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CHAPTER 1 

INTRODUCTION 

Changing climate is an issue that affects the world in many ways. Biodiversity in the 

world is being threatened by climate change. Global warming has resulted in glaciers 

melting, sea levels rising, and extreme weather patterns, etc. The Full IPCC AR5 

Report states that in the Northern Hemisphere, the period between 1983 and 2012 

may be the hottest 30 years of the last 1400 years. The mean ocean and land surface 

temperatures warmed by 0.85 degrees between 1880 and 2012 (0.65 degrees to 1.06 

degrees) (Allen et al., 2014). Climate change can affect many species in an 

ecosystem. Large populations are more vulnerable to climate change than smaller 

populations. A major cause of climate change is human activities, such as burning 

fossil fuels and emitting greenhouse gases. In addition to biodiversity loss and 

ecosystem services, climate change exacerbates other problems, including water 

scarcity, floods and droughts, desertification and land degradation, and changes in 

biogeochemical cycles. The world needs to implement adaptation mechanisms in 

order to cope with climate change. Continually updating and reviewing the 

knowledge about these changes is necessary. It's essential to understand climate 

change and its consequences. The world should take immediate action to combat 

climate change by reducing the global average temperature increase. 

Various species in an ecosystem are susceptible to climate change. There are many 

ways species respond to climate change such as adaptation and migration. It has been 

demonstrated that climate change has affected plant and animal species distributed 

across a wide range of geographies. A species tolerance to temperature and 

precipitation is influenced by climate conditions through physiological thresholds. 

The climate ranges of these regions have been altered by warming trends. Some 

animals and birds will change their positions to find a better place where 

environmental conditions are conducive to their growth and reproduction. 
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Biological indicators, like birds, benefit from their sensitivity to environmental 

changes, especially since birds disperse seeds and regulate insect populations. This 

enables them to highlight strategies to preserve biodiversity and ecosystem services 

(de Moraes et al., 2020) and understand the effects of climate change. According to 

more recent studies, climate change has left a lasting impact on biodiversity, as 

evidenced by shifts in bird distribution (Gregory et al., 2009; Niven et al., 2009; Chen 

et al., 2011). 

Western Ghats (WG) are one of the world's most fragile and beautiful ecosystems 

(Shameer et al. 2019), thus considered an important biodiversity hotspot (Cincotta et 

al. 2000; Myers et al. 2000). The Western Ghat Mountains, which extend from the 

Tapti River in the north to the southern end of India, is considered one of the richest 

areas of biodiversity on Earth. Located in a unique biogeographic region, the Western 

Ghats feature a unique flora and fauna. Deforestation, an extension of agriculture, 

urbanization, and other anthropogenic factors threaten the forests in WG. The 

Western Ghats are home to an extensive variety of bird species, including endemics. 

Due to their geographical isolation, endemic species are more vulnerable to the 

effects of climate change. Birds inhabiting the Western Ghats include many endemic 

species. Westen Ghats is home to 29 endemic bird species. The Malabar Barbet 

(Psilopogon malabaricus) is one of the endemic birds found in the Western Ghats 

and the IUCN status of this bird is Least Concern (LC). Due to climate change, 

endemic birds in the Western Ghats can experience changes in their distribution. 

In understanding the effects of environmental change on species distributions, a 

species distribution model is very useful. Using statistical methods, they relate the 

field observations to environmental predictor variables. They predict future 

distributional changes by incorporating climate model data. Climate change impacts 

can be assessed by assessing species distribution models (SDMs). Grinnell's niche 

concept describes the ecological niche as the unit of distribution occupied by a 

species, whereas the distribution of individuals is ruled by both physical and climatic 
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factors. The combination of species occurrence data with local climatic conditions, 

therefore, can be used to predict climatic tolerance and potential climatic suitability 

regions based upon their occurrence data. Further, SDMs can be used to assess 

climate refuge areas, which are habitats that remain relatively unchanged regardless 

of changes in their surroundings (de Moraes et al., 2020). 

The study will use appropriate modeling techniques to examine how the distribution 

of Malabar Barbets in the Western Ghats has changed over time. Considering that the 

Western Ghats are home to many endemic species of birds, this study may shed light 

on the future of these species. The birds can be used to measure climate trends if the 

results are good. 

Project objectives include examining the impact of climate change on the status and 

distribution of the Malabar Barbet (Psilopogon malabaricus), a species endemic to 

the Western Ghats. We can use a climate niche model to predict the distribution 

patterns of the Malabar Barbet based on different climate change scenarios by 

developing a climate niche model using current climate data. 

Methodologies used in this study can also be applied to other species whose 

distribution is changing. This will aid in predicting future changes in the distribution 

of the Malabar Barbet and other species of significance will be able to be studied in a 

similar manner. The results of this study will help us gain an understanding of how 

climate change impacts the geographical distribution of the Malabar Barbet. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 CLIMATE CHANGE IN THE WESTERN GHATS  

In order to assess how the climate of India might change in the future, PRECIS 

(Providing Regional Climates for Impact Studies) was used. Climate change will 

result in a rise in precipitation and temperature in the 21st century. Temperatures are 

expected to increase on the Indian subcontinent, but precipitation patterns will vary 

based on the region, with torrential rain primarily occurring on the west coast and in 

the far west of the country. Additionally, the model indicated that nighttime 

temperatures would rise faster than daytime temperatures (Kumar et al., 2006). 

According to predictions, there will most likely occur mid-elevation evergreen forests 

in the central and southern parts of the Western Ghats, specifically south of the 

Palghat gap (Priti et al., 2016). In the case of A2 and B2 of the Special Report on 

Emission Scenarios (SRES), the Western Ghats will likely experience an increase in 

evergreen forest cover. Due to the fact that evergreen tropical forests are not 

fragmented, seeds can disperse widely. There are fewer dispersal agents in the forest 

as a result of human pressures and climate change. Western Ghats' forests are at risk 

from global warming. It is important to manage pests in these areas systematically, to 

harvest accurately, and to anticipate plantations (Chaturvedi, 2011). 

2.2 IMPACTS OF CLIMATE CHANGE ON BIRD 

2.2.1 Birds as bio-indicators 

As bio-indicators, avian species were well understood by the public and policy 

makers, since they have a recognizable and iconic status throughout the world (Crick, 

2004).  Climate change was considered to be a widespread and dangerous threat to 

biological diversity (IPCC, 2007). Human activities have altered ecological systems 
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worldwide, changed the world's climate, and reduced and fragmented habitat, 

according to Willis and Bhagwat (2009). In addition to birds being well-known 

indicators of climate change (Wormworth and Sekercioglu, 2011), birdwatchers 

around the globe are producing extensive datasets on birds (www.ebird.org; 

www.worldbirds.org).  

2.2.2 Effect of climate change on physiology of birds 

The weather affects the metabolic rate of birds directly and indirectly, which 

influenced bird behavior. When birds avoid places with unfavorable climates, 

important activities like breeding and feeding will be reduced (Walsberg, 1993). 

Hormones are released during breeding, and these hormones fluctuate depending on 

the weather. According to Crick (2004). Bird behavior and activity were observed to 

be influenced by temperature and humidity indirectly.  As Gregory et al. (2009) 

report, climate change can both negatively and positively affect large species 

assemblages. However, it is plausible that the physiological reactions of birds to 

climate change will be significant (McKechnie, 2008; McNab, 2009). 

2.2.3 Responses of birds towards climate change 

The responses done by the species to climate change was generally by three methods 

such as movement (if the species are mobile they will track the suitable environment 

niches), adaptation (if the species are able to adjust to the changing conditions and 

have high physiological tolerances) and extirpation (when both movement and 

adaptation fails) (Holt, 1990; Melillo et al., 1995). In addition to climatic factors, 

land-use and habitat change, biotic interactions and evolutionary adaptation also 

influenced species distribution (Huntley et al., 2006; La Sorte and Thompson, 2007; 

Beale et al., 2008). According to Thomas (2010), the climate is one of the most 

important factors that determine range boundaries. The climate change effect on 

endothermic birds is indirect as it impacts the vegetation in their communities as 

opposed to directly affecting their physiology (Aragon et al., 2010a). Chen et al. 
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(2011) argued that most species' ranges are shifting into the poles and upwards 

because of climate warming (Chen et al., 2011). 

2.2.4 Climate change and avian distributional range 

Gibbons and Wotton (1996) found that the lack of severe winters in the UK since the 

1960s had led to the expansion of the distribution of the Dartford Warbler (Sylvia 

undata). A number of studies have documented that shifts in distributional ranges 

were linked to temperature gradients and the interaction between temperatures and 

precipitation is also significant in determining distributions (Hawkins et al., 2003). To 

determine how much change has occurred for this interaction over the century, a 

temporal distributional study could be conducted (Hawkins et al., 2003). In another 

study using a community index rather than species range margins, it was revealed that 

in France there was a substantial northward shift in breeding bird assemblages, but it 

did not reflect the 9 climate warming experienced there (Devictor et al., 2008). There 

has already been evidence that climate change has an effect on bird distributions in 

multiple studies (Gregory et al., 2009; Niven et al., 2009; Chen et al., 2011). 

Researchers found that increasing range sizes are correlated with species whose 

ranges expand as reported by Gregory et al. (2009). The Alps have recently 

experienced an upward trend in breeding bird distribution according to (Popy et al., 

2010). Tropical bird species have become increasingly vulnerable to climate change 

over the past few years (La Sorte and Jetz, 2010; Harris et al., 2011; Sodhi et al., 

2011; Wormworth and Sekercioglu, 2011). Bradbury et al. (2011) report that Sylvia 

undata populations have been increasing in the northwest and upward in Northern 

Ireland between 1974 and 2006. Climate change has also affected bird demographics 

(Pautasso, 2012) and not just species distributions. 
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2.2.5 Importance of range distribution studies 

For a better understanding of biodiversity ecological impacts and evolutionary 

changes that will occur in the future, it is necessary to collect information regarding 

species ecology and geographic distribution (Rosenzweg, 1995; Ricklefs, 2004; 

Graham et al, 2006), in addition to planning and forecasting for the conservation 

(Ferrier, 2002b; Funk and Richardson, 2002; Rushton et al, 2004). Adaptive and 

mitigation measures associated with climate change were eagerly anticipated by 

researchers and policymakers alike (Mace and Baillie, 2007; EEA, 2007). 

2.3 MODELLING OF SPECIES DISTRIBUTION 

2.3.1 Importance of species distribution modeling 

There are statistical correlations between the abundance and distribution of 148 

wintering land birds and six environmental factors, among them climatic factors. 

Root (1988a, 1988b) and Root and Schneider (1993) conducted similar research on 

these same topics. A model developed by Gates et al. (1994) related species 

distribution in the United Kingdom to land-use patterns of usage and climatic 

variables, and the results indicated a strong relationship between the climate and bird 

distribution, and the predicted climate change was spurring redistribution. In order to 

determine whether measurements have changed, climate envelopes were applied to 

describe the spatial distribution, and compared with the current distribution pattern. 

Among these factors, biotic interactions, geographic barriers, and historical 

circumstances were not taken into account, so species in suitable environments would 

become rare (Anderson et al., 2002; Svenning and Skov, 2004; Araujo and Pearson, 

2005). 

Models of species distributions were applied to examine spatial configuration and 

habitat characteristics to determine if species continuity may have been possible in 

landscapes (Araujo and Williams, 2000; Ferrier et al., 2002b; Scotts and Drielsma; 
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2003), historical distributions of species (Hugall et al., 2002; Peterson et al., 2004), 

species distribution in future climatic conditions (Bakkenes et al., 2002; Skov and 

Svenning, 2004; Araujo et al., 2004; Thomas et al., 2004; Thuiller et al., 2005) in 

conjunction with environmental and species diversity variables (Mac Nally and 

Fleishman, 2004). 

Conservation practitioners can estimate species distribution sizes and predict the 

probability of their presence without systematic surveys by using distribution models 

(Elith, 2002). Our study of changing distributions was based on predictive modeling. 

It is possible to correlate climate variables and environmental variables with the 

presence or absence of species in accurate maps of their distribution (Crick, 2004). 

 The environmental conditions were derived using the known distributional 

characteristics of species, thereby identifying the geographical regions with similar 

ecosystems and modelling the distribution of species (Pearson and Dawson, 2003). 

Based on bio-geographic analysis of observed localities, the distribution of species 

abiotic niches was extensively studied (Guisan and Thuiller, 2005). The only way to 

test the hypothesis or projections was by actually watching the future unfold and to 

overcome this difficulty, we could use past changes in the environment to test 

whether species and ecosystems have responded in the same way that the models 

(Araujo et al., 2005). Based on the abundance or presence of species in relation to a 

particular environment, species distribution models provide predictions of the 

distribution of species in the environment. In ecology, evolution, and conservation, 

these models were widely used in the analysis of various arguments (Elith et al., 

2006). 

Moreover, these models can provide estimates of the distribution of species under 

various climate change scenarios (Jeschke and Strayer, 2008; Sinclair et al., 2010), 

the potential for introduction and subsequent expansion (Jimenez-Valverde et al., 

2011; Jeschke and Strayer, 2008) and could be used in reserve planning (Thorn et al., 
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2009). Studies of shifting bird distributions were vital for monitoring protected area 

networks and conserving the species of birds from becoming endangered (Aragón, 

2010b; Arajo, 2011). The changes in distribution will also signal the need to conserve 

biodiversity throughout the landscape, resulting in the displacement of existing 

protected areas (Pautasso et al., 2011). 

2.3.2. Process of species distribution modeling 

2.3.2.1 Steps in species distribution modeling 

We used several steps for modelling the distribution of species: (1) present-day data 

on species as points of occurrence (Peterson et al., 1998; Peterson and Stockwell, 

2001b); (2) models of ecological niches have been developed and evaluated using 

distributional data (Guisan and Zimmerman, 2000; Kobler and Adamic, 2000); (3) 

the shifts in distribution are based on models of the general circulation of climate 

change and projected onto the landscapes of interest; (4) distributional shifts are 

modeled through a projection of ecological niche models of various taxa. Through the 

analysis of responses of species to abiotic environmental factors (Soberon and 

Peterson, 2005), environmental space models can estimate the ecological niche for 

any given area or trace the specific conditions in which the species can thrive (Elith et 

al., 2011). 

2.3.2.2 Methods for testing accuracy 

Different types of models were used to model species distributions, varying in the 

steps of the modelling process; selecting a suitable predictor variable, defining each 

predictor variable's function, weighing variable contributions, predicting species 

distribution by examining the interactions among the predictors and the species 

(Guisan and Zimmerman, 2000; Burgman et al., 2005; Wintle and Bardos, 2006). 

Models were built with several rules, each of which comprised an algorithm, and on 

the basis of that, landscapes within and outside of the ecological niches were 
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identified (Peterson, 2001a). Comparing alternative models and including different 

factors in the model using hierarchical portioning would give us the ability to analyze 

the evidence from different factors (Mac Nally, 2002). Testing the climatic envelope 

models addressed concerns about the accuracy of species distribution predictions 

under different climate conditions (Akcakaya et al., 2006; Pearson et al., 2006; 

Araujo and Rahbek, 2006; Zimmer, 2007). According to Pearson et al. (2007), the 

degree of environmental dimensions that define a species' distribution impacts its 

distributional limits. A range of suitable conditions for each species was accurately 

described by the model as a result of this. Due to the fact that the data are derived 

from a single source, it is difficult to identify causal relationships between variables 

because autocorrelations exist among the variables (Bahn and McGill, 2007; Currie, 

2007; Beale et al., 2008). The correlation between environmental variables and 

climatic variables can be reduced by examining large geographic areas, reducing the 

misinterpretation of species distribution responses (Maclean et al., 2008). Ashcroft et 

al. (2011) reported that models failed to detect spurious correlations among variables 

that determined the geographic distribution of the population in order to resolve 

ambiguities due to correlated predictors. We developed a generalized linear mixed 

model to improve the accuracy of species distribution range predictions (Swanson et 

al., 2013). 

2.3.3. Advancements in species distribution modeling 

A primary influence over terrestrial species distribution is the climate and niche 

modelling were based on this idea. However, the understanding of mechanisms was 

challenging even though predictive models had increased (Shipley, 1999). Research 

on the future distribution of a species was notably scarce, but the climate envelope 

approach was frequently used for resolution (Berry et al., 2002; Thomas et al., 2004; 

Harrison et al., 2006). The use of ecological niche modelling was appreciated for 

predicting species distributions based on environmental data (Pearson and Dawson, 

2003). Science and technology advancements led to the development of very complex 
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general circulation models (GCMs), which simulate climate changes and, in 

conjunction with different greenhouse gas emission scenarios, predict the future 

climate (Raper and Giorgi, 2005). Despite the lack of data on species-specific 

physiological parameters and processes, the correlation between climatic and non-

climatic factors was still an issue (Kearney, 2006). Based on current climate data, the 

models were used to predict the distribution of bird species in the present, and the 

models could also be used to predict the distribution of bird species in the future 

based on predicted future climatic conditions (Huntley et al., 2006). There is an 

association between climate and vertebrate distribution, and predictive models have 

been developed using bird distribution data (Jetz et al., 2007).  

2.3.4. Species distribution studies 

Environmental variables such as climate conditions have been proposed to explain 

animal species richness and distribution patterns (Kerr, 2001; Ricklefs, 2004; 

Ceballos and Ehrlich, 2006; Mittelbach, 2010). Studies using climate data have 

modeled species distributions in many ways (Beever et al., 2010). According to 

studies of future distribution predictions, changes in the distributions of species 

associated with warmer climates would be reflected by similar changes in the 

distributions of species associated with colder climates since both occupy the same 

climate zone (Berry et al., 2002; Thomas et al., 2004; Harrison et al., 2006). Studies 

predict the future of species extinction (Peterson et al., 2002; Bakkenes et al., 2002; 

Thomas et al., 2004; Thuiller et al., 2005; Malcom et al., 2006), and the redistribution 

of ranges by species (Iverson and Prasad, 1998; Pearson et al., 2002; Burns et al., 

2003; Calef et al., 2005; Rehfeldt et al., 2006; Hamann and wang, 2006; McKenney 

et al., 2007; Peterson et al., 2008). Because of climate change, the location of species 

has been correlated with climate variables (Heikkinen et al., 2006; Elith et al., 2006; 

Guisan et al., 2007; Loiselle et al., 2008; Graham et al., 2008; Feeley and Silman, 

2010; Beever et al., 2010). A study had examined the role of temperature dependence 

in changing distributions and the shifts in distribution over time (MacKay et al., 
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2008). Prediction of species richness has been explained by various environmental 

factors at various levels (Coops et al., 2009; Hinsley et al., 2009; Hansen et al., 2011; 

Bar-Massada et al., 2012; Fitterer et al., 2012). For forest bird richness, temperature 

variables were strongly correlated with bird abundance, while precipitation variables 

were strongly associated with bird abundance in open woodlands (Goetz et al., 2014). 

2.4 DATA USED FOR MODELLING 

2.4.1 Type of data and performance of the model 

When used withheld data for predicting species distribution, proximity-only models 

failed to perform well in general tests due to the biases in the geographic and 

environmental space (Bojorquez et al., 1995, Hijmans et al., 2000; Soberon et al., 

2000; Kadmon et al., 2004). To test the performance of the model, artificial data 

could be used as well as the accuracy of predicted responses, or both presence and 

absence data could be used, along with comparing fitted functions (Austin et al., 

1995). According to Fielding and Bell, (2007), 'test' data and 'training' data for 

training the model provided better predictive accuracy than independent data 

collected for building the model. An array of test statistics and discrimination indices 

were used to assess the performance of the model (Fielding and Bell, 1997; Pearce 

and Ferrier, 2000). In the evaluation stage, we observed the predictive performance 

and excluded some known occurrences (only its presence) from the development of 

the models (Fielding and Bell, 1997; Hastie et al., 2001; Araujo et al., 2005). 

As a measure of accuracy, we assessed the wellness of prediction by using data 

withheld from the study (Boyce et al., 2002; Hirzel and Guisan, 2002b). Unlike 

Kappa and the area under receiver operating characteristic curve (AUC), which are 

commonly used indices, these cannot be used to evaluate regions with a small sample 

size (Boyce et al., 2002; Phillips et al., 2006). It was statistically identical to 

predicting a large proportion of test localities from a random prediction, so it would 

provide informative predictions if higher proportions of test localities were predicted 



13 

 

(low omission rate). The Chi-square test or upper-tailed binomial probability was 

used for assessing the statistical significance of the model when data portioning was 

done for testing (Anderson et al., 2002). Observed absence data were necessary to 

predict the model's performance (Loiselle et al., 2003). As a result, the 2-2 confusion 

matrix was used to describe when the absences and presences were predicted 

correctly and incorrectly. However, only presence-only models without absence data 

were tested (Anderson et al., 2003). 

Theories suggest excluding absence data (which may occur when missing data are 

included in the model) since inaccurate predictions will be judged as failures 

(Anderson et al., 2003; Pearson and Dawson, 2003; Soberon and Peterson, 2005).  

Typically, random or spatial stratified partitioning was used (Peterson and Shaw, 

2003), but small records presented challenges, such as being too small for partitioning 

into training and test sets or being difficult to identify negative records (Anderson and 

Martinez-Meyer, 2004). When a small sample was used, the prediction performance 

declined (Stockwell and Peterson, 2002; Reese et al., 2005). Due to the widespread 

use of distribution models and the increasing advancements in available data and 

modelling methods, high-predictive-ability and accuracy analyses of species 

distribution modelling methods for presence-only data were of the utmost importance 

(Elith et al., 2006). A presence-absence dataset that is independent and well-

structured greatly improves the evaluation of model performance (Elith et al., 2006). 

The development of machine learning and statistical disciplines led to the creation of 

many methods which were capable of capturing complex responses despite noisy 

data. Despite its promise, this research has not received any exposure in distribution 

modelling (Phillips et al., 2006, Leathwick et al., 2006).  Resampling designs 

revealed geographic and environmental biases as well (Elith et al., 2006). In the case 

of limited observational records, the jackknife approach is a valid method for 

assessing predictive ability. As a technique, the Jackknife (‗leave one out‘) procedure 

was effective at assessing the model with few occurrences. Observed localities (n) 
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were excluded once, then n-1 localities were used to construct the model. A set of n 

different models was built and the predictability was tested by predicting the single 

locality from the training set of data (Pearson et al., 2007). In the modelling 

techniques and validation, only presence data were used as absence data were rare or 

difficult to detect, respectively (Pearson et al., 2007). According to studies conducted 

by Algar et al., (2009), the temporal prediction was fairly accurate, but regression 

models could be used to reduce biases in spatial autocorrelation. 

 2.4.2 Presence and absence records 

Distribution models developed in the past have used presence/absence or abundance 

data, with systematic sampling carried out within the areas of interest (Austin and 

Cunningham, 1981; Hirzel and Guisan, 2002b; Cawsey et al., 2002). It has been 

developed in the past that a number of distance-based measures can be used solely for 

the analysis of presence-only data (Silverman, 1986; Busby, 1991; Walker and 

Cocks, 1991; Carpenter et al, 1993). Most presence/absence models assume that 

breeding habitats are saturated (Capen et al., 1986). In some species distribution 

models (Nix, 1986; Carpenter et al., 1993), the only thing prescribed was to look at 

presence data.  

If you use presence/absence models (Fielding and Bell, 1997), you can generate false 

positives or false negatives. In the future, adaptations could be made to use the 

background environment samples (produced through sampling random points over 

the study area) or to model presence-only data from presence-absence methods 

(which used a binomial response for modelling) or to use a pseudo area (Stockwell 

and Peters, 1999; Boyce et al., 2002; Ferrier et al., 2002b; Zaniewski et al., 2002; 

Keating and Cherry, 2004; Pearce and Boyce, 2006). Lack of records during surveys 

and poor sampling contributed to the use of pseudoabsences instead of real absences, 

so methods for obtaining absence data often used pseudo-absences instead (Ferrier et 
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al., 2002a; Engler et al., 2004) or some methods used background data for the entire 

study area (Hirzel et al., 2002b).  

We had access to occurrence data from the environmental data layers of high spatial 

resolution created through satellite imagery (Turner et al., 2003) and highly 

sophisticated climate data (Thornton et al., 1997; Hijmans et al., 2005). Validating 

absence data was challenging as wildlife-habitat correlations were absent, even 

though some species may have been spotted at a site (MacKenzie et al., 2004; Gu and 

Swihart, 2004). 

Ecological niches were modelled using alternative methods of several kinds, using 

both present and absent records (Bourg et al., 2005).  According to Thuiller et al., 

2004 and Pearson et al. (2006), there was a wide range of predictions based on 

different methods, so it is imperative that the appropriate method be selected and the 

results verified. There were many records of species distribution in museum and 

herbarium collections that could be accessed electronically (Graham et al., 2004; 

Huettmann 2005; Soberon and Peterson, 2005). At present, there are methods that use 

information about members of the community as a supplement to data regarding 

models of rare species; specifically for rare species, this method holds promise, since 

information about other members of the community could reveal relationships 

between models (Elith et al., 2006). The problem with these types of presence data 

was that their intent and methods were seldom known, and therefore, the absence of 

data could not be inferred with certainty (Elith et al., 2006). Since the turn of the 

century, new approaches have been developed that have focused exclusively on 

presence data, thereby eliminating the need to obtain places of absence (Baldwin, 

2009). 

2.5 ASSESSMENT OF CLIMATIC CHANGES  

A number of tools were used to assess the impacts of climate change on biodiversity, 

including global climate models, regional climate models, dynamic and equilibrium 
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vegetation models, species bioclimatic envelope models, and site-specific sensitivity 

analyses (Sulzman et al., 1995). Transient simulations showing both ups and downs 

in temperature distribution showed the increasing temperatures in both hemispheres 

when CO2 was increased stepwise (Sulzman et al., 1995). A regional model could be 

used in conjunction with a Global Circulation Model (GCM) to provide greater 

resolution. (Sulzman et al., 1995) The two major regional models used were the MM5 

(Mesoscale Model version 5) and the RAMS (Regional Atmosphere Modelling 

System). In the southern hemisphere, climate dynamics are different from those in the 

northern hemisphere, so models developed with primary emphasis on one hemisphere 

would not produce accurate results in the other hemisphere (Grassl, 2000). 

The use of regional climate models was more useful for analyzing local changes than 

global models that included global forcings (Pitman et al., 2000). Models such as 

these could illustrate how land-use changes impact cloud formation. There was no 

easy way to get results from these models for all regions.  Several dynamic vegetation 

models, forest gap models, biome envelope models, and species envelope models 

were used to investigate different aspects of future climate change related to 

biogeography (Cramer et al., 2000). 

For conservation assessments of climate change, global climate models, including 

General Circulation Models (GCMs), provide estimates of future climate change due 

to greenhouse gas forcing by calculating projected climate change values at different 

resolutions.  (Hannah et al., 2002). The assessments were enhanced by incorporating 

results from transient (not equilibrium) simulations of CO2 increase and models 

which were coupled with ocean and atmosphere in the regions of interest (Hannah et 

al., 2002).  

2.6 MAXIMUM ENTROPY MODELLING (MaxEnt) 

According to Phillips et al. (2006), MaxEnt calculates the species distribution using 

maximum entropy distribution under the constraint that the expected values of each 
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environment variable (interactions) match their empirical average. It approximated 

the most uniform distribution by utilizing the background locations and derived 

constraints (Philips et al., 2004; Philips et al., 2006). If the presence data are used 

only as species data, the complexity of the fitted functions can be chosen. The 

Maximum entropy modelling (MaxEnt) technique has performed better or as well as 

other techniques (Elith and others, 2006; Hernandez and others, 2006; Philips et al., 

2006). The MaxEnt algorithm yielded higher success rates in comparison with other 

algorithms, and it did so despite small sample sizes (Pearson et al., 2007). While 

MaxEnt models predicted broader areas of suitable conditions and could predict 

excluded regions when sample sizes were reduced artificially, model performance 

was negatively affected (Pearson et al., 2007). 

 MaxEnt has been applied to the prediction of distributions of geckos (Uroplatus 

spp.) (Pearson et al., 2007), denning habitat assessment of the American black bear 

(Ursus americanus) (Baldwin and Bender, 2008), Bush dog (Speothosvenaticus) for 

judging protection excellence (DeMatteo and Loiselle, 2008), modeling seasonal 

distribution patterns of the Little Bustard (Tetraxtetrax) (Suárez-Seoane et al., 2008), 

nesting habitat prediction and mapping for the Sage grouse (Centrocercus 

urophasianus), and a conservation plan was created for the species of Asian slow 

loris (Nycticebus spp.) (Thorn et al., 2009). MaxEnt is capable of creating accurate 

models even with limited data points, which proved useful when mapping the spread 

of species was not possible (Baldwin, 2009). 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1. STUDY SPECIES 

Malabar Barbets (Psilopogon malabaricus) are endemic to tropical evergreen 

mountain regions of India's western ghats (Rasmussen and Anderton, 2005). Breeding 

occurs during the months of December to May, making it a frugivore. Several studies 

have been conducted on the breeding biology of barbets Megalaima viridis and M 

malabarica in the Periyar Tiger Reserve in Kerala (Yahay, 1988). Malabar Barbet is 

endemic to the Western Ghats of southwestern India, where it replaces the 

related Coppersmith Barbet (Psilopogon haemacephalus) in wetter forested habitats. 

Within these habitats, it is generally common and vocal, although very difficult to see 

in the forest canopy. Largely territorial, groups often gather in fruiting trees, and pairs 

nest and roost in holes excavated in a rotting tree limb. It was reported in December 

2012 at 0730 hrs that Malabar Barbets had been sighted in Pillur, and from April 

2013 to June 2014 in Athikadavu (Manikandan and Balasubramanian,  2016). 

3.2. STUDY AREA 

The study was carried out in the Western Ghats, a point of high biodiversity that runs 

through Kerala, Tamil Nadu, Karnataka, Goa, Maharashtra and Gujarat. The Western 

Ghats refer to the practically unbroken hill chain (with the exception of the Palakkad 

Gap) or escarpment running roughly in a north-south direction, parallel to the 

Arabian sea coast, from the river Tapi (about 210 16‘ N) down to just short of 

Kanyakumari (about 8019‘ N) at the tip of the Indian peninsula . (Myers et al. 2000) 

The range has a diverse range of ecosystems, which contribute to its richness in 

biodiversity and endemism. Mahabaleshwar, Coimbatore—Palani Hills, the Nilgiris, 

the Anamalai, Silent Valley and Agasthyamalai are all part of the WG bioregion, 

which supports a varied range of biological types. Mountains in Nilgiri and Anamalai 
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rise to 2500 meters above sea level and are divided by a 22 km wide Palghat gap. 

There is a great deal of shola grassland in the south of WG, particularly in the high 

mountains. (Ramachandra and Suja 2006). Sholas are semi-evergreen plants that 

grew in prehistoric highlands. They are thought to be living fossils (Jose 2012) 

3.3. OCCURRENCE POINTS OF MALABAR BARBET 

Species Distribution Model (SDM) (Trisurat et al., 2011) is a framework for deriving 

information on the existence and distribution of species. The Malabar Barbet 

presence statistics were obtained from e-Bird references ( http://www.ebird.org/ ), a 

free checklist tool available over the Internet. As well as being copyrighted by 

Audubon Society and Cornell Lab of Ornithology, this data is also released under 

Audubon Knowledge Network (AKN). Breeding Bird Survey data is drawn from a 

survey conducted in 1966 that continues till now. It has advanced georeferencing 

capabilities and an extensive user community. It was used to get georeferenced data 

from 1964 to 2020 on the Malabar Barbet. By utilizing Excel's capabilities, duplicate 

records were eliminated, and a matching shapefile was created in ArcMap 10.8(Fig. 

1). 

http://www.ebird.org/
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Figure 1. Occurrence points for Malabar Barbet in the Western Ghats  
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3.4. ENVIRONMENTAL VARIABLES 

19 more relevant variables are generated by the combination of monthly rainfall data 

and monthly temperature data. Annual patterns, seasonality, and severe or limiting 

environmental conditions are all represented by these variables. They are designated 

with many names, such as: 

3.4.1 bio1 (Annual Mean Temperature): The yearly mean temperature was 

calculated using the 12-month average temperature.This approximated an ecosystem's 

total energy inputs. 

3.4.2 bio2 (Mean Diurnal Range): The diurnal range (the difference between the 

maximum and minimum temperature) for each month was averaged over the course 

of a year.This gave data on the importance of temperature fluctuations for various 

species. 

3.4.3. bio3 (Isothermality): Isothermality was employed to measure the day-night 

temperature oscillations in relation to the yearly oscillations (bio2/bio7) x100).This 

might indicate the impact of bigger or smaller temperature fluctuations in a month 

compared to the previous year. 

3.4.4. bio4 (Temperature Seasonality): It's the difference between the SD 

(variation) of monthly temperature averages and the temperature variation (SDx100) 

throughout a year (or averaged years).The bigger the SD, the greater the temperature 

fluctuation. 

3.4.5. bio5 (Maximum Temperature of Warmest Month): It was effective in 

determining the effects of warm temperature anomalies on species distribution since 

it monitors the maximum monthly temperature over a year. 
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3.4.6. bio6 (Minimum Temperature of Coldest Month): Measures the lowest 

temperature during a period of time, which is important for analysing the effects of 

cold temperatures. 

3.4.7. bio7 (Temperature Annual Range): Quantifies temperature change over time 

(bio5-bio6), which aids in the study of species distribution and the effects of severe 

temperatures on it. 

3.4.8. bio8 (Mean Temperature of Wettest Quarter): Thismakes it possible to 

investigate the effect of approximating mean temperatures occurring throughout the 

wettest season on species distribution. 

3.4.9. bio9 (Mean Temperature of Driest Quarter): The driest quarter's mean 

temperature was monitored to see how it affected species distribution. 

3.4.10. bio10 (Mean Temperature of Warmest Quarter): The mean temperature 

across the hottest quarter is quantified, which aids in the study of species distribution. 

3.4.11. bio11 (Mean Temperature of Coldest Quarter): The coldest quarter's mean 

temperature was monitored to see how it affected species distribution. 

3.4.12. bio12 (Annual Precipitation): It is the sum of all monthly precipitation and 

assesses total water inputs, and it proved beneficial in evaluating the significance of 

water availability in influencing species distribution. 

3.4.13. bio13 (Precipitation of Wettest Month): The wettest month's precipitation 

was observed, and the species distribution was studied when an extreme precipitation 

event occurred. 

3.4.14. bio14 (Precipitation of Driest Month): To examine the severe circumstances 

and their consequences on species distribution, total precipitation received during the 

driest month was recorded. 
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3.4.15. bio15 (Precipitation Seasonality): The variation in monthly precipitation 

throughout the course of the year was calculated.It is the ratio of SD of monthly total 

precipitation to the mean monthly total precipitation. 

3.4.16. bio16 (Precipitation of Wettest Quarter): The wettest quarter's precipitation 

was observed, and the species distribution was studied when an extreme precipitation 

condition occurred. 

3.4.17. bio17 (Precipitation of Driest Quarter): To examine the severe 

circumstances and their consequences on species distribution, total precipitation 

received during the driest quarter was recorded. 

3.4.18. bio18 (Precipitation of Warmest Quarter): The hottest quarter's 

precipitation was observed, and the species distribution was studied when an extreme 

precipitation condition occurred. 

3.4.19. bio19 (Precipitation of Coldest Quarter): The impacts of the coldest 

quarter's mean precipitation on species distribution were measured. 

In both current and future conditions, 30 arc seconds (0.86 km2 at the equator) were 

used. We were using the WGS84 datum in the latitude/longitude coordinate reference 

system. Monthly precipitation, minimum, mean, and maximum temperatures were 

used to determine the bioclimatic variables. In order to create the data layers, average 

monthly data from weather stations were interpolated. There are benefits and 

drawbacks to this information. Climate is defined by the World Meteorological 

Organization (WMO) as the measurement of the mean and variability of significant 

amounts of specific variables (such as temperature, precipitation, or wind) across 

time, which can range from months to hundreds or millions of years.30 years is the 

standard time for considering climate. 

Environmental and ecological sciences require high-resolution climate data for many 

applications. CHELSA (Climatologies at high resolution for Earth's land surface 
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regions) provides downscaled estimates of temperature and precipitation based on 

ERA-Interim output at a high resolution of 30 arc seconds. CHELSA's output has 

been compared with data from the Global Historical Climate Network. According to 

CHELSA, species distributions can be predicted more accurately than with 

climatological data. In addition, several studies have shown that the CHELSA 

precipitation pattern forecast is as accurate as any other temperature forecast. 

Table 1. Different RCPs and its characteristics 

Scenario Model used Radiative forcing Co2 

equivalent 

(ppm) 

Global warming 

until 2100 (Mean 

and Likely range) 

RCP 2.6 IMAGE At this time, the radiative 

forcing reaches its highest 

point before 2100, 3W/m2 

and then declines 

490 1.0 (0.3 – 1.7)℃ 

RCP 4.5 MiniCAM This is one among the 

intermediate stabilization 

pathway, where the 

radiative forcing stabilized 

at around 4.5 W/m2after 

2100 

650 1.8 (1.1 – 2.6)℃ 

RCP 6.0 AIM Stabilization without 

overshoot pathway to ~ 6 

W/m2 at stabilization after 

2100 

850 2.2 (1.4 – 3.1)℃ 

RCP 8.5 MESSAGE One high-energy route, in 

which radiative forcing 

exceeds 8.5 W m-2 by 2100 

1370 3.7 (2.6 – 4.8)℃ 
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and continues to grow for 

some time 

 

Apart from the bioclimatic layers, using ArcGIS version 10.8, we created a 

topographic layer including elevation, slope, and aspect using digital elevation model 

data.(http://www.ngdc.noaa.gov/mgg/topo/globe .html). Land cover data (Globcover 

2009) was downloaded from the European Space Agency site 

(http://due.esrin.esa.int/page_globcover.php ). Besides these variables, we also 

downloaded EVI (Enhanced Vegetation Index) United States Geological Survey 

(USGS) for 10 years (2011 – 2020). Since these data were downloaded on monthly 

basis they were obtained in different tiles. Hence, Arcgis 10.8 was used to stitch those 

tiles for dry season (March to May), wet season (June to August) and yearly average. 

The spatial resolution of all predictor variables was fixed at 30 arc seconds. 

3.5. DATA THINNING 

 eBird provided a total of 18,265 Malabar Barbet presence locations. The first step to 

data reduction was to filtered the data based on the following: (1) protocol type – 

travelling and stationary, (2) duration minutes <300, (3) effort distance km <5, (4) 

number of observers -  10. All these operations were done using Microsoft excel 

software. After the data is filtered, it was subjected to removing the duplicates which 

is also employed with the help of excel. After completing these actions, the raw data 

were narrowed down to 2568 occurrence points which were saved in the extension 

‗.csv‘. The majority of SDM require spatially independent occurrence data for better 

prediction. The spatial autocorrelation of occurrence sites in SDMs is considered a 

frequent source of environmental biases (Hijmans, 2012). As the model becomes 

overfit towards environmental biases, model metrics are exaggerated. The model can 

no longer predict spatially independent data (Veloz, 2009; Hijmans, 2012; Boria et 

al., 2014). It is important to eliminate spatially autocorrelated points from clusters of 

http://www.ngdc.noaa.gov/mgg/topo/globe%20.html
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localities for better calibration and model building. We spatially thinned the 

occurrence data for the species using the spThin package (Aiello - Lammens et al., 

2015) in R studio to remove duplicate records within a 1 km radius of each other. 

After thinning we acquired 1450 occurrence points. 

3.6. SELECTION OF BIOCLIMATIC VARIBLES 

In the process of model development, variable optimization is an essential step. The 

characteristics on the list will not all be equally important to our species of interest. 

There may be some factors that have a small impact on the outcome and they should 

be removed to improve the interpretability of the final model (epistemic sparcity) or 

make the model more predictable (predictive sparcity) (De Bin et al., 2015). To 

reduce the autocorrelation, highly correlated variables should be removed before 

evaluating the contributions of each individual environmental variable. By 

incorporating correlated variables, not only does MaxEnt model prediction become 

more accurate, but it also limits the contribution of additional correlated variables to 

the output. As a result, using a highly correlated variable in the model prevents all 

other correlated variables from being included, which could be quite important for 

our species of interest. (Brown, 2014). A correlation might affect the accuracy of 

response curves derived from the presence. A model that incorporates strongly 

correlated variables can produce misleading results.  

When there are many highly correlated variables, it is best to avoid using a 

percentage contribution. If the training and test data are spatially autocorrelated, it 

appears that the model isn't well fitted, as the test omission line is significantly lower 

than the predicted omission line. As geographically auto-correlated data would inflate 

accuracy measurements for presence-only models (Veloz, 2009), spatially correlated 

variables have to be eliminated beforehand. 

The correlation matrix (Pearson) and coefficients of determination(R2) were used to 

analyse the bioclimatic variables (bio1-bio19) for the present conditions (1979–
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2013).The correlation values |r| >0.7  and R2> 0.7 were used to classify the 

variables. On the basis of the MaxEnt model output, we selected the variables that 

contributed the most and used permutation-important testing to make future 

predictions. The contribution charts display the proportional contributions of each 

variable to MaxEnt. The increase in regularised gain was added to the contribution of 

the associated variable with each iteration of training, or removed if the changes in 

lambda were negative. The MaxEnt code's path to the solution was dependent on the 

contribution numbers, and the contribution numbers differed when it took a different 

approach to reach the same result. It was important to evaluate the results carefully 

when there were several strongly linked (correlated) variables. A permutation's 

importance is determined by the MaxEnt model, rather than the path it took to reach 

the value. To determine the significance, we arbitrarily permuted the values of that 

variable among training and background (training points) and calculated the reduction 

in training AUC. A greater drop indicates a more dependent model. According to the 

Jack-knife test of variable relevance, the environment variable with the highest gain 

when used alone (containing the most relevant information) and the environment 

variable with the lowest gain when omitted (containing the most information not 

available in the other variables). For further modeling, the selected variables were 

removed from the correlated variables. 

 

3.7. MAXIMUM ENTROPY SPECIES DISTRIBUTION MODELLING 

(MAXENT) 

In addition to considering the most important environmental conditions (Phillips et al. 

(2004, 2006), the Maxent model is an effective tool for simulating geographical 

distributions of species. Based on incomplete data, the Maxent model uses a machine-

learning algorithm to predict outcomes. This method calculates the "maximum 

entropy" of sample points against the background locations after taking into 
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consideration the limitations imposed by the data. Based on deterministic maximum 

entropy algorithms, the top probability distribution is computed at the highest 

maximum entropy (Baldwin, 2009; Berger et al., 1996; Phillips et al., 2006). 

Depending on whether a species is present or absent, a site can be classified as 

"present" or "absent.". Environmental characteristics similar to those of a species can 

be evaluated to determine which biotopes are likely to contain that species. As a 

starting point for the model, a uniform distribution for each species is determined, 

which undergoes iterations based on the most important environmental variables until 

no further improvement in prediction is possible. The Maxent distribution is 

calculated in the set of grid cells that contain all environmental variables. To 

determine whether Maxent's predictions (training data) are better than random 

guesses, we used 25% of the sample points. This method uses both categorical and 

continuous environmental data, and all variables are treated as continuous variables. 

The probability of the species occurrence was determined by using a logistic output 

continuous map which provides a means of discriminating between the suitability of 

the geographical area under consideration. In addition to the geographical location 

data of Malabar Barbet occurrence, we added 25 environmental predictor variables, 

including 19 bioclimatic variables retrieved from the CHELSA database. Maxent 

uses area under the curve (AUC) to statistically analyze the model, and it is one of the 

most commonly employed statistics when modelling ecological niches and nest site 

selection (Baldwin, 2009; Barry and Elith, 2006; Peterson et al., 2007; Peterson and 

Nakazawa, 2008; Yost et al., 2008). The model is based on a set of georeferenced 

occurrence sites and environmental layers obtained from CHELSA. MaxEnt can be 

freely downloaded online 

(https://biodiversityinformatics.amnh.org/open_source/maxent/). The information 

must be entered into the software in the correct format. The species data was saved in 

‗csv‘ format, but the bioclimatic layers should be saved in ‗asc‘.Under the settings 

options, software was configured to acceptable levels based on our requirements for 

the run (Philips et al., 2004; 2006). 

https://biodiversityinformatics.amnh.org/open_source/maxent/
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3.8. MODEL OPTIMIZATION 

3.8.1 MODEL FEATURES 

The optimal combination of model features was identified as the initial stage in 

optimising the model to meet the requirements of our investigation. In terms of 

feature selection, the MaxEnt software‘s default configuration is auto features. The 

model also allows you to use five additional features alone or in various 

combinations.The complexity of the models was varied by changing MaxEnt features 

like linear (L), product (P), quadratic (Q), threshold (T) ,and hinge (H), and the 

models were adjusted to the varying regularisation multiplier (rm) values. The 

―ENMeval‖ R package is used to assess models of various complexity and rm 

values.Among the 48 different models, the one with the lowest AICc (LQ and 

rm=0.5) was chosen for future projections. In order for us to reach to the variables 

with lowest AICc, we had to run MaxEnt according to the model settings received 

from ENMeval (the one with deltaAICc = 0) and then exclude variables according to 

the permutation importance. After a couple of repetition of the previous steps, the 

model settings turned out to be best for the setting LQ 0.5. 

3.8.2. REGULATION MULTIPLIER AND REPLICATION RUN TYPE 

Model overfitting is prevented by using regulation multipliers (Philips, 2008). In 

order to fine-tune the model, different multipliers were experimented with, which are 

settings that control the model's complexity (Radosavljevic and Anderson, 2014). The 

model assigns a value of 1 to the regulation multiplier by default, but in order to fine 

tune the model, we assigned different values to the regulation multiplier. Other 

numbers were 1.5, 2, 2.5, 3, 4 and 5. However, model fitting seemed to be 

significantly improved with the default value 1 and generally setting one as the 

regulatory multiplier value produced the highest test Area Under the Curve (AUC) 

among numerous experiments (Warren and Seifer, 2011). 
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Cross validation involves randomly partitioning the species location data into groups 

(k) of comparable size, leaving one part out, and evaluating the model based on k - 1 

parts. Each part of the model is processed independently in this run type, and the 

results are merged to create the final output. With this type of run, no data is left 

unvalidated, which is especially useful when dealing with data sets with a small 

number of occurrence points. The data is effectively used to accurately report the 

range and standard error. This run type recognises the uncertainties in prediction and 

ensures that the measures are incorporated into the model to reduce the uncertainty 

and produce a believable output. The disadvantage of this run type is that, model 

fitting only employs a portion of the data, making it difficult to gather test data that is 

spatially independent of the training data (Hijmans, 2012). When such spatially 

connected groups are introduced during model evaluation, there is a potential that 

model performance will be exaggerated and standard error predictions will be 

underestimated. 

Crossvalidate, bootstrap and subsampling are the three replication run types 

accessible in MaxEnt settings. All three run types were configured to run types were 

configured to run three distinct models under similar conditions, with the cross 

validation run type proving to be the most effective. 

The model settings were adequately tuned by assessing discriminatory ability to 

examine overfitting, as well as visual inspections of maps to conclude on the output‘s 

credibility (Radosavljevic and Anderson, 2014). 

3.9. PREDICTING THE CURRENT DISTRIBUTION OF SPECIES 

Following the model optimization for the essential and important features, the 

other software settings were programmed appropriately to meet our requirements for 

a run under the settings option. Maximum iterations were set to 5000 and the 

convergence threshold (0.00001) were left at their normal settings. The method 

employs both categorical and continuous environmental data, and all of the variables 
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were treated as continuous variables. The random test percentage was set at 25% to 

ensure that the entire model output was free of bias. Following the assignment of 

model features to our specifications, the environmental variables in ‗.asc‘ format and 

species occurrence data in ‗.csv‘ format were fed into the software as input, the model 

was run, and the results were produced. The result files from the optimized model run 

indicated that visual forecasts of model predictions obtained looked to match with 

quantitative evaluations previously performed, showing the improved mode‘s 

reliability. The model‘s expected area of appropriate habitat was then evaluated in a 

Geographic Information System (GIS) context for better understanding. The best 

model feature was the one with lowest AICc obtained after the exclusion of variables 

in accordance with their permutation importance and jacknife results. The future 

variables were run with the same model settings. 

3.10. PREDICTING THE POTENTIAL DISTRIBUTION OF THE SPECIES 

RCP2.6, 4.5, 6.0, and 8.5 available from the BSS CSM1.1, MIROC5 AND 

MohcHadGEM 2 ES at a spatial resolution of 30 arc-seconds (100 meters) for climate 

forecasting. This is consistent with the scenario put forth by the Intergovernmental 

Panel on Climate Change (IPCC) in its fifth assessment report (AR5), according to 

which greenhouse gas concentrations follow a range of radiative forcing as they 

increase. We made projections for the WG region for the period 2050 (average for 

2040–2069) for long-term planning and habitat protection, using data from the 

Agriculture and Food Security (CCAFS) climate data archive(data available from 

http://www.ccafs-climate.org/data). To estimate the probable distribution of the 

selected endemic species of Western Ghats in the future, the trained environment 

layers are projected to another available set of environmental layers including future 

climate data in MaxEnt model. The projection layer should include training layers 

that are compatible but have varied circumstances. The names of the layers and map 

projection should be the same as the trained data. On the basis of current climatic 

data, a model was trained on environmental factors that are related to future climatic 
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conditions and projected into a distinct layer. Future forecasts were made for 2050, 

assuming static features such as aspect will be the same in the future and omitting 

dynamic non-climatic variables such as EVI (Enhanced Vegetation Index). 

 

3.11. MODEL EVALUATION 

The model's performance was assessed using two metrics: the receiver 

operating characteristic curve (AUC) and true skill statistics (TSS).The metric isn't 

affected by thresholds. TSS is a threshold-dependent measure of accuracy, while 

AUC measures the model's ability to differentiate between random and background 

points. The AUC isn't very informative or trustworthy (Phillips et al. 2006; Austin 

2007; Lobo 2008). As a result, TSS ratings are approximated for accuracy as well. 
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CHAPTER 4 

RESULTS 

4.1. MODEL VALIDATION 

Various ways for measuring the accuracy of model outputs include AUC, 

specificity and sensitivity. Visual assessment of graphs and maps, whose settings 

were primarily agreed upon from the result of the ENM evaluate script ran in R 

studio, is critical for assessing the outputs of the completed model. Since EVI 

(Enhanced Vegetation Index) expected to change in the future, we had to run the 

model without EVI and with EVI. The model settings where same for both the 

models with EVI and without EVI which is LQ 0.5, but the only difference is that for 

future projection EVI was not chosen to be a variable since its future records are not 

available. The test AUC and TSS values for the model with EVI were 0.915 and 

0.886, respectively, indicating that the model is better in predicting the suitable 

habitat area for Malabar Barbet in WG. With an overall accuracy of 0.9117, the 

specificity and sensitivity were 0.9011 and 0.9854, respectively. After the cross-

correlation tests, the best model incorporated seven bioclimatic variables (Mean 

Temperature of Warmest Quarter, Mean Diurnal Range, Precipitation of Coldest 

Quarter, Annual Precipitation, Precipitation of Warmest Quarter, Mean Temperature 

of Coldest Quarter, Precipitation Seasonality),  topography layers (Slope and aspect) 

and EVI (Average of 10 years [2011 – 2020]). EVI_avg (46.2% contribution), Mean 

Temperature of Warmest Quarter (23.8 % contribution), and Mean Diurnal Range 

(10.6% contribution) were the important factors affecting the spatial distribution of 

Malabar barbet among the seven variables considered for modelling. These factors 

combined to contribute 80.6 percent of the total. Mean temperature of warmest 

quarter (74.8 percent) and Mean Temperature of Coldest Quarter (16.6 percent), on 

the other hand, had significant permutation relevance (Table 2) 
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Table 2: Analysis of variable contribution (with EVI) 

Variable Percent contribution Permutation importance 

Evi_avg 46.2 0.8 

bio10 23.8 74.8 

bio2 

 

10.6 5.8 

bio19 6.2 0 

bio12 4.1 0.5 

bio18 3.9 0.2 

bio11 3.3 16.6 

slope 1.5 1.1 

bio15 0.2 0.2 

aspect 0.2 0 

 

Figure 2 : Receiver Operating Characteristic Curve (ROC) curve of the finalized 

model settings output in MaxEnt (with EVI) 
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 The model‘s performance in terms of average test AUC value is 0. 915, with a 

standard deviation of 0.005, according to ROC curve above (Figure 2). AUC values 

range from 0 to 1, and any AUC number greater than 0.8 indicates that the model‘s 

performance is satisfactory. The average sensitivity vs specificity graph in figure 2 

provides these values. The AUC curve curves up to the top left of the plot, indicating 

that the model is competent.  

 

Figure 3 : Average omission curve and predicted area for Malabar Barbet, an 

endemic bird species of Western ghats (With EVI). 

A metric that indicates the model‘s predictive capacity is the average omission and 

projected area curve for the selected species averaged over the replicate runs.  

As a result, the visual interpretation of the model outputs indicated that the optimized 

model‘s settings were fixed based on TSS values had appropriate predictive capacity. 

The model feature combinations, regulatory multiplier value, and replication run type 
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that were previously fixed using TSS values were finalized and proceeded with after 

the model settings were tested for their credibility and concluded to be a model with a 

strong predictive capacity. 

 

Figure 4: Shows the current distribution of Malabar Barbet by Maxent (With 

EVI) 

This projection goes hand in hand with the actual distribution of Malabar Barbet 

hence we can say that this projection provided by MaxEnt with the setting LQ 0.5 can 

be used to project the future distribution of Malabar Barbet 
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Figure 5 : Jackknife test gain for Malabar Barbet for the current distribution    

(with EVI) 

According to the results of the Jackknife test, Mean Diurnal Range contributes the 

most, followed by Evi_avg, Mean Temperature of Warmest Quarter, and Annual 

Precipitation. This finding is comparable to MaxEnt's, implying that it is 

trustworthy(Figure 5). 
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Figure 6 : Response curves generated by MaxEnt for variables (With EVI) 

 



39 

 

 

 

  Figure 7: Receiver Operating Characteristic Curve (ROC) curve of the 

finalized model settings output in MaxEnt (Without EVI) 

The test AUC and TSS values for the model without EVI were 0.915 and 0.875, 

respectively, indicating that the model is better in predicting the suitable habitat area 

for Malabar Barbet in WG. With an overall accuracy of 0.9083, the specificity and 

sensitivity were 0.8984 and 0.9771 respectively. Mean Diurnal Range (34.1% 

contribution), Mean Temperature of Warmest Quarter (32.80 % contribution), and 

Precipitation of Coldest Quarter (13.30% contribution) were the important factors 

affecting the spatial distribution of Malabar Barbet among the nine variables 

considered for modelling. These factors combined to contribute 80.20 percent of the 

total. Mean Temperature of Warmest Quarter (74.2 percent) and Mean Temperature 

of Coldest Quarter (16.60 percent), on the other hand, had significant permutation 
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relevance (Table 3). The model‘s performance in terms of average test AUC value is 

0.915, with a standard deviation of 0.006, according to ROC curve above.(Figure 7) 

 

Table 3:Analysis of variable contribution (without EVI) 

variable Percent contribution Permutation importance 

bio2 34.1 5.6 

bio10 32.8 74.2 

bio19 13.3 0.2 

bio18 6.8 0.3 

slope 5.4 2.3 

bio11 4.1 16.6 

bio12 2.9 0.8 

bio15 0.4 0.1 

aspect 0.1 0 
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 Figure 8: Average omission curve and predicted area for Malabar 

barbet, an endemic bird species of Western ghats (Without EVI). 

The model feature combinations, regulatory multiplier value, and replication run type 

that were previously fixed using TSS values were finalized and proceeded with after 

the model settings were tested for their credibility and concluded to be a model with a 

strong predictive capacity. 
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Figure 9: Shows the current distribution of Malabar Barbet by Maxent 

(Without EVI) 

 

This projection depicts the current Malabar Barbet distribution, which is similar to 

the previous one but does not include EVI. The model settings for this projection are 

the same as for the previous one, namely LQ 0.5. The current distribution of Malabar 

Barbet and Maxent's projection go hand in hand. 
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Figure 10:  Jackknife test gain for Malabar Barbet for the current distribution 

(without EVI) 

The jackknife test gain without EVI implies that the most contributing variable is 

mean diurnal range followed by mean temperature of warmest quarter and annual 

precipitation. These results are comparable to those produced by MaxEnt thus making 

them a reliable finding. 
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Figure11 .  Response curves generated by MaxEnt for variables (Without EVI) 

4.2. SELECTION OF SUITABLE BIOCLIMATIC VARIABLES 

The table below (Table 4 )shows the pearson correlation metrix generated by SDM 

toolbox in Arcgis. That is used for the selection of suitable bioclimatic variables. 
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Table 4: Pearson’s correlation metrics generated by SDM toolbox in Arcgis 

Layer
Altitude

aspect
bio 1

bio 2
bio 3

bio 4
bio 5

bio 6
bio 7

bio 8
bio 9

bio 10
bio 11

bio 12
bio 13

bio 14
bio 15

bio 16
bio 17

bio 18
bio 19

evi avg
evi dry

evi mon
slope

---------
-----------------------------------------------------------------

altitude
1

-0.05789
-0.8597

0.01057
0.21263

-0.30616
-0.3687

-0.23422
-0.0869

-0.88605
-0.35651

-0.58246
-0.29257

-0.01317
-0.07086

-0.02758
-0.4373

-0.07379
-0.04189

0.10444
0.01063

0.08614
0.07021

0.15934
0.08654

aspect
-0.05789

1
0.00165

0.02968
-0.07209

0.04911
0.01975

-0.06428
0.04839

0.05364
-0.03768

0.01587
-0.06038

0.09223
0.11022

-0.09281
0.16168

0.10726
-0.08816

0.02567
0.03689

0.0424
0.03788

0.0516
-0.00208

bio 1
-0.8597

0.00165
1

0.05977
-0.20419

0.36169
0.56594

0.34228
0.1432

0.82062
0.44481

0.78569
0.46182

-0.17165
-0.15788

0.09894
0.14502

-0.13911
0.10229

-0.20827
-0.12198

-0.18889
-0.20158

-0.25842
-0.06706

bio 2
0.01057

0.02968
0.05977

1
-0.48503

0.817
0.75905

-0.84325
0.9336

0.30631
-0.2628

0.50543
-0.6969

-0.59146
-0.46758

-0.48447
0.39214

-0.49414
-0.50041

-0.56204
-0.47655

-0.5012
-0.59814

-0.39529
-0.05901

bio 3
0.21263

-0.07209
-0.20419

-0.48503
1

-0.79419
-0.71185

0.58089
-0.75602

-0.34417
0.06254

-0.67225
0.4974

0.13699
0.02966

0.32074
-0.62938

0.03584
0.33584

0.60706
0.2684

0.21944
0.44523

0.03497
0.02443

bio 4
-0.30616

0.04911
0.36169

0.817
-0.79419

1
0.89069

-0.71311
0.93814

0.56293
-0.07292

0.80092
-0.61652

-0.49078
-0.38176

-0.28642
0.54805

-0.39055
-0.3066

-0.62082
-0.42243

-0.4129
-0.57166

-0.30653
-0.07292

bio 5
-0.3687

0.01975
0.56594

0.75905
-0.71185

0.89069
1

-0.46879
0.86428

0.56329
0.06421

0.93039
-0.2799

-0.45748
-0.37578

-0.26812
0.36085

-0.37413
-0.28201

-0.65245
-0.40185

-0.40557
-0.56533

-0.3074
-0.04857

bio 6
-0.23422

-0.06428
0.34228

-0.84325
0.58089

-0.71311
-0.46879

1
-0.8494

-0.05675
0.43499

-0.19281
0.95718

0.37738
0.24286

0.48015
-0.54167

0.27754
0.49606

0.46721
0.36651

0.33749
0.45918

0.18741
0.04093

bio 7
-0.0869

0.04839
0.1432

0.9336
-0.75602

0.93814
0.86428

-0.8494
1

0.36882
-0.20932

0.6656
-0.71223

-0.48818
-0.36277

-0.43359
0.524

-0.38154
-0.45095

-0.65581
-0.44876

-0.43447
-0.5992

-0.29036
-0.05231

bio 8
-0.88605

0.05364
0.82062

0.30631
-0.34417

0.56293
0.56329

-0.05675
0.36882

1
0.24054

0.69919
0.03028

-0.27592
-0.18299

-0.12088
0.4989

-0.19027
-0.11569

-0.22512
-0.22074

-0.32695
-0.32799

-0.36525
-0.1109

bio 9
-0.35651

-0.03768
0.44481

-0.2628
0.06254

-0.07292
0.06421

0.43499
-0.20932

0.24054
1

0.2412
0.44983

0.0275
-0.01159

0.19829
-0.14294

0.00524
0.2078

-0.00648
0.09162

0.02487
0.05204

-0.03279
-0.01847

bio 10
-0.58246

0.01587
0.78569

0.50543
-0.67225

0.80092
0.93039

-0.19281
0.6656

0.69919
0.2412

1
-0.03345

-0.35858
-0.30583

-0.09038
0.32253

-0.29172
-0.10146

-0.55909
-0.32282

-0.32503
-0.47364

-0.2699
-0.05082

bio 11
-0.29257

-0.06038
0.46182

-0.6969
0.4974

-0.61652
-0.2799

0.95718
-0.71223

0.03028
0.44983

-0.03345
1

0.30334
0.19131

0.35101
-0.49782

0.22311
0.37015

0.34913
0.29019

0.23713
0.33938

0.10934
0.03876

bio 12
-0.01317

0.09223
-0.17165

-0.59146
0.13699

-0.49078
-0.45748

0.37738
-0.48818

-0.27592
0.0275

-0.35858
0.30334

1
0.96168

0.09326
0.14744

0.97634
0.10809

0.33435
0.69156

0.5883
0.59478

0.52798
0.04652

bio 13
-0.07086

0.11022
-0.15788

-0.46758
0.02966

-0.38176
-0.37578

0.24286
-0.36277

-0.18299
-0.01159

-0.30583
0.19131

0.96168
1

-0.08943
0.34922

0.99565
-0.08359

0.20717
0.62549

0.48313
0.47474

0.4432
0.0329

bio 14
-0.02758

-0.09281
0.09894

-0.48447
0.32074

-0.28642
-0.26812

0.48015
-0.43359

-0.12088
0.19829

-0.09038
0.35101

0.09326
-0.08943

1
-0.55657

-0.05422
0.97772

0.35295
0.07504

0.35381
0.39521

0.22818
0.02798

bio 15
-0.4373

0.16168
0.14502

0.39214
-0.62938

0.54805
0.36085

-0.54167
0.524

0.4989
-0.14294

0.32253
-0.49782

0.14744
0.34922

-0.55657
1

0.31328
-0.55814

-0.37846
0.00163

-0.16549
-0.24696

-0.09104
-0.07822

bio 16
-0.07379

0.10726
-0.13911

-0.49414
0.03584

-0.39055
-0.37413

0.27754
-0.38154

-0.19027
0.00524

-0.29172
0.22311

0.97634
0.99565

-0.05422
0.31328

1
-0.04728

0.22644
0.6502

0.50744
0.49772

0.46359
0.03553

bio 17
-0.04189

-0.08816
0.10229

-0.50041
0.33584

-0.3066
-0.28201

0.49606
-0.45095

-0.11569
0.2078

-0.10146
0.37015

0.10809
-0.08359

0.97772
-0.55814

-0.04728
1

0.38966
0.07993

0.35848
0.41169

0.22827
0.02797

bio 18
0.10444

0.02567
-0.20827

-0.56204
0.60706

-0.62082
-0.65245

0.46721
-0.65581

-0.22512
-0.00648

-0.55909
0.34913

0.33435
0.20717

0.35295
-0.37846

0.22644
0.38966

1
0.35626

0.38732
0.53916

0.23704
0.03694

bio 19
0.01063

0.03689
-0.12198

-0.47655
0.2684

-0.42243
-0.40185

0.36651
-0.44876

-0.22074
0.09162

-0.32282
0.29019

0.69156
0.62549

0.07504
0.00163

0.6502
0.07993

0.35626
1

0.44782
0.57175

0.31825
0.01943

evi avg
0.08614

0.0424
-0.18889

-0.5012
0.21944

-0.4129
-0.40557

0.33749
-0.43447

-0.32695
0.02487

-0.32503
0.23713

0.5883
0.48313

0.35381
-0.16549

0.50744
0.35848

0.38732
0.44782

1
0.87183

0.87431
0.076

evi dry
0.07021

0.03788
-0.20158

-0.59814
0.44523

-0.57166
-0.56533

0.45918
-0.5992

-0.32799
0.05204

-0.47364
0.33938

0.59478
0.47474

0.39521
-0.24696

0.49772
0.41169

0.53916
0.57175

0.87183
1

0.66338
0.05083

evi mon
0.15934

0.0516
-0.25842

-0.39529
0.03497

-0.30653
-0.3074

0.18741
-0.29036

-0.36525
-0.03279

-0.2699
0.10934

0.52798
0.4432

0.22818
-0.09104

0.46359
0.22827

0.23704
0.31825

0.87431
0.66338

1
0.09034

slope
0.08654

-0.00208
-0.06706

-0.05901
0.02443

-0.07292
-0.04857

0.04093
-0.05231

-0.1109
-0.01847

-0.05082
0.03876

0.04652
0.0329

0.02798
-0.07822

0.03553
0.02797

0.03694
0.01943

0.076
0.05083

0.09034
1
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Table 5 : A comparison between the influence of selected bioclimatic variables 

under the current climatic scenario and under all RCP scenarios on the potential 

distribution of Malabar Barbet 

The below table shows the variable contribution for current and also for RCP 2.6 

2050 , RCP 4.5 2050 , RCP 6 2050 ,RCP 8.5 2050. In this table we can see thet bio2 

and bio10 has more variable contribution. 

 

 

 

Variables current 

RCP 2.6 2050 

 
RCP 4.5 2050 RCP 6 2050 RCP 8.5 2050 

bcc miroc 
Mohc 

hadgem 
bcc miroc 

Mohc 

hadgem 
bcc miroc 

Mohc 

hadgem 
bcc miroc 

Mohc 

hadgem 

bio2 34.1 50 45.4 50.2 48.8 46.8 52.3 50.5 45.8 51.2 52.7 41.2 48.1 

bio10 32.8 24.9 30.9 29.7 27.3 29.7 27.5 24.8 30.7 28.8 23.5 33.9 31.4 

bio19 13.3 10.8 0.9 1.3 10.5 0.8 0.9 10.2 0.8 0.7 10.1 2.7 1 

bio18 6.8 2 3.2 3.3 1.9 3.3 3.1 1.9 4.1 3.7 1.7 4.2 3.7 

slope 5.4 4.2 3.2 3.2 3.9 3.6 3.8 5.3 3.9 4.7 4.6 3.5 3.1 

bio11 4.1 1.9 4.7 2.9 3.2 4.1 3.1 2.7 4 3.6 2.4 3.8 3.4 

bio12 2.9 4.4 11 8.2 2.6 11.1 8.8 2.9 10 6.9 3.4 9.9 8.7 

bio15 0.4 1.6 0.4 1 1.6 0.4 0.4 1.5 0.5 0.2 1.3 0.3 0.5 

aspect 0.1 0.2 0.2 0.2 0.2 0.3 0.1 0.3 0.3 0.2 0.4 0.3 0.2 
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4.3 CLIMATE SPACE SUITABILITY FOR MALABAR BARBET UNDER 

CURRENT AND FUTURE SCENARIO 

 

Figure 12: Distribution map showing suitability under current climatic 

condition 

 

The area available as highly appropriate for Malabar Barbet in the study area 

under current climatic condition is 104,928km2. And in the current scenario, in the 

study area the species were not at all present accounted for 937,897 km2.  

The area of suitability spread from Thuckalay to Kinjawade covering 

Agasthyamalai, Periyar National Park,   Idukki Wildlife Sanctuary, Anamalai Tiger 

reserve, Nelliyampathy Forest reserve, Mudumalai Tiger Reserve, Bandipur Tiger 

Reserve and National Park, Nagarahole National Park and Tiger Reserve, Sharavathi 
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valley wildlife Sanctuary, Anshi National Park, Bhagvan Mahavir National park, and 

Bhimghad wildlife Sanctuary. 

4.3.1 FUTURE SCENARIOS 

The test AUC and TSS values for the model under future scenario were 0.916 

and 0.879, respectively, indicating that the model is better in predicting the suitable 

habitat area for Malabar Barbet in WG. With an overall accuracy of 0.9103, the 

specificity and sensitivity were 0.9005 and 0.9785, respectively.  

The future scenarios are evaluated for four Representative Concentration 

Pathways (RCP) namely RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5. The average of 

three models viz., bcc csm1, miroc _5 and mohc_hadgem2_es were used in order to 

reduce the prediction bias. 

In the future scenario maps, we are going to subtract the current from the 

respective RCPSs to obtain the percentage loss, percentage gain and no change. 



50 

 

 

Figure 13: Distribution map showing area gained, lost and areas with no change 

in distribution under RCP 2.6 by 2050 

This map is created by subtracting RCP 2.6 from current scenario. When we 

look at the map from top to bottom, we can see that a substantial amount of the 

Malabar Barbet's distribution and habitat appropriateness have remained unchanged. 

This value accounts for 10,06,757km2. This could indicate that there is no change in 

area where Malabar Barbet is present or absent in the earlier mentioned current 

scenario. 

A loss of 18,904 km2 is seen in the distribution of Malabar Barbet under RCP 

2.6. 18% habitat loss can seen here. Loss of habitat can be seen in Ambasamudram, 

Alangulam, Keezhapavur and Surandai near Singampatti Zamindar forest(Fig. 13). 

Loss of patch can be seen in Thodupuzha, Neriamangalam, Vannapuram, 

Kothamangalam and Malayattoor. Small loss of patches can be seen in Anamalai 



51 

 

Tiger Reserve, Kanthalloor and Vattavada.Loss of habitat can be seen in Kollengode, 

Nenmara, Chittur-Thathamangalam near Nelliyambathi Forest Reserve and loss can 

be seen in Palakkad, Mundur, Mannarkkad near Silent Valley National Park. In 

eastern side of Western Ghats there is a large loss of habitat seen from south to north 

that are Coonoor, Kotagiri, Kodanad, Sri Hangala, Gundlupete near Bandipur Tiger 

Reserve and National Park.Sargur, Heggadadevankote near Nagarahole National Park 

and Tiger Reserve. Hunsur, Echalapura, Belur and also near Bhadra Wildlife 

Sanctuary, Kankumbi, Bhimgad Wildlife Sanctuary and ends in Amboli. Loss habitat 

can be seen in Voldemol Cacora, Satari, Valpoi, Sanquelim, Sawantwadi and also 

near Bhagwan Mahavir wildlife Sanctuary. 

 Under RCP 2.6 Malabar Barbet had a gain or increment in habitat suitability of 

16,494 km2.15.7% habitat gain can be seen here. Increase in habitat gain can be seen 

in the southern region that are Kanyakumari, Nagercoil, Marthandam, Valliyur, 

Nanguneri. Habitat gain can be seen near coastal areas of Thiruvanathapuram, 

Kollam, Kayamkulam, Alappuzha, Thrissur, Kozhikode, Kannur. Habitat patch gain 

can be seen near the coastal areas of Udupi, Bramavara, Baindur, Bhatkal, 

Murdeshwar and Kumta.Habitat gain can also be see in patches of region that are in 

Rajapalayam near Periyar National Park, Varusanadu, Theni, Anamalai reserve 

Forest, Chinnar Wildlife Sanctuary, Kodaikkanal, Thirumoorthy and 

Pollachi.Northern extension of habitat gain can be seen in Kudal, Malvan, Oros, 

Rajpur, Ratnagiri, Ganpatipule, Sangameshwar, Guhagar, Mandangad, Shrivardhan, 

Diveagar, Murud and in Phansad Wildlife Sanctuary. Habitat patch gain can be seen 

in Vishalgad and near Chandoli National Park and Koyna Wildlife Sanctuary. 
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Figure 14: Distribution map showing area gained, lost and areas with no change 

in distribution under RCP 4.5 by 2050 

This map (Figure 14) is created by subtracting RCP 4.5 from current scenario. 

When we look at the map from top to bottom, we can see that a substantial amount of 

the Malabar Barbet's distribution and habitat appropriateness have remained 

unchanged. This value accounts for 10,02,693km2. This could indicate that there is no 

change in area where Malabar barbet is present or absent in the earlier mentioned 

current scenario. 

A loss of 26,583 km2 is seen in the distribution of Malabar Barbet under RCP 

4.5 by 2050. 25.3% habitat loss can be seen here. Loss of habitat can be seen in 

Thirunelveli, Tenkasi, Alangulam and Sankarankoil. Habitat loss can be seen in 
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Thodupuzha, Muvattupuzha and Thrissur. Habitat loss can be seen in Pollachi, 

Palakkad, Mannarkkad, Silent Valley National Park, Perinthalmanna, Nilambur, 

Edakkara and Amarambalam Wildlife Sanctuary.Small patch loss in Kuttiadi, Iritti, 

Kadaba and Dharmasthala. Small patch loss in Someshwara Wildlife Sanctuary and 

Siddapura. In eastern side of Western Ghats there is a large loss of habitat seen from 

south to north that are Coimbatore, Mettupalayam, Coonoor, Kotagiri, Kodanad, Sri 

Hangala, Gundlupete near Bandipur Tiger Reserve and National Park.Sargur, 

Heggadadevankote near Nagarahole National Park and Tiger Reserve. Hunsur, 

Echalapura, Belur and also near Bhadra Wildlife Sanctuary, Kankumbi, Bhimgad 

Wildlife Sanctuary and ends in Amboli. Loss habitat can be seen in Voldemol 

Cacora, Satari, Valpoi, Sanquelim, Sawantwadi and also near Bhagwan Mahavir 

Wildlife Sanctuary. Small patch loss in Bellipal and Ulavi. 

Under RCP 4.5 Malabar Barbet had a gain or increment in habitat suitability of  

12,879 km2.12.2% habitat gain can be seen here. Increase in habitat gain can be seen 

in the southern region that are Kanyakumari, Nagercoil, Marthandam. Habitat gain 

can be seen near coastal areas of Thiruvanathapuram, kollam, Karunagapilli, 

Kayankulam, Thirur, Kozhikode, Kannur, Payyannur. Habitat patch gain can be seen 

near the coastal areas of Udupi, Bramavara, Kundapura, Baindur, Bhatkal, 

Murdeshwar. Habitat gain can also be see in patches of region that are in 

Rajapalayam near Periyar National Park, Theni, Thirumoorthy, Anamalai Tiger 

reserve, Chinnar Wildlife Sanctuary, Kodaikkanal and Kolarpatti. Northern extension 

of haitat gain can be seen in  Kudal, Malvan, Oros, Rajpur, Ratnagiri, Ganpatipule, 

Sangameshwar, Guhagar, Mandangad, Shrivardhan, Diveagar, Murud and in Phansad 

Wildlife Sanctuary. Habitat patch gain can be seen in Vishalgad and near Chandoli 

National Park and Koyna Wildlife Sanctuary. Small patches can be seen in Shirgaon, 

Vihali and Vinhere. Small patches can be seen in Prabhanvalli. 
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Figure 15: Distribution map showing area gained, lost and areas with no change 

in distribution under RCP 6 by 2050 

This map (Figure 15) is created by subtracting RCP 6 from current scenario. 

When we look at the map from top to bottom, we can see that a substantial amount of 

the Malabar Barbet's distribution and habitat appropriateness have remained 

unchanged. This value accounts for 10,05,675km2. This could indicate that there is no 

change in area where Malabar barbet is present or absent in the earlier mentioned 

current scenario. 

A loss of  23,757 km2 is seen in the distribution of Malabar Barbet under RCP 

6. 22.6% habitat lose can be seen here. Loss of habitat can be seen in 

Ambasamudram, Tenkasi, Alangulam and Sankarankoil. habitat loss can be seen in 
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Thodupuzha, Muvattupuzha and small patch loss in Thrissur.Patch loss can be seen in 

Nelliyambathy Forest Reserve, Alathur, Palakkad, Mannarkadu, Nilambur and 

Edakkara.Small patch loss can be seen in Iritti. Small patch loss can be seen in 

Agumbe, Siddapura near Someshwara wildlife Sanctuary. Small habitat patch loss in 

Thudiyalur and Mettupalayam. In eastern side of Western Ghats there is a large loss 

of habitat seen from south to north that are Mettupalayam, Ooti, Mudumalai Tiger 

Reserve, Gundlupete, Bandipur Tiger Reserve and National Park, Sargur, Hunsur, 

Krishnarajanagara, Echalapura, Belur and also Bhadra Wildlife Sanctuary, 

Anandapura, Soraba, Sirsi, Yellapur, Kankumbi, Bhimgad Wildlife Sanctuary and 

ends in Amboli. Loss habitat can be seen in Satari ,Voldemol Cacora, Margao, 

Mapusa, Niravade, Sawantwadi and Bhagwan Mahavir wildlife Sanctuary.small 

habitat patch loss in Kudal and Oros.small patch loss in Kodlagadde and Artibail. 

Small habitat patch loss in Birkhol and Devakar near Anshi Wildlife Sanctuary. 

Under RCP 6 Malabar Barbet had a gain or increment in habitat suitability of  

12,723 km2.12.1% habitat gain can be seen here. Increase in habitat gain can be seen 

in the southern region that are Kanyakumari, Nagercoil, Marthandam. Habitat gain 

can also be see in patches of region that are in   Theni, Kodaikkanal, Anamalai Tiger 

reserve. Small habitat gain patches can be seen near coastal areas of 

Thiruvanathapuram,Varkkala, kollam, Karunagapilli, Kayankulam.Very small 

patches in Alappuzha and Thiruvalla. Very small patches in Kunnamkulam, Thirur, 

Kozhikode and Kannur. Small patches in Baindur, Bhatkal, Murdeshwar and very 

small patches in Kumta. Northern extension of haitat gain can be seen in   Malvan, 

Devgad, Rajpur, Ratnagiri,  Dapoli, Guhagar, Mandangad, Shrivardhan, Diveagar, 

Murud and in Phansad Wildlife Sanctuary. Very small patches can be seen in 

Pangrad. Very small patches in Ghonsari, Harkul, Prabhanvalli, Vishalgad.small 

habitat patch gain can be seen in Gothane and Pofali and also in Vinhere and 
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Ambavali, Talvat Khed.

 

Figure 16: Distribution map showing area gained, lost and areas with no change 

in distribution under RCP 8.5 by 2050 

This map (Figure 16) is created by subtracting RCP 8.5 from current scenario. When 

we look at the map from top to bottom, we can see that a substantial amount of the 

Malabar Barbet's distribution and habitat appropriateness have remained unchanged. 

This value accounts for 9,92,408km2. This could indicate that there is no change in 

area where Malabar barbet is present or absent in the earlier mentioned current 

scenario. 

A loss of 43, 985 km2 is seen in the distribution of Malabar Barbet under RCP 

8.5.41.9% habitat loss can be seen here.Habitat loss can be seen in Thirunelveli, 

Tenkasi, Periyar National Park. Habitat loss can be seen near  areas of 

Pathanamthitta, Thiruvalla, Kottayam, Thodupuzha, Muvattupuzha, Kochi, Thrissur, 
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Peechi-Vazhani Wildlife Sanctuary, Palakkad, Nelliyampathy Forest Reserve, 

Mannarkkad, Silent Valley National Park, Malappuram, Edakkara, Thamarassery, 

Kannur, Kasargode. . In eastern side of Western Ghats there is a large loss of habitat 

seen from south to north that are  Mettupalayam, Ooti, Mudumalai Tiger Reserve, 

Gundlupete, Bandipur Tiger Reserve and National Park.Sargur. Hunsur,  

Krishnarajanagara, Echalapura, Belur and also Bhadra Wildlife Sanctuary, 

Anandapura, Soraba, Sirsi, Yellapur, Kankumbi, Bhimgad Wildlife Sanctuary and 

ends in Amboli. Loss habitat can be seen in Neturlim, Satari, Voldemol Cacora, 

Margao, Mapusa, Niravade, Sawantwadi and Bhagwan Mahavir wildlife 

sanctuary.small patch loss in Oros and Kudal. Habitat patch loss can be seen in 

Dharmasthala, Puttur, Karkala,  Agumbe, Udupi, Kundapura and Baindur.small 

habitat patch loss in Kasanabail and Bellipal. Small patch loss in Kadra, Karwar, 

Ulavi, Anshi National Park, Cotigao Wildlife Sanctuary. Small habitat patch loss can 

also be seen in Canacona and Agonda. 

Under RCP 8.5 Malabar Barbet had a gain or increment in habitat suitability of  5,762 

km2. Only 5.4% habitat gain can be seen here. Habitat gain can be seen in 

Marthandam, Nagercoil and Thuckalay.smallpatches can be seen near coastal areas of 

Thiruvanandhapurm, Varkkala, Karunagapalli, chavara.very small patches can be 

seen in Alappuzha.small habitat gain patch can be seen in Varusanadu, Chinnamanur 

, Agamalai Reserved Forest, Kodaikkanal, Chinnar Wildlife Sanctuary, Anamalai 

Tiger Reserve.small habitat patches in Bhatkal, Murdeshwar, Honnavar. Northern 

extension of haitat gain can be seen in  very small patches in Malvan. Small patches 

in Talebazar, Kumbhavade.Very small patches in Rajpur, Ratnagiri, 

Ganpatipule.Very small patches in Dapoli, Mandangad, Shrivardhan and Diveagar. 

Small patches in Vishalgad. Small habitat patch gain in Devrukh, Sangameshwar near 

Chandoli National Park. Small patch in Gothane and Pofali. Small habitat patch gain 

near Koyna Wildlife Sanctuary. 
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CHAPTER 5 

DISCUSSION 

All sectors are being affected by climate change. There have been devastating 

incidents that have happened to nature that have caused life to be questioned and 

several species have gone extinct. When the habitat is dramatically altered due to 

extreme climate events, intolerant species have perished and some have gone extinct.  

Another group of species adapted to new environments or changed their habitats. 

Among avian species, changes in distribution are widely seen since they are sensitive 

to small climatic shifts and due to their migration. Taking current distribution and 

environmental factors into account, climate change can have a significant impact on 

the distribution of a single bird species. According to Virkkala et al. (2010), it is 

based on current distributions and climate variables. Reduced habitat is causing some 

species to experience range reductions at high latitudes and high altitudes, according 

to Reif et al. (2010).  

Malabar Barbet is an endemic species to western ghats. Climate change has the 

greatest effect on biodiversity in endemic species, such as the Malabar Barbet.Thus, 

the present study examines the current distribution patterns of the Malabar Barbet 

based on climatic variables and other physical variables and also the distribution of 

the Malabar Barbet is being projected for the year 2050 under four Representative 

Concentration Pathways (RCP). 

MaxEnt software was used to study the distributional changes of the Malabar Barbet 

by relating the presence data points to the climatic conditions prevailing there. The 

study used the occurrence data points of the Malabar Barbet from 1964 to 2020 and 

climate data from CHELSA for current conditions. . In determining the distribution of 

Malabar Barbet using MaxEnt, cross validate method is used with model features LQ 

(Linear & Quadratic) with regularization multiplier 0.5. Future climate was predicted 

by using the coupled model BSS CSM1.1, MIROC5 and MohcHadGEM 2 ES at a 
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spatial resolution of 30 arc-seconds resolution under four different Representative 

Concentration Pathways (RCPs).  

The result obtained shows that the current distribution of the species depends on 9 

variables without EVI. Among these variables bio2 (Mean Diurnal Range) and bio10 

(Mean Temperature of Warmest Quarter) are two major bioclimatic variables 

influencing the species distribution. 

Using the representative concentration pathways RCP 2.6, RCP 4.5, RCP 6, RCP 8.5 

future distribution of Malabar Barbet was predicted for the year 2050. Future 

prediction shows that the area of habitat loss, habitat gain and no change in area 

under RCP 2.6 accounts for 18,904 km2, 16494 km2 and 1,006,757 km2 respectively 

and 18% habitat loss can be seen. Under RCP 4.5, area of habitat loss, habitat gain 

and no change in area accounts for 26,583 km2, 12,879 km2 and 1,002,693 km2 

respectively and 25.3% habitat loss can be seen. For RCP 6, area of habitat loss, 

habitat gain and no change in area were 23,757 km2, 12,723 km2 and 1,005,675 km2 

respectively and 22.6% habitat loss can be seen. And finally for 8.5 area of habitat 

loss, habitat gain and no change in area accounts for 43,985 km2, 5,762 km2  and 

992,408 km2 respectively and a habitat loss of 41.9% can be seen. The habitat 

suitability for Malabar Barbet was higher in the least emission scenario which is RCP 

2.6 and the lowest in the high emission scenario i.e., RCP 8.5. 

Under RCP 2.6 the suitable habitat for Malabar Barbet is spread across North 

Sahyadri, southern end of Indian peninsula, Western coastal plain and also near 

Agamalai Forest Reserve. The habitat loss is seen mainly in eastern side of western 

Ghats, Palakkad, Idukki, Malappuram and also in southern part of Western Ghats.  

RCP 4.5 showed an increase in habitat loss than habitat gain even though being 

an intermediate pathway Comparing the map of RCP 2.6 and RCP 4.5 there is a clear 

shrinkage in habitat suitability gained.  The area gained under RCP 4.5 is only 12,879  
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km2. This means that the habitat suitable under RCP 4.5 have shrunk as compared to 

RCP 2.6 by 3615 km2 

In RCP 6, there is reduction in percentage of area lost when compared to RCP 

4.5. RCP 8.5 being the highest emission scenario showed considerable increase in 

unsuitable area and significant decrease in suitable area. The area lost under RCP 8.5 

is more than double as compared to RCP 2.6. 

 The overall results of the study take us into the conclusion that Malabar 

Barbet‘s population is declining under different scenarios.There is 18% of habitat loss 

can be seen in RCP 2.6,  25.3% in RCP 4.5, 22.6% in RCP 6, 41.9% in RCP 8.5 and 

habitat loss is more than habitat gain This means that in the future, conservations 

strategies must be taken in order to sustain the life of Malabar Barbet. 
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CHAPTER 6 

SUMMARY 

Climate change affects the range and phenology of all creatures. It includes birds as 

well. Since birds reflect changes in their environment, they are regarded as vital bio-

indicators.The goal of this study is to figure out what environmental and or climatic 

factors influence the distribution of  Malabar Barbet which is an endemic bird species 

of Western Ghats and provide projection for different RCPs namely RCP 2.6, 4.5, 6 

and 8.5 for the year 2050.  

The Malabar Barbet occurrence data from eBird and the current climate conditions 

from CHELSA were used as bioclimatic layers in this study. In determining the 

distribution of Malabar Barbet using MaxEnt, cross validate method is used with 

model features LQ (Linear & Quadratic) with regularization multiplier 0.5. The 

habitat suitability for Malabar Barbet was higher in the least emission scenario which 

is RCP 2.6 and the lowest in the high emission scenario i.e., RCP 8.5. Future 

prediction shows that the area of habitat loss under RCP 2.6 accounts for 18,904 km2 

and 18% habitat loss can be seen.RCP 4.5 has a habitat loss of 26,583 km2  and 25.3% 

habitat loss can be seen.RCP 6 has a habitat loss of 23,757 km2 and 22.6% habitat 

loss can be seen. RCP 8.5 has a habitat loss of 43,985 km2 and 41.9% habitat loss can 

be seen.The climate change could be negatively impacting the Western Ghats 

endemic bird species, Malabar Barbet, as it is losing its suitable habitat by 2050 . 
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ABSTRACT 

Identifying the factors that influence the distribution of the species has been 

challenging for researchers. To develop conservation strategies, they want to find out 

the current distribution patterns and the future patterns among the threatened species. 

There are some invasive species that are spreading their territory into new areas, 

making accurate identification very important. Avian species are considered to be 

valuable bio-indicators of the environment's destruction. The habitat specialist species 

in these ecosystems are vulnerable to climate change, which makes them potential 

bioindicators. This research was based on the spatial and temporal distribution of the 

Malabar Barbet in the Western Ghats, which could help determine environmental 

changes at various locations. MaxEnt was used to map the species distributions and 

habitat relationships.The distribution of the Malabar Barbet was modelled using 

current occurrence data from the eBird and 19 bioclimatic factors from CHELSA 

V.1.2.The MaxEnt model settings were determined using the ENM Evaluate tool, and 

the best-performing model was chosen based on the Akaike Information Criterion 

(AIC) value. It would project the Malabar Barbet distribution into the future using the 

current distribution analysis by converging it to the highest entropy probability 

distribution.The study only employed uncorrelated variables, which were chosen 

based on their percent contribution, permutation relevance, and R2 value.The study 

demonstrated the Malabar Barbet‘s actual and anticipated distribution patterns for the 

year 2050, based on several RCP estimates. The projected model shows a declining 

geographical distribution of Malabar Barbet across Western Ghats. Mean Diurnal 

Range (bio 2) is found to be the most contributing bioclimatic variable in the 

distribution of Malabar Barbet. Future prediction shows that the area of habitat loss 

under RCP 2.6 accounts for 18% .RCP 4.5 has a loss of 25.3% habitat loss.RCP 6 has 

a habitat loss of  22.6% . RCP 8.5 has a highest loss of 41.9% habitat loss. As per the 

present study, the projected distribution of the Malabar Barbet, is influenced by the 
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combined effects of precipitation and temperature fluctuation alongside slope and 

aspect. 

 


