# KERALA AGRICULTURAL UNIVERSITY <br> B.Tech (Agrl.Engg) 2014 Admission <br> I ${ }^{\text {st }}$ Semester Final Examination- January - 2015 

Cat No: Fpme. 1101
Title: Electrical Circuits (2+1)
Marks: 50
Time: 2 hours

## PART-A-Answer all-Each question carries one mark

1. In -circuits, the voltage current relation is same for current flowing in either direction.
2. Average value of sine wave over a full cycle is equal to-.
3. if capacitance $C=0.001 \mu \mathrm{~F}$ and voltage applied is $\mathrm{V}=1 \mathrm{kV}$, charge stored is equal to-_.
4. In a circuit of source voltage 10 V and source impedance of $2.5 \Omega$ with a source resistance of $1.5 \Omega$, the maximum power transferred to the load is $\qquad$
5. Three equal resistances of $5 \Omega$ are comnected in delta. Resistance in one of the amm of equivalent star circuit is $\qquad$
6. Norton equivalent circuit consists of -_ in parallel with equivalent impedance.
7. The current in a pure inductor ———the voltage by $90^{\circ}$.
8. In a $3 \Phi$ system the volt ampere rating is given by
9. An ideal filter has _- attenuation in the pass band.
10. In an $m$ derived high pass filter, resonant frequency is to be chosen so that it is, the cut off frequency.

PART-B- Write short notes on any FIVE questions

1. If four resistors $10 \Omega, 20 \Omega, 30 \Omega$ and $4 \mathrm{k} \Omega$ are parallel connected across a 100 V supply. Find equivalent resistance and current in $10 \Omega$ resistor.

2 Find current in the $10 \Omega$ resistor, $\mathrm{V}_{1}$ and source voltage for the circuit shown in Fig 1


Fig 1

## 3 Determine Norton equivalent for the circuit shown in Fig. 2



Fig $=$

4 Verify reciprocity theorem for the circuit shown in Fig. 3


Fig. 3

5 Represent the following impedances in rectangular form and polar form. 1) A pure resistance of $10 \Omega$. 2) A pure inductance of 10 mH .3 ) A pure capacitance of $5 \mu \mathrm{~F}$. Assume frequency $=5 \mathrm{CHz}$.
6 Explain advantages of polyphase system.
Design a low pass filter having cut off frequency of 2 kHz to operate with a terminated load resistance of $500 \Omega$.

PART-C- Write short notes on any FIVE questions

1. Write mesh equation for the network shown in Fig. 4 and Find source current.


Fighif
2. Explain steps to thevenise an electrical circuit.
3. In the network shown in Fig 5 determine the equivalent resistance between the terminals $A$ and $B$.

4. Write node voltage equations and determine current in each branch for the network shown in Fig6


Fig. 6
5. A $3 \phi$ delta connected load consumes a power of 100 kW taking a lagging current of 200 A at a line voltage of $400 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate 1) Parameters of each phase, 2)Power factor 3)Active power 4) Reactive power and 5) Apparent power.
6. Determine form factor and peak factor of following periodic waveform in Fig.7.

7. In the circuit shown in Fig. 8, an inductive reactance of 0.1 H having a Q of 5 is in parallel with a capacitor. Determine the value of capacitance and coil resistance at resonant frequency of $500 \mathrm{rad} / \mathrm{sec}$.


Fig. 8
PART-C- Write an essay on any ONE

1. Determine the currents in bridge circuit shown in Fig. 9 by using mesh analysis.


Fig. 9.
2. Explain series and parallel resonance.

