x^{2} p-y^{2} q$ using method of multipliers
20. Solve $\mathrm{y}^{1}+\mathrm{y}=\sin \mathrm{x}$ using the method of variation of parameters.
21. Find the steady state temperature at any point of a square plate whose two adjacent edges are kept at $0^{\circ} \mathrm{C}$ and the other two edges are kept at the constant temperature $100^{\circ} \mathrm{C}$.
