KERALA AGRICULTURAL UNIVERSITY

11

B.Tech. (Agrl. Engg.) -2014 Admission

1st Semester Final Examination- January-February 2015

Cat.No: Math.1101	Marks : 50
Title : Engineering Mathematics-I (3+0)	Time : 2 Hours
I Answer all the questions	(10 x 1=10)
J. Maclarin's series expansion of a function is obtained from its Tayl	or's expansion (T/F)
2.0×0 is an indeterminate form (T/F)	
2. Product of two odd function is odd (T/F)	
4. The value of $\cos 2n\pi$ is	• •
a) 1 b) 0 c) (-1^n)	
5. The general solution of a homogeneous linear differential equation	is
a. Complementary Function b) Particular Integral c) CF + PI	
6. A solution of a first order differential equation contains	_constants
7. Curvature is the reciprocal of	
8. A saddle point is	
9. Integrating factor is	•
10. Greens theorem is useful in evaluating	
II Write short notes on any FIVE	(5 x 2 = 10)
1. The value of $\lim_{x \to 0} \left(\frac{\log \sin x}{\cot x} \right)$	•
2. Find the radius of curvature of $\sqrt{x} + \sqrt{y} = 1$ at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$	
3. Give the relation between Beta and Gamma function	
A. What is the vector normal to the level surface \emptyset	
 What is the volume of the region between the paraboloid z= XY plane 	$1-x^2-y^2$ and the
6. Give an example of a second order differential operator	

7. If f and g are differentiable scalar point functions what is $\nabla(fg)$.

III Write short notes on any Five

1. If u and v are functions of r and s and r and s are functions of x and y what is the Jacobian $J\left(\frac{u,v}{r,v}\right)$

2. What is the percentage error in the area of a circle if one percent error is made in measuring the radius

3. Evaluate $\int_0^{\pi} \int_0^{1-\cos\theta} r \, dr \, d\theta$

A. Change the order of integration and then evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$

- . S. State Greens theorem
 - 6. Solve $(y \log y) dx + (x \log y) dy = 0$

 \int . Solve $x^2(y - px) = yp^2$

IV Write essay on any ONE

(1x1=10)

 $(5 \times 4 = 20)$

- 1. Show that the vector field defined $(y \sin z \sin x)i + (x \sin y + 2yz)j + (x \cos z + y^2)k$ is irrotational and find its velocity potential
- 12. Verify Stoke's theorem for $\overline{f} = yi + zj + xk$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary
