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CHAPTER I 

INTRODUCTION 

Regional climates are the composite result of nearby physical processes and other global 

phenomena such as ENSO. Human influence on climate is apparent and the expanded emissions from 

anthropogenic activities are worsening the impacts of climate change on human populations and 

ecosystems (IPCC, 2014). There is high confidence that ENSO will stay as the dominant mode of 

interannual climate variability with great influence on human populations and ecosystems. And due to 

the increased moisture availability, the precipitation events associated with ENSO will intensify on a 

provincial scale (IPCC, 2014).  

El Nino is the southward moving warm water current along the coast of Ecuador and Peru, 

usually occurred around Christmas time and thus given the name El Nino (the boy Child Christ in 

Spanish). This intermittently happening warm water current initially observed by Peru’s occupants 

which bring additional rainfall on arid land, cause an ecological and economic fiasco by affecting the 

plenitude of Anchovies (largest single-species fishery of the world) and sea birds and seals population 

that relied upon anchovies for food. Now, the phenomenon is identified as basin-wide warming of 

equatorial eastern Pacific associated with the seesaw pattern of atmospheric pressure over the 

equatorial Pacific Ocean, called the Southern Oscillation. The combined oceanic and atmospheric 

effects are called El Nino Southern Oscillation (ENSO). The warm phase of ENSO is El Nino and the 

cool phase (opposite to the El Nino) is La Nina (the girl in Spanish) (Trenberth, 1997).  

The ENSO, the coupled ocean-atmosphere phenomenon (Bjerknes, 1969), is regarded as a 

dominant source of interannual climate variability across the globe (Trenberth, 1997). These occur at 

the time scale of 2-7 years (Glantz 2001) and last for 6-12months. During warm El Nino, prevailing 

trade winds weaken, enhance deep atmospheric convection and westerly wind anomalies, the eastward 

warm surface current and deeper thermocline diminish the upwelling happening at eastern Pacific coast 

and alter ocean circulations (IPCC, 2014). El Nino and La Nina are accompanied by changes in sea 

surface temperature of tropical Pacific, strengthening or weakening of trade winds, shifts in walker 

circulation, east-west sea level pressure seesaw, and rainfall anomalies (Folland et al. 2002).  

The last 5000 years have witnessed about 20 major El Niño events, which have severely 

affected different parts of the world. El Nino is one of the most deliberately studied climatic phenomena 

during the last fifty years. After the 1980s, National Oceanographic and Atmospheric Administration 

(NOAA) and National Center for Atmospheric Research (NCAR) started studying ENSO vigorously, 
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two severe El Nino events were observed: 1982/83 and 1997/98 and a strong La Nina in 1999. At the 

beginning of the twenty-first century (2002–2003, 2004–2005, 2006 and 2009–2010), El Niño events 

were weak. But in 2015/16, we witnessed another major El Nino event (Grove and Adamson, 2018). 

The 1982/83 El Nino event was addressed as ‘El Nino Of the century’ until 1997/98 El Niño happened 

(Wolter and Timlin, 1998; Grove and Adamson, 2018). 

Recently, the scientists increasingly discriminate El Niño events as Eastern Pacific (EP) 

(Canonical El Niño) and Central Pacific (CP) El Nino (El Niño modoki) (Ashok et al., 2007; Weng et 

al., 2007; Kao & Yu, 2009; Kug et al., 2009; Yeh et al., 2009; McPhaden et al., 2011; Yu and Kim, 

2012). The CP event has sea surface temperature anomalies near the dateline and the EP event or cold 

tongue type has sea surface temperature anomalies over the eastern Pacific. Sea surface temperature 

anomalies during El Nino modoki events are characterized by the presence of cool surface water in 

both east and west Pacific (Ashok et al., 2007). When both types co-exist (SST anomalies are relatively 

high in both central and eastern Pacific) it called Mixed type (MIXENSO) (Yu and Kim, 2012). The 

CP event occurs more frequently than the EP El Niño event and doubled the intensity over the past 30 

years (Yeh et al., 2009; Lee and McPhaden, 2010). Yu and Kim (2012) concluded that EP El Niño is 

more frequent in 20th and early 21st century and CP events are more robust in the late 21st century. 

These two types of El Nino have quite different global impacts, for example, the 1997/98 El Niño did 

not produce drought in India and the 2004 El Niño did (Kumar, et al., 2006), maximum rainfall 

anomalies are near dateline for EP type and for CP type it shifts to 165°E (Yeh et al., 2009). 

The surface of the Indian, Atlantic, and the Pacific Ocean has warmed by 0.11°C, 0.07°C, and 

0.05°C per decade (1950-2016) respectively (IPCC, 2018). SST in the western Pacific has increased 

by up to 1.5°C per century, and the warm pool has expanded (Cravatte et al., 2009). The global climate 

model predicted that if the emissions of greenhouse gases continue to increase, there will be more 

frequent El Nino events and stronger La Nina conditions in the tropical Pacific Ocean (Timmermann 

et al., 1999). The more frequent CP El Nino under global warming could induce more drought 

conditions over India and Australia (Ashok et al., 2007; Weng et al., 2007; Yeh et al., 2009). Recent 

research (Wang et al., 2017) also reveales that the frequency of extreme El Nino events increases with 

the global mean temperature and that the number of such events might double (one event every ten 

years) under 1.5°C of global warming. Even if the Global Mean Temperature stabilizes at 1.5°C, this 

trend will continue for a century, which indicates high risk even at the 1.5°C threshold. The frequency 

of the La Nina event persists as the same as the present-day under 1.5°C to 2°C warming.  

ENSO affects global weather patterns through atmospheric teleconnections (Ashok et al., 

2001). These conditions have impacts on societies through agriculture and food security, water 
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resources, health, disaster occurrences including drought and floods, and numerous other means 

leading to worldwide economic damage (Zebiak et al., 2014; Nobre et al., 2019). The impact of El 

Nino events on Indian summer monsoon rainfall is one of the most studied areas. El Nino episodes are 

known to change the environmental characteristics of coastal waters which are the major habitats of 

the fishery resources. The variations in environmental factors including the ranges of SST, salinity, 

dissolved oxygen, nutrients, etc. can affect biological processes like maturation and spawning. The 

recruitment success of fishes and shellfishes also depends on the availability of food and other abiotic 

factors like current, all of which may be influenced in varying intensities by ENSO episodes. 

Marine fisheries are one of the most important sectors of the Indian economy. India has a 

coastline of 8,118 km, an exclusive economic zone (EEZ) of 2.02 million square km, and four millions 

of people live in the coastal areas. There are 3288 marine fishing villages along the coast of India where 

people venture into coastal waters and harvest natural resources for their livelihood. There are 864,550 

marine fisherman households in India out of which 118,937 households are in Kerala. Among these 

households in the country, 91.3% are traditional fishermen families (CMFRI, 2012). The fisheries 

sector contributes around 1% to national GDP (Gross Domestic Product) and 5.23% to Agriculture 

GDP. Fish and fish products contribute 20% to the national agriculture exports and recently emerged 

as the largest group in the agriculture exports (NFDB, 2019). There are about 4.0 million marine fishers 

along the coastal areas of India, indicating an increase of 14% over the last five years (Rao et al., 2016). 

There are different types of fishing crafts and gears operated in each state and the CMFRI has a detailed 

census report of the number of fishermen and the fishing units of each state.  

According to the Food and Agriculture Organization of the United Nations, in 2018 India 

stands the sixth position in world marine fish production, landings estimated as 3.49 million metric 

tonnes. The state Kerala contributed 6.43 lakh tonnes and was the third-largest contributor to Indian 

marine fish production in 2018. Kerala was positioned second in terms of species diversity. In 2018, 

423 species were landed in Kerala. However, Kerala recorded a decline in species diversity compared 

to 2017 (CMRFI, 2019). Sathianandan, et al., (2008) stated that out of 800 species landed along the 

Kerala coast around 200 are commercially important and they are classified in to 60 groups or species. 

Similarly, the study on the alpha, beta, and gamma diversity of the species in various locations of 

Kerala during the period 1970-2005 (Zacharia et al., 2011) also indicated that there is a rich diversity 

of fished taxa along Kerala coast. Fishery along the west coast of India dominated by pelagic fish 

resources (53.4% in 2018), followed by demersal resources (27.1% in 2018) (CMFRI, 2019). The area 

within 200 m isobath, which properly covers the EEZ and highly productive coastal waters serves as 

spawning sites as well as feeding grounds for fish larvae, juveniles, and adults (George, et al., 2019). 
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Kumar et al. (2014) have analyzed the impact of ENSO on tuna fisheries in the Indian Ocean and he 

found that high tuna landings were recorded during weak El Nino and La Nina periods. The reduction 

in Oil sardine catch along the Kerala coast during 2015-16 El Nino period was reported by Shetye et 

al. (2019). Though there are annual assessments of the fishery of each maritime state, the response of 

both pelagic and demersal fish species to warming or extreme events caused by climatic events such 

as El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) is poorly studied. 

Considering the importance of marine fisheries to the national economy and the vulnerability 

of marine fishery resources and the coastal communities to ENSO, a study titled “Impact of El Nino 

and La Nina on selected commercially important marine fishery resources of Kerala” has been carried 

out with following objectives; 

1. To assess the variations in ocean-atmospheric parameters during El Nino and La Nina years 

2. To assess the impact of El Nino and La Nina on major pelagic and demersal resources of 

Kerala 

This study attempted to generate information on how the ENSO events affected the ocean-atmospheric 

parameters, fish resources and fishery. The results of the study would help to expand the knowledge 

base, increase the preparedness of the fishers to face the decline in the fishery and also help 

policymakers and planners to prepare for the eventualities resulting from ENSO.  
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CHAPTER 2 

REVIEW OF LITERATURE 

El Niño Southern Oscillation (ENSO) is an important coupled Ocean-atmosphere phenomenon 

(Bjerknes, 1969) that happens every 2-7 years (Glantz 2001) and it is regarded as one of the main 

causes of interannual climatic variability across the globe (Kiladis and Diaz, 1989; Trenberth, 1997; 

Plisnier et al. 2000; Suarez et al. 2004). ENSO is also referred to as the see-saw pattern of atmospheric 

pressure over the equatorial Pacific Ocean. El Niño is the warm Ocean current that flows southward 

along the coast of Peru and Ecuador on Christmas time (the boy Christ child in Spanish). Opposite to 

this warm phase, the cold phase of ENSO is La Nina (the girl), it causes a basin-wide cooling of 

equatorial Pacific Ocean (Trenberth, 1997). Even though the origin of ENSO is in the equatorial Pacific 

Ocean, it generates far-reaching climate anomalies and has worldwide environmental impacts 

(McPhaden et al., 2006). ENSO influences weather events such as drought, flood, tropical cyclones, 

forest fires, and affect the lives of millions of people. Recent research discriminates El Niño events as 

Eastern Pacific (Canonical El Niño) and Central Pacific ElNino (El Niño modoki) (Ashok et al., 2007; 

Weng et al., 2007; Kao & Yu, 2009; Kug et al., 2009; McPhaden et al., 2011). CP event occurs more 

frequently than EP El Niño event and doubled the intensity over the past 30 years (Lee & McPhaden, 

2010). This may be due to increasing greenhouse gas concentrations in the atmosphere (Yeh et al., 

2009) or natural climatic variability (McPhaden et al., 2011; Yeh et al., 2011). El Niño induces 

immoderate rains and Floods in the Central and Eastern Pacific areas, patches of South America near 

to Argentina and Uruguay and west coast of the USA (Ward et al., 2016), and drier conditions or 

droughts over South East Asia, Philippines, Indonesia, and Africa due to the greater atmospheric 

pressure over these regions (Baudoin et al., 2017). The impacts of canonical El Niño are opposite to 

those of El Niño Modoki across many parts of the world such as tropical South America, Stretches of 

Africa near the equator, and India (Ashok et al., 2007). The last five millennia have witnessed about 

20 major El Niño events. It was also observed that no two El Niño events are identical and this diversity 

results in varied ecological and socio-economic responses to El Niño (FAO, 2020). 

2.1 Impacts of El Niño and La Nina on coastal and marine resources 

The ENSO phenomenon changes climate, weather patterns, oceanic conditions, and 

productivity across the globe (McPhaden, et al., 2006) through atmospheric and oceanic 

teleconnections resulting in many ecological impacts worldwide (Trenberth, 2013). Haddad et al. 
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(2013), and Muis et al. (2018) noticed the correlation between El Niño induced SST anomalies, Global 

Mean Sea Level variations, and associated changes in the marine ecosystem. 

Phytoplankton: phytoplankton is microscopic unicellular algae, the base of the oceanic food chain 

that living in the upper layer of the ocean, corresponding to oceanic uptake of ~25% of the carbon 

dioxide from the atmosphere (Le Quéré et al., 2015). Ocean-color sensors on satellites can provide 

appraise of chlorophyll concentration at high spatial and temporal resolutions and on a global scale. 

Brainard et al. (2018) analyzed the changes in phytoplankton concentration in the Central equatorial 

Pacific associated with 1982/83, 1997/98, and 2015/16 El Niño events, and summarize that primary 

productivity decreased during strong El Niño events and vigorous phytoplankton blooms were 

observed during strong La Niña events. During 2010–2011 El Niño to La Niña transition period, across 

the entire Australian region, reported a 3% rise in chlorophyll a with the average fall in temperature 

(0.2%) from 2010 to 2011 (Peter et al., 2015). The study by Roxy et al. (2016) illustrates a decreasing 

trend in chlorophyll through 1998-2013, but the earlier studies (Goes et al., 2005) on the coastal region 

of the western Arabian Sea (47°-55°E, 5°-10°N) indicate an increasing trend in chlorophyll 

concentrations during 1998-2005. It can be elucidated by the strong El Niño event in the year 1998 and 

promptly followed La Nina conditions in the year 1999. The rise in chlorophyll anomalies during this 

period perfectly match with the fall in SST from 1998-1999 (Murtugudde et al., 1999). Gierach et al. 

(2012) compared the biological production over the equatorial Pacific Ocean during CP El Niño (2009-

10) and EP El Niño (1997-98). CP El Niño was associated with reduced chlorophyll concentration in 

central equatorial Pacific (CEP) and the reduction was confined to CEP. The massive drop in biological 

production in eastern equatorial Pacific was observed during EP El Niño, the declining trend was 

extended to CEP due to the strengthened and extended westerly wind anomalies. EP and CP El Niño 

events have the greatest impact on primary productivity of tropics and subtropics (67%). During EP El 

Niño, western Indian Ocean shows a declining trend whereas the eastern Indian Ocean has an increase 

in primary productivity (Racault et al., 2017). 

Zooplankton: Zooplankton plays a vital role as an intermediary link between primary producers and 

higher trophic levels to energy transfer (Heidelberg et al., 2010). Both strong and weak El Niño events 

inducing eccentric warm water in Northern California Current demolish phytoplankton along with 

lipid-rich copepod species and confirm positive biomass anomalies of southern lipid poor copepod 

species. While analyzing the response of the copepod community in two different El Niño, they show 

immediate feedback in the EP events and there is a time lag of 2-8 months in case of CP events (Fisher 

et al., 2015). During the 2015-2016 El Niño warning phase, a negative relation of the zooplankton 
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community with temperature was observed in Lakshadweep Sea around coral atolls, and also noted a 

higher profusion and heterogeneity in distribution during the peak period of El Niño compared to its 

warning phase (Vineetha et al., 2018). 

Benthos: Arntz (1986) has observed that invertebrate mortality in the intertidal and shallow subtidal 

off Peru was very high during El Niño 1982–1983, removing almost the whole cluster of macrobenthic 

grazers and many suspension feeders and predators. The research by Arntz et al. (1991) across Peruvian 

and Chilean Pacific Coast manifests that the species number increases strongly at the onset of El Niño, 

these new species from tropical areas continue to join the benthic community after the event. El Niño 

induced warming may exceed the temperature tolerance limits of A. purpuratus over Sechura Bay in 

northern Peru, where this scallop has become valued (Arntz et al., 2006). Mussels, clams, snails, crabs, 

and echinoderms like cold-adapted benthic upwelling species off Peru suffered mass mortalities. 

Another way around, a few warm tolerant species like scallop (Argopecten purpuratus), the purple 

snail (Thais chocolata), and the octopus (Octopus mimus) took advantage of the changing environment 

(Arntz et al., 2006; Riascos et.al. 2017). Francisco and Netto (2019) reported that the benthic 

macrofauna community across the estuaries of southern Brazil fall after flooding in El Niño Modoki 

El Niño canonical events. They also observed that the diversity of macrofauna in the bay of southern 

Brazil was twice lower during El Niño canonical than El Niño Modoki, La Nina Modoki, and La Nina 

canonical. 

Crustaceans: The clam Mesodesma donacium which inhabited the subtidal to intertidal zone on sandy 

beaches from Sechura Bay in northern Peru to Chiloe Islands shows a shift in their northern boundary 

of distribution area to southward because of consecutive El Niño events (Carre et.al. 2005). The 

increase in temperature (affects the physiology of bivalves) and food collapse due to algal 

disappearance results in the mass disappearance of filter feeders like bivalves (Arntz et al., 2006). 

Impact of El Niño is more detrimental in bays, the semi-enclosed systems than other parts of Ocean 

(Rossi et al., 2017). 

Turtles: Reina et al. (2002) noticed the fact that the large scale multivariate ENSO (MEI) is 

independent of high variability observed in long-lived leatherback turtles (Dermochelys coriacea) at 

Playa Grande even though ENSO is the important climate driver in the eastern tropical Pacific. But 

Saba et al. (2007) observed the reproduction intervals of leatherback turtles at the eastern Pacific and 

found that it is highly variable and driven by ENSO events. The El Niño induced dip in primary 

productivity caused a collapse in foraging conditions (Saba et al., 2007; Reina et al., 2009) and El Niño 
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influencing local climatic conditions like low precipitation levels and higher temperature affects the 

nesting environment, thereby hatching success of leatherback turtles (Santidrian Tomillo et 

al., 2012). During La Nina events, leatherback turtles reproduce sooner by shortening their remigration 

intervals due to the upwelling phenomenon (foraging areas become more productive). Conversely, 

during El Niño events they skip reproduction to overcome adverse climatic conditions (Saba et 

al., 2007; Santidrian Tomillo et al., 2017). Hatching success of most of the sea turtle species affected 

by higher temperatures (Howard et al. 2014; Montero et al. 2019). Northwest Costa Rica was hottest 

and driest than ever recorded in the years 2015-16, and the hatching success of leatherback turtles, 

olive ridley turtles were found to be largely affected (olive ridley turtles are less vulnerable than 

leatherback), but the Green turtles were largely unaffected by the El Niño and with minimal nesting 

abundance (Santidrián Tomillo et al.2020). 

Seabirds: Changes in the sea surface temperature and sea level pressure preceding an ENSO event 

impact the foraging conditions and reproduction success of Sooty Shearwaters. So the massive 

reproduction failure of Sooty shearwater in 2013 was likely anticipated in the 2015/2016 El Niño event 

(Humphries et al., 2015). Oceanographic conditions related to La Nina events bring foraging habitat 

of Laysan and black-footed albatrosses to the north (Thorne et al., 2015), so the resulting higher energy 

requirements for longer foraging trips caused an increase in reproductive failure in both species 

(Thorne et al., 2016). During the extreme El Niño event in the year 1998, the Cassin’s Auklet 

(Ptychoramphus aleuticus) population on Triangle Island evince a marked breeding failure (Bertram et 

al., 2017). The reproductive attempt was zero during 1998 ENSO for the sea bird species of the 

Galapagos Island except for Great Frigate birds and the sex ratio of the hatchlings affected even in a 

weak ENSO in 2003 (Wingfield, et al., 2017). Thomson et al. (2018) explained the effects of an ENSO 

associated rainfall anomalies on marine and terrestrial food webs. The increased rainfall in the 2009–

2010 ENSO events caused a hike in numbers of predators and leading to enhanced predation of a 

vulnerable nocturnal seabird on its terrestrial breeding grounds in 2011 and 2012 (Thomson et 

al., 2018). 

Sea snakes: Sea snakes are the largest group of marine reptiles that inhabited tropical and subtropical 

waters of Indian and Pacific oceans, they are decreasing in number (Rasmussen et al., 2011) and there 

are changes in their typical distribution area (Park et al., 2017). Gordon L. blame El Niño for the 

venomous sea snake, Hydrophis platurus captured from southern California beach that moved far north 

of its usual range (2015 Oct 16). 
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Seagrass and mangroves: One of the natural factors that impart to mangrove ecosystem wane in the 

Western Indian Ocean is ENSO. The El Niño event in the year 1997/98 grounded for the disappearance 

of 500 ha of mangroves in Kenya (FAO, 2007). Studies conducted by Lovelock et al. (2007) in New 

Zealand noticed that the mangroves are shifting landward and the movement was conspicuous during 

El Niño events. López-Medellín, et al., (2011) also, confirm this result. He disclosed a 20% landward 

expansion of mangroves in Baja California (Mexico Pacific coast). The extreme events like Floods and 

droughts induced by ENSO events can severely affect the mangrove ecosystem by altering salinity, 

nutrients, and organic matters (Pereira et al. 2013; Costa et al. 2016). Droughts caused by El Niño had 

a drastic impact on the ecology of mangrove forest estuaries on the Amazon coast (Costa et al. 2016). 

The dieback of mangroves in the Gulf of Carpentaria shorelines in 2016 was coincident with the 

2015/16 El Niño event (Duke and Larkum, 2019). 

Corals: The cases of coral bleaching and mortality were recorded in many of the regions across the 

globe due to the extended thermal stress endured by the coral reef communities during El Niño events: 

Thousand Islands, Indonesia in 1982/83 (Brown and Suharsono, 1990), corals in eastern equatorial 

Pacific during 1997/98 (Glynn et al. 2001), the Phoenix Islands during 2002/03 (Obura and 

Mangubhai, 2011), Howland and Baker Island in 2009/10 (Vargas-Ángel et al. 2011), corals of Jarvis, 

Howland, Baker, and Kanton Islands in 2015/16 (NOAA, 2017). There is a decline in total reef fish 

biomass in 2016 compared to other years (Brainard et.al. 2018). Equatorial reefs undergo more crucial 

ENSO associated deterioration compared to higher latitude reefs (Claar et al. 2018). 1997/98 major El 

Niño event caused 90% coral mortality on shallow Indian reefs (Wilkinson et al. 1999). Bleaching 

related mortality was higher in lagoon reefs of Lakshadweep related to the other reef regions of India, 

Gulf of Kutch, and Gulf of Mannar (Arthur, 2000). 

Fishes: ENSO induced variability in Ocean, atmosphere parameters alter the abundance and 

distribution of fish species (Arntz, 1984; Lehodey et al., 1997; Davis, 2000; Brander 2007), affect 

various commercially important fish stocks of Indian and Pacific Ocean (Miller, 2007). The strong El 

Niño events caused a drastic reduction in the biomass of Anchovy, the largest fishery on Earth (Csirke 

et al., 1994; Perea et al., 1998; Niquen and Bouchen, 2004) and jack mackerel (Arcos et al., 2001) on 

the Peruvian coast. There is a dip in species richness during the El Niño period than normal years on 

the coast of Central Mexican Pacific and the top listed species in terms of catch Lutjanus guttatus 

shifted to tenth place in 1998. The species such as Elops affinis, Caranx caballus, Caranx vinctus, 

Trachinotus rodophus, and Nematistius pectoralis occur in a deviant season in inshore waters and 

Katsuwonus pelamis and Opisthonema libertate show atypically towering their number during El Niño 
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(Domı´nguez et al., 2000). Recent studies documented that Tuna population dynamics are affected by 

ENSO (Lehodoy et al., 2008; Kumar et al., 2014). Niquen and Bouchen (2004) found that the major 

pelagic resources of Peru, such as Anchovy and Sardine shoals travel towards the coast, shifted to the 

south, and in central-northern parts they are getting deeper. Apart from these changes in species 

distribution, there is a surprising result in the size structure of species, a large number of juveniles were 

observed among sardine, longnose anchovy, and pacific mackerel. Contradictory to impacts on 

Anchovy, El Niño conditions favored the reproduction of Pacific mackerel and Sardine. When 

comparing the abundance of Little Tuna (Euthynus affinis) and Spanish mackerel (Scomberomorus 

commerson), the two dominant pelagic fishes of Jawa Sea during 2014 El Niño and 2010 La Nina year, 

both the species showed a higher catch rate in El Niño than La Nina (Syamsuddin et al., 2018). Fish 

landing data from Ecuadorian fleets during 1981-2012 manifests Cetengraulis mysticetus, the local 

species of El Niño 1-2 region which have high landings during El Niño years and low landings during 

La Nina years (Ormaza-González et al., 2016). Kumar et al. (2014) summarized in his study conducted 

in the Indian Ocean that the highest tuna landings reported in 2004, and 2006 that were weak El Niño 

years, landings were optimum at SST 25°-26°C in ENSO phenomenon. In 2015 the poor maturation 

and recruitment of Indian Oil sardine were partially influenced by El Niño (Kripa, 2018). 

Fisheries: As FAO’s (2020) figures World Marine landings were roughly 0.7 million tonnes lower 

during El Niño and were 1.3 million tonnes higher during La Niña years when match with the mean 

landings of the normal years. It also reveals that marine landings of the Western Indian Ocean shows 

a decrease in extreme CP El Nino (-21,000 tonnes) and landing increase during EP El Nino (+25,000 

tonnes). ENSO induced variations in ocean biology change the stock size of the species leading to a 

time lag in fisheries (Chavez et al., 2002). The catch composition of the artisanal coastal fin-fish fishery 

of Galapagos Island changed because of the dominance of predatory fishes like groupers during the 

2016 El Niño year (Marin Jarrin and Salinas-de-Leon, 2018). Due to the severe impact on reproduction 

and biomass of anchovy, the world’s largest single-species fishery the Peruvian fisheries shifted from 

single species-specific to multispecific fisheries (Niquen and Bouchen, 2004). 

2.2 Impacts of El Niño and La Nina on environmental parameters 

Temperature: General circulation model study by Annamalai (2004) using SST anomalies over Nino 

3.4 region in the period of 1976/77 indicated that after 1976 there were would be reasonable SST 

anomalies in the eastern equatorial Indian Ocean and Western Pacific that stands above the normal and 

before 1976 there was basin-wide warming in the Indian Ocean. The basin-wide warming generally 
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happened after the mature phase (winter and spring) of El Niño. And the SST cooling in the post-1976 

period was due to the influence of IOD. This basin-wide warming of the Indian Ocean due to surface 

heat flux anomalies associated with El Niño is a typical characteristic of El Niño (Klein et al., 1999). 

Through the El Niño years, an area extending from the Philippines to Western Australia covering 

Maritime Countries experiences deficit rainfall, the region from central to eastern equatorial Pacific 

experiences surplus rainfall anomalies. Impacts of El Niño Modoki is different from this response, the 

equatorial eastern Pacific experiences less than normal rainfall, Philippines, Sri Lanka, East Africa, 

southern Thailand, southern India experiences severe dry conditions, and northeast Africa to central 

India and southern China have notable wet conditions during El Niño Modoki (Ashok et al., 2007). 

While relating ENSO warm events to drought and flood conditions across the globe, drought disasters 

of India show a significant relationship with ENSO (Dilley and Heyman, 1995). El Niño the warm 

phase causes the warming of coastal waters of Peru and extreme rainfall occurs along with the normally 

arid coastal patches .1997/98 and 2015/16 El Niño (EP El Niño and mixed EP and CP El Niño) events 

are the two strongest recorded ever, both caused SST to rise 3.5°C from normal (Peak et al., 2017). 

1997/98 El Niño resulted in positive SST anomalies nearly 2°C and the 1982/83, 1987, 1992 events 

also resulted in temperature anomalies reaching more than 1°C (Arcos, et al., 2001). Investigation on 

teleconnections between the Indian Ocean and the Pacific Ocean indicate that SST anomalies of Indian 

Ocean can influence SST variations in equatorial Pacific (Annamalai, 2004). El Niño years induce 

more hydro-climatological changes than La Nina or normal years. 

Nutrients: Eastern boundary regions of the Pacific has higher primary productivity than Western 

boundaries (Barber and Kogelschatz, 1989). Barber and Kogelschatz (1989) observed that the 1982/83 

El Niño event resulted in a dramatic reduction in nutrients in the offshore and middle portions of eastern 

equatorial Pacific. He also noticed that from December 1982 to June 1983, the surface layer 

concentration of nitrate was below the detection limit (0.2 µM). Along with nitrate, the supply of other 

nutrients to the euphotic zone also significantly reduced. Even though the 40 km inshore band remained 

relatively productive in the coastal region, the size of the upwelling environment was reduced to 10% 

of normal, reduced the quantity of nutrients upwelled. The study on Vancouver Island during the 

1997/98 El Niño event was also evident to variations in nutrient concentration. Dissolved nitrate and 

silica concentrations showed a declining trend throughout the year 1997 (Harris et al., 2009). Sub-

Antarctic waters are the primary source of nutrients to the global thermocline and the Australian part 

of Sub Antarctic mode water nutrients had a greater correlation with ENSO. El Niño events were 

associated with a decrease in nutrients and an increase in temperature of Sub Antarctic Mode Waters. 
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Wind Stress Curl anomalies linked with El Niño strengthen the South Pacific Subtropical gyre there 

by affecting the East Australian Current (western boundary current). EAC brings more nutrient-poor 

water and led to a decline in nutrient availability of sub-Antarctic waters (Ayers and Strutton, 2013). 

Salinity: Sea surface Salinity (SSS) indices are used to characterize ENSO (Delcroix et al., 1998), SSS 

anomalies are significantly negative in western equatorial Pacific near the dateline and there is an 

eastward movement of SSS front (34.8 psu isohaline) with the eastern edge (longitudinal location of 

the 29°C isotherm) during El Niño development phase (Chi et al., 2015), retreats westward during La 

Nina. SSS front separates the fresh western Pacific water from central Pacific saline water (Tang and 

Yueh, 2017). The barrier layer formed due to salinity stratification of the Pacific warm pool mixed 

layer blocks the subsurface cooling into the mixed layer (Maes et al., 2005). In 2014/15, the strong 

subsurface processes during summer led to the formation of positive SSS anomalies in central 

equatorial Pacific and caused westward movement of salinity front. It indicates that variations in sea 

surface salinity over equatorial Pacific largely depends on changes in subtropical circulation and had 

fewer impacts on SST during 2014/15 (Chi et al., 2015). Tang and Yueh (2017) investigated the role 

of SSS in water cycle anomaly connected with ENSO using the SSS datasets from SMAP, Aquarius 

(NASA) and ESA’s SMOS. The study concluded that salinity plays an active role in the onset and 

evolvement of an ENSO event. Zhu et al. (2014) also provided evidence for the role of salinity on 

ENSO evolution, he demonstrated that the data on salinity variations were essential to correctly 

forecast the 2007/08 La Nina starting from April 2007. SSS variability in the southeastern Pacific is 

the deciding factor to identify El Niño type. The South Eastern Pacific SSS Index (SEPSI), defined 

based on the SSS variations over the region extended from 0°-10°S to 150°-90°W is significantly 

correlated with the El Niño Modoki Index (Qu and Yu, 2014). Based on 33 years (1980-2012) of 

PEODAS reanalysis it is evident that temperature variations are highest in the eastern Pacific 

thermocline, the salinity variations are strongest in the western Pacific mixed layer and strongly 

associated with the accompanying east-west shift of western Pacific fresh pool during El Niño and La 

Nina (Zhao et al., 2016). In normal years salinity over Pacific Ocean freshwater lens is determined by 

seasonal rainfall events. After 1983, 1987 El Niño events salinity remained above normal until the 

1989 La Nina that recharged the freshwater lens (Van der Velde et al., 2006). 

Turbidity: Spatio-temporal variability of turbidity in Rio de le Plata estuary in Argentina analyzed 

and explained in terms of ENSO using MODIS data from 2000-2014. The El Niño events associated 

with low turbidity amplitudes in the upper and middle estuary, opposite occurs in La Nina. During 

2003, 2007, and 2010, the moderate and weak El Niño years, low turbidity was observed with increased 
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outflow. In La Nina years (2000, 2008, 2009, and 2012) the outflow mean value was lower than the 

normal, led to higher turbidity. The high turbidity observed in 2004 due to low outflow was not related 

to a La Nina event (Dogliotti, 2016). 

2.3 Ocean atmospheric variations: Indian Scenario 

The Pacific Ocean and the Indian Ocean is connected through walker circulation and the 

passage of Indonesian Archipelago. Our country gets more than 75% of annual rainfall during the four 

months (June-September) of Indian Summer Monsoon Rainfall (ISMR). So ISMR plays a crucial role 

in the Nation’s economy. It is evident that ENSO influences the Indian summer monsoon rainfall 

through atmospheric teleconnections (Ashok et al. 2001). Rasmusson and Carpenter (1983) observed 

an El Niño phenomenon connected to positive pressure anomalies over the Indian Ocean, get below 

normal rainfall over India during ISMR and the opposite happens during La Nina. Contrary to this 

general impact, India received positive rainfall anomalies in the El Niño year 1997 (Li et al., 2001). 

Later this paradoxical observation was explained by Maity and Nagesh Kumar (2006). He concluded 

that both ENSO and Equatorial Indian Ocean Oscillation (EQUINO), the atmospheric part of Indian 

Ocean Dipole (IOD) have a significant effect on monthly ISMR and gave weightage as 0.61 and 0.39 

respectively. While El Niño weakens Indian Summer Monsoon, co-occurring IOD events dampen this 

impact (Ashok et al., 2004). This influence of IOD explains why all the years associated with El Niño 

didn’t cause a drought in India. SST anomalies in the central equatorial Pacific enhance the likelihood 

of droughts during monsoon and SST anomalies in eastern equatorial Pacific reduces the chances of 

drought during monsoon (Kumar et al., 2006). Izumo et al. (2010) on his model analysis suggest that 

IOD and the interannual climate fluctuations in the Indian Ocean can predict ENSO. Negative IOD 

precedes the El Niño (14 months before its peak) and positive phase of IOD come before La Nina. The 

century wide analysis (1901-2002) by Tamaddun et al. (2019) reveals that most of the north Indian 

districts experienced significant decreasing trends in the temperature in all ENSO phases. The western 

parts of North India experienced enhanced rainfall events and eastern parts have decreasing trends in 

precipitation in various ENSO phases. During El Niño years, the maximum number of north Indian 

districts showed an increasing trend in rainfall events. Moreover, during El Nino years, tropical cyclone 

activities increased in the southwestern Indian Ocean and the opposite happened during La Nina (Lin 

et al., 2020). There was a considerable warming in the tropical Indian Ocean, somewhat because of 

impacts of the 2015 El Niño. The mean SST in the tropical Indian Ocean exceeded by 0.13–0.2°C in 

2015 (Xue et al., 2016).Extreme El Nino events stimulate the occurrence of marine heat waves in the 

Indian Ocean (Zhang et al., 2017). During 2015/16 El Nino rainfall received over Indian subcontinent 
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was lower than the normal rainfall, ten states experienced drought, affecting 330 million people during 

the period. Due to the IOD response to El Nino, the south east of Indian peninsula experienced 

torrential rainfall and flooding, Northern part of India experienced drought (Grove and Adamson, 

2018).  

2.4 Impacts of El Niño and La Nina on socioeconomics 

The occurrence and the intensity of ENSO has a crucial impact on the economy of a country, notably 

in countries in the tropical region (Suarez et al. 2004). Globally about 200 million people are directly 

and indirectly employed in different activities related to fisheries right from harvesting from natural 

areas to distribution, most of this population lives close to the sea (FAO, 2018). Localized coastal El 

Niño on February and March 2017 on Peru resulted in heavy rainfall and flooding in Sechura. Most of 

the villagers lost the fishing days due to this El Niño shocks, their income reduced because fisheries 

products could not reach national markets out of Sechura (Kluger et al., 2018). In California, the most 

damaging El Niño events were in the years 1982/83 and 1997/98 and resulted in the loss of $2 billion 

and $1.1 billion (1998 dollars) respectively. When summarizing national impacts, the benefits from 

positive outcomes supersede the losses. Approximately there is a difference of $15.4 between 

economic gain and loss (Changnon, 1999). The developed nations like Europe and the USA betrayed 

an escalating response on the nation’s economy, However India, Japan, Indonesia, Australia, Chile, 

South Africa, and New Zealand faced a period of economic stagnation during El Niño shocks (Cashin 

et al., 2017). For example, the study (Gutierrez, 2017) investigating impacts of El Niño on the global 

wheat market summarized that Argentina show an increase in wheat production and Argentina 

experienced rise in export. The US had higher export in La Nina. Coinciding El Niño conditions with 

summer monsoon rainfall of India affect the agriculture production of the nation and India’s GDP 

growth falls by 0.15% (Cashin et al., 2017). The growth-limiting impacts of back to back El Niño 

events in Africa can be reduced by La Nina after an El Niño. The similar response were also found in 

Asia-Pacific region. The adverse effect of back to back La Nina on the nation’s economy can be 

mitigated by El Niño after a La Nina (Hsiang and Meng, 2015). During the 1997–98 El Niño event, 

Tumbes, Peru received 16 times the normal rainfall of the year. The negative effects that enhanced 

swiftly were hindered access to transport, health care and ameliorated infectious diseases. Tumbes 

residents who encountered the El Niño impact needed more time to restore their houses, agriculture, 

livestock, and revive their income stability (Bayer et al., 2014). El Niño events caused droughts in 

South Africa including the country’s summer rainfall region (Richard et al., 2000) El Niño induced 

droughts in South Africa created increased unemployment, less purchase power, and rise in debit 
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service coast for farm implements, led to increased mounting pressure on the country’s agro-economic 

system (Agri SA, 2016). The agricultural productivity of local subtropical regions were affected with 

1997/98 El Niño, the sharp reduction in production cause disruption of rural income and employment. 

Specifically, due to the shortfall in rice production during this El Niño period, Malaysia required to 

import over a million tons of rice to satisfy their food requirement. Based on the study results the 

estimated direct economic loss was RM87 million. Rice, oil palm, and horticulture sector and more 

than 17,000 people including farmers were also directly affected (Quasem, 2016). Not only the 

agriculture production, the children were exposed to El Niño floods of 1997/98 in Equador, specifically 

third trimester in utero were born with low birth weight (Rueda, 2018). Smith and Ubilava (2017) 

confirms that El Niño can negatively affect the nation’s economy as a whole. The heavy flooding 

during the 2015/16 El Niño period severely affected the southern and central parts of Kenya. The 

landslides associated with heavy precipitation caused the collapse of buildings, infrastructure, failure 

of crop and livestock production, business, and schools were forced to close (Siderius, et al., 2018). 

From the records of India’s associated Chambers Of Commerce, Grove and Adamson (2018) stated 

that India had drought damages estimated to be $100 billion US during 2015/16 El Nino. 
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CHAPTER 3 

MATERIALS AND METHODS 

ENSO events identified since 2007 using various ENSO Indices such as Oceanic Nino Index 

(ONI), Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI), El Nino Modoki Index 

(EMI), Dipole Mode Index (DMI), Trans Nino Index (TNI), Nino 1+2 Index, Nino 3.4 Index, Nino 4 

Index  and their types from literature. The different methods followed to meet the objectives of research 

are described below. The Whole work divided into following sections- 1) variations on ocean-

atmosphere parameters and 2) impacts on fishery in Kerala coast. In this chapter details of data 

collected and analyzed and the statistical packages used for different sections are presented. 

3.1 Data used for assessing the impact of Ocean-atmospheric parameters 

3.1.1 ENSO indices  

ONI (Oceanic Nino Index) 

The Oceanic Niño Index (ONI), which is based on sea surface temperature (SST) in the east-

central Tropical Pacific Ocean, which is  3 month running mean of ERSST.v5 SST anomalies in the 

Niño 3.4 region (5°N-5°S, 120°-170°W), based on 30-year base periods. El Niño conditions to be 

present when the Oceanic Niño Index is +0.5 or higher, La Niña conditions exist when the Oceanic 

Niño Index is -0.5 or lower. 2007 to 2018 ONI Index values downloaded from NOAA (National 

Oceanic and Atmospheric Administration), Climate Prediction Center 

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). 

MEI (Multivariate ENSO Index)  

The bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index (MEI.v2) is the time 

series of the leading combined Empirical Orthogonal Function (EOF) of five different variables [sea 

level pressure (SLP), sea surface temperature (SST), zonal and meridional components of the surface 

wind, and outgoing long wave radiation (OLR)] over the tropical Pacific basin (30°S-30°N and 100°E-

70°W). MEI is a method used to characterize the intensity of an ENSO event. 2007-2018 MEI values 

downloaded from the Physical Science Laboratory of NOAA (National Oceanic and Atmospheric 

Administration) (https://psl.noaa.gov/enso/mei/). 

 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://psl.noaa.gov/enso/mei/
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TNI (Trans –Nino Index)  

The timeseries is calculated from the HadISST Dataset. It is the standardized Nino 1+2 minus 

the Nino 4 with a 5 month running mean applied which is then standardized using the 1950-1979 

period. 2007-2018 TNI index values downloaded from the ESRL (Earth System Research Laboratory), 

Physical Science Division of NOAA (National Oceanic and Atmospheric Administration), 

(https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/tni.long.data) (Trenberth and Stepaniak, 2001). 

EMI (El Nino Modoki Index) 

The El Nino Modoki Index is defined as,  

EMI = [SSTA] A – 0.5 *[SSTA] B –0.5*[SSTA] C 

The brackets in equation represent the area-averaged SSTA over each of the region A (165˚E–140˚W, 

10˚S– 10˚N), B (110˚W–70˚W, 15˚S–5˚N), and C (125˚E– 145˚E, 10˚S–20˚N), respectively (Ashok 

et.al, 2007).1870-2019 EMI index values downloaded from JAMSTEC (Japan Agency for Marine-

Earth Science and Technology) 

(http://www.jamstec.go.jp/frsgc/research/d1/iod/DATA/emi.monthly.txt). 

DMI (Dipole mode Index)  

The Dipole Mode Index (DMI) is a measure of the anomalous zonal SST gradient across the 

equatorial Indian Ocean. It is defined as the difference between SST anomaly in a western (60˚E-80˚E, 

10˚S-10˚N) and an eastern (90˚E-110˚E, 10˚S-0˚S) box (Figure 3.1). When the DMI is positive then, 

the phenomenon is referred as the positive IOD (Indian Ocean Dipole) and when it is negative, it is 

refereed as negative IOD. Data from 2007-2018 collected from Global Climate Observing System 

(GCOS) Working Group on Surface Pressure (WG-SP) hosted by NOAA ESRL Physical Sciences 

Laboratory (https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/).  

SOI (Southern Oscillation Index) 

The oldest indicator of the ENSO state the Southern Oscillation Index (SOI) is defined as the 

normalized pressure difference between Tahiti and Darwin (Figure 3.1). 2007-2018 SOI index values 

downloaded from the Global Climate Observing System (GCOS) Working Group on Surface Pressure 

(WG-SP) hosted by NOAA ESRL Physical Sciences Laboratory 

(https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/). Here the SOI calculated based on the method given 

by Ropelewski and Jones (1987). During El Niño, the pressure becomes below average in Tahiti and 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/tni.long.data
http://www.jamstec.go.jp/frsgc/research/d1/iod/DATA/emi.monthly.txt
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI/
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above average in Darwin, and the Southern Oscillation Index is negative. During La Niña, the pressure 

behaves oppositely, and the index becomes positive.  

Nino 1+2 Index 

Nino 1+2 index is based on SST anomalies averaged over the Nino1+2 region (0°-10°S, 90°W-

80°W), which is the smallest and eastern most of the Nino SST regions (Figure 3.1). 2007-2018 Nino 

1+2 values downloaded from the Global Climate Observing System (GCOS) Working Group on 

Surface Pressure (WG-SP) hosted by NOAA ESRL Physical Sciences Laboratory 

(https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino12/ ). 

Nino 3.4 Index 

Nino 3.4 index is based on SST anomalies averaged over the Nino 3.4 region (5°N-5°S, 

170°W-120°W), representing the average equatorial SSTs across the Pacific from about the dateline 

to the South American coast (Figure 3.1). The Niño 3.4 index typically uses a 5-month running mean, 

and El Niño or La Niña events are defined when the Niño 3.4 SSTs exceed +/- 0.4C for a period of six 

months or more. 2007-2018 Nino 3 values downloaded from the Global Climate Observing System 

(GCOS) Working Group on Surface Pressure (WG-SP) hosted by NOAA ESRL Physical Sciences 

Laboratory (https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/). (Trenberth and Stepaniak, 2001) 

Nino 4 Index 

Nino 4 index is based on SST anomalies averaged over the Nino 4 region (5°N-5°S, 160°E-

150°W) (Figure 3.1). It captures SST anomalies in the central equatorial Pacific. This region tends to 

have less variance than the other Niño regions. 2007-2018 Nino 4 index values downloaded from the 

Global Climate Observing System (GCOS) Working Group on Surface Pressure (WG-SP) hosted by 

NOAA ESRL Physical Sciences Laboratory (https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino4/). 

 

Figure 3.1: Regions used to monitor ENSO and IOD (Source: Australian bureau of meteorology)

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino12/
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino4/
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3.1.2 Ocean-atmospheric Parameters 

Sea Surface Temperature (SST) 

Global ocean Sea Surface Temperature data was downloaded from the Asia-Pacific Data 

Research Center (APDRC) which is a part of the international Pacific Research Center at the University 

of Hawai’i at Maona, funded in part by the National Oceanic and Atmospheric Administration 

(NOAA). Monthly mean SST data with 4km resolution derived from MODIS Aqua (MODerate 

Resolution Imaging Spectro-radiometer) sensor was downloaded for the year 2007 to 2018. 

Chlorophyll-a concentration (CHL_A)  

The monthly climatological chlorophyll data with a spatial resolution of 4x4km from 2007 to 

2018 were downloaded from the website Ocean Colour Climate Change Initiative (OC-CCI) 

(https://www.oceancolour.org/), used latest version of the dataset, version 4.0 comprising globally 

merged MERIS, Aqua-MODIS, SeaWiFS and VIIRS data. 

Sea Surface Height Anomaly (SSHA)  

The monthly sea surface height anomaly having a spatial resolution of 0.25°lat X 0.25°lon  was 

derived from Level 4 Global Ocean Gridded Maps REP (Reprocessed) SLA (Sea-level anomaly) from 

2007 to 2018 was downloaded from Copernicus Marine Environment Monitoring Service 

(https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_

GLO_PHY_L4_REP_OBSERVATIONS_008_047). 

Sea Surface Salinity (SALT)  

Global Sea surface salinity data with spatial resolution of 0.33°lat x 1.0°lon from GODAS 

(Global Ocean Data Assimilation System) was also extracted from the NOAA ESRL Physical Science 

Division (PSD) website (https://psl.noaa.gov/data/gridded/data.godas.html) for the period 2007 to 

2018. 

Ocean Current  

Ocean current information from SODA3.4.2 was extracted from the SODA3 website 

(http://www.atmos.umd.edu/~ocean/index.html). The monthly climatological data of 0.5˚spatial 

resolution from 2007-2016 was downloaded as NetCDFv4 files. Ocean surface current data was also 

downloaded from the OSCAR (Ocean Surface Current Analysis Real-time) satellite sensor of 0.33˚ 

https://www.oceancolour.org/
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
https://psl.noaa.gov/data/gridded/data.godas.html
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spatial resolution and 5 day temporal resolution from the website of PO.DAAC (Physical 

Oceanography Distributed Active Archive Centre) (https://podaac.jpl.nasa.gov/) for 2017 to 2018. 

Using R software, these 5day files were compile in to monthly data. The current data are represented 

as zonal (u) and meridional (v) components. Current speed and direction were derived from u and v 

components using the formula: 

 

 

 

 

Current velocity and direction were calculated using R programming and Python. 

Local Temperature Anomaly (LTA) 

Local Temperature Anomalies (LTAs) are intended as the coastal upwelling indices by 

comparing coastal and offshore temperature. The positive LTA values suggest coastal upwelling 

processes (Shah et al., 2015; Smitha et al., 2008; Naidu et al., 1999). And the equation is:  

 

 

Where, SSToff represents sea surface temperature associated with an off-shore station at a distance of 

3˚ with respect to that recorded at a coastal station (denoted using SSTcoast) within the same latitudinal 

belt. LTA serves as a proxy to represent oceanographic forcing. LTA values greater than 1˚C indicate 

a strong upwelling in the coastal areas (Shah et al., 2015). 

Rainfall Data  

Meteorological sub division wise monthly rainfall data was downloaded from Open 

Government Data (OGD) Platform-data.gov.in website (https://data.gov.in/). Also, rainfall data of 

India Meteorological Department (IMD) was collected from the IMD’s Annual publication “The 

Rainfall statistics of India” (Kaur and Purohit, 2012, 2013, 2014, 2015, 2016, 2017). Monthly rainfall 

data of Kerala in 2018 was collected from Indiastat.com which is an authentic storehouse for socio-

economic statistics about India (https://www.indiastat.com/meteorological-data/22/ rainfall /238/ 

stats.aspx). 

Current velocity = √ (u2+v2) 

Current direction = 180+ [180*arctan2 (u,v)]/π 

 

LTA = SSToff – SSTcoast 

https://podaac.jpl.nasa.gov/
https://www.indiastat.com/meteorological-data/22/%20rainfall%20/238/%20stats.aspx
https://www.indiastat.com/meteorological-data/22/%20rainfall%20/238/%20stats.aspx
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3.2 Fisheries Data 

The fisheries data encompassing the resource wise, gear wise, district wise catch, number of 

units operated (effort), and actual fishing hours collected from National Marine Fisheries Data Centre 

(NMFDC) of Central Marine Fisheries Research Institute (CMFRI), Kochi, India. The multistage 

stratified random sampling (stratification is done over time and space) developed by CMFRI is used 

to collect fisheries data (Srinath, et al., 2005; Mini, 2014). Normally 16 to18 days in a month are 

selected at random for observation. The trained staffs collect resource wise landings, the number of 

fishing days and effort per month from the landing centers of entire Indian coast and this is raised to 

derive estimate for the month. Monthly data from 2007 to 2018 was extracted for Kerala state it was 

used for further analysis. Normally the catch is harvested by a variety of craft and gear combinations. 

Based on fishing crafts used there are three main fishing sectors termed as Mechanized, motorized and 

non-motorized sector. Different gears used from both mechanized and motorized crafts are given 

below. 

Table 3.1 Types of gears operated in the mechanized and motorized fisheries sectors 

Mechanized sector Motorized sector 

Multi day trawl net (MDTN) Outboard bag net (OBBN)  

Mechanized gillnet (MGN)  Outboard boat seine(OBBS)  

Mechanized hook and lines (MHL)  Outboard gill net (OBGN)  

Mechanized purse seine (MPS)  Outboard hook and lines(OBHL)  

Mechanized ring seine (MRS)  Outboard purse seine (OBPS)  

Mechanized trawl net (MTN)  Outboard ring seine(OBRS)  

 Outboard shore seine (OBSS)  

 

Apart from these, other gears are sometimes observed and these are mechanized other gears (MOTHS) 

and outboard other gears (OBOTHS). 
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The fish resources inhabited in the water column (in surface waters, not near the bottom or the 

shore) are termed as pelagic resources and adult fish having vertical habitats below 30 m of depth have 

been assigned under demersal category. Types of gears, area and depth of operation influence the catch 

variations. The NM and most outboard crafts and gears are operated in the near shore waters and 

resources influenced by coastal waters will be the major catch and the resources will vary in the 

mechanized crafts which fish in off shore waters. Within the pelagic and demersal resources based on 

the mesh size of the gear the catch may vary. The seines which are encircling gears, small pelagic 

fishes are caught while in hook and line large pelagic fishes like tunas and seer fishes are caught. Trawl 

net is the most effective gear to exploit demersal resources. Operate trawl net to exploit the marine 

crustaceans, cephalopods and demersal finfishes 

Resource assemblage of a particular group of resources can be understood from the catch and 

from the catch per unit effort (CPUE) the abundance of the resource can be inferred. The major marine 

resources of interest considered for the present study include prawns, pelagic planktivores such as 

anchovies, mackerel, and sardines along with demersal resources such as Threadfin breams. 

Catch per Unit Effort 

Catch per Unit Effort (CPUE) is the ratio of total catch and effort (number of units operated), 

is an indirect measurement of fish abundance. CPUE is much more powerful tool than catch data alone. 

Deviations in CPUE over a time period is usually a good indication to changes in the fish stocks. The 

total catch is expressed as weight (in KG) and the effort portion refers to the time that the fishing craft 

deployed in the water. 

 

  

CPUE = TOTAL CATCH ÷ EFFORT 
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Study Area 

The study area comprises the coastal area 

of Kerala between 8° N and 12° N latitudes and 

74° E and 77° E longitudes. The area within the 

200 m depth contour provide the best feeding and 

spawning site for the fishes and hence considered 

as the most productive coastal region (George, et 

al., 2019). The ocean-atmospheric parameters, 

fish catch and effort datasets are limited with in 

the area of shore line to 200 m isobath (Figure 

3.2). 

Software Used 

The software viz. R 3.6.1, Python 3.7, 

QGIS 3.4.12 and MS-EXCEL were used for the 

data processing. Using R software, datasets 

falling within the area of shore line to 200 m 

depth contour were extracted. 

Pearson’s Correlation Test  

Pearson’s correlation test or parametric correlation test is a measure of the linear correlation 

between two variables. It was developed by Karl Pearson. Pearson’s correlation coefficient is a 

statistical measure of the strength of a linear relationship between paired data. Correlation coefficient 

r ranges from +1 to -1. +1 indicates a positive correlation, -1 indicates a negative correlation and 0 

shows no correlation. According to Evans (1996), the strength of the correlation could be categorized 

in to very weak/no correlation (r ≤0.19), weak correlation (r = 0.2 to 0.39), moderate correlation (r = 

0.4 to 0.59), strong correlation (r = 0.6 to 0.79), very strong correlation (r = 0.8 to 1). 

Each ENSO indices and ocean-atmosphere parameters considered in this study, evaluated the 

degree of collinearity between all ENSO predictors and between all ocean-atmosphere predictors. The 

preliminary analysis was necessary because the multicollinearity can cause problem when we fit the 

model. Then estimated the Pearson’s correlation coefficients between all ENSO predictors and 

 Figure 3.2: Location of the study area. The 
study region (stippled area) is enclosed by 
the coastline on the east and 200 m isobath 
on the west. 
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between ocean-atmosphere predictors and discarded those predictors for which we found pairwise 

correlations exceeding 0.9 in absolute value. 

General Additive Model (GAM) 

Generalized Additive Models (GAM) encompass the series of non-parametric and semi-parametric 

regression techniques and describe many data in the environmental science which do not fit simple 

linear model. General Additive Model (GAM) is used to estimate ENSO effects on ocean atmosphere 

parameters and impacts on fishery resource abundance in Kerala coast with Gaussian error 

distributions. GAM was performed with mgcv (Wood and Augustin, 2002) package in R (3.6.1). The 

predicted variable is modeled by sum of smooth functions of covariates. A stepwise fitting procedure 

was used to remove insignificant variables. The model fits were analyzed using the Akaike Information 

Criteria (AIC), Adjusted R2 and Deviance. The model with lowest AIC value was selected for the study 

purpose.  
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CHAPTER 4 

RESULTS 

4.1 Variations in Ocean-atmospheric parameters during El Nino and La Nina years 

4.1.1 Variations in the different ENSO indices  

ENSO events are identified based on different El Nino indices corresponding to the particular 

time period. Nino 1+2, Nino3, Nino 3.4, Nino 4, Oceanic Nino Index (ONI), Trans Nino Index (TNI), 

Multivariate ENSO Index (MEI), El Nino Modoki Index (EMI), Dipole Mode Index (DMI) and 

Southern Oscillation Index (SOI) are considered in this study. These indices describe quality and 

period of ENSO warm and cold phases on a monthly scale and depend on oceanic or atmospheric 

parameters estimated over different parts of the Pacific Ocean. Nino 1+2, Nino 3, Nino 3.4, Nino 4 and 

ONI indices are SST based indices and Nino3.4 and ONI are the most commonly used indices to define 

ENSO events. Other indices are used to characterize the unique nature of each event (Trenberth and 

Stepaniak, 2001). 

The warm and cold events of El Nino Southern Oscillation inferred through the Oceanic Nino 

Index during the period 2007-2018 is illustrated in the fig. 4.1a. ENSO events are defined as five 

consecutive overlapping three month periods at or above the +0.5 anomaly for warm (El Nino) events 

and at or below the −0.5 anomaly for cold (La Nina) events. The threshold is further broken down into 

Weak (with a 0.5 to 0.9 SST anomaly), Moderate (1.0 to 1.4), Strong (1.5 to 1.9), and Very Strong 

(≥2.0) events. The positive values  greater than +0.5 in the y-axis occurred during 2006-2007, 2009-

2010, 2014-15, 2015-2016, and 2018 depict the warm phases (El Nino) of ENSO. Weak events were 

observed during the year 2007, 2015, and 2018 whereas a moderate event was observed during 2009-

2010. A very strong warm event was experienced in 2015-2016. The negative values below −1.5 were 

observed in the years 2007-2008 and 2010-2011 indicating a strong cold event (La Nina) of ENSO. A 

moderate cold phase was experienced during 2011-2012 whereas weak La Nina years were observed 

in the years 2008-2009 and 2017-2018.  

The El Nino and La Nina episodes of ENSO inferred the Nino3.4 index during 2007-2018 are 

described in the figure 4.1b. Events are defined as six consecutive overlapping five-month running 

mean of SST in Nino3.4 region at or above the +0.4 SST anomaly for warm events and at or below -

0.4 SST anomaly for cold events. All the El Nino and La Nina events had a strong signature on the 

Nino 3.4 index. The positive values greater than 0.4 in the y-axis represents the El Nino phases. From 
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2007 to 2018 the weak El Nino episodes such as 2006-2007, 2014-2015, and 2018-2019 had 

temperature anomaly between +0.5 and +0.1 in Nino 3.4 index. A moderate El Nino event was 

experienced in 2009-2010 and a very strong El Nino in 2015-2016 which was also well marked in the 

Nino 3.4 index. The negative values below -0.4 observed in the year 2007-2008 and 2010-2011 showed 

a strong La Nina and 2011-2012 indicate moderate La Nina events. Weak cold events were experienced 

during 2008-2009, 2011-2012, and 2016-2017. 

Time series of area-averaged sea surface temperatures over the Nino 1+2 region are illustrated 

in the figure4.1c. The five El Nino events experienced during 2007-2018 was well marked in the Nino 

1+2 region, SST anomaly recorded during these periods were at or above 0.5 anomalies. The moderate 

El Nino during 2009-2010 did not have a strong signature on Nino 1+2index, temperature anomaly 

during this period was between 0.5 and 1. It is the easternmost region among all SST index regions, 

thereby it had the greatest variance of Nino SST indices. For the years 2012 and 2017, the SST anomaly 

over this region was above the threshold. In the case of cold La Nina events, the strong La Nina in the 

years 2007-2008 and 2010-2011 had a strong signature on the Nino1+2 index. Weak La Nina event of 

2016-17 was not well marked in the index, there was no such signal during the period. The very next 

cold event during 2017-2018 was well marked on the Nino 1+2 index. 

Nino 4, the westernmost part of SST index regions captures SST anomalies in the central 

equatorial Pacific. The time series of area-averaged sea surface temperature over the Nino 4 region is 

elucidated in the figure 4.1d. The Nino 4 index has less variance on SST average than other Nino 

regions. The values at or above 29°C on the y-axis represented the El Nino event during 2007-2018. 

Values below 28°C represents the La Nina. The very strong El Nino experienced during 2015-2016 

reached the value above 30°C. The area-averaged SST in the weak El Nino years such as 2006-2007, 

2014-2015, and 2018-19 were found to be between 29°C and 30°C. During moderate El Nino years, 

the area averaged SST values were very close to 30°C. The strong La Nina in 2007-2008 and 2010-

2011 had SST below 27°C, weak La Nina in the years 2008-2009, 2016-2017, 2017-2018, and 

moderate La Nina in the year 2011-2012 had SST below 28°C. 

Trans Nino index (TNI) is the gradient of equatorial SST across the Pacific from about dateline 

to the American coast (the difference between normalized SST anomalies of Nino 1+2 and Nino4 

regions) (Figure 4.1e). El Nino events are represented by negative TNI values and La Nina by positive 

TNI values. The five El Nino events that occurred during the period 2007-2018 had TNI value below 

-1. The very strong El Nino in 2015-2016 showed a very less SST gradient between Nino1+2 and 
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Nino4. Moderate El Nino in 2009-2010 and weak El Nino in 2014-2015 had a strong signature on the 

TNI index. The gradient in SST anomalies is used to define different flavors of El Nino events 

(Trenberth and Stepaniak, 2001), the events with a larger SST gradient due to positive anomalies in 

Nino4 region and negative anomalies in Nino 1+2 region is considered as CP type of El Nino. The 

classification of types of El Nino that occurred during 2007-2018 collected from FAO (2020) state that 

El Nino during 2006-2007 was an EP type and moderate El Nino in 2009-2010, weak El Nino in 2014-

2015 and 2018-2019 were CP type. The years of occurring CP type event had a larger SST gradient as 

it is evident from the figure (Figure 4.1e). The five La Nina episodes during 2007-2018 had a strong 

signature on TNI but there was no such signal in 2017-18.  

Multivariate ENSO Index (MEI) is based on five variables such as sea level pressure (SLP), 

sea surface temperature (SST), zonal and meridional components of the surface wind, and outgoing 

long wave radiation (OLR) from the tropical Pacific. The time series of MEI for 2007-2018 is 

illustrated in the figure 4.1f. El Nino events are indicated using positive MEI values and La Nina events 

by negative. The weak warm events had MEI values close to 1, moderate events had values between 

1and 2 and the very strong El Nino during 2015-2016 had MEI value greater than 2. The El Nino 

episode in 2014-2015 was not well marked on the MEI time series. The strong La Nina in the year 

2010-2011 was very clear in the time series of MEI, but there was no such evidence for the La Nina in 

the year 2007-2008 which was strong. The six La Nina events that happened during the study period 

had MEI value below -1 except for the weak La Nina in 2016-2017. 

Southern Oscillation Index (SOI) is the normalized pressure difference between Tahiti and 

Darwin, Australia. The time series data for the Southern Oscillation Index is illustrated in the figure 

4.1g. El Nino events are represented by persistent negative values of SOI and La Nina episodes 

coincide with sustained positive values. The weak El Nino events in 2006-2007, 2014-2015, and 2018-

2019 had SOI values at or below -1 and very strong event exceeded the value -2. All the six La Nina 

events were well evident in the SOI time series. During weak La Nina events, the SOI values were 

between 1 and 2, and during moderate and strong La Nina events, the SOI values were above 2. 

El Nino Modoki Index (EMI) assess the SST anomalies over the central Pacific deducted from 

the area-averaged SST anomalies over eastern and western Pacific. The time series of the EMI values 

are elucidated in the figure 4.1h. Sustained positive values represent the El Nino episodes and La Nina 

events are indicated by negative values. The representing values for each El Nino event lie above 0.5. 

The El Nino event in 2009-2010 showed the highest EMI value (1.2) among all El Nino years. The
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weak La Nina episode in 2017-18 was not well evident in the EMI index, other La Nina episodes lie 

below the value -0.5 and Strong events had EMI value between -1.0 and -1.5. Dipole Mode Index 

(DMI) is the SST gradient between southeastern equatorial Indian Ocean (90°E-110°E and 10°S-

equator) and the western equatorial Indian Ocean (50°E-70°E and 10°S-10°N). Positive values of Index 

represented the Positive IOD and negative values indicate the negative IOD event (Figure 4.1i). 2006, 

2012, 2015, and 2019 were positive IOD years. The El Nino in 2006-2007, 2015-16, and 2018-19 

coincided with positive IOD. 2010, 2014, and 2016 were negative IOD events. La Nina events in 2010-

2011 and 2016-2017 coincided with negative IOD.
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Figure 4.1a: Time series of Oceanic Nino Index for 2007-
2018 

Figure 4.1b: Time series of Nino 3.4 Index for 2007-
2018 

Figure 4.1c: Time series of Nino 1+2 Index for 2007-
2018  

Figure 4.1d: Time series of Nino 4 Index for 2007-2018 
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Figure 4.1i: Time series of Dipole Mode Index for 2007-2018 

Figure 4.1e: Time series of Trans Nino Index for 2007-2018 Figure 4.1f: Time series of Multivariate ENSO Index for 2007-2018 

Figure 4.1g: Time series of Southern Oscillation Index for 2007-2018 Figure 4.1h: Time series of El Nino Modoki Index for 2007-2018 
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Table 4.1: ENSO events that have occurred during the period of 2007-2018 as identified by the 
different ENSO indices. 

 
 ONI Nino 

3.4 

Nino 1.2 Nino 4 TNI MEI SOI EMI DMI 

2006-2007 E E E E E E E E E 

2009-2010 E E E E E E E E E 

2014-2015 E E E E E _ E E E 

2015-2016 E E E E E E E E E 

2018-2019 E E E E E E E E E 

2007-2008 L L L L L L L L L 

2008-2009 L L L L L L L L L 

2010-2011 L L L L L L L L L 

2011-2012 L L L L L L L L L 

2016-2017 L L _ _ L _ L L L 

2017-2018 L L L L _ L L _ L 

‘E’ stands for El Nino and ‘L’ stands for La Nina 
 

Correlation analysis  

ONI is highly positively correlated (0.92) with MEI (p<0.001), highly positively correlated 

(0.99) with Nino 3.4 (P< 0.001). Both SOI and TNI were negatively correlated with all other Indices 

such as DMI, EMI, MEI, Nino 3.4, Nino4, and ONI. The SOI was positively correlated (0.46) with 

TNI (p<0.001) (Table 4.1a). In order to avoid the multi-collinearity problem, out of the three highly 

correlated indices, ONI and Nino 3.4 were discarded and MEI was kept for further Model construction.  

  

 Indices 

 Events 
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Table4.2- Correlation coefficient matrix of different ENSO indices. 

 

 

 

 

 

 

 

 

 

4.1.2 Influence of ENSO phenomenon on various Ocean-atmospheric parameters  

GAM modelling was used to study the influence of ENSO phenomenon on different ocean-

atmospheric parameters by considering ocean-atmospheric parameters as the response variable and the 

different ENSO indices as the predictors. GAM models were developed for the ocean-atmospheric 

parameters such as Chlorophyll a (CHL_A), Local Temperature Anomaly (LTA), Sea surface 

Temperature (SST), Sea Surface Height Anomaly (SSHA), Sea Surface Salinity (SALT), Rainfall 

(RF), Ocean Current velocity (OCV), and Ocean Current Direction (OCD). The best fit model was 

selected on the basis of AIC value (model with lowest AIC value) (table 4.3a). Out of the best fit model 

for each response variable, the models with an adjusted R2 value above 0.25 were selected for further 

analysis and are discussed below.  

Chlorophyll a 

The GAM model, where chlorophyll a concentration was taken as response variable and DMI, 

EMI, MEI, TNI and Nino4 were considered as the predictors, returned an adjusted R2 value of 0.45 

and the percentage deviance explained was 52.9% (Table 4.3[a,b]). The parameters such as SOI and 

Nino 1+2 had no significant influence in the model and were removed from the final model. The MEI 

(edf=7.16, p<0.05) and TNI (edf=7.53, p<0.001) had high edf values meaning that the curves were 

complex and wiggly which could be seen from the plots. The curve for the partial effect of MEI suggest 

that chlorophyll concentration had a decreasing trend but they had an increasing trend between -1.5 to 

-1 and 0 to 0.5 values (Figure4.2b). The curve for the partial effect of TNI showed a strong positive 

effect between -1.5 to -0.5 values (Figure 4.2e). The curve for the partial effect of EMI (edf=1.00, 

p<0.001) showed that, it had a negative effect on chlorophyll concentration (Figure 4.2c). The Nino 4 

DMI EMI MEI Nino3.4 Nino4 ONI SOI TNI

DMI

EMI 0.16

MEI  0.23**   0.67****

Nino3.4  0.29***  0.70****  0.91****

Nino4  0.23**   0.82****  0.82****  0.89****

ONI  0.29***  0.69****  0.92****  0.99****  0.87****

SOI -0.20*   -0.67**** -0.79**** -0.76**** -0.73**** -0.76****

TNI -0.06 -0.88**** -0.44**** -0.46**** -0.67**** -0.44****  0.46****

Nino1.2  0.25**  0.14  0.70****  0.73****  0.55****  0.74**** -0.50**** 0.15
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index (edf=2.55, p<0.001) showed a positive relation with chlorophyll value up to a value of 29°C later 

the curve is nearly flat (Figure 4.2d). The curve for the partial effect of DMI (edf=2.03, p<0.1) suggest 

that the DMI had a negative effect on chlorophyll concentration up to 0, had a positive effect from the 

value 0.5 and the curve is almost flat between 0 and 0.5 (Figure 4.2a). 

Local Temperature Anomaly 

The adjusted R2 value of GAM taking LTA as response variable was 0.56 and the percentage 

deviance explained was 62.2%. The GAM model results revealed that DMI, EMI, MEI, SOI, TNI, and 

Nino 4 had strong influence on LTA. The Nino 1+2 had no effect on the LTA and was removed from 

the final model (Table 4.4[a,b]). The curve for the partial effect of TNI (edf=8.34, p<0.001) showed a 

strong influence on LTA. There was a strong decrease in LTA between -2.5 and -1.5, continuing its 

decreasing trend and the curve between -1.5 to 0 is almost flat (Figure 4.3f). The curve for the partial 

effects of EMI (edf=5.66, p< 0.001), MEI (edf=1.00, p<0.01) and SOI (edf=1.00, p<0.1) had shown a 

negative effect on LTA (Figure 4.3[b,c,e]). The curve for the partial effect of Nino 4 index (edf=1.00, 

p<0.001) suggest that it had a positive relation with LTA (Figure 4.3d). The curve for the partial effect 

of DMI (edf=2.073, p<1) was flat  in the range of 0 to 0.5, and it had a decreasing trend up to zero and 

increasing trend after a value of 0.5 (Figure 4.3a). 

Sea Surface Temperature 

The GAM model where monthly mean SST was taken as response variable and the DMI, EMI, 

MEI, SOI, Nino 1+2 index and TNI were considered as predictors returned an adjusted R2 value of 

0.303 and the model explained 36.9% of deviance (Table 4.5[a,b]). The Nino4 index had no significant 

influence in the model and were discarded from the final model. Model result indicated that TNI 

(edf=7.3, p<0.001) had strong influence on SST and gives a complex curve, which demonstrated the 

complicated relationship of changes in SST to TNI (Figure 4.4e). The curve for the partial effect of 

EMI (edf=1.39, p<0.001), MEI (edf=1.00, p<0.05) and SOI (edf= 1.00, p<0.05) revealed that they had 

a positive effect on SST (Figure4.4 [b,a,c]), EMI had greater influence than MEI and SOI. The curve 

for the partial effect of DMI is flat from 0 to 0.5 value and showed an increasing trend before zero and 

decreasing trend after a value of 0.5 (Figure 4.4a). The curve for the partial effect of Nino 1+2 

(edf=1.00, p<1) had revealed a negative effect on SST (figure 4.4f). 
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Sea Surface Height Anomaly 

The percentage deviance explained by the GAM taking monthly mean SSHA as response 

variable was 55.9% and returned an adjusted R2 value of 0.52. The model result indicated that 

parameters such as DMI, EMI, MEI, SOI, Nino4, Nino1+2 and TNI had strong influence on SSHA 

(Table 4.6[a,b]). The curve for the partial effect of DMI (edf=1, p<0.01) and Nino 4 index (edf=2.39, 

p<0.001) revealed that they had a negative effect on SSHA. The SSHA had a very strong decreasing 

trend up to a value of 29°C with Nino4 (Figure 4.5[a,f]). The curve for the partial effect of EMI 

(edf=1.00, p<0.001), MEI (edf=1, p<0.05), SOI (edf=0.1, p<0.1) and Nino1+2 index (edf=1.00, p< 

0.001) showed that they had a positive effect on SSHA (Figure 4.5[b,c,d,g]). The edf value for the TNI 

curve was 5.43 (p<0.01), meaning that the curve is complex and it is evident from the plots. The TNI 

showed a negative effect between -1 to -0.5 and again showed a decreasing trend after the value 1.5 

(Figure 4.5e). 

Sea Surface Salinity 

The GAM model where the monthly mean salinity of Kerala coast was taken as the response 

variable and DMI, EMI, MEI, Nino4 and Nino1+2 were considered as predictors returned an adjusted 

R2 value of  0.27 and the percentage deviance explained was 34% (Table 4.7[a,b]).  The parameters 

such as SOI, and TNI had no remarkable influence on salinity and was discarded from the final model. 

The curve for the partial effect of Nino 1+2 (edf=6.44, p<0.1) had high edf value suggesting  that the 

curve was complex and the relation between salinity and Nino 1+2 was wiggly, which could be seen 

from the plots. The curve showed a decreasing trend up to a value of -1, further increase in the value 

had strong positive effect on salinity except that Nino1+2 had a slight negative effect between 0.5 -1.0 

value (Figure 4.6e). The curve for the partial effect of EMI (edf=1.00, p<0.05) had a positive effect on 

salinity (Figure 4.6b). The curve for the partial effect of DMI (edf=1, p<0.001) and Nino 4 (edf=3.02, 

p<0.001) had a negative effect on salinity, the curve for the partial effect of Nino 4 showed a strong 

decreasing trend above the value 28.5 (Figure 4.6[a, d]). The curve for the partial effect of MEI 

(edf=2.94, p<1) had a positive effect on salinity up to -0.5 and further increase in the value led to the 

flattening of curve (Figure 4.6c). 

Rainfall 

The GAM model were monthly mean Rainfall along the Kerala coast was taken as response 

variable and EMI, MEI, SOI, TNI, and Nino 4 were taken as predictors, returned an adjusted R2 value 
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of 0.53 and the percentage deviance explained was 59.9% (Table 4.8 [a,b]). The model result revealed 

that EMI, MEI, TNI, SOI and Nino4 had great influence on monthly rainfall. Other parameters such 

as DMI, and Nino 1+2 were insignificant and removed from the final model. The edf was high for TNI 

(edf=7.39, p<0.001) and the curve was complex. The rainfall shows a decreasing trend up to the TNI 

value -1.5, further increase in TNI value shows slight increasing trend (Figure 4.7d). The curve for the 

partial effect of MEI also had a complex nature (edf=6.68, p<0.001). The curve indicate that MEI had 

a negative effect on rainfall. Between -1.5 to-1 and 0 to 0.5 there is an increasing trend of rainfall with 

MEI (Figure4.7b). The curve for the partial effect of EMI (edf=4.29, p<0.001) suggest that there was 

a positive effect between -0.5 to 0 (Figure 4.7a). The curve for the partial effect of Nino 4.1index 

(edf=1.0, p<0.001) showed a positive relation with Rainfall (Figure 4.7e). The curve for the partial 

effect of SOI was flat up to the value 1, a further increase in the value showed a negative effect on 

rainfall (Figure 4.7c). 

Table 4.3a: Details of AIC, Adjusted R-square, and Deviance explained for the Chlorophyll a models 

(obtained by stepwise fitting procedure). 

Model  AIC R-sq. (adj) Deviance 
explained (%) 

CHL_A ~ s(DMI) + s(EMI) + s(MEI) + s(SOI)+ 
s(TNI) + s(Nino4)+ s(Nino1.2) 

545.0579 0.441 52.8 

CHL_A ~ s(DMI) + s(EMI) + s(MEI) + s(SOI)+ 
s(TNI) + s(Nino4) 

543.1221 0.446 52.8 

*CHL_A ~ s(DMI) + s(EMI) + s(MEI) + s(TNI) + 
s(Nino4) 

541.2957 0.45 52.9 

CHL_A ~ s(EMI) + s(MEI) + s(TNI) + s(Nino4) 543.6029 0.435 50.8 

CHL_A ~ s(EMI) + s(TNI) + s(Nino4) 553.3587 0.364 41 

CHL_A ~ s(EMI) + s(TNI)  562.4729 0.315 36.1 

CHL_A ~ s(TNI) 586.0329 0.184 22.2 

* Best fit model based on lowest AIC value  
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Table4.3b: Details of deviance explained & adjusted R-square value for Chlorophyll a model and the 
effective degrees of freedom & significance of the explanatory variables of the model   

CHL_A ~  s(DMI) + s(EMI) + s(MEI) + s(TNI) + s(Nino4) 
R-sq.(adj) =   0.45   Deviance explained = 52.9% 

 edf  Ref.df      F   Deviance explained (%) p-value     
s(DMI)    2.031   2.576   1.602  6.08 0.181936     
s(EMI)    1.285   1.515  16.039  6.16 0.000170 *** 
s(MEI)    7.158   8.188   2.085  14.8 0.035005 *   
s(TNI)    7.526   8.428   5.229  22.2 1.82e-05 *** 
s(Nino4)  2.384   3.072   5.827  6.06 0.000892 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 4.2: GAM model for CHL_A showing effects of explanatory variables ; DMI (A), MEI (B), 
EMI (C), Nino4 (D), and TNI (E)  

Table 4.4: Details of deviance explained & adjusted R-square value for LTA model and the effective 
degrees of freedom & significance of the explanatory variables of the model   

LTA ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) + s(TNI) + s(Nino4) 
R-sq.(adj) =  0.57;   Deviance explained = 62.2% 

 edf   Ref.df      F Deviance 
explained (%) 

p-value 

s(DMI) 2.073  2.633 1.710 6.88 0.15522 
s(EMI) 5.661 6.81 11.317 9.48 1.97e-11 *** 
s(MEI) 1.000 1.000 9.716 13.6 0.00226** 
s(SOI) 1.000   1.000   2.365   2.93 0.12661 
s(TNI)    8.341 8.872 8.964 20.5 5.73e-11 *** 
s(Nino4)  1.000 1.000 39.663 8.79 3.72e-09 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 4.3: GAM model for LTA showing effects of explanatory variables  ; DMI (A), EMI (B), MEI 
(C), Nino4 (D), SOI (E) and TNI (F)  

Table4.5: Details of deviance explained & adjusted R-square value for SST model and the effective 
degrees of freedom & significance of the explanatory variables of the model   

SST ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) + s(TNI) + s(Nino1.2) 
R-sq.(adj) =  0.30;   Deviance explained = 36.9% 

 edf   Ref.df      F Deviance explained (%) p-value 
s(DMI) 1.841   2.335   1.042    1.8 0.3210 
s(EMI) 1.389   1.697 17.204 8.53 2.99e-05 *** 
s(MEI) 1.000   1.000   4.200    17.3 0.0424 * 
s(SOI) 1.000   1.000   6.043    0.84 0.0153 * 
s(TNI)    7.305   8.288   5.382 11.8 4.18e-06 *** 
s(Nino1.2)  1.000   1.000   2.687    1.65 0.1036 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Figure 4.4: GAM model for SST showing effects of explanatory variables; DMI (A), EMI (B), MEI 
(C), SOI (D), TNI (E) and Nino1+2 (F) 
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Table4.6: Details of deviance explained & adjusted R-square value for SSHA model and the effective 
degrees of freedom & significance of the explanatory variables of the model   

SSHA ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) + s(TNI) + s(Nino4) + s(Nino1.2) 
R-sq.(adj) =  0.54;   Deviance explained = 57.6% 

 edf Ref.df      F  Deviance explained (%) p-value 
s(DMI)     1.000  1.000 10.441 4.77  0.00155 **  
s(EMI)    1.000   1.000 53.545 13.2  1.27e-11 *** 
s(MEI)    1.000  1.000 6.075 14.9  0.01498 *   
s(SOI)   1.000  1.000 3.757 8.62  0.05471 .   
s(TNI)   5.432  6.548 2.885 15.5  0.00968 **  
s(Nino4)   2.390  3.058 19.587 13.6  6.65e-11 *** 
s(Nino1.2)   1.000  1.000 5.564 8.11  0.01979 * 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 4.5: GAM model for SSHA showing effects of explanatory variables; DMI (A), EMI (B), 
MEI (C), SOI (D), TNI (E), Nino4 (F) and Nino1+2 (G)  

Table4.7: Details of deviance explained & adjusted R-square value for SALT model and the effective 
degrees of freedom & significance of the explanatory variables of the model   

SALT ~ s(DMI) + s(EMI) + s(MEI) + s(Nino4) + s(Nino1.2) 
R-sq.(adj) =  0.27   Deviance explained =   34% 

 edf  Ref.df      F Deviance explained 
(%) 

 p-value     

s(DMI)   1.000  1.000 11.405 7.21 0.000961 *** 
s(EMI)  1.000  1.000  5.101  0.675 0.025561 *   
s(MEI)     2.942  3.712  1.987  15.7 0.147479     
s(Nino4)    2.399 3.054 6.789  5.64 0.000248 *** 
s(Nino1.2)   6.445   7.612   1.877  8.86 0.072775  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Figure 4.6: GAM model for SALT showing effects of explanatory variables ; DMI (A), EMI (B), 
MEI (C), Nino4 (D) and Nino1+2 (E)   
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Table4.8: Details of deviance explained & adjusted R-square value for Rain fall model and the 
effective degrees of freedom & significance of the explanatory variables of the model   

RF ~ s(EMI) + s(MEI) + s(SOI) + s(TNI) + s(Nino4) 
R-sq.(adj) =  0.53   Deviance explained = 59.9% 

         edf  Ref.df      F   Deviance explained (%) p-value     
s(EMI)   4.285  5.368  7.764 10.3 1.16e-06 *** 
s(MEI)   6.670  7.782   5.049 0.73 1.99e-05 *** 
s(SOI)   1.812  2.324   1.214 6    0.317     
s(TNI)   7.391  8.332  4.698 15.7 4.30e-05 *** 
s(Nino4)  1.000   1.000  46.456  8.52 2.51e-10 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: GAM model for RF showing effect of ; EMI (A), MEI (B), SOI (C), TNI (D) and Nino4 
(E)  
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4.2 Impact of El Nino and La Nina on major pelagic and demersal resources of Kerala 

4.2.1 Variations in Oil sardine Fishery 

 The total (Figure 4.8) and gear-wise (Figure 4.14) catch per unit effort (CPUE) data of Oil 

sardine during 2007-2018 along the Kerala coast and the warm and cold events of El Nino Southern 

Oscillation inferred  from Oceanic Nino Index (ONI) are illustrated here. Total CPUE of Oil sardine 

were shown a decrease during October, November and December months of 2009, 2015, and 2018 but 

weak El Nino in the year 2014 had not affected the oil sardine abundance, but the CPUE of oil sardine 

had a severe decline during 2015-2016. The years 2007-2008, 2008-2009, 2010-2011, 2011-2012, 

2016-2017, 2017-2018 were La Nina periods and the CPUE was increased during these periods. MRS 

(Mechanized Ring Seines), OBRS (Outboard Ring Seines), OBGN (Outboard Gill Nets), and other 

non-mechanized (NM) fishing gears are important for oil sardine landings. In very strong El Nino years 

(2015-2016) CPUE of MRS, OBRS, OBGN, NM, and all other gears such as MDTN (Multiday Trawl 

Net), MPS (Mechanized Purse Seines), MTN (Mechanized Trawl Net), and OBBS (Outboard Boat 

Seine) were decreased. CPUE of MRS, OBRS, and NM were increased in the years 2011, 2012, and 

2013. A strong and moderate La Nina years were reported during 2010-2013. There was a strong La 

Nina event just after the occurrence of 2006-2007 El Nino, the reduced CPUE of MRS, NM, OBGN, 

and OBRS had reported an increase during the years 2007-2008. During 2009-2010 El Nino years, the 

CPUE of MRS, OBGN, and NM had declined during the peak El Nino period, CPUE returned to 

normal during the following La Nina period. CPUE also increased in the 2017-2018 weak La Nina 

year, but there was no such increase in the 2016-2017 La Nina period. The MRS CPUE increased 

during the post-La Nina period. CPUE of MRS, OBRS, and OBGN didn’t show any decrease during 

the weak El Nino of 2014-2015, but there was a slight decrease for the NM. 

4.2.2 Variations in Indian Mackerel Fishery 

The total (Figure 4.9)and gear-wise (Figure 4.15) catch per unit effort (CPUE) data of Indian 

Mackerel during 2007-2018 and the El Nino and La Nina events of El Nino Southern Oscillation 

inferred from Oceanic Nino Index (ONI) are discussed here. Total CPUE of Indian mackerel didn’t 

show severe decrease during El Nino periods, but there was as strong increase in the September 2015 

and 2016. The CPUE were increased during August 2007 and 2010 and June 2011 which was prior to 

Strong La Nina.   MRS, OBGN, and OBRS are important for Indian mackerel landings. MRS CPUE 

was very high during June 2011, September 2015, August 2018 and September 2018. These all peaks 
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were prior to La Nina episodes except for the 2015 September, where it was before a very strong El 

Nino episode. CPUE of MDTN, MTN, and OBGN were also shown a hike during 2015 September 

(Figure 4.15[A, D, H]). OBBS, OBHL, and MOTHS (mechanized other gears) CPUE showed a 

decrease during the peak of 2015-2016 El Nino. CPUE of all the gears showed an increase during La 

Nina years. 

4.2.3 Variations in Anchovy Fishery 

The total (Figure 4.10)and gear-wise (Figure 4.16) catch per unit effort (CPUE) data of 

anchovy during 2007-2018 and the El Nino and La Nina events of El Nino Southern Oscillation 

inferred from Oceanic Nino Index (ONI) are illustrated here. Total CPUE of anchovy had increased 

before all La Nina peaks. Total CPUE were decreased during 2009-2010 moderate El Nino period, but 

very strong El Nino in 2015-2016, weak El Nino episodes in 2014-2015 and 2017-2018 didn’t show 

any decrease in CPUE. OBRS, MRS, MDTN, OBBS, MTN and NM are important gears for anchovy 

landings in Kerala. In pre and post La Nina months OBRS CPUE was peaked, but the CPUE decreased 

during 2009-2010 and 2014-2015 El Nino years. It was seen that OBRS CPUE was not much affected 

by the very strong El Nino during 2015-2016 (Figure 4.16G). OBGN CPUE showed an increase for 

all La Nina Events, except for the 2010-2011 strong La Nina peak time and 2011-2012 moderate La 

Nina peak. CPUE of OBGN also showed an increase in the peak month of 2009-2010 and 2015-2019 

El Nino episodes (Figue 4.16H). NM CPUE increased during 2015-16 El Nino period and prior to all 

La Nina events. During the La Nina peak there was no hike in CPUE. CPUE of non-mechanized gears 

showed decline during 2014-15 and 2018-19 El Nino years (Figure 4.16E). MDTN CPUE had a hike 

during the post El Nino period in the year 2015-2016, there was an increase during the peak period of 

moderate El Nino episode in 2009-2010 and 2018-2019 El Nino (Figure 4.16A). 

4.2.4 Variations in Penaeid Prawn Fishery 

The total (Figure 4.11) and gear-wise (Figure 4.17) catch per unit effort (CPUE) data of 

Penaeid prawn during 2007-2018 along the Kerala coast and the warm and cold events of El Nino 

Southern Oscillation are discussed here. CPUE of Penaeid prawns peaked during June, it was above 

normal during La Nina episodes in 2008, 2010, & 2017 and also during El Nino episodes in 2018 & 

2015. The La Nina events in 2016-2017 and 2017-2018 showed an increased CPUE of total PP 

landings. Total CPUE was decreased during the moderate (2009-2010) and very strong El Nino 

episodes (2015-2016, except for July and August). Trawl nets are important for Penaeid prawn 
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landings. The highest peak in MDTN CPUE was recorded in August 2015 (before 2015-16 El Nino), 

MDTN CPUE was also above normal in December 2015, but MDTN CPUE was lower than the normal 

CPUE during three months after December 2015. MDTN CPUE showed a decrease in 2009-2010 

moderate El Nino year, the years 2014-2015 and 2018 didn’t show much decline in MDTN CPUE. 

The MDTN CPUE showed an increase during the post-La Nina period except for the 2007-2008 strong 

La Nina (Figure 4.17A). MTN CPUE was increased in August months and during all post-La Nina 

periods and was decreased during all El Nino periods (Figure 4.17B). OBTN CPUE hiked during June 

months of La Nina years and OBTN CPUE was below normal during the 2009-2010 and 2015-2016 

El Nino years (Figure 4.17G). OBRS CPUE was high for June-July months and 2016-2017, 2017-2018 

weak La Nina periods (Figure 4.17 F). 

4.2.5 Variations in Threadfin breams catch per unit effort 

The total (Figure 4.12) and gear-wise (Figure 4.18) catch per unit effort (CPUE) data of 

threadfin breams during 2007-2018 along the Kerala coast and the warm and cold events of El Nino 

Southern Oscillation are illustrated here. Trawl nets are important for Threadfin bream landings. The 

total CPUE were higher in August months, it was above normal for 2011, 2018, (after strong and weak 

La Nina episode) and 2015(very strong El Nino). Total CPUE was increased during 2017-2018 La 

Nina period, 2016-2017, 2010-2011, and 2011-2012 post La Nina periods. Total CPUE was decreased 

during 2009-2010 moderate El Nino episode. The CPUE was very less for the years 2007 and 2008 

even though it was a strong La Nina episode. The CPUE of MTN, OBGN, OBHL were increased 

during August 2015, CPUE of NM and MOTHS were decreased during 2015. NM CPUE increased 

before La Nina episodes in 2010, 2011, 2016 and 2017 and CPUE of MOTHS increased during post 

La Nina periods of 2008, 2009, 2011, 2012 and 2017. 

4.2.6 Variations in catch per unit effort of total fish landings 

 The catch per unit effort of total fish landings (Figure 4.13) and gear wise CPUE 

(Figure 4.19) of total fish landings by different gears along the Kerala coast during 2007-2018 is 

illustrated along with the El Nino and La Nina events in the figures. The total CPUE was decreased 

during very strong El Nino episode in 2015-2016 and moderate El Nino event in 2009-2010. The total 

CPUE was increased in 2016, 2017, and 2018 and CPUE was higher for post La Nina events in 2008, 

and 2011. The CPUE of MDTN had a decline during the years of very strong, moderate and weak El 

Nino years, but increased during the post-La Nina periods in the years 2007-2008, 2010-2011, and 
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2011-2012. The MDTN CPUE was higher for 2016-2018 when we experienced two consecutive weak 

La Nina events (Figure 4.19A). The CPUE during 2008-2009 and 2016-2018 was high for all the gears. 

CPUE of MOTHS, MGN, MHL, OBHL, and OBOTHS didn’t show any decrease during the peak 

month of 2015-16 El Nino, but CPUE of MPS, MRS, MTN, NM, OBBS, OBGN, OBRS, and OBTN 

was low. During moderate El Nino in the 2009-10 CPUE of MRS, MTN, NM, OBBS, OBGN, and 

OBRS had the same changes as in the year 2015-2016. CPUE OF MHL increased in December 2009, 

but CPUE was less during November and January. MGN CPUE decreased during December 2009. 

CPUE of OBBS, NM, MPS, and MGN decreased during 2014-2015 El Nino, CPUE of other gears not 

much affected by 2014-2015 El Nino. CPUE of MRS, MPS, OBRS, and NM was increased during 

2007-2008 (strong), 2010-2011 (strong) and 2011-12 (moderate) La Nina years. MTN CPUE had hiked 

before La Nina peak month, CPUE of other gears such as OBGN, OBTN, MGN, MHL, MOTHS, was 

also hiked during post-La Nina periods. 
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Figure 4.8: Monthly Oil sardine fishery from 2007 to 2018; T_OS_CPUE: Monthly Oil sardine 
CPUE, N_T_OS_CPUE: Month wise 12 year average Oil sardine CPUE 

Figure 4.10: Monthly Anchovy fishery from 2007 to 2018; T_A_CPUE: Monthly Anchovy 
CPUE, N_T_A_CPUE: Month wise 12 year average Anchovy CPUE 

Figure 4.12: Monthly Threadfin breams fishery from 2007 to 2018; T_TB_CPUE: Monthly 
Threadfin breams CPUE, N_T_TB_CPUE: Month wise 12 year average Threadfin breams CPUE 

Figure 4.9: Monthly Indian mackerel fishery from 2007 to 2018; T_IM_CPUE: Monthly Indian 
mackerel CPUE, N_T_IM_CPUE: Month wise 12 year average IM CPUE 

Figure 4.11: Monthly Penaeid prawn fishery from 2007 to 2018; T_PP_CPUE: Monthly Penaeid 
prawn CPUE, N_T_PP_CPUE: Month wise 12 year average Penaeid prawn CPUE  

Figure 4.13: Monthly total fishery of Kerala from 2007 to 2018; T_ CPUE: Monthly total CPUE, 
N_T _CPUE: Month wise 12 year average total CPUE 
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Figure 4.14: Monthly CPUE (Catch per unit effort) of Oil sardine for different crafts and gears from 2007-2018; A) MDTN, B) MPS, C) 
MRS, D) MTN, E) NM, F) OBBS, G) OBRS, H) OBGN  



51 

 

 

Figure 4.15: Monthly CPUE (Catch per unit effort) of Indian mackerel for different crafts and gears from 2007-2018; A) MDTN B) 
MOTHS, C) MPS, D) MTN, E) MRS, F) NM, G) OBBS, H) OBGN, I) OBHL, J)OBRS 
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Figure 4.16: Monthly CPUE (Catch per unit effort) of Anchovy for different crafts and gears from 2007-2018; A) MDTN, B) MOTHS, 
C) MTN, D)MRS, E) OBRS, F) OBGN, G) NM, H) OBBS, I) OBTN 
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Figure 4.17: Monthly CPUE (Catch per unit effort) of Penaeid prawn for different crafts and gears from 2007-2018; A) MDTN, B) 
MOTHS, C) MRS, D) MTN, E) NM, F) OBBS, G) OBGN, H) OBRS I)OBTN 
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Figure 4.18: Monthly CPUE (Catch per unit effort) of Threadfin breams for different crafts and gears from 2007-2018; A) MDTN, B) 
MTN, C) NM, D) OBBS, E) OBGN, F) OBHL, G) MOTHS 
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Figure 4.19: Monthly CPUE (Catch per unit effort) of Total fish resources for different crafts and gears from 2007-2018; A) MDTN B) 
MGN C) MHL, D) MOTHS, E) MPS, F) MRS, G)MTN, H)NM, I)OBBS, J) OBGN, K) OBHL, L) OBOTHS, M) OBRS, N) OBTN 
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4.2.7 Impacts of ENSO events on Oil Sardine 

The GAM model, where CPUE of oil sardine was taken as response variable and DMI, EMI, 

MEI, SOI, TNI and Nino4 were considered as the predictors, returned an adjusted R2 value of 0.25 and 

the percentage deviance explained was 31.4% (Table 4.9). The Nino 1+2 had no significant influence 

in the model and was removed from the final model. The curve for the partial effect of DMI (edf=1, 

p<0.001) had a positive effect (Figure 4.20E) and EMI (edf=1, p<0.05), TNI (edf-2.06, p< 0.01) and 

Nino4 (edf=1, p<0.05) had a decreasing effect (Figure 4.26[F, C, D]). The curve for the partial effect 

of MEI (edf=5.66, p<0.1) showed an increasing trend up to -2 and between -1 to 0, but showed a strong 

decreasing trend between 0 to 2 (Figure 4.20A). The curve for the partial effect of SOI (edf=2.57, 

p<0.05) suggest that the SOI had a negative effect on OS CPUE between -2 to 2 and a small positive 

effect above the value 2(Figure 4.20B). 

The deviance explained and adjusted R2 value for oil sardine CPUE model of different gears 

are given in the table 4.10. The gears contribute to total oil sardine landing of Kerala in the order of 

MRS> OBRS> OBGN> NM> MDTN> MTN> OBBS> MPS. The GAM model, where MDTN CPUE 

of Oil sardine landings was taken as response variable and, DMI, MEI, TNI, and Nino4 were 

considered as the predictors, returned an adjusted R2 value of 0.09 and the percentage deviance 

explained was 14.9%. The Adjusted R2 value of the GAM taking MPS CPUE of oil sardine landings 

as response variable was 0.11 and the percentage deviance explained was 17.2%. The GAM results 

revealed that DMI, MEI, TNI, and Nino 1+2 strongly influence the CPUE of MPS. The parameters 

such as EMI and SOI had no significant influence and were removed from the final model. The GAM 

model where MRS CPUE of oil sardine landings was taken as response variable and DMI, EMI, TNI, 

and Nino4 were considered as explanatory variables, returned an adjusted R2 value of 0.24 and the 

percentage deviance explained was 31.3%. The GAM model where NM CPUE of oil sardine landings 

was taken as response variable and DMI, EMI, MEI, SOI, TNI and Nino 4 were taken as the predictors, 

returned an adjusted R2 value of 0.26 and the percentage deviance explained was 38.9%.The adjusted 

R2 value of the GAM model taking OBBS CPUE of oil sardine landings as response variable was 0.38 

and the percentage deviance explained was 44.4%. The GAM results revealed that DMI, SOI, TNI, 

Nino 4, and Nino 1+2 had strong influence on the OBBS CPUE. The GAM model, where OBGN 

CPUE of oil sardine landings was taken as response variable and DMI, EMI, MEI and Nino1+2 were 

considered as the predictors, returned an adjusted R2 value of 0.26 and the percentage deviance 

explained was 30%. The GAM model where OBRS CPUE of oil sardine landings was taken as 

response variable and DMI, MEI, TNI and Nino 4 were taken as predictors, returned an R2 value of 
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0.48 and the percentage deviance explained was 55.9%. The GAM model were MTN CPUE of oil 

sardine was taken as response variable and DMI were taken as explanatory variable returned an 

adjusted R2 value of 0.01, percentage deviance explained was 2.05%. 

Table4.9: Details of deviance explained & adjusted R-square value for OS CPUE model and the 

effective degrees of freedom & significance of the explanatory variables of the model   

T_OS_CPUE ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) + s(TNI) + s(Nino4) 
R-sq.(adj) =  0.25   Deviance explained = 31.4% 

            edf  Ref.df       F   Deviance 
explained (%) 

p-value     

s(DMI)    1.000   1.000  13.413  2.49 0.000359 *** 
s(EMI)    1.000   1.000   4.012  3.33 0.047228 *   
s(MEI)    5.563   6.709   1.851  12.4 0.083337 .   
s(SOI)    2.572   3.322   1.284  6.84 0.335045     
s(TNI)    2.053   2.611   4.594  1.47 0.006430 **  
s(Nino4)  1.000   1.000   6.548  9.49 0.011625 *   
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Figure 4.20: GAM model for OS CPUE showing effects of explanatory variables; MEI (A), SOI (B), 
TNI (C), Nino4 (D), DMI (E), and EMI (F)  

Table 4.10: AIC, Adjusted R-square, and Deviance explained for the gear wise models of oil sardine 

Model  AIC R-sq. (adj) Deviance 
explained (%) 

OS_MDTN ~ s(DMI) + s(MEI) + s(TNI) + 
s(Nino4) 

1410.681 0.09 14.9 

OS_MPS ~ s(DMI) + s(MEI) + s(TNI) + 
s(Nino1.2) 

2432.896 0.11 17.2 

OS_MRS ~ s(DMI) + s(EMI) + s(TNI) + 
s(Nino4) 

2372.474 0.24 31 

OS_NM ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) 
+ s(TNI) + s(Nino4) 

969.5457 0.26 38.9 

OS_OBBS ~ s(DMI) + s(SOI) + s(TNI) + 
s(Nino4) + s(Nino1.2) 

1765.597 0.38 44.4 

OS_OBGN ~ s(DMI) + s(EMI) + s(MEI) + 
s(Nino1.2) 

1176.271 0.26 30 

OS_OBRS ~ s(DMI) + s(MEI) + s(TNI) + 
s(Nino4) 

2097.203 0.48 55.9 

OS_MTN ~ s(DMI) 1465.619 0.01 2.05 
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4.2.8 Impacts of ENSO events on Indian Mackerel 

The adjusted R2 value of GAM taking CPUE of Indian mackerel as response variable was 0.25 

and the percentage deviance explained was 31.7%. The GAM model results revealed that DMI, EMI, 

MEI, SOI, Nino 4 and Nino 1+2 had strong influence on CPUE of Indian mackerel. The TNI had no 

effect on the CPUE of Indian mackerel and was removed from the final model (Table 4.11). The curve 

for the partial effect of DMI (edf=1, p<0.05) and Nino4 (edf=1, p<0.001) showed a positive effect and 

the curve for the partial effect of EMI (edf=1, p<0.001), SOI (edf=1, p<1), and Nino1+2 (edf=1, 

p<0.01) showed a negative effect on Indian mackerel CPUE (Figure 4.21[A, E, B, D, F]). The edf was 

high for MEI (edf=7.73, p<0.01) and the curve was complex. The curve for the partial effect of MEI 

showed a decreasing trend from 0.5 to 1.5 and a further increase in the value suggest a very strong 

increasing trend (Figure4.21C). 

The deviance explained and adjusted R2 value for Indian mackerel CPUE model of different 

gears are given in the table 4.12. The GAM model, where MDTN CPUE of Indian mackerel was taken 

as response variable and, DMI, MEI, TNI and Nino4 were considered as the predictors, returned an 

adjusted R2 value of 0.19 and the percentage deviance explained was 25.3%. The adjusted R2 value of 

the GAM taking MOTHS CPUE of Indian mackerel as response variable was 0.18 and the percentage 

deviance explained was 25.7%. The GAM results revealed that MEI, Nino 1+2, DMI and EMI strongly 

influence the CPUE of MOTHS. The parameters such as SOI, TNI and Nino4 have no effect on the 

CPUE of MOTHS and were removed from the final model. The GAM model where MPS CPUE of 

Indian mackerel was taken as response variable and DMI, EMI, SOI, Nino 4, and Nino 1+2 were 

considered as predictors returned an adjusted R2 value of 0.18 and the percentage deviance explained 

was 22.9%. The GAM model where the MRS CPUE of Indian mackerel was taken as response variable 

and DMI, EMI, MEI, SOI, Nino4 and Nino 1+2 were considered as explanatory variables returned an 

adjusted R2 value of 0.27 and the percentage deviance explained was 35.4%. TNI had no influence in 

the MRS model and was discarded from the final model. The GAM model where MTN CPUE of Indian 

mackerel was taken as response variable and Nino 1+2 as explanatory variable, returned an adjusted 

R2 value of 0.10 and the deviance explained was 14.7%. Adjusted R2 value of the GAM taking NM 

CPUE of Indian mackerel as response variable was 0.12 and the percentage deviance explained 

was 16.2%. The GAM model where OBBS CPUE of Indian mackerel was taken as response variable 

and DMI, MEI, SOI, and Nino 4 were considered as explanatory variables, returned an adjusted R2 

value of 0.15 and the percentage deviance explained was22.7%. The GAM model where the OBGN 

CPUE of Indian mackerel was taken as response variable and MEI, TNI, and Nino 1+2 were considered 
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as predictors, returned an adjusted R2 value of 0.37 and the percentage deviance explained was 46.3%. 

The parameters such as DMI, EMI, SOI, and Nino 4 had no significant influence in the OBGN model 

and were removed from the final model. The adjusted R2 value of the GAM taking OBHL CPUE as 

response variable was 0.31 and the percentage deviance explained was 41.1%. The GAM results 

revealed that DMI, EMI, MEI, SOI, Nino4 and Nino 1+2 influence the CPUE of OBHL. The TNI had 

no effect on the CPUE of OBHL and was removed from the final model. 

Table4.11: Details of deviance explained & adjusted R-square value for IM CPUE model and the 
effective degrees of freedom & significance of the explanatory variables of the model  

T_IM_CPUE ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) + s(Nino4) + s(Nino1.2) 
R-sq.(adj) =  0.25 Deviance explained = 31.7% 

             edf  Ref.df       F   Deviance 
explained (%) 

p-value     

s(DMI)      1.000   1.000   4.166  7.57 0.043214 *   
s(EMI)      1.000   1.000  12.670  1.97 0.000515 *** 
s(MEI)      7.734   8.591   3.176 0 21.3 .002124 **  
s(SOI)      1.000   1.000   2.482  2.38 0.117535     
s(Nino4)    1.000   1.000  12.651  3.7 0.000519 *** 
s(Nino1.2)  1.000   1.000   9.091  10.8 0.003075 ** 
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Figure 4.21: GAM model for IM CPUE showing effects of explanatory variables; DMI (A), EMI (B), 
MEI (C), SOI (D), Nino4 (E), and Nino 1+2 (F) 

Table 4.12: AIC, Adjusted R-square, and Deviance explained for the gear wise models of Indian 
Mackerel 

Model  AIC R-sq. (adj) Deviance 
explained (%) 

IM_MDTN ~ s(DMI) + s(MEI) + s(TNI) + 
s(Nino4) 

1671.468 0.19 25.3 

IM_MOTHS ~ s(DMI) + s(EMI) + s(MEI) + 
s(Nino1.2) 

1900.899 0.18 25.7 

IM_MPS ~ s(DMI) + s(EMI) + s(SOI) + 
s(Nino4) + s(Nino1.2) 

2469.315 0.18 22.9 

IM_MRS ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) 
+ s(Nino4) + s(Nino1.2) 

2205.241 0.27 35.4 

IM_MTN ~ s(Nino1.2) 940.9903 0.10 14.7 

IM_NM ~ s(Nino4) 528.512 0.12 16.2 

IM_OBBS ~ s(DMI) + s(MEI) + s(SOI) + 
s(Nino4) 

1293.262 0.15 22.7 

IM_OBGN ~ s(MEI) + s(TNI) + s(Nino1.2) 1103.037 0.37 46.3 

IM_OBHL ~ s(DMI) + s(EMI) + s(MEI) + 
s(SOI) + s(Nino4) + s(Nino1.2) 

744.5341 0.31 41.1 
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4.2.9 Impacts of ENSO events on Anchovy 

The GAM model, where CPUE of anchovy was taken as response variable and DMI, EMI, 

MEI, TNI, Nino1+2 and Nino4 were considered as the predictors, returned an adjusted R2 value of 

0.39 and the percentage deviance explained was 49% (Table 4.13). The SOI had no significant 

influence in the model and were removed from the final model. The MEI (edf=8.31, p<0.001) and 

Nino1+2 (edf=7.44, p<0.1) had high edf values meaning that the curves were complex and wiggly 

which could be seen from the plots. At around a MEI value of -2, the CPUE value was at the highest 

point, MEI had negative effect on anchovy CPUE except for the range between -1.5 to -1 and 1 to 1.5 

(Figure 4.22C). The curve for the partial effect of Nino 1+2 had strong positive effect from the value 

1.5, for other value ranges, it showed weak positive and negative effects (Figure 4.22F). The curve for 

the partial effects of Nino4 (edf=1, p<0.001) had positive effect and TNI (edf=1.81, p<1) and EMI 

(edf=1.46, p<0.05) had negative effect on CPUE of anchovy (Figure 4.22 [E, D, B]). The curve for the 

partial effect of DMI (edf=3.85, 1) had decreasing trend up to 0 and a further increase in the value 

showed a very slight increasing trend (figure 4.35A). 

The deviance explained and adjusted R2 value for anchovy CPUE model of different gears are 

given in the table 4.14. The GAM model where MDTN CPUE of anchovy was taken as response 

variable and, DMI, EMI, MEI, SOI, TNI and Nino1+2 were considered as the predictors , returned an 

adjusted R2 value of 0.13 and percentage deviance explained was 17.5%. The GAM model where 

MOTHS CPUE of anchovy was considered as response variable and SOI were considered as predictor 

variable, returned an adjusted R2 value of 0.01, the percentage deviance explained was 1.94%. All other 

parameters such as DMI, EMI, MEI, and TNI, Nino 4 and Nino 1 + 2 had no significant influence in 

the MOTHS model, discarded from the final model. The adjusted R2 value of the GAM taking MRS 

CPUE of anchovy as response variable was 0.53 and the percentage deviance explained was 60.1%. 

The GAM results revealed that MEI, SOI, TNI, Nino4 and Nino 1+2 strongly influence the CPUE of 

MRS. The GAM model where MTN CPUE of anchovy was taken as response variable and DMI and 

Nino1+2 were considered as the predictors, returned an adjusted R2 of 0.02 and the percentage deviance 

explained was 4.01%. The GAM model where NM CPUE of anchovy was taken as response variable 

and MEI, TNI, and Nino4 were considered as the predictors, returned an adjusted R2 of 0.02 and the 

percentage deviance explained was 4.12%. The GAM model where OBBS CPUE of anchovy was 

taken as response variable and EMI, MEI, SOI, TNI, Nino4 and Nino 1+2 were considered as the 

predictors, returned an adjusted R2 of  0.33 and the percentage deviance explained was 41.8%. The 

adjusted R2 value of GAM taking OBGN CPUE of anchovy as response variable returned an adjusted 
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R2 of 0.22 and the percentage deviance explained was 31.4%. The GAM results revealed that MEI, 

SOI, TNI, and Nino 1+2 strongly influence the CPUE of OBGN. The parameters such as DMI, Nino4 

and EMI had no effect on the CPUE of OBGN and were removed from the final model. The GAM 

model where OBRS CPUE of anchovy was taken as response variable and DMI, MEI, TNI, and Nino4 

were considered as the predictors, returned an adjusted R2 of 0.36 and the percentage deviance 

explained was 43.8%. The parameters such as EMI, SOI, and Nino 1+2 had no significant influence in 

the OBRS model and were removed from the final model. The GAM model where OBTN CPUE of 

anchovy was taken as response variable and EMI, MEI, TNI, and Nino4 were considered as the 

predictors, returned an adjusted R2 of 0.38 and the percentage deviance explained was 45.6%. The 

parameters such as DMI, SOI and Nino 1+2 had no significant influence in the model and discarded 

from the final model. 

Table4.13: Details of deviance explained & adjusted R-square value for Anchovy CPUE model and 
the effective degrees of freedom & significance of the explanatory variables of the model 

T_A_CPUE ~ s(DMI) + s(EMI) + s(MEI) + s(TNI) + s(Nino4) + s(Nino1.2) 
R-sq.(adj) =  0.39  Deviance explained = 49.4% 

              edf  Ref.df       F   Deviance 
explained (%) 

p-value     

s(DMI)      3.648   4.570   1.390  6.62 0.268928     
s(EMI)      1.464   1.791   4.406  6.37 0.049131 *   
s(MEI)      8.308   8.842   4.753  17.3 2.36e-05 *** 
s(TNI)      1.812   2.286   0.751  5.4 0.422729     
s(Nino4)    1.000   1.000  13.390  5.61 0.000374 *** 
s(Nino1.2)  7.441   8.369   1.742  4.85 0.075247 .   
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Figure 4.22: GAM model for Anchovy CPUE showing effects of explanatory variables; DMI (A), 
EMI (B), MEI (C), TNI (D), Nino4 (E), and Nino 1+2 (F)
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Table 4.14: AIC, Adjusted R-square, and Deviance explained for the   gear wise models of Anchovy  

 

4.2.10 Impacts of ENSO events on Penaeid prawns 

The GAM model, where CPUE of penaeid prawn was taken as response variable and EMI, 

MEI, TNI, and Nino4 were considered as the predictors, returned an adjusted R2 value of 0.14 and 

the percentage deviance explained was 19% (Table 4.15). The parameters such as DMI, SOI and 

Nino 1+2 had no significant influence in the model and were removed from the final model. The 

curve for the partial effect of EMI (edf=2.4, p<1), MEI (edf=1, p<0.1), TNI (edf=2.34, p<1), and 

Nino4 (edf=3.29, p<0.01) showed the same trend (Figure 4.23 [A, B, C, D]). The CPUE were 

increased at values representing La Nina episodes and decreased at values representing El Nino 

values.  

The deviance explained and adjusted R2 value for penaeid prawn CPUE model of different 

gears are given in the table 4.16. The GAM model where MDTN CPUE of penaeid prawn landings 

was taken as response variable and EMI, TNI, and Nino 4 were considered as the predictors, returned 

an adjusted R2 of 0.08 and the percentage deviance explained was 12.6%. The GAM model where 

Model  AIC R-sq. (adj) Deviance 
explained (%) 

A_MDTN ~ s(DMI) + s(EMI) + s(MEI) + 
s(SOI) + s(TNI) + s(Nino1.2) 

1556.225 0.13 17.5 

A_MOTHS ~ s(SOI) 1487.08 0.01 1.94 

A_MRS ~ s(MEI) + s(SOI) + s(TNI) + s(Nino4) 
+ s(Nino1.2) 

2322.435 0.53 60.1 

A_MTN ~ s(DMI) + s(Nino1.2) 1484.912 0.03 4.01 

A_NM ~ s(MEI) + s(TNI) + s(Nino4)  1183.667 0.02 4.12 

A_OBBS ~ s(EMI) + s(MEI) + s(SOI) + s(TNI) 
+ s(Nino4) + s(Nino1.2) 

1561.875 0.32 41.8 

A_OBGN ~ s(MEI) + s(SOI) + s(TNI) + 
s(Nino1.2) 

525.9746 0.22 31.4 

A_OBRS ~ s(DMI) + s(MEI) + s(TNI) + 
s(Nino4) 

1833.36 0.36 43.8 

A_OBTN ~ s(EMI) + s(MEI) + s(TNI) + 
s(Nino4) 

1056.886 0.38 45.6 
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MOTHS CPUE of Penaeid prawn landings was taken as response variable, Nino 4 and Nino 1+2 were 

considered as predictors, returned an R2 value of 0.12 and the percentage deviance explained was 

17.9%. The adjusted R2 value of the GAM taking MRS CPUE of Penaeid prawn landings as response 

variable was 0.07 and the percentage deviance explained was 8.75%. The GAM model where CPUE 

of MTN penaeid prawn landings were taken as response variable and EMI and Nino 4 were considered 

ad predictors, returned an adjusted R2 value of 0.03 and the percentage deviance explained was 4.37%. 

The parameters such as DMI, MEI, SOI, TNI, and Nino 1+2 had no significant influence in the MTN 

model and were removed from the final model. The GAM model, where NM CPUE of Penaeid prawn 

landings were taken as response variable and DMI, EMI, MEI, and Nino4 were taken as explanatory 

variables, returned an R2 value of 0.22 and the percentage deviance explained was 28.5% .The 

parameters such as SOI, TNI and Nino 1+2 had no significant effect in the NM model, and were 

removed from the final model. The adjusted R2 value of the GAM taking OBRS CPUE of penaeid 

prawn landings as response variable was 0.27 and the percentage deviance explained was 32%. The 

GAM results revealed DMI, EMI, MEI, and Nino4 strongly influence the CPUE of OBRS. The 

parameters such as SOI, TNI and Nino1+2 have no effect on the CPUE of OBRS and were removed 

from the final model. The adjusted R2 value of the GAM taking OBGN CPUE of penaeid prawns as 

response variable was 0.09 and the percentage deviance explained was 13.3%. The GAM results 

revealed that DMI, EMI, TNI, and Nino4 influence the CPUE of OBGN. The GAM model, where 

CPUE of OBTN penaeid prawn landings was taken as response variable and, EMI, MEI, Nino 4 and 

Nino 1+2 were considered as the predictors, returned an adjusted R2 value of 0.18 and the percentage 

deviance explained was 22.6%. 

Table4.15: Details of deviance explained & adjusted R-square value for PP CPUE model and the 
effective degrees of freedom & significance of the explanatory variables of the model  

T_PP_CPUE ~ s(EMI) + s(MEI) + s(TNI) + s(Nino4) 
R-sq.(adj) =  0.14   Deviance explained =   19% 

          edf  Ref.df      F  Deviance 
explained (%) 

p-value    

s(EMI)    2.396   3.050  1.852  0.05 0.13712    
s(MEI)    1.000   1.000  3.756  1.52 0.05467 .  
s(TNI)    2.344   2.982  1.191  1.04 0.33588    
s(Nino4)  3.285   4.145  3.990  7.39 0.00365 ** 
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Figure 4.23: GAM model for PP CPUE showing effects of explanatory variables; EMI (A), MEI (B), TNI (C), and 
Nino4 (D) 

Table 4.16: AIC, Adjusted R-square, and Deviance explained for the gear wise models of penaeid 
prawns 

Model  AIC R-sq. (adj) Deviance 
explained (%) 

PP_MDTN ~ s(EMI) + s(TNI) + s(Nino4) 1746.987 0.08 12.6 
PP_MOTHS ~ s(Nino4) + s(Nino1.2) 1403.339 0.12 17.9 
PP_MRS ~ s(EMI) + s(MEI) + s(Nino4) 1825.945 0.07 8.75 
PP_MTN ~ s(EMI) + s(Nino4) 1704.147 0.03 4.37 
PP_NM ~ s(DMI) + s(EMI) + s(MEI) +s(Nino4) 524.2727 0.22 28.5 
PP_OBRS ~ s(DMI) + s(EMI) + s(MEI) + 
s(Nino4) 

1481.102 0.27 32 

PP_OBGN ~ s(DMI) + s(EMI) + s(TNI) + 
s(Nino4) 

478.4332 0.09 13.1 

PP_OBTN ~ s(EMI) + s(MEI) + s(Nino4) + 
s(Nino1.2) 

1618.63 0.18 22.6 
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4.2.11 Impacts of ENSO events on Threadfin breams 

The adjusted R2 value of GAM taking CPUE of Threadfin breams as response variable was 

0.02 and the percentage deviance explained was 3.82%. The GAM model results revealed that DMI 

and SOI had influence on CPUE. The parameters such as MEI, EMI, and TNI, Nino4 and Nino 1 + 2 

had no effect on the CPUE of Threadfin and were removed from the final model (Table 4.17). The 

curve for the partial effect of DMI (edf=1.64, p<1) showed a positive effect and the curve for the partial 

effect of SOI (edf=1, p<1) showed a negative effect on CPUE of threadfin breams (Figure 4.24 [A,B]).  

The deviance explained and adjusted R2 value for threadfin bream CPUE model of different 

gears are given in the table 4.20. The GAM model, where MTN CPUE of threadfin bream landings 

was taken as response variable and, DMI, EMI, SOI, Nino4, Nino1.2 were considered as the predictors, 

returned an adjusted R2 value of 0.11 and the percentage deviance explained was 17.9%. The adjusted 

R2 value of the GAM taking NM CPUE of threadfin bream as response variable was 0.39 and the 

percentage deviance explained was 50.1%, the parameters such as DMI, EMI, MEI, SOI, TNI, Nino4, 

and Nino1+2 were considered as predictors. The GAM model, where MOTHS CPUE of threadfin 

bream was taken as response variable and, EMI, Nino 4 and Nino 1+2 were considered as the 

predictors, returned an adjusted R2 value of 0.09 and the percentage deviance explained was 12%. The 

GAM model, where OBGN CPUE of Threadfin breams was taken as response variable and, DMI, 

EMI, MEI, TNI, Nino4, and Nino 1+2 was considered as the predictors, returned an adjusted R2 value 

of 0.2 and the percentage deviance explained was 27.1%. The SOI had no significant effect in the 

OBGN CPUE model and was removed from the final model. The GAM model, where OBHL CPUE 

of threadfin bream was taken as response variable and, DMI, EMI, MEI, SOI,TNI, Nino4, and Nino 

1+2 was considered as the predictors, returned an adjusted R2 value of 0.68 and the percentage deviance 

explained was 76.8%. 

Table 4.17: Details of deviance explained & adjusted R-square value for TB CPUE model and the 
effective degrees of freedom & significance of the explanatory variables of the model 

T_TB_CPUE ~ s(DMI) + s(SOI) 
R-sq.(adj) =  0.02  Deviance explained = 3.82% 

         edf  Ref.df     F  Deviance 
explained (%) 

p-value 

s(DMI)  1.642   2.067  1.300    0.06 0.293 
s(SOI)  1.000   1.000  1.314    1.04 0.254 
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Figure 4.24: GAM model for TB CPUE showing effects of explanatory variables; DMI (A) and SOI 
(B) 

Table 4.18: AIC, Adjusted R-square, and Deviance explained for the gear wise models of threadfin 
breams  

Model  AIC R-sq. 
(adj) 

Deviance 
explained (%) 

TB_MTN ~ s(DMI) + s(EMI) + s(SOI) + 
s(Nino4) + s(Nino1.2) 

1314.792 0.11 17.9 

TB_NM ~ s(DMI) + s(EMI) + s(MEI) + 
s(SOI) + s(TNI) + s(Nino4) + s(Nino1.2) 

-340.9728 0.39 50.1 

TB_MOTHS ~ s(EMI) + s(Nino4) + 
s(Nino1.2) 

2125.138 0.09 12 

TB_OBGN ~ s(DMI) + s(EMI) + s(MEI) + 
s(TNI) + s(Nino4) + s(Nino1.2) 

660.7361 0.2 27.1 

TB_OBHL ~ s(DMI) + s(EMI) + s(MEI) + 
s(SOI) + s(TNI) + s(Nino4) + s(Nino1.2) 

516.1748 0.68 76.8 

 

4.2.12 Impact on total landings 

The adjusted R2 value of GAM taking CPUE of total landings as response variable was 0.38 

and the percentage deviance explained was 43.6%. The GAM model results revealed that DMI, EMI, 

MEI, SOI, TNI, Nino 4 and Nino 1+2 had strong influence on CPUE of total landings (Table 4.19). 
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The curve for the partial effect of EMI (edf=1, p<0.01), SOI (edf=1.03, p<1), TNI (edf=1, p<0.01) 

revealed negative effect and Nino4 (edf=1, p<0.01) had a positive effect on total CPUE (Figure 4.25 

[B, D, E, F]). The curve for the partial effect of DMI (edf= 3.17, p<0.001) revealed an increasing trend, 

MEI (edf=3.19, p<0.05) and Nino1+2 (edf=3.26, p<1) had a decreasing trend between -1 to 1 (Figure 

4.25 [A, C, G]).  

The deviance explained and adjusted R2 value for CPUE of total landings model of different 

gears are given in the table 4.21. The GAM model, where MDTN CPUE of total landings was taken 

as response variable and, DMI, EMI, SOI, Nino4 and Nino1+2 were considered as explanatory 

variables, returned an adjusted R2 value of 0.20 and the percentage deviance explained was 26.6%, 

the parameters such as MEI and TNI had no significant influence in the model and were removed 

from the final model. The GAM model, where MOTHS CPUE of total landings were taken as response 

variable and DMI, MEI, TNI, Nino4 and Nino1+2 were considered as explanatory variables, returned 

an adjusted R2 value of 0.23 and the percentage deviation explained was 36.2%. The GAM model, 

where MRS CPUE of total landings were taken as response variable and DMI, MEI, EMI, SOI and 

Niino1+2 were considered as explanatory variables, returned an adjusted R2 value of 0.26 and the 

percentage deviation explained was 32.4%, the parameters such as TNI and Nino4 had no significant 

effect in the model and were removed from the final model. The GAM model, where NM CPUE of 

total landings were taken as response variable and DMI, MEI, TNI, Nino4 and Nino1+2 were 

considered as predictors, returned an adjusted R2 value of 0.28 and the percentage deviation explained 

was 37.5%, the parameters such as EMI and SOI had no significant influence in the model and were 

removed from the final model. The GAM model, where OBBS CPUE of total landings were taken as 

response variable and DMI, EMI, SOI, TNI and Nino1+2 were considered as predictors, returned an 

adjusted R2 value of 0.21 and the percentage deviation explained was 28.2%, the parameters such as 

MEI and Nino 4 had no significant influence in the model and were removed from the final model. 

The adjusted R2 value of the GAM taking OBGN CPUE of total landings as response variable was 

0.42 and the percentage deviance explained was 48.8%. The GAM results revealed that DMI, EMI, 

SOI, TNI, MEI, Nino4 and Nino1+2 strongly influence the CPUE of OBGN. The GAM model, where 

OBHL CPUE of total landings were taken as response variable and DMI, SOI, and Nino4 were 

considered as predictors, returned an adjusted R2 value of 0.20 and the percentage deviation explained 

was 26.5%. The GAM model, where OBRS CPUE of total landings were taken as response variable 

and DMI, MEI, SOI, TNI and Nino4 were considered as predictors, returned an adjusted R2 value of 
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0.314 and the percentage deviation explained was 41%, the parameters such as EMI and Nino 1+2 had 

no influence in the model and were removed from the final model. 

Table4.19: Details of deviance explained & adjusted R-square value for Total CPUE model and the 
effective degrees of freedom & significance of the explanatory variables of the model 

T_CPUE ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) + s(TNI) + s(Nino4) + s(Nino1.2) 
R-sq.(adj) =  0.38  Deviance explained = 43.6% 

              edf  Ref.df       F   Deviance 
explained (%) 

p-value     

s(DMI)      3.166   3.992   5.709  13.2 0.000296 *** 
s(EMI)      1.000   1.000  31.855  9.57 8.88e-08 *** 
s(MEI)      3.189   3.983   1.237  11.6 0.284612     
s(SOI)      1.030   1.057   5.812  3.35 0.017163 *   
s(TNI)      1.000   1.000   4.443  14.7 0.036933 *   
s(Nino4)    1.000   1.000  16.914  9.4 6.78e-05 *** 
s(Nino1.2)  3.262   4.075   2.380  5.2e-05 0.053943 .   
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Figure 4.25: GAM model for Total CPUE showing effects of explanatory variables; DMI (A), EMI 
(B), MEI (C), SOI (D), TNI (E), Nino4 (F), and Nino 1+2 (G)  
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Table 4.20: AIC, Adjusted R-square, and Deviance explained for the   gear wise models of total fish 
resources 

Model  AIC R-sq. (adj) Deviance 
explained (%) 

T_MDTN ~ s(DMI) + s(EMI) + s(SOI) + 
s(Nino4) + s(Nino1.2) 

2408.977 0.20 26.6 

T_MOTHS ~ s(DMI) + s(MEI) + s(TNI) + 
s(Nino4) + s(Nino1.2) 

2545.705 0.23 36.2 

T_MRS ~ s(DMI) + s(EMI) + s(MEI) + 
s(SOI) + s(Nino1.2) 

2329.03 0.26 32.4 

T_NM ~ s(DMI) + s(MEI) + s(TNI) + 
s(Nino4) + s(Nino1.2) 

1036.299 0.28 37.5 

T_OBBS ~ s(DMI) + s(EMI) + s(SOI) + 
s(TNI) + s(Nino1.2) 

1982.697 0.21 28.2 

T_OBGN ~ s(DMI) + s(EMI) + s(MEI) + 
s(SOI) + s(TNI) + s(Nino4) +  s(Nino1.2) 

1374.036 0.42 48.8 

T_OBHL ~ s(DMI) + s(SOI) + s(Nino4) 1385.566 0.20 26.5 
T_OBRS ~ s(DMI) + s(MEI) + s(SOI) + 
s(TNI) + s(Nino4) 

2067.208 0.31 41 

 

4.2.13 correlation analysis of ocean- atmospheric parameters 

Table4.21- Correlation coefficient matrix of different ocean-atmospheric parameters 

  CHL_A SALT SSHA SST RF OCV OCD 
CHL_A               
SALT -0.28***              
SSHA -0.79****  0.29***            
SST -0.82****  0.37****  0.71****         
RF  0.72**** -0.30***  -0.74**** -0.59****       
OCV  0.26**   -0.11 -0.13 -0.34****  0.25**       
OCD -0.06 0.1 0.1 -0.05  0.22**   0.16   

LTA  0.81**** -0.33**** -0.78**** -0.78**** 
 
0.62**** 

 
0.29***  -0.1 

 

The Chlorophyll (CHLA) was highly positively correlated (0.72) with rainfall (RF) (p<0.001), 

positively correlated (0.26) with ocean current velocity (OCV) (p<0.05), highly positively correlated 

(0.81) with local temperature anomaly (LTA) (p<0.001), highly negatively correlated (-0.82) with sea 

surface temperature (SST) (p<0.001), negatively correlated (-0.79) with sea surface height anomaly 

(SSHA) (p<0.001) and salinity (SALT) (-0.28, p<0.001). The sea surface salinity was positively 
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correlated with SSHA (0.29, p<0.01), SST (0.37, p<0.001), negatively correlated with RF (-0.30, 

p<0.05), OCV (-0.11, p<1) and LTA (-0.33, p<0.001).The SSHA was highly positively correlated with 

SST (0.71, p<0.001), highly negatively correlated with RF (-0.74, p<0.001), and LTA (-0.78, p<0.001). 

The SST was negatively correlated with RF (-0.59, p<0.001), and LTA (-0.78, p<0.001). RF was 

positively correlated with LTA (0.62, p<0.001) and LTA was positively correlated with OCV (0.29, 

p<0.01) 

4.2.14 Combined Effects of Ocean-Atmospheric Parameters and ENSO on Pelagic and 

Demersal Fish Resources 

4.2.14.1 Impact on oil sardine fishery 

The adjusted R2 value of GAM taking CPUE of oil sardine total landing as response variable 

was 0.32 and the percentage deviance explained was 40.1%. The GAM model results revealed that 

DMI, TNI, Nino4, CHLA, SST, and OCV had influence on CPUE of oil sardine. The parameters such 

as EMI, MEI, SOI, Nino1+2, LTA, RF, OCD, SSHA and SALT had no effect on the CPUE of oil 

sardine and were removed from the final model (Table 4.22). The curve for the partial effect of DMI 

(edf=1, p<0.001), and CHLA (edf=1, p<1) showed a positive effect on CPUE of oil sardine (Figure 

4.26 [A, D]). The TNI had high edf value, so the curve is wiggly which could be seen from the figure 

4.26B. The curve for the partial effect of TNI (edf=5.71, p<0.05) showed an increasing trend between 

the value -2 and-1, the curve showed decreasing trend as the value increased. The curve for the partial 

effect of Nino4 (edf=3.47, p<0.001) revealed a negative effect on CPUE (Figure 426C). The curve for 

the partial effect of SST (edf=2.4, p<0.1) showed an increasing trend up to 28°C and further increase 

in the value showed a decreasing trend on CPUE (Figure 4.26E). The curve for the partial effect of 

OCV (edf=1, p<0.01) showed a negative effect on CPUE of total landings of oil sardine (Figure 4.26F). 

4.2.14.2 Impact on Indian mackerel 

The GAM model where CPUE of Indian mackerel total landings was taken as response variable and 

DMI, EMI, MEI, Ninio4, Ninio1.2, CHLA, SST, LTA, RF, and OCD were considered as the 

predictors, returned an adjusted R2 of 0.75 and the percentage deviance explained was 84% (Table 

4.23). The parameter such as TNI, SOI, SSHA, OCV and SALT had no effect on the CPUE of Indian 

mackerel and were removed from the final model. The curve for the partial effect of DMI (edf=7.96), 

p<0.01) exhibited an increasing trend on the CPUE from the value 0.6 (Figure 4.27A). The curve for 

the partial effect of EMI (edf=2.1, p<1) showed an increasing trend up to the value 0, a further increase 

in the value had no effect on CPUE (Figure 4.27B). The curve for the partial effect of MEI (edf=8.81, 
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p<0.001) showed an increasing trend after the value 1 (Figure 4.27C). The curve for the partial effect 

of Nino4 (edf=2.02, p<1) showed a decreasing trend from the value 28.5 (Figure 4.27D). The curve 

for the partial effect of Nino1+2 (edf=1, p<1) had a positive effect on CPUE (Figure 4.27E). The curve 

for the partial effect of CHLA (edf=6.88, 0.001) showed highest CPUE of Indian mackerel at the range 

of 6-8 mg/m3 (Figure 4.27F). The curve for the partial effect of SST (edf=7.09, p<0.1) had a positive 

effect on CPUE up to 28°C. A further increase in the value showed a decreasing trend in CPUE (Figure 

4.27G). The curve for the partial effect of LTA (edf=8.17, p<0.001) had a very strong positive effect 

on CPUE from the value 1.5 (Figure 4.27H). The curve for the partial effect of RF (edf=5.705, p<0.1) 

showed an increasing trend on CPUE from the value 600mm (Figure 4.27I). 

4.2.14.3 Impact on anchovy 

The GAM model where the CPUE of total landings of anchovy was taken as response variable and 

DMI, EMI, MEI, TNI, Nino1+2, CHLA, SST, LTA, RF, SALT and OCV were considered as the 

predictors, returned an adjusted R2 value of 0.58 and the percentage deviance explained was 71.1% 

(Table 4.24). The parameters such as SOI, Nino4, OCD, and SSHA had no effect on the CPUE of 

anchovy and were removed from the final model. The curve for the partial effect of DMI (edf=7.25, 

p<0.05) showed negative effect on CPUE up to the value 0 and a further increase in the value had not 

exerted much influence on CPUE (Figure 4.28A). The curve for the partial effect of EMI (edf=1.6, 

p<1) had a negative effect on CPUE (Figure 4.28B). The MEI (edf=7.5, p<0.01) had high edf value, 

so the curve was wiggly which could be seen in the figure 4.28C. The curve for the partial effect of 

MEI showed a strong negative effect after the value 1 and higher CPUE were observed in lower MEI 

values. The curve for the partial effect of TNI (edf=4.4, p<0.1) showed higher CPUE on lower negative 

values (Figure 4.28D). The curve for the partial effect of Nino1+2 (edf=8.3, p<0.001) revealed a 

positive effect on CPUE (Figure 4.28E). The curve for the partial effect of CHLA (edf=1.26, p<0.01), 

OCV (edf=1, p<0.001) and SST (edf=1, p<0.05) showed a positive effect on CPUE (Figure [F, K, G]). 

The curve for the partial effect of LTA (edf=1.9, p<1) and RF (edf=3.6, p<0.01) showed a negative 

effect, SALT (edf=7.08, p<0.001) showed a decreasing trend as the value increases, a further increase 

of value from 0.0348 psu did not have much effect on CPUE (Figure 4.28 [H, I, J]). 

4.2.14.4 Impact on penaeid prawns 

The adjusted R2 value of GAM taking CPUE of total landings of penaeid prawns as response variable 

was 0.50 and the percentage deviance explained was 58.7%. The GAM model results revealed that 

DMI, TNI, Ninio4, CHLA, SST, LTA, RF, SALT, and OCV had strong influence on CPUE of penaeid 
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prawns. The parameters such as EMI, MEI, SOI, Nino1+2, OCD, and SSHA had no effect on the 

CPUE of penaeid prawns and were removed from the final model (Table 4.25). The curve for the 

partial effect of DMI (edf=1, p<1), TNI (edf=1, p<0.1) and Nino 4 (edf=1, p<0.05) had positive effect 

on CPUE of total landings of anchovy (Figure 4.29 [A, B, C]). The curve for the partial effect of CHLA 

(edf=4.68, p<0.001) showed decreasing trend up to 2 mg/m3 and showed an optimum range of 

chlorophyll concentration between 4-6 mg/m3 (Figure 4.29D). The curve for the partial effect of SST 

(2.7, p<1) showed a decreasing trend up to 29°C, a further increase in the value did not exert much 

effect on CPUE (Figure 4.29E). The curve for the partial effect of LTA (edf=1, p<0.05) showed a 

positive effect on CPUE of penaeid prawns (Figure 4.29F). The curve for the partial effect of RF 

(edf=8.9, p<0.001) showed a very strong positive effect on CPUE at the value 600 mm. The CPUE 

was highest for RF in the range of 600 to 800 mm (Figure 4.29G). The curve for the partial effect of 

SALT (edf=2.3, p<0.1) and OCV (edf=1, p<0.1) revealed that they had less effect on CPUE, SALT 

showed a decreasing trend and OCV showed a slightly increasing trend (Figure 4.29I). 

4.2.14.5 Impact on threadfin breams 

The adjusted R2 value of GAM taking CPUE of total landings of threadfin breams as response variable 

was 0.70 and the percentage deviance explained was 81.2%. The GAM model results revealed that 

DMI, EMI, MEI, SOI, TNI, Ninio1+2, CHLA, SST, LTA, RF, SALT, and OCD had strong influence 

on CPUE of threadfin breams. The parameters such as EMI, MEI, Nino4, OCV, and SSHA had no 

effect on the CPUE of threadfin bream and were removed from the final model (Table 4.26). The curve 

for the partial effect of DMI (edf=8.9, p<0.001), EMI (edf=1.7, p<0.05), MEI (edf=5.29, p<0.05), TNI 

(edf=1, p<0.05), and Nino1+2 (edf=1, p<1) showed a positive effect on CPUE of threadfin breams 

(Figure 4.30 [A, D, E, C, B]. The curve for the partial effect of SOI (edf=2.3, p<0.1) showed a negative 

effect on CPUE (Figure 4.30F). The curve for the partial effect of CHLA (edf=8.14, p<0.001) showed 

a decreasing trend up to the value 2.5 mg/m3, a further increase in the value resulted in an increasing 

trend of CPUE (Figure 4.30G). The curve for the partial effect of SST (edf=6.9, p<0.05) had an 

increasing trend up to 28°C (Figure 4.30H). The curve for the partial effect of LTA (edf=7.06, p<0.001) 

had very strong positive effect on CPUE (Figure 4.30I). The curve for the partial effect of RF 

(edf=2.14, p<1), SALT (edf=5.3, p<1), and OCD (edf=1.7, p<0.001) showed less variations in their 

curve (Figure 4.30[J, K]). 
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4.2.14.6 Impact on total landings 

The GAM model where the CPUE of total landings was taken as response variable and DMI, 

Nino4, SSHA, SST, LTA, RF, and SALT were considered as the predictors, returned an adjusted R2 

value of 0.63 and the percentage deviance explained was 71.7%.The parameters such as EMI, MEI, 

SOI, TNI, Nino 1+2, CHLA, OCV and OCD had no effect on the CPUE of total landings and were 

removed from the final model (Table 4.27). The curve for the partial effect of DMI (edf=5.17, p<0.01) 

showed an increasing trend from the value 0 (Figure 4.31A). The curve for the partial effect of Nino4 

(edf=3.3, p<0.001) showed an increasing trend up to the value 28.5, a further increase in the value 

showed decreasing trend on CPUE (Figure 4.31B). The curve for the partial effect of SSHA (edf=1, 

p<0.05) had a positive effect on CPUE, SST (edf=8.04, p<0.001) showed an increasing trend up to the 

value 28°C and LTA (edf=6.4, p<0.001) had a very strong positive effect after the value 1(Figure 4.31 

[C, D, F]). The RF (edf=8.45, p<0.001) had high edf value, so the curve was wiggly which could be 

seen from the figure. The curve for the partial effect of RF showed maximum CPUE between 600 to 

800 mm (Figure 4.31E). The curve for the partial effect of SALT (edf=1, p<0.05) was almost flat in 

nature (Figure 4.31G). 

Table 4.22: Details of deviance explained & adjusted R-square value for OS CPUE model and the 

effective degrees of freedom & significance of the explanatory variables (including ocean-atmospheric 

parameters as explanatory variables) of the model 

T_OS_CPUE ~ s(DMI) + s(TNI) + s(Nino4) + s(CHL_A) + s(SST) + s(OCV) 

R-sq.(adj) =  0.32  Deviance explained = 40.1% 

           edf  Ref.df       F   Deviance 
explained (%) 

p-value     

s(DMI)    1.000   1.000  13.014  2.49 0.000440 *** 
s(TNI)    5.715   6.848   2.473  1.47 0.024935 *   
s(Nino4)  3.466   4.346   5.613  9.49 0.000232 *** 
s(CHL_A)  1.000   1.000   2.327  0.911 0.129668     
s(SST)    2.399   3.062   2.211  8.31 0.087438 .   
s(OCV)    1.000   1.000   7.934  0.87 0.005620 **  
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Figure4.26: GAM model for OS CPUE showing effects of explanatory variables including ocean-
atmospheric parameters as explanatory variables; DMI (A), TNI (B), Nino4 (C), CHLA (D), SST 
(E), OCV (F).
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Table 4.23: Details of deviance explained & adjusted R-square value for IM CPUE model and the 
effective degrees of freedom & significance of the explanatory variables (including ocean-atmospheric 
parameters as explanatory variables) of the model 

T_IM_CPUE ~ s(DMI) + s(EMI) + s(MEI) + s(Nino4) + s(Nino1.2) + s(CHL_A) + s(SST) + 
s(LTA) + s(RF) + s(OCD) 

R-sq.(adj) =  0.75   Deviance explained =   84% 
             edf  Ref.df      F   Deviance 

explained (%) 
p-value     

s(DMI)      7.957   8.658  2.708  7.57 0.007804 **  
s(EMI)      2.102   2.669  1.276  1.97 0.252830     
s(MEI)      8.811   8.978  6.572  21.3 1.39e-07 *** 
s(Nino4)    2.022   2.600  1.333  3.7 0.273629     
s(Nino1.2)  1.000   1.000  2.217  10.8 0.139870     
s(CHL_A)    6.880   7.829  3.678  34.9 0.000755 *** 
s(SST)      7.092   8.082  1.863  26.5 0.072485 .   
s(LTA)      8.170   8.750  9.033  41.8 2.06e-10 *** 
s(RF)       5.705   6.765  1.751  25.9 0.090415 .   
s(OCD)      1.000   1.000  0.653  3.51 0.421169   
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Figure4.27: GAM model for IM CPUE showing effects of explanatory variables (including ocean-
atmospheric parameters as explanatory variables); DMI (A), EMI (B), MEI (C), NinO4 (D), Nino1+2 
(E), CHLA_A (F), SST (G), LTA(H), RF (I), and OCD (J)  
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Table 4.24: Details of deviance explained & adjusted R-square value for Anchovy CPUE model and 
the effective degrees of freedom & significance of the explanatory variables (including ocean-
atmospheric parameters as explanatory variables) of the model 

T_A_CPUE ~ s(DMI) + s(EMI) + s(MEI) + s(TNI) + s(Nino1.2) + s(CHL_A) +  s(SST) + s(LTA) 

+ s(RF) + s(SALT) + s(OCV) 

R-sq.(adj) =  0.58  Deviance explained = 71.1% 

    edf  Ref.df       F   Deviance 

explained (%) 

p-value     

s(DMI)      7.255   8.226   2.414  6.62 0.020362 *   

s(EMI)      1.630   2.047   1.518  6.37 0.223411     

s(MEI)      7.565   8.433   3.393  17.3 0.001523 **  

s(TNI)      4.371   5.337   1.918  5.4 0.079078 .   

s(Nino1.2)  8.355   8.836   3.719  4.84 0.000561 *** 

s(CHL_A)    1.262   1.455   7.071  20.5 0.005304 **  

s(SST)      1.000   1.000   4.360  17.6 0.039345 *   

s(LTA)      1.952   2.452   1.293  18.7 0.246091     

s(RF)       3.601   4.433   3.251  25.3 0.011793 *   

s(SALT)     7.086   8.079   3.800  19.8 0.000597 *** 

s(OCV)      1.000   1.000  11.642  10.1 0.000929 *** 

 

 

  

0.0 0.5 1.0

-1
5
0

-1
0
0

-5
0

0
5
0

1
0
0

1
5
0

DMI

s
(D
M
I,
7
.2
6
)

A 

-1.0 -0.5 0.0 0.5 1.0

-1
5
0

-1
0
0

-5
0

0
5
0

1
0
0

1
5
0

EMI

s
(E
M
I,
1
.6
3
)

B 



8
5

 

   
 

 
 

  
 
 

                         

-2
-1

0
1

2

-150 -100 -50 0 50 100 150

M
E
I

s(MEI,7.56)

C
 

-2
-1

0
1

2

-150 -100 -50 0 50 100 150

T
N
I

s(TNI,4.37)

D
 

-2
-1

0
1

2

-150 -100 -50 0 50 100 150

N
in
o
1
.2

s(Nino1.2,8.36)

E
 

0
2

4
6

8

-150 -100 -50 0 50 100 150

C
H
L
_
A

s(CHL_A,1.26)

F
 

2
6

2
7

2
8

2
9

3
0

-150 -100 -50 0 50 100 150

S
S
T

s(SST,1)

G
 

-0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

-150 -100 -50 0 50 100 150

L
T
A

s(LTA,1.95)

H
 



86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure4.28: GAM model for Anchovy CPUE showing effects of explanatory variables (including 
ocean-atmospheric parameters as explanatory variables); DMI (A), EMI (B), MEI (C), TNI (D), 
Nino1+2 (E), CHLA (F), SST (G), LTA (H), RF (I), SALT (J), and OCV (K) 
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Table 4.25: Details of deviance explained & adjusted R-square value for PP CPUE model and the 
effective degrees of freedom & significance of the explanatory variables (including ocean-atmospheric 
parameters as explanatory variables) of the model 

T_PP_CPUE ~ s(DMI) + s(TNI) + s(Nino4) + s(CHL_A) + s(SST) + s(LTA) + s(RF) + s(SALT) 
+ s(OCV) 

R-sq.(adj) =  0.50   Deviance explained = 58.7% 
           edf  Ref.df       F   Deviance explained (%) p-value     
s(DMI)    1.000   1.000   2.077   0.058 0.15216     
s(TNI)    1.000   1.000   2.816   1.04 0.09593 .   
s(Nino4)  1.000   1.000   6.423   7.34 0.01253 *   
s(CHL_A)  4.684   5.710   5.056   2.64 0.00015 *** 
s(SST)    2.769   3.542   1.743   4.98 0.17854     
s(LTA)    1.000   1.000   5.967   11 0.01601 *   
s(RF)     8.933   8.996  11.061  33.9 1.34e-13 *** 
s(SALT)   2.325   2.936   1.988   5.4 0.09990 .   
s(OCV)    1.000   1.000   2.786   5.07 0.09768 . 
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Figure4.29: GAM model for PP CPUE showing effects of explanatory variables (including ocean-
atmospheric parameters as explanatory variables); DMI (A), TNI (B), Nino4 (C), CHL_A (D), SST 
(E), LTA (F), RF (G), SALT (H), and OCV (I)
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Table 4.26: Details of deviance explained & adjusted R-square value for TB CPUE model and the 
effective degrees of freedom & significance of the explanatory variables (including ocean-atmospheric 
parameters as explanatory variables) of the model 

T_TB_CPUE ~ s(DMI) + s(EMI) + s(MEI) + s(SOI) + s(TNI) + s(Nino1.2) + s(CHL_A) + s(SST) 
+ s(LTA) + s(RF) + s(SALT) + s(OCD) 

R-sq.(adj) =  0.70   Deviance explained = 81.2% 

            edf  Ref.df       F   Deviance explained (%) p-value     
s(DMI)      8.938   8.992   3.651  3.05 0.000582 *** 
s(EMI)      1.719   2.148   4.017  1.74 0.020060 *   
s(MEI)      5.291   6.376   2.735  0.45 0.014651 *   
s(SOI)      2.301   2.960   2.365  1.5 0.070424 .   
s(TNI)      1.000   1.000   5.833  0.801 0.017682 *   
s(Nino1.2)  1.000   1.000   1.160  0.07 0.284192     
s(CHL_A)    8.194   8.743   4.675   31.2 4.7e-05 *** 
s(SST)      6.921   7.971   2.625  28.7 0.011808 *   
s(LTA)      7.067   8.026  12.529   42.2 1.7e-13 *** 
s(RF)       2.414   3.007   1.886  5.33 0.140785     
s(SALT)     5.386   6.447   1.765  8.83 0.106105     
s(OCD)      1.749   2.174   7.213  11.2 0.000915 *** 
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Figure4.30: GAM model for TB CPUE showing effects of explanatory variables (including ocean-
atmospheric parameters as explanatory variables); DMI (A), Nino1+2 (B), TNI (C), EMI (D), MEI 
(E), SOI (F), CHL_A (G), SST (H), LTA (I), RF (J), OCD (K), and SALT (L) 

Table 4.27: Details of deviance explained & adjusted R-square value for Total CPUE model and the 
effective degrees of freedom & significance of the explanatory variables (including ocean-atmospheric 
parameters as explanatory variables) of the model 

T_CPUE ~ s(DMI) + s(Nino4) + s(SSHA) + s(SST) + s(LTA) + s(RF) +s(SALT) 
R-sq.(adj) =  0.63   Deviance explained = 71.7% 

            edf  Ref.df      F   Deviance 
explained (%) 

p-value     

s(DMI)    5.177   6.307  4.000  13.2 0.001019 **  
s(Nino4)  3.343   4.177  7.050  9.4 3.35e-05 *** 
s(SSHA)   1.000   1.000  6.554  25.8 0.011795 *   
s(SST)    8.047   8.725  4.559  29 4.42e-05 *** 
s(LTA)    6.436   7.500  4.188  32.4 0.000232 *** 
s(RF)     8.455   8.900  3.702  23.5 0.000446 *** 
s(SALT)   1.000   1.000  4.833  14.6 0.029987 *   
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Figure4.31: GAM model for Total CPUE showing effects of explanatory variables (including ocean-
atmospheric parameters as explanatory variables); DMI (A), Nino4 (B), SSHA (C), SST (D), RF (E), 
LTA (F), and SALT (G)  
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CHAPTER 5 

DISCUSSION 

5.1 Variations in ocean- atmosphere parameters 

The variations of Ocean-atmosphere parameters such as Chlorophyll a, Local temperature anomaly, 

Sea surface temperature, Sea surface height anomaly, Sea surface salinity, Rainfall, Ocean current 

velocity and Ocean current direction along Kerala coast as affected by the ENSO episodes during 2007 

to 2018 were studied. Deviance of each ocean-atmospheric parameters explained by ENSO phenomena 

as represented by different indices was in the order LTA (62.2%)>RF (59.9%)>SSHA (57.6%) >CHL 

A (52.9%)>SST (36.9%)>SALT (34%). The ENSO during premonsoon is shown to responsible for 

deviance in SST within the southwest coast of Indian coastal upwelling region 7°N-14°N (Krishna, 

2008). In case of LTA, the order of influence of ENSO indices was TNI (20.5%)>MEI (13.6%)> EMI 

(9.48%) > Nino4 (8.79%)>DMI (6.88%)>SOI (2.93%). The 2010, 2016, and 2017 La Nina years 

reported strong upwelling in Kerala coast and the ENSO indices like MEI and EMI were found to exert 

maximum influence on upwelling. This result is supported by Krishna, 2008 who reported that warm 

ENSO events were associated with relaxation of Indian trade winds and wind induced coastal 

upwelling. 2018-2019 was CP weak El Nino, but 2018 exhibited strong upwelling. The ENSO index 

such as TNI which capture different flavours of El Nino exhibited a positive effect on upwelling in CP 

El Nino episode. The interannual variability of Indian Summer Monsoon (ISM) rainfall is strongly 

associated with the El Niño-Southern Oscillation (ENSO), experiencing below and above normal 

rainfall during El Niño and La Niña years respectively (Ashok et al. 2001).  

Our investigation suggest that the monthly rainfall didn’t follow a specific trend on El Nino or La Nina 

years. Out of 6 La Nina years observed during 2007-2018 two of them (2007-2008, 2011-2012) 

received above normal rain fall and 2010-2011 and 2016-2017 La Nina episodes received normal 

rainfall which was explained by the co-occurrence of negative IOD. The 2008-2009, and 2017-2018 

years received rainfall just below the normal. This results are supported by Aneesh and Sijikumar, 

2017 who observed that rainfall events were considerably reduced during the post-1980 La Nina 

events, due to weakening of the meridional temperature gradient over the monsoon region, which in 

turn reduced the monsoon rainfall and circulation. During the 2009-2010, 2018-2019 CP El Nino 

episodes, the region received above normal rainfall and during the very strong 2015-2016 El Nino 

episode, 80 mm less rainfall from normal was received.  
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It was observed that the chlorophyll concentrations were decreased during the El Nino episodes and 

were increased during the La Nina Episodes and the ENSO indices like MEI, TNI and Nino 4 were 

found to exert maximum influence on the chlorophyll concentration. The occurrence of seasonal bloom 

along west coast of India is largely affected by the ENSO events (Krishna and Rao, 2008). During 

1997-98 El Nino equatorial Pacific region had positive deviations in chlorophyll concentration in the 

transition stage from El Nino to La Nina episodes (Yoder, 2003). Coastal upwelling off the southwest 

coast of India during the southwest monsoon is a well-known phenomenon that enhances the 

chlorophyll-a concentration (Shalin and Sanikumar, 2014). The positive IOD events resulted in an 

increase in chlorophyll a concentration and negative IOD events resulted in a decrease.  The Indian 

Ocean Dipole (IOD) and the El Nino/Southern Oscillation (ENSO) are independent climate modes, 

which frequently co-occur, driving significant interannual changes within the Indian Ocean. The 

chlorophyll bloom in eastern equatorial Indian Ocean and in Bay of Bengal and negative effect of 

chlorophyll concentration in the region around southern tipoff India are primarily related to IOD 

forcing (Currie et al., 2013). The EMI exhibited a negative effect on the chlorophyll a concentration. 

Chlorophyll concentration increased in 2010-2011, 2011-2012, and 2016-2017 La Nina episodes and 

didn’t increase in 2008-2009 and 2017-2018 La Nina years. Chlorophyll concentration showed a hike 

in 2018 El Nino episode, neither hype nor dip in both 2009-2010 and 2015-2016 El Nino years. 

Chlorophyll a increase in 2010-2011, 2016-2017, and 2018 could be explained by the strong upwelling 

occurred during this time (Shafeeque, et al., 2019). Chlorophyll hiked to 7mg/m3 for both the strong 

(2010-2011) and moderate (2011-2012) La Nina events. Even though, 2010-2011 was a strong La Nina 

event and 2011-12 was a moderate La Nina event both the events resulted in a chlorophyll hike of 

7mg/m3. But, due to strong La Nina event, the 2010-2011 La Nina episode expected a more hike in the 

chlorophyll a concentration compared to 2011-2012 which was not happened and this could be due to 

the fact that 2010-2011 strong La Nina event was coincided with the negative IOD. That might have 

suppressed the vigorous growth of phytoplankton. The very strong El Nino episode in 2015 didn’t 

show much dip in the chlorophyll from the normal which might be due to the co-occurrence of positive 

IOD.  

It was observed that the SST was increased during the El Nino episodes and were decreased during the 

La Nina Episodes and the ENSO indices like MEI, TNI and EMI were found to exert maximum 

influence on the SST. The positive IOD events resulted in a decrease in SST and negative IOD events 

resulted in an increase.  IOD events explains 12% of the SST variability in Indian Ocean (Saji et al., 

1999). The very strong El Nino episode in 2015-2016 resulted in a SST increase of 1°C during 2015 
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August to May 2016. The moderate El Nino in 2009-2010 also resulted in a SST hike of 1°C during 

December 2009 to May 2010. SST was decreased by 1°C during November months of 2007-2008 and 

2010-2011 La Nina episodes, resulted in a decrease of 1°C during September to November months of 

2016-2017 La Nina event. The SST over Indian Ocean during El Nino years show a warming trend 

and during La Nina a cooling trend was observed (Khole, 2003). 

The ENSO episodes could explain 57% deviance in sea surface height anomaly. The ENSO indices 

such as EMI, MEI, TNI, and Nino 1+2 could be related to the increase in sea surface height anomaly 

during El Nino episodes and decrease in La Nina episodes. Devi and Sarangi, 2017 reported more 

positive sea surface height anomaly (SSHA range increased 20cm and above) during El Nino years in 

the Arabian Sea. It was seen that SSHA decreased during positive IOD events and increased during 

negative IOD events. Positive IOD events resulted in a decreased sea surface salinity and negative IOD 

resulted in an increase. The combined El Nino and positive IOD episodes resulted a freshening 

(negative SST anomaly) in Indian Ocean (Grunseich, et al., 2011). The study revealed an increase in 

salinity during El Nino events and reduced salinity during La Nina episodes, but the sea surface salinity 

anomaly during El Nino and La Nina episodes were very less. These results are supported by 

Vinayachandran and Nanjundiah, 2009, who observed anomalies of sea surface salinity in Indian 

Ocean during El Nino or La Nina years were much weaker than salinity anomalies in IOD years.  

5.2 Variations in selected pelagic and demersal fish resources 

5.2.1 Variations in Oil sardine fishery  

The Oil Sardine (Sardinella longiceps, Clupeidae) is an abundant coastal pelagic species, with high 

ecological and economic relevance. This fish species is often affected by inter-annual fluctuations and 

distributional shifts in the SW coast of India. The ENSO episodes could explain 31.4% deviance in the 

abundance of Oil sardine. In 2015, the poor maturation and recruitment of Indian Oil sardine were 

partially influenced by El Niño (Kripa, 2018). The GAM model output indicates the sensitivity of OS 

fishery to changes in DMI, EMI, SOI, TNI, and Nino 4. These ENSO indices were found to influence 

CPUE of OS in the order MEI (12.4)> Nino4 (9.49%)> SOI (6.84%)> EMI (3.33)> DMI (2.49) > TNI 

(1.47). The analysis of MEI, Nino 4, EMI, and SOI had shown that the OS abundance was decreased 

during El Nino and increased during La Nina. The TNI had shown the opposite trend and the DMI 

indicate an increase of OS during positive IOD episodes. Supraha et al., (2016) reported a decrease in 

catch rate in oil sardine during El Nino events and hike in catch rate during La Nina event occurred 

after the El Nino in 1998-99.  
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When considering both ENSO and Ocean-atmospheric parameters DMI, TNI, Nino4, CHL A, SST, 

and OCV together explained the 40.1% of deviance in OS abundance over Kerala coast. These results 

are supported by Suprabha et al., 2016, who observed that the combination of sea surface temperature 

and MEI could better explain deviance of oil sardine abundance. CHL A favours the OS abundance 

while OCV had negative impact. The chlorophyll abundance is a vulnerable factor for oil sardine 

fishery as it determines the feeding ground and controls its recruitment (Piontkovski, Al-Oufi, and Al-

Jufaili, 2014; Zaki et al., 2012). SST up to 28.3°C is favorable for OS, a further increase negatively 

affect the abundance. For oil sardine, Nino4 and SST could explain the deviance better than other 

ENSO indices and ocean –atmospheric parameters. They could be considered as the robust predictors 

of oil sardine abundance in this region. Increase in SST influence the marine biological systems at 

organismal, population, community and ecosystem levels (Vivekanandan, 2013).  The oil sardines 

were exploited by a number of crafts including mechanized, motorized and non-motorized ones. The 

two principal gears exploiting oil sardines were MRS and OBRS (Kripa et al., 2018). Deviance of 

catch per unit effort of oil sardine for different gears explained by ENSO was in the order OBRS 

(55.9%)> OBBS (44.4%)> NM (38.9%)> MRS (31%)> OBGN (30%). These are the gears which 

operate within 22 m depth. The deviance of CPUE of other gears like MDTN, MTN and MPS were 

found to be not well explained by ENSO. It indicated that the resource which was distant from the 

coastal area did not change much due to ENSO episodes or the multiday craft and gear combination 

changed the fishing ground to make up for the changes in the fish abundance.  

5.2.2 Variations in Indian mackerel 

The Indian mackerel (Rastrelliger kanagurta, Scombridae) is one of the most important pelagic fish 

resources of India in the context of national food security. The ENSO episodes could explain 31.7% 

deviance in the abundance of Indian mackerel. These ENSO indices were found to influence CPUE of 

IM in the order MEI (21.3%)> Nino1.2 (10.8%)> DMI 7.57%)> Nino4 (3.7%)> SOI (2.38%)> EMI 

(1.97%). The combination of ENSO indices and ocean-atmosphere parameters such as CHL A, SST, 

LTA, RF, and OCD had better explained the deviance (84%) of Indian mackerel abundance.  The 

CPUE increased during La Nina episodes and decreased during El Nino episodes. But the most 

influencing ENSO indices such as MEI and Nino 1+2 showed an increasing trend on El Nino events. 

Positive IOD events favoured the mackerel abundance and it decreased during negative IOD events. 

The La Nina event favours Indian mackerel catch rate but with the less intensity than that of Oil sardine 

(Suprabha et al., 2016). Mackerel fishery along the south west coast of India was collapsed in 1999-

2000 due to La Nina event which preceded the 1997-1998 El Nino event (Krishnakumar and Bhat, 
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2007). These ENSO indices and ocean- atmospheric parameters were found to influence CPUE of IM 

in the order LTA (41.8%)> CHL A (34.9%)> SST (26.5%)> RF (25.9%)> MEI (21.3%)> Nino1.2 

(10.8%) > DMI (7.57%)> Nino4 (3.7%)> EMI (1.97%). For Indian mackerel, LTA can be considered 

as better predictor for its abundance in this region. LTA had a positive effect on the CPUE of Indian 

mackerel. Increase in the CPUE was observed with increasing LTA values. Deviance of catch per unit 

effort of Indian mackerel for different gears explained by ENSO was in the order OBGN (46.3)> OBHL 

(41.1)> MRS (35.4%). The operating depth for OBGN were 25m and 30m for both MRS and OBHL. 

The deviance of CPUE of other gears like MDTN, MTN, MOTHS and OBBS were found to be not 

well explained by ENSO. It indicated that the resource which was distant from the coastal area did not 

change much due to ENSO episodes.  

5.2.3 Variations in anchovy fishery 

Anchovies are a group of small marine (coastal) schooling fishes and comprise fishes belonging to the 

genera Stolephorus, Coilia, Setipinna, and Thryssa. The ENSO episodes could explain 49.4% deviance 

in the abundance of Anchovy. These ENSO indices were found to influence CPUE of anchovy in the 

order MEI (17.3%)> DMI (6.62%)> EMI (6.37%)> Nino4 (5.61%)> TNI (5.4%)> Nino1.2 (4.85%). 

The combination of ENSO indices and ocean-atmospheric parameters had better explained the 

deviance (71.1%) in anchovy CPUE. Among the various elements influencing spawning and 

recruitment of anchovy populations, El Niño had been accounted as the most significant one (Checkley, 

et al., 2009). GAM model result showed an increase in the CPUE during positive IOD events and 

decrease in negative IOD events. The ENSO indices considered in the model didn’t follow same trend 

in El Nino or La Nina episodes. The anchovy abundance showed decreasing trend in El Nino and 

increase in La Nina. When considering other ocean- atmospheric parameters, order of influence on the 

abundance of Anchovy was in the order RF (25.3%)> CHL A (20.5%)> SALT (19.8%)> LTA 

(18.7%)> SST (17.6%)> OCV (10.1%). Deviance of catch per unit effort of Anchovy for different 

gears explained by ENSO was in the order MRS (60.1%)> OBTN (45.6%)> OBRS (43.8%)> OBBS 

(41.8%)> OBGN (31.4%). The operating depth for MRS, OBBS, OBGN, OBRS, and OBTN were 15, 

12, 8, and 10 m respectively. All these gears operate in surface column area of coastal waters and much 

of the variations in the abundance was explained by ENSO episodes.  

https://www.frontiersin.org/articles/10.3389/fmars.2018.00443/full#B10
https://www.frontiersin.org/articles/10.3389/fmars.2018.00443/full#B10
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5.2.4 Variations in Penaeid Prawn fishery 

The crustacean fishery in Kerala is the second largest contributor to the crustacean fishery in India 

(India agronet.com, 2020). Twenty species of penaeid prawns were identified in Kerala, out of the 20 

species obtained 17 were of high economic value (Apsara and Pramod, 2016). Deviance in abundance 

of penaeid prawns could not be explained by ENSO, but combination of ENSO indices and ocean 

atmospheric parameters explained about 58.7% of the deviance in the abundance of penaeid prawns. 

They influenced the abundance of penaeid prawns in the order RF (33.9%)> LTA (11%)> Nino4 

(7.34%)> SALT (5.4%)> OCV (5.07%)> SST (4.98%)> CHLA (2.64%)> TNI (1.04%)> DMI 

(0.06%). The rainfall between 600-800 mm was optimum for penaeid prawns and its abundance 

increased with positive positive LTA values. Deviance of catch per unit effort of penaeid prawn for 

different gears explained by ENSO was in the order OBRS (32%)> NM (28.5%). The operating depth 

for NM and OBRS were 7 and 10 m respectively. The deviance of CPUE of other gears like MDTN, 

MTN, MRS and OBTN were found to be not well explained by ENSO. This indicated that the resource 

which were distant from the coastal area were did not change much due to ENSO episodes.  

5.2.5 Variations in Threadfin bream fishery 

Threadfin bream (Nemipterus spp.) constitute one of the most important commercial demersal stocks 

targeted by trawlers in the Indian EEZ. They are abundant in 30-200 m depth range. Abundance of threadfin 

bream didn’t follow same trend on all El Nino and La Nina episodes. Among the different factors influencing 

the abundance of threadfin breams, the ENSO had not been accounted as the most striking one. When 

considering the ocean atmospheric parameters along with the ENSO indices, it could explain 81.2% of the 

deviance of threadfin bream abundance. The LTA can be considered as better predictor (42.2%) for 

abundance of threadfin breams. The strong upwelling events favours their growth. Chlorophyll a 

concentration (31.2%) and SST (28.7) are other two important indicators of their abundance. Chlorophyll 

concentration was optimum at a range of 4 to 7 mg/m3 and SST up to 28°C had positive effect on threadfin 

bream, a further increase in the SST didn’t affect their abundance. Vivekanandan and Rajagopalan (2009) 

reported that SST between 28°C-29°C might be optimum but when it exceeded 29°C the fish are 

adapted to shift the spawning to season when temperature was around the preferred optima. Deviance 

of catch per unit effort of threadfin bream for different gears explained by ENSO was in the order 

OBHL (76.8%)> NM (50.1%)> OBGN (27.1%). The operating depth for these gears are within 40 m. 

The trawl nets are important gears for the demersal fishes like penaeid prawn and threadfin bream, as 
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they are found in greater depth range. But the ENSO episodes could not explain the deviance of CPUE 

of such gears. 

5.2.6 Variations in total fish resources 

The abundance of total fish resources were decreased during El Nino years and increased during La 

Nina episodes over Kerala coast. The GAM model of total CPUE revealed that ENSO episodes could 

explain 43.6% of deviance of total fish abundance. The ENSO episodes could explain the influence of 

total fish abundance in the order TNI (14.7%)> DMI (13.2%)> MEI (11.6%)> EMI (9.57%)> Nino4 

(9.4%)> SOI (3.35%). The abundance showed a decrease during El Nino episodes and an increase 

during La Nina episodes. DMI index exhibited an increase during positive IOD events and decrease 

during negative IOD events. The SOI index showed decreasing trend on La Nina events and Nino 4 

showed increasing trend during El Nino events. But both the indices had very less influence on the 

total fish abundance. When considering both ENSO and other ocean-atmospheric parameters, the 

model could explain 71.7% of deviance. They influence in the order LTA (32.4%)> SST (29%)> SSHA 

(25.8%)> RF (23.5%)> SALT (14.6%)> DMI (13.2%)> Nino4 (9.4%). The combined model indicated 

that, when considering other environmental factors which influenced total fish abundance along with 

ENSO, the Nino 4 index could be considered as one of the better predictors (9.4%) of fish abundance 

than other ENSO indices. The abundance of total fish resources was increased in La Nina years and 

decreased in El Nino events. Strong upwelling events favoured the fish abundance, SST up to 28°C 

was found to be good for fish abundance. LTA (32.4%), SST (29%) along with Nino 4 could be 

considered as better predictors for total fish abundance. Deviance of catch per unit effort of total fish 

resources for different gears explained by ENSO was in the order OBGN (48.8%)> OBRS (41%)> NM 

(37.5%)> MOTHS (36.2%)> MRS (32.4%)> OBBS (28.2%)> MDTN (26.6%) > OBHL (26.5%). The 

ENSO episodes could not explain well the deviance of CPUE of gears which were operating distant 

from coastal area.
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CHAPTER 6 

SUMMARY 

El Nino southern oscillation, which affects weather patterns across the globe generally happens 

every 2-7 years. There were 20 major El Nino events in the last five millennia and each El Nino events 

were not identical. The diversity in El Nino events results in a different ecological response. This study 

was conducted to evaluate the impact of these diverse ENSO events during 2007-2018 on the marine 

fisheries of Kerala. The study indicated a strong impact on fish resources and the environment, 

indicating the need for increased monitoring and preparedness in fishing communities. The details of 

the study are summarised below. 

Variations in different ENSO events 

           Five El Nino and six La Nina events happened during the 2007-2018 time period. Nino 3.4 and 

ONI indices were used to define these ENSO events. The TNI, MEI, and EMI indices were used to 

characterize the unique nature of each event. The El Nino events in 2006-2007, 2014-2015, 2018-2019 

were weak (0.5 to 0.9SST anomaly), 2009-2010 was moderate (1.0 to 1.4) and 2015-2016 was very 

strong (>2.0). The La Nina episodes in 2008-2009, 2016-2017, and 2017-2018 were weak (-0.5 to -

0.9), 2011-2012 was moderate (-1.0 to -1.4), 2007-2008 and 2010-2011 were strong (-1.5 to -1.9). Out 

of these five El Nino episodes, The El Nino event in 2006-2007 was EP type (Canonical) El Nino 

event, El Nino episodes in 2009-2010, 2014-2015, and 2018-2019 were CP type (El Nino Modoki) and 

the very strong El Nino event in 2015-2016 was Mixed type. The IOD index was used to identify the 

ENSO events which coincided with IOD. The El Nino episodes in 2006-2007, 2015-2016, and 2018-

2019 coincided with positive IOD, and La Nina events in 2010-2011 and 2016-2017 coincided with 

negative IOD. 

Influence of ENSO phenomenon on various ocean-atmospheric parameters 

           The ENSO could explain 62.2% of the deviance in the local temperature anomaly. The positive 

local temperature anomaly was increased during the La Nina years and there were strong upwelling 

events during 2010, 2016, and 2017 La Nina years. In the year 2018, there was also a strong upwelling 

event even though it was a weak CP El Nino year. It was due to the positive IOD event coincided with 

2018 El Nino. The TNI index which captures different flavours of El Nino also showed a positive 

effect on LTA during El Nino events. The ENSO phenomenon as described by different indices could 
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explain 59.9% deviance in the monthly rainfall, but the monthly rainfall event didn’t follow a specific 

trend during the El Nino and La Nina years. 52.9% of the deviance in the chlorophyll a concentration 

could be explained by ENSO. The Chlorophyll concentration was increased during La Nina episodes 

and in positive IOD events. But it was decreased during El Nino events, and in negative IOD events. 

36.9% of the deviance in the SST could be explained by ENSO. The SST over the Kerala coast showed 

a warming trend during the El Nino event and a cooling trend during the La Nina events. SST showed 

a decreasing trend during positive IOD events and the opposite trend during negative IOD events. The 

ENSO episodes could explain 57.6% deviance in the sea surface height anomaly. The sea surface 

height was increased during El Nino events and decreased during La Nina events. SSHA was increased 

during negative IOD events and decreased during negative IOD events. The ENSO could explain the 

34% deviance in the monthly sea surface salinity over the Kerala coast. The mean monthly sea surface 

salinity was increased during El Nino and decreased during La Nina events. But the variations of 

salinity during ENSO episodes were very less. 

Impact of El Nino and La Nina on major pelagic and demersal resources of Kerala 

The abundance of major pelagic fish resources like oil sardine, Indian mackerel, and anchovy 

and demersal fish resources like threadfin breams and penaeid prawns during ENSO episodes were 

studied. 

The ENSO episodes could explain 31.4% deviance in the abundance of oil sardine. The oil 

sardine abundance was decreased during El Nino episodes and was increased during La Nina episodes. 

In the same line, the abundance was increased during positive IOD events and decreased during 

negative IOD events. The ENSO episodes and the ocean-atmospheric parameters together explain 

40.1% of the deviance in the abundance of oil sardine. The resource in the near shore area were much 

affected by the ENSO and the resource that were distant from the coastal area did not change much 

due to ENSO episodes. 

The ENSO episodes could explain 31.7% of the deviance in the abundance of Indian mackerel. 

The abundance of Indian mackerel was increased during La Nina events and decreased during El Nino 

events. Positive IOD events favoured the mackerel abundance and it decreased during negative IOD 

events. The ENSO episodes and the ocean-atmospheric parameters together explain 84% of the 

deviance in the abundance of Indian mackerel. The resource that were distant from the coastal area did 

not change much due to ENSO episodes. 
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The ENSO episodes could explain 49.4% of the deviance in the abundance of anchovy. The 

anchovy abundance showed a decreasing trend during El Nino episodes and an increasing trend during 

La Nina episodes. All the gears operating in the coastal waters were most affected by the ENSO events. 

The GAM model with combination of ENSO indices and ocean-atmospheric parameters as predictors 

explained 71.1% deviance in the anchovy abundance. The ocean-atmospheric parameters like rainfall 

and local temperature anomaly were the most influencing ones. 

The combination of ENSO indices and ocean-atmospheric parameters had better predictability 

on the abundance of penaeid prawns, and it explained 58.7% of the deviance. The ENSO episodes 

alone did not much affect the abundance of penaeid prawns. The monthly rainfall amount and the local 

temperature anomaly were the better predictors of the abundance of penaeid prawns in this region. 

The GAM model with combination of ENSO and ocean-atmospheric parameters as predictors 

could explain 81.2% deviance of the abundance of threadfin breams. Among the different factors 

influencing the abundance of threadfin breams, the ENSO indices were the least influential.  The 

surface chlorophyll-a concentration and sea surface temperature could be considered as better 

predictors of their abundance. 

The ENSO episodes could explain 43.6% of the deviance in the abundance of total fish 

resources over the Kerala coast. The total fish abundance was decreased during El Nino events and 

increased during La Nina events. The combination of ENSO and ocean-atmospheric parameters had 

better predictability on the abundance of total fish resources and it could explain 71.7% of the deviance 

of the abundance of total fish resources. The local temperature anomaly and SST were the influential 

predictors of total fish abundance. 

General Conclusion 

The study indicated that the warm and cold phase of ENSO partially influence the abundance 

of the major commercially important fish resources of Kerala. The El Nino (warm) episodes have 

negative and the La Nina (cold) episodes have a positive effect on the major pelagic fish resources 

such as oil sardine, Indian mackerel, and anchovy. The major demersal fish resources such as threadfin 

bream and penaeid prawns are not much affected by the ENSO events. 
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The gear-wise analysis indicated that the ENSO events are mainly affecting the fisheries in 

non-mechanized and motorized sector, which could have severe impact on the economy and livelihood 

of the coastal community. 

The study brought out the intricate relationship between the ENSO phenomenon and the ocean-

atmospheric variables. The changes in ocean-atmospheric parameters like chlorophyll, SST, upwelling, 

and rainfall during ENSO events and the, associated variations in fisheries were understood.  
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ABSTRACT 

The El Nino Southern Oscillation (ENSO) is one of the most important coupled ocean-atmospheric 

phenomenon that causes global climate variability on inter annual time scales. El Nino has become 

very visible in recent years as a dominant source of inter annual climate variability around the world 

and will stay as the dominant mode of interannual climate variability with great influence on human 

populations and ecosystems. ENSO episodes are known to change the environmental characteristics of 

coastal waters which are the major habitats of the fish resources which are harvested all along the 

Indian coasts. The impact of diverse ENSO events during 2007-2018 on the marine fisheries of Kerala 

were studied. The monthly catch of major pelagic and demersal fishes like oil sardine, Indian mackerel, 

anchovy, penaeid prawns, and threadfin breams by major gears for the period 2007-2018 were 

collected and catch per unit effort (CPUE) were estimated. The ENSO indices like EMI, MEI, SOI, 

TNI, Nino4, Nino 1+2 and DMI and ocean-atmospheric parameters such as sea surface temperature 

(SST), rainfall (RF), chlorophyll a (CHL_A), local temperature anomaly (LTA), salinity (SALT), sea 

surface height anomaly (SSHA), and ocean current velocity (OCV) were analysed. The relationship of 

ENSO and those ocean-atmospheric parameters to variations in abundance of oil sardine, Indian 

mackerel, anchovy, penaeid prawns and threadfin breams were explored with Generalized Additive 

Model. The GAM results indicated that The ENSO could explain 62.2% of the deviance in the local 

temperature anomaly (R2.adj = 0.56), 59.9% of the deviance in the monthly rainfall (R2.adj = 0.53), 

57.9% of the deviance in the sea surface height anomaly (R2.adj = 0.52), 52.9% of the deviance in the 

chlorophyll a concentration (R2.adj = 0.45), and 36.9% of the deviance in sea surface temperature 

(R2.adj =0.30). The ENSO episodes could also explain 31.4% deviance in the abundance of oil sardine 

(R2.adj =0.25), 31.7% of the deviance in abundance of Indian mackerel (R2.adj =0.25), and 49% of the 

deviance in the abundance of anchovy (R2.adj =0.39). The study also indicated that a combination of 

ENSO indices and ocean-atmospheric parameters could explain better the deviance in the abundance 

of fish resources. The combined model explained 40.1% deviance of oil sardine (R2.adj =0.32), 84% 

deviance of Indian mackerel (R2.adj =0.75), 71.1% deviance of anchovy (R2.adj =0.58), 58.7% 

deviance of penaeid prawns (R2.adj =0.5), and 81.2% deviance of threadfin breams (R2.adj =0.7). The 

ENSO episodes alone could explain 43.6% deviance (R2.adj = 0.38) and a combination of ENSO and 

ocean-atmospheric parameters could explain 71.7% of the deviance (R2.adj =0.63) in the abundance 

of total fish resources the over the Kerala coast.  
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