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CHAPTER 1 

1. INTRODUCTION 

The global climate is a complex system, which is being subjected to various evolutions 

from the time of origin of the earth and it continues. The alterations in the system can be due to 

natural fluctuations but the unforeseen abrupt changes are owing to the anthropogenic effects. 

The global temperature is estimated to have risen 1℃ more than the pre-industrialized period 

due to human activities (IPCC, 2018). Future warming substantially exceeds the threshold of 

2℃ and the trends are most likely leading towards the higher end of IPCC projections (New et 

al., 2011). As climate change and warming are uneven throughout the world, the increasing 

trend in global average temperature brings out that regions of warming are more than cooling 

(Lindsey and Dahlman, 2020). The manifestations of climate change are evident from the tropics 

to the poles. 

Climate change also affects the oceans. They both are linked to each other. Ocean 

reduces the impact of climate change to an extent by acting as a heat sink (Yan et al., 2016). 

Nevertheless, the massive effects of climate change and its related consequences are being 

reflected in the global oceans. The average rate of increase in temperature per decade of both 

the land and ocean is more than twice (0.18℃) in 1981 when compared to that of the 1880s 

(0.07℃) (NOAA, 2019). The consequences of climate change also include climate extremes 

(Seneviratne et al., 2012). Global Ocean warming has created drastic climatic variability over 

the tropical Indo- pacific regions resulting in the most prominent modes of climate variability, 

the El Niño-Southern Oscillation (ENSO) Indian Ocean Dipole (IOD) (Luo et al., 2009). It also 

results in decreased dissolved oxygen content, oxygen minimum zones, and ocean acidification 

even in the offshore regions (FAO, 2018). 

The effect of climate change on marine ecosystems can be established by the shift in 

their distributional range (Nye et al., 2009). These shifts can be detected accompanying the 

gradual warming or due to extreme climatic events (Mills et al., 2013). The IPCC fifth 

assessment report suggests that natural climate change at a level lesser than the current 

anthropogenic climate change can even cause ecosystem disruption, species extinction and 

ecosystem shifts, thereby posing a great risk to the future. As the temperature warms, the species 

are forced to shift from tropics to higher latitudes, thereby shrinking their extent (Chen et al., 
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2009; Chen et al., 2011). The novel regime that the species go into may not fit properly than the 

current one or it may not be a protected area (Thuiller et al., 2006). One of the most sensitive 

fish species to the climate extreme, essentially to El Niño southern oscillation is the anchovy 

(Ñiquen & Bouchon, 2004). In Indian Ocean, as the sea surface temperature rises beyond the 

threshold of Indian oil sardine, the southern latitudes will witness a decrease in catch especially 

in the south-west and south-east coast in the near future itself (Vivekanandan et al., 2009). 

Various approaches have been used till date to estimate the impact of climate change on 

species community constitution, their diversity and abundance (Guisan and Zimmermann, 

2000). In recent years, predicting the distribution of species is one of the important components 

in planning conservation strategies and delineating protected areas (Anderson et al., 2003; Elith 

et al., 2006). Species distribution models (SDM) are one of the common strategies used to find 

the appropriate niche of species. SDMs deal with the statistical relationship between the suitable 

climate of the species and their current distribution and thereby predicting its potential 

distribution in other new environments under the supposition that the species reaction to specific 

environmental conditions remains the same (Velásquez-Tibatá et al., 2013). Three kinds of 

approaches define the SDM. They are correlative, mechanistic and hybrid models. The 

correlation between species presence or abundance with its habitat is utilised in correlative 

models. Mechanistic models deal with the relationship between the environment of the species 

and its fitness. The third model is the incorporation of both correlative and mechanistic models 

(Robinson et al., 2017). Various Species distribution models include Generalised linear Model 

(GLM), Random Forest (RF), Boosted Regression Tree (BRT), Maximum entropy model 

(Maxent) etc. Maxent allows species distribution modelling using presence-only data. This 

study aims to understand the pattern of trends of the remotely sensed climatic variables in the 

Northern Indian Ocean (NIO). The study also aims to evaluate the probable shifts in the 

distribution of selected marine fish species in this region. 
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CHAPTER 2 

2.  REVIEW OF LITERATURE 

2.1. ENSO 

El Niño southern oscillation (ENSO) is a coupled ocean-atmospheric phenomenon 

involving a periodic departure from expected SST in the central and eastern equatorial Pacific 

Ocean which has potential to impact weather patterns around the world by generating low- and 

high-pressure systems and thereby causing irregular wind and precipitation patterns and cycles 

around two to seven years. ENSO consists mainly of three phases- El Niño, La nina and a 

normal/ neutral phase. El Niño and la Nina are the oceanic phenomena whereas the southern 

oscillation is its atmospheric counterpart. These together comprise the El Niño southern 

oscillation. Philander (1983) found that southern oscillations have become far more than a see-

saw pattern of oscillation of surface pressure between south-east pacific and north Australian 

zone during the past century. It has become interannual variability of the climate system which 

can impact the global climate.  

There are two forms or types of ENSO events identified in the tropical Pacific Ocean 

(Wang and Weisberg, 2000; Ashok et al., 2007). They are the Eastern-Pacific (EP) type and the 

Central-Pacific (CP) type. EP is characterised by SST anomalies over the Eastern pacific cold 

tongue whereas Central pacific has SST anomaly over the International dateline (Yu and Kao, 

2007; Kao and Yu, 2009). The central pacific type is also known as El Niño Modoki (Ashok et 

al, 2007). Although meteorologists knew of the Southern Oscillation from the 1900s, its 

association with the oceanic rather than the El Niño phenomenon was not known till the 1960s, 

and theoretical understanding of these relationships has only begun after that (Eugene et al., 

1983). 

ENSO is considered as the primary source of interannual variability across the globe. 

During 1980 to 2010, it increased the average temperature of the Indian Ocean from 25.16 to 

26.24°C. After that, in the middle of the 20th century, Indian Ocean showed a brisk warming 

pattern (Kumar et al., 2014). El Niño are associated with physical and biological changes in the 

ocean, changes in the distribution of fish species can be imputed to the ENSO climate variability 

(Brander, 2007). Pacific salmons are also affected by ENSO events. Reduced growth and 

increased mortality rates are found in salmons immediately after El Niño (NOAA fisheries). 
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Sockeye salmon shows a northward moving approach during the ENSO period (NOAA 

fisheries). 

The anchovy and sardine catch in the South American coast are affected by ENSO 

(Bertrand et al., 2004). La Nina event aggregates the skipjack tuna to the western pacific but El 

Niño distributes it to the east of the dateline (Salinger, 2013). The inspection of the seasonal 

cycles in the coral fossils and interannual variation (Tudhope et al., 2001) showed a pattern 

similar to the ENSO cycles in modern coral. So, it is clear that the fossil record of coral indeed 

is a reflection of the paleo-ENSO system. As there are massive changes in pacific fisheries due 

to ENSO, its impact can also be seen in Indian as well as Atlantic Ocean fisheries. Fishes like 

anchovy are affected in the eastern coast due to the ENSO, while in other cases pelagic fishes 

like tuna, dolphin fishes etc. are available to fishers close to the coast (FAO, 2020). 

 

2.2. Indian Ocean Dipole (IOD) 

An internal mode of interannual variability which is unique for both the Pacific and the 

Atlantic Ocean have been recognised. Such a kind of phenomenon in the Indian Ocean was 

unidentified until Saji et al. (1999) reported the bipolar SST pattern prevailing over the west 

and East Indian Ocean which was independent of the El Niño southern oscillation. IOD refers 

to the pattern of SST variation that occurs in the equatorial Indian Ocean interannually, where 

the positive (negative) IOD represents a positive SST anomaly over western (eastern) Indian 

Ocean and negative anomaly over eastern (western) Indian Ocean (Saji et al., 1999, Webster et 

al., 1999). In the eastern equatorial Indian Ocean, the rising trend of anomalies of easterlies and 

southerlies will cause west and the northward shift of eastern Indian Ocean warm pool 

respectively that trigger the Indian Ocean dipole (Zhang et al., 2019). The countries which 

border Indian Ocean such as India, Australia, and Africa are affected by IOD rather than ENSO 

(Ashok et al., 2001; Ashok et al., 2003) 

Indian Ocean warming is the major reason for the increasing Indian Ocean dipole events 

in the last decade (Ajayamohan and Rao, 2008). The sea surface temperature and wind 

anomalies are highly coupled in the Indian ocean dipole events (Saji et al., 1999;  Saji and 

Yamagata, 2003). On a decadal time scale the IOD and ENSO activities show an inverse 

relationship, the stronger decadal ENSO years coincided with years of low IOD events (Saji and 
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Yamagata, 2003). The Indian Ocean (IO) encountered a remarkable realization of three 

consecutive positive IO Dipoles (pIODs) between 2006-2008 and Cia (2009) found that climate 

change is causing the incidence of these events. The unusual co-existence of la nina and positive 

phase of IOD in the year 2007 depicts that the predictability of pIOD lies in the Indian ocean 

itself (Luo, et al., 2007). The intensity of Indian Ocean dipole is measured using Dipole Mode 

Index (DMI), which is the difference between Sea Surface Temperature anomalies of eastern 

and western Indian Ocean (Vinayachandran et al., 2002). A multi model average indicates that 

the Eastern Indian ocean warming of the 21st century is slower than the west and models with 

stronger IOD amplitude generate a slower eastern IO warming rate (Cai, 2011). The ocean 

conditions are necessary for some Indian Ocean Dipole/Zonal Mode (IODZM) events to occur 

and the rest are due to the weather noises and it has low predictability (Song and Qian, 2008). 

Many of the strong Indian Ocean Dipole (IOD) events over the last 50 years have been followed 

by increased summer monsoon circulation and above average precipitation over central north 

India (Krishnan, 2009). In general, positive Indian Ocean Dipole (IOD) events appear to be 

followed by increased summer monsoon flows over the subcontinent and above average 

precipitation; while heavy monsoons have not always coupled with positive IOD events 

(Panickal, 2008) 

The predictability of IOD can be utilised not only for climate prediction but for the 

sustainability of various other sectors such as fisheries, agriculture, human health, marine 

ecosystem, natural disasters etc (Yuan and Yamagata 2015). Indian Ocean dipole and ENSO 

have influence on oceanographic parameters and it affects the distribution of marine fish species 

of the Indian Ocean (Amri, 2015). IOD curbs the spatial distribution and catch of fish, especially 

tuna and the catch of yellowfin tuna shows an inverse relationship with IOD which is 

concentrated in the western Indian ocean- the Arabian Sea and the Madagascar (Lana et al., 

2013) 

 

2.3. Indian Ocean Warming 

Climate change and rising greenhouse gas concentration in the atmosphere can directly 

affect marine bodies (Hoegh & Bruno, 2010). Global oceans act as a sink for the rising carbon 
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dioxide in the atmosphere (Raven & Falkowski, 1999). This is manifested as increasing SST, 

sea level rise and even as ecosystem disruption. 

Analyzing the temperature changes in the ocean not only helps in providing a consistent 

indication of anthropogenic effects on the climate system but also caters to dependable 

predictions for future warming (Gabriele et al., 2005). The increased heat content of the Pacific 

Ocean is balanced by augmented heat transfer from pacific to Indian Ocean through Indonesia. 

During the past decade, it results in the enhanced heat content of the Indian Ocean, which 

accounts for more than 70% increase in heat content in the upper 700m in the global oceans 

(Sang-Ki et al., 2015).  Luo & Jia (2012) proposed that warming in the Indian Ocean relative to 

the Pacific Ocean may play an important role in modulating 20th and 21st century Pacific 

climate change. Indian Ocean Sea surface temperature (SST) can potentially affect the global 

climate. Indian ocean SST is an important variable in ocean atmospheric coupling and its 

increasing trend will impact the natural modes of variability such as IOD. Between the mid-

1950s and mid-1990s, world ocean heat content increased by ~2 x10^23 joules, reflecting a 

mean volume warming of 0.06 ° C, where the Pacific and Atlantic shows warming from 1950 

and Indian Ocean since 1960s and the delayed warming compared to other oceans may be due 

to the data scarcity in the Indian Ocean region till the 1960s (Levitus, 2000).  The tropical Indian 

Ocean warming trend is greater than other tropical oceans since the last decade (Du and Xie, 

2008). There is more downward net heat flux (NHF) over the Tropical Indian Ocean (TIO), 

which favours TIO warming, and the increase in latent heat flux (LHF) contributes significantly 

to the NHF (Tao and Weichen, 2015). The Indian ocean SST revealed the strongest basin scale 

warming by the middle of the 20th century and is identified as the robust warming signal over 

all oceans according to the measure of signal to noise ratio (Lau and Weng, 1999). 

The western tropical Indian Ocean has been warming for more than a century, at a rate 

faster than other regions of the tropical oceans, and it experienced an unusual 1.2°C warming in 

SST during 1901 to 2012, while the Indian Ocean Warm Pool increased by 0.7°C (Roxy, 2014). 

Studies also show that Indian Ocean is warming consistently and its warm pool is expanding 

abruptly. Warm Pools are regions in the tropical ocean where SST is greater than 28°C. The 

indo-pacific warm pool which is the largest in the world where rigorous air-sea interactions 

come off and it is a place of active convection (Saraswat et al., 2007). The area of tropical warm 

pool is expanding since the past 150 years and the rate of expansion is rising from the last 
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decades (Webster et al., 2006). Hence, the temperature, area and location of the warm pool is 

changing gradually over the Indian Ocean, which imparts a huge impact on the climate system 

(Cane and Clement, 1999). 

The tropical Pacific confers substantial decadal climate variability to the western Indian 

Ocean and may imply decadal variability in other regions with strong teleconnections to El Nino 

Southern Oscillation (Cole and Julia, 2000). It also affects the internal mode of variability in the 

Indian ocean such as IOD (Saji et al., 1999). The weakened upward or reinforced downward 

LHF is possibly due to the reduced difference in anomalous sea air temperature due to the 

reinforced Tropospheric Temperature system (Tao and Weichen, 2015). Anthropogenic impacts 

and global climate are affecting biodiversity all around the globe. Increased heat content of 

oceans has negative impacts on the global marine ecosystems. Marine ecosystems play a huge 

role in sustaining the biology of the earth, still the effects of oceanic changes due to 

anthropogenic activities are poorly studied (Hoegh-Guldberg, 2010). Western Indian Ocean 

holds considerable concentration of phytoplankton among all the tropical oceans but remarkably 

it is one of the largest warming areas among the tropical oceans (Roxy et al., 2016). The upper 

layer warming and stratification is likely to deteriorate the dissolved oxygen which critically 

affects the ocean productivity and marine habitat (Keeling et al., 2009). Ocean model prediction 

suggests that the world’s ocean oxygen inventories are declining by one to seven percent within 

the next century and will continue to decline in the future for a thousand years and more. 

(Keeling. et al., 2009). Ocean warming will also drive the species to higher latitudes (Laevastu 

and Rosa, 1963) found that the ocean temperature variation has a role in distribution of tuna 

fish. 

 

2.4. Climate Change and its influence on the distribution of different 

species 

Globally, spatial distributions of fish stocks are shifting and this has been attributed not 

only to intensive fishing pressure but also to the recent climate change, with many stocks having 

been reduced to historically low levels over the past half century. Various species resposes to 

the climatic changes by expanding in the range of the distribution towards poles and contracting 

their ranges in the equatorward side (Chen et al., 2011; Sunday et al., 2012). However, the 
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places of rapid temperature change indicated different magnitudes of observed biological 

responses between species (Angert et al., 2011; Pinsky et al., 2013). Eventhough, variation in 

the spatial distribution can be attributed to the responsiveness to different climatic variables, the 

actual response to climate change comprises the interactions of the biotic and abtiotic factors 

together with the changes in all levels of biological organisation (Cahill et al., 2012; Grigaltchik 

et al., 2012). 

Responses to climate change have been observed in different parts of the world and 

across the ecological hierarchy. Long-term changes in the range sizes of nine out of thirteen 

tuna species studied have been previously reported globally (Worm and Tittensor, 2011), and 

range extension or contraction of several fish populations in South East Australia (Last et al., 

2011). In addition, studies have suggested that the response of the species towards climate 

change is size-dependent, where higher distributional shifts are recorded in the smaller sized 

species as compared to that of the larger sized ones (Genner et al., 2010).  

  The availability of a standard and consistent outline to evaluate range shifts can facilitate 

worldwide comparisons of species at each stage of such shifts and should progress predictive 

capacity (Bates et al., 2014). Especially, various processes that permit species to adapt and 

endure in a changing climate should be evaluated at each different stage of shifts, and the 

importance of such processes may differ among stages (Maggini et al., 2011). Utilisation of 

assorted information sources and careful elucidation of data to quantify which species are at 

equilibrium with climate in regions undergoing rapid change can help in developing the 

potential to detect and predict range shifts precisely. However, one of the major limitation in the 

field of range shift ecology is our inadequate capacity to observe range shifts in order to collect 

information that is required to parameterize models. 

2.5. Distribution of Marine fish species  

2.5.1. Global Distribution 

 Fishes were evolved more than 500 million years ago, and are the first group of 

vertebrates to ever live on earth and they continue their domination in the water realm. Out of 

all vertebrate species, more than one-half are contributed by fishes (Nelson, 2006). Eschmeyer 

and Fong (2014) estimated around 33,059 valid species of fish known from around the world. 
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Fishes have a wide variety of amazing adaptations that enable them to live in almost all available 

aquatic environments. Considering the whole marine realm, tropical oceans have an 

extraordinary diversity of fishes along with other living organisms. (Worm et al., 2006).  

Studying the distribution of marine fish species across the world both in time and space 

is essential for their proper management. Historically, most of the research was focused on the 

causes and consequences of the difference in marine fish abundance overtime (Hjort, 1914; 

Cushing, 1990). Climate change has a significant role in the distribution of marine fish species 

across the world. An increase in sea surface temperature triggered a northward movement of 

fishes which resulted in the occurrence of increased frequency of sub-tropical species and if it 

is hindered by any geographical barriers they tend to migrate to deeper and cooler waters (Dulvy 

et al., 2008).   

 

2.5.2. Indian Context 

India is a country rich in biodiversity and this biodiversity richness is truly reflected in 

the diversity of marine and freshwater fishes. Marine fishes are those who spend at least one of 

their life cycles in the ocean. The Indian subcontinent along with the island groups of 

Lakshadweep and Andaman and Nicobar Islands is an integral part of the Indian Ocean. Fish 

diversity of the Indian subcontinent constitutes 9.7 percent of the total number of known fish 

species (Eschmeyer and Fong, 2014), and of these, 7.4 percent is contributed by marine fish 

species alone.  

The Indo-Pacific faunal region has the greatest diversity of marine fish species that occur 

in tropical areas of the Indian and western Pacific oceans. Some of the pioneering studies 

performed on this region by Randall (1998) showed light into the endemism, disjunctive 

distributions, and species versus subspecies comparison. Halas and Winterbottom (2009) 

studied the beginning of the East Indies coral reef biota, coined and defined the “East Indies 

Triangle”.  

The highest number of species diversity in the Indian region is the Andaman and Nicobar 

archipelago reported with 1431 species (Rajan et al., 2013), and the possible reason for this high 

species diversity is due to its proximity to and similarity with the Indonesian group of islands. 

Atoll islands of Lakshadweep archipelago along with its diverse coral reefs exhibit a moderate 

diversity with 753 species (Rao, 1991). According to the current status of the diversity of Indian 
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marine fish lists, there is the presence of 1071 species of fish along the west coast of India. Shore 

fishes of India are mostly derived from the “East Indies Triangle'' (Menon, 1961; Krishnan and 

Mishra, 1993). As all oceans are somehow connected, endemism is not so common among 

marine fishes. But there are several studies regarding the endemic Indian marine fishes. A study 

by Mishra et al. (2013) has documented the endemic fishes of India. Further studies added 5 

more endemic species described from Indian waters (Randall et al., 2013, Bineesh et al., 2013, 

Mohapatra et al., 2013, Allen et al., 2012) 

 

2.6. Ecological Forecasting Methods 

The rapid change in the climate coupled with anthropogenic stresses are posing severe 

threats to the ecosystems such as shifting of natural habitats, invasion of new species and the 

emergence of new diseases. So, the modeling of the environmental dynamics with parameters 

as species distribution and abundance, ecosystem variability and the community composition 

contributes to the better prediction of the ecosystem movements and thereby facilitates better 

management decisions, conservation, and sustainability. During earlier days’ ecologists 

developed management decisions utilizing the model from mean and variances of the observed 

environmental parameters. But faster reformations which occur in the ecosystem as a 

consequence of climatic variations cannot be quantified precisely by mere historic observations 

(Smith et al., 2009; Milly, 2008; Craig, 2010). Ecological forecasting makes an attempt to derive 

a clue about how the environment will behave in the future, based on the current trends and the 

past data. This includes forecasts of agricultural yield, species distributions (Guisan & Thuiller, 

2005), species invasions (Levine & Antonio, 2003), pollinator performance (Corbet et al., 

1995), extinction risk (Gotelli & Ellison, 2006), fishery dynamics (Hare et al., 2010); disease 

dynamics (Ollerenshaw & Smith, 1969) and population size (Ward et al., 2014).   

There are mainly two methods for measuring the structural and physical changes 

occurring in the ecosystem and for better forecasting, namely population models and species 

distribution models. 

 

2.6.1. Population Models 

Models of population dynamics or the ecological population models provide a proper 

perception about the dynamics and persistence of a population. This model maps the size of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676300/#b51
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676300/#b64
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676300/#b21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676300/#b46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676300/#b54
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676300/#b78
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676300/#b113
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population and age distribution within a population to its decline or extensive growth and 

produces a better prediction regarding the status of a population. The environmental, as well as 

interactions with other and similar species, may also be a deciding factor (Uyenoyama et al., 

2004). Crowder et al., 1994; Crouse et al., 1987; Caswell, 2001 developed a population model 

which helps to reverse the population diminishing of the loggerhead sea turtle. The model 

discloses that the mortality of adults and subadults are the major cause of population decline of 

these species. So an alternate management action had been taken by installing the TED (Turtle 

Exclusion Devices) in shrimp trolls and was favorable to the growth of population size of the 

turtle. Population dynamics models also link the interaction of the environmental variation and 

the population growth such as the influence of the sea level rise on the extinction of polar bears 

(Hunter et al., 2010). The overabundant species population is also managed by the help of the 

population dynamics. Govindarajulu et al. (2005) propose the measures for controlling the 

population of harmful bullfrog of Vancouver Island.   

Even though this model is used extensively for predicting the behavior of a population, 

the amount of uncertainty in the data leads to error in prediction. The complicated biological 

interactions are not flawlessly implemented by this model unless a sufficient amount of data is 

supplied.  

 

2.6.2. Species Distribution Models (SDMs) 

 Species distribution models (SDMs), otherwise called environmental (or ecological) 

niche modeling (ENM), habitat modeling, predictive habitat distribution modeling, and range 

mapping (Elith and Leathwick, 2009) are widely used in ecological and biodiversity 

conservation research for modeling how the species are distributed globally over the 

geographical area. This model accommodates the tools that incorporate known species 

occurrences with environmental data (Phillips et al., 2006). 

2.6.2.1. Correlative SDMs 

Correlative SDMs forecast the influence of climatic variations on the geographical 

distribution of data. (Thomas et al. 2004). In European diadromous fishes the linear combination 

of predictor attributes best suited for the propagation of the species are developed by 

Mennesson-Boisneau et al. (2006).  The statistical records of association of environment to the 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263x.2010.00097.x#b33
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263x.2010.00097.x#b33
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263x.2010.00097.x#b33
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species abundance and occurrence are analyzed in these SDMs for identifying the hindering 

processes to the spread of the species. As per Moilanen & Wintle (2007) the ease of 

implementation of the Correlative SDMs because of simplicity and the capability to model 

complex interactions of the environment with less data requirement provides supremacy over 

other SDMs.  

2.6.2.2. Mechanistic SDMs 

 This model is otherwise called biophysical models or process-based models because it 

aims at mapping the relationship between the physiology of the species and the surroundings 

which has an influence on their abundance and distribution. (Kearney et al., 2009). Other than 

the current radius of the species, the model utilizes the processes or physiological changes within 

the body of organisms with respect to climate variations and vegetation which helps in the 

prediction of the future extension possibilities of species range towards a great extent of the 

ecosystem levels (Porter et al., 2002; Kearney & Porter, 2004; Buckley, 2008; Kearney et al., 

2008; Kearney & Porter, 2009).  For the complex analysis of interactions between the 

environment and climatic influences in large scales, the mechanistic SDMs will not be suitable 

because it requires a large quantity of variables to be considered which makes the model 

computationally and time constrained to carry out both train and validation phases. 

 

2.6.3. Methods used in the Species Distribution Modelling  

Forecasting the geographic ranges of different species with the use of occurrence records 

(presence or absence) and data of environmental variables from the same locality is the focus of 

Species distribution modeling (Phillips et al., 2006; Elith and Leathwick, 2009).The species-

specific interaction had to be studied in conservation planning measures and the best tool 

available for this is species bioclimatic envelope models. They shared the same principle of 

biome envelope models, in which the current distribution of species is used to ‘train’ a model 

for the future incorporation of predicted climatic conditions (Hannah et al., 2002). Envelopes 

were constructed using the Geographic Information System (GIS) software or by genetic 

algorithms or general additive modeling (Peterson et al., 2001; Berry et al., 2002; Midgley et 

al., 2002).  But these models could not model dynamic transitions, interspecific competition, 

herbivory, dispersal or other factors. By coupling with land-use projection models, application 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263x.2010.00097.x#b23
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b29
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b29
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b29
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b19
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b4
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b18
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b18
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b18
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b18
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-263X.2010.00097.x#b20
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of the results of bioclimatic envelope models could be used in real-world conservation (Hannah 

et al., 2002). 

 

2.6.4. Generalized Dissimilarity Models (GDM) 

For the modeling of spatial turnover in community composition among pairs of sites as 

functions of environmental differences between these sites, Generalized Dissimilarity Models 

(GDM) were used (Ferrier et al., 2007). For the estimation of the probability of occurrence of 

distribution of a given species, a kernel regression algorithm was used within the transformed 

environmental space produced by GDM (Lowe, 1995). Elements of matrix regression and 

generalized linear modeling were combined which allowed the user to model non-linear 

responses of the environment which captured the ecologically realistic relationships between 

dissimilarity and ecological distance (Ferrier, 2002). 

 

2.6.5. GLM and GAM models 

Non-parametric and non-linear functions were used by Generalised Linear Models 

(GLM) whereas Generalised Additive Models (GAM) use parametric and combinations of 

linear, quadratic or cubic terms. GAMS can model complex ecological response shapes than 

GLM because of greater flexibility (Yee and Mitchell, 1991). GLM and GAM were widely used 

in species distribution modeling because ecological relationships were modelled realistically 

and they have strong statistical foundations (Jowett et al., 2008; Alexander, 2016; Rezaei and 

Sengül, 2018). 

 

2.6.6. Multivariate Adaptive Regression Splines (MARS) 

For fitting non-linear responses, an alternative regression-based method called 

Multivariate Adaptive Regression Splines (MARS) was used. It used piecewise linear fits rather 

than smooth functions. It was very easy to use in GIS applications for making prediction maps, 

faster to implement compared to GAMs and had the ability to analyze community data (MARS-

COMM) which helped in relating the variation in occurrence of species to the environmental 

predictors in an analysis, and later evaluating the individual model coefficients for separate 

species concurrently (Leathwick et al., 2005).  
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2.6.7. Genetic Algorithm for Rule-set Prediction (GARP) 

For the approximation of bioclim species’ fundamental ecological niches, several 

approaches had been used such as BIOCLIM (Nix, 1986), logistic multiple regression (Peeters 

and Gardeniers, 1998) and Genetic Algorithm for Rule-set Prediction (GARP). GARP was 

defined by heterogeneous rules that defined the polyhedrons in the ecological niche spaces that 

were assumed to be livable by a particular species. GARP is a machine-learning approach and 

also links the occurrence records to the environment variables using envelope, atomic and 

logistic regression rules. GARP included the properties of both BIOCLIM and logistic multiple 

regression (Stockwell and Noble, 1992; Stockwell and Peters, 1999). The extensive testing done 

on the GARP model showed that it has high predictive ability for species geographic 

distributions (Peterson and Cohoon, 1999; Peterson et al., 2001). 

 

2.6.8. Boosted Regression Trees (BRT) 

Boosting Regression Trees were developed in a forward stage-wise manner, where small 

modifications were done in the model at each step for better fitness of data (Friedman et al., 

2000). The use of regression-trees helped in the good selection of relevant variables and it could 

model interactions. It was upon the weighted versions of the data set where the observation that 

was poorly fitted in the preceding model and they were accounted for by adjusting the weights 

(Elith et al., 2006). The correlation between the distributions of adult stages of copepod Oithona 

similis was established using the Boosted Regression tree method (Pinkerton et al., 2010). 

 

2.6.9. Maximum Entropy Modelling (MaxEnt) 

According to Phillips et al., 2006, MaxEnt uses the distribution of maximum entropy.  

Using the background locations and data derived constraints, it approximated the most uniform 

distribution (Philips et al., 2004; Philips et al., 2006). In this model the complexity of the fitted 

functions could be chosen, if presence-only species data were used.  It was observed that 

Maximum entropy modeling (MaxEnt) had done better or as well than other modeling 

techniques (Elith et al., 2006; Hernandez et al., 2006; Philips et al., 2006). Compared to other 

algorithms, MaxEnt achieved higher success rate and it marked the differences even at low 
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sample sizes (Pearson et al., 2007). It is observed that species-specific model parameter tuning 

can enhance models efficiency (Radosavljevic and Anderson, 2014.).  

Several studies have recorded the variability in predictions that may arise from distinct 

MaxEnt background samples, with a specific focus on the extent of the location from which 

they are chosen (Baasch et al., 2010; Giovanelli et al., 2010; Barve et al., 2011). The outputs 

obtained from MaxEnt models fall into three categories namely, the raw output, Cumulative 

output and the logistic output. The difference in the scaling of these three types of outputs plays 

a crucial role in providing differently appearing prediction maps (Merow et al., 2013).  

MaxEnt had used to investigate the distributional patterns of Geckos (Uroplatus spp.) 

for predicting the species distribution (Pearson et al., 2007), American black bear (Ursus 

americanus) for the assessment of denning habitat (Baldwin and Bender, 2008), predicting and 

mapping of Sage grouse’s (Centrocercus urophasianus) nesting habitat, Asian slow lorises 

(Nycticebus spp.) was assessed to threats and species distribution analyzed to find conservation 

urgencies (Thorn et al., 2009). 

 

2.6.10. SDM in marine organisms 

A plethora of research outputs and outcomes are obtained in the marine environment 

using the species distribution modelling. Most of these works are addressing the complex 

interrelations between the environmental variables and the organisms in the sea, the ongoing 

negative effects of climate change, the concern about the spread of alien species and the 

conservation remedies for supporting marine biodiversity (Báez et al., 2010; Gormley et al., 

2015; Cheung et al., 2016). SDM’s have been restyled to web based cellular automated versions 

derived from the model, Invasionsoft to forecast the spread of invasive groups (Johnston and 

Purkis., 2012) and are joined with other common procedures like connectivity analysis for 

proposing reserve networks for conservation planning (Esselman and Allan, 2011).  

In the Baltaic Sea, occurrence and biomass distribution was predicted for twenty-three 

benthic species using methods like random forests (RF), generalized additive models (GAM), 

multivariate adaptive regression splines (MARS) and maximum entropy (Max Ent) in which the 

the predictive performance was shown to be high by the Random forest for both occurrence and 

biomass distribution models (Šiaulys and Bucas., 2012). An attempt to predict the global 

biomass of the seafloor and construction of individual and composite maps of the patterns 
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predicted for this seafloor biomass and abundance of fish and invertebrates were carried out 

employing Random forest (Wei et al., 2010). Distribution modelling systems such as the 

Aquamaps that relied on the presence-only data of species to provide global scale prediction of 

the distribution of marine organisms was also evaluated (Ready et al., 2010). Habitat suitability 

models were constructed for the macrobenthic species that inhabited the soft sediments of the 

Belgian Part of the North Sea and total coverage spatial distribution of these macrobenthos were 

predicted and mapped (Degraer et al., 2008).   

 

The distribution of Patella rustica was modelled using the Classification and Regression 

tree that used the historical distribution data for model training with an aim to use the past and 

present distribution as a tool for examining its response to climate change (Lima et al., 2007). 

Patterns of invasion, extinction and species richness of invertebrates were modelled using 

simulations of environment variables (Jones and Cheung, 2014). The current and future 

potential distribution of two ecologically and economically important mussels, Mytilus edulis 

and M. galloprovincialis were analysed (Fly et al., 2015). Relatively fewer modelling works 

have been performed in other invertebrates like corals, jellyfishes and anemones. 

Species distribution modelling is widely used in research related to marine mammals. 

Habitat degradation together with the mortality of these mammals as fisheries bycatch result in 

their population reduction which demands an increased knowledge of the spatial distribution of 

these marine organisms (Redfern et al., 2006). The social organization, behaviour and the high 

mobility of these organisms make the data collection and estimation challenging (Barlow, 1999: 

Ersts and Rosenbaum, 2003). The distribution pattern of fin whales and striped dolphins with 

respect to the physiographic satellite-based variables were modelled using the Generalised 

additive model and the prediction and habitat characterisation were done using the CART 

(Panigada et al., 2008). Habitat preference models were developed for different mammals 

including bottlenose dolphins Tursiops truncatus, harbour porpoises Phocoena phocoena, 

harbour seals Phoca vitulina and grey seals Halichoerus grypus in the Marine Protected Areas 

of NE Scotland (Bailey and Thompson, 2009). Genetical studies and spatial analysis through 

Classification and Regression Tree (CART) was used to delineate the spatial distribution of 

offshore and coastal ecotypes of bottlenose dolphins in the Northwest Atlantic (Torres et al., 
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2003). Global distribution of marine mammals were mapped using a Relative Environmental 

Suitability (RES) model (Kaschner et al., 2006).  

The prominent issues related to distribution modelling in the marine scenario can be 

summed up as insufficiency of data, bias in spatial and temporal data and the scale of spatial 

and temporal data (Reiss et al., 2014). The difficulty in data collection in marine environments 

renders a data of low spatial resolution and higher bias (Phillips et al., 2009; Robinson et al., 

2011). Responses such as abundance or biomass provide more details than predictions of 

occurrence only, but require higher quality data (Vierod et al., 2014).  

2.6.11. Species Distribution Modelling of marine fishes 

The one-fourth of the literature on the marine SDMs cover the distribution of marine 

fishes and among the marine organisms (Robinson et al., 2011; Monk et al., 2012). Most of the 

SDMs on them are based on the presence (occurrence) only data for abating the errors (Robinson 

et al., 2017). The published global occurrence data can be collected from various databases like 

FishBase (Froese and Pauly, 2007). The most commonly used three approaches to model the 

distribution of marine fishes are Maxent, AquaMaps and the Sea Around Us Project models 

(Jones et al., 2012, Ready et al., 2010; Close et al., 2006; Bigg et al., 2008; Cheung et al., 2009). 

The main objective of the study conducted by Ready et al., 2010 was to compare the prediction 

using AquaMap of twelve marine species in which nine species were fishes (Carangoides 

equula, Psettodes erumei, Clupea harengus, Sardinops sagax, Solea solea, Trachurus 

trachurus, Squalus megalops, Zeus faber, Squalus acanthias) with other modelling approaches 

such as GARP, GLM, GAM and MaxEnt. DeVaney, 2016 modelled the distribution of deep 

pelagic eels, the gulper eel Eurypharynx pelecanoides and the bobtail eel Cyema atrum, using 

MaxEnt. The glacial persistence of Atlantic cod was modelled using two approaches among 

which one was Maxent (Bigg et al., 2008). The spatial and temporal distribution of Atlantic 

herring (Clupea harengus), Atlantic mackerel (Scomber scombrus), and butterfish (Peprilus 

triacanthus) were modelled in the Northwest Atlantic shelf area using MaxEnt (Wang et al., 

2018). In the studies of Cheung et al., 2009 they projected the distributional range of 1066 

species of marine fishes and invertebrates in the year 2050 under the impact of climate change 

and thereby they predicted the global patterns of local extinction, invasion etc. for the year 2050.  

  Other approaches are also used for modelling marine fishes. Moore et al., 2009 used 

SDM for the identification of significant environmental variables that influence the spatial 
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distribution of demersal fishes and for the assessment of the relationship between them. They 

modelled the distribution of four demersal fish species using classification trees (CTs) and 

generalized additive models (GAMs). Swain et al., 2015 in his study titled ‘Spatial distribution 

of fishes in a Northwest Atlantic ecosystem in relation to risk of predation by a marine mammal’ 

studied the predation risk on fishes (Atlantic cod, Gadus morhua L.; white hake, Urophycis 

tenuis Mitchill; and thorny skate, Amblyraja radiata Donovan) by grey seals by comparing the 

changes in their spatial distribution over the period 1971 – 2012 with that of non – prey species. 

GAMs were used for modelling the distribution by integrating the effects of predation risk, water 

temperature and population abundance. Using GAMs, the influence of zooplankton biomass and 

oceanographic features on the spatial distribution of pre spawning herring Clupea harengus, L 

was studied (Maravelias & Reid, 1997). Schmiing et al., 2013 performed a predictive modelling 

of selected coastal reef fishes using GAMs in which the relationship between the species and 

the environment was analysed. Young and Carr, 2015, studied and predicted the distribution, 

richness and assemblage structure of selected fish species (tubesnout , black surfperch, striped 

surfperch, kelp greenling, olive rockfish, kelp rockfish, gopher rockfish, black rockfish, black 

and yellow rockfish and blue rockfish) along the central coast of California, USA using GAMs. 

  Maxwell et al., 2009 used GLMs for their study focuses on the spatial distribution of the 

fishes which are mentioned in the title in the parts of the Irish Sea, Celtic Sea and the English 

Channel. The distribution of eighteen littoral and benthic fishes were predicted by Wiley et al., 

2003 using Genetic Algorithm for Rule Set Prediction (GARP). 
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CHAPTER 3 

3. MATERIAL AND METHODS 

3.1. Study area 

The area chosen for the present study is the Northern Indian Ocean. This study area 

comprises of Arabian Sea, Bay of Bengal, Red Sea, the Persian Gulf, Andaman Sea, Gulf of 

Thailand, Gulf of Aden, and Malacca strait etc. The Indian Ocean includes nearly 20% of the 

water in the world (Fatima and Jamshed, 2015). The unique feature of the Indian ocean is that 

it is a closed ocean as unlike the Atlantic and Pacific ocean, it is land-locked in the north and 

does not extend to the northern hemisphere's cold climate areas. (Bouchard and Crumplin, 2013) 

The area of the Indian Ocean selected for this study comes under the jurisdiction of various 

nations. 

 

Fig. 1 Satellite Map of Study Area 
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3.2. Data Sources 

3.2.1. EOF Data Source 

Sea Surface Temperature (SST) monthly data of 1/12° horizontal resolution for grid 

points from 20°E to 100°E longitude and 30°N to 20° latitude for the years 1993 to 2018 are 

utilised. The global reanalysis dataset is an open-source database of Copernicus Marine 

Environment Monitoring Services (CMEMS) and is maintained by of European Union. 

3.2.2. Species Occurrence Data  

The species occurrence data of 34 species has been collected from Global Biodiversity 

Information Facility (GBIF), Fish base, OBIS and CMFRI databases. The distribution points of 

the species were plotted using ArcGIS software. The fishes selected for the study are - 

 

Alepisaurus ferox Lowe, 1833: They are bathypelagic, oceanodromous (Orlov and Chenko, 

2002) mainly inhabit in the tropical and subtropical waters. They belong to IUCN ‘least concern’ 

category (CITES, 2017). 

 

Spratelloides delicatulus (Bennett, 1832):  They are reef- associated fish seen at a depth of 0-

50m (Whitehead, 1985). This pelagic (Carpenter et al., 1997), inshore, schooling fish belong to 

the IUCN ‘least concern’ category (IUCN, 2019). 

 

Sardinella longiceps Valenciennes, 1847: they can be found in the north and western parts on 

Indian Ocean, Gulf of Aden and Gulf of Oman. This coastal pelagic (Carpenter et al., 1997) 

breeds only once in a year off the western coast of India. 

 

Stolephorus indicus (van Hasselt, 1823): Indian anchovy is distributed in the Red sea, South 

Africa, Persian Gulf, Madagascar and Mauritius (Russell and Houston, 1989). Coastal pelagic 

(Carpenter et al., 1997) schooling species feeds mainly on the zooplanktons.   

 

Uraspis secunda  (Poey, 1860):  The cottonmouth jack widely distributed in warm water. 

Distributed in western Indian Ocean (Vaniz, 1984). Adults are mostly oceanic and pelagic.  
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Seriola rivoliana Valenciennes, 1833: Longfin yellowtail is a reef-associated fish seen at a depth 

of 5 to 245m (Allen and Erdmann, 2012). Distributed in the Indo-pacific region (Vaniz, 1984). 

 

Megalaspis cordyla (Linnaeus, 1758): Torpedo scad is a reef-associated fish seen at a depth of 

20 to 100m (Sakaff and Esseen, 1999). Distributed in the Indo west pacific region.  

 

Elagatis bipinnulata (Quoy & Gaimard, 1825):   Rainbow runner is a subtropical reef- 

associated fish seen at a depth of 0 to 150m (Lieske and Myers, 1994) 

 

Decapterus macarellus (Cuvier, 1833): Mackerel scad is a subtropical circumglobal fish seen 

at a depth of 0 to 400m (Mundy, 2005). Mainly distributed in Red sea, Gulf of Aden, Seychelles, 

Mascarenes,South Africa and Sri Lanka 

 

Caranx sexfasciatus Quoy and Gaimond, 1825: Bigeye trevally is a tropical, amphidromous 

distributed in the Indo-Pacific region (Vaniz, 1984) 

 

Coryphaena hippurus Linnaeus, 1758: Common dolphinfish is a subtropical (Palko et al., 1982), 

pelagic- neritic, oceanodromous (Riede, 2004). This highly migratory fish (FAO, 1994) 

occupies the tropical and subtropical waters of Indian Ocean. 

 

Gempylus serpens Cuvier, 1829: Snake mackerel are distributed in the tropical and subtropical 

seas. They are solitary (Nakamura and Parin, 1993) 

 

Istiophorus platypterus (Shaw, 1792): The Indo-Pacific sailfish is mainly distributed in the 

tropical and temperate waters. They are epipelagic found above the thermocline. 

 

Makaira nigricans Lacepede, 1802: Blue marlin belongs to the ‘vulnerable’ category of IUCN 

(IUCN, 2019). Distributed in the subtropical waters with temperature ranging from 22°C to 

31°C (Nakamura, 1985) 
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Thunnus obesus (Lowe, 1839): Bigeye tuna belong to the ‘vulnerable’ category of IUCN (IUCN, 

2019). Changes in the surface temperature and thermocline affect the distribution of this species. 

(Maigret and Ly, 1986) 

 

Thunnus albacare (Bonnaterre, 1788): Yellowfin tuna occurs above or below the thermocline. 

This migratory species occupies all the tropical and subtropical seas except Mediterranean Sea. 

(FAO, 1994). It is a ‘Near threatened’ species (IUCN, 2019). 

 

Thunnus alalunga (Bonnaterre, 1788): Albacore is distributed in all the tropical and temperate 

seas. It is a ‘Near threatened’ species (IUCN, 2019).  

 

Rastrelliger kanagurta (Cuvier, 1816):  Indian mackerel occupies mainly in the Indo- west 

pacific region. This pelagic neritic schooling species forms feeds on phytoplanktons and small 

zooplankton (Collette, 2001) 

 

Katsuwonus pelamis (Linnaeus, 1758): Skipjack tuna is a migratory fish which occupies the 

tropical and warm temperate of all oceans. It is a tropical fish which occupies at a depth of 0 to 

260m (Collette, 1995) and temperature 15°C to 30°C. (Collette and Nauen,1983) 

 

Scomberomorus commerson (Lacepède, 1800): Narrow barred Spanish mackerel occupies a 

depth range of 10 to 70m (Pauly et al., 1996) in the Indo west pacific regions (Kailola et al., 

1993). It belongs to the ‘Near threatened’ category (IUCN, 2019) 

 

Sphyraena barracuda Edwards, 1771: Great barracuda is a subtropical species (Florida Museum 

of Natural History, 2005) occupying at a depth of 1 to 100m (Sylva, 1990). It is distributed in 

the Red sea, east coast of Africa (Cervigón, 1993) 

 

Xiphias gladius Linnaeus, 1758: Swordfish occupies tropical and temperate waters of Indian 

ocean, Pacific and Atlantic Ocean (FAO, 1994). It is a ‘Endangered’ species. (IUCN,2019). 
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Canthidermis maculata Bloch, 1786: Rough triggerfish is a sub-tropical reef associated fish 

occupies at a depth of 1 to 110m (Lieske and Myers, 1994). It is distributed in the western Indian 

Ocean (Smith and Heemstra, 1986) 

 

Carcharhinus falciformis (Müller and Henle, 1839): Silky shark is mainly distributed in the 

Indo-pacific region (Compagno et al., 1989). This reef-associated (Riede, 2004) fish prefers 0 

to 4000m depth (Florida Museum of Natural History, 2005). This belongs to the ‘Vulnerable’ 

category (IUCN, 2019). 

 

Carcharhinus plumbeus (Nardo, 1827): Sandbar shark is scattered over the Persian Gulf, Red 

Sea, and East Africa. It belongs to ‘vulnerable’ category (IUCN, 2019) 

 

Carcharhinus limbatus (Müller and Henle, 1839): Blacktip shark is a ‘Near threatened’ species 

(IUCN, 2019). It is an anadromous reef-associated fish (Riede, 2004) distributed in the Persian 

Gulf, Red sea, south Africa (Carpenter et al.,1997) 

Carcharhinus brevipinna (Müller and Henle, 1839): Spinner sharks are considered as 

‘Vulnerable’ species (IUCN, 2019). They are seen in the tropical and temperate waters of Indo-

pacific. 

Carcharhinus longimanus (Poey, 1861): Oceanic white tip sharks are highly migratory and 

distributed in tropical and temperate waters all over the globe. They are considered as 

‘Vulnerable’ species (IUCN, 2019) 

Sphyrna mokarran (Rüppell, 1837): Great hammarhead are considered as ‘Endangered’ species 

(IUCN, 2019). They are distributed in the warm temperate and tropical seas (Compagno, 1998) 

Sphyrna zygaena (Linnaeus, 1758): Smooth hammerhead is distributed in the Indo pacific 

region mainly from South Africa to Sri Lanka (Compagna, 1998). They are considered as 

‘Vulnerable’ species (IUCN, 2019) 

Alopias vulpinus (Bonnaterre, 1788): Thresher are cosmopolitans in tropical and temperate 

waters (Compagno, 2005). They are considered as ‘Vulnerable’ species (IUCN, 2019) 
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Rhincodon typus Smith, 1828: Whale sharks are ‘Endangered’ species (IUCN, 2019). 

Distributed in the tropical and warm temperate waters all over the globe. 

Galeocerdo cuvier (Péron & Lesueur, 1822): Tiger sharks are ‘Near threatened’ species (IUCN, 

2019). Distributed in the tropical and warm temperate waters all over the globe. 

3.2.3. Selection of environmental layers 

The environmental parameters which affect the distribution of marine fish are 

bathymetry, SST mean, SST maximum, SSS mean, chlorophyll a, current. The gridded 

bathymetry data were collected from GEBCO with 30 arc second resolution. All other variables 

were obtained from an open-source database- Bio oracle with 5arc minute (approximately 

9.2km) resolution. The projection of each layer is made up of GCS_WGS_1984 coordinate 

system using ArcGIS software and clipped to the extent identical to the study area. This is then 

interpolated with Inverse Distance Weighting (IDW) using a mask polygon. The rasters were 

resampled to uniform resolution (9 x 9km). All the files were converted to ASCII in ArcMap. 

 

The datasets for RCP 4.5, 6.0, and 8.5 for the periods 2040-2050 and 2090-2100 were 

taken from Bio-oracle and GEBCO. It is then reprojected and resampled to the same extend 

3.3. Data Analysis 

Data analysis is done on anaconda platform using python programming verion 3.7.6 

3.3.1. Climatology maps 

The monthly climatology is calculated from the monthly mean SST data using climate 

data operator (CDO). The difference between the monthly mean SST and monthly climatology 

provides the monthly anomaly 

3.3.2. Trend maps 

The linear and second order trend has been plotted using the time series data and the first 

order warming trend per year and for the 25years has also been calculated. 
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3.3.3. EOF 

Empirical Orthogonal Function (EOF) analysis describe time series by using a collection 

of orthogonal functions (EOFs) in the following way 

Z(x,y,t) = N∑𝑘=1 PC(t).EOF(x,y) 

Z(x,y,t) is the original time series as a function of time (t)and space (x,y); PC(t) is the principal 

component that describes the increasing EOF's amplitude changes over time; EOF(x, y) shows 

the spatial structure (x, y) of the major factors which may account for the temporal variation of 

Z. 

The SST monthly anomaly data is subjected to empirical orthogonal function (EOF) 

analysis to find the principal components as well as the dominant modes of variability in spatial 

and temporal scales. Four EOFs and their subsequent principal components are plotted and 

analysed. The spatial EOFs are derived by calculating the eigenvalues and eigenvectors of the 

covariance matrix and principal component time series for each mode is plotted by projecting 

the resulting eigenvalue to the anomalies (Ehsan et al., 2020) 

3.3.4. Correlation 

The EOF1 and 2 are taken and correlation analysis has been done using Karl Pearson’s 

rank correlation with Southern Oscillation Index (SOI), Dipole Mode Index (DMI), Multivariate 

ENSO Index (MEI.v2) and Bivariate El-Niño Southern Oscillation Index (BEST) 

3.3.5. Predicting Marine fish Distribution 

The maximum entropy model (MaxEnt) is a software package for species distribution 

modeling. Maxent takes the presence-only data and environmental predictors which affects the 

species as input and displays the current and future distribution (Merow, 2013). The species data 

should be given in ‘.csv’ format and environmental layers should be in ‘.asc’ format. The area 

under the receiver operating characteristic (ROC) curve (AUC) provides a single measure of 

model performance. The maximum achievable AUC is 1 and the higher value of AUC indicates 

that the model can accurately differentiate between presence and potentially modeled location 

(Merow, 2013). 
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3.3.6. Prediction of Future Distribution 

The environmental layer is projected to another layer which contains future 

environmental data, to predict the future distribution of all the predicted marine fish species. 

The name of the layer, resolution, and projection should be the same as that of the former layer. 

Species distribution modeling for RCP 4.5, 6.0 and 8.5 have been done for the year 2040-2050 

and 2090-2100 scenarios. 
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CHAPTER 4 

4. RESULTS 

4.1. Climate Variability 

4.1.1. Empirical Orthogonal Formula (EOF) 

 
Fig. 2 Empirical Orthogonal Maps (EOF1, EOF2, EOF3, EOF4) maps of SST data in the NIO region 
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4.1.2. Time Series  

 

Fig. 3  Trend lines PC1, PC2, PC3 and PC4 of SST data from the NIO region 
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4.2. Species distributions models 

The current distribution and future distribution for the years 2040-2050 and 2090-2100 

with RCP 4.5, 6.0 and 8.5 are predicted. The families selected are Clupeidae, Carangidae, 

Scombridae, Carcharhinidae, Alepisauridae, Corphaenidae, Istiophoridae, Sphyraenidae and 

Balistidae.  The predicted species distribution showing the habitat suitability of each species is 

shown in the map. The AUC value showing the model predictability is also given in the figure. 

4.2.1. Alepisaurus ferox Lowe, 1833 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Aulopiformes Alepisauridae Alepisaurus ferox 

4.2.1.1. Model Evaluation 

The area under the curve value for the model is 0.824 with 0.012 standard deviation (Fig. 

38). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value of 51.9 and permutation importance of 53.6. Distance from 

the shore, mean temperature, minimum temperature, maximum temperature, current velocity 

mean and current velocity minimum contribute 11.8%, 10.3%, 8.4%, 7.5%, 6.6% and 3.6% 

respectively (Table 1). Jackknife test reveals that salinity-mean has the highest gain among all 

parameters when used in isolation (Fig. 4).  
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Variable Percent contribution Permutation importance 

Salinity-Mean 51.9 53.6 

Distance from the shore 11.8 12.7 

Temperature-Mean 10.3 11.8 

Temperature-Min 8.4 7.5 

Temperature-Max 7.5 7.3 

Current Velocity-Mean 6.6 3.9 

Current Velocity-Min 3.6 3.2 

Table 1 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Alepisaurus ferox 

 

 

Fig. 4 Jackknife test showing the AUC values when a variable is used in isolation or the variable is 

excluded from the model 
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4.2.1.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western Indian Ocean 

close to Madagascar and western coast of Madagascar, East coast of Africa, Southern part of 

Arabian Sea and Bay of Bengal etc. with > 75% probability. The predicted distribution for 2040-

2050 is concentrated in the same areas as that of the current distribution but the probability of 

distribution increases for RCP 4.5 with probability > 85% and further rises from RCP 6.0 to 8.5 

with probability 50% to 70% (Fig. 39). The extent also shows a gradual increase. The AUC 

values for RCP 4.5, 6.0 and 8.5 are 0.825 (SD 0.009), 0.831 (SD 0.014) and 0.816 (SD 0.007) 

respectively (Fig. 4). Salinity mean shows the highest test gain when used in isolation among 

all the other environmental variables. It is also the one environmental variable which has the 

maximum percent contribution in both RCPs. The predicted distribution for 2090-2100 shows 

an abrupt rise in the extent as well as in the probability of distribution (50-70%). The AUC 

values for RCP 4.5, 6.0 and 8.5 are 0.823 (SD 0.011), 0.824 (SD 0.011) and 0.819 (SD 0.012) 

respectively (Fig. 4) 

4.2.2. Spratelloides delicatulus (Bennett, 1832) 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Clupeiformes Clupeidae Spratelloides delicatulus 

 

4.2.2.1.  Model Evaluation 

The area under the curve value for the model is 0.843, with standard deviation is 0.100. 

The model prediction for the current distribution shows distance from the shore as the greatest 

percentage contributor with value 45.9 and permutation importance 42.3. (Table 2). Current 
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velocity mean, temperature minimum, salinity mean, maximum temperature, mean temperature 

and current velocity minimum contribute 36.4 %, 0.1%, 0.9%, 16.7%, 0%, and 0% respectively 

Jackknife test reveals that distance from the shore has the highest gain among all parameters 

when used in isolation (Fig. 5). 

Variable Percent contribution Permutation importance 

Distance from the shore 45.9 42.3 

Current Velocity Mean 36.4 28.1 

Temperature Min  0.1 0.2 

Salinity Mean 0.9 1.8 

Temperature Mean 0 0 

Current Velocity Min 0 0 

Temperature Max 16.7 27.7 

Table 2 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Spratelloides delicatulus 

 

Fig. 5 Jackknife test showing the AUC values when a variable is used in isolation or the variable is 

excluded from the model 
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4.2.2.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western coast of India, 

north western coast of Srilanka, western coast of Sumatra, north western and north eastern coast 

of Madagascar and along the Oman coast with probability of distribution 85 to 92 %. The 

predicted distribution for 2040-2050 is concentrated in the same areas as that of the current 

distribution but the probability of distribution decreased in RCP 4.5 whereas in RCP 6 of the 

same decade it regained the distribution similar to current prediction. The prediction of RCP 8.5 

showed a very extensive distribution with the species also occupying the coast of Bay of Bengal 

along the Myanmar and Bangladesh coast, the entire Oman coast, the Persian Gulf and Gulf of 

Oman and Red sea. (Fig. 41). The extent also shows a considerable increase in year 2040-50 

RCP 8.5. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.807 (SD 0.079), 0.774 (SD 0.121) and 

0.784 (SD 0.088) respectively (Fig. 40). Distance from the shore shows the highest test gain 

when used in isolation among all the other environmental variables. It is also the one 

environmental variable which has the maximum percent contribution in both RCPs. The 

predicted distribution for 2090-2100 shows a further decline in the extent as well as in the 

probability of distribution from RCP 4.5 to RCP 8.5 compared to the present prediction as well 

the RCP scenarios of 2040-50 decade (50-70%). The species considerably reduced its 

probability of distribution in western coast of India, western Sumatra coast and coast of 

Madagascar. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.843 (SD 0.052), 0.801 (SD 0.101) 

and 0.781 (SD 0.094) respectively (Fig. 40). 
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4.2.3. Sardinella longiceps Valenciennes, 1847 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Clupeiformes Clupeidae Sardinella longiceps 

4.2.3.1. Model Evaluation 

The area under the curve value for the model is 0.990 with 0.009 standard deviation (Fig. 

42). The model prediction for the current distribution shows distance from the shore as the 

greatest percentage contributor with value 62.7 and permutation importance 92.1. Current 

velocity mean, temperature minimum, salinity mean, maximum temperature, mean temperature 

and current velocity minimum contribute 2.4%, 6.3%, 6.3%, 5%, 15.9% and 1.3% respectively 

(Table 3). Jackknife test reveals that distance from the shore has the highest gain among all 

parameters when used in isolation (Fig. 6). 

Variable Percent contribution Permutation importance 

Distance from the shore 62.7 92.1 

Current Velocity Mean 2.4 0.2 

Temperature Min  6.3 0.3 

Salinity Mean 6.3 2 

Temperature Mean 15.9 2.1 

Current Velocity Min 1.3 1.9 

Temperature Max 5 1.4 

Table 3 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Sardinella longiceps 
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Fig. 6 Jackknife test showing the AUC values for S. longceps when a variable is used in isolation or 

the variable is excluded from the model 

4.2.3.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western and central coast 

of India with a probability for the distribution of the species probability of 95- 100%. The eastern 

coast of Africa, Gulf of Oman and Srilankan coast has a distribution of 60-85% (Fig. 43). The 

predicted distribution for 2040-2050 shows that in RCP 4.5, the species distribution is 

concentrated in eastern coast of Africa and Northwestern coast of Madagascar with the same 

pattern observed in western Indian coast. During RCP 6 of this decade, the eastern Africa and 

western Madagascar coast shows an increase in the species whereas the concentration in Indian 

coast is considerably diminished. Under RCP 8.5 of this decade, the species distribution 

diminishes throughout the northern Indian Ocean. The AUC values for RCP 4.5, 6.0 and 8.5 are 

0.988 (SD 0.006), 0.990 (SD 0.005) and 0.984 (SD 0.008) respectively (Fig. 42). Distance from 

the shore shows the highest test gain when used in isolation among all the other environmental 

variables. It is also the one environmental variable which has the maximum percent contribution 

in both RCPs. The predicted distribution of the RCP 4.5 of decade 2090-100 shows the species 

might regain its distribution in eastern African coast similar to that of RCP 6 of decade 2040-50 
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decade with an added distribution in the Gujarat coast of India. The pattern is retained in RCP 

6 of the decade 2090-2100 but under RCP 8.5 of 2090-2100, it is seen that the distribution of 

Sardinella longiceps above 90% probability is highly restricted only to the western Gujarat coast 

of India. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.990 (SD 0.007), 0.984 (SD 0.009) and 

0. 0.985 (SD 0.011) respectively (Fig. 42) 

4.2.4. Stolephorus indicus (van Hasselt, 1823) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Clupeiformes Engraulidae Stolephorus indicus 

 

4.2.4.1. Model Evaluation 

The area under the curve value for the model is 0.958 with 0.023 standard deviation (Fig. 

44). The model prediction for the current distribution shows Distance from shore has the greatest 

percentage contributor with value 73 and permutation importance 85.3. Temperature minimum 

temperature mean and salinity mean contribute 9.2%, 1.8% and 9.1% respectively (Table 4). 

Jackknife test reveals that Distance from shore has the highest gain among all parameters when 

used in isolation (Fig. 7). 
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Variable Percent contribution Permutation importance 

Distance from the shore 73 85.3 

Current Velocity Mean 4.7 1.8 

Temperature Min  9.2 3.7 

Salinity Mean 9.1 6.6 

Temperature Mean 1.8 0.5 

Current Velocity Min 1.7 1.3 

Temperature Max 0.5 0.7 

Table 4 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Stolephorus indicus 

 

Fig. 7 Jackknife test showing the AUC values of S. indicus when a variable is used in isolation or the 

variable is excluded from the modelt 

4.2.4.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the eastern and Western coast 

of India, eastern coast of Africa, western Madagascar, Andaman Sea, Red sea, Sumatra coast 

etc. with > 71% probability (Fig. 45). The predicted distribution for 2040-2050 is concentrated 

in the same areas as that of the current distribution but the probability of distribution decreases 

from RCP 4.5, 6.0 to RCP 8.5 with probability 50% to 70%. The extent also shows a gradual 
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decrease. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.967(0.017), 0.964 (SD 0.021) and 

0.957 (SD 0.030) respectively (Fig. 44). Distance from shore shows the highest test gain when 

used in isolation among all the other environmental variables. It is also the one environmental 

variable which has the maximum percent contribution in both RCPs. The predicted distribution 

for 2090-2100 shows a further decline in the extent as well as in the probability of distribution 

(50-70%). The AUC values for RCP 4.5, 6.0 and 8.5 are 0.865(0.289), 0.958 (SD 0.044) and 

0.961 (SD 0.022) respectively (Fig. 44) 

4.2.5. Uraspis secunda  (Poey, 1860) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Carangidae Uraspis secunda 

 

4.2.5.1. Model Evaluation 

The area under the curve value for the model is 0.914 with 0.018 standard deviation (Fig. 

46). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 47.1 and permutation importance 52.8. Temperature mean, 

current velocity mean, temperature-min contribute 21.3%, 11.4% and 9.6% respectively (Table 

5). Jackknife test reveals that Salinity mean has the highest gain among all parameters when 

used in isolation (Fig. 8). 
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Variable Percent contribution Permutation importance 

Salinity-Mean 47.1 52.8 

Temperature-Mean 21.3 23.3 

CurrentVelocity-Mean 11.4 6.2 

Temperature-Min 9.6 5.9 

Temperature-Max 4 5 

Distance from the shore 3.3 5.2 

Current Velocity Min 3.2 1.6 

Table 5 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Uraspis secunda 

 

Fig. 8 Jackknife test showing the AUC values of U. secunda when a variable is used in isolation or the 

variable is excluded from the model 

4.2.5.2. Predicted distribution 

The predicted current distribution is mainly concentrated in a small region in the Western 

coast of Madagascar with >85% and also along western Indian Ocean close to Madagascar with 

75% probability (Fig. 45). The predicted distribution for 2040-2050 is concentrated in the same 

areas as that of the current distribution but the probability of distribution decreases from RCP 

6.0 to RCP 8.5 with probability 50% to 75%. The extent also shows a gradual decrease. The 
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AUC values for RCP 4.5, RCP 6.0 and 8.5 are 0.909 (SD 0.025), 0.918 (SD 0.012) and 0.927 

(SD 0.013) respectively (Fig. 46). Salinity mean shows the highest test gain when used in 

isolation among all the other environmental variables. It is also the one environmental variable 

which has the maximum percent contribution in both RCPs. The predicted distribution for 2090-

2100 shows a further decline in the extent as well as in the probability of distribution (50-

70%).The AUC values for RCP 4.5, RCP 6.0 and 8.5 are 0.920 (SD 0.017), 0.902(SD 0.017) 

and 0.916(SD 0.013) respectively (Fig. 46)  

4.2.6. Seriola rivoliana Valenciennes, 1833 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Carangidae Seriola rivoliana 

 

4.2.6.1. Model Evaluation 

The area under the curve value for the model is 0.901 with 0.022 standard deviation (Fig. 

48). The model prediction for the current distribution shows Salinity-Mean as the greatest 

percentage contributor with value 46.5 and permutation importance 46.1. Current Velocity-

Mean, Temperature-Min and Mean temperature contribute 18.6%, 9.8% and 9.4% respectively 

(Table 6). Jackknife test reveals that Salinity-Mean has the highest gain among all parameters 

when used in isolation (Fig. 9). 
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Variable Percent contribution Permutation importance 

Salinity-Mean 46.5 46.1 

Current Velocity-Mean 18.6 15.6 

Temperature-Min 9.8 11 

Temperature-Mean 9.4 13.4 

Temperature-Max 7.8 6.2 

Distance from the shore 4.7 5.2 

Current Velocity-Min 3.2 2.5 

Table 6 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Seriola rivoliana 

 

Fig. 9 Jackknife test showing the AUC values f Seriola rivoliana when a variable is used in isolation or 

the variable is excluded from the model 

4.2.6.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western Indian Ocean close 

to Madagascar and western coast of Madagascar with > 75% probability (Fig. 49). The predicted 

distribution for 2040-2050 is concentrated in the same areas as that of the current distribution 

but the probability of distribution decreases from RCP 6.0 to RCP 8.5 with probability 50% to 

75%. The extent also shows a gradual decrease. The AUC values for RCP 4.5, RCP 6.0 and 8.5 
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are 0.893 (SD 0.019), 0.895 (SD 0.007) and 0.890 (SD 0.026) respectively (Fig. 48).Salinity 

mean shows the highest test gain when used in isolation among all the other environmental 

variables. It is also the one environmental variable which has the maximum percent contribution 

in both RCPs. The predicted distribution for 2090-2100 shows a further decline in the extent as 

well as in the probability of distribution (50-70%). The AUC values for RCP 4.5, RCP 6.0 and 

8.5 are 0.904 (SD 0.020), 0.896 (SD 0.018) and 0.889 (SD 0.027) respectively (Fig. 48). 

4.2.7. Megalaspis cordyla (Linnaeus, 1758) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Carangidae Megalaspis cordyla 

 

4.2.7.1. Model Evaluation 

The area under the curve value for the model is 0.959 with 0.014 standard deviation (Fig. 

50). The model prediction for the current distribution shows distance from the shore as the 

greatest percentage contributor with value 93.3 and permutation importance 92. Current 

Velocity-Mean, current velocity-min and temperature-max contribute 5.2%, 1.2% and 0.3% 

respectively (Table 7). Jackknife test reveals that Distance from the shore has the highest gain 

among all parameters when used in isolation (Fig. 10). 

 

 

Variable Percent contribution Permutation importance 
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Distance from the shore 93.3 92 

Current Velocity-Mean 5.2 6.2 

Current Velocity-Min 1.2 0.2 

Temperature-Max 0.3 1.5 

Temperature-Min 0 0.1 

Temperature-Mean 0 0 

Salinity-Mean 0 0 

Table 7 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Megalaspis cordyla 

 

 

Fig. 10 Jackknife test showing the AUC values of Megalaspis cordyla when a variable is used in 

isolation or the variable is excluded from the model 

 

4.2.7.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western and Eastern 

coast of India, coast of Burma, Thailand, Malaysia Madagascar, Red sea etc. with > 85% 

probability (Fig. 51). The predicted distribution for 2040-2050 is concentrated in the same areas 

as that of the current distribution but the probability of distribution decreases from RCP 6.0 to 
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RCP 8.5 with probability 50% to 75%. The extent also shows a gradual decrease. The AUC 

values for RCP 4.5, RCP 6.0 and 8.5 are 0.950 (SD 0.013), 0.957 (SD 0.014) and 0.948 (SD 

0.021) respectively (Fig. 50). Distance from the shore shows the highest test gain when used in 

isolation among all the other environmental variables. It is also the one environmental variable 

which has the maximum percent contribution in both RCPs. The predicted distribution for 2090-

2100 shows a further decline in the extent as well as in the probability of distribution (50-70%). 

The AUC values for RCP 4.5, RCP 6.0 and 8.5 are 0.957 (SD 0.016), 0.957 (SD 0.016) and 

0.963 (SD 0.019) respectively (Fig. 50) 

4.2.8. Elagatis bipinnulata (Quoy & Gaimard, 1825) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Carangidae Elagatis bipinnulata 

 

4.2.8.1. Model Evaluation 

The area under the curve value for the model is 0.913 with 0.008 standard deviation (Fig. 

52). The model prediction for the current distribution shows the salinity mean as the greatest 

percentage contributor with value 56.1 and permutation importance 56.1. Mean temperature, 

maximum temperature and salinity contribute 13.3%, 8.2% and 3% respectively (Table 8). 

Jackknife test reveals that salinity mean has the highest gain among all parameters when used 

in isolation (Fig. 11). 

 



45 
 

Variable Percent contribution Permutation importance 

Distance from the shore 4.2 4.8 

Current Velocity Mean 9.4 4.6 

Temperature Min  11.9 11.3 

Salinity Mean 56.1 56.1 

Temperature Mean 15.4 18.9 

Current Velocity Min 0.5 0.5 

Temperature Max 2.5 3.7 

Table 8 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Elagatis bipinnulata 

 

Fig. 11 Jackknife test showing the AUC values of Elagatis bipinnulata when a variable is used in 

isolation or the variable is excluded from the model 

4.2.8.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the south west coast of India 

and east coast of Africa to Madagascar with > 75% probability (Fig. 53). The predicted 

distribution for 2040-2050 is concentrated in the same areas as that of the current distribution 

but the probability of distribution decreases from RCP4.5to 6.0 and shows a slight increase in 

RCP 8.5 with probability 50% to 75%. The extent also shows a gradual decrease. The AUC 
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values for RCP4.5, 6.0 and 8.5 are 0.912 (SD 0.007), 0.911(SD 0.006) and 0.912 (SD 0.008) 

respectively (Fig. 52). Salinity mean shows the highest test gain when used in isolation among 

all the other environmental variables. It is also the one environmental variable which has the 

maximum percent contribution in both RCPs. The predicted distribution for 2090-2100 shows 

a further decline in the extent as well as in the probability of distribution (50-70%). The AUC 

values for RCP4.5, 6.0 and 8.5 are 0.911 (SD 0.005), 0.0912(SD 0.006) and 0.913 (SD 0.011) 

respectively (Fig. 52) 

4.2.9. Decapterus macarellus (Cuvier, 1833) 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Carangidae Decapterus macarellus 

 

4.2.9.1. Model Evaluation 

The area under the curve value for the model is 0.945 with 0.011 standard deviation (Fig. 

54). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 42.8 and permutation importance 43.3. Mean temperature, 

maximum temperature and current velocity contribute 23.5%, 5.4% and 7.4% respectively 

(Table 9). Jackknife test reveals that Salinity mean has the highest gain among all parameters 

when used in isolation (Fig. 2). 
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Variable Percent contribution Permutation importance 

Distance from the shore 8.9 9.4 

Current Velocity Mean 7.4 5.6 

Temperature Min  11.2 9 

Salinity Mean 42.8 43.3 

Temperature Mean 23.5 28.1 

Current Velocity Min 0.8 1.3 

Temperature Max 5.4 3.3 

Table 9 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Decapterus macarellus 

 

 

Fig. 12 Jackknife test showing the AUC values of Decapterus macarellus when a variable is used in 

isolation or the variable is excluded from the model 

 

4.2.9.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western coast of Africa 

near Madagascar with > 71% probability (Fig. 55). The predicted distribution for 2040-2050 is 

concentrated in the same areas as that of the current distribution but the probability of 

distribution decreases from RCP 4.5 to RCP 8.5. The AUC values for RCP 4.5, 6.0 and 8.5 are 
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0.941(SD 0.009) 0.938 (SD 0.008) and 0.943 (SD 0.015) respectively (Fig. 54). Salinity mean 

shows the highest test gain when used in isolation among all the other environmental variables. 

It is also the one environmental variable which has the maximum percent contribution in both 

RCPs. The predicted distribution for 2090-2100 shows a further decline in the extent as well as 

in the probability of distribution (50-70%). The AUC values for RCP 4.5, 6.0 and 8.5 are 0.936 

(SD 0.011) 0.932 (SD 0.013) and 0.937 (SD 0.066) respectively (Fig. 54) 

4.2.10. Caranx sexfasciatus Quoy & Gaimard, 1825 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Carangidae Caranx sexfasciatus 

 

4.2.10.1. Model Evaluation 

The area under the curve value for the model is 0.839 with 0.032 standard deviation (Fig. 

56). The model prediction for the current distribution shows distance from the shore as the 

greatest percentage contributor with value 28.3 and permutation importance 32.8. Salinity mean, 

mean temperature, maximum temperature, minimum temperature, current velocity mean and 

current velocity minimum contribute 23.8 %, 17.9%, 14.7%, 6.5%, 6.3% and 2.6% respectively 

(Table 10). Jackknife test reveals that Salinity- mean has the highest gain among all parameters 

when used in isolation (Fig. 12). 
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Variable Percent contribution Permutation importance 

Distance from the shore 28.3 32.8 

Salinity-Mean 23.8 24.4 

Temperature-Mean 17.9 11 

Temperature-Max 14.7 5.1 

Temperature-Min 6.5 13 

Current Velocity-Mean 6.3 6.5 

Current Velocity-Min 2.6 7.4 

Table 9 Table showing the percentage contribution and permutation importance of each environmental 

variable for the predicted current distribution of Caranx sexfasciatus 

 

Fig. 13 Jackknife test showing the AUC values of Caranx sexfasciatus when a variable is used in 

isolation or the variable is excluded from the model 

4.2.10.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the western coast of India, 

Western coast of Madagascar, the part of Indian Ocean which is west to the Madagascar, 

Southern part of Arabian Sea, etc. with > 75% probability (Fig. 57). The predicted distribution 

for 2040-2050 is concentrated in the same areas as that of the current distribution but the 

probability of distribution decreases from RCP 6.0 to RCP 8.5 with probability 50% to 65. The 

extent also shows a gradual decrease. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.838 (SD 
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0.052), 0.855 (SD 0.038) and 0.810 (SD 0.087) respectively (Fig. 56). Distance from the shore 

shows the highest test gain when used in isolation among all the other environmental variables. 

It is also the one environmental variable which has the maximum percent contribution in both 

RCPs. The predicted distribution for 2090-2100 shows a further decline in the extent as well as 

in the probability of distribution (50-70%). The AUC values for RCP 4.5, 6.0 and 8.5 are 0.846 

(SD 0.033), 0.854 (SD 0.035) and 0.849 (SD 0.047) respectively (Fig. 56) 

4.2.11. Coryphaena hippurus Linnaeus, 1758 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Coryphaenidae Coryphaena hippurus 

 

4.2.11.1. Model Evaluation 

The area under the curve value for the model is 0.873 with 0.019 standard deviation (Fig. 

58). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 35.2 and permutation importance 41.4. Minimum 

temperature, maximum temperature, current velocity mean, temperature mean, distance from 

the shore and current velocity minimum contribute 20.8%, 11.6%, 11.5%, 10.7%, 9.3% and 

0.9% respectively (Table 11). Jackknife test reveals that salinity mean has the highest gain among 

all parameters when used in isolation (Fig. 13). 
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Variable Percent contribution Permutation importance 

Salinity Mean 35.2 41.4 

Temperature Min 20.8 28.1 

Temperature Max 11.6 0.9 

Current Velocity Mean 11.5 2.9 

Temperature Mean 10.7 23.8 

Distance from the shore 9.3 2.8 

Current Velocity Min 0.9 0.1 

Table 10 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Coryphaena hippurus 

 

Fig. 14 Jackknife test showing the AUC values of Coryphaena hippurus when a variable is used in 

isolation or the variable is excluded from the model 

Predicted distribution 

The predicted current distribution is mainly concentrated in the south western coast of India, 

western coast of Africa near Madagascar with > 77% probability (Fig. 59). The predicted 

distribution for 2040-2050 is concentrated in the same areas as that of the current distribution 

but the probability of distribution decreases from RCP 6.0 to RCP 8.5 with probability 50% to 

75%. The extent also shows a gradual decrease. The AUC values for RCP4.5, 6.0 and 8.5 are 

0.878 (SD 0.006), 0.879 (SD 0.009) and 0.874 (SD 0.007) respectively (Fig. 58). Salinity mean 
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shows the highest test gain when used in isolation among all the other environmental variables. 

It is also the one environmental variable which has the maximum percent contribution in both 

RCPs. The predicted distribution for 2090-2100 shows an increase in distribution in RCP 4.5 

and decline in the extent further. The AUC values for RCP4.5, 6.0 and 8.5 are 0.874 (SD 0.009), 

0.878 (SD 0.008) and 0.876 (SD 0.008) respectively (Fig. 58) 

4.2.12. Gempylus serpens Cuvier, 1829 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Gempylidae Gempylus serpens 

4.2.12.1. Model Evaluation 

The area under the curve value for the model is 0.814 with 0.053 standard deviation (Fig. 

60). The model prediction for the current distribution shows current velocity minimum as the 

greatest percentage contributor with value 31 and permutation importance 15.7. salinity Mean, 

distance from the shore, temperature maximum, temperature mean , temperature minimum, and 

current velocity mean contribute 22.7%,19.7%, 9.7%, 9.4%, 6.2% and 1.3% respectively (Table 

12). Jackknife test reveals that salinity mean has the highest gain among all parameters when 

used in isolation (Fig. 15). 
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Variable Percent contribution Permutation importance 

Current Velocity Min 31 15.7 

Salinity Mean 22.7 30.1 

Distance from the shore 19.7 25 

Temperature Max 9.7 0.5 

Temperature Mean 9.4 21.4 

Temperature Min  6.2 3.6 

Current Velocity Mean 1.3 3.7 

Table 11 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Gempylus serpens 

 

 

Fig. 15 Jackknife test showing the AUC values of Gempylus serpens when a variable is used in 

isolation or the variable is excluded from the model 

 

4.2.12.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western coast of Africa, with     

>75% probability (Fig. 61). The predicted distribution for 2040-2050 is concentrated in the same 

areas as that of the current distribution but the extent of distribution decreases from RCP 4.5 to 

RCP 8.5. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.806 (SD 0.070), 0.800 (SD 0.063) and 
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0.810 (SD 0.087) respectively (Fig. 60). Salinity mean shows the highest test gain when used in 

isolation among all the other environmental variables. Current velocity is the environmental 

variable which has the maximum percent contribution in all RCPs. The predicted distribution 

for 2090-2100 shows a slight increase in the extent. The AUC values for RCP 4.5, 6.0 and 8.5 

are 0.788 (SD 0.057), 0.800 (SD 0.63) and 0.751 (SD 0.093) respectively (Fig. 60) 

4.2.13. Istiophorus platypterus (Shaw, 1792) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Istiophoridae Istiophorus platypterus 

4.2.13.1. Model Evaluation 

The area under the curve value for the model is 0.837 with 0.021 standard deviation (Fig. 62). 

The model prediction for the current distribution shows salinity mean as the greatest percentage 

contributor with value 44.8 and permutation importance 40. Current velocity mean, 

Temperature minimum, Distance from the shore, maximum temperature, mean temperature and 

current velocity minimum contribute 4.3%, 12.8%, 12%, 18.1%, 7.9% and 0% respectively 

(Table 13). Jackknife test reveals that salinity mean has the highest gain among all parameters 

when used in isolation (Fig. 16) 
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Variable Percent contribution Permutation importance 

Distance from the shore 12 12.6 

Current Velocity Mean 4.3 3.2 

Temperature Min  12.8 16.6 

Salinity Mean 44.8 
 

40 

Temperature Mean 7.9 20.2 

Current Velocity Min 0 0.4 

Temperature Max 18.1 7 

Table 12 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Istiophorus platypterus 

 

Fig. 16 Jackknife test showing the AUC values of Istiophorus platypterus when a variable is used in 

isolation or the variable is excluded from the model 

4.2.13.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Persian Gulf, the eastern coast 

of Africa, western coast of Madagascar, Gulf of Aden, Red sea, Arabian Sea and towards the 

north western Indian Ocean with > 50% probability (Fig. 63). The predicted distribution for 

2040-2050 is concentrated in the same areas as that of the current distribution but the probability 

of distribution in Gulf of Aden decreases from RCP 4.5 to RCP 8.5 with probability less than 
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80 %. The extend of the species is also reduced throughout the eastern African coast with the 

probability decreasing to almost below 40% in many portions during the RCP 8.5 of this decade. 

The AUC values for RCP 4.5, 6.0 and 8.5 are 0.846(SD 0.010), 0.837(SD 0.022) and 0.844 (SD 

0.012) respectively (Fig. 62). Salinity mean shows the highest test gain when used in isolation 

among all the other environmental variables. It is also the one environmental variable which has 

the maximum percent contribution in all RCPs. The predicted distribution for 2090-2100 shows 

a further decline in the extent of this species throughout the North western Indian Ocean with 

probability of distribution diminished to less than 40 % in many of the regions. The AUC values 

for RCP 4.5, 6.0 and 8.5 are 0.851 (SD 0.014), 0.844 (SD 0.011) and 0.842(SD 0.012) 

respectively (Fig. 62) 

4.2.14. Makaira nigricans Lacepède, 1802 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Istiophoridae Makaira nigricans 

4.2.14.1. Model Evaluation 

The area under the curve value for the model is 0.832 with 0.071 standard deviation (Fig. 64). 

The model prediction for the current distribution shows Salinity mean as the greatest percentage   

contributor with value 50.8 and permutation importance 50.4. Temperature minimum, current 

velocity mean, temperature mean, distance from the shore, maximum temperature and current 

velocity minimum contribute 31.9%, 11.5%, 3.2%, 1.4%, 0.6% and 0.6% respectively (Table 

14). Jackknife test reveals that Salinity mean has the highest gain among all parameters when 

used in isolation (Fig. 17). 
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Variable Percent contribution Permutation importance 

Distance from the shore 1.4 1.5 

Current Velocity Mean 11.5 9 

Temperature Min  31.9 34.5 

Salinity Mean 50.8 50.4 

Temperature Mean 3.2 3.2 

Current Velocity Min 11.5 9 

Temperature Max 0.6 0.4 

Table 13 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Makaira nigricans 

 

Fig. 17 Jackknife test showing the AUC values of Makaira nigricans when a variable is used in 

isolation or the variable is excluded from the model 

 

4.2.14.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Southwestern parts of Indian 

Ocean with > 83% probability (Fig. 65). The predicted distribution for 2040-2050 is concentrated 

in the same areas as that of the current distribution but the probability of distribution decreases 

from RCP 4.5, RCP 6.0 to RCP 8.5 with probability 67% to 50%. The extent also shows a 

gradual decrease. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.814 (SD 0.063), 0.868 (SD 
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0.066) and 0.868 (SD 0.047) respectively (Fig. 64). Salinity mean shows the highest test gain 

when used in isolation among all the other environmental variables. It is also the one 

environmental variable which has the maximum percent contribution in both RCPs. The 

predicted distribution for 2090-2100 shows a further decline in the extent as well as in the 

probability of distribution (67-33%). The AUC values for RCP 4.5, 6.0 and 8.5 are 0.839 (SD 

0.064), 0.821(SD 0.069) and 0.823 (SD 0.077) respectively (Fig. 64). 

4.2.15. Kajikia albida  (Poey, 1860)  

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Istiophoridae Kajikia albida 

 

4.2.15.1. Model Evaluation 

The area under the curve value for the model is 0.762 with 0.130 standard deviation (Fig. 

66). The model prediction for the current distribution shows current velocity minimum as the 

greatest percentage contributor with value 65.1 and permutation importance 66.6. Salinity-

mean, distance from the shore and minimum temperature contribute 21.4%, 8.9% and 4.6% 

respectively (Table 15).  Jackknife test reveals that Current velocity minimum has the highest 

gain among all parameters when used in isolation (Fig. 18). 
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Variable Percent contribution Permutation importance 

CurrentVelocity Min 65.1 66.6 

Salinity Mean 21.4 25.3 

Temperature Min  4.64 4.3 

Distance from the shore 8.9 3.8 

CurrentVelocity Mean 0 0 

Temperature Mean 0 0 

Temperature Max 0 0 

Table 14 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Kajikia albida 

 

 

Fig. 18 Jackknife test showing the AUC values of Kajikia albida when a variable is used in isolation or 

the variable is excluded from the model 

 

4.2.15.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Eastern coast of Africa, 

western and southern part of Arabian Sea, Indian Ocean, Western coast of Madagascar, Eastern 

coast of India, Red sea etc. with > 85% probability (Fig. 67). The predicted distribution for 2040-

2050 is concentrated in the same areas as that of the current distribution but the probability of 
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distribution decreases from RCP 6.0 to RCP 8.5 with probability 50% to 75%. The extent also 

shows a gradual decrease. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.854 (SD 0.029), 0.792 

(SD 0.075) and 0.809 (SD 0.075) respectively (Fig. 66). Current velocity minimum shows the 

highest test gain when used in isolation among all the other environmental variables. It is also 

the one environmental variable which has the maximum percent contribution in both RCPs. The 

predicted distribution for 2090-2100 shows a further decline in the extent as well as in the 

probability of distribution (50-70%). The AUC values for RCP 4.5, 6.0 and 8.5 are 0.816 

(SD0.088), 0.790 (SD 0.075) and 0.795 (SD 0.072) respectively (Fig. 66) 

4.2.16. Istiompax indica (Cuvier, 1832) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Istiophoridae Istiompax indica 

4.2.16.1. Model Evaluation 

The area under the curve value for the model is 0.850 with 0.019 standard deviation (Fig. 

68). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 38.4 and permutation importance 39.3. Minimum 

temperature, current velocity mean, temperature mean, distance from the shore, maximum 

temperature and current velocity minimum contribute 22.7%, 13.3%, 9.6%, 8.4%, 6% and 1.6% 

respectively (Table 16). Jackknife test reveals that salinity mean has the highest gain among all 

parameters when used in isolation (Fig. 19). 
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Variable Percent contribution Permutation importance 

Salinity Mean 38.4 39.3 

Temperature Min  22.7 18.7 

Current velocity mean 13.3 9.3 

Temperature Mean 9.6 18.7 

Distance from the shore 8.4 5.8 

Temperature Max 6 6.7 

Current Velocity Min 1.6 1.5 

Table 15 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Istiompax indica 

 

 

Fig. 19 Jackknife test showing the AUC values of Istiompax indica when a variable is used in isolation 

or the variable is excluded from the model 

 

4.2.16.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the south western coast of 

India, and east Africa near Madagascar with > 85% probability (Fig. 69). The predicted 

distribution for 2040-2050 is concentrated in the same areas as that of the current distribution 

but the probability of distribution decreases from RCP 4.5 to RCP 8.5. The extent also shows a 
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gradual decrease. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.835 (SD 0.014), 0.847 (SD 

0.024) and 0.841 (SD 0.013) respectively (Fig. 68). Salinity mean shows the highest test gain 

when used in isolation among all the other environmental variables. It is also the one 

environmental variable which has the maximum percent contribution in all RCPs. The predicted 

distribution for 2090-2100 shows a further decline in the extent as well as in the probability of 

distribution (50-70%). The AUC values for RCP 4.5, 6.0 and 8.5 are 0.81 (SD 0.018), 0.865 

(SD 0.014) and 0.851 (SD 0.024) respectively (Fig. 68). 

4.2.17. Thunnus obesus (Lowe, 1839) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Scombridae Thunnus obesus 

4.2.17.1. Model Evaluation 

The area under the curve value for the model is 0.814 with 0.005 standard deviation (Fig. 

70). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 35.3 and permutation importance 57.8. Current velocity 

Mean, temperature maximum, distance from the shore, temperature minimum, temperature 

mean and current velocity minimum contribute 26%, 12.1%, 10.8%, 7.8%, 7.5% and 0.6% 

respectively (Table 17). Jackknife test reveals that salinity mean has the highest gain among all 

parameters when used in isolation (Fig. 20). 
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Variable Percent contribution Permutation importance 

Distance from the shore 10.8 5.3 

Current Velocity Mean 26 2.8 

Temperature Min  7.8 4.2 

Salinity Mean 35.3 57.8 

Temperature Mean 7.5 20 

Current Velocity Min 0.6 1 

Temperature Max 12.1 8.9 

Table 16 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Thunnus obesus 

 

 

Fig. 20 Jackknife test showing the AUC values of Thunnus obesus when a variable is used in isolation 

or the variable is excluded from the model 

 

4.2.17.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western coast of Africa 

and eastern coast of Madagascar with > 85% probability (Fig. 71). The predicted distribution for 

2040-2050 is concentrated below the Indian sub-continent but the probability of distribution 

increased from RCP 4.5 to RCP 8.5 with probability >85% . The AUC values for RCP 4.5, 6.0 
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and 8.5 are 0.813 (SD 0.007), 0.815 (SD 0.005) and 0.819 (SD 0.006) respectively (Fig. 70). 

Salinity mean shows the highest test gain when used in isolation among all the other 

environmental variables. It is also the one environmental variable which has the maximum 

percent contribution in both RCPs. The predicted distribution for 2090-2100 shows a further 

increase in the extent as well as in the probability of distribution. The AUC values for RCP4.5, 

6.0 and 8.5 are 0.815 (SD 0.006), 0.810 (SD 0.07) and 0.811 (SD 0.004) respectively (Fig. 70) 

 

4.2.18. Thunnus albacares (Bonnaterre, 1788) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Scombridae Thunnus albacares 

4.2.18.1. Model Evaluation 

The area under the curve value for the model is 0.787 with 0.007 standard deviation (Fig. 

72). The model prediction for the current distribution shows Salinity mean as the greatest 

percentage contributor with value 57 and permutation importance 51.8. Mean temperature, 

minimum temperature, current velocity mean, maximum temperature, distance from the shore 

and current velocity minimum contribute 16.5, 12.1%, 6.8%, 5.2%, 2.1% and 0.3 % respectively 

(Table 18). Jackknife test reveals that salinity mean has the highest gain among all parameters 

when used in isolation (Fig. 21). 
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Variable Percent contribution Permutation importance 

Distance from the shore                          2.1 3.4 

Current Velocity Mean 6.8 4.7 

Temperature Min  12.1 11.9 

Salinity Mean 57 51.8 

Temperature Mean 16.5 21.4 

Current Velocity Min 0.3 0.5 

Temperature Max 5.2 6.3 

Table 17 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Thunnus albacares 

 

Fig. 21 Jackknife test showing the AUC values of Thunnus albacares when a variable is used in 

isolation or the variable is excluded from the model 

Predicted distribution 

The predicted current distribution is mainly concentrated in the north western Indian 

Ocean, Eastern African coast, Gulf of Aden, western coast of Madagascar and in some parts of 

Western coast of India with a probability greater than 40%. The probability of distribution 

greater than   85% is seen in the eastern coast of Madagascar, Indian Ocean region above the 

Madagascar and some portions of Gulf of Aden (Fig. 73). The predicted distribution for 2040-

2050 is in the same areas as that of the current distribution but the probability of distribution 
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increases to a higher level of almost 100% in RCP 4.5 in most regions of the North western 

Indian Ocean with the first appearance of this species in the Bay of Bengal. The western coast 

of India also shows a distribution probability of around 85%.  During RCP 4.5 and RCP 6, the 

distribution tends to move towards the region of Indian mainland and in RCP 8.5 of decade 

2040-50, the distribution gets restricted to the portion of Indian Ocean located south and south 

west of Kerala coast. The extent also shows a gradual decrease. The AUC values for RCP 4.5, 

6.0 and 8.5 are 0.786 (SD 0.008), 0.788 (SD 0.004) and 0.786 (SD 0.005) respectively (Fig. 72). 

Salinity mean shows the highest test gain when used in isolation among all the other 

environmental variables. It is also the one environmental variable which has the maximum 

percent contribution in both RCPs. The predicted distribution for 2090-2100 shows a further 

increase in the extent as well as in the probability of distribution as from RCP 4.5 to 8.5, the 

distribution spread to most of the north western North Indian ocean as well as to the north eastern 

Indian ocean, more parts of Arabian sea, parts of Gulf of Oman and western Sumatran coast 

with a distribution probability of 50 to 100%. The AUC values for RCP 4.5, 6.0 and 8.5 are 

0.785 (SD 0.004), 0.785 (SD 0.006) and 0.786 (SD 0.005) respectively (Fig. 72) 
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4.2.19. Thunnus alalunga (Bonneterre, 1788) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Scombridae Thunnus alalunga 

4.2.19.1. Model Evaluation 

The area under the curve value for the model is 0.805 with 0.010 standard deviation (Fig. 

74). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 52.9 and permutation importance 64.8. Distance from the 

shore , minimum temperature , maximum temperature , current velocity minimum, current 

velocity mean and mean temperature contribute 23.1%, 7.2%, 6.7%, 5.9%, 3.4% and 0.8% 

respectively (Table 19). Jackknife test reveals that salinity mean has the highest gain among all 

parameters when used in isolation (Fig. 22). 

Variable Percent contribution Permutation importance 

Salinity Mean 52.9 64.8 

Distance from the shore 23.1 11.5 

Temperature Min  7.2 8.7 

Temperature Max 6.7 5.4 

Current Velocity Min 5.9 3.6 

Current Velocity Mean 3.4 4.2 

Temperature Mean 0.8 1.8 

Table 18 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Thunnus alalunga 
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Fig. 22 Jackknife test showing the AUC values of Thunnus alalunga when a variable is used in 

isolation or the variable is excluded from the model 

4.2.19.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Southern part of Arabian 

sea, eastern part of Africa, Indian ocean, Madagascar sea, Southern coast of India etc. with > 

75% probability (Fig. 75). The predicted distribution for 2040-2050 is concentrated in the same 

areas as that of the current distribution but the probability of distribution decreases from RCP 

6.0 to RCP 8.5 with probability 50 % to 65 % . The extent also shows a gradual decrease. The 

AUC values for RCP 4.5, 6.0 and 8.5 are 0.815 (SD 0.012), 0.808 (SD 0.012) and 0.812 (SD 

0.012) respectively (Fig. 74). Salinity mean shows the highest test gain when used in isolation 

among all the other environmental variables. It is also the one environmental variable which has 

the maximum percent contribution in both RCPs. The predicted distribution for 2090-2100 

shows a further decline in the extent as well as in the probability of distribution (50-60%) . The 

AUC values for RCP 4.5, 6.0 and 8.5 are 0.807 (SD 0.013), 0.820 (SD 0.011) and 0.809 (SD 

0.011) respectively (Fig. 74). 
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4.2.20. Rastrelliger kanagurta (Cuvier, 1816) 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Scombridae Rastrelliger kanagurta 

 

4.2.20.1. Model Evaluation 

The area under the curve value for the model is 0.906 with 0.024 standard deviation (Fig. 

76). The model prediction for the current distribution shows distance from the shore as the 

greatest percentage contributor with value 84.8 and permutation importance 86.8. The current 

velocity mean, minimum sea surface temperature, mean salinity, sea surface temperature means, 

and current velocity minimum contribute 9.9%, 3.1%, 1.1%, 0.5% and 0.4% respectively (Table 

20). Jackknife test reveals that distance from the shore has the highest gain among all parameters 

when used in isolation (Fig. 23). 

Variable Percent contribution Permutation importance 

Distance from the shore 84.8 86.8 

Current Velocity Mean 9.9 7.6 

Temperature Min  3.1 3.5 

Salinity Mean 1.1 1.5 

Temperature Mean 0.5 0.7 

Current Velocity Min 0.4 0 

Temperature Max 0.3 0 

Table 19 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Rastrelliger kanagurta 
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Fig. 23 Jackknife test showing the AUC values of Rastrelliger kanagurta when a variable is used in 

isolation or the variable is excluded from the model 

4.2.20.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western coast of India, 

Andaman Sea, Persian Gulf, Red sea, Madagascar etc. with > 85% probability (Fig. 77). The 

predicted distribution for 2040-2050 is concentrated in the same areas as that of the current 

distribution . The AUC values for RCP 4.5, 6.0 and 8.5 are 0.919 (SD 0.025), 0.933(SD 0.016) 

and 0.910 (SD 0.028) respectively (Fig. 76). Distance from the shore shows the highest test gain 

when used in isolation among all the other environmental variables. It is also the one 

environmental variable which has the maximum percent contribution in both RCPs. The 

predicted distribution for 2090-2100 shows a northward shift in distribution in RCP8.5 . The 

AUC values for RCP 4.5, 6.0 and 8.5 are 0.914 (SD 0.013), 0.911 (SD 0.037) and 0.915 (SD 

0.021) respectively (Fig. 76) 
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4.2.21. Katsuwonus pelamis (Linnaeus, 1758) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Scombridae Katsuwonus pelamis 

4.2.21.1. Model Evaluation 

The area under the curve value for the model is 0.849 with 0.007 standard deviation (Fig. 

78). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 34.4 and permutation importance 55.4. Current velocity mean, 

minimum temperature , maximum temperature , distance from the shore , mean temperature and 

current velocity minimum contribute 20.7%, 15.6% , 11.9% , 8.9% , 0.1% and 3% respectively 

(Table 21). Jackknife test reveals that Salinity mean has the highest gain among all parameters 

when used in isolation (Fig. 24). 

Variable Percent contribution Permutation importance 

Salinity-Mean 34.4 55.4 

Current Velocity-Mean 20.7 4.7 

Temperature-Min 15.6 10.6 

Temperature-Max 11.9 7.9 

Distance from the shore 8.9 7.4 

Temperature-Mean 8.3 13.8 

Current Velocity-Min 0.1 0.2 

Table 20 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Katsuwonus pelamis 
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Fig. 24 Jackknife test showing the AUC values of Katsuwonus pelamis when a variable is used in 

isolation or the variable is excluded from the model 

Predicted distribution 

The predicted current distribution is mainly concentrated in the Eastern coast of Africa, 

western coast of Madagascar , South west part of Arabian sea, the part of Indian Ocean which 

is west to the Madagascar etc. with > 75% probability (Fig. 79). The predicted distribution for 

2040-2050 is concentrated in the same areas as that of the current distribution but the probability 

of distribution further decreased from RCP 6.0 to RCP 8.5. The extent also shows a gradual 

decrease. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.849 (SD 0.007), 0.849 (SD 0.006) and 

0.844 (SD 0.005) respectively (Fig. 78). Salinity mean shows the highest test gain when used in 

isolation among all the other environmental variables. It is also the one environmental variable 

which has the maximum percent contribution in both RCPs. The predicted distribution for 2090-

2100 shows a further decline in the extent as well as in the probability of distribution (50-70%) 

. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.850 (SD 0.006), 0.8490 (SD 0.006) and 0.847 

(SD 0.004) respectively (Fig. 78).  
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4.2.22. Scomberomorus commerson (Lacepède, 1800) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Scombridae Scomberomorus commerson 

4.2.22.1. Model Evaluation 

The area under the curve value for the model is 0.780 with 0.047 standard deviation (Fig. 

80). The model prediction for the current distribution shows distance from the shore as the 

greatest percentage contributor with value 55.7 and permutation importance 82.1. Current 

velocity mean , maximum temperature, mean temperature , current velocity minimum , salinity 

mean and minimum temperature contribute 24.1%, 9.9% , 4.4% , 2.5% , 1.8% and 1.6% 

respectively (Table 22). Jackknife test reveals that distance from the shore has the highest gain 

among all parameters when used in isolation (Fig. 25). 

Variable Percent contribution Permutation importance 

Distance from the shore 55.7 82.1 

CurrentVelocity-Mean 24.1 1.3 

Temperature-Max 9.9 6.7 

Temperature-Mean 4.4 3.9 

CurrentVelocity-Min 2.5 2.5 

Salinity-Mean 1.8 1 

Temperature-Min 1.6 2.7 

Table 21 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Scomberomorus commerson 
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Fig. 25 Jackknife test showing the AUC values of Scomberomorus commerson when a variable is used 

in isolation or the variable is excluded from the model 

4.2.22.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western and Eastern 

coast of India, coast of Thailand, Malaysia, Madagascar, Red sea etc. with > 80% probability 

(Fig. 81). The predicted distribution for 2040-2050 is concentrated in the same areas as that of 

the current distribution but the probability of distribution decreases from RCP 8.5 to RCP 6 with 

probability 50% to 75%. The extent also shows a gradual decrease. The AUC values for RCP 

4.5, 6.0 and 8.5 are 0.755 (SD 0.084), 0.777 (SD 0.101) and 0.778 (SD 0.091) respectively (Fig. 

80). Distance from the shore shows the highest test gain when used in isolation among all the 

other environmental variables. It is also the one environmental variable which has the maximum 

percent contribution in both RCPs. The predicted distribution for 2090-2100 shows a further 

decline in the extent as well as in the probability of distribution (50-70%). The AUC values for 

RCP 4.5, 6.0 and 8.5 are 0.756(SD 0.086), 0.763 (SD 0.0118) and 0.771 (SD 0.099) respectively 

(Fig. 80).  
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4.2.23. Sphyraena barracuda (Edwards, 1771) 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Perciformes Sphyraenidae Sphyraena barracuda 

 

4.2.23.1. Model Evaluation 

The area under the curve value for the model is 0.849 with 0.018 standard deviation (Fig. 

82). The model prediction for the current distribution shows Salinity-Mean as the greatest 

percentage contributor with value 46.9 and permutation importance 45.7. Temperature-Mean, 

Temperature-Min and Distance from the shore contribute 17%, 16.9% and 9.3% respectively 

(Table 23). Jackknife test reveals that Salinity-Mean has the highest gain among all parameters 

when used in isolation (Fig. 26). 

Variable Percent contribution Permutation importance 

Salinity-Mean 46.9 45.7 

Temperature-Mean 17 24.7 

Temperature-Min 16.9 8.7 

Distance from the shore 9.3 10.9 

Temperature-Max 4.2 6 

Current Velocity-Mean 4.1 2.3 

Current Velocity-Min 1.7 1.6 

Table 23 Table 22 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Sphyraena barracuda 
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Fig. 26 Jackknife test showing the AUC values of Sphyraena barracuda when a variable is used in 

isolation or the variable is excluded from the model 

4.2.23.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Western Indian Ocean 

close to Madagascar and also along the west coast of Madagascar with > 75% probability (Fig. 

83). The predicted distribution for 2040-2050 is concentrated in the same areas as that of the 

current distribution but the probability of distribution increases for RCP 6.0 with probability 

>85% decreases for RCP 8.5 with probability 50% to 75% . The extent also shows a gradual 

decrease. The AUC values for RCP 4.5, RCP 6.0 and 8.5 are 0.854 (0.015), 0.854 (SD 0.013) 

and 0.853 (SD 0.016) respectively (Fig. 82). Salinity mean shows the highest test gain when used 

in isolation among all the other environmental variables. It is also the one environmental 

variable which has the maximum percent contribution in both RCPs. The predicted distribution 

for 2090-2100 shows a further decline in the extent as well as in the probability of distribution 

(50-70%) for RCP 6.0 but slight increase is seen for RCP 8.5. The AUC values for RCP 4.5, 

RCP 6.0 and 8.5 are 0.851 (SD 0.014), 0.850 (SD 0.010) and 0.848 (SD 0.016) respectively (Fig. 

82).  
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4.2.24. Canthidermis maculata (Bloch, 1786) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Actinopterygii Tetraodontiformes Balistidae Canthidermis maculata 

 

4.2.24.1. Model Evaluation 

The area under the curve value for the model is 0.912 with 0.006 standard deviation (Fig. 

84). The model prediction for the current distribution shows Salinity mean as the greatest 

percentage contributor with value 37 and permutation importance 44.7. Current velocity mean, 

Temperature minimum, Temperature mean, Distance from the shore, Temperature maximum 

and Current velocity minimum contribute 16.2%, 15.6%, 13.1%, 9%, 8.2%, 1% respectively 

(Table 24). Jackknife test reveals that Salinity mean has the highest gain among all parameters 

when used in isolation (Fig. 27). 

Variable Percent contribution Permutation importance 

Distance from the shore 9 9.9 

Current Velocity Mean 16.2 4.8 

Temperature Min  15.6 17.2 

Salinity Mean 37 44.7 

Temperature Mean 13.1 21.4 

Current Velocity Min 1 0 

Temperature Max 8.2 1.9 

Table 23 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Canthidermis maculata 
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Fig. 27 Jackknife test showing the AUC values of Canthidermis maculata when a variable is used in 

isolation or the variable is excluded from the model 

4.2.24.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Southwest Arabian Sea 

with > 77 % probability (Fig. 3). The predicted distribution for 2040-2050 is concentrated in the 

same areas as that of the current distribution but the probability of distribution decreases from 

RCP 4.5, RCP 6.0 and RCP 8.5 with probability 46% to 69% . The extent also shows a gradual 

decrease. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.908 (SD 0.010), 0.909 (SD 0.007) and 

0.903 (SD 0.007) respectively (Fig. 4). Salinity mean shows the highest test gain when used in 

isolation among all the other environmental variables. It is also the one environmental variable 

which has the maximum percent contribution in both RCPs. The predicted distribution for 2090-

2100 shows a further decline in the extent as well as in the probability of distribution (62 %) . 

The AUC values for RCP 4.5, 6.0 and 8.5 are 0.909 (SD0.006), 0.910 (SD 0.008) and 0.913 (SD 

0.009) respectively (Fig. 4). 
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4.2.25. Carcharhinus falciformis (Müller & Henle, 1839) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Carcharhiniformes Carcharhinidae Carcharhinus falciformis 

 

4.2.25.1. Model Evaluation 

The area under the curve value for the model is 0.876 with 0.008 standard deviation (Fig. 

86). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 47 and permutation importance 41.8. Mean temperature, 

maximum temperature, current velocity mean, SST minimum, distance from the shore and 

current velocity minimum contribute 27.2 %, 9%, 6.5%, 6.2%, 3.7% and 0.4% respectively 

(Table 25). Jackknife test reveals that salinity mean has the highest gain among all parameters 

when used in isolation (Fig. 28). 

Variable Percent contribution Permutation importance 

Salinity Mean 47 41.8 

Temperature Mean 27.2 30.1 

Temperature Maximum 9 9.5 

Current velocity mean 6.5 4 

Temperature minimum 6.2 8.8 

Distance from the shore 3.2 5.3 

Current velocity minimum 0.4 0.5 

Table 24 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Carcharhinus falciformis 
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Fig. 28 Jackknife test showing the AUC values of Carcharhinus falciformis when a variable is used in 

isolation or the variable is excluded from the model 

4.2.25.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the south west part of Indian 

Ocean and in the western coast of Africa to Madagascar with > 77% probability (Fig. 87). The 

predicted distribution for 2040-2050 is concentrated in the same areas as that of the current 

distribution but the probability of distribution decreases in RCP 4.5 and  RCP 6.0, but RCP8.5 

shows an increased distribution probability >80% just below the coast of India . The AUC values 

for RCP4.5, 6.0 and 8.5 are 0.879 (SD 0.009), 0.876 (SD 0.007) and 0.879 (SD 0.004) 

respectively (Fig. 86). Salinity mean shows the highest test gain when used in isolation among 

all the other environmental variables. It is also the one environmental variable which has the 

maximum percent contribution in both RCPs. The predicted distribution for 2090-2100 shows 

a further decline in the extent as well as in the probability of distribution. The AUC values for 

RCP 4.5, 6.0 and 8.5 are 0.878 (SD 0.006), 0.881 (SD 0.004) and 0.878 (SD 0.006) respectively 

(Fig. 86)  
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4.2.26. Carcharhinus plumbeus (Nardo, 1827) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Carcharhiniformes Carcharhinidae Carcharhinus plumbeus 

 

4.2.26.1. Model Evaluation 

The area under the curve value for the model is 0.904 with 0.021 standard deviation (Fig. 

88). The model prediction for the current distribution shows distance from the shore as the greatest 

percentage contributor with value 41.5 and permutation importance 33. The current velocity 

mean, minimum sea surface temperature, mean salinity, sea surface temperature mean, current 

velocity minimum and temperature maximum contribute 16.8%,  23.8%, 6%, 23.8%,  0.1% and 

9.3% respectively (Table 26). Jackknife test reveals that distance from the shore has the highest 

gain among all parameters when used in isolation (Fig. 29). 

Variable Percent contribution Permutation importance 

Distance from the shore 41.5 33 

CurrentVelocity Mean 16.8 
 

13.5 

Temperature Min  23.8 
 

45.4 

Salinity Mean 6 4 

Temperature Mean 23.8 1.6 

CurrentVelocity Min 0.1 
 

0.2 

Temperature Max 9.3 2.2 

Table 25 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution Carcharhinus plumbeus 
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Fig. 29 Jackknife test showing the AUC values of Carcharhinus plumbeus when a variable is used in 

isolation or the variable is excluded from the model 

4.2.26.2. Predicted distribution 

The predicted current distribution has the highest concentration in the western part of 

the northern Indian Ocean, away from the region of Madagascar with a probability of > 85% 

(Fig. 89). According to the current predicted model, the species distribution can also be found in 

the western Madagascar coast, in some regions of north eastern African coast, Gujarat coast 

with a probability of 46% to 69%.The predicted distribution for RCP 4.5 in 2040 - 50 exhibits 

a reduced probability of the species but it shows a new appearance in the region of northern 

Indian ocean, slightly far from the Sumatra. The probability distribution in RCP 6 shows a slight 

reduction compared to that of RCP 4 but it is greatly diminished during RCP 8.5. The AUC 

values for RCP 4.5, RCP 6.0 and 8.5 are 0.902 (SD 0.016), 0.914 (SD 0.012) and 0.890 (SD 

0.023) respectively (Fig. 88). Distance from the shore shows the highest test gain when used in 

isolation among all the other environmental variables. It is also the one environmental variable 

which has the maximum percent contribution in all RCPs. The predicted distribution for RCP 

4.5 of 2090-2100 shows a similar pattern of distribution to that of in 2040-50 but their extent is 

minimized. The distribution and extent of the species further decline in the RCP 6 and 8.5 of 
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2090 - 100. The AUC values for RCP 4.5, RCP 6.0 and 8.5 are 0.912 (SD 0.011), 0.916 (SD 

0.018) and 0.902 (SD 0.023) respectively (Fig. 88)  

4.2.27. Carcharhinus limbatus (Müller & Henle, 1839) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Carcharhiniformes Carcharhinidae Carcharhinus limbatus 

 

4.2.27.1. Model Evaluation 

The area under the curve value for the model is 0.841 with 0.023 standard deviation (Fig. 90). 

The model prediction for the current distribution shows salinity mean as the greatest percentage 

contributor with value 29.5 and permutation importance 22.6. Distance from the shore, current 

velocity mean, sea surface temperature minimum, sea surface temperature mean, current 

velocity minimum, sea surface temperature maximum contribute 26.4%, 7%, 8.2%,  3.6%, 2.5% 

and 22.9% respectively (Table 27). Jackknife test reveals that salinity mean has the highest gain 

among all parameters when used in isolation (Fig. 30). 

Variable Percent contribution Permutation importance 

Distance from the shore 26.4 37 

Current Velocity Mean 7 15.3 

Temperature Min  8.2 8.7 

Salinity Mean 29.5 22.6 

Temperature Mean 3.6 5.1 

Current Velocity Min 2.5 3 

Temperature Max 22.9 8.3 
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Table 26 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Carcharhinus limbatus 

 

Fig. 30 Jackknife test showing the AUC values of Carcharhinus limbatus when a variable is used in 

isolation or the variable is excluded from the model 

4.2.27.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Gulf of Aden, under 

south west of India and in some regions of north east Africa with > 85% probability (Fig. 91). 

According to the predicted model, during RCP 4.5, 2040-2050 the probability of distribution 

increases. The probability distribution of the species in Srilanka coast will increase from 71% 

to more than 85%. In RCP 6, a migration towards North West of the study area and when it 

comes to RCP 8.5, a drastic decline in the probability distribution and in extent can be observed. 

The AUC values for RCP 4.5, 6.0 and 8.5 are 0.835 (SD 0.032), 0.849 (SD 0.018) and 0.849 

(SD 0.028) respectively (Fig. 90). Salinity mean shows the highest test gain when used in 

isolation among all the other environmental variables. It is also the one environmental variable 

which has the maximum percent contribution in both RCPs. The predicted distribution for 2090-

2100 shows an increase in the probability of distribution (50-70%). The AUC values for RCP 
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4.5, 6.0 and 8.5 are 0.823 (SD 0.028), 0.842 (SD 0.027) and 0.846 (SD 0.027) respectively (Fig. 

90) 

4.2.28. Carcharhinus brevipinna (Müller & Henle, 1839) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Carcharhiniformes Carcharhinidae Carcharhinus brevipinna 

 

4.2.28.1. Model Evaluation 

The area under the curve value for the model is 0.950 with 0.037 standard deviation (Fig. 

93). The model prediction for the current distribution shows sea surface temperature minimum as 

the greatest percentage contributor with value 26 and permutation importance 44.4. Distance from 

the shore, current velocity mean, salinity mean, temperature mean, current velocity minimum and sea 

surface temperature maximum contribute 9.9%, 21%, 19.1%, 4.7%, 1.1% and  18.2% respectively 

(Table 28). Jackknife test reveals that sea surface temperature minimum has the highest gain among 

all parameters when used in isolation (Fig. 31). 

Variable Percent contribution Permutation importance 

Distance from the shore 9.9 3.5 

Current Velocity Mean 21 31.2 

Temperature Min  26 44.4 

Salinity Mean 19.1 15.9 

Temperature Mean 4.7 0.3 

Current Velocity Min 1.1 0.4 

Temperature Max 18.2 4.3 
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Table 27 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Carcharhinus brevipinna 

 

Fig. 31 Jackknife test showing the AUC values of Carcharhinus brevipinna when a variable is used in 

isolation or the variable is excluded from the model 

Predicted distribution 

The predicted current distribution is mainly concentrated in the western region of the 

Madagascar coast, in the south west region of the study area located in the north east region of 

the Madagascar and in the west coast of India with > 85% probability (Fig. 93). The predicted 

distribution for RCP 4.5 and 6, 2040-2050 is concentrated in the same areas as that of the current 

distribution but the probability of distribution decreases. But in RCP 8.5, the probability of 

distribution as well as the extent increases even more than that in the present. The AUC values 

for RCP 4.5, 6.0 and 8.5 are 0.967 (SD 0.011), 0.937(SD 0.033), 0.949(SD 0.031) respectively 

(Fig. 92).  Sea surface temperature minimum shows the highest test gain when used in isolation 

among all the other environmental variables. It is also the one environmental variable which has 

the maximum percent contribution in both RCPs. The predicted distribution for RCP 4.5, 2090-

2100 shows a decline in the probability of distribution but RCP 6 exhibits its opposite. An 

interesting observation of RCP 6 is that species in the west coast of India migrate upwards 

whereas species in the eastern part of the Madagascar shift downwards. In RCP 8, the probability 
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distribution of the species increases in the northern part of the study area and it declines in the 

southern part   . The AUC values for RCP 4.5, 6.0 and 8.5 are 0.939 (SD 0.039), 0.946 (SD 

0.024) and 0.912 (SD 0.081) respectively (Fig. 92) 

4.2.29. Carcharhinus longimanus (Poey, 1861) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Carcharhiniformes Carcharhinidae Carcharhinus longimanus 

 

4.2.29.1. Model Evaluation 

The area under the curve value for the model is 0.812 with 0.018 standard deviation (Fig. 

95). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 40.3 and permutation importance 37.8. The current velocity 

mean, Temperature minimum, Distance from the shore, maximum temperature, mean 

temperature and current velocity minimum contribute 15 %, 6.8%, 14.1%, 12.1%, 10.3% and 

1.5% respectively (Table 29). Jackknife test reveals that salinity mean has the highest gain among 

all parameters when used in isolation (Fig. 32).  
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Variable Percent contribution Permutation importance 

Distance from the shore 14.1 10.4 

Current Velocity Mean 15 6.7 

Temperature Min  6.8 8.6 

Salinity Mean 40.3 37.8 

Temperature Mean 10.3 19 

Current Velocity Min 1.5 2.9 

Temperature Max 12.1 14.6 

Table 28 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Carcharhinus longimanus 

 

Fig. 32 Jackknife test showing the AUC values of Carcharhinus longimanus when a variable is used in 

isolation or the variable is excluded from the model 

4.2.29.2. Predicted distribution 

The prediction of current distribution shows the range of species with > 85% probability 

in the north eastern side of Africa where distribution seems to be continuous and in the portion 

of Indian Ocean located to the east of Madagascar. The western coast of India and some parts 

of Bay of Bengal shows 50 to 85% probability of distribution  (Fig. 95). Under RCP 4.5 of the 

decade 2040-2050, the range of species shows a shift away from the Madagascar and eastern 

African coast, moving towards the Arabian Sea. The probability of distribution increased in the 
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southern central Bay of Bengal under this RCP scenario with greater than 60% probability 

distribution. From eastern Africa shows a patchy distribution of species with > 50% probability.  

In RCP 8.5 the range as well as the probability of distribution reduced considerably and 

appearance of species is seen only in the Indian Ocean region to the south of India and Srilanka 

with a probability range of 43 to 86%.  The AUC values for RCP 4.5, 6.0 and 8.5 are 0.805 (SD 

0.021), 0.813 (SD 0.020) and 0.821 (SD 0.016) respectively (Fig. 94). Salinity mean shows the 

highest test gain when used in isolation among all the other environmental variables. It is also 

the one environmental variable which has the maximum percent contribution in all RCPs. The 

RCP 4.5 and 6 of 2090-2100 shows similar distribution patterns of RCP 6 of previous decade 

except that the probability is diminished in oceanic area near to India and Srilanka and an 

increase in distribution of the species in the oceanic region located to the eastern side of 

Madagascar. The predicted distribution of RCP 8.5 of the decade differs from the present 

prediction in that the distribution tends to shift more towards the north-eastern region of Indian 

Ocean and the area having probability greater than 85% distribution shows a notable reduction. 

The AUC values for RCP 4.5, 6.0 and 8.5 are 0.805 (SD 0.024), 0.809 (SD 0.017) and 0.819 

(SD 0.013) respectively (Fig. 94).  
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4.2.30. Sphyrna mokarran (Rüppell, 1837) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Carcharhiniformes Sphyrnidae Sphyrna mokarran 

 

4.2.30.1. Model Evaluation 

The area under the curve value for the model is 0.923 with 0.037 standard deviation (Fig. 

97). The model prediction for the current distribution shows salinity as the greatest percentage 

contributor with value 28.4 and permutation importance 45.9. (Table 30).The current velocity 

mean, Temperature minimum, Distance from the shore, maximum temperature, mean 

temperature and current velocity mean contribute 19.7 %, 18.7%, 11.6%, 11.6%, 9.9 and 0.2% 

respectively. Jackknife test reveals that Salinity-Mean has the highest gain among all parameters 

when used in isolation (Fig. 33). 

Variable Percent contribution Permutation importance 

Distance from the shore 11.6 3.9 

Current Velocity Mean 19.7 
 

6.9 

Temperature Min  18.7 31.7 

Salinity Mean 28.4 45.9 

Temperature Mean 9.9 8.3 

Current Velocity Min 0.2 1 

Temperature Max 11.6 2.3 

Table 29 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Sphyrna mokarran 
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Fig. 33 Jackknife test showing the AUC values of Sphyrna mokarran when a variable is used in 

isolation or the variable is excluded from the model 

4.2.30.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the southern Arabian sea 

above the Madagascar with a probability ranging from 46% to 96% and its presence in south 

western coast of India (Fig. 97). On comparing the predicted distribution with the 2040-2050 

decade it is observed that even though the concentration is diminished, the range of the species 

is extended and is shifted towards the eastern coast of Africa from RCP 4.5 to 8.5. The AUC 

values for RCP 4.5, 6.0 and 8.5 are 0.945(SD 0.018), 0.929 (SD 0.019) and 0.937 (SD 0.027) 

respectively (Fig. 96). Salinity mean shows the highest test gain when used in isolation among 

all the other environmental variables. It is also the one environmental variable which has the 

maximum percent contribution in all RCPs. The predicted distribution for 2090-2100 implies 

the range of the species gets diminished to eastern part of Madagascar and it completely shifted 

towards the north western coast of India. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.940 

(SD 0.015), 0.944 (SD 0.021) and 0.942 (SD 0.011) respectively (Fig. 96)  
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4.2.31. Sphyrna zygaena (Linnaeus, 1758) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Carcharhiniformes Sphyrnidae Sphyrna zygaena 

 

4.2.31.1. Model Evaluation 

The area under the curve value for the model is 0.844 with 0.036 standard deviation (Fig. 

98). The model prediction for the current distribution shows sea surface temperature minimum 

as the greatest percentage contributor with value 39.2 and permutation importance 52.3. The 

distance from the shore, current velocity mean, mean salinity, sea surface temperature mean, 

current velocity minimum and sea surface temperature maximum contribute 38%, 0.9%, 14.4%, 

4.8%, 0.1% and 2.5% respectively (Table 31). Jackknife test reveals that sea surface temperature 

minimum has the highest gain among all parameters when used in isolation (Fig. 34). 

Variable Percent contribution Permutation importance 

Distance from the shore 38 52.3 

Current Velocity Mean 0.9 4.4 

Temperature Min  39.2 52.3 

Salinity Mean 14.4 23.9 

Temperature Mean 4.8 3 

Current Velocity Min 0.1 0.1 

Temperature Max 2.5 2.9 

Table 30 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Sphyrna zygaena 
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Fig. 34 Jackknife test showing the AUC values of Sphyrna zygaena when a variable is used in isolation 

or the variable is excluded from the model 

4.2.31.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the Gulf of Aden, in some 

regions of the coast of Red sea, Maharashtra coast etc. with > 85% probability (Fig. 99). The 

predicted distribution for 2040-2050 exhibits an upward shift in the distribution of the species. 

The AUC values for RCP 4.5, 6.0 and 8.5 are 0.842(SD 0.054), 0.840(SD 0.054) and 0.829 (SD 

0.044) respectively (Fig. 98). Sea surface temperature minimum shows the highest test gain when 

used in isolation among all the other environmental variables. It is also the one environmental 

variable which has the maximum percent contribution in all RCPs. The predicted distribution of 

RCP 4.5 and 6 of 2090 - 100 shows a northward shift but their range is decreased in comparison 

with that of 2040 - 50. In RCP 8.5, the distribution is concentrated in the north west regions of 

the study area with a probability of >85% . The AUC values for RCP 4.5, 6.0 and 8.5 are 0.842 

(SD 0.028), 0.846 (SD 0.050) and 0.807 (SD 0.038) respectively (Fig. 98)  
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4.2.32. Alopias vulpinus (Bonnaterre, 1788) 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Lamniformes Alopiidae Alopias vulpinus 

 

4.2.32.1. Model Evaluation 

The area under the curve value for the model is 0.827 with 0.037 standard deviation (Fig. 

100). The model prediction for the current distribution shows salinity mean as the greatest 

percentage contributor with value 26.3 and permutation importance 22.4. The maximum 

temperature, The minimum temperature, mean temperature, current velocity mean, current 

velocity minimum and distance from the shore contribute 21.9%, 15.4%, 16.2%, 7.9%, 2.9% 

and 9.3% respectively (Table 32). Jackknife test reveals that Salinity-Mean has the highest gain 

among all parameters when used in isolation (Fig. 35). 

Variable Percent contribution Permutation importance 

Distance from the shore 9.8 6 

Current Velocity Mean 8.4 6.1 

Temperature Min  14.2 23 

Salinity Mean 27.3 21.6 

Temperature Mean 13.8 28.1 

Current Velocity Min 3.5 4.5 

Temperature Max 23 10.8 

Table 31 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Alopias vulpinus 
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Fig. 35 Jackknife test showing the AUC values of Alopias vulpinus when a variable is used in isolation 

or the variable is excluded from the model 

4.2.32.2. Predicted distribution 

The predicted current distribution is mainly concentrated in the eastern coast of Africa, 

Gulf of Aden and eastern part of Madagascar with > 85% probability (Fig. 101). The predicted 

distribution for 2040-2050 is concentrated in the same areas as that of the current distribution 

but the probability of distribution decreases from RCP 6.0 to RCP 8.5 with probability. The 

AUC values for RCP 4.5, 6.0 and 8.5 are 0.840 (SD 0.028), 0.839 (SD 0.032) and 0.847 (SD 

0.020) respectively (Fig. 100). Salinity-Mean shows the highest test gain when used in isolation 

among all the other environmental variables. It is also the one environmental variable which has 

the maximum percent contribution in both RCPs. The predicted distribution for 2090-2100 

shows an increase in the extent from RCP 4.5 to 8.5. The AUC values for RCP 4.5, 6.0 and 8.5 

are 0.858 (SD 0.021), 0.827 (SD 0.030) and 0.823 (SD 0.031) respectively (Fig. 100). 
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4.2.33. Rhincodon typus Smith, 1828 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Orectolobiformes Rhincodontidae Rhincodon typus 

 

4.2.33.1. Model Evaluation 

The area under the curve value for the model is 0.901 with 0.021 standard deviation (Fig. 

102). The model prediction for the current distribution shows distance from the shore as the 

greatest percentage contributor with value 51.1 and permutation importance 65.6.current 

velocity mean,salinity mean,SST maximum, SST minimum, SST mean and current velocity 

minimum contribute 13.7%, 13%, 8.6%, 8.4%, 4.4% and 0.8% respectively (Table 33). Jackknife 

test reveals that distance from the shore has the highest gain among all parameters when used 

in isolation (Fig. 36). 

Variable Percent contribution Permutation importance 

Distance from the shore 51.1 65.6 

Current Velocity Mean 13.7 8.7 

Temperature Min  13 8.3 

Salinity Mean 8.6 5.3 

Temperature Mean 8.4 5.7 

Current Velocity Min 8.4 5.3 

Temperature Max 0.8 1.2 

Table 32 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution of Rhincodon typus 
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Fig. 36 Jackknife test showing the AUC values of Rhincodon typus when a variable is used in isolation 

or the variable is excluded from the model 

Predicted distribution 

The predicted current distribution is mainly concentrated in the Western coast of India, 

Persian Gulf, Red sea, Madagascar etc. with > 77% probability (Fig. 103). The predicted 

distribution for 2040-2050 of distribution decreases from RCP 4.5 to RCP 8.5. The AUC values 

for RCP4.5, 6.0 and 8.5 are 0.883 (SD 0.014), 0.885(SD 0.020) and 0.893 (SD 0.026) 

respectively (Fig. 102). Distance from the shore shows the highest test gain when used in 

isolation among all the other environmental variables. It is also the one environmental variable 

which has the maximum percent contribution in both RCPs. The predicted distribution for 2090-

2100 shows a further decline in the extent. The AUC values for RCP 4.5, 6.0 and 8.5 are 0.882 

(SD 0.025), 0.893(Sd 0.015) and 0.888 (SD 0.031) respectively (Fig. 102) 

 
 
  



98 
 

4.2.34. Galeocerdo cuvier Smith, 1828 

 

Kingdom Phylum Class Order Family Genus Species 

Animalia Chordata Elasmobranchii Orectolobiformes Rhincodontidae Rhincodon typus 

 

4.2.34.1. Model Evaluation 

The area under the curve value for the model is 0.911 with 0.015 standard deviation (Fig. 

104). The model prediction for the current distribution shows distance from the shore as the 

greatest percentage contributor with value 35.5 and permutation importance 30.8. Minimum 

temperature, current velocity mean, maximum temperature salinity mean, and temperature 

mean, current velocity minimum contribute 19.2%, 18.6%, 17.2%, 5.3%, 3.4% and 0.9% 

respectively (Table 34). Jackknife test reveals that temperature maximum has the highest gain 

among all parameters when used in isolation (Fig. 37). 

Variable Percent contribution Permutation importance 

Distance from the shore 35.5 30.8 

Temperature Min 19.2 10.7 

Current velocity mean 18.6 16.1 

Temperature maximum 17.2 19.3 

Salinity Mean 5.3 8.3 

Temperature mean 3.4 11.3 

Current velocity min 0.9 3.5 

Table 33 Table showing the percentage contribution and permutation importance of each 

environmental variable for the predicted current distribution 
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Fig. 37 Jackknife test showing the AUC values of Galeocerdo cuvier when a variable is used in 

isolation or the variable is excluded from the model 

Predicted distribution 

The predicted current distribution is mainly concentrated in the eastern part of 

Madagascar, eastern coast of Africa etc. with > 85% probability (Fig. 105). The predicted 

distribution for 2040-2050 is concentrated in the same areas as that of the current distribution 

but the probability of distribution decreases from RCP 4.5 to RCP 8.5 with probability 50% to 

75%. The extent also shows a gradual decrease. The AUC values for RCP 4.5, 6.0 and 8.5 are 

0.911 (SD 0.018), 0.921(SD 0.013) and 0.912 (SD 0.012) respectively (Fig. 104). Temperature 

maximum shows the highest test gain when used in isolation among all the other environmental 

variables. Distance from the shore is the environmental variable which has the maximum 

percent contribution in all RCPs. The predicted distribution for 2090-2100 shows a further 

decline in the extent as well as in the probability of distribution (50-70%). The AUC values for 

RCP 4.5, 6.0 and 8.5 are 0.915 (SD 0.011), 0.908 (SD 0.016) and 0.907 (SD 0.022) respectively 

(Fig. 104).  
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Fig. 38 The average sensitivity vs. 1- specificity graph for A. ferox showing the mean Area Under the 

Curve (AUC) and standard deviation for the predicted current distribution the predicted future 

distributions 

  



101 
 

Predicted current distribution 

 

 Predicted distribution for 2040-50 Predicted distribution for 2090-100 

RCP 4.5 

  

RCP 6.0 

  

RCP 8.5 

  

Fig. 39 Map showing the predicted current and future distributions of A. ferox 
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Fig. 40 The average sensitivity vs. 1- specificity graph for Spratelloides delicatulus showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 41  Map showing the predicted current and future distributions of Spratelloides delicatulus 
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Fig. 42 The average sensitivity vs. 1- specificity graph for Sardinella longiceps showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 43 Map showing the predicted current and future distributions of Sardinella longiceps 
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Fig. 44 The average sensitivity vs. 1- specificity graph for Stolephorus indicus showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 45 Map showing the predicted current and future distributions of Stolephorus indicus 
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Fig. 46 The average sensitivity vs. 1- specificity graph for Uraspis secunda showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 

 
 
 



109 
 

 

Predicted current distribution 

 

 Predicted distribution for 2040-50 Predicted distribution for 2090-100 

RCP 4.5 

  

RCP 6.0 

  

RCP 8.5 

  

Fig. 47 Map showing the predicted current and future distributions of Uraspis secunda 
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Fig. 48 The average sensitivity vs. 1- specificity graph for Seriola rivoliana showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 49 Map showing the predicted current and future distributions of Seriola rivoliana 
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Fig. 50 The average sensitivity vs. 1- specificity graph for Megalaspis cordyla showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions. 
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Fig. 51 Map showing the predicted current and future distributions of Megalaspis cordyla 
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Fig. 52 The average sensitivity vs. 1- specificity graph for Elagatis bipinnulata showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 53 Map showing the predicted current and future distributions of Elagatis bipinnulata 
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Fig. 54 The average sensitivity vs. 1- specificity graph for Decapterus macarellus showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 55 Map showing the predicted current and future distributions of Decapterus macarellus 
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Fig. 56 The average sensitivity vs. 1- specificity graph for  Caranx sexfasciatus showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 57 Map showing the predicted current and future distributions of C. sexfasciatus 
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Fig. 58 The average sensitivity vs. 1- specificity graph for Coryphaena hippurus showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 59 Map showing the predicted current and future distributions of Coryphaena hippurus 
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Fig. 60 The average sensitivity vs. 1- specificity graph for Gempylus serpens showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 61 Map showing the predicted current and future distributions of Gempylus serpens 
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Fig. 62 The average sensitivity vs. 1- specificity graph for Istiophorus platypterus showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 63 Map showing the predicted current and future distributions of Istiophorus platypterus 
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Fig. 64 The average sensitivity vs. 1- specificity graph for Makaira nigricans showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 65 Map showing the predicted current and future distributions of Makaira nigricans 
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Fig. 66 The average sensitivity vs. 1- specificity graph for Kajikia albida showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 67 Map showing the predicted current and future distributions of Kajikia albida 
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Fig. 68 The average sensitivity vs. 1- specificity graph for Istiompax indica showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 69 Map showing the predicted current and future distributions of Istiompax indica 
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Fig. 70 The average sensitivity vs. 1- specificity graph for Thunnus obesus showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 71 Map showing the predicted current and future distributions of Thunnus obesus 
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Fig. 72 The average sensitivity vs. 1- specificity graph for Thunnus albacares showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 73 Map showing the predicted current and future distributions of Thunnus albacares 
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Fig. 74The average sensitivity vs. 1- specificity graph for T. alalunga showing the mean Area Under 

the Curve (AUC) and standard deviation for the predicted current distribution the predicted future 

distributions 
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Fig. 74 Map showing the predicted current and future distributions of T. alalunga 
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Fig. 75 The average sensitivity vs. 1- specificity graph for R. kanagurta showing the mean Area Under 

the Curve (AUC) and standard deviation for the predicted current distribution the predicted future 

distributions 
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Fig. 76 Map showing the predicted current and future distributions of R. kanagurta 
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Fig. 77 The average sensitivity vs. 1- specificity graph for Katsuwonus pelamis showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 78 Map showing the predicted current and future distributions K. pelamis 
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Fig. 79 The average sensitivity vs. 1- specificity graph for Scomberomorus commerson showing the 

mean Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 80 Map showing the predicted current and future distributions of S. commerson 
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Fig. 81 The average sensitivity vs. 1- specificity graph for  Sphyraena barracuda showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 82 Map showing the predicted current and future distributions of  Sphyraena barracuda 
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Fig. 83 The average sensitivity vs. 1- specificity graph for Canthidermis maculata showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 84 Map showing the predicted current and future distributions of Canthidermis maculata 
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Fig. 85 The average sensitivity vs. 1- specificity graph for Carcharhinus falciformis showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 86 Map showing the predicted current and future distributions of Carcharhinus falciformis 

  



150 
 

 

 AUC of predicted current distribution 

 

 

 2040 -50 2090 -100 

RCP 
4.5  

  

RCP 
6.0 

  

RCP 
8.5 

  

Fig. 87 The average sensitivity vs. 1- specificity graph for  Carcharhinus plumbeus showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 88 Map showing the predicted current and future distributions of Carcharhinus plumbeus 
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Fig. 89 The average sensitivity vs. 1- specificity graph for Carcharhinus limbatus showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 90 Map showing the predicted current and future distributions of Carcharhinus limbatus 
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Fig. 91 The average sensitivity vs. 1- specificity graph for Carcharhinus brevipinna showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 92 Map showing the predicted current and future distributions of Carcharhinus brevipinna 
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Fig. 93 The average sensitivity vs. 1- specificity graph for Carcharhinus longimanus showing the mean 

Area Under the Curve (AUC) and standard deviation for the predicted current distribution the 

predicted future distributions 
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Fig. 94 Map showing the predicted current and future distributions of Carcharhinus longimanus 
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Fig. 95 The average sensitivity vs. 1- specificity graph for Sphyrna mokarran showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 96 Map showing the predicted current and future distributions of Sphyrna mokarran 
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Fig. 97 The average sensitivity vs. 1- specificity graph for Sphyrna zygaena  showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 98 Map showing the predicted current and future distributions of Sphyrna zygaena 
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Fig. 99 The average sensitivity vs. 1- specificity graph for Alopias vulpinus showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 100 Map showing the predicted current and future distributions of Alopias vulpinus 
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Fig. 101 The average sensitivity vs. 1- specificity graph for Rhincodon typus showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions 
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Fig. 102 Map showing the predicted current and future distributions of Rhincodon typus 
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Fig. 103 The average sensitivity vs. 1- specificity graph for Galeocerdo cuvier showing the mean Area 

Under the Curve (AUC) and standard deviation for the predicted current distribution the predicted 

future distributions. 
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Fig. 104 Map showing the predicted current and future distributions of Galeocerdo cuvier 

  



168 
 

CHAPTER 5 

5. DISCUSSION 

  

 Global oceans are warming at the rate of 0.11 oC per decade (Rhein et al., 2013) and the 

Northern Indian Ocean has the maximum rate of increase in sea surface temperature (Roxy et 

al., 2020). Such warming has immense effects on the pelagic fishes than the demersal ones 

(Johnson, 2018). Pelagic fishes may make poleward shifts in their distribution as a response to 

an increase in the ambient temperature (Poloczanska et al., 2013). Currently, such distributional 

shifts of many of the pelagic species including the Clupeids which forms some of the major 

fisheries in the region are not known. Species distribution modelling of such species under 

different climate change scenarios can throw light to the future ranges of fish distribution and 

can help fishery managers immensely to make informed decisions to keep the fisheries 

sustainable. 

 India is one of the biggest maritime nations in the world. Pelagic fishes form the major 

commercially important fishes in Indian Ocean. The northern Indian Ocean belongs to the 17 

major hotspots among the world oceans and is supposed to warm 90% faster than the world 

oceans (Zacharia et al., 2016).  Clupeidae, Scombridae, Carangidae, Trichiuridae etc. are some 

of the prominent families contributing to pelagic fisheries. Temperature differentiation in the 

ocean causes most marine species to shift their distributional range (Poloczanska et al., 2014).  

Even a rise in 1°C can cause distributional change or even mortality in marine species 

(Vivekanadan et al., 2009). Changes in ocean current pattern are more likely to affect the pelagic 

species than the demersal (Zacharia et al., 2016). Ocean currents are one of the major 

biophysical factors, which influence productivity patterns (Rahmstorf et al., 2015). The food 

and nutrient availability and the larvae dispersion are affected by the warm water intrusion due 

to changes in current velocity (Zacharia et al., 2016). 

The species distribution modelling has an important role in tackling the problem during 

scenarios where shifts in marine fishes had led to the lack of knowledge on the existing 

distribution of marine fisheries (Marshall et al., 2014). It is a potential tool for estimating the 

impact of climate change on range shifts (Beaumont, 2008). In the past three decades, there have 
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been many developments in the field of species distribution modelling, and multiple methods 

are now available. Most of them require systematic abundance data produced by formal surveys. 

However, when such data is sparse, such as in the case of N. nasus from our study region, 

Maxent will be an excellent option which can model presence-only data (Phillips et al., 2006; 

Phillips & Dudı´k, 2008). 

 Clupeiformes occupy a wide variety of habitats ranging from Open Ocean to freshwater 

lakes and rivers (Bloom, 2018). Major Species of clupeids include Sardinella longiceps, 

Sardinella fimbriata, Stolephorus indicus etc. According to Vivekanadan (2009), as sea surface 

temperature increases in the predicted line, the distribution of oil sardine may shift to the 

northern latitudes especially to Gujarat and west Bengal. This can be clearly visible from our 

prediction. In the predicted current distribution, the areas of western coast of India experience 

the greatest oil sardine distribution. But as in the case of the year 2040-50 and 2090-100, there 

is a tremendous decrease in the oil sardine distribution in the Kerala coast and then the Gujarat 

coast showing the highest probability of distribution.  Current velocity is the one of the most 

contributing variables for Sardinella longiceps. (Jufaili et al., 2020) suggest that the geostrophic 

current velocity, wind speed, SST, cyclone eddies; ENSO and IOD have significant influence 

on the interannual variability of Sardinella catch in the Omani shelf. According to Kripa et al. 

(2015) overexploitation accompanied by alterations in environmental parameters like SST, wind 

speed, upwelling, food availability and geostrophic wind driven by large scale oscillations, 

affect the catch of Sardinella in Kerala coast. According to CMFRI (2017), the south west coast 

of India and the Malabar upwelling zones are the major regions supporting Anchovy fisheries 

in India. The Indian anchovy, Stolephorus indicus is also distributed in the south west coast of 

Indian and is one of the best examples showing northward shift. From present distribution to 

2050 and 2100, the distribution in the western coast of India gradually decreases and shifts 

northward to the Gujarat coast. Small pelagics such as sardine and anchovies are susceptible to 

even small climate variability and they counteract these responses by re-establishing their 

environments or by extinction (Checkley et al., 2017). 

Carangids are the most economically important pelagic fish species in the world 

(Mukherjee et al., 2017). Some of the major fish species belonging to carangids are Uraspis 

secunda, Elagatis bipinnulata, Seriola rivoliana. Among these Uraspis secunda shows 



170 
 

distribution in the southern part of Arabian Sea, just above Madagascar. As in years 2040-50 

and 2090-100, the probability of distribution decreases. Bethoux et al., 1990 recorded the 

presence of S. rivoliana in the Mediterranean Sea and is reported due to the thermal increase in 

the ocean resulting from climate change. So as there is a decreased predicted distribution of S. 

rivoliana in the Indian Ocean in future years, there are chances that the species may shift to 

newer environments. Salinity mean is also one of the most contributing factors for S.rivoliana. 

Bohórquez-Cruz et al., 2019 found that S. rivoliana larvae can only tolerate a salinity range of 

35 and 40g/L. Torpedo scad or Megalaspis cordyla is one of the most important pelagic fish in 

the Indian Ocean (Kasim, 2003). Due to the impact of climate change the predicted current 

distribution of M. cordyla is predicted to decrease in the future. 

The Indo-pacific sailfish Istiophorus platypterus, is one of the most emerging billfish 

fisheries in the Indian coast (Ganga et al., 2008). Research on the distribution of sailfishes are 

very less when compared with other fishes like tunas (Ramalingam et al., 2011). The predicted 

distribution shows a decline in distribution in the RCPs in 2050 but in 2100, the pattern of 

distribution is more or less similar in all RCPs but its extent decreased when compared to the 

predicted present distribution. The decline in extent can be attributed to the effects of climate 

change.  Blue marlin, Makaira nigricans show a decreased distribution in all RCPs in both the 

years. Since it spends most of its time in the surface waters, increase in sea surface temperature 

will have a huge impact on the abundance of M. nigricans (Block et al., 1992) 

Increase in ocean temperature also drove the spawning grounds of Thunnus obesus in 

the western Pacific Ocean to switch from tropics to subtropical regions (Lehodey et al., 2010). 

Rise in ocean temperature adversely affects the larval development of Thunnus albacare 

(Dell’Apa, A et al, 2018). But contradictorily the predicted distribution of Thunnus albacares 

and Thunnus obesus shows an increased distribution in the future. There is a lack of sufficient 

studies regarding the increase in abundance of these till 2050 and is then predicted to decrease 

(Lehodey et al, 2013). It also shows that spawning becomes more suitable at northern latitudes. 

Our predicted distribution shows a decreased distribution. Two species. Thunnus alalunga 

shows a decreased extent in range from predicted current distribution to 2100. Studies conducted 

by Sund et al., 1981 found that the temperature change has most effect in the spawning and 
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survival of larvae of T. alalunga. The future distribution modelling in the Pacific Ocean suggests 

that there is increase in biomass of skipjack tuna, Katsuwonus pelamis in western central pacific  

The predicted distribution of Blue shark, Prionace glauca shows an increasing extend 

from present to 2100. Current velocity mean is one of the most contributing factors for P. 

glauca.  This highly migratory fish is a generalist feeder which consumes a wide range of prey 

species (Corte´s, 1999), and due to this it is predicted to expand its environment regardless of 

any variations in the prey in the climate changing scenario (Taguchi et al., 2015). Carcharhinus 

plumbeus distribution shows a decrease in extent from predicted current distribution to future 

RCPs. Soufi-Kechaou et al. (2018) also found that climate change can also drive C. plumbeus 

northward.  Carcharhinus limbatus distribution shows a decreasing trend in distribution until 

2050 in all RCPs but then the distribution goes on increasing till 2100. This may be due to the 

change in environmental variables accordingly in all RCPs. But climate change also has an 

influence on the distribution of C. limbatus. Baitfish availability and temperature are some of 

the major factors determining the distribution (Kajiura and Tellman, 2016) 

The predicted distribution for epipelagic whale sharks shows a range contraction in the 

future. In Indian Ocean, the environmental suitability is primarily correlated with the spatial 

variation in the SST and the whale shark can only tolerate a narrow range of temperature from 

26.5℃ to 30℃ (Sequeira et al., 2012). Studies conducted by Sequeira et al. (2014) from the 

period 1980 to 2010 suggests that in Indian ocean and Atlantic, due to predicted rise in sea 

surface temperature, the whale shark population faced a poleward shift together with range 

reduction. So, climate change adversely affects the distribution and abundance of whale shark 

(Gutierrez et al., 2008). Distance from the shore is the most contributing factor for the 

distribution of Rhincodon typus. McKinney et al. (2012) found that distance from the continental 

shelf edge is one of the favouring factors for whale shark spotting as it is highly related with 

food availability. The Sea surface current has a little effect in the distribution of whale shark 

(Sleeman et al., 2010) 

Empirical orthogonal function analysis has been done to find the spatial and temporal 

variability in sea surface temperature in the Indian Ocean using SST datasets from 1993 to 2018. 

EOF 1 to 4 with spatial variability and its corresponding principle components showing 
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temporal variability has been obtained. The EOF1 shows a greater warming over the western 

Indian Ocean with 32.25% eigenvalue. The warming trend is predicted to be 0.0165°C per year 

and 0.4134°C per 25 years. (Rhein et al., 2013) found that the global oceans are warming at the 

rate of 0.11°C per decade. The Indian Ocean has warmed more rapidly than other global tropical 

oceans (Dhame, et al., 2020). According to Kulkarni et al, 2007 strong warming was reported 

in both eastern and western Indian Ocean after 1950. The EOF2 and 3 shows a dipole pattern 

over the Indian Ocean. This can be due to the internal mode of climatic variability over Indian 

ocean- the Indian Ocean dipole. This was first found by Saji et al, 1999. He used the 40-year 

GISST datasets from 1958 to 1998. Our predicted EOF shows a negative IOD over the Indian 

Ocean. The studies on the negative IOD are uncommon and some of them mainly focus on the 

extreme negative IOD in 2016 which caused severe drought in the East African region (Lu et 

al., 2018, Lim et al., 2017) 
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CHAPTER 6 

6. SUMMARY 

Earth’s climate system is being subjected to constant changes. The term climate change 

itself implies the long-term alterations in the climate system. But the anthropogenic climate 

changes are causing unprecedented transformations in the planet. Increasing global average 

temperature, increased frequency of extreme events etc. are some of the effects of climate 

change. Global oceans are also being affected by this. The marine species counteract these 

changes by reallocating their distributional boundaries.  Among the marine fish species, pelagic 

are mainly affected by the impact of climate change. It also pushes some species to higher 

latitude. As Indian Ocean is landlocked, the northward shift of the species will be further 

hindered. This can even cause local extinctions. The study mainly focused on investigating the 

changes in climatic parameters as well as the spatial distribution of marine fish species in the 

northern Indian Ocean.  Predicting the shift in spatial distribution can enable proper prediction 

of future habitat suitability of the marine species and it also helps to take proper management 

actions. 

Empirical orthogonal function analysis has been done to find the spatial and temporal 

variability of sea surface temperature. The SST data was taken from CMEMS Copernicus. 

Species distribution modelling using maximum entropy model (Maxent) has done to the major 

families of pelagic fish species in the northern Indian Ocean such as Clupeidea, Carangidae, 

Istiophoridae, Scombridae, Carcharhinidae etc. The major environmental parameters affecting 

the species have been taken. Pearson’s rank correlation has been done to avoid multicollinearity. 

The environmental parameters selected are sea surface temperature Maximum, SST Mean, SST 

minimum, Sea surface salinity Mean, Current velocity mean, current velocity minimum and 

distance from the shore. Environmental layers of RCP 4.5, 6.0 and 8.5 for predicting the present, 

2040-2050 and 2090-2100 have been taken from Bio-oracle with 9.2km resolution. The species 

data were taken from GBIF and OBIS open source databases. 

EOF analysis on the sea surface temperature showed that there is an increased trend in 

sea surface temperature over the major parts of the northern Indian Ocean. The warming trend 

is predicted to be 0.0165℃ per year and 0.4134℃ per 25 years.  Maximum entropy modelling 
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for the species predicted a changing in distribution pattern in almost all species. The predicted 

distribution of species such as Sardinella longiceps shows reduced extent of distribution over 

the Indian Ocean in the future RCPs. Sphyrna zygaena, Rastrelliger kanagurta etc shows a 

northward extent. This can be a clear indication of the impact climate change has on the species. 

But contradictorily some species such as Thunnus albacare , Thunnus obesus shows a 

tremendous increase in future years. This can be due to the food availability and habitat 

suitability.  
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ABSTRACT 

 
Climate change exacerbates massive changes in the global oceans.  Increasing ocean 

temperature, reduced oxygen content, sea level rise, ocean acidification, storm activities etc. 

reduces the capability of the ocean to provide the ecosystem services, which adversely affect 

marine ecosystems. The Northern Indian Ocean being a major hotspot among world oceans, its 

rate of warming is extremely alarming. Marine species counteract these changes by reallocating 

their distributional range. It steers the shift of species towards the poles. But the landlocked 

nature of the northern Indian Ocean hinders the further movement which finally leads to local 

extinctions. This study focuses on investigating the pattern of trend in remotely sensed variables 

and the shift in the spatial distribution of 34 marine pelagic fish species of the northern Indian 

Ocean in the future climatic scenarios. The species data have been taken from open-source 

databases such as OBIS, GBIF and various published literatures. The environmental data for the 

future years 2040- 2050 and 2090- 2100 for RCPs 4.5, 6.0 and 8.5 are taken from Bio-oracle 

with 9.2 km resolution. Empirical orthogonal function analysis explains the warming of Indian 

Ocean with a rate of 0.016℃ per year. The predicted distribution of species such as Sardinella 

longiceps shows reduced extent of distribution over the Indian Ocean in the future RCPs. 

Sphyrna zygaena, Rastrelliger kanagurta etc. shows a northward extent. But contradictorily 

tuna species such as Thunnus obesus and T. albacare shows an increased distribution in future 

scenarios. Fish species respond differently to changing climatic conditions. Sustainable and 

productive fisheries protect the environment and natural resources. The knowledge of the spatial 

distribution of fish species in the specified area needs to be examined for the effective utilization 

of fishery resources and for planning conservation policies and management activities. 

 
 


