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CHAPTER 1 

INTRODUCTION 

 

 Global warming and the effect of climate change have become a significant 

environmental and societal problem over the past few decades. Increased level of 

greenhouse gases causes notable changes in temperature which are the most obvious 

indication of climate change. This is creating cascading effects on biotic and abiotic 

components of the ecosystem. The global average temperature exhibited a warming 

of 0.85 °C [0.65 °C to 1.06 °C] between 1880 and 2012 (IPCC, 2014). Such global 

temperature changes can result in a number of effects, from glacial melt to sea level 

rise, to unusual weather events like floods and droughts, to intense but short rainfalls, 

disease outbreaks, and other effects on flora and fauna (Hickling et al., 2006; Pounds 

et al., 2006; Nogues-Bravo et al., 2007; Kannan and James, 2009; Lawler et al., 2009; 

Xu et al., 2009; Acharya and Chettri, 2012). As climate change is becoming a glaring 

problem to our world, necessary actions and studies must be undertaken to face its 

effects. 

Climate change threatens the entire structure and function of the biodiversity. 

The effects of climate change aren't all going to manifest in the same way and at the 

same time. Some will appear quickly, others slowly and are cumulative; and, there 

may be multiple impacts occurring concurrently and at different times. Impact of 

climate change on various ecosystems need to be studied thoroughly. Different 

species in distinct locations maybe affected differently and some of them many not be 

able to adapt to these sudden changes. Species distribution and habitat limits are 

commonly influenced by climate, especially when it comes to extending and defining 

species margins (Hill and Preston, 2015). The species which fail to adapt face the risk 

of extinction.  
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The climatic changes are a major driver of shifts in species distributions, and 

understanding the relative importance of climatic variables is necessary to better 

understand the impact of future climate change on species distributions. Change in 

climatic regimes has altered the geographic ranges of many species and has led to 

biodiversity loss across the globe. There have been numerous reports of shift in 

latitude or elevation of distribution of species in response to changing climate. There 

is a substantial body of evidence for changes in the phenology of birds, particularly of 

the timing of migration and of nesting as a result of changes in weather parameters. 

Populations that are genetically adapted to local climate are more susceptible to 

climate change than those that are phenologically plastic.  

A major biodiversity hotspot, the Western Ghats lie in a north-south direction 

along the west coast of India. The endemic avifauna of Western Ghats varies in 

habitat preference, from generalist species in orchards and tea plantations to specialist 

species that exist only in high elevation shola forests and grassland patches. It is well 

understood that climate is a key factor determining the geographic range of bird 

species. So, birds are considered as good indicators of climate change. 

 In India there resides, nine species of hornbills (Ali & Ripley 1987). Malabar 

grey hornbill or Ocyseros griseus is a species of birds found within the Western 

Ghats region of India, with more abundance seen in moist forests in mid elevation 

ranges. 

In order to reduce biodiversity loss due to climate change, quantifying the 

uncertainty of shifting distributions and recognizing the risk of shrinking ranges for 

the species are critical. As knowledge of the impact of climate change on biodiversity 

increases, a number of methods have been developed to assess the species 

vulnerability to climate change, both in the present and in the future. In ecology, 

species distribution models (SDMs) are widely used to identify species' habitat 

preferences and to predict how habitat suitability might change in space or time. 
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However, species distribution models have proven particularly useful in predicting 

species' responses to climate change. Range sizes are usually evaluated by examining 

the climatic characteristics of present distribution and the projections of these 

climatic conditions in the future. 

 The primary objective of this study is to find out the distribution pattern of 

Malabar Grey Hornbill (Ocyceros griseus), an avian species endemic to Western 

Ghats in the changing climate scenario and to determine the environmental variables 

that influence the distribution pattern. With regional differences in climate change 

expected in the future, understanding the distribution of species relative to current 

climatic conditions will help better understand how species distributions will likely 

respond to future climate change. There are not many studies which explicitly assess 

the effect of climate change on this endemic bird species. 

 The methodology followed here can be used for further probable distribution 

studies of various other species. This model can assist in predicting the future 

distributional changes of the Malabar Grey Hornbill, as well as the study of other 

significant similar species. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 CLIMATE CHANGE 

There is extensive evidence showing that climate change will result in 

inauspicious effects for biodiversity, including changes in temperature, increasing sea 

level, surge in heavy rainfall, and associated heat stress and inundation damage 

(Byers et al., 2018). According to IPCC AR5 report, the global mean surface 

temperature has risen by 0.78C (0.72 to 0.85C) since the late 19th Century. From 1901 

to 2010 the sea levels rose by 0.19m due to ocean warming in addition the ice sheets 

in poles have reduced in mass in recent decades (average annual sea ice extent has 

decreased by 2.7 ± 0.6% per decade) (IPCC, 2013). Change in precipitation patterns 

and an increase in the frequency of occurrence of extreme events are evident in recent 

decades (IPCC 2013). Furthermore, climate change is spatially varied, with some 

places like Arctic experiencing much added dramatic climate variations than the 

global average (IPCC, 2007). 

Human-induced climate change and different other threats like habitat 

destruction and pollution pose major menace to our environment (Walther et al. 2002; 

Brook, Sodhi & Bradshaw 2008; Pereira et al. 2010). It is possible that biodiversity 

losses will increase as climate change impacts interact with other factors, such as 

land-use change, in the future (Sala et al. 2000; Mantyka-Pringle et al. 2015). Climate 

change is likely to influence at the genetic, species, community and environmental 

levels (Thomas, Franco & Hill 2006; Foden et al. 2013; Pacifici et al. 2015). 

Understanding species responses to climate change is one of the most pressing 

challenges facing scientists today (Garcia et al. 2014). 
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2.2 SPECIES RESPONES TO CLIMATE CHANGE 

 Researchers have already identified profound effects, ranging from phenology 

changes (Menzel et al. 2006) to range shifts (Root et al. 2003) to changes in biotic 

interactions (Ockendon et al. 2014) as an evidence for the increased impact of 

altering climate in ecological system.  

2.2.1 Adaptation and phenotypic plasticity 

 Adapting to or eluding adverse environmental changes (such as rising global 

temperature) has become more difficult as rapid changes are taking place (Valladares, 

Gianoli & Gomez 2007). Genetic adaptations to local climatic conditions render 

populations more susceptible to rapidly varying climate than phenologically plastic 

populations (Chevin, Lande & Mace 2010; Phillimore et al. 2010). Local adaptation 

and phenotypic plasticity are the two methods that will determine the ability of a 

population to survive climate change (Jump & Penuelas 2005; Gimeno et al. 2009). 

2.2.2 Range shifts 

 Recent research has focused on the shifting ranges of species, and this is 

likely due to their widespread nature, and their significance for conservation and 

reserve selection (Araujo et al. 2004; Guisan et al. 2013). For species that have 

shifting climate niches, several factors will affect their ability to keep pace with this 

shift. Species-specific dispersal ability is particularly important (Schloss, Nuñez & 

Lawler 2012). Plant species may be particularly vulnerable as their lack of mobility 

reduce their ability to keep pace with the human induced climate variations (Neilson 

et al. 2005) and reptiles and amphibians are more effected by rainfall and temperature 

patterns changes (Bickford et al. 2010). 
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2.2.3 Biotic interactions 

 Different species and locations react differently to climate change. Species 

responds in different ways like changes in their abundance, shift in direction of range, 

and also variation in their geographic range size (Parmesan & Yohe 2003; Hickling et 

al. 2006; Mair et al. 2012; Rapacciuolo et al. 2014). The high interspecific variance in 

abundance trends observed in 115 Lepidoptera species over the past four decades 

may be explained by species-specific exposure and sensitivity to climate change 

throughout history (Palmer et al., 2015). Spatial pattern of species can be affected by 

different interactions like predation, competition, resource-consumer interactions, and 

host-parasite interactions, and many of these interactions may be influenced by the 

global climatic changes (Tylianakis et al., 2008; van Dam, 2009; Gilman et al., 2010; 

Wisz et al., 2013). Record provides clear evidence that some past episodes of climate 

variations resulted in species extinctions and speciation, and that the distribution and 

abundance of species were affected (Blois et al., 2013). According to Gilman et al., 

(2010) species interactions can profoundly influence how species respond to recent 

variations in climate at every scale, and if these interactions are not incorporated, it 

will be difficult to predict species reactions to climate change.  

2.3 CLIMATE CHANGE IN THE WESTERN GHATS 

 The Western Ghats of the Indian subcontinent, consisting of six states is one 

of the (Kumar et al., 2011) 36 global biodiversity hotspots. An increase in 

temperature and rainfall was predicted for India by the 21st century by using the 

PRECIS model. In western coast of India and western central India, the projected 

rainfall changes show extreme precipitation. Another observation by the model was 

the faster rise in day time temperature than the night temperature (Kumar et al., 

2006). It has been predicted that under the future variations in climate, the evergreen 

forests of mid elevation are most suitable for the Southern part of Palaghat gap of the 

Western Ghats region (Priti et al., 2016). Climate of India is dominated by summer 
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monsoon rainfall and so its variability is viewed with great concern. Summer 

monsoon rainfall of Western Ghats shows similarity with India and the strength 

increases from south to north (Revadekar et al., 2018). Higher elevations are more 

likely to be affected by climate change and so the mountainous forests seen 

commonly in Western Ghats are susceptible to degradation. Such regions demand 

efficient management of pest and fire, scientifically correct harvesting and 

anticipatory plantations (Chaturvedi et al., 2011). Under the A1B scenario, the 

northern and central parts of the Western Ghats could be prone to climate change on a 

regional scale, according to a study published recently on the impacts of climate 

change on Indian forests (Gopalakrishnan et al., 2011). The Western Ghats may lose 

suitable habitat areas for five species of Myristicaceae in the future, under either 

scenario A1B or A2A (Priti et al., 2016) and also habitat suitability of Garcinia indica 

in the Western Ghats are predicted to decreases due to climate change under RCP 8.5 

for 2050 and 2070 (Pramanik et al. 2018). 

2.4 SPECIES DISTRIBUTION: FACTORS 

 Bio geographers have noted the relationship of distributions and abundance of 

species in a region with its climate from early days. Ecological factors, both biotic 

and abiotic were significant predictors of species distribution, but the impact of 

changes in the climate is not totally understood (Murray and Conner, 2009). In 

ecology, the factors that shape species distributions remain an unsolved issue (Araujo 

and Guisan, 2006). Variables within the climate system, such as number of cold and 

wet days, length of winter frosts and snow periods, summer drought, and spring 

temperatures, play an important role in bird demographics (Robinson et al., 2007). 

Other factors that affect bird distributions, including summer weather (Robinson et 

al., 2007), food availability (Conrad et al., 2006), habitat distribution and quality 

(Fuller et al., 2007) and nesting sites (Thaxter et al., 2010), have been assessed. 

Researchers in Northern Britain found that the decline of Turdus torquatus (Ring 

Ouzel) populations was related to summer temperatures rising and decline in rainfall 
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(Beale et al., 2006). According to Fasola et al. (2010), increased winter temperatures 

have caused a rise in the population of Ardea cinerea (Grey Heron) in Northern Italy.  

2.5 IMPACTS OF CLIMATE CHANGE ON AVIAN SPECIES 

2.5.1 Birds as bio-indicators 

 Bird populations have been studied for over half a century in order to 

understand the impact of weather on their behavior. As bio-indicators, avian species 

are a group that is easily understood by the public and policy makers since birds are 

popular as well as often have an iconic status around the world (Crick, 2004). Birds 

can be used as surrogate for understanding the wider impacts of climate change, and 

they can be a key indicator of what this new threat looks like. A well known indicator 

of climate change, birds are very important for climate research (Wormworth and 

Sekercioglu, 2011). Based on the study conducted on the Indian Peafowl in Kerala, 

they act as a great bioindicators (Sanjo and Nameer, 2020). 

2.5.2 Effect of climate change on physiology of birds 

 Based on the physiology of their bodies, different species are affected by 

climate change differently (Acharya and Chettri, 2012). Meteorological conditions 

affect the metabolic rate of birds directly and indirectly, which in turn affect the birds' 

behavior. When birds try to avoid unfavorable climatic conditions, it will reduce 

various activities like breeding and feeding (Walsberg, 1993). Sekercioğlu et al. 

(2012) noted that birds are suffering from low reproduction and population declines 

around the world. Changes in weather condition can cause shift in the production of 

hormones, which can influence the breeding success. Temperature and humidity 

changes can affect bird activity and behavior indirectly (Crick, 2004). Several studies 

have highlighted the importance of species' physiological responses to coping with 

climate change (McKechnie, 2008; McNab, 2009). 
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2.5.3 Climate change and avian distributional range 

The Dartford Warbler seen in the UK have shown enlargement of their 

distribution since 1960 and this was considered a result of not having severe winters 

(Gibbons and Wotton, 1996). It was shown that in many regions, the shift in 

distribution ranges corresponded with temperature fluctuations. Precipitation and 

temperature interaction also played a significant role in the range distributions 

(Hawkins et al., 2003). Birds in Sikkim have exhibited increased elevational range 

expansion/shifting (Acharya and Chettri, 2012).  

2.5.4 Importance of range distribution studies 

 To better understand the ecological and evolutionary factors determining the 

patterns of biodiversity at various spatial scales, it was necessary to have a thorough 

understanding of species ecology and geographic distribution (Rosenzweg, 1995; 

Ricklefs, 2004; Graham et al., 2006). These types of studies are also needed for 

forecasting and for creating conservation plans (Ferrier, 2002; and Rushton et al., 

2004). The impact of climate change was still in its infancy, so scientists and 

policymakers were eagerly anticipating further development to study the biological 

consequences of global warming and establish adaptive and mitigating measures 

(Mace and Baillie, 2007; EEA, 2007). 

2.4.5 The study on birds 

 Avian enthusiasts, both amateur naturalists and professional scientists have 

studied about birds for many years, and so they are a well understood species. 

Globally, 13% of bird species are at risk of extinction (BirdLife International, 2015). 

Birds have been facing a plethora of threats during this century as a result of climate 

change (Thomas et al. 2004; Warren et al. 2013). However, bird population decline 

may also be attributed to habitat degradation, invasive species impacts, and other 

factors (Szabo et al. 2012; Bellard et al. 2013). Climate change may aggravate their 
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effects further (Mac Nally et al., 2009). Studies of bird ringing and direct 

observations of arrivals and departures are both sources of information on bird 

movements (Pearce-Higgins & Green 2014). In recent years, technological advances 

have enabled remote tracking of birds in both time and space (Robinson et al. 2010). 

By using various bird data like range distribution (Orme et al. 2006) and species 

richness patterns (Storch et al. 2006; Rahbek et al. 2007a), broad- scale spatial 

patterns in biodiversity have been studied.   

2.5 MODELLING OF SPECIES DISTIBUTION 

2.5.1 Significance of species distribution modeling 

 Gates et al. (1994) noted that climate had strong relationship with bird 

distribution and changes in distribution were happening with the predicted climate 

change by using distribution models. Species distribution models were used to study 

past species distribution (Peterson et al., 2004) and species richness and its relation 

with climatic factors (Mac Nally and Fleishman, 2004). For estimating most suitable 

habitats, biologists used distribution models, which could predict the probability of 

species presence in areas in which systematic surveys had not been conducted (Elith, 

2002). Predictive model was used to examine the changing distributions and having 

an accurate map of a species' distribution may make it possible to work out the 

connection between distribution and environmental variables like climate (Crick, 

2004). Bio-geographical analysis methods have been used to study the distribution of 

species niches in relation to environmental data collected at various localities (Guisan 

and Thuiller, 2005). These models aim to predict species distribution through 

knowledge of the presence or abundance of species in relation to certain 

environmental factors. Ecological, evolutionary, and conservation arguments can be 

extensively explored with these models (Elith et al., 2006). As well as determining 

future species distributions (Jeschke and Strayer, 2008; Sinclair et al., 2010), these 

models can be used as a tool for planning of reserve (Thorn et al., 2009). These 
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models used in various studies dealing with range shift of avian species are 

significant for managing protected areas and conserving threatened bird species 

(Aragón et al., 2010b; Araújo et al., 2011). 

2.5.2 Process of species distribution modeling 

2.5.2.1 Steps in species distribution modeling 

Several steps were involved in modelling species distributions like (1) 

occurrence points are created from present day data (Peterson et al., 1998; Peterson 

and Stockwell, 2001b); (2) the distributional data are used to test the developed 

ecological niche models  (Guisan and Zimmerman, 2000; Kobler and Adamic, 2000); 

(3) Climate change models project a shift in distribution onto the landscape of 

interest; (4) Projecting ecological niches of specific species onto transformed 

landscapes to model the distributional shifts. Based on assessments of species 

responses to abiotic environmental factors like climate, it is possible to estimate the 

appropriate ecological niche (Soberon & Peterson, 2005) and the model can be used 

to estimate the prevalence of species for any given area or track the specific 

environmental conditions which suit specific species (Elith et al., 2011). 

2.5.2.2 Methods for testing accuracy 

A variety of methods were used to model the distribution of species, each 

having different steps that included; choosing the most appropriate predictor 

variables, defining defined, setting up functions for each variable, identifying 

contribution of variables and attempts to predict geographic patterns of distribution of 

species (Guisan and Zimmerman, 2000; Burgman et al., 2005; Wintle and Bardos, 

2006). Models used individual algorithms that led to landscapes being mapped within 

and outside ecological niches by using the data in the models (Peterson, 2001a). 

Comparing alternative models as well as analyzing the weight of evidence of the 

variables included in the model can be accomplished by hierarchy portioning (Mac 
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Nally, 2002). We addressed the issues of accuracy in predicting species distribution 

under varying climatic conditions by using climatic envelope models (Akcakaya et 

al., 2006; Pearson et al., 2006; Araujo and Rahbek, 2006; Zimmer, 2007). Pearson et 

al. (2007) concluded that the type of environment dimensions you use to define a 

species distribution limit plays a vital role in determining the accuracy of a model's 

description about the range of conditions that are suitable for a species. Due to 

autocorrelation among the variables among the models, they didn‟t reveal any causal 

relationship (Bahn and McGill, 2007; Currie, 2007; Beale et al., 2008), but their 

method had limitations due to the same source of data for all models. The use of 

generalized linear mixed models improved the accuracy of predictions of species 

distribution ranges (Swanson et al., 2013). We analyzed large geographical areas in 

an effort to reduce misinterpretation of the species distribution responses and 

therefore reduce the correlation between environmental variables and climatic 

variables (Maclean et al., 2008). In addition to resolving ambiguities arising from 

correlated predictors, it also failed to identify the spurious correlations among the 

environmental factors which contributed to the definition of the spatial distribution 

(Ashcroft et al., 2011). 

2.5.3 Advancements in species distribution modeling 

Researchers have created methods to estimate distributional areas by 

comparing known occurrences with environmental variables. Thousands of articles 

about these methodologies are now published every year as a result of the explosion 

of their use in recent years (Lobo et al., 2010). Ecological niche modelling was based 

on the presumption that climate has a major influence over terrestrial species 

distribution. Despite expanding predictive power for models, understanding the 

processes behind them is challenging (Shipley, 1999). Studies focused on modeling 

future distribution shifts over past distribution shifts were fewer, but the climate 

envelope approach was used for this (Berry et al., 2002; Thomas et al., 2004; 

Harrison et al., 2006). Scientific advances and technological advances led to the 
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development of complex mathematical general circulation models (GCMs) that 

influenced prediction of future climate (Raper and Giorgi, 2005). The association 

between climate and vertebrate distribution has been used to develop predictive 

models based on birds (Jetz et al, 2007). Lack of data regarding the species- specific 

physiological parameters and processes, and correlation between climatic and 

nonclimatic factors still remained a problem (Kearney, 2006). Using ecological niche 

modelling to predict species distributions from environmental data has been well 

received (Pearson and Dawson, 2003).  

2.5.4 Species distribution studies 

It has been suggested that ecological variables, including climatic conditions 

could play a role in figuring out the richness and distribution patterns of the animals 

(Kerr, 2001; Ricklefs, 2004; Mittelbach, 2010). Studies of future distribution pattern 

predictions assumes that the changes in species ranges at warmer conditions are 

credited to the changes in the colder extremes, since both use the same climate-space 

(Berry et al., 2002; Thomas et al., 2004; Harrison et al., 2006). Climate data has 

proven useful in predicting species distributions in several studies (Pearson et al., 

2002; Bakkenes et al., 2002; Burns et al., 2003; Thuiller et al., 2005; Calef et al., 

2005; Rehfeldt et al., 2006; Hamann and Wang, 2006; McKenney et al., 2007; 

Peterson et al., 2008; Stankowski and Parker, 2010; Joyner et al., 2010; Beever et al., 

2010). Numerous studies have species distributional (Iverson and Prasad, 1998; 

Pearson et al., 2002; Calef et al., 2005; Rehfeldt et al., 2006; Hamann and wang, 

2006; McKenney et al., 2007; Peterson et al., 2008) and mass extinction of several 

species over the next century (Peterson et al., 2002; Bakkenes et al., 2002; Thomas et 

al., 2004; Malcom et al., 2006). Several analytical techniques had been developed to 

correlate quantifiable climatic variables with known occurrences of species due to 

climate change's devastating impacts on biodiversity (Heikkinen et al., 2006; Elith et 

al., 2006; Guisan et al., 2007; Loiselle et al., 2008; Graham et al., 2008; Feeley and 

Silman, 2010; Beever et al., 2010). According to Goetz et al. (2014), the correlation 
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between forest bird richness and temperature variables was observed to be strong, as 

was the correlation between open woodland bird richness and precipitation variables 

(Goetz et al., 2014). The temperature dependence of distribution changes had been 

studied and could be attributed to range shifts or range expansions (Maclean et al., 

2008). 

2.6 DATA USED FOR MODELLING 

2.6.1 Type of data and performance of the model 

The appraisal of model presentation was done with a variety of different test 

statistics or discrimination indexes (Pearce and Ferrier, 2000). Model predictions 

were more focused in the evaluation step, and some known occurrences were omitted 

(only presence data) from the development of models (Fielding and Bell, 1997; 

Hastie et al., 2001; Araujo et al., 2005). More predictive success was there when the 

independent data was not used to build the model (Fielding and Bell 1997). A 

measure of accuracy was based on how well the predicted outcomes were matched to 

the withheld data (Boyce et al., 2002; Hirzel and Guisan, 2002b). According to 

Anderson et al., 2002 Statistical significance of a model was calculated using the 

Chisquare test or upper-tailed binomial probability when data portioning was done 

for testing. A predicted model's performance has been highly influenced by the 

availability of observed absence data (Loiselle et al., 2003). The 2-2 confusion matrix 

is able to describe how often absences and presences are predicted correctly and 

incorrectly, and no absence data was required in presence only models (Anderson et 

al., 2003). 

Several studies have suggested not including absence data because false-

positive predictions would be displayed as failure rather than success (Anderson et 

al., 2003; Pearson and Dawson, 2003; Soberon and Peterson, 2005). With these small 

records, partitioning into test and training subsets as well as handling negative data 

was problematic (Anderson and Martinez-Meyer, 2004). The most customary and 
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easy approach is random or spatially stratified partitioning (Peterson and Shaw, 

2003). There was a reduction in predictive performance when studies used small 

samples (Stockwell and Peterson, 2002; Reese et al., 2005). As the use of distribution 

models has grown and data availability and modelling methods are improving, it 

became imperative that a broad scale analysis of models for presence only data be 

performed in order to gain high predictive ability and accuracy (Elith et al., 2006).  

Many machine learning and statistical approaches have been developed that 

are capable of capturing complex responses, regardless of how noisy the data was. In 

spite of its promising results, the work did not receive any exposure in distribution 

modelling (Phillips et al., 2006, Leathwick et al., 2006). Spatial autocorrelation was 

effective at reducing biases over time, but not yet effective at reducing them spatially 

(Algar et al., 2009).  Because absence data were rarely obtainable in surveys and it is 

difficult to detect by modelling techniques and validation, presence data were used 

only for modeling (Pearson et al., 2007). Spatial autocorrelation was effective at 

reducing biases over time, but not yet effective at reducing them spatially (Algar et 

al., 2009).  

2.6.2 Presence and absence records 

Modelling range distribution using presence/absence data was the main focal 

point of numerous studies (Austin and Cunningham, 1981; Hirzel and Guisan, 

2002b). In ecology, presence-absence data can play a significant role, for instance in 

predicting the effects of changing climate, habitat destruction, and invasive species 

(Warren 2012). For years, presence-only data have been analysed using the envelope-

based or distance-based measures that have been developed specifically for that 

purpose (Silverman, 1986; Busby, 1991; Carpenter et al., 1993). As a rule, breeding 

habitats were assumed to be saturated in most presence-absence models (Capen et al., 

1986). Only presence data were analyzed according to some methodological 

suggestions (Nix, 1986; Carpenter et al., 1993). 
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According to Fielding and Bell (1997), the presence/absence models were 

prone to errors such as false positives and false negatives. There was a lack of 

absence data for a variety of reasons, including low sampling efficiency or 

unrecorded species occurrences during surveys so „pseudoabsences‟ was used in 

place of real data (Ferrier et al., 2002a; Engler et al., 2004). Data on species 

occurrences are increasingly available as high-resolution environment data layers 

created from satellite images (Turner et al., 2003) and polished climate data 

(Thornton et al., 1997; Hijmans et al., 2005). Since the wildlife-habitat connection 

was absent, validation of absence data was difficult (MacKenzie et al., 2004; Gu and 

Swihart, 2004). Modeling ecological niches has been accomplished by alternative 

methods of different kinds, with many of them using both absence and presence 

records (Bourg et al., 2005). The majority of the species occurrence data were 

obtained from occurrence records compiled from museum or herbarium collections, 

many of which were digitized (Graham et al., 2004; Huettmann 2005; Soberon and 

Peterson, 2005). The trouble with some forms of presence data was that the purpose 

behind their collection and the technique employed to accumulate them were seldom 

discussed, and we could not infer absence data with certainty (Elith et al., 2006). 

Over the past decade, novel tactics have been developed that rely solely on presence 

data, eliminating the need for absence locations (Baldwin, 2009).  

2.7 ASSESSMENT OF CLIMATIC CHANGES 

With a comprehensive understanding of current problems and climate change 

assessments, it is possible to identify and emphasize regions and systems that are of 

particular concern (Sulzman et al., 1995). The equilibrium simulation showed 

warming in both hemispheres, whereas the transient simulation showed both changes 

in temperature distribution (Sulzman et al., 1995). Climate change rate assessment is 

crucial for evaluating populations' ability to adapt to climate change, so policy 

makers and natural resource managers need to take into account the results of 

transient climate experiments (Schimel et al., 1990). 
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Grassl (2000) noted that, southern and northern hemisphere climates have 

different dynamics, so models developed for one hemisphere with certain emphasis 

won't reproduce correct results in the other. The world climate can be projected using 

global circulation models (GCMs). These models provide future predictions on 

climate variations with regards to greenhouse gas forcing (Hannah et al., 2002). 

Researchers are currently conducting simulation modeling experiments to analyze the 

effects of human-induced climate change on natural systems using GCM-based 

scenarios (Sulzman et al., 1995). By using results of transient (not equilibrium) 

simulations, as well as models which were completely coupled with the atmosphere 

and ocean to the regions of interest (Hannah et al., 2002), the assessments were 

improved. It turns out that regional models, which depend on local forcing, do a 

better job of predicting local climate change than global models (Pitman et al., 2000). 

Cloud formation mechanisms could be represented through these models in relation 

to land use changes. There was, however, a lack of results of these models in many 

regions. Dynamic vegetation models, forest gap models, biome envelope models, and 

species envelope models, all used GCMs and regional climate models to shed light on 

different aspects of future climate change's impact on biogeography (Cramer et al., 

2000). 

2.8 MAXIMUM ENTROPY MODELLING (MAXENT) 

MaxEnt is considered one of the most robust and widely used methods of 

species distribution prediction (Elith et al., 2006). Using location information and 

constraints derived from data, it approximated the most uniform distribution (Philips 

et al., 2004; Philips et al., 2006). Pearson et al. (2007) found MaxEnt to achieve 

higher success rates and to exhibit significant differences even at small sample sizes. 

While MaxEnt models predicted a wider area of suitable conditions, there were 

negative effects when sample sizes were artificially reduced (Pearson et al., 2007). 

According to Elith et al. (2009), MaxEnt uses only presence data and uses the 

environmental variables to estimate the likelihood of species' distributions. Based on 
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these variables, MaxEnt provides a logistic output that is based on the probability 

distribution of species' presence. 

MaxEnt had been used to inspect the distributional patterns of Geckos 

(Uroplatus spp.) for predicting the species distribution (Pearson et al., 2007), 

American black bear (Ursus americanus) for the evaluation of denning habitat 

(Baldwin and Bender, 2008), Bush dog (Speothos venaticus) to appraise the 

excellence of safety (DeMatteo and Loiselle, 2008), Little bustard (Tetrax tetrax) for 

modelling the seasonal distribution changes (Suárez-Seoane et al., 2008), predicting 

and mapping of Sage grouse‟s (Centrocercus urophasianus) nesting habitat, Asian 

slow lorises (Nycticebus spp.) was assessed to threats and species distribution 

analysed to find conservation urgencies (Thorn et al., 2009), Myristicaceae species 

for modelling impact of future climate on its distribution (Priti et al., 2016), Nilgiri 

tahr (Nilgiritragus hylocrius) for estimating suitable habitat under current and future 

climate change scenarios (Sony et al., 2018). There were times when there was 

insufficient dependable location data available to map the spreading of species and 

MaxEnt can still accurately build the model with fewer points and this was an 

advantage (Baldwin, 2009). 

2.9. MALABAR GREY HORNBILL 

 The Malabar Grey Hornbill (Ocyseros griseus), the subject of our research is 

one of the nine species found in India. Malabar Grey Hornbill is a frugivorous 

endemic to the forest of Western ghats hills of India (Mudappa, 2000). This species 

are mostly seen in the mid elevation areas (Mudappa and Raman 2009). Even though 

this bird is large, its length is still smaller than those of the other Asian hornbills, 

which ranges between 45 and 58 centimeters (Ali, 1996). Males and females are 

distingused by a yellow bill with black at the base of the lower mandile and sleeve 

along the culmen is seen on the female and reddish-brown bill with yellow tip in 

male. This species of hornbill is mainly found in habitats with thick vegetation. Being 
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large frugivores, they are important seed dispersers of many species of fruit bearing 

forest trees either through defecation or regurgitation (Mudappa, 2000).This species 

is noted as vulnerable by the International Union for Conservation of Nature (IUCN). 
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CHAPTER 3 

MATERIALS AND METHOS 

 

 

3.1. STUDY AREA 

 The study was conducted in the Western Ghats a biodiversity hotspot in India. 

Western Ghats refers to the practically unbroken hill chain (with the exception of the 

Palakkad Gap) running roughly in a northsouth direction, for about 1500 km parallel 

to the Arabian sea coast, from the river Tapi (about 210 16‟ N) down to just short of 

Kanyakumari (about 8019‟ N) at the tip of the Indian peninsula. Older than the great 

Himalayan Mountain chain, it contains a diverse range of ecosystems and is known 

for its biodiversity and endemism (Myers et al., 2000). The Malabar Grey Hornbill 

the study subject is an endemic to this region. In the region, there are 4000 plant 

species, 218 fish species, 126 amphibian species, 508 bird species, and mammals, of 

which 137 are endemic (Das et al. 2006). At least 325 threatened species live there. 

3.2. OCCURRENCE POINTS OF MALABAR GREY HORNBILL 

The presence data for Malabar Grey Hornbill was collected from the e-Bird 

reference data (www.eBird.org), a free Internet-based checklist tool. These data are 

published in compliance with the Avian Knowledge Network (AKN) and it is run by 

the National Audubon Society and the Cornell Lab of Ornithology and the data is 

copyrighted with these organizations. The data consists of Breeding Bird Survey from 

1966 onwards. It has advanced geo-referencing capability and broad user-base. It was 

used to get georeferenced data on the Malabar Grey Hornbill from 1964 to 2020. The 

compilation of place of occurrence or existence of the species is one of the main 

components of the Species Distribution Model (SDM) (Trisurat et al., 2011). Using 
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Excel, duplicate records were eliminated, and by using ArcGIS 10.8 a matching 

shape file was created. 

 

Figure 1: Occurrence points for the Malabar Grey Hornbill from the Western 

Ghats 

 

3.3. ENVIRONMENTAL VARIABLES 

 The bioclimatic variables were derived by combining the monthly rainfall and 

temperature values and generated 19 different variables which are more meaningful. 

These variables represent annual trends, seasonality and extreme or limiting 

environmental factors. They are coded under different names such as; 
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3.3.1 bio1 (Annual Mean Temperature): The average temperature of 12 months 

was used to acquire the annual mean temperature. This approximated the total energy 

inputs for an ecosystem. 

3.3.2 bio2 (Mean Diurnal Range): Each month‟s diurnal range (difference between 

maximum and minimum temperature) was averaged for 12 months of a year. This 

provided information regarding the relevance of temperature fluctuation for different 

species. 

3.3.3 bio3 (Isothermality): Isothermality was used to measure the oscillations of day 

to night temperatures relative to the annual oscillations ((bio2/bio7)x100). This could 

reveal the influence of larger or smaller variations in temperature of a month relative 

to that year. 

3.3.4 bio4 (Temperature Seasonality): It is the temperature variation (SDx100) over 

a year (or averaged years) relative to the SD (variation) of monthly temperature 

averages. Greater variability in temperature is inferred from larger SD. 

3.3.5 bio5 (Maximum Temperature of Warmest Month): It measures the 

maximum monthly temperature over a year which was useful in the determination of 

affects by warm temperature anomalies in species distribution.   

3.3.6 bio6 (Minimum Temperature of Coldest Month): Measures the minimum 

temperature over a time period useful in the analysis of affects from cold 

temperatures. 

3.3.7 bio7 (Temperature Annual Range): Quantifies the temperature variation over 

a period (bio5-bio6) and helps in the examination of species distribution and the 

effects of extreme temperature conditions on it. 
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3.3.8 bio8 (Mean Temperature of Wettest Quarter): Approximation of mean 

temperatures prevailing during the wettest season and its effect on species 

distribution can be studied. 

3.3.9 bio9 (Mean Temperature of Driest Quarter): Mean temperature of driest 

quarter was measured to know the effects of it on species distribution. 

3.3.10 bio10 (Mean Temperature of Warmest Quarter): Quantifies the mean 

temperature over warmest quarter and helps in the examination of species 

distribution. 

3.3.11 bio11 (Mean Temperature of Coldest Quarter): Mean temperature of 

coldest quarter was measured to know the effects of it on species distribution. 

3.3.12 bio12 (Annual Precipitation): It is the sum total of all the monthly 

precipitation and it evaluates the total water inputs which was useful in ascertaining 

the importance of water availability in determining the species distribution. 

3.3.13 bio13 (Precipitation of Wettest Month): Precipitation of wettest month was 

measured and studies the species distribution when an extreme precipitation condition 

occurs. 

3.3.14 bio14 (Precipitation of Driest Month): Total precipitation received during 

the driest month was measured to study the extreme conditions and its impacts on 

species distribution. 

3.3.15 bio15 (Precipitation Seasonality): Variation of monthly precipitation 

throughout the year was measured. It is the ratio of SD of monthly total precipitation 

to the mean monthly total precipitation. 

3.3.16 bio16 (Precipitation of Wettest Quarter): Precipitation of wettest quarter 

was measured and studies the species distribution when an extreme precipitation 

condition occurs. 
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3.3.17 bio17 (Precipitation of Driest Quarter): Total precipitation received during 

the driest quarter was measured to study the extreme conditions and its impacts on 

species distribution. 

3.3.18 bio18 (Precipitation of Warmest Quarter): Precipitation of warmest quarter 

was measured and studies the species distribution when an extreme precipitation 

condition occurs. 

3.3.19 bio19 (Precipitation of Coldest Quarter): The mean precipitation of the 

coldest quarter was measured to find out how it affects species distributions. 

 The bioclimatic variables used for the current and future conditions fed in to 

the species distribution model or any other ecological model was taken from 

CHELSA (Climatologies at high resolution for the earth‟s land surface areas) a very 

high-resolution global climate data set. 30 arc seconds (0.86 km2 at the equator) data 

were used for both current and future conditions. They were in the latitude/longitude 

coordinate reference system under the datum WGS84. The bioclimatic variables were 

calculated from aggregated data such as monthly precipitation, minimum, mean and 

maximum temperature. The unit of temperature is „°Cx10‟ and that of precipitation is 

„mm‟. According to World Meteorological Organization (WMO) climate is defined 

as the measurement of the mean and variability of relevant quantities of certain 

variables (such as temperature, precipitation or wind) over a period of time, ranging 

from months to thousands or millions of years. The typical period is 30 years.   

In environmental and ecological sciences, high-resolution information on 

climate conditions is required in numerous applications. We utilised downscaled 

model output temperature and precipitation estimates from the ERA-Interim climatic 

reanalysis to a high resolution of 30 arc sec from the CHELSA (Climatologies at high 

resolution for the earth's land surface regions) data. CHELSA's output is often 

compared to other gridding algorithms as well as the Global Historical Climate 

Network station data. Furthermore, various studies demonstrate that CHELSA 
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climatological data are as accurate as other temperature products, but that its 

precipitation pattern forecasts are superior. As it pertains to species distribution 

models, we provide a comparison between the new climatologies and convey that 

CHELSA data can improve the accuracy of species range forecasts. 

Table 1. Different RCP’s and its characteristics 

Scenario Model 

used 

Radiative forcing Co2 

equivalent 

(ppm) 

Global 

warming 

until 2100 

(Mean and 

Likely range) 

RCP 2.6 IMAGE Radiative forcing reaches its 

peak point at 3W/m2 before 

2100,and then declines 

490 1.0 (0.3 – 

1.7)℃ 

RCP 4.5 MiniCAM An intermediate 

stabilization pathway, where 

the radiative forcing 

stabilized at around 4.5 

W/m2after 2100 

650 1.8 (1.1 – 

2.6)℃ 

RCP 6.0 AIM Stabilization without 

overshoot pathway to ~ 6 

W/m2 at stabilization after 

2100 

850 2.2 (1.4 – 

3.1)℃ 

RCP 8.5 MESSAGE Radiative forcing exceeds 

8.5 W/m2 by 2100 and 

continues to grow for some 

time 

1370 3.7 (2.6 – 

4.8)℃ 
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Besides the bioclimatic layers, using ArcGIS version 10.8, we created a topographic 

layer including elevation, slope, and aspect using digital elevation model data 

(http://www.ngdc.noaa.gov/mgg/topo/globe .html) for the ecological niche 

modelling. By using the European Space Agency website (http://due.esrin.esa. 

int/page_globcover.php) the current land cover data (Globcover 2009) was 

downloaded. EVI (Enhanced Vegetation Index) from United States Geological 

Survey (USGS) for 10 years (2011 – 2020) was also downloaded. Since these data 

were downloaded on monthly basis they were obtained in different tiles. So by using 

ArcGIS 10.8, they were stiched for dry season (March to May), wet season (June to 

August) and yearly average. The spatial resolution of all predictor variables was fixed 

at 30 arc seconds. 

3.4. DATA THINNING 

 eBird provided a total of 26,511 Malabar Grey Hornbill presence locations. 

The first step to data reduction was to filter the data based on the following: (1) 

protocol type – travelling and stationary, (2) duration minutes <300, (3) effort 

distance km <5, (4) number of observers - ≤ 10. Microsoft excel software was used 

to do all these operations. After the data is filtered, it was subjected to removing the 

duplicates which is also employed with the help of excel. After completing these 

actions, the raw data were narrowed down to 4,090 occurrence points which were 

saved in the extension „.csv‟. For superior prediction, most species distribution 

models require spatially independent occurrence data. The spatial autocorrelation of 

occurrence sites in SDMs is considered a frequent source of environmental biases 

(Hijmans, 2012). Model performance metrics are exaggerated as model becomes 

“over – fit” towards environmental biases, limiting the model‟s capacity to predict 

spatially independent data (Veloz, 2009; Hijmans, 2012; Boria et al., 2014). Then 

after removing the duplicates, it was the spatially thinned using R-based spThin 

statistical package (Aiello – Lammens et al., 2015). This was done in R studio and it 

removes all duplicates and decrease sampling bias. The thinning distance was taken 

http://www.ngdc.noaa.gov/mgg/topo/globe%20.html
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as 1km resolution and we arrived at final “thinned” occurrence points of 2,131 

(Fig.1). 

3.5. SELECTION OF BIOCLIMATIC VARIBLES 

 Incorporating the correlated variables not only affects the quality of MaxEnt 

model prediction, but it also restricts the contribution of additional correlated 

variables in the output. Using a highly correlated variable in the model prevents all 

other correlated variables from being included, which could be quite important for 

our species of interest (Brown, 2014).  If a correlation exists, derived response curves 

may not be accurate. It can be deceptive to draw conclusions based on the outputs 

from a model that incorporates strongly correlated variables. Variable optimization is 

a critical step in the model development process. There will be some variables on the 

list that will be more relevant to our species than others. Some factors may have a 

minor impact on the outcome, and it is usually recommended to remove such 

variables in order to improve the interpretability of the final model (epistemic 

sparcity) or assure better predictability (predictive sparcity) from our model (De Bin 

et al., 2015). For interpreting the contributions of each environmental variable to the 

species distribution model, highly correlated variables should be removed to avoid 

autocorrelation. 

 In autocorrelation method, if the test and training data were spatially 

correlated, the test omission line shrank significantly when compared to the predicted 

omission line, which indicates an incomplete fit. Veloz (2009) noted that spatially 

autocorrelated data would increase model accuracy, so it was essential to eliminate 

the spatially correlated variables prior to modelling. 

 For the current conditions, bioclimatic variables (bio1-bio19) were 

statistically analyzed using correlation matrix (Pearson) and coefficients of 

determination (R2). The correlation values |r| >0.7 and R2> 0.7 were used to classify 

the variables. The variables with the highest percentage contribution were chosen, 
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and permutation important findings based on the MaxEnt model output were utilised 

to make future predictions. The percentage contribution chart showed the relative 

contribution of each environment variables to the MaxEnt model. In each iteration of 

the training algorithm, the increase in regularized gain was added to the contribution 

of the corresponding variable or subtracted from it if the change to the absolute value 

of lambda is negative. So, it depended on the path taken by the MaxEnt code to get 

the solution and the contribution values changed when it took a different route. There 

should be caution when interpreting the values of highly correlated variables. It is the 

MaxEnt model that affected the accuracy of the permutation importance rather than 

the way in which it determined its value. By random permuting the values of the 

variables among the presence and background (training points) and calculating the 

reduction in training AUC, the importance of that variable was measured. The greater 

the decrease, the more dependent the model is on that variable. The Jack-knife test of 

variable importance portrays the environment variable having the excess gain when 

used in seclution (having the most advantageous information) and the environment 

variable which decreased the gain the most when it is omitted (having the most 

information that isn‟t present in the other variables). Following the removal of the 

correlated variables, the remaining variables were used for further modelling. 

3.6. MAXIMUM ENTROPY SPECIES DISTRIBUTION MODELLING 

(MAXENT) 

 The species distribution of the Malabar Grey Hornbill was studied using 

MaxEnt version 3.4.4. The MaxEnt software is based upon the maximum-entropy 

principle and used for species habitat modelling. The Maxent model can be used to 

synthesis the distribution of geographical species given the most important 

environmental factors (Phillips et al., 2004; 2006). Maxent predicts outcomes based 

on an insufficient amount of data using a machine-learning reaction. This method 

determines the “maximum entropy” of the sample points based on the data relative to 

the background locations while taking into account the limitations described in the 
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data. The maximum entropy algorithm requires no prior knowledge of the probability 

distribution and condenses to the greatest maximum entropy distribution (Baldwin, 

2009; Berger et al., 1996; Phillips et al., 2006).  

According to whether a given species is present or not, a site may have been 

classified as present or absent category. A species' range can be determined by 

considering environmental features closely associated with its presence across similar 

habitats. Each species is given a uniform distribution at the start and, using the most 

important environmental variables, a series of iterations is performed until no 

improvement in prediction is possible. Using data from all of the environmental 

variables in the grid cells, the Maxent distribution is computed. As a test, we used 

25% of the sample points to determine if Maxent's predictions (training data) are 

more accurate than random guesses. Both categorical and continuous data were 

employed for the method, and all variables were regarded as continuous variables. 

The probability of the species' occurrence was determined by analyzing a logistic 

output continuous map, which can differentiate between the suitability of various 

geographic regions. 

We added 19 bioclimatic variables retrieved from the CHELSA database, 

slope, aspect, altitude and EVI (dry season wet season and yearly average); in total 25 

predictor environmental variables, lateral to the geographical position data of 

Malabar Grey Hornbill occurrence. Among the different models used for ecological 

niche modelling and nest-site selection Maxent is a regularly utilized and it employs 

the area under the curve (AUC) to statistically analysis (Baldwin, 2009; Barry and 

Elith, 2006; Peterson and Nakazawa, 2008; Yost et al., 2008). MaxEnt can be freely 

downloaded online (https://biodiversityinformatics.amnh.org/open_source/maxent/). 

The data should be inputted into the software in the required format. Species data was 

made into „.csv‟ format and the bioclimatic layers should be of „.asc‟ format. As 

described under the settings options, the software was configured based on our 

requirements for the run (Philips et al., 2004; 2006). 

https://biodiversityinformatics.amnh.org/open_source/maxent/
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3.7. MODEL OPTIMIZATION 

3.7.1 MODEL FEATURES 

 Identifying the optimal combination of model features was the first step 

towards optimising the model for the study requirements. Auto feature is the default 

setting in terms of feature setting in the MaxEnt software. MaxEnt model have five 

different model features that can be used separately and together. The five features in 

the model are linear feature (L), product feature (P), quadratic feature (Q), hinge 

feature (H) and threshold feature (T). The “ENMeval” R package was used for the 

selection of optimal model setting. This assesses models of various complexity and 

RM values. AIC, one of the evaluation statistics provided in ENMeval was used for 

the selection of model. Model having lowest AIC value is considered to be better 

(Warren and Seifert, 2011). Among the 48 different models, the one with the lowest 

AIC (LQ and RM=0.5) was chosen for future projections. So for obtaining the lowest 

AIC value MaxEnt was run multiple time and the variables was removed in 

accordance to the permutation importance. After running the Maxent and ENMeval a 

couple of times the lowest AIC value obtained are for LQ 0.5.  

3.7.2. REGULATION MULTIPLIER AND REPLICATION RUN TYPE 

According Philips 2008, to prevent the model over fitting, regulation 

multiplier features are used. The model was fine-tuned by experimenting with 

different amounts of regulation multiplier, a model setting that regulates the model‟s 

complexity (Radosavljevic and Anderson, 2014).  The default value of regulation 

multiplier assigns by the model is 1. But in order to fine tune the model, we assigned 

different values to the regulation multiplier like 1.5, 2, 2.5, 3, 4 and 5. However the 

model fitting was shown to be significantly higher with the default value 1 and 

generally setting one as the regulatory multiplier value appears to produce the highest 

test Area Under the Curve (AUC) among numerous experiments (Warren and Seifer, 

2011).  
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The replication run in MaxEnt was done mainly using three types: 

crossvalidate, bootstrap and subsampling. All three run types were configured to run 

three distinct models under similar conditions, with the cross validation run type 

proving to be the most effective. Cross-validation is a type of replication in which the 

occurrence data were randomly divide into several (k) groups („folds‟) of equal size 

and leaving out a single part, it will fit the model to the other k-1 parts (combined), 

thus acquiring predictions for the left-out part. This procedure was reiterated for each 

part and the results were combined. It would be beneficial to use cross-validation 

when dealing with few data sets because all the data would be used for the purpose of 

validation. Based on this run type, the model accounts for the uncertainties in 

prediction and becomes more accurate by incorporating the measures into the model. 

Model performance can be exaggerated and standard error predictions can be 

miscalculated when spatially connected groups are introduced during model 

evaluation. In this run type, model fitting only uses a part of the data, and therefore, it 

is difficult to collect test data that is spatially independent of the training data 

(Hijmans, 2012). 

3.8. PREDICTING THE CURRENT DISTRIBUTION OF MALABAR GREY 

HORNBILL 

 Having optimized the model for the essential and important features, we 

adjusted the other software settings accordingly to meet the requirements for the run 

under the settings option. In the method, two types of environmental data are utilized: 

categorical data and continuous data, and all variables have been treated as 

continuous variables. We set the maximum number of iterations as 5000 and left the 

convergence threshold (0.00001) at its default setting. For all model output to be bias-

free, the random test percentage was set to 25%. Once the features of the model were 

configured according to our needs, environmental variables in an „.asc‟ format and 

species occurrence data in a „.csv‟ format were fed into the software as input, the 

model was ran, and the results were produced. Based on the result files from the 
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optimized model run, visual forecasts of model predictions seemed to match 

quantitative evaluations previously performed, thus proving the credibility of the 

optimised model. The models expected area of appropriate habitat was then evaluated 

in a Geographic Information System (GIS) context for better understanding. The best 

model feature was the one with lowest AIC value obtained after the exclusion of 

variables in accordance with their permutation importance and jacknife results. The 

future variables were run with the same model settings. 

3.9. PREDICTING THE POTENTIAL DISTRIBUTION OF MALABAR GREY 

HORNBILL 

Future projections of environmental variables were obtained from Research 

Program on Climate Change, Agriculture and Food Security (CCAFS) (data available 

from http://www.ccafs-climate.org/data) for a time period of 2050. Three generalised 

circulation models from the IPCC‟S CMIP5 project BSS CSM1.1, MIROC5 and 

Mohc HadGEM 2 ES at 30 arc-second (1 km) spatial resolutions for four 

representative concentration pathways (RCPs) were utilised for future climatic 

forecast. The four RCP scenarios; RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 

encompass the complex interactions of climate systems, ecosystems, and human 

activities to deliver feasible descriptions of how the future might unravel. The four 

RCP scenarios; RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 encompass the complex 

interactions of climate systems, ecosystems, and human activities to deliver feasible 

descriptions of how the future might unravel (Moss et al. 2010; Rogelj, Meinshausen 

& Knutti 2012).  It can be interpreted that RCP8.5 represents a high emissions 

scenario, while RCP2.6 represents the lowest emissions scenario (van Vuuren et al. 

2011). 

To estimate the probable distribution of the selected endemic species of 

Western Ghats in the future, the trained environment layers are projected to another 

available set of environmental layers including future climate data in MaxEnt model. 
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The projection layer should include training layers that are compatible but have 

varied circumstances. The names of the layers and map projection should be the same 

as the trained data. Models of different RCPs were done using a cross validation 

technique with 10 replicates and 25 test percentage. By assuming that the topographic 

features like slope are static and dynamic, prediction for future distribution was done 

for 2050 and omitted non-climatic variables such as EVI (Enhanced Vegetation 

Index). 

3.10. MODEL EVALUATION 

Two metrics were used to evaluate the model's performance: the receiver 

operating characteristic curve (AUC) and the true skill statistics (TSS). There isn‟t 

any influence of thresholds on the metric. AUC measures how well a model can 

distinguish random and background data points whereas, TSS measures accuracy at 

different thresholds, TSS is the threshold-dependent measure of accuracy. AUC 

doesn't provide much information nor is it extremely reliable (Phillips et al. 2006; 

Austin 2007; Lobo 2008). TSS ratings are therefore approximated for accuracy as 

well. 
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CHAPTER 4 

RESULTS 

 

4.1. MODEL VALIDATION 

 Various ways for measuring the accuracy of model outputs include AUC, 

specificity and sensitivity. Visual assessment of graphs and maps, whose settings 

were primarily agreed upon from the result of the ENM evaluate script ran in R 

studio, is critical for assessing the outputs of the completed model. Since EVI 

(Enhanced Vegetation Index) is expected to change in the future, it‟s data for future is 

not available and so we had to run the model in two ways i.e.; with EVI and without 

EVI. The model setting was same for both the models with EVI and without EVI 

which is LQ 0.5, but the only difference is that for future projection EVI was not 

chosen to be a variable since its future records are not available. The test AUC and 

TSS values for the model with EVI are 0.891 and 0.863, respectively, indicating that 

the model was better in predicting the suitable habitat area for Malabar Grey Hornbill 

in WG. With an overall accuracy of 0.9048, the specificity and sensitivity was 0.8905 

and 0.9726, respectively. 
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Figure 2: Receiver Operating Characteristic Curve (ROC) curve of the finalized 

model settings output in MaxEnt (with EVI) 

The model‟s performance in terms of average test AUC value was 0. 891 as seen in 

Fig.2, with a standard deviation of 0.004, according to ROC curve above. AUC 

values range from 0 to 1, and any AUC number greater than 0.8 indicates that the 

model‟s performance was satisfactory. The average sensitivity v/s specificity graph 

(Fig.2) provides these values. The AUC curve curves up to the top left of the plot, 

indicating that the model was competent. 
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Figure 3: Average omission curve and predicted area for Malabar Grey 

Hornbill, an endemic bird species of Western Ghats (With EVI). 

A metric that indicates the model‟s predictive capacity was the average 

omission and projected area curve (Fig.3) for the selected species averaged over the 

replicate runs.  

As a result, the visual interpretation of the model outputs indicated that the 

optimized model‟s settings were fixed based on TSS values had appropriate 

predictive capacity. The model feature combinations, regulatory multiplier value, and 

replication run type that were previously fixed using TSS values were finalized and 

proceeded with after the model settings were tested for their credibility and concluded 

to be a model with a strong predictive capacity. 

 After the cross-correlation tests, the best model incorporated seven 

bioclimatic variables as shown in Table.2 (Mean Diurnal Range, Mean Temperature 
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of Warmest Quarter, Precipitation of Coldest Quarter, Precipitation of Warmest 

Quarter, Mean Temperature of Coldest Quarter and Precipitation Seasonality), one 

topography layer (Slope),  and EVI (Average of 10 years [2011 – 2020]). EVI 

average (44.2% contribution), Mean Diurnal Range (31.4% contribution), and mean 

temperature of the warmest quarter (13.7% contribution) were the important factors 

affecting the spatial distribution of Malabar Grey Hornbill among the seven variables 

considered for modelling. These factors combined to contribute 89.0 percent of the 

total. Mean temperature of warmest quarter (65.8 percent) and Mean Temperature of 

Coldest Quarter (24.3 percent), on the other hand, had significant permutation 

relevance. 

Table 2: Analysis of variable contribution (with EVI) 

Variable Percent contribution Permutation importance 

evi_avg 44.2 2 

bio2 31.4 6.1 

bio10 13.7 65.8 

bio19 5 0.3 

bio11 3.4 24.3 

bio18 1.4 0.4 

bio15 0.9 1.1 

Slope 0 0 
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Figure 4: Shows the current distribution of Malabar Grey Hornbill by Maxent 

(With EVI) 

This projection (Fig.4) goes hand in hand with the actual distribution of 

Malabar Grey Hornbill hence we can say that this projection provided by MaxEnt 

with the setting LQ 0.5 can be used to project the future distribution of Malabar Grey 

Hornbill. 

Figure 5 shows the Jackknife test of selected bioclimatic variables. Mean 

Diurnal Range (bio2) contributes the most, followed by mean evi_avg, Precipitation 

of Warmest Quarter (bio18), and Mean Temperature of Warmest Quarter (bio10), 
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Precipitation of Coldest Quarter (bio19). This finding is comparable to MaxEnt's, 

implying that it is trustworthy. 

Figure 6 shows the response curves of each selected bioclimatic variable and 

other importance factors. This mainly shows the probability distribution of the 

species as a response to various bioclimatic predictors.  

 

Figure 5: Jackknife test gain for Malabar Grey Hornbill for the current 

distribution (with EVI) 
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Figure 6:  Response curves generated by MaxEnt for variables (With EVI) 
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Figure 7: Receiver Operating Characteristic Curve (ROC) curve of the finalized 

model settings output in MaxEnt (Without EVI) 

The test AUC (Fig.7) and TSS values for the model without EVI are 0.890 and 

0.864, respectively, indicating that the model was better in predicting the suitable 

habitat area for Malabar Grey Hornbill in WG. With an overall accuracy of 0.9041, 

the specificity and sensitivity were 0.8892 and 0.9745 respectively.  
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Figure 8: Average omission curve and predicted area for Malabar Grey Hornbill, 

an endemic bird species of Western Ghats (Without EVI). 

The model feature combinations, regulatory multiplier value, and replication 

run type that were previously fixed using TSS values were finalized and proceeded 

with after the model settings were tested for their credibility and concluded to be a 

model with a strong predictive capacity. 

Mean Diurnal Range (54.8% contribution), Mean Temperature of Warmest 

Quarter (18.7% contribution), and Precipitation of warmest Quarter (10.8% 

contribution) were the important factors affecting the spatial distribution of Malabar 

Grey Hornbill among the nine variables considered for modeling and it was shown in 

Table.3. These factors combined to contribute 84.3 percent of the total. Mean 

temperature of warmest quarter (64.8percent) and Mean Temperature of Coldest 

Quarter (27.1 percent), on the other hand, had significant permutation relevance. The 
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model‟s performance in terms of average test AUC value is 0. 890, with a standard 

deviation of 0.003, according to ROC curve above. 

Table 3:Analysis of variable contribution (without EVI) 

Variable Percent contribution Permutation importance 

bio2 54.8 6.1 

bio10 18.7 64.8 

bio18 10.8 0.5 

bio19 9.5 0.4 

bio11 5.6 27.1 

bio15 0.5 1.1 

Slope 0.1 0 
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Figure 9: Shows the current distribution of Malabar Grey Hornbill by Maxent 

(Without EVI) 

In Figure 9 projection depicts the current Malabar Grey Hornbill distribution, 

which is similar to the previous one but does not include EVI. The model settings for 

this projection were the same as for the previous one, namely LQ 0.5. The current 

distribution of Malabar Grey Hornbill and Maxent's projection go hand in hand. 

 

Figure 10:  Jackknife test gain for Malabar Grey Hornbill for the current 

distribution (without EVI) 

Figure 10 shows jackknife test gain without EVI implies that the most 

contributing variable was Mean Diurnal Range (bio2) followed by Precipitation of 

Warmest Quarter (18) and Mean Temperature of Warmest Quarter (bio10).  These 

results were comparable to those produced by MaxEnt thus making them a reliable 

finding. 
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Figure 11:  Response curves generated by MaxEnt for variables (Without EVI) 

4.2. SELECTION OF SUITABLE BIOCLIMATIC VARIABLES 
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Table 4: Pearson’s correlation metrics generated by SDMToolbox in ArcGIS 

Layer
Altitude

aspect
bio 1

bio 2
bio 3

bio 4
bio 5

bio 6
bio 7

bio 8
bio 9

bio 10
bio 11

bio 12
bio 13

bio 14
bio 15

bio 16
bio 17

bio 18
bio 19

evi avg
evi dry

evi mon
slope

---------
-----------------------------------------------------------------

altitude
1

-0.05789
-0.8597

0.01057
0.21263

-0.30616
-0.3687

-0.23422
-0.0869

-0.88605
-0.35651

-0.58246
-0.29257

-0.01317
-0.07086

-0.02758
-0.4373

-0.07379
-0.04189

0.10444
0.01063

0.08614
0.07021

0.15934
0.08654

aspect
-0.05789

1
0.00165

0.02968
-0.07209

0.04911
0.01975

-0.06428
0.04839

0.05364
-0.03768

0.01587
-0.06038

0.09223
0.11022

-0.09281
0.16168

0.10726
-0.08816

0.02567
0.03689

0.0424
0.03788

0.0516
-0.00208

bio 1
-0.8597

0.00165
1

0.05977
-0.20419

0.36169
0.56594

0.34228
0.1432

0.82062
0.44481

0.78569
0.46182

-0.17165
-0.15788

0.09894
0.14502

-0.13911
0.10229

-0.20827
-0.12198

-0.18889
-0.20158

-0.25842
-0.06706

bio 2
0.01057

0.02968
0.05977

1
-0.48503

0.817
0.75905

-0.84325
0.9336

0.30631
-0.2628

0.50543
-0.6969

-0.59146
-0.46758

-0.48447
0.39214

-0.49414
-0.50041

-0.56204
-0.47655

-0.5012
-0.59814

-0.39529
-0.05901

bio 3
0.21263

-0.07209
-0.20419

-0.48503
1

-0.79419
-0.71185

0.58089
-0.75602

-0.34417
0.06254

-0.67225
0.4974

0.13699
0.02966

0.32074
-0.62938

0.03584
0.33584

0.60706
0.2684

0.21944
0.44523

0.03497
0.02443

bio 4
-0.30616

0.04911
0.36169

0.817
-0.79419

1
0.89069

-0.71311
0.93814

0.56293
-0.07292

0.80092
-0.61652

-0.49078
-0.38176

-0.28642
0.54805

-0.39055
-0.3066

-0.62082
-0.42243

-0.4129
-0.57166

-0.30653
-0.07292

bio 5
-0.3687

0.01975
0.56594

0.75905
-0.71185

0.89069
1

-0.46879
0.86428

0.56329
0.06421

0.93039
-0.2799

-0.45748
-0.37578

-0.26812
0.36085

-0.37413
-0.28201

-0.65245
-0.40185

-0.40557
-0.56533

-0.3074
-0.04857

bio 6
-0.23422

-0.06428
0.34228

-0.84325
0.58089

-0.71311
-0.46879

1
-0.8494

-0.05675
0.43499

-0.19281
0.95718

0.37738
0.24286

0.48015
-0.54167

0.27754
0.49606

0.46721
0.36651

0.33749
0.45918

0.18741
0.04093

bio 7
-0.0869

0.04839
0.1432

0.9336
-0.75602

0.93814
0.86428

-0.8494
1

0.36882
-0.20932

0.6656
-0.71223

-0.48818
-0.36277

-0.43359
0.524

-0.38154
-0.45095

-0.65581
-0.44876

-0.43447
-0.5992

-0.29036
-0.05231

bio 8
-0.88605

0.05364
0.82062

0.30631
-0.34417

0.56293
0.56329

-0.05675
0.36882

1
0.24054

0.69919
0.03028

-0.27592
-0.18299

-0.12088
0.4989

-0.19027
-0.11569

-0.22512
-0.22074

-0.32695
-0.32799

-0.36525
-0.1109

bio 9
-0.35651

-0.03768
0.44481

-0.2628
0.06254

-0.07292
0.06421

0.43499
-0.20932

0.24054
1

0.2412
0.44983

0.0275
-0.01159

0.19829
-0.14294

0.00524
0.2078

-0.00648
0.09162

0.02487
0.05204

-0.03279
-0.01847

bio 10
-0.58246

0.01587
0.78569

0.50543
-0.67225

0.80092
0.93039

-0.19281
0.6656

0.69919
0.2412

1
-0.03345

-0.35858
-0.30583

-0.09038
0.32253

-0.29172
-0.10146

-0.55909
-0.32282

-0.32503
-0.47364

-0.2699
-0.05082

bio 11
-0.29257

-0.06038
0.46182

-0.6969
0.4974

-0.61652
-0.2799

0.95718
-0.71223

0.03028
0.44983

-0.03345
1

0.30334
0.19131

0.35101
-0.49782

0.22311
0.37015

0.34913
0.29019

0.23713
0.33938

0.10934
0.03876

bio 12
-0.01317

0.09223
-0.17165

-0.59146
0.13699

-0.49078
-0.45748

0.37738
-0.48818

-0.27592
0.0275

-0.35858
0.30334

1
0.96168

0.09326
0.14744

0.97634
0.10809

0.33435
0.69156

0.5883
0.59478

0.52798
0.04652

bio 13
-0.07086

0.11022
-0.15788

-0.46758
0.02966

-0.38176
-0.37578

0.24286
-0.36277

-0.18299
-0.01159

-0.30583
0.19131

0.96168
1

-0.08943
0.34922

0.99565
-0.08359

0.20717
0.62549

0.48313
0.47474

0.4432
0.0329

bio 14
-0.02758

-0.09281
0.09894

-0.48447
0.32074

-0.28642
-0.26812

0.48015
-0.43359

-0.12088
0.19829

-0.09038
0.35101

0.09326
-0.08943

1
-0.55657

-0.05422
0.97772

0.35295
0.07504

0.35381
0.39521

0.22818
0.02798

bio 15
-0.4373

0.16168
0.14502

0.39214
-0.62938

0.54805
0.36085

-0.54167
0.524

0.4989
-0.14294

0.32253
-0.49782

0.14744
0.34922

-0.55657
1

0.31328
-0.55814

-0.37846
0.00163

-0.16549
-0.24696

-0.09104
-0.07822

bio 16
-0.07379

0.10726
-0.13911

-0.49414
0.03584

-0.39055
-0.37413

0.27754
-0.38154

-0.19027
0.00524

-0.29172
0.22311

0.97634
0.99565

-0.05422
0.31328

1
-0.04728

0.22644
0.6502

0.50744
0.49772

0.46359
0.03553

bio 17
-0.04189

-0.08816
0.10229

-0.50041
0.33584

-0.3066
-0.28201

0.49606
-0.45095

-0.11569
0.2078

-0.10146
0.37015

0.10809
-0.08359

0.97772
-0.55814

-0.04728
1

0.38966
0.07993

0.35848
0.41169

0.22827
0.02797

bio 18
0.10444

0.02567
-0.20827

-0.56204
0.60706

-0.62082
-0.65245

0.46721
-0.65581

-0.22512
-0.00648

-0.55909
0.34913

0.33435
0.20717

0.35295
-0.37846

0.22644
0.38966

1
0.35626

0.38732
0.53916

0.23704
0.03694

bio 19
0.01063

0.03689
-0.12198

-0.47655
0.2684

-0.42243
-0.40185

0.36651
-0.44876

-0.22074
0.09162

-0.32282
0.29019

0.69156
0.62549

0.07504
0.00163

0.6502
0.07993

0.35626
1

0.44782
0.57175

0.31825
0.01943

evi avg
0.08614

0.0424
-0.18889

-0.5012
0.21944

-0.4129
-0.40557

0.33749
-0.43447

-0.32695
0.02487

-0.32503
0.23713

0.5883
0.48313

0.35381
-0.16549

0.50744
0.35848

0.38732
0.44782

1
0.87183

0.87431
0.076

evi dry
0.07021

0.03788
-0.20158

-0.59814
0.44523

-0.57166
-0.56533

0.45918
-0.5992

-0.32799
0.05204

-0.47364
0.33938

0.59478
0.47474

0.39521
-0.24696

0.49772
0.41169

0.53916
0.57175

0.87183
1

0.66338
0.05083

evi mon
0.15934

0.0516
-0.25842

-0.39529
0.03497

-0.30653
-0.3074

0.18741
-0.29036

-0.36525
-0.03279

-0.2699
0.10934

0.52798
0.4432

0.22818
-0.09104

0.46359
0.22827

0.23704
0.31825

0.87431
0.66338

1
0.09034

slope
0.08654

-0.00208
-0.06706

-0.05901
0.02443

-0.07292
-0.04857

0.04093
-0.05231

-0.1109
-0.01847

-0.05082
0.03876

0.04652
0.0329

0.02798
-0.07822

0.03553
0.02797

0.03694
0.01943

0.076
0.05083

0.09034
1
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Table 5: A comparison between the influence of selected bioclimatic variables 

under the current climatic scenario and under all RCP scenarios on the potential 

distribution of Malabar Grey Hornbill. 

 

 

 

 

 

 

 

Variables current 

 

RCP 2.6 2050 

 

RCP 4.5 2050 RCP 6 2050 RCP 8.5 2050 

bcc miroc 
Mohc 

hadgem 
bcc Miroc 

Mohc 

hadgem  
miroc 

Mohc 

hadgem 
bcc miroc 

Mohc 

hadgem 

bio2 54.8 67 67.4 71 71.2 65.9 68.7 65.7 66.7 70.9 70.6 64 68.1 

bio10 18.7 13.5 20.3 19.5 15.2 22 20.6 16.2 21 18.1 15.4 20.9 21.6 

bio19 9.5 11.6 1.2 0.3 6.3 1 0.7 10.1 1.3 1.9 7.5 3.8 1 

bio11 5.6 5.2 9.5 7.8 5.2 7.7 7.5 5.7 8.2 7.6 5.4 8.1 7.8 

bio18 10.8 2.1 1.1 0.8 1.7 2.9 2 1.8 1.7 1.1 0.8 2.3 1 

bio15 0.5 0.5 0.5 0.5 0.4 0.3 0.6 0.6 0.9 0.4 0.3 0.9 0.5 

slope 0.1 0 0 0.1 0 0 0 0 0.1 0 0 0 0 
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4.3CLIMATE SPACE SUITABILITY FOR MALABAR GREY HORNBILL 

UNDER CURRENT AND FUTURE SCENARIO 

 

Figure 12: Distribution map showing suitability under current climatic 

condition 

The habitat available as highly appropriate for Malabar Grey Hornbill in the 

study area under current climatic condition is 1,08,480 km2. And in the current 

scenario, in the study area the species were not at all present accounted for 9,37,362 

km2.  

The area of suitability spread from Marthandam in Thiruvananthapuram to 

bhalvali covering Agastyamalai,  Neyyar Wildlife Sanctuary,  Periyar National Park, 

Idukki Wildlife Sanctuary, Anamalai Tiger Reserve, Nelliyampathy Forest Reserve, 

Mudumalai Tiger Reserve, BandipurTiger Reserve and National Park, Nagarhole 
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National Park and Tiger Reserve, Bhadhra Wildlife Sanctuary, Sharavathi Valley 

Wildlife Sanctuary, Anshi National Park, Bhagvan Mahavir Wildlife Sanctuary and 

Bhimgad Wildlife Sanctuary (Fig.12). 

4.3.1 FUTURE SCENARIOS 

The test AUC and TSS values for the model under future scenario were 0.891 

and 0.868, respectively, indicating that the model is better in predicting the suitable 

habitat area for Malabar Grey Hornbill in WG. With an overall accuracy of 0.9111, 

the specificity and sensitivity were 0.8988 and 0.9693, respectively.  

The future scenarios are evaluated for the four Representative Concentration 

Pathways (RCP) namely RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5. The average of 

three models viz., bcc csm1, miroc _5 and mohc_hadgem2_es were used in order to 

reduce the prediction bias. 

In the future scenario maps, we are going to subtract the current from the 

respective RCPSs to obtain the percentage loss, percentage gain and no change. 
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Figure 13: Distribution map showing area gained, lost and areas with no change 

in distribution under RCP 2.6 in 2050 

Figure 13 by subtracting RCP 2.6 from current scenario. When we look at the 

map from top to bottom, we can see that a substantial amount of the Malabar Grey 

Hornbill distribution and habitat appropriateness have remained unchanged. This 

value accounts for 10,02,782km2. This could indicate that there was no change in area 

where Malabar Grey Hornbill is present or absent in the earlier mentioned current 

scenario. 

A loss of 25,180 km2 was seen in the distribution of Malabar Grey Hornbill 

under RCP 2.6. A patch of habitat loss was observed near Singhampatti Zamindar 

forest near to Ambasamudram, Madiyarm and Sivagir. Another loss was seen near 

Idamalayar and near Anamali Tiger Reserve, Marayur, Pampadam SholaNational 

Park, Eravikulam National Park, Kurinjimala Wildlife Sanctuary and Mathikettan 
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Shola National Park. A loss was also seen in Palakkad region near Silent Valley 

National Park and New Amarambalam Wildlife Sanctuary. In the eastern side of WG 

there was a large stretch of loss of habitat seen from north to south including Ooty, 

Mudumalai Tiger Reserve, Bandipur Tiger Reserve and National Park, near 

Nagarhole National Park, near Sharavati Valley Wildlife Sanctuary, Bhagawan 

Mahavir Wildlife Sanctuary, Bhimgad Wildlife Sanctuary and ending near Amboli.    

Under RCP 2.6 Malabar Grey Hornbill had a gain or increment in habitat 

suitability of 17,174 km2. In Marthandam, Nagarcoil, Kanyakumari and 

Koodankulam region show an increase in the habitat of Malabar Grey Hornbill. Near 

coastal areas of Thiruvananthapuram, Kollam, Ambalapuzha and in Guruvayur, 

Ponnani and Kozhikode there was a light increase in habitat. And near Agamalai 

Forest Reserve, Chinnar Wildlife Sanctuary, Pallani hill Conservation Area and in 

Srivilliputhur Grizzled Squirrel Wildlife Sanctuary a gain in area is observed. A large 

gain in habitat can be seen in the north part near Radhanagari Wildlife Sanctuary, 

Rajapur, near Chandoli National Park, Sangameshwar Phansad Wildlife Sanctuary 

and in Mumbai area.   
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Figure 14: Distribution map showing area gained, lost and areas with no change 

in distribution under RCP 4.5 in 2050 

This map was created by subtracting RCP 4.5 from current scenario. When we 

look at the map from top to bottom, we can see that a substantial amount of the 

Malabar Grey Hornbill distribution and habitat appropriateness have remained 

unchanged. This value accounts for 10,01,144 km2.  

A loss of 27,592 km2 was seen in the distribution of Malabar Grey Hornbill 

under RCP 4.5. This loss was observed near Singhampatti Zamindar forest near to 

Ambasamudram, Madiyarm and Sivagir. Near Grass hill National Park, Anamudi 

SholaNational Park, Pampadam Shola National Park, Kurinjimala Sanctuary and 

Munnar Reserved Forest a small loss is seen. A patch of loss of habitat of Malabar 

Grey Hornbill was seen from Thodupuzha, Angamaly, Thrissur and in Chimmoni 

Wildlife Sanctuary. A loss was also seen in Palakkad region near Silent Valley 
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National Park and New Amarambalam Wildlife Sanctuary and near Thamarassery 

part. In the eastern side of WG there is a large stretch of loss of habitat seen from 

north to south including Ooty, Mudumalai Tiger Reserve, Bandipur Tiger Reserve 

and National Park, near Nagarhole National Park, near Sharavati Valley Wildlife 

Sanctuary, Bhagawan Mahavir Wildlife Sanctuary, Bhimgad Wildlife Sanctuary, 

Banda and ending near Sivdav.   

Under RCP 4.5 Malabar Grey Hornbill had a gain or increment in habitat 

suitability of 16,400 km2. In Marthandam, Nagarcoil, Kanyakumari and Valliyur 

region show an increase in the habitat of Malabar Grey Hornbill. Near coastal areas 

of Thiruvananthapuram, Kollam, Ambalapuzha and in Guruvayur, Ponnani and 

Kozhikode there shows a gain in the suitable habitat for Malabar Grey Hornbill (Fig. 

14). And near Agamalai Forest Reserve, Chinnar Wildlife Sanctuary, Pallani hill 

Conservation Area, Saptur Reserved Forest and in Srivilliputtur Grizzled Squirrel 

Wildlife Sanctuary a gain in area is observed. A large gain in habitat can be seen in 

the north part near Radhanagari Wildlife Sanctuary, Rajapur, near Chandoli National 

Park, Sangameshwar Phansad Wildlife Sanctuary and in Mumbai area.   
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Figure 15: Distribution map showing area gained, lost and areas with no change 

in distribution under RCP 6 in 2050 

This map was created by subtracting RCP 6.0 from current scenario. When we 

look at the map from top to bottom, we can see that a substantial amount of the 

Malabar Grey Hornbill distribution and habitat appropriateness have remained 

unchanged. This value accounts for 10,02,914km2.  

A loss of 26,168 km2 was seen in the distribution of Malabar Grey Hornbill 

under RCP 4.5 in 2050. This loss was observed near Singhampatti Zamindar forest 

near to Ambasamudram, Surandai, Madiyarm and Rajapalayam. Near Grass hill 

National Park, Anamudi Shola National Park, Pampadum Shola National Park, 

Kurinjimala Wildlife sanctuary and Munnar Reserve Forest a small loss was seen. A 

patch of loss of habitat of Malabar Grey Hornbill was seen in Neriyamangalam and 

Thattekad Bird Sanctuary and also in Thirssur, Chimmoni Wildlife Sanctuary and 
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Wadakkanchery. A loss was also seen in Palakkad region near Silent Valley National 

Park and New Amarambalam Wildlife Sanctuary, Malappuram and near 

Thamarassery part. In the eastern side of WG there is a large stretch of loss of habitat 

seen from north to south including Ooty, Mudumalai Tiger Reserve, Bandipur Tiger 

Reserve and National Park, near Nagarhole National Park, near Sharavati Valley 

Wildlife Sanctuary, Bhagawan Mahavir Wildlife Sanctuary, Bhimgad Wildlife 

Sanctuary, Banda and ending near Kankavli (Fig.15). 

 Under RCP 6.0 in 2050 Malabar Grey Hornbill had a gain or increment in 

habitat suitability of 16,054 km2. In Marthandam, Nagarcoil, Kanyakumari and 

Valliyur region show an increase in the habitat of Malabar Grey Hornbill. Near 

coastal areas of Thiruvananthapuram, Kollam, Ambalapuzha and in Guruvayur, 

Ponnani and Kozhikode there is a light increase in habitat. And near Agamalai Forest 

Reserve, Chinnar Wildlife Sanctuary, Pallani hill Conservation Area, Saptur Reserve 

Forest and in Srivilliputtur Grizzled Squirrel Wildlife Sanctuary a gain in area is 

observed. A large gain in habitat can be seen in the north part in Talere, Rajapur, 

Sangameshwar, Phansad Wildlife Sanctuary, Alibag and in Mumbai area. 
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Figure 16: Distribution map showing area gained, lost and areas with no change 

in distribution under RCP 8.5 in 2050 

This map was created by subtracting RCP 8.5 from current scenario. When we 

look at the map from top to bottom, we can see that a substantial amount of the 

Malabar Grey Hornbill distribution and habitat appropriateness have remained 

unchanged. This value accounts for 9,89,188km2.  

A loss of 44,494 km2 was seen in the distribution of Malabar Grey Hornbill 

under RCP 8.5 in 2050. This loss was observed near Singhampatti Zamindar forest 

near to Ambasamudram, Surandai, Madiyarm, Sivagiri Reserve Forest and 

Rajapalayam. Near Grass hill National Park, Anamudi Shola National Park, 

Pampadam Shoal national park, Kurinjimala sanctuary and Munnar Reserve Forest a 

small loss was seen. A large patch of loss of habitat of Malabar Grey Hornbill is seen 

from Pala, Muvattupuzha, Idamalayar, Thattekad Bird Sanctuary, Sholayar Reserve 
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Forest, Chimmoni Wildlife Sanctuary, Peechi-Vazhani Wildlife Sanctuary, Thirssur, 

Silent Valley National Park, Malappuram, Kozhikode, Kannur and finally ending 

near Kanhangad. In the eastern side of WG there was a large stretch of loss of habitat 

seen from north to south including Ooty, Mudumalai Tiger Reserve, Bandipur Tiger 

Reserve and National Park, near Nagarhole National Park, near Sharavati Valley 

Wildlife Scantuary, Anshi National Park, Cotigao Wildlife Sanctuary, Bhagawan 

Mahavir Wildlife Sanctuary, Bhimgad Wildlife Sanctuary and it then spreads towards 

west including Margoa, Mollem, Devgad and Vijavdurg. Two loss patches seen in 

Dharmasthula, Puttur, Kadaba and near Someshwara Wildlife Sanctuary, Siddapur 

near Mookambika Wildlife Sanctuary (Fig.16). 

 Under RCP 8.5 in 2050 Malabar Grey Hornbill had a gain or increment in 

habitat suitability of 11,454 km2. In Marthandam, Nagarcoil, Panakudi, Kalakadu RF 

and near coastal areas of Thiruvananthapuram, Kollam, Ambalapuzha. And near 

Agamalai Forest Reserve, Chinnar Wildlife Sanctuary, Palani Hill Conservation 

Area, Saptur Reserve Forest and in Srivilliputtur Grizzled Squirrel Wildlife Sanctuary 

a gain in area is observed. A gain in habitat can be seen in the north part in Talere, 

Rajapur, Sangameshwar, Phansad Wildlife Sanctuary and kihim. 
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CHAPETR 5 

DISCUSSION 

 

Climate change is impacting each and every sector. Several species have gone extinct 

due to the devastation nature has endured. Many more are on the verge of extinction. 

Several intolerant species have disappeared or become extinct as the habitat is 

drastically altered by severe climatic events. Others have adapted their habitats to 

more suitable spaces. Changes in avian distribution are most commonly seen due to 

their sensitivity to small climatic shifts and their ability to migrate. There are 

numerous studies conducted on various species distribution changes under changing 

climate scenario. Most results of such studies suggest either a range shift of the 

species as climate conditions of the future changes or great decline in the distribution 

of species. These changes are results of how the temperature, precipitation and other 

variables over the suitable area for the species.  

Malabar Grey Hornbill (Ocyceros griseus) is an endemic avian species seen in the 

Western Ghats region of India.The present study examines the current distribution 

patterns of the Malabar Grey Hornbill based on climatic variables and other physical 

variables and also the distribution of the Malabar Grey Hornbill is being projected for 

the year 2050 under four Representative Concentration Pathways (RCP).   

MaxEnt version 3.4.4 software was used to study the distributional changes of the 

Malabar Grey hornbill by relating the presence data points to the climatic conditions 

prevailing there. The study used the occurrence data points of the Malabar Grey 

Hornbill from 1964 to 2020 and climate data from CHELSA for current conditions. 

For the study, the occurrence points were thinned for 1 km2. Climate was predicted 

by using the models BSS CSM1.1, MIROC5 and Mohc HadGEM 2 ES of 30 second 

resolution under four different Representative Concentration Pathways (RCPs). For 

determining the distribution of Malabar Grey Hornbill using MaxEnt, cross validate 
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method was used with model features LQ (Linear, Quadratic) with regularization 

multiplier 0.5. TSS and AUC were the methods used for validating the performance 

of the model. 

The study shows that the current distribution of Malabar Grey Hornbill depends 

mainly on eight variables including EVI and seven variables without EVI. From the 

analysis of Table.2 when including EVI, it has the highest percentage contribution of 

44.4% followed by Mean Diurnal Range (bio2) of 31.4%, Mean Temperature of 

Warmest Quarter (bio10) of 13.7%, Precipitation of Coldest Quarter (bio19) of 5% 

and so on. And in the case without EVI in Table.3, Mean Diurnal Range (bio2) of 

54.8% and Mean Temperature of Warmest Quarter (bio10) of 18.8% show more 

importance in percentage contribution to the distribution of species. But these 

percentage contributions are heuristically defined. They will differ when the path 

used to get the same solution changes according to different algorithms. The 

determination of permutation importance (Table.2 and Table.3) is path independent 

and it depends only on the final MaxEnt model. So it is more preferable for 

estimating the contribution of each variable. So in Table.2 when EVI is considered 

the permutation importance was highest for Mean Temperature of Warmest Quarter 

(bio10) 65.8% followed by Mean Temperature of Coldest Quarter (bio11) of 24.3%. 

Then in the case where EVI was not used (Table.3), the Mean Temperature of 

Warmest Quarter (bio10) 64.8% followed by Mean Temperature of Coldest Quarter 

(bio11) of 27.1% had the highest importance again. In both cases the slope showed no 

importance at all.  By conducting analysis of the variables contributing to the 

distribution of Malabar Grey Hornbill, it is observed that the temperature related 

factors contribute more when compared to precipitation related factors. The 

topographical factor slopes contribution is only seen in the jackife test. 

Models prepared using the optimized variables under four different Representative 

Concentration Pathways (RCP) ie: RCP2.6, RCP4.5, RCP6 and RCP8.5 gave the 
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prediction for future distribution of the Malabar Grey Hornbill for the year 2050. 

Under RCP 2.6 the suitable habitat for Malabar Grey Hornbill is spreading towards 

North, Southern end of India, South-Western coastal areas and a small gain near 

Chinnar Wildlife Sanctuary Forest Reserve area. The loss of habitat is largely seen in 

the Eastern side of Western Ghats and in the Palakkad. Small loss is also seen in 

Idukki and Southern end of India. The area of habitat loss, habitat gain and no change 

in area under RCP 2.6 accounts for 25,180 km2, 17,174 km2 and 10,02,782 km2 

respectively. Under RCP 4.5, area of habitat loss, habitat gain and no change in area 

accounts for 27,592 km2, 164,00km2 and 10,01,144 km2 respectively. In RCP 4.5 

decrease of habitat loss is higher than the habitat gain. The habitat suitability under 

4.5 has shrunken compared to RCP 2.6 by 774 km2. For RCP 6, area of habitat loss, 

habitat gain and no change in area were 26,168 km2, 16,054 km2 and 10,02,914 km2 

and it shows reduction in the area lost when compared to RCP 4.5 by 1,424 km2. RCP 

8.5 being the highest emission scenario showed great increase in habitat loss and a 

decrease in suitable area. For RCP 8.5 area of habitat loss, habitat gain and no change 

in area accounts for 44,494 km2, 11,454 km2 and 989,188 km2 and this scenario 

shows the largest loss of habitat. The area lost under RCP 8.5 is almost double as 

compared to RCP 2.6. There is an increase in loss of habitat from RCP 2.6 to RCP 

4.5, RCP 6 and RCP 8.5 of about 2,412 km2, 988 km2 and 19,314km2.  

 

According to the IUCN red list of threatened species Malabar Grey Hornbill is 

showing a decreasing trend in population and the result from our study shows a 

conclusion that Malabar Grey Hornbill population declining under various scenarios. 

These results suggest that different conservation strategies should be undertaken for 

the protection and conservation of Malabar Grey Hornbill.   
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CHAPTER 6  

SUMMARY 

 

Climate change can affect biodiversity and ecosystems in a variety of ways. 

Several studies have been undertaken to study the effects of climate change on 

both plant and animal species and it revealed the changes occurring in the 

phenology, distribution and abundance of species. Birds are considered as an 

important bio indicator, which reflect the changes happening in their 

environment. These changes can affect the bird distribution and it is the field 

where predictive modelling can be applied. The results obtained here can be 

used especially in the conservation practices, where the potential places of 

occurrences can be identified and measures can be taken to protect them in the 

changed habitat. 

The goal of this study was to find out what environmental or climatic 

factors influence the distribution of Malabar Grey Hornbill which is an 

endemic bird species of Western Ghats and provide projection for different 

RCPs namely RCP 2.6, 4.5, 6 and 8.5 for the year 2050. For this study I used 

the occurrence data on the Malabar Grey Hornbill from eBird and the current 

climatic data from CHELSA as bioclimatic layers. The correlation and 

probability was calculated for current distribution of the Malabar Grey 

Hornbill using MaxEnt software using Maximum Entropy method. Using the 

results obtained from these, future prediction was made. In determining the 

distribution of Malabar Grey Hornbill using MaxEnt, cross validate method 

was used with model features LQ (Linear, Quadratic) with regularization 

multiplier 0.5. The variable which showed highest percentage contribution in 

the construction of model for the distribution of Malabar Grey Hornbill was 

Mean Diurnal Range (bio2). Permutation importance was higher for Mean 
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Temperature of Warmest Quarter (10) which can be useful for examining or 

understanding how the environmental variable is affecting the species 

seasonal distribution. The habitat suitability for Malabar Grey Hornbill as 

higher in the least emission scenario which is RCP 2.6 and the lowest in the 

high emission scenario i.e., RCP 8.5.The area of habitat loss under RCP 2.6 

accounts for 25,180 km2, under RCP 4.5 loss accounts for 27,592 km2, under 

RCP 6 habitat loss accounts for 26,168 km2 and finally for RCP 8.5 area of 

habitat loss accounts for 44,494 km2. 

The climate change will negatively impact the Western Ghats endemic bird 

species, Malabar Grey Hornbill, as it would be losing close to 23.23% under 

RCP 2.6, 25.44%under RCP 4.5, 24.12% under RCP 6 and 41.02% under 

RCP 8.5 scenarios of its suitable habitat by 2050. So we can clearly say that 

the Malabar Grey Hornbill will be experiencing a wide range of habitat loss in 

the future.  
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ABSTRACT 

Climate change has influenced many species and ecosystems. Researchers have given 

great importance to identifying the factors that influenced species distribution so as to 

determine the current and future distribution patterns of endangered species and 

conservation strategies can be implemented. Climate change poses negative impacts 

on bird species, particularly for those of restricted ecology and distribution range. 

Avian species are thought to be a bio-indicator of the environment's devastation. 

Since habitat specialist species are vulnerable to climate change, they could be 

employed as bio-indicators. This research was based on the spatial and temporal 

distribution of the Malabar Grey Hornbill in the Western Ghats, which could help 

determine environmental changes at various locations. MaxEnt was used to map out 

species distributions and habitat relationships. The distribution of the Malabar Grey 

Hornbill was modelled using current presence data from the e-Bird data source and 

19 bioclimatic factors from CHELSA V. 1.2. The MaxEnt model settings were 

determined using the ENM Evaluate tool, and the best – performing model was 

chosen based on the Akaike Information Criterion (AIC) value. It would project the 

Malabar Grey Hornbill distribution into the future using the current distribution 

analysis by converging it to the highest entropy probability distribution. The study 

only employed uncorrelated variables, which were chosen based on their percent 

contribution, permutation relevance, and R2 value. The study demonstrated the 

Malabar Grey Hornbills actual and anticipated distribution patterns for the year 2050, 

based on several RCP estimates. The projected model shows a declining geographical 

distribution of Malabar Grey Hornbill across Western Ghats. Mean Diurnal Range 

(bio 2) is found to be the most contributing bioclimatic variable in case of percent 

contribution whereas Mean Temperature of Warmest Quarter (bio10) and Mean 

Temperature of Coldest Quarter (bio11) showed most permutation importance in the 

distribution of Malabar Grey Hornbill. Total predicted suitable habitat is the highest 

under RCP 2.6 and lowest under RCP 8.5. In this projected distribution of the 
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Malabar Grey Hornbill, the combined effects of precipitation and temperature 

fluctuation and topographic feature like slope are important. So this study results 

suggest that for the management of this species, protective measures needs to be 

taken and climate change models should be considered when planning the 

management. 


