KERALA AGRICULTURAL UNIVERSITY

B.Tech (Food.Engg) 2013 Admission IIIrd Semester Final Examination- December -2014

t. No: Basc.2108

tle: Engineering Mathematics -III

Marks: 50.00 Time: 2 hours

<u>irt-I</u> (answer all questions)

 $(5 \times 3=15)$

If $\overline{r} = xi + yj + zk$, prove that $\nabla(\overline{a}.\overline{r}) = \overline{a}$, where \overline{a} is a constant vector.

Find the divergence and curl of the vector $\overline{F} = xyzi + 3x^2yj + (xz^2 - y^2z)$ k at the sint (2,-1,1)

Obtain the Fourier series of f(x) = x in the interval $(0,2\pi)$

Determine whether or not the function $x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ harmonic.

Evaluate $\int_{c}^{dz} \frac{dz}{z-a}$ when (i) a is inside c (ii) a is outside c.

t II (answer any five)

 $(5 \times 5 = 25)$

and the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at the point (2,-1,2).

betermine the analytic function whose real part is $x^2 - y^2 - 2xy - 2x + 3y$.

xpand cosz in a Taylor series about $z = \frac{\pi}{4}$.

and the half range sine series of $f(x) = (x-1)^2$ in the interval (0,1).

valuate $\int_{c} \frac{e^{z}dz}{(z+1)^{2}}$ where c is |z-3|=3.

and the bilinear transformation which maps the points z = 1, i, -1 into w = i, 0, -i.

and the Fourier integral of $f(x) = \begin{cases} 1 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$.

(1 x10=10)

III (answer any one)

 $f(x) = \begin{cases} 0 & \text{in } (-\pi,0) \\ \sin x & \text{in } (0,\pi) \end{cases}, \text{ prove that } f(x) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \sum \frac{\cos 2\pi x}{4\pi^2 - 1}.$

Ise Green's theorem in a plane to evaluate the integral $\oint \left[(2x^2 - y^2) dx + (x^2 + y^2) dy \right]$ where c is

boundary in the xy plane of the area enclosed by the X-axis and the semicircle $x^2 + y^2 = 1$ in upper half of xy-plane.