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    1. INTRODUCTION 
 Globally bananas are the most widely consumed fruit. Bananas account for 16 

percent of global fruit production. More than 114 million tons of bananas were 

produced worldwide in 2014, according to the FAO (Food and Agriculture 

Organization of the United Nations). Bananas are elliptical fruits with a solid, creamy 

flesh pulp wrapped in inedible skin that is naturally framed. It is one of the world's most 

popular fruits. Bananas are ranked fourth among the world's food crops. The fruit is rich 

in vitamins C and B6, potassium, fiber, tryptophan, and amino acid. 

 For its flavour, texture, and high nutritional content, the banana is one of the 

most well-known and extensively consumed fruits in the world. It's critical to keep the 

peel color of same-batch bananas on the shelf uniform to improve market acceptance. 

Bananas are typically harvested green, transported long distances, and then matured at 

their destination before being marketed. Bananas are often harvested when they are 

fully matured green, and they remain firm and green without noticeable changes in peel 

color, texture, or composition before ripening begins (depending on temperature, 

humidity, and age at harvest) (Dadzie and Orchard, 1997).   

 Ripening is irreversible once it starts, involving various chemical changes, 

changes in fruit texture, and the creation of volatile components (Drury et al., 1999). 

Furthermore, ripening causes non-homogeneous peel color changes, as well as the 

emergence of brown blotches on a yellow background. Consumers regard the color of 

the peel to be the first quality criteria they evaluate, and it is linked to specific tastes or 

purposes that can influence acceptance or rejection. In reality, peel color is linked to 

physical and chemical changes in bananas throughout ripening, such as pulp color 

(Wainwright and Hughes, 1989, 1990), pH, starch conversion to sugar, and flavor 

development (Ramaswamy and Tung, 1989; Ward and Nussinovitch, 1996; Chen and 

Ramaswamy, 2002).  The synthesis of pigments (such as carotenoids) and the 

degradation of the green pigment chlorophyll are linked to the removal of the green hue 

and the resulting yellowing of the peel (Ammawath et al., 2001). 

 Visual inspection is used in the trade to assess the seven phases of ripening, 

which are related to pigment changes in the banana peel: Stage 1: green; Stage 2: green 
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with yellow flecks; Stage 3: more green than yellow; Stage 4: more yellow than green; 

Stage 5: green tip and yellow; Stage 6: all yellow; and Stage 7: yellow with brown 

flecks (Li et al., 1997). Visually, ripeness is determined by comparing the color of the 

peel to established color charts that depict the seven phases of ripening (von Loesecke, 

1950; Li et al., 1997), and sometimes by instrumental methods (Wainwright and 

Hughes, 1990). 

 The stage of maturity of a fresh banana fruit has a significant impact on the 

fruit's quality during ripening and marketability after ripening. Farmers will benefit 

greatly from the capacity to recognize the maturity of fresh banana fruit, as it will assist 

them to optimize the harvesting phase and prevent the harvesting of either under-

matured or over-matured bananas.  

 Some quality evaluation is still done manually by experienced inspectors in the 

agriculture sector, which is tedious, laborious, expensive, and intrinsically unreliable 

due to its subjective nature. The introduction of computer-based image processing 

techniques was prompted by increased expectations for objectivity, consistency, and 

efficiency. Computer vision, which uses image processing techniques, has recently 

advanced to the point that it can now quantitatively evaluate complex size, shape, color, 

and texture features of food. Image processing technologies are becoming increasingly 

significant in the assessment of food quality because they retain accuracy and 

consistency while eliminating the subjectivity of manual inspections. They have a wide 

range of applications and can be effective alternatives for human visual decision-

making. 

 Because of the continual physiological changes that occur throughout fruit 

ripening, fruit quality can be assessed as a function of time, contributing to the 

development of empirical techniques of evaluation (Abbott, 1999). Nonetheless, 

ethylene has been identified as the primary hormone, in connection to certain genes, 

that participates in the ripening process of banana fruit until it reaches senescence 

(Bapat et al., 2010). The depolymerization processes of carbohydrates resulted in the 

breakdown of cell wall structure, which caused the continual and complicated changes 
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in physiological, biochemical, and mechanical characteristics of fruits during the 

ripening process (Prasanna et al., 2007). 

 Color is a prominent descriptor and influential attribute in image analysis for 

agricultural products, and it typically simplifies object extraction and identification 

from an image. Color vision has a lot of spatial resolution, which may be used to 

measure the color distribution of substances. An object's color characteristics can be 

derived by looking at every pixel inside the object's boundaries. Color has been 

demonstrated to be effective for objective measurement of a wide range of food 

products including fruit, grain, meat, and vegetables. 

 Agricultural products' color contributes more to quality assessment than any 

other single component (Kays, 1991). Because color has been shown to correspond well 

with various physical, chemical, and sensory indicators of product quality, it is 

considered a fundamental physical feature of agricultural goods and foodstuffs. The 

spectral distributions of three elements determine color: the light source, the reflected 

light from the sample, and the observer's visual sensitivity. The International 

Commission on illumination (CIE) defined each of these in 1931 to stimulate the visual 

system using a set of primaries (R, G, B) and color matching functions. However, the 

observed light intensity of a specific object is determined by the illuminating light's 

intensity and spectral distribution, as well as the spectral distribution of the object's 

reflectivity. CIE later specified two more human-related and less illumination-

dependent color measurements in 1976, namely, L*a*b* or CIELAB and L*u*v* or 

CIELUV (Robertson, 1976). 

 The majority of fruit quality evaluation procedures, such as determining the 

pulp to peel ratio and determining fruit firmness, are destructive and rely on rheological 

features. Furthermore, due to the difficulty of destructively assessing every unit of fruit, 

these approaches do not adequately monitor the quality of banana fruits during the 

ripening phase, using only a small number of samples as representative of the entire. 

In this context, the present study is an attempt to assess the TSS content of 

bananas at various ripening stages using smartphone-based images. Since the ripening 

of banana is characterised by peel color changes, conversion of starch to sugars, fruit 
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softening and development of characteristic flavour, the study aims to find a useful 

relationship between TSS and peel color change. For the peel color change evaluation 

color parameters are measured. From linear and nonlinear models between TSS and 

color parameters, the model that best fit data are also identified. By identifying the best 

fitting model for TSS and color parameters, the TSS can be predicted easily. 

1.1 SPECIFIC OBJECTIVES OF THE STUDY 

1. To develop a suitable model to establish the relationship between Total 

Soluble Solids (TSS) and L*(lightness), a*(green-red ratios), b*(blue-

yellow ratios) values and for prediction of TSS values using L*, a*, b* 

values.  

2. To develop a protocol for accurate data collection to assess TSS content in 

Banana using smart-phone-based images 

1.2 SCOPE OF THE STUDY  

 Identification of the best-fitting model between L*, a*, b*, and TSS from linear 

and nonlinear models will help in the prediction of TSS using color parameters. So, the 

ripening stage of bananas can be assessed from the images captured using smartphones. 

Developing a protocol for accurate data collection facilitates the elimination of errors 

in similar studies in the future. Also, deep learning using a Convolutional neural 

network (CNN) can be developed to categorize images into different TSS range 

categories automatically. 

1.3 LIMITATION OF THE STUDY 

 The study was conducted for a limited period, therefore the number of samples 

was limited. The convolutional neural network developed couldn’t identify more green 

than yellow stage and more yellow than green stage (stage 3 and 4 from Von Losecke’s 

color chart) due to a low number of samples and image quality variations. 

1.4 PRESENTATION OF THE THESIS 

 This thesis is presented in five chapters namely introduction, review of 

literature, materials and methods, results and discussion, and summary. The first 



21 
 

chapter introduction is devoted to the importance, objectives, scope, limitation, and 

future aspects of the present study. The second chapter attempts a critical review of past 

work done related to the current study. The third chapter describes various statistical 

methods and techniques used in the study to analyze the data. The fourth chapter results 

and discussion presents the inferences drawn from the analysis. The last chapter 

summary summarizes the entire research followed by references and abstract.  

1.5 FUTURE LINE OF THE STUDY 

 The present study is limited to one variety of bananas. This can be further 

extended to different varieties to understand the trend in ripening. The study can be 

continued further with a higher number (at least 10,000) of samples to improve the 

efficiency of classification using deep learning. The study can be extended to different 

fruits having a peel color change during ripening.
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    2. REVIEW OF LITERATURE 

 For any investigation, the findings of previous studies lay the path for 

understanding the methodologies that may be used in the current study. In addition, the 

previous studies fill in the gaps in the existing information and serve as the foundation 

for new studies. The purpose of this chapter is to critically review the literature of 

previous research work that is relevant to the present study. The research work of many 

researchers on various statistical procedures and their application to real-world 

situations, not just in agriculture but also in other fields, has been critically assessed 

under the subheadings listed below. 

a. Image-based color, morphology, and maturity assessment 

b. Biochemical changes during ripening 

c. Color parameters and ripeness relationship 

d. Physio-phenological modelling  

e. Deep learning method for grading and classification 

2.1 IMAGE-BASED COLOR, MORPHOLOGY, AND MATURITY ASSESSMENT 

 For inspecting and grading fresh-market peaches, Miller and Delwiche (1989) 

developed a color vision system. The red, green, and blue inputs were reduced to two-

dimensional chromaticity coordinates using diffused lighting and normalized 

brightness. For classification, peach color was matched to normal peach maturity 

colors. Shearer and Payne (1990) successfully sorted bell peppers using a color image 

analysis system. The intensity levels of RGB pixels were mapped to one of eight 

possible hues. The color quantitative variables were derived from the relative hue 

distributions of pixels in six orthogonal viewpoints. The accuracy of evaluating bell 

peppers by color was up to 96 percent. 

 Casady et al. (1992) developed a trainable algorithm for inspecting soybean 

seed quality using a color machine vision system. Color chromaticity coordinates and 

seed sphericity were employed as classifying variables. To improve cracks in the egg 

picture without unnecessarily boosting other surface characteristics and noise, 
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Goodrum and Elster (1992) used the 'filter factor,' i.e., a modified unsharp filter 

transform, which is a Laplace transform of an image added to the same image. This 

procedure, followed by a contrast stretch, had excellent results. The sensitivity to 

translucent patches was reduced, but cracks sensitivity was raised. White and Sellers 

(1994) created a real-time color inspection system for detecting foreign elements on a 

peanut conveyor belt. The system may be trained to recognize and distinguish distinct 

color signatures or fingerprints on a variety of foreign materials and foods. 

 McCarthy et al. (1995) developed a method for detecting bruising in magnetic 

resonance images of apples that were both rapid and computerized. To discriminate 

between bright pixels representing the vascular system and those depicting bruising, a 

computationally simple thresholding approach was applied. 

 So and Wheaton (1996) devised a method for smoothing a binary oyster picture 

that involves shrinking, expanding, and closing. Small things (such as noise) were 

eliminated during the shrinking step, whereas the expansion procedure filled holes and 

concavities in the objects. Initially, the shrink and expand method was employed. The 

binary image was then smoothed further with a closure procedure to remove any tiny 

items that remained after the shrink and expand the operation, or to separate the objects 

from the binary image. The closure technique split a dark convex object that intersected 

the image into two or more parts by filling the streak at narrow places along with the 

streak. 

 Utku and Koksel (1998) applied a filter to remove possible noise from the image 

data for extracting wheat grain characteristics. The noise was suppressed using a 

nonlinear filtering approach (median filtering). The median filter approach may be 

thought of as a subset of the rank statistic filter, which allows the edges to be kept while 

filtering away the peak noise. As a result, before implementing an edge detection 

approach, the median filter is frequently utilized. For segmenting flaws in 'Golden 

Delicious' apples, Leemans et al. (1998) employed two types of filters: a '3×3 median 

filter' and a '3×3 box filter' to segment the major apple defects as much as feasible. 

 Ahmad et al. (1999) developed an RGB color feature-based multivariate 

decision model that includes six color features such as averages, minimums, and 
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variances for RGB pixel values to differentiate between asymptomatic and 

symptomatic soybean seeds for inspection and grading. A linear discriminant function 

was used to obtain an overall classification accuracy of 88 percent for asymptomatic 

and symptomatic seeds with the highest chance of occurrence.  

 Segnini et al. (1999) developed a computer-based video image analysis system 

to measure the color of potato chips in L*a*b* color space. The light reflection impact 

from the undulating surface of the chips was not significant in the color measurement 

since this technology is not sensitive to light intensity. The presence of unwanted spots 

on the chip surface was also measured. The technique's sensitivity to distinguish 'colors' 

was found to be in line with the human eye's capacity. The video image analysis 

technique was found to be useful for differentiating potato chip colors as sensitively as 

the human eye.  

 Papadakis et al. (2000) developed a technique to measure the color of the 

bottom surface of microwaved pizza by measuring the color profile at various locations 

on the surface using a photoshop software program.  They adopted the L*< 60 criteria. 

Using Level and Percentile, the percentage of the dark surface was calculated. 

Lightness, which may be translated to L*, is the same as Level. For every range of L*, 

the value of Percentile can also be found. Microwaving the pizza in contact with a 

susceptor can overcome the problem with the crispiness and brown color of the bottom. 

Using the L* values crispness and color of the bottom surface of the cooked pizza with 

and without susceptor was illustrated. 

 Based on color attributes of scabby wheat kernels acquired by machine vision, 

Ruan et al. (2001) developed an automated system to assess the weight percentage of 

scabby wheat kernels. Sun and Brosnan (2003) used three phases of thresholding to 

analyze a pizza sauce picture. Using the RGB model, the whole pizza picture was first 

segmented from the white background. The segmentation of pizza sauce from the pizza 

base was then done by putting the HSI values in the following ranges: [220, 14], [0, 

125], and [0, 200]. Finally, the light zones of pizza sauce were segmented by using the 

following HSI values: [2, 14], [53, 125], and [106, 200], respectively. 
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 Abdullah et al. (2001) demonstrated how imaging technology may be used to 

provide quality control recommendations for agricultural commodities in both the 

visible and non-visible spectra. Machine vision technology was examined for use in 

color grading of oil palms in the visible spectrum. A prototype automated oil palm 

inspection system was successfully developed and tested, based on a previously 

established algorithm for color evaluation. The accuracy of reclassification varied from 

84 to 92 percent, and the results show that this approach is 20 percent more consistent 

than human grading. Radar tomography was the equipment under investigation in the 

non-visible spectrum. It was utilized to map the moisture content of the grain, which is 

invisible to the naked eye. The presented approach was proved to be fairly effective in 

reconstructing homogeneous and heterogeneous media throughout a moisture range of 

12–39 percent. Outside of this range, the image generated had a poor signal-to-noise 

ratio due to the inversion algorithm's removal of the diffraction effect. 

 Subedi et al. (2007) tested the use of short wave near-infrared (SWNIR) 

spectroscopy (400-1100 nm) to assess mango (Mangifera indica L.) fruit maturity and 

as a harvest timing guide to ultimate eating quality. Flesh color, dry matter content, and 

a visual rating of maturity were used to determine fruit ripeness. The total soluble solids 

concentration of extracted juice was used to determine the eating quality of fully ripe 

fruits. In terms of the wavelength range of SWNIR, partial least squares (PLS) 

regression models based on the second derivative of absorbance spectra for DM, TSS, 

Hunter b, and visual maturity ranking were optimized. The optimal TSS and DM 

models employed the same wavelength area and yielded PLS regression coefficient 

charts that were quite comparable. They suggested that the models were unable to 

differentiate between soluble and insoluble carbohydrates in the fruit. DM and Hunter 

b models based on numerous harvest dates were satisfactory when employed in 

population prediction. Calibration models on TSS of mature fruit helped predict an 

independent population (R=0.92 with SEP 0.67 and bias= 1.25 percent TSS) created 

using SWNIR spectra obtained (non-destructively) of hard green mango (R=0.90). 

They concluded that the SWNIR approach may be utilized to measure fruit maturity (as 

flesh Hunter b or percent DM) and forecast future TSS of fruit after ripening at the time 

of harvest. 



Due to the tiny viewing area of the equipment, measuring and reporting

heterogeneous fruit color changes throughout ripening is difficult with the instruments

provided (chromometer and colorimeter). Another way for capturing and quantifying

whole fhiit color features is to use calibrated computer vision systems (CVS). CVS

errors are caused by product curvature, according to studies. It was confirmed in this

study that 55 percent and 69 percent of the measured a* and b* color values on a curved

surface were within the range observed for the same flat surface. The device's use in

recording descriptive color data throughout fhiit development is illustrated using 'B74'

mangoes (Kang et al, 2008).

According to Padda et al. (2011), the a* and b* values of the flesh were the

greatest color qualities to follow changes throughout the early stages of 'Keitt' mango

ripening, while the b* value of the peel was regarded superior during later stages of

ripening. The best techniques to measure changes in fruit during ripening were the

penetrometer, flesh a* value, and total soluble solids content, according to a combined

Canonical discriminant analysis (CDA) that included the best ways to assess each

ripening feature as well as titratable acidity (from filtered juice from whole fruit.

Intaravanne et al. (2012) proposed and demonstrated a two-dimensional banana

ripeness level sensor utilizing a cell phone for the first time. They developed a portable

design consisting of a smart mobile phone, white light sources, and ultra violet light

sources. The 2-D spectral analysis for estimating the banana ripeness level was based

on the fact that the color of the banana changes from green to yellow during ripening

and can be observed under white light illumination. The blue-green luminescent

spectrum in a wavelength band of400-500 nm with an excitation at 350 nm wavelength
trends to reduce when the banana goes from yellow to brown-yellow. They chose color

ratios from two broad-spectral images under white and ultraviolet illuminations and

were utilized to classify the complete banana into immature, ripe, and overripe zones

spatially and specifically.

Chaudhary and Prajapati (2014) stated that the categorization of bananas can be

improved by digital image processing. All of the algorithms that have been examined
and are now available can accurately estimate the quality of a single banana, but when
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they applied them to a bunch of bananas, either the picture capture setup was inadequate
or the algorithm's performance degraded. Based on their findings, they concluded that

picture capture is the most essential phase in the process. The most popular color space
employed by fiuit categorization is a common color space, and even characteristics do

not vary much. When color and texture characteristics were included, the classification

procedure yielded the best results. Adding additional factors to the analysis will not
necessarily improve the outcome, which is why it is critical to employ a suitable
combination of factors.

Watanawan et al. (2014) used near-infimed spectroscopy (NIRS) to
successfully forecast mango fruit ripeness features. NIRS readings were highly linked
with hardness and dry matter content (DMC) at harvest, and they accurately predicted
total soluble solids (TSS). Except for fruit weight andL* values, which exhibited no or
poor connection with NIRS values, other quality metrics had lower predictability values
or ranging from 0.70-0.84. The optimal harvest maturity was found to be 105-112
DAFB, indicating the necessity to employ the current harvest maturity
recommendation's upper limit (91-105 days from full bloom) to .

/  feUaiantee stronginternal quaUties as well as a pleasing fresh look. They concluded that the NIRS facili
might be integrated into a continuous frait packaging process as part of a mI^
assurance system.

Ali et al. (2018) tested the principle and use of NIR spectroscopy in the r '
of 1000 to 2500 run, for predicting the Brix and pH values of k. ^p  diues ot bananas at different
maturation stages. With R values of 0.81 and RMSEP values of 3 90 the PLS
least squares) models demonstrated a strong connection betw^^t^n L

^^^n me reference anH
projected Brix values. The absorbance spectra linked with nH h.A d2

pii naa n valuer nf n

and RMSEP values of 0.36 for the prediction accuracy of pH values. These
showed that NIR spectroscopy may be used to estimate sugar concentrat' "8^
without destroying them. The non-destructive method of evaluatinr^'r"
maturity stage may be able to overcome the limitations of traditional
prevent post-harvest losses. Aside from that, the prediction ®"®lysis and
create a portable online machine system for sorting and d'

gra mg diverse agricultural
products.
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Hufkens et al. (2019) reported that near-surface remote sensing can be used to

quantify physiologically important phonological stages in agricultural crops in highly

heterogeneous settings, such as smallholder farming, where satellite remote sensing-

based vegetation indices fail to capture the start of wheat heading and the end of the

tillering phases. They also showed that near-surface imaging can record agronomically

significant crop damage occurrences (such as wheat lodging) that are difficult to

identify with moderate or coarse spatial resolution satellite data. Information about crop

phenology and damage has a lot of potential for improving estimates of heterogeneous

agricultural productivity in smallholder systems, as well as for facilitating the delivery

of interventions like crop insurance to help farmers cope with the financial risks posed

by extreme weather events. Furthermore, by providing high-resolution ground-truth

data not currently accessible through national crop cut siuveys, these picture recordings

potentially cover a vital information vacuum

2.2 BIOCHEMICAL CHANGES DURING RIPENING

Williams et al. (1989) conducted a study on peel samples of the banana fruit

obtained at 3-week intervals during a 6-month frnit growth cycle using Scanning

electron microscopy. They examined the changes in epidermal cells and the epicuticular

surface and observed that before the immature bunch emerged from the pseudostem,

cell divisions took place. There were no obvious epicuticular structures on the friiit

surface before bunch emergence. Unstructured ridges appeared on the epidermal cells

within 21 days of bunch emergence and were coated with epicuticular wax. During the

development of the fhiit, cells on the surface expanded. The ridges on the epicuticular

surface of the banana fruit flattened three weeks after fruit harvest (168 days fr-om

bimch emergence), and the cells expanded parallel to the circle of the fruit.

The electrical characteristics of banana fruit were investigated to establish a

quick and non-destructive evaluation method and to manage the ripening process. To

assess the difference in capacitance generated by the introduction of a banana fruit

between the plates, a 5 V sine wave AC power source and a rectangular parallel plate

capacitor sample were utilized. An equivalent capacitor was created to eliminate the

influence of the air gap between the plates. The relationship between dielectric constant
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and banana fniH quality indicators was explored. As a result of the ripening procedure,
the dielectric constant of banana fruit dropped. Experiments revealed that the optimal
sine wave frequency for predicting the amount of ripeness is 100 kHz. At this
frequency, the coefficient of determination (fi^) of ripeness level prediction was 0.94.
The maturity degree of banana fruit may be accurately predicted using this approach
(Alimardani et al., 2011),

Tapre and Jain (2012) investigated the physic, chemical, and mechanical
charactenstics of bananas (Musa sp var 'Robusta') at thme advanced phases of
marnmtion (stages 5, 6, and 7). As the ftuit ripened, numemus physical changes were
detected m the ftult, including an increase in the pulp to peel mtio, a decrease in the
degree of peel greenness, and a dtop in polyphenol oxidase activity From stage 5 to
stage 7, mechanical characteristics deteriorated considembly. At different phases of
banana npening, there was a significant variation in firmness n„r;
f  ̂ ^"^8 the various phases

ofnpemng,as,m.lartendencywasfoundforaddi.ionalmechamca.characteris.icssuch
as cohesiveness,chewiness, fracture force, and stiffness. Thevoh.» a r
5 to stage 7. the moisture content, titiatable acidity, pectin cont « from stagef  . tent, total sugar andTS^of the pulp increased, but the starch content dropped.

Jamaludin at al. (2014) stated that the dielectric constant of u
decreased as a result of the ripetung process. The parameters used to 7"
matenals were dielectric constant, permittivity, dielectric los
Experiments have indicated that 100 kHz is the best sine wave fre"^^'
ripeness. The coefficient of determination (R^) of ripeness
this frequency. This method may be used to reliably forlirm ° "
fhiit. ^ of banana

Sankhe and Bhosale (2015) designed a low-cost gadget to f
degree of banana fruit. The dielectric constant of a banana ' maturity
ripeness level. The developed method is capable of acc^"^ calculate its
degree of banana fruit. Capacitance was directly affected P^dictrng the maturity
of parallel plate capacitor sensors were used in a c ^^^i^sions. A pair
efficacy ofthis approach to forecasting the qualiiv sensing system. The

"•yofbananasduringtheripeningpHase
14



was investigated in this study. The results revealed that this dielectric property-based

approach may detect changes in the quality characteristics of banana fiuits during the

ripening phase. The maturity of any uniformly sized fruit is precisely proportional to

capacitance across the fiuit, according to this experiment.

Zulkifli et al. (2016) reported the physicochemical features of Musa Acuminata

cv. Berangan at different ripening stages in the updated form: (1, 2, and 3). Color, for

example, is prone to misinteipretation since it might be interpreted differently by

various people. As a result, a variety of tests were carried out to identify the association

between ripening phases and physicochemical attributes of the fiuit, such as color, pH,

TSS, and firmness. As the ripening phases progressed, substantial changes in
physicochemical qualities and chemical attributes were observed. As the ripening

phases progressed, substantial changes in physicochemical qualities and chemical
attributes were observed. In comparison to other metrics, the associations between

ripening phases and hardness and pH levels were statistically sigmficant. They
confirmed that the quality attributes of Berangan bananas can be predicted using these

correlations.

Mohapatra et al. (2017) designed a dielectric property measuring device and

used it in this study to detect changes in red banana dielectric properties during the

ripening process at various ripening temperatures. The potential of this approach to
predict the ripening assessment of bananas during ripening treatment was investigated
in this research. The results demonstrated that this dielectric property-based approach

is capable of estimating changes in the quality characteristics of banana fruits during
the ripening phase. They confirmed that as the ripening phases of red bananas progress,
the values of attributes such as capacitance and relative permittivity grow continually,

whilst impedance and admittance gradually decrease.

2.3 COLOR PARAMETERS AND RIPENESS RELATIONSHIP

L* denotes the lightness factor, while a* and b* denote the two-color axes, with

a* denoting the red-green axis and b* denoting the yellow-blue axis. The results for L*
indicate the same pattern as those for the Munsell value, which is to be expected. The
findings for the b* values indicate the same pattern as the Mimsell chroma. During
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ripening, the a* value steadily rises, correlating to the degradation of chlorophyll and

the loss of the peel's green color which is similar to the Munsell hue. Except for starch

and water, the correlation coefficients between Munsell hue and all of the chemical

parameters measured were highly significant (P< 0.01). Except for water, a* provided
higher correlation coefficients that were highly significant in all cases. The correlation

coefficients for value and L* were similar, but not very high. The correlation

coefficients for b* were greater than the chroma correlation coefficients. There were
high and extremely significant associations (P< 0.01) between color, a*, and the
visually evaluated ripening stage. The relevance of color as an indication of banana
maturity is depicted by correlation coefficients involving hue and a* which represent
the accuracy of the visual assessment. Because the correlation coefficients between peel
gloss measured at 85® and each of the following parameters: color, a* pH ®Brix
starch, water, visual stage of ripeness, and roughness were so high, this measurement
might be useful for both monitoring and forecasting ripening. The fact that gloss was
highly associated with hue and a* was of great significance (Ward and Nussinovitch
1996). '

Sangwine (2000) reported that the CIELAB space is for refleeted light (from
surfaces or materials that have been illuminated by a light ^ ,

"gni source), whereas the
CIELUV space is for emitted light (such as from light-emitting electronic displays)
These have a brightness component (similar to luminancel anH h ^

.  . ' chrominancecomponents. Perceptual uniformity is a key feature of these spaces- each
in the space corresponds to a uniform perceived difference in -r,. •
uifiif ^ This makes themhelpful for exact colonmetry (which is what they were designed fo \
u  u A - • , . . these spaceshave been used m image processing applications to quantify departure from
color (for example, in industrial inspection for color quality control) For ^
where the results must match human perception, the CIELAB colo ^PP^^^^tions

Vizhanyo and Felfoldi (2000) reported that simple cluster 000^!"'
insufficient to distinguish disease-induced browning from
mushroom; they found that converting RGB values to n* ur.A u* ^ of the

t) Color corriD
removing intensity resulted in a significantly better separatio f P®^ents and
In order to accentuate color variations in true-color ' "^^shroom diseases.

mages of diseased mushrooms.



intensity normalization and image transformation techniques were used. All of the

diseased patches were labelled as "diseased," but none of the healthy, senescent

mushroom sections were labelled as "diseased."

Pixel pre-processing is a simple but significant image processing method that

turns an input picture into an output image by converting each output pixel to the same

coordinates as the input pixel. Local pre-processing methods, which are also known as

filtration, employ a tiny neighbourhood of a pixel in an input picture to produce a new

brightness value in the output image (Du, C.-J. and Sun, D.-W., 2004).

Mendoza et al. (2006) conducted a sensitivity analysis of the implemented

computer vision system (CVS) utilizing bananas and demonstrated that when the color

of the background was changed from black to white, the color measurements of

lightness {L* values) were dramatically modified. Furthermore, the color study of

samples with curved surfaces demonstrated that the L*a*b* is better suited to the color

representation of surfaces or materials illiuninated by a light source. The degree of

curvature, shadows, and glossiness of the surfaces were less impacted by these color

profiles than the RGB and HSV color systems, making them more acceptable for color
measurements of food surfaces. For 125 color sheets, the correlation coefficients for

XYZ values derived from calibrated CVS and colorimeter demonstrated acceptable

color matching with an R2 > 0.97 in all regressions.

Juncai et al. (2015) observed color change in L*, a*, and b* values of the stalk,

middle, and tip sections of bananas followed a similar pattern during ripening, it was

sufficient to explain the ripening procedure using color values of middle parts. Only the

a* values were monotonically growing along with L*, a*, and b* values from ripening

stage 1 to ripening stage 7. The a* value grew clearly from ripening stage 1 to ripening
stage 7, while the a* value increase from ripening stage 5 to ripening stage 6 was not

as obvious, making it difficult to determine banana ripening stages based on a* value

alone. They used a support vector machine method to classify the ripening stages by

color value Z,*, a*, and b* as input data.

Meng-han et al. (2015) claimed that the three color channel thresholds from B,

L*, and b* were utilized to create an algorithm for automated picture segmentation of
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bananas in a crate. The qualitative validation revealed that the outlines of manually and
automatically segmented sections were veiy comparable. The results of the quantitative
assessment revealed that the average area ratio of the 10 evaluated samples was greater
than 80 percent, indicating that the automatic segmentation algorithm's performance is
satisfactory.

The study conducted by Shamili (2019) revealed that the chemical makeup of
mango frait was influenced by holding temperatures and storage durations Fmit TSS
could be accurately estimated using normalized values produced from converted
digital picmres. The results of this investigation demonstrated that image parameters
may be used to accurately estimate TSS. According to regression analysis the
polynomial model better described the TSS than other models. Furthermore when
employing Normalized a* for TSS estimate at 5 °r tv,

polynomial regressionexhtbrted a sufflcent (0.98). The findings may be utilized to oonstiuct a solid
method for forecasting the quality and grading mangos stored at low temperatures as
well as simplifying TSS monitoring.

Moreno e, u,. (2020) identified simple, objective, and repeatable assays to
charactenze the npening process of bananas and plantains. Non-destructive
like central diameter and color parameter <,♦. in particular ! "
associated with, and hence predict, quality indicators of the ripl^g fcTsT'd
total starch of the pulp. Ke TSS and

2.4 PHYSIO-PHENOLOGICAL MODELLING

Carvalho « al. (2008) worked with the evaluation of the . •
Praia bananas; which featured an increase in mo' n '"^'"ration stages of
-ease m starah content dtuing martrTrr oTl" ̂  ̂
ntethodology were adjusted using a quadratic model to prodtle te 0^,
so ds extraction. These optimized values were compared to the mod
values, suggesting that the model accurately represented th ■ ' —'='Poted
experimental data. Furthemtore. the assays carried out on
- e.c.ency and practical applicab.hty of the techn.que drrr ̂

Study.
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Richardson et al. (2015) concluded that in some instances, spline approximation

might be a feasible alternative to adaptive machine learning. Using cubic spline

approximation has various advantages. Cubic splines offer a predictable behavior by

generating a continuous, twice differentiable approximation between data points.

Computing the coefficients for a spline can be time-consuming, but it has the advantage

of not requiring any training. Splines also require a small number of data points to create

a decent estimate. Splines, of course, have disadvantages. Because the solution is

global, finding the coefficients of the complete curve is required before a single point

can be approximated. The conventional spline approach used here does not work well

with noisy data. Finally, while cubic spline can be assessed quickly, the memory and
computational costs become prohibitive when the number of input dimensions is

enormous.

Parker et al (2020) demonstrated that for Vitis vinifera L, a temperature-based

model may be used to forecast the time to varying target sugar concentrations.
Furthermore, two models, the best Sigmoid model (best SIG) and the GSR model, have

been created successfully (model efficiencies of 0.5-0.6). These models were used to

successfully characterize a wide range of cultivars for the time to various sugar goal
concentrations, resulting in the most comprehensive classifications of the grapevine's

thermal time to target sugar concentrations to date. The two best-fit models for the Days
of year (DOY) to reach the target sugar concentrations were chosen using the Akaike
Criterion (AIC) (which evaluates model complexity and goodness of fit in a single
criterion) and evaluated for model efficiency (EF) and prediction error (RMSE, root
means squared error), followed by a sensitivity analysis and model validation.

2 ̂ deep leari^ing method for grading and classification

Nakano et al (1992) developed a technique for classifying the quality of the

exterior look of apples using a neural network. With 27 units in the input layer, 10 units
in the hidden layer, and three units in the output layer, the model was a three-layer
neural network. The findings of the experiment showed that the classifier could
categorize apple quality into three groups based on their external appearance.
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A machine vision system was trained to discriminate between green and yellow

•Golden Delicious apples and good and greened potatoes. The HSl (Hue, Saturation,

and Intensity) color system was found to be very useful for color evaluation and image
processing. By expressing features using hue histograms and using multivariate

discriminant techniques, the vision system was able to inspect potatoes and apples with
over 90% accuracy. The vision system misclassified more when the number of hue bins

was reduced by selecting significant characteristics or summing groups of hue bins.
Color classification is a significant way for evaluating quality features that should be
included in a larger automated quality inspection and grading system (Tao et al., 1995).

Ghazanfari et al. (1996) suggested a multi-structure neural network (MSNN)
classifier that comprised of four parallel discriminators to identify four classes of
pistachio nuts. Each discriminator used physical features taken from the nuts' photos as
input and was a feed-forward neural network with two hidden layers and a single-
neuron output layer. When compared to the performance of a multi-layer feed-forward
neural network (MLNN) classifier, the MSNN classifier had an average classification
accuracy of 95.9 percent, a gain of over 8.9 percent over MLNN.

On the color grading of apples, Nakano (1997) used two neural network models
One is used to categorize pixels, and it has a more than 95 percent accuracy rate
Another neural network was created that can grade an apple's entire surface color into
'superior', 'excellent', 'good', 'poor color', and 'injured'. The grading accuracies for
•superior', 'poor color', and 'injured' were all extremely high, but not so much for
'excellent' and 'good'.

For the categorization of X-my pistachio nut images, Casasent et at. (1998)
employed a no vel neural networic This neural network produced higher-order decision
su aces with fewer htdden layer neurons than other classifiers. It used new techniques

revent ad hoc pammeter selection difficulties, allowing the best classifier parameters
.0 he Chosen without having to analyze the test set results. The classificaL result!
suggested that senous defects may be reduced to 2 percent, with just 1 percent of
excellent nuts being discarded. Luo e, al (I999) u^ed a 1,1

U^yy) used a multilayer neural network
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classifier to classify cereal grains as well as healthy and six types of damaged Canadian

Western. Red Spring wheat kernels using chosen morphological and color features

derived from the grain sample images.

Kim and Schatzki (2000) used a neural network classifier to categorize apples

into three different watercore levels: clean, mild, and severe using eight features

retrieved from an X-ray scanned apple picture. The findings revealed that the system

successfully classified apples into clean and severe categories with an error rate of 5-8

percent.

Visual inspection and the construction of a machine-reading method, as well as

discriminant analysis of the data collected, were used to assess the color of muffins.

Light and dark-colored muffins were segregated using a classification system. The

accuracy of the system was tested by compuring the color of 4 cm diameter muffins

that had been pre-graded and those that had not been pre-graded. When tested on 200

samples, the automated system successfully classified 96 percent of pre-graded muffins

and 79 percent of ungraded muffins. In most situations, the algorithm technique was

able to categorize muffins with an accuracy of greater than 88 percent, although

inspectors' quality choices varied by 20 to 30 percent. When comparing inspectors with

machine vision, the results of the vision system revealed that there is a possibility for a

considerable discrepancy in quality evaluation across inspectors, resulting in a larger

number of misclassifications. Misclassification with machine vision, on the other hand,

was consistently low, occurring only in the majority of samples with somewhat poor
discriminant scores (Abdullah et al., 2000).

Paliwal et al. (2001) studied the classification accuracy of nine different neural

network architectures using five different types of cereal grains i.e., Hard Red Spring

(HRS) wheat, Canada Western Amber Durum (CWAD) wheat, barley, oats, and lye.
Eight morphological parameters were extracted and utilized as input to the neural
networks for each kernel: area, perimeter, length of the main axis, length of the minor

axis, elongation, roimdness, Feret diameter, and compacmess. HRS wheat, CWAD
wheat, and oats had classification accimacies of over 97 percent, whereas barley and rye

had accuracies of around 88 percent.
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Using backpropagation neural networks, Kavdir and Guyer (2002) used

backpropagation neural networks to classify Empire and Golden Delicious apples

depending on their surface quality characteristics. With pixel grey values and texUire

features derived from the full apple image as input, a 2-class and a 5-class classification

were performed. In the 2-class classification, classification success ranged from 89.2 to

100 percent. Empire apples had a classification success rate of 93.8 to 100 percent in
the 5-class classification, whereas Golden Delicious apples had a classification success

rate of 89.7 to 94.9 percent.

Blasco et al. (2003) developed machine vision techniques for online quality
estimation of oranges, peaches, and apples, as well as to assess their efficacy in terms
of the following quality attributes: size, color, stem location, and detection of external
blemishes. Fruits could be identified from the background using a segmentation
approach based on Bayesian discriminant analysis. As a result, the problem of
determining size was successfully handled. The colorimetric index values that are
presently used as standards were well correlated with the colors of the fruits assessed
by the technique. Positive findings were obtained in the location of the stem and the
identification of blemishes. On-line testing of the classification system with apples
yielded good results when categorizing the fruit in batches, as well as 86 and 93 percent
repeatability in flaw identification and size estimate, respectively.

According to Du and Snn (2004), the most common sensor techniques utilized
in image acquisition for food quality evaluation are charge-coupled device (CCD),
magnetic resonance imaging (MRI), Ultrasound, computed tomography (CT) and
electrical tomography (ET). To increase the quality of an image for subsequent
processing, two image pre-processing approaches may be used: pixel pre-processing
and local pre-processing. For pixel pre-processing, color space transformation is the
most popuUr method, and image smoothing techniques are important for local pre
processing. The four basic strategies used to segment food pmducts are thresholding-
based, gradient-based, region-based, and classifieation-based appmaches. The four
most popular classes used to quantify the object attributes in a food product photograph
are srze, shape, color, and texmre. To do classification, three primary approaches are
now used: statrstrcal, fuzzy logic, and neural networks. Statistical methods are
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distinguished by the presence of an explicit underlying probability model, whereas

fuzzy classification employs fuzzy logic principles and neural networks mimic

biological nerve systems.

Adebayo et al. (2016) investigated the possibility of exploiting the optical

features of bananas to predict quality and categorize bananas into ripening stages 2 to

7. Backscattered pictures of bananas at various stages of ripening were used to extract

absorption, decreased scattering, and effective attenuation coefficients using five laser

wavelengths of532,660, 785,830, and 1060 nm. For the prediction of quality variables

and categorization of bananas, ANN models were utilized. The study discovered a link

between the optical qualities of bananas and their ripening phases. The absorption

coefficient was found negatively correlated with ripening stages, but the reduced

scattering coefficients were positively correlated with ripening stages. They reported

that the optical characteristics of bananas, such as absorption, reduced scattering, and

effective attenuation coefficients can be a good and effective means of forecasting

banana quality features and categorization into distinct ripening phases. They found

that when the absorption and reduced scattering coefficients were used, the visible

wavelength region of 532,660, and 785 nm gave the highest correlation coefficient (R)

range of 0.9768-0.9807 for chlorophyll prediction and 0.9553-0.9759 for elasticity

prediction, while the near-infrared region of 830 and 1060 nm gave an R range of

0.9640-0.9801 for prediction of the soluble solids content (SSC).

Sanaeifar et al. (2016) implemented a computer vision system to analyze the

color of bananas in RGB, L*a*b*, and HSV color spaces, and variations in color

characteristics of bananas over time were used to predict quality indicators

quantitatively. The radial basis function (RBF) was used as the kernel function of

support vector regression (SVR), and color characteristics from several color spaces

were chosen as the model's inputs, with total soluble solids, pH, titratable acidity, and

hardness calculated as the output. When compared to data produced using an artificial

neural network, the experimental results showed an improvement in predictive

accuracy (ANN).
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Hamza and Chtourou (2018) designed and applied an artificial neural network

classifier to estimate the ripeness of apple fruits based on color. The proposed method

consisted of four steps. In the first phase, a region of interest was extracted using a

threshold segmentation method and certain morphological processes. Color-based

characteristics were extracted from the segmented apple images and separated into

training and testing data in the second stage. The final stage was to determine the

classifier training parameters. The classification was completed in the final stage using

the trained ANN. The simulation data set was collected and exploited for the training

and testing phases: 80 percent of the total images were utilized for training and 20

percent of the total images were used to test the classifier. The training dataset is divided

into three classes, each representing one of the three stages of apple ripening.

Mazen and Nashat (2019) explored an artificial neural network-based system to

classify the maturity stage of banana fruits. To appropriately distinguish between the

four banana fmit classes, the proposed model employs Tamura's texture properties as
well as a novel feature known as the ripening factor. When compared against other
supervised classification algorithms such as the SVM, naive Bayes, KNN, decision tree,
and discriminant analysis classifiers, the system performs best. The green and overripen
classes have a class recognition accuracy of 100 percent, while the yellowish-green and
mid-ripen classes have a class recognition accuracy of 97.75 percent. The classification
model's simplicity, high identification rate, and speed (18s for the 89 test bananas) make
It ideal for creating a productive and lucrative computer vision machine in the food
processing industry.

Kamble et al. (2020) proposed a system to classify atid then detect the fruit
ripening stage using CNN. The ripening stages of three fhtits i.e., mango, apple, and
banana, were recognized and categorized. Classification accuracy for banana was 96
percent, whereas ripening stage accuracy of banana was 88 percent. This system has
the advantage of being generic for three fiuits, but it also has the disadvantage of being
complex. Other fmits that do not undergo physical changes as they ripen are ineligible
for use m this system. The technique also has the drawback of being limited to only
three fruits.
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Sri et al. (2020) used several toolboxes including Statistics and Machine

Learning toolbox, Neural Network toolbox, and Image Processing toolbox for

constructing an algorithm. They obtained the training data in the form of image

categories, image classification using CNN, and prediction. To compensate for the

over-fitting effect, the original dataset was augmented using data augmentation

techniques such as translations. A positive image and a negative picture were selected

from the collected photos to generate a triplet for each image. Eighty percent of the

photos acquired were used in the training phase, while the remaining twenty percent

were used in the testing process. For perfect accuracy, they used Unsupervised

Learning. They focused on Unsupervised Learning and used the CNN algorithm to

obtain 92 percent training accuracy and 80 percent testing accmacy.

25



42 
 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Materials and Methods 

 

 

 



43 
 

    3. MATERIALS AND METHODS 

 The aim of the present study is to develop a suitable model to establish the 

relationship between Total Soluble Solids (TSS) and L*(lightness), a*(green-red 

ratios), b*(blue-yellow ratios) values, and for prediction of TSS values using L*, a*, b* 

values also to develop a protocol for accurate data collection to assess the TSS content 

in banana using smart-phone based images. For the model fitting R, G, B, L*, a*, b* 

color parameters obtained from the smartphone images and TSS measured from banana 

fruit pulp were used. This chapter describes the procedural details in selecting the 

sample, methods of analysis in the upcoming subheadings. 

3.1 Sample collection 

3.2 Image collection and pre-processing 

3.3 TSS measurement 

3.4 Color analysis 

3.5 Machine learning 

3.6 Statistical analysis 

3.7 Deep learning 

3.1 SAMPLES OF BANANAS  

 As the first step of image collection, Nendran fields in the Trivandrum district 

were identified. Two fields were randomly selected from the sampling frame. Good 

quality Nendran bananas with only minor shape and peel color flaws were obtained 

using the following procedures.  

 Healthy banana plants with good-quality bananas were identified randomly. 

 From each of the identified plants, three hands (Ripening stage 1; green) with 

10 fingers by hand were collected.  

 The bananas were stored in a normal day/ night cycle.  

 Bananas were taken randomly from each hand and their ripening stage changes 

were identified by observing color changes and the development of brown spots 

daily during 10-12 days. Plate 1 represents the stages of ripening of bananas. 
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A B C D 

Plate 1. Stages of banana ripening (A) Stage 1-Totally green, (B) Stage 2-

Green with yellow traits, (C) Stage 3- More green than yellow, (D) Stage 

4- More yellow than green, (E) Stage 5-Yellow with green tip, (F) Stage 

6- Yellow, (G) Stage 7-Yellow with brown spots 

E F G 
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3.2 IMAGE COLLECTION AND PRE-PROCESSING 

3.2.1 Image acquisition 

 For a good quality image for further processing, illumination is a critical 

component. The lighting situation can have a significant impact on the image quality 

obtained. A high-quality image can assist to cut down on the time and complexity of 

the image processing processes. A proper portable lighting box to keep bananas 

developed for proper image acquisition as given in plate 2. 

 Since the basic purpose of the study is to collect the images using smartphones 

and form a background for developing an application in the future following 

smartphones with different resolutions and camera quality were selected for the study. 

Smartphone specifications are given in Table 1. 

 Table 1. Smartphones used and their specifications 

Sl. No. Devices used specifications 

 
 
1 

 
 
Samsung Galaxy 

M30s 

Processor- Samsung Exynos 9611 
4 GB RAM 
48 MP rear camera 
6000×8000 pixel  

Android 9 Pie operating system 
 
 
2 

 

 
 
Apple iPhone 8 plus 

Processor- Apple A11 Bionic 
3 GB RAM 
12 MP rear camera 
4032×3024 pixel  
iOS 11 operating system 

 
 
3 

 

 
 
Samsung Galaxy M31 

Processor- Samsung Exynos 9611 
6 GB RAM 
64 MP rear camera 
6936×9248 pixel 
Android 10 operating system 

 Banana samples were placed on the table covered with a non-reflecting white 

paper as a background of the image and the bananas were placed in a box model 

structure (Plate 2) to avoid outside light interference. For white light illumination, two 

of 36 W fluorescent lamps were fixed at ceiling above the experiment setup. Three 

smartphones were used for image acquisition. Smart phones were placed at a distance 

of 20 cm above the banana. 
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Plate 2. Image capturing setup for banana with two 36W white light source 
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3.2.2 Image pre-processing 

 Various forms of noises can be seen in the images collected. These noises can 

damage the quality of an image, preventing it from providing accurate information for 

image processing later on. To increase the quality of an image, operations must be done 

on it to eliminate or reduce degradations that occurred during the image acquisition 

process. Pre-processing is used to improve image data by suppressing unwanted 

distortions or enhancing certain image features that are useful for future processing, 

resulting in a more acceptable image for a given application than the original. 

According to the size of the pixel neighbourhood that is utilised for the computation of 

a new pixel, two main types of image pre-processing methodologies for food quality 

evaluation may be identified: pixel pre-processing and local pre-processing.  

3.2.2.1 Pixel pre-processing 

 Pixel pre-processing is similar to pixel-by-pixel copying, with the exception that 

the values are changed according to the specified transformation function. The most 

frequent pixel pre-processing approach for evaluating quality is colour space 

transformation. The majority of applications where colour space transformations have 

been used for image pre-processing are likely to be based on HSI (hue, saturation, and 

intensity) colour space (Li et al., 2001; Tao et al., 1995). However, image pre-

processing has also been done with the L*a*b* colour space (Vizhanyo and Felfoldi, 

2000). 

3.2.2.2 Local pre-processing 

 Local pre-processing methods calculate the new value by averaging the 

brightness values of some neighbourhood points with attributes comparable to the 

processed point. Local pre-processing applications can be quite simple to highly 

complicated. Local pre-processing techniques can be used to blur sharp edges or 

maintain edges in the image, depending on the situation. 

3.2.3 Image segmentation 

 Image segmentation is a method in which a digital image is broken down into 

its constituent items, which is a difficult process due to the image's rich visual 
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information. Thresholding-based, region-based, gradient-based, and classification-

based segmentation are four alternative philosophical approaches to image 

segmentation that have been established for colour quality evaluation. Thresholding-

based and region-based approaches have been employed in the majority of applications. 

Gradient-based and classification-based techniques, on the other hand, are utilised less 

often. 

3.2.3.1 Thresholding-based segmentation 

 Image thresholding segmentation is a simple form of image segmentation. 

Threshold-based segmentation is a particularly useful approach for scenes with solid 

objects lying on a contrasting background, since it effectively differentiates the item 

from the remainder of the image. Some thresholding-based fruit quality evaluation 

methods accomplish segmentation directly by thresholding, while others integrate 

thresholding with additional approaches. Thresholding works best when the items of 

interest have a consistent inner grey level and are set against a different but consistent 

grey level background. 

3.2.3.2 Region-based segmentation 

 A region can be classified as a collection of linked pixels with comparable 

attributes. Pixels might be comparable in terms of intensity, colour, and other factors. 

In this sort of segmentation, there are some established rules that a pixel must follow in 

order to be grouped into related pixel areas 

 There are two types of region-based segmentation methods: region growing-

and-merging (GM) and region splitting-and-merging (SM). The first is a bottom-up 

approach that clusters pixels or sub-regions into bigger regions based on a set of 

homogeneity criteria, while the second is a top-down method that splits an image into 

smaller and smaller regions until specific requirements are fulfilled. Region-based 

algorithms are more computationally expensive than simpler approaches, such as 

thresholding-based segmentation, but they may use several picture attributes directly 

and simultaneously to determine the final boundary location. Because strong priori 

knowledge is not accessible, it shows the most potential in the segmentation of food 

products. 
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3.2.3.2.1 Gradient-based and classification-based segmentation 

 By partitioning the image into sets of interior and exterior points, the 

thresholding approach achieves segmentation. Gradient-based techniques, on the other 

hand, try to detect the edges directly based on their large gradient magnitudes. Based 

on categorization approaches such as statistics, fuzzy logic, and neural networks, 

classification-based systems attempt to allocate each pixel to different objects. In 

contrast to the typical technique of segmentation followed by classification, this 

segmentation is based on the results of classification. This method aims to determine 

the best way to segment the entire set of input images in order to improve classification 

accuracy. 

3.2.4 Object measurement 

 Once the images are successfully segmented into discrete objects of interest, the 

objects can be defined and represented for further processing and analysis by measuring 

the specific characteristics of each item. A segmented object can be represented in terms 

of its external or interior characteristics in general. Several characteristics may be 

utilised to characterise an item, and these traits are compared to data from known 

objects to categorise it into one of many categories. The greatest features to utilise are 

those that are the easiest to measure and contribute significantly to the categorization. 

3.2.5 Classification 

 Objects are identified by classifying them into one of the finite sets of classes, 

which entails comparing the measured properties of a new object to those of a known 

object or other known criteria to determine if the new object belongs to a certain 

category of objects. The three primary classification approaches are statistical, fuzzy 

logic, and neural networks. They share the goal of simulating the behaviour of a human 

decision-maker, and they have the advantage of consistency and, to a lesser extent, 

explicitness.  

 The collected images were pre-processed to eliminate the background 

interference. Region of interest (ROI) tool was used to select the image with the 

background omitted (Plate 3).  
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Plate 3. Image background elimination using 

ROI tool 
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3.3 TSS MEASUREMENT 

 Total soluble solids (TSS) were measured for selected fruits at various ripening 

time points. These time points spanned from harvest through fruit senescence, which 

was visually determined as the day when the fruits attained complete maturity (peel 

colour entirely yellow with brown spots) (Wang et al., 2014). Samples of banana were 

blended using a fruit juicer. The TSS were determined using a Hand-held refractometer 

(Plate 4). 

3.3.1 Hand held refractometer 

 Hand held refractometer have an illuminator flap which generates diffused light 

at a grazing angle, which helps to hold the sample in place. Light goes through the 

sample, through the measuring prism and perhaps other lenses, and then onto the 

measuring scale, where it may be read. It must be calibrated before collecting readings 

to account for temperature changes (using calibration screw and distilled water). 

 To begin the measurement, open the illuminator flap (a little hinge connects it 

to the instrument) and place the fruit extract sample on the measuring prism surface. A 

pipette can be used to place the sample on the prism. After closing the flap, gaze through 

the eyepiece and read the scale's result.  It may be required to point the refractometer 

in the direction of a light source (such as the Sun or a lamp) for better reading, but 

ambient light is generally sufficient throughout the day. After finishing measuring, 

wipe the prism and flap dry with a clean, soft cloth. 
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Plate 4. Hand held Refractometer 
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3.4 COLOUR ANALYSIS  

3.4.1 RGB model 

 All colours are represented by varying combinations of red, green, and blue in 

the Red-Green-Blue colour model. This is an additive colour model, which means the 

three primary colours are blended or 'added' in different quantities to create a new 

colour. Each of the three additive primaries in the RGB colour space can have a value 

ranging from 0 to 255. As a result, every conceivable colour in the colour space is 

represented as an RGB triplet (R, G, B), each with its own R, G, and B values. When 

the values of red, green, and blue are all zero, the resultant colour in the colour space is 

black. Similarly, if all three have a value of 255, the result is white. 

3.4.2 CIE L*a* b* 

 CIE L*a*b*, sometimes known as the CIELAB colour model, is one of the 

colour spaces created from the CIE XYZ space in 1976. The L*a*b * colour model uses 

location to define colour in 3D colour space. It was created to operate as a device-

independent guide that specified all viewable colours to the human eye. 

 It is based on the Opponent - Colors Theory, which states that the cones in the 

human retina see colours as changes of two opposites: 

a) Light and Dark shades of colour 

b) Red and Green 

c) Yellow and Blue. 

The following are the parameters used in the CIE L*a*b* models:  

1. The colour brightness, denoted by the letter L*, which ranges from 0 to 100. 

An L* value of 0 corresponds to black, while a L* value of 100 corresponds 

to diffuse white. 

2. a* represents the chroma/position of a colour between red/magenta and green. 

Green is indicated by negative a* values, whereas magenta is indicated by 

positive a* values. 
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3. The position of a colour between yellow and blue, denoted by the letter b*. 

Blue denotes negative values, whereas yellow denotes positive ones. 

 Color representation on surfaces or materials with natural curvatures and 

undulations that are illuminated by a light source is better with the L*a*b* colour 

system. Shadows and areas of glossiness on the object surface had less of an impact on 

the registered light intensities utilising L*a*b*. Therefore, the L*a*b* system is 

suggested as the best space for colour quantification in fruits. 

3.4.3 RGB and L*a*b* comparison 

   Table 2. Comparison of RGB and CIELAB colour spaces 

 

3.4.4 RGB to L*a*b* conversion 

 Images RGB data can be transformed to L*a*b* values. Briefly, RGB values 

will be converted to R'G'B' (by dividing each value by 255). Using gamma curve fitting, 

the R'G'B' values will be transformed to linear values (sRGB) using the following 

equations (Stokes et al.,1996): 

Model Parameters Effective 
parameters 

Advantages Disadvantages 

RGB Red, Green, 
Blue 

R, G, B i. it is used as the base 
colour space in a variety 
of applications, because 
no modifications are 
necessary to display 
information on the screen. 

ii. Because of its additive 
properties, it's commonly 
used in visual displays 

iii. Considered as 
computationally feasible 
system. 

i. Non useful for 
Color recognition 
and object 
specification. 

ii. Determining a 
specific colour is 
difficult in RGB 
color model 

iii. It’s a hardware-
oriented system 

CIE 
Lab 

L(luminance) 
a (red to 
green ratio) 
b (blue to 
yellow ratio) 

L i. Perceived as uniform 
ii. Device- independent 

i. Suffer from 
unintuitive 
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𝑓(𝑥) =
𝑥

12.92
    ;      𝑥 ≤ 0.03928 

 

  3.1 

 

 

 Where x is a value of R ,̍ G ,̍ or B ̍ and f(x) is the converted value in sR, sG or 

sB. Then the sRGB values transformed to XYZ parameters using coefficients from the 

International Telecommunication Union.  
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0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
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3.3 

 

where sR, sG and sB are components of sRGB (Stokes et al.,1996). 

 The XYZ values will be used to determine the L*, a*, and b* values (Papadakis 

et al., 2000): 

 𝐿∗= 116𝑓 − 16      3.4 

 

 

3.4.5 Image Normalization 

 To make comparisons easier, the sRGB and L*a*b* scales were normalized 

between 0 and 1. The normalized values for sR, sG and sB were calculated by dividing 

each pixel's value by 255. and the following equations for L*, a*, and b* (Papadakis et 

al., 2000): 

 

 

𝑓(𝑥) =
𝑥 + 0.055

1.055

.

            ;        𝑥 > 0.03928 ; 

 

3.2 

 𝑎∗ = 500 𝑓
𝑋

𝑋
− 𝑓

𝑌

𝑌
  3.5 

 
 
 
 
 
 

𝑏∗ = 200 𝑓
𝑌

𝑌
− 𝑓

𝑍

𝑍
 3.6 
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 normalized L* = 
∗

 3.7 

 

 For the images collected, RGB and L*a*b* were extracted using ImageJ 

software.  

3.4.6 ImageJ 

 ImageJ is a public domain software for processing and analysing scientific 

images. It is a free Java image processing programme based on the Macintosh's 

National Institutes of Health and the Laboratory (NIH). It runs on any computer that 

has a Java 1.4 or later virtual machine, either as an online applet or as a downloadable 

application. There are downloadable distributions for Windows, Mac OS, Mac OS X, 

and Linux. 8-bit, 16-bit, and 32-bit images can be displayed, edited, analysed, 

processed, saved, and printed with it. TIFF, GIF, JPEG, BMP, DICOM, FITS, and 

"raw" are just a few of the image formats it can read. It can display "stacks," which are 

a collection of images in a single window. Because it is multithreaded, time-consuming 

operations like reading image files can be performed in parallel with other tasks. 

 It can compute statistics on the area and pixel value of user-defined choices. It 

can calculate angles and distances. It can generate density histograms and line profile 

plots. Standard image processing functions including contrast modification, 

sharpening, smoothing, edge detection, and median filtering are all supported. Scaling, 

rotation, and flips are among the geometric adjustments it does. Zooming up to 32:1 

and down to 1:32 is possible. At every magnification factor, all analysis and processing 

operations are available. The application may run unlimited number of windows 

(images) at the same time, with the only limitation being available memory. 

 Real-world dimensions measurements in millimetres may be obtained via 

spatial calibration. Calibration for density or grey scale is also offered. ImageJ was built 

with an open architecture that allows it to be extended via Java plugins. ImageJ's built-

 normalized a* =
∗

 3.8 

 normalized b* =
∗

 3.9 



57 
 

in editor and Java compiler may be used to create custom acquisition, analysis, and 

processing plugins. Plugins built by users may address practically any image processing 

or analysis difficulty. 

 Then RGB values were measured using RGB measure plugin. This plugin menu 

separately measures the red, green and blue channels of an RGB image. Then using 

converting RGB image to Lab stack plugin the image is converted to new image-stack 

containing 3 slices L, a, b (Plate 5) and values were measured for corresponding images 

for all devices. 
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a* image 

b* image 

Plate 5. RGB image to Lab stack conversion 

L* image 

 



59 
 

3.5 MACHINE LEARNING 

 Machine learning (ML) is the study of computer algorithms that can learn and 

develop on their own with experience and data. Machine learning employs programmed 

algorithms to receive and analyse input data in order to anticipate output values that are 

within a reasonable range. As fresh data is fed into these algorithms, they learn and 

optimise their processes in order to increase performance over time, developing 

'intelligence' in the process. 

 Machine learning algorithms are divided into four categories: supervised, semi-

supervised, unsupervised, and reinforcement. 

3.5.1 Categories of machine learning algorithms 

3.5.1.1 Supervised learning 

 The machine is taught by example in supervised learning. The operator gives 

the machine learning algorithm a known dataset containing desired inputs and outputs, 

and the algorithm must figure out how to get to those inputs and outputs. The algorithm 

analyses patterns in data, learns from observations, and generates predictions while the 

operator knows the proper answers to the issue. The operator corrects the algorithm's 

predictions, and the process repeats until the algorithm achieves a high degree of 

accuracy/performance. Regression falls under supervised learning. 

3.5.1.2 Semi-supervised learning 

 Semi-supervised learning is similar to supervised learning, except it 

incorporates both labelled and unlabelled data. Labelled data is information with 

relevant tags so that the algorithm can interpret it, but unlabelled data does not have 

those tags. 

3.5.1.3 Unsupervised learning 

 Here, the machine learning programme looks for patterns in the data. There is 

no answer key or human operator available to give assistance. Instead, the machine 

analyses available data to discover correlations and relationships. The machine learning 

algorithm is left to evaluate enormous data sets and respond to them in an unsupervised 
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learning process. The algorithm tries to organise the data in some way such that its 

structure can be described.  

3.5.1.4 Reinforcement learning 

 Reinforcement learning is concerned with regimented learning processes in 

which a machine learning algorithm is given a set of actions, parameters, and end values 

to work with. The machine learning algorithm attempts to explore several alternatives 

and possibilities after setting the rules, monitoring and assessing each output to decide 

which is the best. Reinforcement learning instructs the system to learn via trial and 

error. It takes what it has learned in the past and adapts its approach to the situation in 

order to produce the best possible result. 

3.5.2 Training and Test sets 

3.5.2.1 Training data 

 This type of data builds up the machine learning algorithm. The model evaluates 

the data repeatedly to learn more about the data’s behaviour and then adjusts itself to 

serve its intended purpose. 

3.5.2.2 Test data 

  After the model is built, testing data once again validates that it can make 

accurate predictions. Test data provides a final, real-world check of an unseen dataset 

to confirm that the ML algorithm was trained effectively. 

 In the study the data was split into 80 percent training and 20 percent test data 

for the model fitting and prediction of TSS. 

3.6 STATISTICAL ANALYSIS 

3.6.1 Linear regression model 

 Linear regression models are used to show or predict the relationship between 

a dependent and an independent variable.  
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3.6.2 Model accuracy assessment 

3.6.2.1 Residual standard error (RSE) 

 Even if the correct regression line is known, it is difficult to perfectly predict 

the dependent variable from the independent variable due to the inclusion of error 

components. The RSE estimate is a measure of prediction error. The lower the RSE, 

the more accurate the model is. The RSE is an estimate of the standard deviation of 

error. It is, roughly speaking, the average deviation of the response from the true 

regression line. It is computed using the following formula:  

 𝑅𝑆𝐸 = 𝑅𝑆𝑆 = 
∑ ( )

 

 
3.10 

Residual sum of squares (RSS) is calculated by using the formula 

 𝑅𝑆𝑆 =  (𝑦 − 𝑦 )  3.11 

 By dividing the RSE by the mean outcome variable, the error rate can be 

calculated. 

3.6.2.2 𝑹𝟐statistic 

 The RSE is an absolute measure of the model's lack of fit to the data. However, 

because it is expressed in Y units, it is not always clear what defines a good RSE. The 

𝑅  statistic is another way to measure fit. It is expressed as a proportion ⸺ the 

proportion of variance explained — and hence always has a value between 0 and 1, 

regardless of the scale of Y. 

𝑅  is computed by the formula 

 𝑅 =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
 3.12 

 

 where 𝑇𝑆𝑆 = ∑(𝑦 − 𝑦)  is the total sum of squares, and RSS is the residual 

sum of squares. 
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 An 𝑅  value close to 1 indicates that the model explains a large percentage of 

the variance in the outcome variable. The 𝑅  represents the correlation coefficient 

between the observed values of the outcome variable (y) and the fitted (i.e., predicted) 

values of y in multiple linear regression. 

 The 𝑅  has the drawback of increasing always as more variables are included 

to the model, even if those variables are very weakly associated with the response. 

Adjusting the 𝑅  to account for the number of predictor variables is one solution. 

 The adjustment in the summary output's "Adjusted R Square" value is a 

correction for the amount of x variables in the prediction model. 

3.6.2.3 Root mean squared error 

 The root mean squared error, or RMSE prediction error, is the most used metric 

for evaluating linear regression model performance. The primary concept is to compare 

the model's predictions against actual observed values to see how bad/erroneous they 

are. It is the average difference between the observed known outcome values in the test 

data and the predicted outcome values by the model. The model is better if the RMSE 

is low. 

3.6.2.4 F-Statistic 

 The F-statistic determines the model's overall significance. It determines 

whether there is a non-zero coefficient for at least one predictor variable. A large F-

statistic corresponds to a statistically significant p-value (p < 0.05). 

3.6.3 Multiple linear regression 

 The relationship between two or more independent variables and one dependent 

variable is estimated using multiple linear regression. 

 Initially Multiple linear regression was fitted between R, G, B and TSS using R 

software. The data was split into 80 percent training and 20 percent test data before 

fitting the model. R, G, B color values were plotted against TSS                                                                          

using linear models separately for all devices. Then multiple linear regression model 

was fitted for L*, a*, b* and TSS. The linear model plots were obtained separately for 
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L*, a*, b* against TSS. Fitted models between color parameters and TSS were 

evaluated.  

  L*a*b* is the best space for colour quantification in fruits therefore, the data 

was visualised between L*, a*, b* and TSS for all the devices.  

 Since a non-linear trend appeared on visualization, nonlinear approaches were 

considered further for modelling. Splines, an often-superior approach to modelling 

nonlinear relationships was used to model L*, a*, b* and TSS. 

3.6.4 Spline regression 

 Spline regression is a type of non-linear and non-parametric regression that 

attempts to overcome the difficulties that linear and polynomial regression techniques 

have. In linear regression, the full dataset is taken into account at the same time. The 

dataset is partitioned into bins in spline regression. After that, each data bin is made to 

fit into its own model. Each function is referred to as a piecewise step function since 

there are independent functions that suit the bins.  

3.6.4.1 Knots 

 Knots are the spots where the data is partitioned into bins for fitting separate 

model. Number and placement of knots may have dramatic effect on fit and 

smoothness. 3 knots (0.25, 0.5, 0.75) were used in the study 

3.6.4.2 Generalized cross-validation 

 For spline smoothing, generalised cross-validation (GCV) is a popular 

parameter selection criterion, but it can produce poor results if the sample size is 

insufficient. 

3.6.5 Generalized Additive Models (GAMs) 

  A Generalized Additive Model (GAM) uses smooth functions (like splines) for 

the predictors in a regression model. It helps to flexibly model non-linear relationships 

and to fit spline models with automated selection of knots. Data may be fitted using 

smooths, or splines, which are functions that can take on a variety of forms, using a 

GAM. The gam () function in R from the mgcv package may be used to fit GAM via 
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an approach known as backfitting. This method fits a model with many predictors by 

updating the fit for each predictor individually while keeping the others constant. When 

GAM is fitted, the independent variable, x, is wrapped in the s (), that is the smooth 

function, which specifies that the relationship is flexible. GAMs' flexible smooths are 

really made up of a number of smaller functions. These are referred to as "basis 

functions." Each smooth is the product of a number of basis functions, each of which is 

multiplied by a coefficient, which is a model parameter.  

 The reference number of degrees of freedom used for hypothesis testing is the 

Ref.df value (on the basis of the associated F-value). The edf value is the number of 

effective degrees of freedom, which can be interpreted as an estimate of how many 

parameters are required to represent the smooth. The smooth's quantity of non-linearity 

is indicated by the edf value. The edf value indicates the amount of non-linearity of the 

smooth. If the edf value for a smooth is (close to) 1, the pattern is (close to) linear. A 

value greater than one denotes a more complex pattern (i.e., non-linear). The maximum 

edf value is k minus one (as the intercept is part of the parametric coefficients). If the 

edf value is close to its maximum, it may be required to increase the base dimension to 

avoid over smoothing. 

 Spline regression was fitted using R software using splines package and mgcv 

package. TSS and L*, a*, b* values were modelled using spline regression and was 

compared with the linear model fitted earlier. After comparing both the models best 

fitting model was identified for the prediction of TSS. 

 Possibility of deep learning using Convolutional neural network (CNN) was 

also explored in this study. 

3.7 DEEP LEARNING 

 Deep learning is a subset of machine learning that is essentially a three or more 

layers neural network. These neural networks are designed to mimic the human brain's 

behaviour by allowing it to "learn" from large amounts of data. While a single-layer 

neural network may produce approximate predictions, more hidden layers can assist to 

optimise and improve for accuracy. 
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3.7.1 Convolutional neural network (CNN) 

 CNN is a type of artificial neural network used in image recognition and 

processing that is specifically designed to process pixel data. It can recognise features 

and patterns within an image, allowing tasks such as object detection and recognition. 

It is largely utilised in computer vision and image classification applications. The layers 

of a CNN consist of an input layer, an output layer and a hidden layer that includes 

multiple convolutional layers, pooling layers, fully connected layers and normalization 

layers (Fig. 1) 
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Fig. 1. Architecture of the Convolution neural network (online source: 

https://towardsdatascience.com/a-laymans-guide-to-building-your-first-image-

classification-model-in-r-using-keras-b285deac6572) 
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3.7.1.1 Convolution layers: Different features of the input are extracted using the 

convolution operation. Low-level features such as edges, lines, and corners are 

extracted by the first convolution layer. Higher-level layers extract features at a higher 

level. Convolution is performed by sliding a smaller frame over the entire image, which 

acts as a receptive field for the temporal-spatial features. This frame is called as a 

Kernel/Filter. The weights of the neural network are equivalent to the filter values. At 

each given time, a single feature output is generated by a linear combination of these 

filter values and the image's foregrounding pixel values. A feature map is created when 

a set of these values is formed. 

3.7.1.2 Rectified Linear Unit (ReLU): An activation function is applied over each of 

the feature maps once they are generated. Because a ReLU implements the function y = 

max(x,0), this layer's input and output sizes are the same. It improves the decision 

function's and overall network's nonlinear qualities without impacting the convolution 

layer's receptive fields. 

3.7.1.3 Pooling/subsampling layers: The resolution of the features is reduced by the 

pooling/subsampling layer. It strengthens the features against noise and distortion. 

3.7.1.4 Fully connected layers: The last layers of a CNN often used are fully connected 

layers. These layers add up a weighted total of the previous layer's characteristics, 

showing the exact mix of "ingredients" needed to get a given intended output result. In 

the case of a fully connected layer, each element of each output feature is calculated 

using all of the elements of the preceding layer's features. 

  From the images obtained using all the three devices three categories 

with 30 samples each were categorised based on TSS. The categories were Raw (TSS 

4-10), Medium (TSS 11-17), Ripe (TSS 18-32). 25 images from each category were 

selected as training set and 5 images were selected as test set. The images were uploaded 

in R and image classification model was developed using Tensorflow framework.  

3.7.2 Learning curves to diagnose machine learning model performance 

 Learning curves are plots that depict how learning performance changes 

over time as a function of experience. 
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 Model performance learning curves on the train and validation datasets 

can be used to diagnose if a model is underfit, overfit, or well-fit. 

 Learning curves of model performance can be used to determine if the 

train or validation datasets are representative of the problem domain 

 Learning curves are commonly used in machine learning for algorithms like 

deep learning neural networks that learn (optimise their internal parameters) 

incrementally over time. The present state of a machine learning model can be 

examined at each step of the training algorithm during training. On the training dataset, 

it can be tested to see how effectively the model is "learning." It can also be tested on a 

hold-out validation dataset that isn't included in the training set. The validation dataset 

is used to determine how well the model is "generalising." 

 Train Learning Curve: This is a learning curve derived from the training 

dataset that indicates how effectively the model is learning. 

 Validation Learning Curve: This is a learning curve derived from a hold-

out validation dataset that indicates how effectively the model 

generalises. 

3.7.3 Epoch 

 When an entire dataset is passed forward and backward through the neural 

network only once. While the epochs are running graphics of juxtaposed curves of loss 

and accuracy for training and validation sets can be obtained.  

 In the study, 100 epochs were performed to avoid overfitting and to increase the 

generalization capacity of neural network. 
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    4. RESULTS AND DISCUSSION 

 The study entitled “Statistical Assessment of Banana ripening using 

smartphone-based images” has been carried out at the Department of Agricultural 

Statistics, College of Agriculture, Vellayani, Thiruvananthapuram during the year 

2019-2020. In order to develop of suitable model to establish the relationship between 

Total Soluble Solids (TSS) and L*(lightness), a*(green-red ratios), b*(blue-yellow 

ratios) values of bananas were collected from randomly selected fields in Trivandrum 

district. Images were collected on a daily basis and TSS for the same is measured. Best 

fitting model was identified for prediction of TSS values using L*, a*, b* values. A 

protocol for accurate data collection to assess TSS content in Banana using smart-

phone-based images was developed. Along with this, the possibility of deep learning 

using Convolutional neural network (CNN) was also explored. Various statistical 

methods were used to fit the model between TSS and color parameters. The results of 

the study are given under the following subsections. 

4.1 Color parameters extraction 

4.2 Linear model fitting between R, G, B, L*, a*, b* and TSS 

4.3 Data visualisation between L*, a*, b* and TSS 

4.4 Spline model fitting between L*, a*, b* and TSS 

4.5 Comparison of fitted models and identification of suitable model 

4.6 Protocol for accurate data collection using smartphone 

4.7 Convolutional neural network for identification and classification 

of banana images into different categories  

4.1 COLOR PARAMETERS 

 For the evaluation of color parameters, 377 images of Nendran variety were 

collected using three different smartphones having different resolution properties. 

Sampling distribution for each device is given in Table 6. For each set of bananas, the 

images were captured from the day of collection to a ripened stage with brown spots. 

Table 3, 4 and 5 represents the color parameters along with TSS for day 1-6 for devices 
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1, 2 and 3 respectively. It was found from the tables that, the L* and b* values varied 

non uniformly throughout the cycle. The TSS increased over storage time. During 

ripening, the a* value steadily rises, indicating the degradation of chlorophyll and the 

loss of the peel's green colour.  

Table 3. L*, a*, b* values of images using device 1 and their TSS for a set of bananas 

for initial six days after collection 

 L* a* b* TSS 

Day 1  42.19 
 

-11.89 34.97 5 

Day 2 30.02 -6.65 20.91 7.2 

Day 3 29.93 -3.22 28.27 10.9 

Day 4 56.25 3.41 55.72 17.8 

Day 5 42.45 9.95 40.86 25.6 

Day 6 34.86 11.31 19.15 30.8 

 

Table 4. L*, a*, b* values of images using device 2 and their TSS for a set of bananas 

for initial six days after collection 

 

 L* a* b* TSS 

Day 1 41.85 -12.81 29.06 4.2 

Day 2 38.04 -7.63 21.00 7.2 

Day 3 43.60 -3.65 30.98 13.8 

Day 4 59.12 1.57 41.64 17.8 

Day 5 46.43 7.68 30.67 28.2 

Day 6 53.20 7.04 30.77 31.8 
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Table 5. L*, a*, b* values of images using device 3 and their TSS for a set of bananas 

for initial six days after collection 

 

  Table 6. Number of images captured using three smartphones 

 

 

 

 

 L* a* b* TSS 

Day 1 40.18 -15.56 26.33 4.6 

Day 2 38.31 -6.07 35.17 8 

Day 3 43.34 -3.79 43.01 13.8 

Day 4 60.57 2.67 50.66 17.8 

Day 5 55.81 6.07 51.13 26.2 

Day 6 50.29 14.56 42.86 30.6 

Devices No. of samples 

Device 1 129 

Device 2 126 

Device 3 122 
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4.2 LINEAR MODEL FITTING BETWEEN R, G, B, L*, a*, b* AND TSS 

 Linear model was fitted between R, G, B and TSS for all the images captured 

using three smartphones. Machine learning model was implemented for fitting linear 

models. Total sample was divided into 80 percent training and 20 percent test set.  

 Table 7. RGB and TSS linear model coefficients for device 1 

  

Estimate 

 

Std. Error 

 

t value 

 

Pr(>|t|) 

 

    (Intercept) 12.42 1.65 7.52 9.05e-12 ** 

R 0.31 0.01 18.00 < 2e-16 ** 

G -0.32 0.02 -16.13 < 2e-16 ** 

B 0.07 0.03 2.45 0.0154 * 

Multiple 𝑅  0.80 

Adjusted 𝑅  0.80 

RMSE for predicted TSS 3.83 

𝑅  value for prediction 0.84 

 

 For device 1, out of the total 129 samples, 104 samples were taken as training 

and 25 samples were taken as test set. It is evident from Table 7 that R, G and B have 

significant relationships with TSS for images captured using device 1. Since p-value is 

less than 0.05, R and G found to be significant at 1 percent level of significance. B 

found to be significant at 5 percent level of significance. 
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Therefore, the model will be  

 TSS= 12.42 + 0.31 R -0.32 G+ 0.07 B 4.1 
  

 Regression coefficients of R and B were positive indicating a positive 

correlation between TSS and R, B color values whereas, negative coefficient of G 

suggests that there is a negative correlation between G and TSS. Adjusted 𝑅  obtained 

was 0.80, meaning that 80 percent of the variance in the measure of TSS can be 

predicted by R, G and B. The RSE was 4.04 corresponding to a 29.73 percent error rate. 

The RMSE and  𝑅  values for predictions were 3.83 and 0.84 respectively.  

  Table 8. RGB and TSS linear model coefficients for device 2 

 

 For device 2, out of the total 126 samples, 102 samples were taken as training 

and 24 samples were taken as test set. The results presented in table 8 shows that for 

the images captured using device 2, R, G and B values have significant relationship 

with TSS. R and G found to be significant at 1 percent level of significance. B found to 

be significant at 5 percent level of significance. For R and B estimates were positive 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 18.21 2.03 8.93 5.27e-15 ** 

R 0.56 0.02 22.73 < 2e-16 ** 

G -0.69 0.05 13.49 < 2e-16 ** 

B 0.12 0.06 2.03 0.0439 * 

Multiple 𝑅  0.81 

Adjusted 𝑅  0.80 

RMSE for predicted TSS 2.98 

𝑅  value for prediction 0.90 
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indicating a positive correlation with TSS. In the case of G, there is a negative 

correlation with TSS. 

Therefore, the model will be  

 TSS= 18.21+ 0.56 R-0.69 G+ 0.12 B 4.2 
 

 Adjusted 𝑅  obtained was 0.80, meaning 80 percent of the variance in the 

measure of TSS can be predicted by R, G and B. The RSE obtained was 4.02 

corresponding to a 23.70 percent error rate. The RMSE and  𝑅  values for predictions 

were 2.98 and 0.90 respectively.  

Table 9.  RGB and TSS linear model coefficients for device 3 

 

 The result presented in table 9 shows that for the images captured using device 

3, R and G values have significant relationship with TSS. R and G found to be 

significant at 1 percent level of significance. B value found to be non-significant. The 

regression coefficient of R colour value was positive while for G it was negative.  

  

Estimate 

 

Std. Error 

 

t value 

 

Pr(>|t|) 

(Intercept) 8.71 1.56 5.57 1.56e-07 *** 

R 0.36 0.01 23.68 < 2e-16 *** 

G -0.33 0.01 -16.81 <2e-16*** 

B 0.01 0.02 0.59 0.551 

Multiple 𝑅  0.84 

Adjusted 𝑅  0.84 

RMSE for predicted TSS 2.22 

𝑅  value for prediction 0.95 



76 
 

Therefore, the model will be  

 TSS= 8.71 + 0.36 R-0.33 G 4.3 
 

 Adjusted 𝑅 was 0.84, meaning 84 percent of the variance in the measure of TSS 

can be predicted by R and G. The RSE for the model was 3.57 corresponding to 18.67 

percent error rate. The RMSE and  𝑅  values for predictions were 2.22 and 0.95 

respectively. 

 Fig. 2, 3 and 4 shows the linear regression lines fitted for R, G, B and TSS using 

R software for device 1. Fig. 5, 6 and 7 shows the linear regression lines fitted for R, G, 

B and TSS for device 2. For device 1, 2 and 3, linear regression plots were prepared by 

taking one colour parameter against TSS by keeping the remaining colour parameters 

under control. From Fig. 2, 3 and 4, it was seen that the regression line for R, G, B and 

TSS for device 1 does not pass through most of the points. Similarly for device 2 and 

3, the data points were farther from the linear regression line in Fig. 5, 6, 7 and Fig. 8, 

9, 10. 
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Fig.2. Linear regression plots between 

R and TSS for device 1 

Fig.3. Linear regression plots between 

G and TSS for device 1 

Fig.4. Linear regression plots between 

B and TSS for device 1 
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Fig.5. Linear regression plots between 

R and TSS for device 2 

Fig.6. Linear regression plots between 

G and TSS for device 2 

Fig.7. Linear regression plots between 

B and TSS for device 2 
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Fig.8. Linear regression plots between 

R and TSS for device 3 

Fig.9. Linear regression plots between 

G and TSS for device 3 

Fig.10. Linear regression plots between B 

and TSS for device 3 
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 But in the case of the RGB colour model it is a device dependent model. This 

implies that a certain RGB triplet may differ from device to device. This is because the 

colour components (phosphors or dyes) used by various manufacturers may react 

differently to varying R, G, and B values. As a result, an RGB value may not always 

represent the same colour on different devices. Because it specifies colours in terms of 

additive primaries, RGB is not an intuitive colour model.  

 Therefore, the extracted L*a*b* color values were used for fitting linear models 

to predict TSS. L* a* b* is device-independent. As a result, unlike the RGB system, 

there will be no differences in CIELAB models on various devices. The 

Luminosity/Brightness component is quite similar to how people perceive lightness. It 

may be used to properly modify the colour balance. The CIELAB colour gamut is much 

larger than the RGB colour gamut, and it also includes the gamut of the latter model. 

The colour range of this model is so wide that it contains colours that the human eye 

cannot see. In other words, it comprises imaginary colours as well. By altering chroma, 

brightness, and occasionally hue, colour management software, such as built-in image 

processing tools, would select the closest colour present in the spectrum of colours 

visible to humans. 

  Table 10. L*a*b* and TSS linear model coefficients for device 1 

 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 11.82 1.80 6.54 1.37e-09 ** 

L 0.01 0.06 0.19 0.84854 

a 0.67 0.03 19.90 < 2e-16 ** 

b 0.17 0.06 2.86 0.00488 * 

Multiple 𝑅  0.78 

Adjusted 𝑅  0.78 

RMSE for predicted TSS 4.04 

𝑅  value for prediction 0.84 
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 The results presented in Table 10 revealed that the parameters a* and b* had a 

significant relationship with TSS for images captured using device 1. a* found to be 

significant at 1 percent level of significance and b* found to be significant at 5 percent 

level of significance. Regression coefficients of a* and b* were positive indicating a 

positive correlation with TSS.  

Therefore, the model will be  

 TSS= 11.82 + 0.67 a*+ 0.17 b* 4.4 
 

 Adjusted 𝑅  obtained was 0.78, meaning 78 percent of the variance in the 

measure of TSS can be predicted by a* and b* color values. The RSE was 4.25 

corresponding to 31.39 percent error rate. The RMSE and 𝑅  values for predictions 

were 4.04 and 0.84 respectively.  

Table 11. L*a*b* and TSS linear model coefficients for device 2 

 

 The result presented in table 11 indicated that only a* and TSS had a significant 

relationship. a* found to be significant at 1 percent level of significance. L* and b* 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 19.60 2.08 9.38 4.36e-16 *** 

L 0.01 0.07 0.21 0.827 

a 1.20 0.05 21.38 < 2e-16 ** 

b 0.01 0.10 0.10 0.914 

Multiple 𝑅  0.82 

Adjusted 𝑅  0.81 

RMSE for predicted TSS 2.86 

𝑅  value for prediction 0.91 
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found to be non-significant.  For a*, the estimate was positive indicating a positive 

correlation with TSS.  

Therefore, the model will be     

 TSS= 19.60+ 1.2 a* 4.5 
 

 Adjusted 𝑅  obtained was 0.81, meaning 81 percent of the variance in the 

measure of TSS can be predicted by a*. The RSE obtained was 3.90 corresponding to 

22.78 percent error rate. The RMSE and  𝑅  values for predictions were 2.86 and 0.91 

respectively. 

 Table 12. L*a*b* and TSS linear model coefficients for device 3 

 

 It was found from Table 12 that, L* and a* had a significant relationship with 

TSS. L* and a* were significant at 5 percent level of significance. Color value b* found 

to be non-significant.  

 

 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 9.64 1.62 5.95 2.74e-08 ** 

L 0.16 0.05 3.16 0.002 ** 

a 0.74 0.02 25.23 < 2e-16 ** 

b 0.07 0.05 1.40 0.162 

Multiple 𝑅  0.85 

Adjusted 𝑅  0.85 

RMSE for predicted TSS 2.16 

𝑅  value for prediction 0.95 
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Therefore, the model will be    

 TSS= 9.64+ 0.16 L*+ 0.74 a* 4.6 
  

 Adjusted 𝑅  was 0.85 and RSE was 3.48 with 18.17 error rate. The RMSE and 

𝑅  values for predictions were 2.16 and 0.95 respectively.  

 The fitted line plots in Fig. 11-19 displayed that the model didn’t fit properly on 

the data. Most of the points were lying farther from the regression line showing a 

nonlinear relationship with TSS for all the devices. Linear models of RGB have shown 

a significant and high adjusted R-Square than linear models of L* a* b* and TSS. 

 From the linear models between L*, a*, b* and TSS, it was found that when the 

camera specification varied, the significant ones also varied. Hence it will be difficult 

to find a generalized model using L*, a*, b* colour parameters. The colour value a* 

found to be significant for all the three devices. 
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Fig. 13. Linear regression plots between 

b*and TSS for device 1 

Fig. 11. Linear regression plots between 

L*and TSS for device 1 

Fig. 12. Linear regression plots between 

a*and TSS for device 1 
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Fig. 16. Linear regression plots between 

b*and TSS for device 2 

Fig. 14. Linear regression plots between 

L*and TSS for device 2 

Fig. 15. Linear regression plots between 

a*and TSS for device 2 
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Fig. 19. Linear regression plots between 

b*and TSS for device 3 

Fig. 17. Linear regression plots between 

L*and TSS for device 3 

Fig. 18. Linear regression plots between 

a*and TSS for device 3 
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4.3 DATA VISUALISATION BETWEEN L*, a*, b* AND TSS 

 Data has been visualised to see the trend of data points. Scatter plots were 

created using R software and the ‘ggplot2’ package. The function ‘geom_point ()’ is 

used. The function ‘stat_smooth ()’ is used to add regression lines to the scatter plot. 

Fig. 20, 21, 22 picturise the trend between L*, a*, b* and TSS for device 1. It is clear 

from the plot that the relationship is non-linear. Similarly for device 2 and device 3 

scatter plots were prepared (Fig.23-28) and a non-linear relationship was found between 

colour parameters and TSS. Therefore, the possibility of non-linear regression was 

explored in the study. Since all the scatterplots showed a non-linear relationship but 

can’t say it is strictly nonlinear hence spline regression was tried to fit in the data points. 
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Fig. 22. Scatterplot of b* and TSS for 

device 1 

Fig. 20. Scatterplot of L* and TSS 

for device 1 

Fig. 21. Scatterplot of a* and TSS 

for device 1 
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Fig. 25. Scatterplot of b* and TSS 

for device 2 

Fig. 23. Scatterplot of L* and TSS 

for device 2 

Fig. 24. Scatterplot of a* and TSS 

for device 2 
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Fig. 28. Scatterplot of b* and TSS 

for device 3 

Fig. 26. Scatterplot of L* and TSS 

for device 3 

Fig. 27. Scatterplot of a* and TSS 

for device 3 
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4.4 SPLINE MODEL FITTING BETWEEN L*, a*, b* AND TSS 

 Once the linear regression model found to be unfitted for specifying the 

relationship between L*, a*, b* and TSS, spline regression model was tried for fitting 

data points. The s function is a symbolic wrapper that is used in the model to signify a 

smooth term. 

Table 13. Parametric coefficients of spline regression model for L*a*b* and TSS; 

device 1 

  Table 14. Approximate significance of smooth terms for device 1 

  

 For device 1, it is clear from the Table 14 that the smoothing terms of L*, a* 

and b* were significant. It is evident that L*, a*, b* were significant covariates and a* 

was the most significant covariate since the corresponding p-value is the lowest (<2e-

16). The p-value associated with each smooth indicates whether it is significantly 

different from 0 or not. The adjusted 𝑅  value obtained was 0.91 which is close to 1 

and is good. The proportion of the total deviance explained by the current model was 

92 percent. 

      Estimate Std. Error t value Pr(>|t|) 

(Intercept)          12.45           0.26    46.52    <2e-16 *** 

 edf Ref.df F p-value 

s(L) 2.92 3.66 2.74 0.02832 * 

s(a) 7.85 8.63 102.88 < 2e-16 *** 

s(b) 1.00 1.00 6.99 0.00962 ** 

Adjusted 𝑅  0.91 

Deviance explained 92% 

GCV 8.50 
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Fig. 31. Spline fitting between b* and 

TSS for device 1 

Fig. 29. Spline fitting between L* and 

TSS for device 1 

Fig. 30. Spline fitting between a* and 

TSS for device 1 
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Table 15. Actual and predicted values of TSS using spline model using device 1 data 

SL NO ACTUAL TSS PREDICTED TSS 

1 4.6 5.72 

2 6.2 12.52 

3 6.5 7.31 

4 29.0 27.34 

5 27.6 26.57 

6 5.2 5.82 

7 18.8 6.79 

8 31.0 28.49 

9 28.8 27.69 

10 31.0 27.37 

11 8.0 8.96 

12 7.2 9.27 

13 6.2 6.35 

14 6.0 6.43 

15 16.6 12.55 

16 7.4 7.30 

17 6.8 6.69 

18 7.0 6.88 

19 6.8 6.54 

20 4.6 5.64 

21 17.6 8.27 

22 7.2 5.99 

23 6.0 6.51 

24 19.6 24.83 

25 6.6 7.03 
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Table 16. Parametric coefficients of spline regression model for L*a*b* and TSS; 

device 2 

 

   Table 17. Approximate significance of smooth terms for device 2 

 

 It is evident from Table 17 that the smoothing terms of a* and b* were 

significant. a* found to be most significant with p-value <2e-16 for device 2 as well. 

The adjusted 𝑅  value was 0.90 and 92.3 percent deviance was explained by the model. 

   

 

 

 

 

 

 

 Estimate Std. Error t value Pr(>|t|)   

(Intercept)   12.21      0.27  43.67    <2e-16 *** 

 edf Ref.df F p-value 

s(L) 6.18 7.23 1.30 0.2458 

s(a) 8.26 8.82 54.59 <2e-16 *** 

s(b) 5.29 6.37 2.68 0.0217 * 

Adjusted 𝑅  0.90 

Deviance explained 92.3% 

GCV 10.01 
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Table 18. Actual and predicted values of TSS using spline model using device 2 data 

SL NO ACTUAL PREDICTED 

1 29.2 28.6 

2 4.6 7.29 

3 6.2 7.45 

4 6.5 7.52 

5 6.8 7.24 

6 31.8 29.67 

7 30.8 26.04 

8 7.4 6.48 

9 9.4 7.38 

10 6.0 7.18 

11 25.2 22.21 

12 26.2 21.63 

13 5.8 7.40 

14 6.4 7.34 

15 8.6 6.91 

16 6.8 6.64 

17 11.2 9.03 

18 6.2 7.18 

19 7.0 10.24 

20 5.4 7.00 

21 24.2 17.78 

22 17.6 12.62 

23 6.0 7.65 

24 6.6 9.24 
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Fig. 32. Spline fitting between L* and 

TSS for device 2 

Fig. 33. Spline fitting between a* 

and TSS for device 2 

Fig. 34. Spline fitting between b* and 

TSS for device 2 
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Table 19. Parametric coefficients of spline regression model for L*a*b* and TSS; 

device 3 

 

  Table 20. Approximate significance of smooth terms for device 3 

 

 From Table 20, a* was the most significant with corresponding p-value <2e-16. 

L* and b* were found to be non-significant. Adjusted 𝑅  was 0.89 and 90.7 percent 

variance was explained by the model. 

 

 

 

 

 

 

  Estimate   Std. Error         t value Pr(>|t|)     

(Intercept)      12.20           0.28          42.33    <2e-16 *** 

 edf Ref.df F p-value 

s(L) 1.71 2.17 2.09 0.133 

s(a) 5.26 6.40 119.51 <2e-16 *** 

s(b) 1.00 1.00 0.16 0.685 

Adjusted 𝑅  0.89 

Deviance explained    90.7% 

GCV 9.04 
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Fig. 37. Spline fitting between b* and 

TSS for device 3 

Fig. 35. Spline fitting between L* and 

TSS for device 3 

Fig. 36. Spline fitting between a* and 

TSS for device 3 
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Table 21. Actual and predicted values of TSS using spline model using device 3 data 

 

SL NO ACTUAL PREDICTED 

1 6.0 7.14 

2 25.8 20.65 

3 4.2 7.12 

4 6.5 11.32 

5 6.8 6.81 

6 29.0 27.02 

7 27.6 27.15 

8 6.0 7.35 

9 26.2 29.25 

10 7.2 6.21 

11 6.0 6.95 

12 31.0 27.98 

13 6.4 9.65 

14 5.8 6.60 

15 6.4 6.50 

16 6.6 8.89 

17 7.6 6.88 

18 7.4 6.72 

19 7.2 7.08 

20 6.8 5.63 

21 7.2 6.01 

22 4.6 5.92 

23 26.2 28.65 
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4.5 COMPARISON OF FITTED MODELS AND IDENTIFICATION OF SUITABLE 

MODEL 

 When the linear model was fitted between TSS and RGB values for all the 

devices, each of the independent variables were found to be significant. For device 1, 

when the linear model was fitted between R, G, B and TSS, all the three parameters 

were found to be significant for calculating TSS. Adjusted 𝑅  for the model was 0.80. 

In case of device 2, R, G and B were significantly related to TSS when the linear model 

was fitted. 0.80 was the adjusted 𝑅   for corresponding. For device 3, R and G found to 

be significant with an adjusted 𝑅  of 0.84 for linear model fitting.  

 For device 1, L*, a*, b* and TSS linear model showed that a* and b* were the 

significant parameters with adjusted 𝑅  value 0.78. Similarly linear model for device 2 

revealed that only a* is significant with adjusted 𝑅  value of 0.81. For device 3, L* and 

a* were found to be significant with adjusted 𝑅  value of 0.85.  

 Even though the adjusted 𝑅  for three models were much closer, a* is found to 

be significant in all the cases. When prediction accuracy was compared for linear model 

between TSS vs RGB and TSS vs L*a*b*, RGB model found to predict TSS much 

accurately than L*a*b* color space. Therefore, RGB is found to be a better fit in linear 

models.  

 Spline model between L*, a*, b* and TSS for device 1 showed that the 

smoothing terms of L*, a* and b* were significant with an adjusted 𝑅  of 0.91. For 

device 2, smoothing terms of a* and b* were significant with adjusted 𝑅  of 0.90. In 

case of device 3, smoothing term of a* was significant with adjusted 𝑅  of 0.89. R-

square values obtained were much higher for spline model fitting of TSS and L*a*b* 

values than linear models with a good percentage of explained variation. Spline 

regression model was found to be the best fit for L*, a*, b* and TSS values. R-square 

values were much higher with a good percentage of variation explained. 
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4.6 PROTOCOL FOR ACCURATE COLOUR PARAMETERS MEASUREMENT 

USING SMARTPHONE 

 This study was conducted to pave the way for easy maturity assessment of 

bananas without involving human perception during the process.  

 

4.5.1 Sample collection  

 Choose good quality bananas at the green stage with minor shape defects 

randomly. Identify healthy banana plants from randomly selected fields and collect 

three hands from each plant with minimum 10 fingers by hand. 

 

4.5.2 Image collection  

 Capture images inside a box model structure (plate 6) to avoid light 

interference and use black as background.   

 Use white light illumination inside the box to complete the experimental 

setup. Ensure that this illumination is as evenly distributed as possible. 

 While using a smartphone for taking images keep it in manual mode to avoid 

resetting and do not mark over the banana while taking photos. Capture 

images from the same distance. A distance of 20 cm was used in the study. 

 

4.6.3 TSS measurement   

 Measure TSS using handheld refractometer at various ripening time points from 

harvest to fruit senescence. 

4.6.4 Image calibration and pre-processing 

 Calibrate the image to bring the RGB values of color patches in the input 

image to the standard RGB values.  Color calibration eliminates variation in 

lighting conditions to avoid the variation in pixel intensities.  

 Pre-processing is used to improve image data by suppressing unwanted 

distortions or enhancing certain image features that are useful for future 

processing.  
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Plate 6. Box model for image capturing 
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4.6.5 Image analysis 

 ImageJ is an open-source java-based software for processing and analyzing 

scientific images developed at the National Institute of Health and the Laboratory. 

Upload the collected images in imageJ for colour measurements. 

 

4.6.6 Background elimination and color space conversion 

 Select Region of interest (ROI) from the image and remove background. RGB 

values can be directly obtained using imageJ. Then convert the image to image-stack 

containing 3 slices L*, a*, b* and measure the values. 

 

4.6.6 Model fitting 

 Tabulate R, G, B, L*, a*, b* and TSS values. Then visualize the data and find 

the relationship among them. Fit linear or nonlinear regression based on visualization 

and find the best fitting model. 

 

4.7 CONVOLUTIONAL NEURAL NETWORK 

 A novel CNN architecture was used for the classification and detection of 

banana ripening stages by analyzing the collected images of it. Tensor-flow was used 

as the main framework to implement the proposed Convolutional Neural Network 

architecture. 

A 14- layer convolutional neural network was developed. There were 6 convolutional 

layers and 2 max pooling-2d layers in the structure. After the flattening layer, two dense 

layers were implemented.  

4.7.1 Samples 

 Three categories with 30 images each were selected as sample. The categories 

were shown in Table 21. 

      Table 22. Identified categories of banana and TSS for the respective categories 

Category TSS 
Raw 4-10 

Medium 11-17 

Ripe 18-32 
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 From the sampling frame 30 images with suitable TSS in the range were chosen 

and separated. For the training set 25 images from each category were selected. And 

for the test set 5 images from each category were selected. 

 The R script for building the CNN model is given in Appendix 1. Model detail 

is shown below:  

Model: "sequential_2" 

____________________________________________________ 

Layer (type)           Output Shape         Param #  

==================================================== 

conv2d_11 (Conv2D)     (None, 98, 98, 100)  2800     

____________________________________________________ 

conv2d_10 (Conv2D)     (None, 96, 96, 80)   72080    

____________________________________________________ 

max_pooling2d_3 (MaxPo (None, 32, 32, 80)   0        

____________________________________________________ 

dropout_5 (Dropout)    (None, 32, 32, 80)   0        

____________________________________________________ 

conv2d_9 (Conv2D)      (None, 30, 30, 80)   57680    

____________________________________________________ 

conv2d_8 (Conv2D)      (None, 28, 28, 80)   57680    

____________________________________________________ 

conv2d_7 (Conv2D)      (None, 26, 26, 80)   57680    

____________________________________________________ 

conv2d_6 (Conv2D)      (None, 24, 24, 80)   57680    

____________________________________________________ 

max_pooling2d_2 (MaxPo (None, 8, 8, 80)     0        

____________________________________________________ 

dropout_4 (Dropout)    (None, 8, 8, 80)     0        

____________________________________________________ 

flatten_1 (Flatten)    (None, 5120)         0        
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____________________________________________________ 

dense_3 (Dense)        (None, 500)          2560500  

____________________________________________________ 

dropout_3 (Dropout)    (None, 500)          0        

____________________________________________________ 

dense_2 (Dense)        (None, 3)            1503     

==================================================== 

Total params: 2,867,603 

Trainable params: 2,867,603 

Non-trainable params: 0 

__________________________ 
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Fig. 38. Graphic of loss and accuracy for training and 

validation sets 
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 On fitting the training data, each epoch appeared in the console area. While the 

epochs were running, a graphic was obtained in the RStudio viewer (Fig. 38). 100 

epochs were used. 

 These are the juxtaposed curves of loss and accuracy for training and validation 

sets. Once the training was completed, a freshly trained model was evaluated. 

 Table 23. Model Evaluation Training set 

  loss   accuracy 

0.4586261  0.8400000 

 

  Table 24. Evaluation Result (Training Set) 

 Ripe Raw Medium 

Ripe 25 0 3 

Raw 0 24 8 

Medium 0 1 14 

 

  Table 25. Model Evaluation Test set 

  loss   accuracy 

0.81  0.73333 

 

   Table 26. Evaluation Result (Test Set) 

      

 Ripe Raw Medium 

Ripe 5 0 0 

Raw 0 4 3 

Medium 0 1 2 
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 The model evaluation of the trained set revealed 84 percent accuracy with loss 

percent of 45 (Table 23). The evaluation result of the trained set is given in table 22. It 

is evident from the table 24 that the model successfully identified and categorized all 

25 ripe fruits. From the 25 raw images, the model was able to categorize 24 raw and 

one identified as medium category. From the 25 medium ripe images, 14 images were 

categorized as medium ripe, 8 were identified as raw and 3 were identified as ripe.  

 Then the trained model was tested and evaluated over a test set. On evaluation 

of the model for the test set, it was found from table 25 that the model classified the test 

images of bananas into raw, ripe and medium with 73 percent accuracy and loss of 81 

percent.  

 The developed model successfully identified all 5 ripe images from test set. 

From the raw image set, the model identified 4 raw and 1 image was identified as 

medium ripe category. In the case of 5 medium ripe images, 3 were identified as raw 

and 2 were identified as medium category (Table 26). It was found that the test dataset's 

accuracy is slightly lower than the training dataset's accuracy. Overfitting is the reason 

for this gap between training accuracy and test accuracy. When a machine learning 

model overfits, it performs worse on new data than it did on training data. 

 The test set images of bananas classified by the model is given in Fig. 39. Since 

the sample size was much smaller for developing a neural network, more categorization 

based on TSS and color parameters was difficult. In practice, at least 10,000 images are 

needed for building a good CNN model. 
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Fig. 39. Diagram of test images identified and classified by model  
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      Summary 
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     5. SUMMARY 

 An optimum ripening stage for bananas is required for quality control and 

consumer acceptance. In image analysis, color is a major descriptor and influential 

attribute. Computer-based image processing approaches can provide an automated and 

non-destructive tool for banana ripening classification. Recent advances in deep 

learning have led to breakthroughs in long-standing tasks such as feature extraction, 

image segmentation, and image classification in the field of artificial intelligence. 

Convolutional neural network (CNN) is one of the most successful approaches among 

these, with a wide range of applications in image classification. 

 The study entitled “Statistical assessment of banana ripening using smartphone-

based images” conducted in the Department of Agricultural Statistics, College of 

Agriculture, Vellayani during the year 2020-21 was an attempt to assess the ripening 

stages of bananas using the images of bananas captured with smartphone by predicting 

the TSS. In addition to this, a CNN model was developed to classify the images into 

different stages of ripening by analyzing the color values from the images. The color 

parameters R, G, B, L*, a*, and b* were extracted from the images. The TSS of bananas 

were measured using a handheld refractometer.  

 Initially, the bananas were collected from randomly identified Nendran fields in 

the Trivandrum district. Images of bananas were taken using three different 

smartphones having different resolution characteristics. Banana samples were placed 

in a box model structure to avoid outside light interference with a non-reflecting white 

paper as a background of the image. For white light illumination, two of 36 W 

fluorescent lamps were fixed at the ceiling above the experiment setup. Smartphones 

were placed at a distance of 20 cm above the banana. For each set of bananas, the 

images were captured from the day of collection to ripened stage. TSS was measured 

daily during 10-12 days from the day of collection. 

 ImageJ software was used for extracting the color values from the image. The 

collected images were pre-processed to eliminate the background interference. The 

RGB values were measured using the RGB measure plugin. Then using converting an 

RGB image to Lab stack plugin the image is converted to a new image-stack containing 

L, a, b stacks, and values were measured for corresponding images for all devices.  
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 For all of the images acquired with three smartphones, a linear model was fitted 

between R, G, B, and TSS. For fitting linear models, a machine learning model was 

used. A total of 80 percent of the sample was used for training and 20 percent for testing.  

 For device 1, out of the total 129 samples, 104 samples were taken as training 

and 25 samples were taken as the test set. R, G, and B were found to have a significant 

relationship with TSS. Since p-values for R and G were less than 0.01, they were found 

to be significant at 1 percent level of significance. B was found to be significant at 5 

percent level of significance. Adjusted 𝑅  obtained was 0.80 which was closer to 1 

indicating a good fit of the model. The RSE was 4.04 corresponding to a 29.73 percent 

error rate. The RMSE and  𝑅  value for predictions were 3.83 and 0.84 respectively. 

 For device 2, out of the total 126 samples, 102 samples were taken as training 

and 24 samples were taken as the test set. R, G, and B values had a significant 

relationship with TSS. R and G were found to be significant at 1 percent level of 

significance. B was found to be significant at 5 percent level of significance. Adjusted 

𝑅  obtained was 0.80. The RSE obtained was 4.02 corresponding to a 23.70 percent 

error rate. The RMSE and  𝑅  value for predictions were 2.98 and 0.90 respectively. 

 For device 3, out of the total 122 samples, 99 samples were taken as training 

and 23 samples were taken as the test set. R and G values were found to have a 

significant relationship with TSS. R and G were found to be significant at 1 percent 

level of significance. B value was found to be non-significant. Adjusted 𝑅 was 0.84. 

The RSE for the model was 3.57 corresponding to 18.67 percent error rate. The RMSE 

and  𝑅  value for predictions were 2.22 and 0.95 respectively. 

 Since the RGB color model is a device-dependent model, an RGB value may 

not always represent the same color on different devices. Therefore, the extracted 

L*a*b* color values were used for fitting the linear model. 

 The parameters a* and b* had a significant relationship with TSS for the images 

captured using device 1. a* was found to be significant at 1 percent level of significance 

and b* was found to be significant at 5 percent level of significance. Adjusted 𝑅  

obtained was 0.78. The RSE was 4.25 corresponding to a 31.39 percent error rate. The 

RMSE and 𝑅  value for predictions were 4.04 and 0.84 respectively.  
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 For device 2, only a* and TSS were found to have a significant relationship. a* 

found to be significant at 1 percent level of significance. L* and b* were found to be 

non-significant. Adjusted 𝑅  obtained was 0.81. The RSE obtained was 3.90 

corresponding to a 22.78 percent error rate. The RMSE and  𝑅  value for predictions 

were 2.86 and 0.91 respectively. 

 For device 3, L* and a* were found to have a significant relationship with TSS. 

L* and a* were significant at 5 percent level of significance. Adjusted 𝑅  was 0.85 and 

RSE was 3.48 with an 18.17 error rate. The RMSE and 𝑅  value for predictions were 

2.16 and 0.95 respectively.  

 When data has been visualized to see the trend of data points, a non-linear 

relationship was found between color parameters and TSS for all three devices. Then, 

the spline regression model was tried for fitting data points. 

 For device 1, the smoothing terms L*, a*, and b* were significant. The adjusted 

𝑅  value obtained was 0.91 which is close to 1 and is good. The proportion of the total 

deviance explained by the current model was 92 percent. The smoothing terms of a* 

and b* were significant. a* found to be most significant with p-value <2e-16 for device 

2 as well. The adjusted 𝑅  value was 0.90 and 92.3 percent deviance was explained by 

the model. For device 3, a* was the most significant with a corresponding p-value <2e-

16. L* and b* were found to be non-significant. Adjusted 𝑅  was 0.89 and 90.7 percent 

variance was explained by the model. 

 When a linear model was fitted between TSS and RGB values for all the devices, 

each of the independent variables was found to be significant. When the spline model 

was fitted, the adjusted 𝑅  for the three models were much closer, a* is found to be 

significant in all the cases. When prediction accuracy was compared for linear model 

between TSS vs RGB and TSS vs L*a*b*, the RGB model was found to predict TSS 

much accurately than L*a*b* color space. Therefore, RGB is found to be a better fit in 

the linear model. The spline regression model was found to be the best fit for L*, a*, 

b*, and TSS values. R-square values were much higher with a good percentage of 

variation explained. 



114 
 

 Also, a protocol for accurate data collection was developed. A CNN model was 

developed for the classification and detection of banana ripening stages by analyzing 

the collected images of it. The model classified the test images of bananas into raw, 

ripe, and medium with 73 percent accuracy and loss of 81 percent. When the trained 

model was tested and evaluated over the test set, it was found that the model classified 

the test images of bananas into raw, ripe, and medium with 73 percent accuracy and 

loss of 81 percent. 

5.1 SUGGESTIONS 

 The present study is limited to one variety of bananas. This can be 

further extended to different varieties to understand the trend in 

ripening. 

  The study can be continued further with a higher number (at least 

10,000) of samples to improve the efficiency of classification using deep 

learning.  

 The study can be extended to different fruits having a peel color change 

during ripening. 
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     ABSTRACT 

 The research work entitled “Statistical assessment of banana ripening using 

smartphone-based images” was carried out at College of Agriculture, Vellayani during 

the period 2019 to 2021. The objectives were the development of suitable model to 

establish the relationship between Total Soluble Solids (TSS) and L*(lightness), 

a*(green-red ratios), b*(blue-yellow ratios) values and for prediction of TSS values 

using L*, a*, b* values. Development of a protocol for accurate data collection to assess 

TSS content in Banana using smart-phone-based images. Good quality Nendran variety 

with only minor shape and peel colour flaws were obtained from a nearest field 

randomly chosen for the study. Each time 3 hands at the ripening stage 1 (green) with 

10 fingers by hand were collected. The fruits were stored in a normal day/ night cycle. 

Bananas were taken randomly from each hand and their color changes and development 

of brown spots were measured daily during 10-12 days. Banana samples were placed 

on the table covered with a non-reflecting white paper as a background of the image. 

For white light illumination, two of 36 W fluorescent lamps were fixed at ceiling above 

the experiment setup. Three smartphones were used for image acquisition. Smart 

phones were placed at a distance of 20 cm above the banana. Samples of banana were 

blended using a fruit juicer. The TSS were determined using a digital refractometer. For 

the images obtained, RGB and L*a*b* were extracted using ImageJ software. The 

observations on TSS, R, G, B, L*, a*, b* were used for fitting regression models after 

splitting the data into train (80%) and test (20%) sets. 

 When linear model was fitted between TSS and R, G, B values for all the three 

devices, each of the independent variables were found to be significant. Adjusted R- 

squared values obtained were 0.80, 0.80, and 0.84 for the three devices. It means about 

80% of the variation in the TSS was explained by R, G, B values. For the predicted 

values of TSS R-squared values were 0.84, 0.90, and 0.95. Hence linear model was 

found to be better fit for predicting TSS. Since RGB color model is device dependent 

model, it may not always represent the same colour on different devices. But in case of 

CIE L*a*b*, it is device independent and shadows and areas of glossiness on the object 

surface had less impact. Therefore, linear model was fitted between TSS and L*, a*, b* 

values. Adjusted R-squared values obtained were 0.78, 0.81, and 0.85 for the three 
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devices. For the predicted TSS values R-squared values were 0.84, 0.76, and 0.95. 

Therefore, linear model between TSS and RGB model found to predict TSS much 

accurately than L*a*b* color space when prediction accuracy was compared.  

 On visualization of data, TSS and L*a*b* found to have non-linear relationship 

for all the devices. When spline regression was fitted between TSS and L*, a*, b* values 

R-Squared obtained were 0.91, 0.90, and 0.89, which was higher compared to R-

squared values for linear model. Also, deviance explained by the models were 92%, 

92.3%, and 90.7% for corresponding device 1,2 and 3. Therefore, spline regression 

found to be better model for TSS and L*, a*, b* data and for prediction of TSS values. 

 Protocol for accurate data collection was developed with modification in the 

procedure performed. Possibility of Deep learning was explored in the study using 

CNN. Convolutional neural network (CNN) was developed using 3 categories Raw 

(TSS 4-10), Medium (TSS 11-17) and Ripe (TSS 18-32) with 30 samples each. 25 

images from each category were taken as training set and 5 were taken as test set. 100 

epochs were performed to mitigate overfitting and to increase the generalization 

capacity of the neural network. Model evaluation of training set gave an accuracy of 

84% with loss value 0.45. For the training set, all 25 from ripe category were able to 

identify into that particular category. In case of raw 24 were identified as raw with 1 

identified as medium. For medium 14 were identified as medium,3 identified as ripe 

and 8 identified as raw. Model evaluation of test set provided 73% accuracy with 0.81 

loss. The model successfully classified 5 ripe bananas, 4 raw bananas (1 classified as 

medium) and 2 medium bananas (3 classified as raw). 

 The results of the research work to identify the best fitting model concluded that 

RGB model found to predict TSS much accurately than L*a*b* color space when linear 

regression model was fitted and spline regression model was found to be the best fit for 

L*, a*, b* and TSS values, R-squared values were much higher with a good percentage 

of variation explained. The CNN developed classified images into raw, medium, and 

ripe with approximate accuracy of 74%. Therefore, CNN can be used to predict range 

of TSS in no time, if a large number of images are uploaded into this model. The CNN 

can be optimized further with higher number (atleast 10,000 samples) of samples to 

improve the efficiency of classification. 
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     APPENDIX 1 

     

     R code for CNN 

library(reticulate) 

install_miniconda(force = TRUE) 

library(keras) 

library(dplyr) 

library(EBImage) 

library(BiocManager) 

install_keras() 

BiocManager::install("EBImage")  

#set working directory  

setwd("D:/STUDENTS/Haritha/Pratheesh/raw") 

card<-readImage("june_3.jpg") 

print(card) 

getFrames(card, type = "total") 

display(card) 

### access all ripe 

setwd("D:/STUDENTS/Haritha/Pratheesh1/ripe") 

img.card<- sample(dir()); #-------shuffle the order 

cards<-list(NULL);  

for(i in 1:length(img.card)) 

{ cards[[i]]<- readImage(img.card[i]) 
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cards[[i]]<- resize(cards[[i]], 100, 100)} #resizing to 100x100 

ripe<- cards # Storing stack of images in # matrix form in a list 

#----------------------------------------------------------- 

### access all raw 

setwd("D:/STUDENTS/Haritha/Pratheesh1/raw") 

img.card<- sample(dir()); #-------shuffle the order 

cards<-list(NULL);  

for(i in 1:length(img.card)) 

{ cards[[i]]<- readImage(img.card[i]) 

cards[[i]]<- resize(cards[[i]], 100, 100)} #resizing to 100x100 

raw<- cards # Storing stack of images in # matrix form in a list 

#----------------------------------------------------------- 

### access all medium 

setwd("D:/STUDENTS/Haritha/Pratheesh1/medium") 

img.card<- sample(dir()); #-------shuffle the order 

cards<-list(NULL);  

for(i in 1:length(img.card)) 

{ cards[[i]]<- readImage(img.card[i]) 

cards[[i]]<- resize(cards[[i]], 100, 100)} #resizing to 100x100 

medium<- cards # Storing stack of images in # matrix form in a list 

#----------------------------------------------------------- 

###Training Set 

train_pool<-c(ripe[1:25],  
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 raw[1:25],  

 medium[1:25]) # The first 25 images from each 

# are included in the train set 

train<-aperm(combine(train_pool), c(4,1,2,3)) # Combine and stacked 

#### Test set 

test_pool<-c(ripe[26:30],  

 raw[26:30],  

 medium[26:30]  

 ) 

test<-aperm(combine(test_pool), c(4,1,2,3)) # Combined and stacked 

##See images in test set 

par(mfrow=c(3,5)) # To contain all images in single frame 

for(i in 1:15){ 

 plot(test_pool[[i]]) 

} 

par(mfrow=c(1,1)) # Reset the default 

###### hot encoding for categorical data 

#one hot encoding 

train_y<-c(rep(0,25),rep(1,25),rep(2,25)) 

test_y<-c(rep(0,5),rep(1,5),rep(2,5)) 

##### 

train_lab<-to_categorical(train_y) #Catagorical vector for training  

#classes 
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test_lab<-to_categorical(test_y)#Catagorical vector for test classes 

# Model Building 

model.card<- keras_model_sequential() #-Keras Model composed of a  

#-----linear stack of layers 

model.card %>%  

 #---------Initiate and connect to #----------------------------(A)-------------------------------

----# 

 layer_conv_2d(filters = 100, #----------First convoluted layer 

 kernel_size = c(3,3), #---40 Filters with dimension 4x4 

 activation='relu', #-with a ReLu activation function 

 input_shape = c(100,100,3)) %>%  

 #----------------------------(B)-----------------------------------# 

 layer_conv_2d(filters = 80, #---------Second convoluted layer 

 kernel_size = c(3,3), #---40 Filters with dimension 4x4 

 activation='relu') %>%  

 #---------------------------(C)-----------------------------------# 

 layer_max_pooling_2d(pool_size = c(3,3) )%>% #--------Max Pooling 

 #-----------------------------------------------------------------# 

 layer_dropout(rate = 0.25) %>% #-------------------Drop out layer 

 #----------------------------(D)-----------------------------------# 

 layer_conv_2d(filters = 80, #-----------Third convoluted layer 

 kernel_size = c(3,3), #----80 Filters with dimension 4x4 

 activation='relu')%>% #--with a ReLu activation function  
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 #--with a ReLu activation function 

 #-----------------------------(E)----------------------------------# 

 layer_conv_2d(filters = 80, #----------Fourth convoluted layer 

 kernel_size = c(3,3), #----80 Filters with dimension 4x4 

 activation='relu') %>% #--with a ReLu activation function 

 #-----------------------------(E.1)----------------------------------# 

 layer_conv_2d(filters = 80, #----------Fourth convoluted layer 

 kernel_size = c(3,3), #----80 Filters with dimension 4x4 

 activation='relu') %>% #--with a ReLu activation function 

 #-----------------------------(E.2)----------------------------------# 

 layer_conv_2d(filters = 80, #----------Fourth convoluted layer 

 kernel_size = c(3,3), #----80 Filters with dimension 4x4 

 activation='relu') %>% #--with a ReLu activation function 

 #-----------------------------(F)----------------------------------# 

 layer_max_pooling_2d(pool_size = c(3,3)) %>% #---------Max Pooling 

 #-----------------------------------------------------------------# 

 layer_dropout(rate = 0.35) %>% #-------------------Drop out layer 

 #------------------------------(G)---------------------------------# 

 layer_flatten()%>% #---Flattening the final stack of feature maps 

 #------------------------------(H)---------------------------------# 

 layer_dense(units = 500, activation='relu')%>% #-----Hidden layer 

 #---------------------------(I)-----------------------------------# 

 layer_dropout(rate= 0.25)%>% #-------------------Drop-out layer 
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 #-----------------------------------------------------------------# 

 layer_dense(units = 3, activation='softmax')%>% #-----Final Layer 

 #----------------------------(J)-----------------------------------# 

 compile(loss = 'categorical_crossentropy', 

 optimizer = 'sgd', 

 metrics = c("accuracy")) # Compiling the architecture 

model.card %>% summary() 

#fit model 

history<- model.card %>% 

 fit(train,  

 train_lab,  

 epochs = 100, 

 batch_size = 4, 

 validation_split = 0.2  

 ) 

model.card %>% evaluate(train,train_lab) #Evaluation of training set pred<- 

model.card %>%  

predict_classes(train) #-----Classification 

pred<-model.card %>% predict(train) %>% k_argmax() 

pred<-as.matrix(pred) 

Train_Result<-table(Predicted = pred, Actual = train_y) 

Train_Result 

model.card %>% evaluate(test, test_lab) #-----Evaluation of test set 
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pred1<-model.card %>% predict(test) %>% k_argmax() 

pred1<- pred<-as.matrix(pred1) 

Test_Result<-table(Predicted = pred1, Actual = test_y) #-----Results 

Test_Result 

rownames(Train_Result)<- 

 rownames(Test_Result)<- 

 colnames(Train_Result)<- 

 colnames(Test_Result)<-c("ripe", "raw", "Medium") 

print(Train_Result) 

print(Test_Result)    
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     APPENDIX 2 

The actual values and predicted values of TSS of testing data using linear model fitting 

between R, G, B and TSS for devices 1, 2 and 3 respectively 

SL NO ACTUAL TSS PREDICTED TSS 

1 4.6 5.06 

2 6.2 6.34 

3 6.5 5.82 

4 29.0 23.46 

5 27.6 26.02 

6 5.2 5.48 

7 18.8 10.19 

8 31.0 23.33 

9 28.8 27.84 

10 31.0 24.98 

11 8.0 14.11 

12 7.2 13.47 

13 6.2 6.73 

14 6.0 5.90 

15 16.6 18.24 

16 7.4 10.64 

17 6.8 6.76 

18 7.0 6.03 

19 6.8 2.46 

20 4.6 3.95 

21 17.6 13.00 

22 7.2 3.86 

23 6.0 6.54 

24 19.6 22.46 

25 6.6 10.13 
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SL NO ACTUAL TSS PREDICTED TSS 

1 29.2 24.95 

2 4.6 5.36 

3 6.2 6.76 

4 6.5 7.55 

5 6.8 7.31 

6 31.8 30.06 

7 30.8 23.14 

8 7.4 8.52 

9 9.4 6.12 

10 6.0 5.35 

11 25.2 25.40 

12 26.2 25.09 

13 5.8 6.34 

14 6.4 7.15 

15 8.6 3.71 

16 6.8 0.74 

17 11.2 11.98 

18 6.2 9.57 

19 7.0 9.63 

20 5.4 8.29 

21 24.2 22.03 

22 17.6 17.20 

23 6.0 7.58 

24 6.6 11.26 
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SL NO ACTUAL TSS PREDICTED TSS 

1 6.0 7.85 

2 25.8 23.23 

3 4.2 6.35 

4 6.5 8.45 

5 6.8 6.75 

6 29.0 23.51 

7 27.6 26.07 

8 6.0 5.11 

9 26.2 27.67 

10 7.2 6.23 

11 6.0 9.88 

12 31.0 25.88 

13 6.4 5.54 

14 5.8 5.95 

15 6.4 5.80 

16 6.6 6.64 

17 7.6 6.59 

18 7.4 6.58 

19 7.2 7.90 

20 6.8 3.55 

21 7.2 5.74 

22 4.6 3.51 

23 26.2 25.19 
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    APPENDIX 3 

The actual values and predicted values of TSS of testing data using linear model fitting 

between L*, a*,b* and TSS for devices 1, 2 and 3 respectively 

SL NO ACTUAL TSS PREDICTED TSS 

1 4.6 5.59 

2 6.2 6.03 

3 6.5 6.23 

4 29.0 22.21 

5 27.6 24.06 

6 5.2 5.90 

7 18.8 10.53 

8 31.0 22.49 

9 28.8 26.52 

10 31.0 25.60 

11 8.0 14.22 

12 7.2 12.39 

13 6.2 6.52 

14 6.0 5.95 

15 16.6 15.82 

16 7.4 8.80 

17 6.8 5.59 

18 7.0 5.68 

19 6.8 4.14 

20 4.6 5.48 

21 17.6 10.71 

22 7.2 3.16 

23 6.0 7.91 

24 19.6 22.25 

25 6.6 11.14 
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SL NO ACTUAL TSS PREDICTED TSS 

1 29.2 25.52 

2 4.6 5.10 

3 6.2 6.58 

4 6.5 7.37 

5 6.8 7.19 

6 31.8 29.36 

7 30.8 24.29 

8 7.4 8.37 

9 9.4 5.83 

10 6.0 5.24 

11 25.2 25.70 

12 26.2 25.34 

13 5.8 6.15 

14 6.4 6.95 

15 8.6 3.70 

16 6.8 0.60 

17 11.2 11.91 

18 6.2 9.88 

19 7.0 9.84 

20 5.4 8.27 

21 24.2 22.42 

22 17.6 17.28 

23 6.0 7.43 

24 6.6 11.09 
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SL NO ACTUAL TSS PREDICTED TSS 

1 6.0 7.93 

2 25.8 23.19 

3 4.2 5.88 

4 6.5 9.12 

5 6.8 6.78 

6 29.0 23.79 

7 27.6 26.95 

8 6.0 5.29 

9 26.2 27.39 

10 7.2 6.17 

11 6.0 9.74 

12 31.0 26.08 

13 6.4 5.59 

14 5.8 5.80 

15 6.4 5.63 

16 6.6 6.72 

17 7.6 6.27 

18 7.4 6.50 

19 7.2 7.66 

20 6.8 3.38 

21 7.2 5.68 

22 4.6 3.69 

23 26.2 25.51 

 


