KERALA AGRICULTURAL UNIVERSITY

B.Sc. (Hons.) C\&B 2017 and previous admissions

IV Semester Final Examination- July-2019
Stat. 2203
Quantitative Techniques (2+1)
Marks: 50
Time: 2 hours
I
Fill in the blanks
1 The standard error of a sample mean is given by the formula
2 When the population is \qquad we go for stratified sampling procedure.
3 In Linear Programming problem, the conditions $x \geq 0$ and $y \geq 0$ are called
4 The error made when a true hypothesis is rejected is
5 The equation for second degree parabola is
6 The standard method for studying long term trend is
7 The trend of economic activity can be studied with the help of
8 In Control charts we establish limits.

State True or False

9 If p-value is less than the level of significance (α) null hypothesis $\left(\mathrm{H}_{0}\right)$ is rejected.
10 The objective function is maximized if it represent cost.
II Write short notes on ANY FIVE of the following $(5 \times 2=10)$

1 Distinguish between cluster and stratum.
2 Type one error and type two error.
3 Difference between feasible solution and basic solution.
4 Non sampling error.
5 Define parameter and statistic.
6 Write test statistic for testing mean in the case of a large one sample group.
7 Mention the control charts used for qualitative and quantitative data.
III Answer ANY FIVE of the following $\quad(5 \times 4=20)$
1 Mathematical models for a time series analysis
2 Steps involved in testing of hypothesis.
3 Tests to be satisfied by ideal index numbers.
4 Degeneracy in Linear Programming.
5 Paired t-test.
6 Link relative method to measure seasonality of time series.
7 Write down the test statistic for the following situations, by setting up the hypothesis, indicating notations
a To test the equality of two means, when variances are equal, in small sample case.
b To test the equality of two proportion in the large sample case.

1 Explain χ^{2} test for testing goodness of fit and also for testing the independence of two attributes.
2 Solve the following linear programming problem using Simplex method:Maximize $Z=3 x_{1}+5 x_{2}+4 x_{3}$

$$
\text { Subject to constraints }\left\{\begin{array}{c}
2 x_{1}+3 x_{2} \leq 8 \\
2 x_{2}+5 x_{3} \leq 10 \\
3 x_{1}+2 x_{2}+4 x_{3} \leq 15 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}\right.
$$

