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GWAS 

 Genome-Wide Association Studies 

 

1. INTRODUCTION 

Natural variation is a valuable and sustainable resource of the phenotypic and genetic 

diversity within plant species worldwide that offer, beneficial traits for plant breeding. The 

phenotypic variation within-species caused by spontaneously natural genetic mutations that 

maintained in nature by evolutionary, artificial and natural selection processes (Blanco et al, 

2009). Natural variation brought great advances to understand crop morphology and their 

response to biotic and abiotic stresses. The understanding of natural variation in crop plants 

through thousands of years for domestication e.g. in barley about 10,000 years ago (Badr et al, 

2007) can be seen in the genetic modification of developmental traits and adaptive features. 

Natural variation studies in wild species elucidated the molecular basis of phenotypic 

differences related to domesticated plant adaptation that is important to interpret the 

maintenance and evolutionary significance of phenotypic variation (Olds et al, 2007). 

The causal relationship between genetic polymorphism within a species and the 

phenotypic differences observed between individuals is of fundamental biological interest. The 

ability to identify variations associated with disease and agronomically important traits like 

growth rate and yield in plants requires an understanding of both the specific loci that underlie 

a phenotype and the genetic architecture of a trait. Genome-Wide Association Studies (GWAS) 

present a powerful tool to reconnect this trait back to its underlying genetics.  

1.1 GWAS- Genome-Wide Association Studies 

Genome-Wide Association Studies (GWAS) or Whole Genome Association Studies 

(WGAS) or Common Variant Association Studies (CVAS) investigate a genome-wide set of 

genetic variants in different varieties to see if any variant is associated with a trait (Manolio, 

2010). 

The recent advances in DNA sequencing paved the way to genetically improve the 

important traits (grain quality, biotic and biotic stress tolerance, etc. Chip-based microarray 

technology (Kumar et al., 2015), Illumina (San Diego, California), 90k illumina iselect array 

(Wang et al, 2014), Affymetrix (Distefano and Taverna, 2011), or other next-generation 

sequencing technologies (Neelapu and Surekha, 2016) e.g. genotyping-by-sequencing (GBS), 



 

10 
 

provide thousands of single nucleotide polymorphism (SNPs) covering the most genomic 

region in chromosomes. Many powerful statistical genetics methods were proposed to identify 

alleles controlling target traits. Genome-wide association study (GWAS) is one of those useful 

methods and it is successfully used to identify candidate genes for many important traits and 

tests the association between the marker type (e.g SNP) and the phenotype of a target trait. 

There are many considerations and recommendations that should be taken into account when 

geneticists decide to perform GWAS. 

2. Working of GWAS  

To conduct a GWAS experiment, the first step is to select the population of study with 

a full consideration of the size of the population (minimum 100 individuals) with preference to 

increase the number of individuals as much as possible to avoid Beavis effects that lead greatly 

overestimated of phenotypic variance when the number of individuals are small e.g. 100 (Xu, 

2003). Then, there are three important stages for performing a successful GWAS experiment. 

2.1 Stage I (Phenotyping) 

Phenotyping in which all genotypes should be phenotyped for a particular trait or group 

of traits based on the objectives of the study. Accurate phenotyping is a very critical point to 

detect genotype-phenotype associations. Phenotyping should be repeated over replications 

and/or locations and/or years. The broad-sense heritability should be calculated for raw data 

including all of these factors and considering G x E interaction. High heritability is an indicator 

that the trait is mostly genetically controlled which is important to detect the association 

signals. Then, the phenotypic data can be used to estimate the mean i.e. BLUE or BLUP. 

Because the phenotypic data are highly unbalanced in the plants, the estimation of genotypic 

values is mostly calculated as fixed effects using mixed models.  

2.2 Stage II (Genotyping) 

Genotyping in which the same set of individuals that were phenotyped should be used 

for genotyping using DNA molecular markers. Genotyping-by-sequencing is the most frequent 

method used in genotyping because it generates numerous SNP markers inexpensively that 

cover the crop genome. The GBS-generated SNPs should be filtered based on missing data, 

heterozygosity, and minor allele frequency. Before running GWAS, population structure 

should be tested in order to select the better GWAS model. The general linear model (GLM) 

and mixed linear model (MLM) are statistical models often proposed for performing GWAS. 
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The GLM does not take the population structure-related into account. The MLM, on the other 

hand, considers the population structure in its model (Kinship or kinship+Qmatrix).  Finally, 

the phenotypic and genotypic data are combined using appropriate software by which alleles 

associated with a particular trait can be detected after the GWAS model was selected  

2.3 Stage III (GWAS Analysis) 

GWAS can be performed using many software statistical packages (TASSEL, GenStat, 

PLINK, and R (GAPIT) e.t.c. Here, we focused on the most important association analysis 

software packages that are frequently used.  

2.3.1 TASSEL (Trait Analysis by Association, Evolution, and Linkage)  

It is the most common software for GWAS in plants. It includes many powerful 

statistical methods for performing GWAS including GLM and MLM (Bradbury et al, 2007). 

TASSEL can analyse the population structure using kinship and principal component analysis. 

LD is included also in TASSEL. The software is always used in association analysis e.g. The 

new version of TASSEL (TASSEL 5.0) can analyse genetic diversity and perform SNP calling 

from GBS data. Interestingly, the software includes many visualizing tools which can be used 

to present data such as a scatter plot of PCA, linkage disequilibrium, Manhattan plot for GWAS 

results, the heat map for genetic distance, a phylogenetic tree using archaeoptery in addition to 

the phenotypic variance explained by markers (R2). The new version also includes some useful 

data summaries, which provide a quick view for a researcher on genotypes, markers, 

heterozygous, missing data and number of markers on each chromosome. Old versions of 

TASSEL such as TASSEL can accept any type of DNA markers (e.g. SNP, SSR, AFLP, 

RAPD, etc.). The TASSEL accepts only SNP markers. TASSEL is free software and can be 

downloaded from. 

2.3.2 GenStat  

GenStat for Windows Edition is another statistical software that can perform marker-

trait association analysis in a genetically diverse population using bi-allelic and multi-allelic 

markers. Using GenStat, GWAS can be done either GLM or MLM models with population 

structure correction to control genetic relatedness by PCA or Kinship. There is an option to 

define the threshold of the significance of –log10(p) of which Bonferroni can be selected. 

Interestingly, LD decay can be determined and visualized by GenStat software and the effect 

of each SNP can also be calculated to show the impact of the SNP on the traits. LD decay is 
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important to determine the number of markers required for GWAS. Plots for GWAS profile of 

the -log10(P) of the test statistics and the map with the location of the detected significant 

markers, and Q-Q can also be visualized. The GenStat software can be purchased and 

downloaded from https://www.vsni.co.uk/software/genstat/ (Alqudah et al, 2014). 

2.3.2 PLINK  

Plink allows the study of a large dataset of phenotypes and genotypes (Renteria et al, 

2013). It is free software that can be downloaded from http://zzz.bwh.harvard.edu/plink/. It 

provides many characteristics and features of which, PLINK performs analyses for population 

stratification detection, basic association tests, meta-analyses, and some other tests such as 

gene-based tests for association and screening for epistasis. Graphical images for Manhattan 

plot, Q-Q plot, and multidimensional scaling (for population structure) can be illustrated. Also, 

the results of GWAS and LD among SNP markers can be presented in tables produced by 

PLINK.  

2.3.3 R- (GAPIT) Genome Association and Prediction Integrated Tool  

GAPIT is a useful R package that performs GWAS and genomic selection. The main 

advantages of GAPIT are, it can handle a large amount of data (SNPs and genotypes) and it 

reduces computational time without compromising statistical power (Lipka et al, 2012). The 

package includes many statistical methods such as MLM, population parameters previously 

determined (P3D), and efficient mixed-model association (EMMA). The results of GWAS 

results can be illustrated by Manhattan plots, Quantile-Quantile plots and a table, including p-

value, minor allele frequency, sample size, phenotypic variance explained by markers R2 and 

adjusted P-value following a false discovery rate. Due to the aforementioned features, GAPIT 

becomes the most powerful and useful tool for association analysis. 

3. The output results of GWAS   

Each software program gives slightly different parameters as output results for GWAS. 

TASSEL software is a good example of producing many parameters that help to dissect the 

genetic basis of the target trait. These parameters include the p-value of each SNP which is 

important to determine the significance with the trait, R2 (phenotypic variation explained by 

marker) that determines if the significant SNP is a minor or major QTL, and allele effects of 

the significant SNP (increased or decreased the trait).   

 

https://www.vsni.co.uk/software/genstat/
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3.1 Manhattan plot  

Manhattan plot the x-axis represents the genomic order by chromosome and position 

on the chromosome, while, the y-axis represents the –log10 of the P-value of each marker 

(equivalent to the number of zeros after the decimal point plus one). The associated significant 

SNP (lowest significant p values), representing QTL tend to show up as a strong signal on the 

Manhattan plot (Fig.3A).  The threshold of –log10 (p-value) can be fixed at a confidence value 

of which –log10 ≥3 is the most common and reliable value. For further analysis, the threshold 

can be recalculated using the multiple comparison analysis that makes the p-value of SNP more 

robust and trustworthy.  

  

 

3.2 Quantile-Quantile (Q-Q) plot 

Another important graph in GWAS is the Quantile-Quantile (Q-Q) plot which 

illustrates the relationship between the observed and expected p values. It depicts the deviation 

of the observed P-value of each SNP from the null hypothesis. The Q-Q plot can be used to 

compare the observed and expected values among GWAS statically models to show how well 

the model used in GWAS considering the population structure and familial relatedness and 

then can be applied.  
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4. CASE STUDIES 

4.1 Genome-Wide Association Analysis and Allelic Mining of Grain Shape-Related    

Traits in Rice 

An experiment was conducted on Genome-Wide Association Analysis and Allelic 

Mining of Grain Shape-Related Traits in Rice. Based on 16,352 SNPs, 161 natural Indica rice 

varieties with various grain sizes in Southern China were used for GWAS of grain shape-

related traits, referring to grain length (GL), grain width (GW), 1000-grain weight (TGW) and 

grain length/width (GLW). 

Objective  

Objective of this study was to detect the SNP loci and determine related candidate genes 

affecting the rice grain shape to reveal its genetic basis and molecular mechanism which lay 

foundation for MAS in breeding high yielding varieties 

MATERIALS AND METHODS  

Rice materials  

A total of 161 natural Indica rice varieties with various grain sizes collected from 11 

provinces in southern China were used (Supplemental Table 1). All varieties were stored at the 

China National Rice Research Institute (CNRRI), Hangzhou City, Zhejiang Province, China. 

Field trials and phenotypic data collection  

All experiments were conducted in the experimental field of CNRRI, Hangzhou, China, 

and a randomized complete block design was applied. Seeds with uniform germination were 

directly sown under a spacing of 20 cm × 20 cm (6 line × 6 rows for each variety). When 

ripening, 10 plants were selected in each variety. After threshing, 30 spikelets were randomly 

selected from each plant. The grain length and grain width were measured with a ruler, and 

grain length/width was calculated. Finally, 1000-grain weight was weighed and recorded by an 

electronic balance. 

Statistical analysis  

Excel 2014 and SAS 9.4 were employed for data compilation, and the mean, standard 

deviation and coefficient of variation of each trait were calculated. Correlation analysis was 

performed for the four grain traits (GL, GW, GLW and TGW).  
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DNA extraction and SNP genotyping  

Genomic DNA from the samples was isolated from three to five leaves of 21-day-old 

plants per line using the CTAB method and finally diluted to 50 ng/µl. The 60 K SNP chip of 

of Illumina (Wright et al, 2010) was applied in SNP genotyping, and markers with a minimum 

allele frequency (MAF) less than 0.03 were deleted.   

Population structure   

Genetic diversity and distance measures were estimated using the PowerMarker (Liu 

and Muse, 2005). The model-based program Popgene (Glaubitz, 2010) was used to infer 

population structure and to assign individual varieties into subpopulation. SAS 9.4 was used to 

perform statistical analysis on the relative kinship between the combinations. 

Genome-wide association analysis and allele mining  

Association analyses were performed with and without correcting for population 

structure. General linear model (GLM) approach implemented in TASSEL was used to 

correlate the grain shape and the corresponding SNP loci, and a Manhattan map was generated 

by using the R language. Significant marker trait associations were determined based on a 

threshold of -log10(P) as 4. Adjacent significant SNP associated with the same trait within a 

physical distance of 200 kb were regarded as a candidate region. Candidate genes were 

screened through the Rice Genome Annotation Project Database 

(http://www.ricedata.cn/gene/), and haplotype analyses of candidate genes were performed in 

combination with the rice 3K Resource Sequencing Library data 

(http://www.rmbreeding.cn/Index/). 

RESULTS  

Statistical analysis of four phenotypes related to grain shape 

A total of 161 Indica rice varieties were evaluated for GL, GW, TGW and GLW. The 

mean values of GL, GW, TGW and GLW were 8.37 mm, 2.97 mm, 26.05 g and 2.87, 

respectively. CV value ranged from 9.09 per cent to 20.20 per cent, indicating that the grain 

shape was rich in genetic variation. The distribution pattern of each trait showed a significant 

normal distribution, and the correlation result revealed that there were a positive correlation 

between GL with GLW and TGW, and a weak negative correlation with GW. GW was 

positively correlated with TGW and negatively correlated with GLW. 

http://www.rmbreeding.cn/Index/
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Table. 1 

Trait  Mean  SD Max  Min  CV% 

GL (mm) 8.37 0.83 11.19 7.09 9.92 

GW (mm) 2.97 0.27 3.56 2.27 9.09 

TGW (g) 26.05 5.26 39.34 16.93 20.20 

GLW 2.87 0.47 4.33 2.20 16.38 

[GL- Grain Length, GW- Grain Width, TGW- 1000 Grain Weight, GLW- Grain Length/Weight] 

 

Basic statistics of SNP markers  

Based on the genomic sequencing results, the set of marker available for GWAS after 

filtering the minor allele frequency consisted of 16 352 SNPs (4.2 SNP sites per 100 kb on 

average). Sites are distributed on all 12 chromosomes of rice, with a number of SNP markers 

per chromosome ranging from 708 to 2 120, PIC values of different chromosome markers 

ranging from 0.11 to 0.70. The results showed that the selected SNP markers were polymorphic 

and can perform GWAS analysis covering the entire rice genome.  

Analysis of population structure  

According to the genetic distance analysis, the neighbor-joining tree identified these 

varieties into two major groups (cluster I, 45 varieties; cluster II, 116 varieties). The 

phylogenetic value ranged from 0 to 0.5311 with the mean of 0.2720 and the data fluctuation 

value was small. The results showed that only 0.3% of the phylogenetic value was greater than 

0.50, and 0.2% of the phylogenetic value was smaller than 0.05. Therefore, the relationship 

between varieties was relatively long and the varieties were suitable for GWAS analysis.

            

Fig.1 Frequency distribution of kinship between varieties               Fig.2 Population genetic relationship evolution analysis.  
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Genome-wide association analysis 

The GLM approach was used to analyze the grain shape of rice materials. The results 

showed that with –log10(P) > 4 as the screening threshold, 38 significantly associated loci for 

the four traits were identified and distributed on 12 rice chromosomes. The highest number (9) 

was distributed on chromosome 3, and the maximum number of –log10(P) was of 13.38, 

suggesting that the target candidate genes/QTLs are likely to be present on chromosome 3. 

There were 8, 9, 20 and 1 SNP loci that were significantly associated with GL, GW, TGW and 

GLW, respectively, and 11 sites were associated with two or more grain shape traits at the same 

time, suggesting that there may be a trait correlation or a pleiotropic effect. 

                 Grain Length                                                      Grain Width 

           

                   Grain Length/ Width                                                1000 Grain Weight 

       

Manhattan plots for grain length (A), grain width (B), grain length/width (C), and 1000-grain weight (D) by 

genome-wide association study. The significance threshold –log10(P) is 4 

Allelic mining and haplotype analysis 

Six candidate genes/QTLs were screened out in association with 92 genes/QTLs. The 

results showed that two grain shape-related QTLs were detected on chromosomes 5 and 9 as 

qKw5 and qGL9, respectively. Two candidate regions, chr03_17302647 and chr03_19320570 

on chromosome 3, were associated with Os03g0407400 and Os03g0646900 genes. 
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Os03g0407400 negatively regulates grain size and encodes a cysteine-rich domain protein of 

the TNFR/NGFR family. Os03g0646900 encodes a protein phosphatase that contains a Kelch 

repeat domain and positively regulates rice grain length. Two candidate regions of chromosome 

6, chr06_24170016 and chr06_26025122, were associated with Os06g0623700 and 

Os06g0650300 genes, respectively, which code for indole-3-acetic acid (IAA)-glucohydrolase 

and histone acetyltransferase, respectively. A total of 22 rice varieties (overlapped varieties 

between these two natural populations) in this study were consistent with the 3K rice resource 

sequencing database (http://www.rmbreeding.cn/ Index/). The haplotype analysis of GS3 

(Os03g0407400) and TGW6 (Os06g0623700) genes was performed using the Halpoview 

software combined with 3K resource sequencing library. Twenty-six SNP loci were detected 

in five exons of GS3, and 22 varieties were divided into 14 haplotypes. There were differences 

in the grain traits of different haplotypes. CX145 with grain length longer than 9.6 mm belongs 

to the dominant haplotype of GS3-11, and the grain size of the haplotype CX79 is also longer 

than 9 mm. Based on exon differences, 22 varieties of Os06g0623700 were divided into five 

haplotypes. A total of 11 varieties had excellent haplotype T-G-G, and the mean grain width 

of these is 3.19 mm. Allelic effect analysis revealed that when the upstream SNP site 

(chr06_25094225, upstream 0.98 kb) changed from T to G, the TGW6-1 dominant haplotype 

varieties increased by 23%, and the increase in grain width exceeded 0.4 mm. There was a 

significant correlation between this locus and grain width traits. 

4.2 Genome-wide association study of total starch and its components in common wheat 

An experiment was conducted on Genome-wide association study of total starch and 

its components in common wheat. 

Objective 

The objectives of this study were to identify markers and candidate genes for loci 

associated with these traits in order to improve wheat starch quality by breeding. 

Materials and methods 

Plant material and growth conditions 

The association mapping panel of 205 wheat genotypes for GWAS comprised 77 

released cultivars, 55 founder parents, and 73 breeding lines from 10 provinces that represent 

the major winter wheat production regions in China. Two lines from Mexico and France were 

included as additional founder parents. The panel was grown in the 2013-2014 and 2014-2015 
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cropping seasons in experimental fields at Shandong Agricultural University, Tai’an 

(116⁰360’E,36⁰570’N) and Dezhou Institute of Agricultural Sciences  (116⁰290’E, 37⁰450’N). 

The experimental fields were arranged in randomized block design, with two replicates for each 

environment. All lines were grown in 2 m plots with 3 rows spaced 25 cm apart, and 70 seeds 

were evenly spaced in each row. Field management followed local procedures. No serious pest 

damage or lodging problems occurred during the trials. 

Measurement of starch components                                                                                              

Starch, AMS and AMP contents were measured by the double-wave method (Jin et al. 

2009) with modifications. The main wavelength for determining AMS content was 471 nm, 

and the comparison wavelength was 632 nm. The main wavelength for determining AMP 

content was 553 nm, and the comparison wavelength was 740.3 nm. The AMS and AMP 

contents in each sample were determined according to the extracted dilution factor relationship, 

and the total starch content (TSC) was taken as the sum of the AMS and AMP contents. 

Analysis of phenotypic data 

Analysis of variance (ANOVA) and correlations among phenotypic traits were carried 

out using SPSS version 17.0 (SPSS Inc., Chicago, IL, USA). Heritability (h2) was calculated 

as hB 2 = rg 2/ (rg 2 ? rge 2 / r ? re 2/re), where rg 2, rge 2 , and re 2 were estimates of genotype, 

genotype 9 environment and residual error variances, respectively. Estimates of rg 2, rge 2, and 

re 2 were obtained from the ANOVA, which was performed using the PROC GLM procedure 

in SAS 8.0 (SAS Institute Inc., Cary, NC, USA). 

SNP markers and genotyping 

SNP genotyping was performed at the University of California, Davis Genome Center. 

An Illumina iScan Reader was used to carry out the genotyping assays (Chen et al, 2016). The 

genetic diversity data were reported previously (Chen et al, 2016, 2017). 

DNA extraction and a composite genetic map 

DNA was extracted from the young leaf tissues of each variety. Samples were 

genotyped using the 90 K iSelect wheat chip, which consists of 81,587 SNP loci distributed 

across all 21 wheat chromosomes. The total length of the map was 3674.16 cM, with a mean 

genetic distance of 0.15 cM between markers. Chromosome 1B contained the most markers (n 

= 2390), followed by 5B (n = 2187), whereas chromosome 4D had the fewest loci (n = 78). 
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Among the A, B and D genomes, the B genome contained the largest number of loci (n = 

12,321) and a total length of 1150.47 cM, followed by the A genome (n = 9523) at 1252.51 

cM, and the D genome (n = 2511) at 1271.18 cM (Chen et al, 2017). 

Population structure 

Population structure analysis was performed on genotypic data obtained from unlinked 

SNP markers in the 205 winter wheat accessions using NJ cluster analysis in STRUCTURE   

(Chen et al, 2017). 

Genome-wide association analysis 

Significant marker-trait associations (MTAs) were identified using a mixed linear 

model (MLM) in TASSEL 3.0. Decisions on whether a QTL was associated with a marker was 

determined by P value. R2 values were used as estimates of the magnitude of MTA effects. 

SNPs with corrected P values B 0.01 were considered to be significantly associated with 

phenotypic traits. 

Identification of candidate genes 

To identify the position of important MTA loci in the physical map and to identify 

possible candidate genes, a BLAST search was performed on the International Wheat Genome 

Sequencing Consortium database (IWGSC; http://www.wheatgenome.org/, accessed 27th 

April, 2018) using the sequences of significant SNP markers identified by GWAS. When a SNP 

marker sequence from the IWGSC was 100% identical to any wheat contig, the sequence was 

extended 5 kb using the IWGSC BLAST results. The extended sequence was used to run 

BLAST searches on the National Center for Biotechnology Information (NCBI) database 

(http://www.ncbi.nlm.nih.gov, 27th April, 2018) and Ensembl Plants (http://plants. 

ensembl.org/ Triticum aestivum/ Tools/BLAST, 27th April, 2018) to confirm possible 

candidate genes and putative functions. 

Results 

Population structure 

When DK values were plotted against hypothetical subgroups the highest DK was 

observed at K = 4, indicating the likelihood of four subgroups in the association panel. Using 

the maximum membership probability in STRUCTURE, the 205 accessions were segregated 

into four subpopulations: subgroup 1 (43 accessions), subgroup 2 (32 accessions), subgroup 3 
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(105 accessions) and subgroup 4 (25 accessions) (Chen et al, 2017). The LD values of the 

different chromosomes were reported in (Chen et al, 2016). 

Phenotypic data 

The phenotypic values for the wheat starch trait in diverse environments. Extensive 

phenotypic variation for AMS, AMP and TSC among the 205 winter wheat accessions was 

observed across four environments. The AMS contents ranged from 16.47 to 22.99% in the 

flour, AMP contents ranged from 38.43 to 61.15%, TSC contents ranged from 55.78 to 82.19%, 

and AMS/AMP ratio ranged from 33.01 to 52.78%. Broad-sense heritabilities were 89.31, 

68.10, 75.36 and 32.45%, respectively, indicating that both genetic and environmental factors 

influenced the expression of each trait.  

Table. 2 

Trait Min (per cent) Max (per cent) H2 (per cent) 

AMS 16.47 22.99 89.31 

AMP 38.43 61.15 68.10 

TSC 55.78 82.19 75.36 

AMS/AMP 33.01 52.78 32.45 

 

Thousand kernel weights (TKW) ranged from 26.33 to 60.13 g, and protein contents 

ranged from 10.30 to 17.98% across environments. Hence, they belonged to typical 

quantitative traits controlled by multiple loci. 

Marker-trait associations and elite allele exploration 

A total of 24,355 mapped SNPs was used for MTA analysis. Forty-seven significant 

MTAs were detected for all four traits across environments. We further analysed MTAs for 

AMS and AMP by comparing the phenotypic effects of alleles at each locus to identify elite 

genes for the starch components and AMS: AMP ratio. Nine MTAs were recorded for the two 

starch traits, and there were 11 MTAs for three traits. These SNPs on eight chromosomes, each 

accounted for 11.26–23.83% of the phenotypic variance. Eighteen MTAs on chromosomes 1B, 

2A, 3B, 3D, 4A, 5B, 6A, 6B and 7B were identified as being related to AMS: AMP ratio, each 

explaining 5.92-17.2% of the phenotypic variation. Nine MTAs were detected in two 

environments; seven in E1 and E2, and two in E3 and E4. Fifteen MTAs for AMS were 

identified on chromosomes 2A, 2B, 3A and 4A explaining 11.8–18.41% of the phenotypic 
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variation. Two MTAs, IAAV4464 (2A_112) and JD_c3742_1130 (2A_112), on chromosome 

2A were detected in three environments; these MTAs located at the same position had the 

highest R2 (18.41%) and smallest P values. Twelve of the 15 MTAs showed significant 

phenotypic differences among alleles, and the same MTAs exhibited phenotypic differences in 

environments E2 and E4 (P\0.05). Alleles A and G of marker Kukri_c5615_1214 (3A_93). 

Table. 3 

Trait MTA Chromosomes 

AMS 15 3 (2A, 2B, 3A) 

AMP 23 8 (2A, 2B, 3A, 3B, 4A, 6A, 6B, 7D) 

TSC 22 7 (2A, 2B, 3A, 3B, 4A, 6A, 6B) 

AMS/AMP 18 8 (1B, 2A, 3B, 4A, 5B, 6A, 6B,7B) 

 

Putative candidate genes linked to starch-related traits 

14 Significant MTAs identified in more than two environments and correlated with 

more than one trait were selected for candidate gene prediction. For marker IAAV4464 on 

chromosome2AL there were four candidates but geneTRIAE_CS42_2AL_TGACv1_09390 

0_AA0288950 was related to beta-glucosidase and hydrolysis of O-glycosyl compounds that 

participate in carbohydrate metabolism. 

Table. 4 

Marker Chromosome Candidate genes 

IAAV4464 2AL 4 

JD_c3742_1130 2AL 2 

wsnp_Ex_c63909_62932437 2AL 1 

RFL_Contig4517_1276 2AL 1 

RAC875_c6280_292 4AL 1 

Tdurum_contig41127_265 4AL 1 

BobWhite_c10583_352 4AL 1 

Excalibur_c16376_351 6BS 2 

CAP11_c1087_327 6BS 1 
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5. Applications of GWAS 

1. GWAS have been very successful in identifying novel variant-trait associations 

2. Helps in finding variations among complex traits 

3. Relevant for study of low- frequency and rare variants 

4. Studies genetic variants other than SNVs like copy no. Variants 

5. Data are used for multiple applications beyond gene identification 

6. GWAS data generation, management and analysis are straightforward as some software’s 

are used. 

6. Limitations of GWAS 

1. Phenotypic variation - depends on GXE interaction and heritability. G x E reduces 

heritability so we should select plants with high heritability. 

2. Number of individuals – If number of population increase associations increase so that we 

can overcome rare-variants. (Kumar et al, 2012). 

3. Population structure - Not all individuals are equally distantly related to each other at the 

genetic level (Prichard et al, 2000). 

4. Allele frequency - Rare allele (<5%) leads to a lack of resolution power so that difficult to 

identify (Cerda et al, 2012). 

5. Linkage Disequlibrium (LD) - An indicator to detect the distance between loci, which is 

important to find the number of required markers for the whole genome scan it is affected by 

population size and allele frequency (Myles et al, 2009). 

7. Conclusion 

In conclusion, GWAS is a powerful tool for studying multiple traits in response to biotic 

and abiotic stresses such as drought, salt, temperature, diseases etc. and agronomic traits. 

Through GWAS many novel QTLs and candidate genes were identified. This valuable 

information can be used for future breeding programmes and in designing better crop varieties. 
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9. Discussion – [Questions and Answers] 

1. Explain about DNA chip technology? 

DNA microarrays or DNA chips consists of thousands of individual DNA sequences 

arrayed at a high density on a single matrix, usually glass slides or quartz wafers, but 

sometimes on nylon substrates. Probes with known identity are used to determine 

complementary binding, thus allowing the analysis of gene expression, DNA sequence 

variation or protein levels in a parallel format. 

2. What is the difference between DNA sequencing and DNA re-sequencing? 

In DNA sequencing we will find the exact sequence of a certain length of DNA 

whereas in re-sequencing we find the variations by comparing with reference genome. 

3. Explain about GLM and MLM models? 

General Linear Model (GLM) compares how several variables affect different 

continuous variables and in Mixed Linear Model (MLM) consists of both fixed effects and 

random effects. They are particularly used where repeated measurements are made on same 

or related statistical units. 

4. Is GWAS cost effective as sequencing cost is comparatively reduced 
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It is not cost effective even though now a days sequencing cost is reducing as it 

requires huge investments for carrying out phenotyping and complete genome should be 

sequenced for each and every individual. 

5. Among all the software packages used for GWAS analysis which will be effective?  

GAPIT- Genome Association and Prediction Integrated Tool. It can handle large 

amount of data and most recently developed. 

6. What is a haplotype? 

A set of SNPs found on the same chromosome are called as haplotype. 

7. Which technology is effective and easy among gene chip and illumine? 

Illumine is more advanced, it contains large amount of DNA and easy to perform. 

8. What is the minimum size of the population to be considered while performing GWAS? 

 Minimum of 100 individuals should be selected for GWAS. If the size of population 

is less only less number of associations can be identified and identification of rare alleles 

becomes difficult 

9. How to overcome the limitation of identification of rare alleles in GWAS? 

By using Nested Association Mapping (NAM) we can identify rare alleles. 

10. If the heritability is less what is to be done? 

  If heritability is low that individuals should be removed from GWAS analysis. 

11. In how many environments the experiment should be replicated? 

 As G X E interactions will be more it should be replicated in minimum three or four 

environments to get a standard phenotypic data. 

12. What should be done if the size of population is less and less variations observed? 

 If the size of populations is less the associations observed will not be present above the level 

of significance and false positives will be more so, such population cannot be used for 

conducting GWAS.  
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  GWAS - Genome-Wide Association Studies 

Abstract 

The causal relationship between genetic polymorphism within a species and the 

phenotypic differences observed between individuals is of fundamental biological interest. The 

ability to identify variations associated in response to biotic or abiotic stresses, agronomically 

important traits like growth rate, yield in plants etc. requires an understanding of both the 

genetic architecture of a trait and the specific loci that is underlying a phenotype. Genome-

Wide Association Studies (GWAS) present a powerful tool to reconnect this trait back to its 

underlying genetics.  

GWAS focus on capture of Single Nucleotide Polymorphism (SNP) data. SNPs are 

single base-pair changes (mutations) in the DNA. Millions of SNPs can be captured using 

genotyping technologies. GWAS or Whole Genome Association Studies (WGAS) or Common 

Variant Association Studies (CVAS) investigate a genome-wide set of genetic variants in 

different varieties to see if any variant is associated with a trait (Manolio, 2010).  

In a GWAS experiment, initially the population is to be selected with full consideration 

of the size of the population (minimum 100 individuals). There are three important stages for 

performing a successful GWAS experiment. Stage I is phenotyping of all genotypes for a 

particular trait or group of traits based on the objectives of the study, stage II is genotyping 

using DNA molecular markers, and stage III is GWAS analysis in which phenotypic and 

genotypic data are combined using appropriate softwares (TASSEL, GenStat, PLINK and 

R(GAPIT)). Finally, results are visualised by Manhattan and Quantile-Quantile (Q-Q) plots 

(Alqudah et al., 2019). 

In an experiment conducted on Genome-Wide Association analysis and allelic mining 

of 161 natural Indica rice varieties for grain shape-related traits (Grain Length, Grain Width, 
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1000-Grain Weight and Grain Length/Width) based on 16,352 SNPs, 38 significant loci were 

identified through general linear model correlation analysis. Additionally, using sequenced 3K-

germplasm resources, 22 overlapped varieties, twenty-six SNPs and fourteen haplotypes were 

identified (Yang et al., 2019).  

Significant Marker-Trait Associations (MTAs) and candidate genes associated with 

markers were detected for total starch (TSC), amylose (AMS) and amylopectin (AMP) contents 

under four environmental regimes by another experiment on GWAS for total starch and its 

components in a panel of 205 elite winter wheat accessions using SNPs (Chen et al., 2019). 

GWAS is a powerful tool for studying multiple traits in response to biotic and abiotic 

stresses such as drought, salt, temperature, diseases etc. and agronomic traits. Through GWAS 

many novel QTLs and candidate genes were identified. This valuable information can be used 

for future breeding programmes and in designing better crop varieties. 
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