KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food . Engg) Degree Programme 2012 and Previous Admission IInd Semester Re-Examination- June – July 2016

_		: Basc 1205 Engineering Mathematics II (3+0)	Marks: 80.00 Time: 3 hours
I	An : 1. 2.	swer all the Questions The geometric series $a + ar + ar^2 +$ to ∞ is if $r < f$ For the series $u_1 + u_2 + + u_n +$, the condition $\lim_{n \to \infty} u_n = 0$ is	10 x1 =10 1. ør, , a necessary and sufficient
		condition. (True/ false)	
	3.	If $\lim_{n \to \infty} \frac{u_n}{v_n} = 0$ and $\sum v_n$ is divergent, then $\sum u_n$ is also	<u></u>
	4.	The of a differential equation is the order of coefficient which occurs in it.	of the highest differential
	5.	Given the differential equations $M(x,y) dx + N(x,y) dy =$	= 0. If $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ is a
	6.	function of x, alone say $f(x)$, then is an integration The general solution of Cliraut's equation $y=cx+f(c)$ can be as family of, c being the parameter	interpreted geometrically
	7. 8.	Bessels function of order n of the second kind is also called the An equation involving partial differential coefficients of a	
	9. 10.	variables is known as One dimensional hear equation is The complete solution of y"- 4 y'+ 4y =0 is'	· · · · .
	Wri 1.	te short notes on ANY TEN Define Divergence of series.	10 x 3 =30
	2. 3.	Define alternative series. Define Cauchy's root test.	•
	4. 5. 6.	Define Raabe's test Define Integrating factor. Define Bernoulli's equation.	
	0. 7.	Define Bessel's function of the second kind of order n	-
ł	8.	Solve $(y - px)(p-1) = p$	с*
	9. 10.	Find a complete integral of $z = pq$ Express 2-3x+4x ² in terms of Legendre polynomial.	
	11.	An rod 30 cm long has its ends A and B kept at 20° C and 80° state conditions prevail. Find the steady state temperature in t	
	12.	Write any two solutions of the Laplace equation $u_{xx}+u_{yy}$ terms in x or y.	

Write short essays on ANY SIX of the following 111

$6 \ge 5 = 30$

Prove that the series $\sum_{n=0}^{\infty} \frac{n^3 + a}{2^n + a}$ is convergent by using D'Alembert's ratio test. 1.

2. Test the convergence of the
$$\left(\frac{2^2}{1^2}, -\frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3}, -\frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4}, -\frac{4}{3}\right)^{-3} + \cdots$$

3. Solve
$$(ye^{xy} - 2y^3)dx + (xe^{xy} - 6xy^2 - 2y)dy = 0$$

Explain the rules for finding integrating factors. 4.

5. Solve
$$p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$$
.

6.. Solve
$$\frac{dx}{dt} - \frac{dy}{dt} - y = -e^t$$
, $x + \frac{dy}{dt} - y = e^{2t}$

- Obtain the solution of the wave equation using the method of separation of variables. 7.
- Solve $r(x-y) = x^2 p y^2 q$ using method of multipliers 8.

Write essay on ANY ONE

IV

1 x 10 =10

- Solve $y^1 + y = \sin x$ using the method of variation of parameters. 1.
- Find the steady state temperature at any point of a square plate whose two adjacent edges are kept at 0° C and the other two edges are kept at the constant temperature 2. 100°C.