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CHAPTER 1 
INTRODUCTION 

 

The world at present is facing a severe environmental threat. The impact and 

threat of climate change affect the ecosystem and its biodiversity. It is evident 

from recent decades the anthropogenic influence on the climate. Even though 

many changes happened, the notable difference is seen in the temperature which 

lead to the increase of greenhouse gases in the atmosphere. The world’s 

majority of the valuable ecosystem has faced extinction due to global warming.  

There is likely a winnowing effect on the ecosystem by global warming. It is 

evident from the IPCC AR5 synthesis report that in the Northern Hemisphere 

the period from 1983 to 2012 was likely the warmest 30 year period of the last 

1400 years. The globally averaged combined land and ocean surface 

temperature, from 1880 to 2012 showed a warming of 0.85 (0.65 to 1.06) 

degrees Celsius. So it is atmost important to find measures to mitigate the 

climate before it cost lives. 

 

The effects of climate change affect both plant and animal species. Even though 

the difference has been observed over the years, the impact may cause 

physiological changes in these species. Climate change is co-related to 

environmental threats such as habitat loss and overharvesting, and it exacerbates 

species decline. This decline in species and ecosystem further accelerate climate 

change and creates a feedback loop that aggravates the situation. The effect of 

climate change is different in different species and is mainly observed in tree 

species. The changes may either result in their enhanced distribution or reduced 

distribution. Habitat change in the ecoregions will result in catastrophic species 

loss, depending on their response to warming. These results will explain 

whether the tree species have adapted to the changing climate scenario.  

 

The average temperature of India has already increased by around 0.7 degrees 

Celsius during 1901 – 2018 due to greenhouse gas emissions, and it is expected 
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to rise by approximately 4.4 degrees Celsius by the end of 2100. India has many 

global biodiversity hotspots with numerous endemic species of plants and 

animals. Among those regions, Western Ghats is considered one of the rich 

biodiversity hotspots in India. It is a significant global importance site that 

comprises areas of very high physical, aesthetic, and cultural values. Most of 

the forest area of Western Ghats has declined due to climate change and increase 

in agricultural land usage (Chandran et al., 2010; Chethana and Ganesh, 2013). 

Firstly, temperature rise and rainfall pattern variability significantly impact the 

potential distribution, range shifts of several species, and overall decline in the 

suitable habitats in the Western Ghats (Priti et al., 2016). The total forest cover 

area may reduce due to a deficit rainfall pattern (Ramachandran et al., 2017).  

 

The shola forests are dense and floristically rich with many endemic and rare 

species. The trees form a continuous canopy not exceeding 10 – 15 m. Many 

tree species show a shift in their distribution patterns. Ficus drupacea  Thunb 

commonly known as Mysore fig, is one such tree species affected by climate 

change. Ficus drupacea is a huge, spreading canopy tree that grows 10 to 15 

metres tall in the cooler regions of its habitat. The plant usually starts out as an 

epiphyte, growing on another tree's limb; as it becomes older, it sends down 

aerial roots that swiftly form roots and become much thicker and more vigorous 

when they reach the ground. They provide the fig with nutrition, allowing it to 

grow quicker than the host tree. When powdered and applied to wounds, the 

roots are an efficient vulnerary. It is essential to study these changing patterns 

to ensure the conservation and protection of the species.  

The change in the distribution of these species is studied using empirical 

models. Different environmental variables, represent the potential population 

distribution (GuilleraArroita et al., 2015; Elith et al., 2006; Elith and Leathwick, 

2009; Franklin,2013). These models can predict the potential distribution with 

time and space in unsampled areas and future climatic conditions. 
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The main objective of this study is to understand the changes in the distribution 

of the selected species viz., Ficus drupacea. With the help of this result we can 

understand the impact of future climate under different climate scenarios on the 

species. This model can be used for other species in the shola forests thus 

enlightening our planet.  
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 CLIMATE CHANGE AND KERALA 

Kerala bounded by the Arabian sea at one side and the Western Ghats on 

the other has an equable and tropical climate that offers a pleasing atmosphere 

throughout the entire year. The coastal state has hot and humid weather during 

April-May and a pleasant, cold environment during December-January. There was 

proof that showed a decline of annual rainfall in the southern part of Kerala, 

whereas the trend was not similar in the northern part (Soman et al., 1988). During 

the monsoon season, an increase in the mean surface temperature (1.5ºC) was 

predicted in the decade 2040-2049 concerning the 1980s (Saseendran et al., 2000). 

Annual rainfall in the Western Ghats area in the Palakkad Gap varied with altitude 

and comparatively lower annual rain over these regions compared to the entire state 

(Raj and Azeez, 2009; 2010).  

2.1.1 Climate in the Western Ghats 

The Western Ghats, or Sahyadri, is a mountainous region along the Indian 

peninsula's western coast. The area is listed as a World Heritage Site with 39 

significant properties, including reserve forests, wildlife sanctuaries and national 

parks  (UNESCO, 2007).  It is also considered one of the world's most important 

biodiversity hotspots (Molur et al., 2011; Myers et al., 2000). This area has recorded 

a considerable proportion (at least 325 species) of globally threatened species 

(Dahanukar et al., 2004; Nayar et al., 2014). Climate change and rising 

anthropogenic pressures have resulted in the loss of a large portion of this unique 

landscape's forest cover, and the remaining forest areas are also endangered (Raha 

and Hussain, 2016). The study area's average annual temperature varies from 20ºC 

to 24º C. The western mountainous regions of the site receive a lot of rain (2000–

4000 mm/year) (IMD, 2016). However, as you get closer to the eastern foothills, 

the number of precipitation drops. Under future climatic conditions, the central and 

southern parts of the Western Ghats, specifically the South of Palghat Gap, are 
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expected to provide the best habitat for mid-elevation evergreen forests (Priti et al., 

2016). The Western Ghats are likely to see an extension of evergreen forests under 

the A2 and B2 scenarios of the Special Report on Emission Scenarios (SRES). 

Because of the unfragmented existence of the forest, there is no lack of seed-

dispersing agents, tropical evergreens continue to thrive and grow. However, 

anthropogenic stresses and climate change affected the number of dispersal agents, 

causing the forest to disperse in the real world. Higher elevations are more likely to 

be affected by climate change, making mountainous forest types like those in the 

Western Ghats vulnerable to degradation. Such areas necessitate effective pest and 

fire control, scientifically correct harvesting, and anticipatory plantations 

(Chaturvedi et al., 2011). 

 

2.2 IMPACT OF CLIMATE CHANGE ON FOREST TREES 

The Shola forests of peninsular India are part of a larger group of tropical 

montane forests found in Asia, Africa, and America. In Kerala, shola forests are 

found along the crest of the Western Ghats, where the elevation exceeds 1800 

metres. The altitudinal gradient is one of the ecological factors that influence the 

plant population’s structure, composition, and diversity of the plant population in 

these forests, as it is in other tropical forest belts. Indeed, through morphological, 

phenological, and physiological changes in response to a broad range of 

environmental conditions prevailing along an altitudinal gradient, most tropical tree 

species can sustain a consistently high level of growth-related activity. 

Long-distance gene flow is a capability of forest trees. Their genes travel 

across broad spatial scales at high enough rates to deal with habitat changes 

anticipated as climatic conditions change. Such a trait in forest trees promotes 

adaptive evolution by increasing genetic variation, which improves fitness. When 

bioclimatic envelopes change, region-specific populations are at risk of extinction 

and recolonization, with the latter causing dispersal of genetic diversity, to which 

region-specific populations react in a variety of ways. Adapting to changes in the 
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environment is one option for certain communities, while the migration is another. 

Migration allows species to drift to more suitable areas over time with no 

development, but adaptation occurs due to evolutionary changes (Kremer et al., 

2012). Even though high levels of genetic variation and increased gene flow are 

thought to facilitate adaptive changes in forest trees, the population's long life span 

and low mortality of existing trees limit their adaptability. Forest trees' adaptive 

rates to climate change are typically higher in communities subjected to frequent 

fires or storms and have higher mortality rates. Local demography is another crucial 

factor influencing forest tree adaptability to climate change (Kuparinen et al., 

2010). 

 

 

2.3SPECIES DISTRIBUTION AND CLIMATE CHANGE 

Scholars have long recognized the strong correlation between individual 

species distributions and species richness, and the climate of that region. Although 

there is a clear link between environmental factors and species distribution, the 

impact of these factors is still unknown (Murray and Conner, 2009). The factors 

that influence species distribution remained an unsolved subject in ecology (Araujo 

and Guisan, 2006). Changed species distribution due to diminished viability owing 

to range loss will be one of the significant consequences of climate change. It affects 

the risks of species even in protected areas. Biodiversity hotspots face a substanial 

threat of reduction as they have a wide variety of species within their limit. Different 

species respond to climate change in a different manners. Most of the predictions 

suggest that there will be reduction and fragmentation because of distributional 

shifts resulting from climate change. Movement (if the species is mobile, it will 

track suitable environment niches), adaptation (if the species can adjust to changing 

conditions and has high physiological tolerances), and extirpation (when both 

movement and transportation fail) have been the three methods used by species to 

respond to climate change (Holt, 1990; Melillo et al., 1995).  
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According to Thomas (2010), the climate is one of the most critical factors 

of range boundaries. Aside from climatic variables, changes in land use and habitat, 

biotic interactions, and evolutionary adaptability all had a role in species 

distribution (Huntley et al., 2006; La Sorte and Thompson, 2007; Beale et al., 

2008). For RCP 8.5, the maximum range loss of the montane grasslands is expected 

to be 63% by 2080. Because of climate change, the montane grasslands are 

predicted to lose more than 60% of their existing appropriate habitat. The model 

output reflects the facts that, under various climate change scenarios, protected 

areas of the Southern Western Ghats, such as the Eravikulam National Park, 

Parambikulam Tiger Reserve, and a portion of the Chinnar Wildlife Sanctuary, will 

provide some stable areas; however, the chances of large-scale local extinction of 

the species with high risk of habitat loss are irrefutable (Sony et al., 2018). 

 

2.4 IMPORTANCE OF RANGE DISTRIBUTION STUDIES 

For a better understanding of the ecological and evolutionary determinants 

of various spatial patterns of biodiversity (Rosenzweg, 1995; Ricklefs, 2004; 

Graham et al., 2006), as well as for conservation planning and forecasting, a broad 

understanding of species ecological and geographic distribution was required 

(Ferrier, 2002b; Funk and Richardson, 2002; Rushton et al., 2004). Climate change 

indicators were still in the early stages of development, and scientists and 

policymakers were eager to learn more about the biological effects of climate 

change and how to apply adaptive and mitigation strategies (Mace and Baillie, 

2007; EEA, 2007). 

 

2.5 SPECIES DISTRIBUTION MODELLING 

2.5.1 Importance of species distribution modelling 

To understand about the spatial configuration and characteristics of habitats 

that allowed for species continuity in landscapes (Araujo and Williams, 2000; 
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Ferrier et al., 2002b; Scotts and Drielsma; 2003), past species distribution (Hugall 

et al., 2002; Peterson et al., 2004), species distribution in future climatic conditions 

(Bakkenes et al., 2002; Skov and Svenning, 2004; Araujo et al., 2004; Thomas et 

al., 2004; Thuiller et al., 2005) and relationships between environmental parameters 

and species richness (Mac Nally and Fleishman, 2004), researchers used species 

distribution model. Conservationists used distribution models to estimate the most 

favourable locations for a species and to forecast the likelihood of occurrence in 

places where systematic surveys had not been conducted (Elith, 2002). The use of 

predictive modelling was utilized to investigate changing distributions. If a species’ 

range was correctly mapped, environmental variables such as climate could be 

linked to its presence or absence (Crick, 2004).  

The environmental parameters were determined using known species 

distributional information, resulting in identifying geographical regions with 

similar environments and the modelling of species distribution (Pearson and 

Dawson, 2003). Bio-geographical analysis techniques have been used to investigate 

the distribution of species abiotic niches in connection to environmental variables 

at the observed locations (Guisan and Thuiller, 2005). Watching the real future 

develop was the only method to test the hypotheses or scenarios of foretelling the 

future. To get around this problem, we could use prior environmental changes to 

see if species and ecosystems responded similarly to the models anticipated (Araujo 

et al., 2005).  

Using the presence or absence of species in relation to environmental 

factors, the species distribution models attempt to predict species distribution. 

These models were frequently employed to analyze different ecological, 

evolutionary, and conservation reasons (Elith et al., 2006). Apart from this, these 

models could also be used to predict future species distributions under various 

climate change scenarios (Jeschke and Strayer, 2008; Sinclair et al., 2010), potential 

expansion of introduced species in newly colonized areas (Jimenez-Valverde et al., 

2011; Jeschke and Strayer, 2008), and reserve planning (Thorn et al., 2009).  
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2.5.2 Process of Species Distribution Modelling 

 2.5.2.1 Steps in species distribution modelling 

There are various steps to do the modelling of species distribution. Different 

steps involved are: (1) current species data in the form of occurrence points 

(Peterson et al., 1998; Peterson and Stockwell, 2001b); (2) ecological niche models 

are created and tested using distributional data (Guisan and Zimmerman, 2000; 

Kobler and Adamic, 2000); (3) the shift in distribution is projected onto the 

landscape of interest using general circulation models of climate change; (4) 

distributional shifts are mapped onto the changed landscapes using ecological niche 

models of specific species. Models in the environmental space can estimate the 

suitable ecological niche by analyzing species responses to abiotic environmental 

factors (Soberon and Peterson, 2005) and using this information; the model can 

derive the probability of species present in any given area or trace the specific 

environmental conditions that suit the species (Elith et al., 2011).  

 2.5.2.2 Methods for testing accuracy 

 There were several methods for modelling species distribution that differed 

in the steps of modelling: selecting the most appropriate predictor variables, defined 

functions for each variable, weight variable contributions, predictor-species 

interactions, and predicting geographic patterns of occurrence (Guisan and 

Zimmerman, 2000; Burgman et al., 2005; Wintle and Bardos, 2006). Individual 

algorithms made up the numerous rules in the models, and it was based on them 

that the landscapes within and outside the biological niche were recognized 

(Peterson, 2001a). Hierarchical portioning could evaluate alternative models and 

investigate the weight of evidence for various components contained in the model 

(Mac Nally, 2002). Testing climatic envelope models addressed concerns about 

future species distribution prediction accuracy under different climatic conditions 

(Akcakaya et al., 2006; Pearson et al., 2006; Araujo and Rahbek, 2006; Zimmer, 

2007). The degree of environmental dimensions that defined the species 

distributional limitations determined the accuracy of model descriptions about the 
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range of conditions suited for a species (Pearson et al., 2007). Models were built 

primarily on correlations between variables and distribution patterns, which did not 

identify the causal relationship due to autocorrelation among the variables (Bahn 

and McGill, 2007; Currie, 2007; Beale et al., 2008), but this method was limited 

due to the same data source being used for all the different models (Bahn and 

McGill, 2007; Currie, 2007; Beale et al., 2008), but this method was limited due to 

the same data source being used for all the Large geographical areas were evaluated 

to prevent misinterpretation of species dispersion responses. Thus, the connection 

of environmental variables with climatic variables was reduced (Maclean et al., 

2008). It was used to resolve ambiguities caused by correlated predictors, but it 

could not detect spurious correlations among the environmental components used 

to determine the spatial distribution (Ashcroft et al., 2011). Generalized linear 

mixed models were used to increase the accuracy of species distribution range 

forecasts (Swanson et al., 2013).  

 2.5.2.3 Advancements in species distribution modelling 

Climate significantly impact species distribution on land, and niche 

modelling was founded on this concept. Even while the prediction power of models 

has improved, understanding the principles that underpin them has been difficult 

(Shipley, 1999). Although fewer studies were comparing future distribution shifts 

to previous distribution shifts, the climate envelope approach was widely employed 

to tackle this issue (Berry et al., 2002; Thomas et al., 2004; Harrison et al., 2006). 

The use of ecological niche modelling for predicting species distribution from 

environmental data was acknowledged (Pearson and Dawson, 2003). Advances in 

research and technology led to complicated mathematical general circulation 

models (GCMs), which influenced global climate and forecasted future climate by 

combining multiple greenhouse gas emission scenarios (Raper and Giorgi, 2005). 

The lack of data on species-specific physiological characteristics and processes, as 

well as the link between climatic and non-climatic factors, remained an issue 

(Kearney, 2006).  
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2.5.2.4 Species distribution studies 

Environmental variables such as climatic conditions could be used to 

explain species richness and dispersion patterns (Kerr, 2001; Ricklefs, 2004; 

Ceballos and Ehrlich, 2006; Mittelbach, 2010). Using climatic data, several studies 

have been successful in predicting species distribution (Pearson et al., 2002; 

Bakkenes et al., 2002; Burns et al., 2003; Thuiller et al., 2005; Calef et al., 2005; 

Rehfeldt et al., 2006; Hamann and Wang, 2006; McKenney et al., 2007; Peterson 

et al., 2008; Stankowski and Parker, 2010; Joyner et al., 2010; Beever et al., 2010). 

Since both used the same climate-space, it was anticipated in studies of future 

distribution predictions that changes in species range occurring under warmer 

conditions would be mirrored by changes in the colder extremities (Berry et al., 

2002; Thomas et al., 2004; Harrison et al., 2006). Some studies predicted mass 

extinction of species over the next century (Peterson et al., 2002; Bakkenes et al., 

2002; Thomas et al., 2004; Thuiller et al., 2005; Malcom et al., 2006), as well as 

redistribution of species range (Iverson and Prasad, 1998; Pearson et al., 2002; 

Burns et al., 2003; Calef et al., 2005; Rehfeldt et al., 2006; Hamann and wang, 2006; 

McKenney et al., 2007; Peterson et al., 2008). As a result of the detrimental effects 

of climate change on biodiversity, several analytical tools have been developed to 

correlate quantifiable environmental variables with known species locations 

(Heikkinen et al., 2006; Elith et al., 2006; Guisan et al., 2007; Loiselle et al., 2008; 

Graham et al., 2008; Feeley and Silman, 2010; Beever et al., 2010). Range shifts or 

range extension could cause changes in distribution, and the impact of temperature 

dependence has been investigated (Maclean et al., 2008). Environmental variables 

explained species richness prediction at multiple levels (Coops et al., 2009; Hinsley 

et al., 2009; Hansen et al., 2011; BarMassada et al., 2012; Fitterer et al., 2012).  

2.6 DATA USED FOR MODELLING 

2.6.1 Type of data and performance of the model 

 The presence only models failed to get a general test of model accuracy 

when using withheld data for predicting species distribution due to biases in the 
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geographic and environmental space (Bojorquez et al., 1995, Hijmans et al., 2000; 

Soberon et al., 2000; Kadmon et al., 2004). It was possible to assess the model's 

performance by introducing false data and comparing the accuracy of projected 

responses, or by modelling both presence and absence data and comparing fitted 

functions (Austin et al., 1995). When independent data was not utilized to develop 

the model, which was referred to as "test" data, and just "training" data was used to 

build the model, it had a higher prediction success rate (Fielding and Bell, 1997). 

For model performance testing, various test statistics or discrimination indexes 

were used (Fielding and Bell, 1997; Pearce and Ferrier, 2000). The predictive 

performance of the models was more focused on the evaluation step. Some known 

occurrences that were withheld (just presence data) from the model created by 

splitting the data set, k-fold partitioning, or bootstrapping were more focused in the 

evaluation step (Fielding and Bell, 1997; Hastie et al., 2001; Araujo et al., 2005).  

 The accuracy of the forecast was evaluated based on the correctness of the 

withheld data (Boyce et al., 2002; Hirzel and Guisan, 2002b). The generally used 

indices, such as Kappa and the area under the receiver operating characteristic curve 

(AUC), were not suited for evaluating poorly sampled regions (Boyce et al., 2002; 

Phillips et al., 2006). Because the model was statistically equivalent to a random 

prediction, predicting, a higher proportion of test localities (low omission rate) 

while not predicting a significant proportion of the study area would produce 

relevant forecasts. When data portioning was done for testing, the Chi-square test 

or upper-tailed binomial probability was utilized to examine the statistical 

significance of the model (Anderson et al., 2002). The anticipated model's 

performance was based on the available absence data (Loiselle et al., 2003). A 2-2 

confusion matrix could be used to describe the frequency of correctly and wrongly 

predicting absences and presences, and tests were limited to presence-only models 

that did not require absence data (Anderson et al., 2003).  

Absence data (which may occur owing to non-inclusion of data in the 

model) was proposed not to be included since false-positive predictions would be 

seen as failures when possible suitable habitat was modelled (Anderson et al., 2003; 
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Pearson and Dawson, 2003; Soberon and Peterson, 2005). The most systematic and 

straightforward method was to use a random or regionally stratified partition 

(Peterson and Shaw, 2003). However, the data was too tiny to partition into test and 

training data sets, and harmful data was complex (Anderson and Martinez-Meyer, 

2004). When some studies were conducted with small samples, predictive 

performance was reduced (Stockwell and Peterson, 2002; Reese et al., 2005). Given 

the widespread usage of distribution models and the progress of data availability 

and modelling methodologies, extensive synthetic studies of high prediction 

capacity and accuracy of species distribution modelling methods for presence-only 

data were urgently needed (Elith et al., 2006). The validation of the model was 

improved by using an independent, well-structured presence-absence dataset (Elith 

et al., 2006). Many methods capable of capturing complicated answers have been 

developed due to advancements in machine learning and statistical disciplines, even 

when the data was quite noisy. Even though the study seemed promising, it did not 

acquire any attention in distribution modelling (Phillips et al., 2006, Leathwick et 

al., 2006). Resampling designs had biases in the spatial and environmental space 

(Elith et al., 2006). When there were just a few observed locale records available, a 

jack-knife approach may be utilized to assess predicting ability. The Jack-knife 

('leave-one-out') strategy worked well for evaluating models with a modest number 

of occurrences. The model was built using the remaining n-1 localities after 

excluding each observed locality (n) once. The model’s predictability was measured 

by the model's ability to predict a single locale from the training data (Pearson et 

al., 2007). Because absence data was infrequently accessible and challenging to 

detect in surveys, the modelling methodologies and validation relied on it (Pearson 

et al., 2007). Algar et al., (2009) found that temporal prediction was entirely 

accurate, but spatial autocorrelation may be used to eliminate biases using 

regression models.   

2.6.2 Presence and absence records 

 The development of distribution modelling research had previously 

concentrated on the producing models based on presence/absence or abundance 
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data, with systematic sampling methods utilized in the study areas (Austin and 

Cunningham, 1981; Hirzel and Guisan, 2002b; Cawsey et al., 2002). Previously, 

presence-only data were analyzed using envelope calculations or distance-based 

measures designed particularly for that purpose (Silverman, 1986; Busby, 1991; 

Walker and Cocks, 1991; Carpenter et al., 1993). In most presence/absence models, 

breeding areas were assumed to be saturated (Capen et al., 1986). As several 

methods in the species distribution modelling indicated, only presence data were 

evaluated (Nix, 1986; Carpenter et al., 1993). 

 When utilizing presence/absence models, there was a risk of two sorts of 

errors: false positives and false negatives (Fielding and Bell, 1997). Adaptation to 

model presence-only data from presence-absence methods (which used a binomial 

response for modelling) using background environment samples (data developed 

by selecting random points over the study area) or ‘non-use' or ‘pseudo absence' 

area (Stockwell and Peters, 1999; Boyce et al., 2002; Ferrier et al., 2002b; 

Zaniewski et al., 2002; Keating and Cherry, 2004; Pearce and Boyce, 2006). 

Because accurate absence data was rarely available due to poor sampling or missing 

species occurrences during surveys, methods that required both the data set used 

pseudo-absences instead of accurate absence data (Ferrier et al., 2002a; Engler et 

al., 2004), or some methods used background data for the entire study area (Ferrier 

et al., 2002a; Engler et al., 2004). (Hirzel et al., 2002b). 

 Species occurrence data were widely available and easier to obtain, thanks 

to high-resolution environment data layers developed with satellite imagery (Turner 

et al., 2003) and highly sophisticated climate data (Thornton et al., 1997; Hijmans 

et al., 2005). Even if a species was chance to be spotted at a site, it was difficult to 

corroborate the absence data because there was no wildlife-habitat correlation 

(MacKenzie et al., 2004; Gu and Swihart, 2004). 

 Modelling ecological niches were done using a various methodologies, the 

majority of which included both presence and absence records (Bourg et al., 2005). 

Predictions from each approach differed significantly, emphasizing the importance 

of method selection and cross-validation of results from diverse methods (Thuiller 
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et al., 2004; Pearson et al., 2006). The majority of the species occurrence data had 

been acquired without any defined sampling methods. A large amount of these data 

came from presence-only records from museum or herbarium collections that were 

electronically available (Graham et al., 2004; Huettmann 2005; Soberon and 

Peterson, 2005). There were currently ways that employed the presence information 

of other community members to supplement the data regarding the modelled 

species, and this strategy was promising for rare species because the more 

comprehensive community information assisted in revealing the modelled 

relationships (Elith et al., 2006). The problem with this type of presence data was 

that the goal and methods used to collect it were rarely known, and we couldn't 

extrapolate the absence data with accuracy (Elith et al., 2006). Over the last decade, 

new approaches have emerged that rely just on presence data, eliminating the need 

for absence locations (Baldwin, 2009).  

2.7 ASSESSMENT OF CLIMATIC CHANGES 

Global climate models, regional climate models, dynamic and equilibrium 

vegetation models, species bioclimatic envelope models, and site-specific 

sensitivity analysis were utilized to estimate the impact of climate change on 

biodiversity (Sulzman et al.,1995). Equilibrium simulations using a step increase in 

CO2 revealed rising temperatures in both hemispheres, but transient simulations 

showed both ups and downs in the temperature distribution (Sulzman et al., 1995). 

Regional models could be used in conjunction with more detailed Global 

Circulation Models (GCMs). The two major regional models that were commonly 

utilized were MM5 (Mesoscale Model version 5) and RAMS (Regional 

Atmospheric Modelling System) (Sulzman et al., 1995). Because the climate 

dynamics of the southern and northern hemispheres differed, models designed with 

a significant focus on one hemisphere would not produce excellent findings in the 

other (Grassl, 2000).  

Regional models were more helpful determining local climate change than 

global models that relied on global forcings (Pitman et al., 2000). These models 

could depict changes in land use and their impact on cloud formation mechanisms. 
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However, not all regions had access to the results of these models. Dynamic 

vegetation models, forest gap models, biome envelope models, and species 

envelope models all used GCM and regional climate models to shed light on 

different elements of future climate change biogeography (Cramer et al., 2000). 

GCMs, which modelled the global climate and provided projections at 

various resolutions, with differences in projected climate change values for each 

grid cell, were regarded as the entry points for climate change conservation 

assessments because only these models provided estimates of future climate change 

due to greenhouse gas emissions (Hannah et al., 2002). Results from transient (not 

equilibrium) simulations of CO2 growth and models completely connected with 

ocean and atmosphere to the regions of interest improved the evaluations (Hannah 

et al., 2002).  

2.8 SPECIES DISTRIBUTION MODELLING TYPE 

2.8.1 Maximum Entropy Modelling (MaxEnt) 

For estimating the species distribution, MaxEnt uses the maximum entropy 

distribution, which was subjected to the constraint that the predicted value of each 

environment variable (interactions) in the estimated distribution matched its 

empirical average (Phillips et al., 2006). It approximated the most uniform 

distribution using background locations and data-derived constraints (Philips et al., 

2004; Philips et al., 2006). If presence-only species data were used in this model, 

the complexity of the fitted functions might be chosen. Maximum entropy 

modelling (MaxEnt) performed better or equally well as other modelling strategies 

(Elith et al., 2006; Hernandez et al., 2006; Philips et al., 2006). MaxEnt had a higher 

success rate than other algorithms, and it was able to detect differences even with 

small sample sets (Pearson et al., 2007). When sample sizes were artificially 

reduced, the model performance suffered. MaxEnt models projected a greater range 

of appropriate circumstances, and the MaxEnt projection had the potential to 

anticipate excluded areas as well (Pearson et al., 2007). 
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MaxEnt had previously been used to investigate the distributional patterns of 

Geckos (Uroplatus spp.) for predicting species distribution (Pearson et al., 2007), 

American black bear (Ursus americanus) for assessing denning habitat (Baldwin 

and Bender, 2008), Bush dog (Speothos venaticus) for evaluating protection 

excellence (DeMatteo and Loiselle, 2008), and Little bustard (Tetrax (Thorn et al., 

2009). MaxEnt can precisely create the model even with fewer location points, 

which is a valuable feature because there are often insufficient dependable locations 

available for mapping the species distribution (Baldwin, 2009). 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 STUDY AREA 

The area under study is the Southern Western Ghats. It is surrounded by 

montane shola forests covering the southern part of the Western Ghats in Karnataka, 

Kerala and Tamil Nadu. The selected species for the study is Ficus drupacea 

commonly known as Mysore fig. It is a montane shola species whose global 

distribution is seen in Australia, India, Myanmar etc. In India, it is found in Kerala, 

Karnataka, Tamil Nadu, and some parts of Maharashtra.  

 

Fig 1: Map showing the Western Ghats 
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3.2 SPECIES SELECTION 

 The selection of species was made after analysing certain factors like the 

Importance Value Index (IVI), which explains the ecological importance of the 

species within the community and species with a maximum number of occurrence 

points to get a desirable output from the model.  

 Among 70 montane shola species available with location data, IVI was 

calculated, and species with the highest value were shortlisted. From the shortlisted 

species, Ficus drupacea was selected. Ficus drupacea is a terrestrial tree species of 

montane shola forest found at elevations up to 1000 m.  

Fig 2: Map containing the occurrence points of Ficus drupacea in Southern Western 

Ghats 

 

 

3.3 ENVIRONMENTAL VARIABLES 

 For each georeferenced presence location, bioclimatic variables from the 

WorldClim v1.4 database (http://www.worldclim.org/download) (Hijmans et al., 

2005) were utilised for current and future scenarios. These variables were created 

by combining monthly rainfall and temperature data to produce 19 more valuable 

variables. Annual trends, seasonality, and extreme or limiting environmental 
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circumstances are all represented by these variables. Those variables are given 19 

different names as follows; 

BIO1 = Annual Mean Temperature 

BIO 2 = Mean Diurnal Range (Mean of monthly (max temp – min temp)) 

BIO3 = Isothermality (BIO2/BIO7) (×100) 

BIO4 = Temperature Seasonality (standard deviation ×100) 

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range (BIO5-BIO6) 

BIO8 = Mean Temperature of Wettest Quarter 

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 

BIO11 = Mean Temperature of Coldest Quarter 

BIO12 = Annual Precipitation 

BIO13 = Precipitation of Wettest Month 

BIO14 = Precipitation of Driest Month 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 

BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 

BIO19 = Precipitation of Coldest Quarter 

Data from https://www.worldclim.com/bioclim 

https://www.worldclim.com/bioclim
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 The temperature unit is ‘⸰Cx10', and the precipitation unit is ‘mm’. For 

both current and future conditions, 30 arc-seconds (0.86 km2 at the equator) data 

were employed. They were using the WGS84 datum in the latitude/longitude 

coordinate reference system. Monthly precipitation, minimum, mean, and 

maximum temperature were used to determine bioclimatic variables. Interpolating 

average monthly data from weather stations were used to create the data layers. This 

information had its own set of benefits and drawbacks. Climate is defined by the 

World Meteorological Organization (WMO) as the measurement of the mean and 

variability of actual amounts of particular variables (such as temperature, 

precipitation, or wind) throughout time, which can range from months to thousands 

or millions of years. Thirty years is the classical period. 

 The WorldClim interpolated climate layers were created using major 

climate databases compiled by the Global Historical Climatology Network 

(GHCN), the UN Food and Agriculture Organization (FAO), the World 

Meteorological Organization (WMO), the International Center for Tropical 

Agriculture (CIAT), R-HYdronet, and numerous other databases for Australia, New 

Zealand, and the Nordic European countries (Hutchinson and Xu, 2013). The same 

current bioclimatic layers and future bioclimatic layers corresponding to the 

climatic responses of Representative Concentration Pathways (RCPs) were used for 

ecological niche modelling the future prediction of distribution for the Ficus 

drupacea using the coupled model HadGEM2-AO of 30 seconds resolution, which 

is available in the WorldClim database. The four scenarios like the RCP 2.6, RCP 

45, RCP 6 and RCP 8.5 were used. 

 Apart from the bioclimatic layers, altitude, aspect, slope and land cover 

were also used for the ecological niche modelling. The land cover data is sourced 

from SPOT VEGETATION, Defence Meteorological Satellite Program (DMSP) 

data under the name Land Cover Classification System (LCCS), having 85 per cent 

accuracy with Forest Survey of India Report at a resolution of 1km. The altitude 

data was obtained from Shuttle Radar Topography Mission (SRTM) at three arc-

second or 90 meters. 
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Table 1. Different RCP’s and their characteristics 

Name Model used Radiative forcing 
CO2 equivalent 

(ppm) 

Temperature 

anomaly (⸰C) 

RCP2.6 IMAGE 

3.1 W/m2 at mid-century, 

returning to 2.6 W/m2 by 

2100 

490 1.5 

RCP4.5 MiniCAM 4.5 W/m2 post 2100 650 2.4 

RCP6 AIM 6 W/m2 post 2100 850 3.0 

RCP8.5 MESSAGE 8.5 W/m2 in 2100 1370 4.9 

 

3.4 MAXIMUM ENTROPY SPECIES DISTRIBUTION MODELLING 

(MaxEnt) 

 The MaxEnt is a software that uses the principle of maximum entropy for 

species habitat modelling. The model expresses a probability distribution from a set 

of environmental (e.g., climatic) grids and georeferenced occurrence sites. Each 

grid cell has predicted the appropriateness of circumstances for the species. The 

result can be interpreted as the anticipated probability of presence (cloglog 

transform) or forecast local abundance (cloglog transform) depending on the 

assumptions made about the input data and biological sampling efforts that lead to 

occurrence records (raw exponential output).  

 A set of environmental or climate layers (or "coverages") for a group of 

grid cells in a landscape, as well as a set of sample locations where the species has 
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been seen, are used to create species models. The model expresses each grid cell's 

appropriateness as a function of the environmental variables present in that grid 

cell. At a given grid cell, a high value of the process implies that the grid cell is 

projected to have favourable conditions for that species. The model that has been 

computed is a probability distribution across all grid cells. The distribution chosen 

has the maximum entropy, but it must have the same expectation for each 

characteristic (derived from the environmental layers) as the average across sample 

locations. 

 MaxEnt can be downloaded online freely 

(https://www.cs.princeton.edu/~schapire/MaxEnt/). The information must be 

entered into the software in the correct format. The bioclimatic layers should be in 

‘.asc' format, and the species data should be in ‘.csv' format. Under the settings 

options, software was configured to acceptable levels based on our requirements 

for the run (Philips et al., 2004; 2006).  

3.4.1 OPTIMISATION OF MODEL 

 3.4.1.1 MODEL FEATURES 

 As per the requirement of the study, the primary step in optimising the 

model is to find a suitable combination of the model features. The default feature 

set in the MaxEnt software is the auto features. There are five features available in 

the model, and they can be applied in isolation and in combination too. The five 

model features are linear (L), quadratic (Q), product (P), threshold (T) and 

hinge(H). Different combinations of the features are: L, LP, LQ, LT, LH, LPQ, 

LQH, LPH, LHT, LQT, LPT, LPHT, LPQT, LQHT, LPQH and LPQHT.  

 All these combinations were run, and the best output that suits was 

analysed using the True Skill Statistics (TSS) and the best model feature identified 

was L.  

  

https://www.cs.princeton.edu/~schapire/MaxEnt/
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3.4.1.2 REPLICATION RUN TYPE AND REGULATION MULTIPLIER 

 In MaxEnt, the three replication run type used are cross-validate, bootstrap 

and subsampling. Cross-validation is a type of replication in which the occurrence 

data is randomly divided into several (k) groups (‘folds') of equal size, with one 

part left out, and the model is fitted to the other k-1 parts (combined), yielding 

predictions for the left-out part. Each portion was given the same treatment, and 

the findings were incorporated. Cross-validation had the advantage of using all of 

the data for validation, which was helpful when dealing with a small number of 

data sets. It made good use of the data in reporting the range and standard error. It 

also allowed for the simultaneous assessment of prediction uncertainty, which was 

helpful in model evaluation. However, because only a portion of the data was used 

for model fitting, retrieving test data statistically (spatially) independent of the 

training data proved problematic (Hijmans, 2012; Wenger and Olden, 2012). 

When applying spatially correlated folds, overestimating model performance and 

underestimating the standard error of predictions are possible. The statistical 

independence of the test and train data is lost when using the Bootstrap approach, 

and the AUC values are slightly exaggerated.  

 All these three run types were run and the best type was identified to be 

cross-validate.  

 The regulation multiplier is used to avoid the overfitting of the model 

(Philips, 2008). The model was run by trying different regulation multipliers which 

control the model complexity (Radosavljevic and Anderson, 2014). The default 

regulation multiplier is one and to identify the best model setting, varying values 

of regulation multiplier were incorporated, namely 1.5, 2, 2.5, 3, 3.5 and 4. Among 

this regulation multiplier, the model fitting was found to be high with the value 4. 

 The model settings were adequately tuned by assessing discriminatory 

ability to examine overfitting and, visual inspections of maps to conclude on output 

credibility (Radosavljevic and Anderson, 2014). 
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3.5 VARIABLE CONTRIBUTION AND OPTIMISATION 

 All bioclimatic variables, altitude, aspect, land cover and slope were 

analysed to determine the contribution of each variable to the modelling of 

distribution for the Ficus drupacea. This was done for the current distribution (no 

projections for the future), and the best sampling approach was chosen based on 

previous analysis. Ten subsampling replicates were utilised, with 25% of the data 

being kept for testing and the rest being used to develop the model. The results 

were formatted in logistic format to obtain the probability of occurrence in the 

range of 0-1. The enhanced regularised gain is added to the contribution of the 

associated variable in determining the percentage contribution, or deducted from 

it if the change in the absolute value of lambda is negative in each run of the 

training method. The values of each environmental variable on training presence 

and background data were randomly permuted to estimate permutation 

importance.  

 Trials were conducted using a single sample strategy with 13 replicates 

and a 25% test percentage to assess the model prediction accuracy. The MaxEnt 

output included attributes that defined the data's authenticity and how well the 

predicted model fit the data. Both omission curves and AUC curves described the 

model's accuracy (Fielding and Bell, 1997; Philips et al., 2006; Elith et al., 2011). 

The omission rate and anticipated area at different threshold levels were shown by 

analysing the omission/commission graph. The lines on the chart were shaded 

orange and blue to represent their variability. According to the definition of 

cumulative output format, the expected omission rate was a straight line. The 

expected omission rate should be similar to the actual omission rate. The area 

under the Receiver Operating Characteristic (ROC) curve, or area under the curve, 

as illustrated in the sensitivity vs 1-specificity graph (AUC). This made it simple 

to compare the performance of one model to that of another, and it was a valuable 

tool for evaluating numerous MaxEnt models. AUC values of 0.5 suggested that 

the model's performance was no better than random, whilst values of 1.0 indicated 

that the model performed better. The numerous models projected under different 



29 

 

parameters were examined using these aspects of MaxEnt output.  The best-fitted 

model based on the ROC curve and having a high AUC value was selected (Philips 

et al., 2006). 

 The procedure of model construction included a significant amount of 

variable optimisation. Even if all variables were related to the result, it was 

recommended to remove some with a bit of effect to boost the interpretability of 

the final model (epistemic sparsity) or to build a model with greater predictability 

(predictive sparsity) by reducing the variance (De Bin et al., 2015). To reduce 

autocorrelation, highly correlated variables should be removed when evaluating 

the contributions of each environmental variable to the species distribution model. 

Many climatic variables were strongly correlated, so integrating them all would 

not alter the validity of the MaxEnt model prediction. Still it would severely limit 

the contribution of other associated factors. If a highly correlated variable was 

included in the model, it disqualified any other associated variables from being 

included, even if they were significant in predicting species distribution (Brown, 

2014). If there is a correlation, the response curves derived from the presence could 

be misleading. When there are a lot of factors that are highly associated, the per 

cent contributions should be used with caution. If the test and training data were 

spatially autocorrelated, the test omission line was significantly lower than the 

predicted omission line, indicating that the model was not well fitted. Because 

geographically auto correlated data will inflate the accuracy measurement for 

presence-only models (Veloz, 2009), spatially correlated variables have to be 

eliminated before  the modelling procedure. 

 

3.6 CURRENT DISTRIBUTION OF SPECIES 

 The correlation matrix (Pearson) and coefficients of determination (R²) 

were used to analyse the bioclimatic variables (bio1-bio19) for the current 

conditions (1950-2000). The correlation values |r| >0.7 and |r|>0.9, as well as R² 
>0.9, were used to categorise the variables. The variables with the highest 
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percentage contribution were chosen, and important results based on the MaxEnt 

model output were utilised to make future predictions. The percentage contribution 

chart depicted each environment variable's proportionate contribution to the 

MaxEnt model. The increase in regularised gain was added to the contribution of 

the associated variable in each iteration of the training process, or deducted from 

it if the change in the absolute value of lambda was negative. They were dependent 

on the MaxEnt code's path to the solution, and the contribution values altered when 

it chose a different approach to obtain the same result. When there were a lot of 

highly linked factors, it was important to evaluate the results carefully. The 

MaxEnt model, not the path it took to get the value, determined the permutation 

relevance. The importance was determined by calculating the decrease in training 

AUC after randomly permuting the values of that variable in both the presence and 

background (training points). The greater the drop, the more dependent the model 

was on that variable. The environment variable had the highest gain when used in 

isolation (having the most useful information) and the environment variable that 

decreased the gain the most when it was omitted (having the most information that 

isn't present in the other variables), according to the Jack-knife test of variable 

importance. After removing the correlated variables, the selected variables were 

used in the subsequent modelling. 

3.7 POTENTIAL DISTRIBUTION OF FICUS DRUPACEA 

 To estimate the probability distribution of the selected montane shola 

species in the future, the trained environment layers are projected to another 

available set of environmental layers including future climate data in the MaxEnt 

model. The projection layers should include training layers that are compatible but 

have varied circumstances. The names of the layers and map projection should be 

the same as the trained data. Based on future climatic data, a model was trained on 

environmental factors related to current climatic circumstances and projected into 

a distinct layer. Models of several RCPs, such as RCP 4.5, RCP 6.0, and RCP 8.5, 

were created using ten replicates and a test percentage of 25 for the 2050s and 

2070s. The projection was carried out with the help of cross-validation replication. 
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CHAPTER 4 

RESULTS 

4.1 VALIDATION OF MODEL 

 To test the accuracy of the model outputs, various methods are incorporated. 

Some of the ways are AUC, sensitivity, and specificity. The model is run as per the 

output of the ENM evaluate script in the R-studio. After the run, the finalized model 

outputs are assessed by visual inspection of graphs and maps.  

Fig 3: Receiver Operating Characteristic (ROC) curve of the finalized model output 

in MaxEnt 

 

The response curves from MaxEnt output demonstrated how each 

environmental variable affected Ficus drupacea distribution. The graphs above 

depict changes in logistic prediction as each environmental variable was modified 

while all other environmental variables remained at their average sample value. The 
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average test AUC value is 0.994 with a standard deviation of 0.003. A model to be 

best, the AUC value should be 0.9 as  it ranges from 0 to 1. The graph shows that 

the selected model is outstanding because of the curve curves from the origin to the 

top left of the plot.  

 

Fig 4: Average omission curve and predicted area for Ficus drupacea  

 

The above graph shows the test omission rate and predicted area as a 

function of the cumulative threshold, averaged over the replicate runs. The emission 

rate should be close to the expected omission because of the definition of the 

cumulative threshold.  

4.2 ANALYSIS OF VARIABLE CONTRIBUTION 

 To select the suitable bioclimatic variables from the 19 variables, we need 

to find their correlation. Correlation also helps us to find the essential variables for 

the selected species. We use the Species Distribution Modelling (SDM) toolbox in 
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ArcGIS and create a correlation table to find the correlation. Analyzing the table 

based on the collinearity test and percentage contribution, the following variables 

were finalized for the selected species Ficus drupacea.  

 After the selection of the variables, each variable contributed differently to 

the species. Bio 3 (Isothermality) contributed 64.9%, slope contributed 23.7%, Bio 

2 (Mean Diurnal Range) contributed 5.9% and Bio 19 (Precipitation of coldest 

quarter) contributed 2.9%. When put together, bio 14 (Precipitation of driest month) 

and Bio 18 (Precipitation of warmest quarter) contributed only 2.6%, which is 

negligible, and the contribution of land-cover and aspect in both current and future 

scenarios are nil. From this, it is clear that the most influencing variable in the 

distribution of the species is isothermality and the least contributed variable is the 

precipitation of the warmest quarter.  

Table 2: Percentage contribution of the finalized bioclimatic variables and other 

factors in the distribution of Ficus drupacea.  

Variable Name of the variable Per cent contribution 
Permutation 

importance 

Bio 3 Isothermality 64.9 59 

Slope Slope 23.7 23.2 

Bio 2 Mean Diurnal Range 5.9 9.4 

Bio 19 
Precipitation of 

coldest quarter 
2.9 1.6 

Bio 14 
Precipitation of driest 

month 
2 0 
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Bio 18 
Precipitation of 

warmest quarter 
0.6 6.9 

Aspect Aspect 0 0 

Land-cover Land-cover 0 0 

 

Fig 5: Jackknife test gain of finalized bioclimatic variables and other factors 

obtained from MaxEnt output. 

 

Fig 5 shows the jackknife test gain of the selected bioclimatic variables and 

other important factors. From the graph, it is evident that isothermality (Bio 3) is 

the bioclimatic variable that influences the distribution of species when taken into 

consideration. So from both the graph and the per cent contribution, it is clear that 

isothermality affects the distribution significantly.  
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Fig 6: Response curve showing the dependency of each selected variable to the 

potential distribution obtained from the MaxEnt model output.

 

 

The above graph depicts the response curve of the selected variables to the 

potential distribution of Ficus drupacea. These response curves are in accordance 

with the per cent contribution table.  

4.3 CLIMATE SPACE SUITABILITY FOR Ficus drupacea UNDERCURRENT 

AND FUTURE SCENARIOS 

The MaxEnt model was run with all data including the species occurrence 

points, bioclimatic variables and current and future data. After receiving the output, 

the suitability area of Ficus drupacea under current and future scenarios were 

calculated using QGIS.  
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4.3.1 Climate Space Suitability Under Current Scenario 

Fig 7: Distribution map showing the suitability areas under the current scenario 

 

 Under the current climate scenario in the Western Ghats, the highly suitable 

area available for the Ficus drupacea is 5312.845 km2. These areas are found in the 

southern Western Ghats. The highly relevant areas under the current climate 

scenario are Idamalayar Reserve Forest, Kuttambhuzha, Neriamangalam, Adimali, 

Kodaikanal, Angamala Reserved Forest, Marayoor etc.  

 The extremely suitable area under the current climate scenario is 9426.397 

km2. The areas are found near Agasthyamalai, Kalakkad, Thenmala Reserve Forest, 
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Konni Reserve Forest, Aruvappulam, Ranni Forest Division, Periyar National Park 

etc. 

Fig 8: Map showing the distribution of suitability areas under the current scenario 
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4.3.2 Climate Space Suitability Under RCP 4.5 

 4.3.2.1 RCP 4.5 - 2050 

Fig 9: Distribution map showing the suitability area under the RCP 4.5 for the year 

2050 
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 The above figure shows the suitability areas of the distribution of the species 

Ficus drupacea under the RCP 4.5 for the year 2050. From the map, we can say 

that the highly suitable site available is 3033.212 km2. The areas of highly 

appropriate distribution are Adimali, Kuttambhuzha, Neriamangalam etc. 

 The extremely suitable area for Ficus drupacea is 14902.133 km2. The 

places of extreme suitability are Agasthyamalai, Neyyar Wildlife Sanctuary, 

Singampatti Zamindar Forest, Mundanthurai Tiger Reserve, Ponmudi, 

Mahendragiri Reserved Forest, Papanasam Reserve Forest etc.  

Fig 10: Map showing the distribution of suitability areas under RCP 4.5 for the year 

2050 
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4.3.2.2 RCP 4.5 – 2070 

Fig 11: Distribution map showing the suitability areas under RCP 4.5 for the year 

2070. 

 

 

Under RCP 4.5, the highly suitable area for the potential distribution for 

2070 is 3058.708 km2. The highly relevant regions are Chimmini wildlife 
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sanctuary, Kuthiran, Peechi – Vazhani Wildlife Sanctuary, Wadakkanchery and 

some parts of Kerala – Tamil Nadu border.  

The extremely suitable area available for the year 2070 is 14739.93 km2. 

The places are Nelliyampathy Forest Reserve, Idamalayar Reserve Forest, Valparai, 

Anamalai Tiger Reserve, Marayoor, Kanthalloor, Kookal, Kodaikanal, Anamudi, 

Munnar, Kuttambhuzha, Neriamangalam, Idukki Wildlife Sanctuary, Vagamon, 

Periyar National Park, Megamalai, Thenmala Reserve Forest, Konni Reserve 

Forest, Shendurney Wildlife Sanctuary, Ponmudi, Agasthyamalai, Neyyar Wildlife 

Sanctuary etc. 

Fig 12: Map showing the distribution of suitability areas under RCP 4.5 for the year 

2070. 

 



43 

 

4.3.3 Climate Space Suitability Under RCP 6 

 4.3.3.1 RCP 6 – 2050 

Fig 13: Distribution map showing the suitability areas under RCP 6 for the year 

2050. 
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Under RCP 6, the highly suitable area available for the year 2050 is 

2984.602 km2. We can find highly suitable areas are some parts of Thrissur district, 

Udumalapettai, some parts of Cumbum etc. 

The extremely suitable area available for the potential distribution of Ficus 

drupacea in 2050 under the RCP 6 is 15020.788 km2. The places are most of 

southern western Ghats starting from the Nelliyampathy Forest Reserve to 

Nagercoil.  

Fig 14: Map showing the distribution of suitability areas under RCP 6 for the year 

2050. 
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4.3.3.2 RCP 6 – 2070 

Fig 15: Distribution map showing the suitability areas under RCP 6 for the year 

2070. 
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Under RCP 6, the highly suitable area for the potential distribution of Ficus 

drupacea in 2070 is 3381.857 km2. The places are some parts of Thrissur districts, 

Pollachi area, some traces in Cumbum area, Vagamon area etc.  

The extremely suitable area available in the year 2070 under the RCP 6 is 

14796.67 km2. The places are almost the whole southern Western Ghats. 

Fig 16: Map showing the distribution of suitability areas under RCP 6 for the year 

2070.  
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4.3.4 Climate Space Suitability Under RCP 8.5 

 4.3.4.1 RCP 8.5 – 2050 

Fig 17: Distribution map showing the suitability areas under RCP 8.5 for the year 

2050. 
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 Under the RCP 8.5, the highly suitable area available for the potential 

distribution of Ficus drupacea in 2050 is 3030.364 km2. The places are some parts 

of Thrissur districts, Pollachi, Palani, Cumbum etc. 

 The extremely suitable area available for the potential distribution of Ficus 

drupacea in 2050 is 15153.146 km2. It is spread to almost the whole southern 

Western Ghats.  

Fig 18: Map showing the distribution of suitability areas under RCP 8.5 for the year 

2050. 
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4.3.4.2 RCP 8.5 – 2070 

Fig 19: Distribution map showing the suitability areas under RCP 8.5 for the year 

2070. 

 

Under the RCP 8.5, the highly suitable area available for the potential 

distribution of Ficus drupacea in 2070 is 3293.409 km2. The places are some parts 
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of Thrissur districts, Chimmini Wildlife Sanctuary, Pollachi, Kodaikanal, 

Ramakalmedu etc. 

 The extremely suitable area available for the potential distribution of Ficus 

drupacea in the year 2070 is 15028.831km2. The places with extreme suitability are 

found to be spread almost the whole southern Western Ghats. 

Fig 20: Map showing the distribution of suitability areas under RCP 8.5 for the year 

2070. 
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Table 3: Suitability class distribution of Ficus drupacea under various RCP 

scenarios with their area of extent (km2). 

 Current 
RCP 4.5 - 

2050 

RCP 4.5 - 

2070 

RCP 6 - 

2050 

RCP 6 - 

2070 

RCP 8.5 - 

2050 

RCP 8.5 - 

2070 

Unsuitable 3868.378 1140.403 1170.78 1105.836 1077.26 1072.254 1036.113 

Moderately 

Suitable 
2135.125 1667.006 1721.921 1631.523 1486.962 1486.987 1384.394 

Highly 

Suitable 
5312.845 3033.212 3110.111 2984.602 3381.857 3030.364 3293.409 

Extremely 

Suitable 
9426.397 14902.133 14739.928 15020.788 14796.67 15153.146 15028.831 

 

Fig 21: Chart illustrating the habitat suitability class distribution for Ficus drupacea 

under each RCP scenario. 
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CHAPTER 5  

DISCUSSION 

The Western Ghats mountain range, which is older than the Himalayas, 

contains geomorphic features of tremendous importance and, distinct biophysical 

and biological processes. The high montane forest ecosystems at the site have an 

impact on the Indian monsoon weather pattern. The site, which helps to moderate 

the region's tropical temperature, is one of the best examples of the monsoon system 

on the planet. It also possesses a high level of biological diversity and endemism 

and is considered one of the world's eight "hotspots" of biological diversity. 

There are various studies related to the distribution of many species in the 

area. Most of the studies demonstrate that the species distribution is declining as 

the year passes and RCPs increase. Climate change is predicted to negatively 

influence the marshy Myristica species of the myristicacea family in the Western 

Ghats (Priti et al., 2016). In the Western Ghats, a similar study on Myristica 

dactyloides revealed a decreasing trend in habitat appropriateness (Remya et al., 

2015). These findings are consistent with one of the valid regional-scale studies on 

the impacts of climate change on India's forests, which found that forests in the 

northern and middle Western Ghats responded differently than tropical evergreen 

forests in the southern Western Ghats. 

While changing climate, when the northern and central forests of the 

Western Ghats were negatively affected, the forest of southern Western Ghats 

remained more over stable. In the future they are also expected to remain silent 

(Chaturvedi et al., 2011). This difference in the north and south parts is due to the 

precipitation they receive. In the future, southern Western Ghats will receive 5-15% 

increased precipitation (Krishna Kumar et al., 2011). In the study also, precipitation 

played a significant role in understanding the distribution of Ficus drupacea in 

future scenarios. Among the bioclimatic variables, Precipitation of the coldest 

quarter (Bio 19), Precipitation of the driest month (Bio 14) and Precipitation of the 

warmest quarter (Bio 18) were the variables that contributed to the suitability of 
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Ficus drupacea. This answers why montane shola species Ficus drupacea show an 

increase in the distribution in the future from its current scenario.  

Another factor in consideration is carbon dioxide concentration. As per the 

RCP scenarios given out by IPCC, the temperature will increase in the future. As 

the temperature increases, the carbon dioxide concentration is also going to increase 

in the future. The carbon dioxide concentration is expected to grow 650 parts per 

million in RCP as radiative forcing increases. It increases the carbon dioxide 

concentration in the atmosphere and thus increases the temperature. According to 

the percentage contribution table, Mean Diurnal Range (Bio 2), which is a 

derivative of temperature, is critical in the probability of Ficus drupacea. Unlike 

the current scenario, it is understood that the species will be adapted to plans even 

the temperature increases. Hence it is evident that all these factors promote the 

distribution of Ficus drupacea.  

Among the five bioclimatic variables, 3 are derivatives of precipitation 

namely, Precipitation of coldest quarter (Bio 19), Precipitation of the driest month 

(Bio 14) and Precipitation of warmest quarter (Bio 18), which have influenced the 

distribution of Ficus drupacea suggests that increase in precipitation in the future 

may enhance the distribution of the species as predicted by the model. 
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CHAPTER 6 

SUMMARY AND CONCLUSION 

The study explains the impact of climate change on the probable distribution 

of a montane shola species called Ficus drupacea present in the southern Western 

Ghats in the future. The study was done under all the RCPs and understood how the 

species would be reacting to the changing climate scenarios in the future. Due to 

the lack of occurrence points of the species, much study was not available. Only 13 

occurrence points were available for the species Ficus drupacea. But this study can 

be considered a new opening for further research related to the species and the study 

area, montane shola forests.  

This study explained how the species would react in different RCPs and their 

suitability in each RCPs. The extremely suitable and most suitable areas for the 

species Ficus drupacea were found from the results. The distribution of the species 

was increasing across all the RCPs from the current scenario. So, the changing 

climate is having a positive impact on the distribution of the species Ficus 

drupacea. The maximum probable distribution of Ficus drupacea was found in the 

RCP 8.5 in the year 2050. 
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CHAPTER 8 

ABSTRACT 

Climate change is severely affecting the ecosystem and its components. These 

changes affect the distribution of some species either beneficial or detrimental. The 

study was conducted to understand the impact of climate change on the distribution 

of montane shola species Ficus drupacea in the southern Western Ghats. 

Temperature rise and precipitation are the main factors that affect the climate 

system. To understand the influence of climate on the distribution of the species in 

the current and future scenarios, model called MaxEnt was run using the sample 

data and the selected bioclimatic variables. The result from the study showed that 

the distribution of the species Ficus drupacea in the current scenario is highly 

suitable in the southern Western Ghats. The model was run for the year 2050 and 

2070 under different RCP scenarios – 4.5, 6 and 8.5. The model output explained 

that the distribution of Ficus drupacea was increasing under each RCP scenarios 

for the years 2050 and 2070. The maximum probable distribution of Ficus drupacea 

was found under RCP 8.5 in the year 2050. So from the study it is proved that the 

change in the climate scenario is having a positive impact on the distribution of a 

widespread species called Ficus drupacea which is keystone species found in the 

southern Western Ghats. 
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APPENDIX – I 

 

 

Response curve showing the dependency of each selected variable to the potential 

distribution obtained from the MaxEnt model output 
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APPENDIX – II 

 

Distribution map showing the suitability areas under current scenario  
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Map showing the distribution of suitability areas under the current scenario 
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Distribution map showing the suitability area under the RCP 4.5 for the year 2050 
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Map showing the distribution of suitability areas under RCP 4.5 for the year 2050 
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Distribution map showing the suitability areas under RCP 6 for the year 2050. 
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Map showing the distribution of suitability areas under RCP 6 for the year 2050. 
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Distribution map showing the suitability areas under RCP 6 for the year 2070. 
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Map showing the distribution of suitability areas under RCP 6 for the year 2070.  
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Distribution map showing the suitability areas under RCP 8.5 for the year 2050. 
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Map showing the distribution of suitability areas under RCP 8.5 for the year 2050. 
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Distribution map showing the suitability areas under RCP 8.5 for the year 2070. 
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Map showing the distribution of suitability areas under RCP 8.5 for the year 2070. 
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APPENDIX – III 

Percentage contribution of the finalized bioclimatic variables and other factors in 

the distribution of Ficus drupacea.  

Variable Name of the variable Per cent contribution 
Permutation 

importance 

Bio 3 Isothermality 64.9 59 

Slope Slope 23.7 23.2 

Bio 2 Mean Diurnal Range 5.9 9.4 

Bio 19 Precipitation of 

coldest quarter 

2.9 1.6 

Bio 14 Precipitation of driest 

month 

2 0 

Bio 18 Precipitation of 

warmest quarter 

0.6 6.9 

Aspect Aspect 0 0 

Land-cover Land-cover 0 0 
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Suitability class distribution of Ficus drupacea under various RCP scenarios with 

their area of extent (km2). 

 Current RCP 4.5 - 

2050 

RCP 4.5 - 

2070 

RCP 6 - 

2050 

RCP 6 - 

2070 

RCP 8.5 - 

2050 

RCP 8.5 - 

2070 

Unsuitable 3868.378 1140.403 1170.78 1105.836 1077.26 1072.254 1036.113 

Moderately 

Suitable 

2135.125 1667.006 1721.921  1631.523 1486.962 1486.987 1384.394 

Highly Suitable 5312.845 3033.212 3110.111 2984.602 3381.857 3030.364 3293.409 

Extremely 

Suitable 

9426.397 14902.133 14739.928 15020.788 14796.67 15153.146 15028.831  

 


