## STUDIES ON THE MORPHOLOGICAL AND CYTOLOGICAL BEHAVIOUR OF X<sub>2</sub> AND X<sub>4</sub> GENERATIONS IN COW PEA (*Vigna sinensis* (L.) Savi )

BY

### **K. KUMARAN**

### THESIS

Submitted in partial fulfilment of the requirements

for the Degree of

**MASTER OF SCIENCE(AGRICULTURAL BOTANY)** 

OF THE

**UNIVERSITY of KERALA** 

### DIVISION OF AGRICULTURAL BOTANY

AGRICULTURE COLLEGE AND RESEARCH INSTITUTE

**VELLAYANI, TRIVANDRUM** 



### <u>CERTIFICATE</u>

This is to certify that the thesis herewith submitted contains the results of bonafide research work carried out by Sri. K. Kumaran under my direct supervision. No part of the work embodied in this thesis has been submitted earlier for the award of any degree.

ed have

C.K.N. NAIR Principal & Addl. Director of Agriculture (Research).

Dilan

P. KUMARA PILLAI Professor of Agrl. Botany.

Agricultural College & Research Institute, Vellayani, Trivandrum, Date: 31-7-1965.

### ACKNOWLEDGEMENTS.

It gives immense pleasure to the author to place on record his deep sense of gratitude and indebtedness to Prof.P.Kumara Pillai, M.Sc., M.S. (U.S.A.), Vice-Principal & Head of the Division of Agricultural Botany and Dr. (Mrs.) Mary K.George, M.Sc., Ph.D., Junior Professor of Agricultural Botany, Agricultural College and Research Institute, Vellayani for suggesting and planning the present investigation and for their valuable guidance, encouragement and suggestions.

The author is so grateful to Dr.C.K.N.Nair,M.Sc., Ph.D.(Cornell), D.R.I.P. (Oak Ridge), Principal & Additional Director of Agriculture (Research) for his encouragement and also for providing all facilities for the successful conduct of this investigation.

He expresses his sincere thanks to Shri V.Gopinathan Nair, M.Sc.(Ag.), Lecturer in Agricul Botany for his constant and generous help.

He is thankful to Shri E.J. Thomas, M.Sc., (Iowa), Junior Professor in Statistics for his v advices and suggestions.

The author is grateful to all his coller friends for the valuable help rendered by them in t ful conduct of the present investigation.

K.K U

•<u>5</u>-

### CONTENTS

|      |                        | Page No. |
|------|------------------------|----------|
| I.   | INTRODUCTION           | . 1      |
| II.  | REVIEW OF LITERATURE   | 4        |
| III. | MATERIALS AND METHODS  | 23       |
| IV.  | EXPERIMENTAL RESULTS   | 32       |
| v.   | DISCUSSION             | 51       |
| VI.  | SUMMARY AND CONCLUSION | 64       |
| ,    | REFERENCES             | 1-x      |

PLATES

# INTRODUCTION

-

INTRODUCTION.

VELLAYAM

1

It remained for Muller (1927) and Stadler (1928) to contribute one of the epoch making discoveries to the science of genetics when they propounded independently that X-rays could be used to induce mutations in living organisms. This discovery gave an impetus to increased researches in fundamental genetics. Extensive researches carried out in the past thirty years proved beyond doubt that induced mutations provide an efficient and important tool in Plant breeding. Barring the few limitations and defects inherent to this method, mutation breeding through ionizing radiations envisages an important crop improvement method and play a major role in the present day Plant breeding.

Cereal plants have figured importantly in the development of mutation work since its inception, for it was in barley (<u>Hordeum vulgare</u> L.)that Stadler in England and Nilsson-Ehle and Gustafsson in Sweden first induced mutations by means of ionizing radiations. Promising results have been obtained by radiation research in many economic crop plants by various workers.

Gregory (1956) by his comprehensive experiment on ground nut (<u>Arachis hypogaea</u>)demonstrated the validity of induced mutations in crop improvement through ionized radiations. Other examples of mutation breeding by ionizing radiations include the transfer of genes for leaf rust resistance from <u>Aegilops umbellulata</u> to cultivated wheat (<u>Triticum vulgare</u>) by Sears (1956) in U.S.A.; induction of awning in the New Pusa strains of wheat at the Indian Agricultural Research Institute, New Delhi; production of the speltoid barley by Gustafeson (1947) in Sweden, and the like.

Cow pea (Vigna sinensis L. SAVI) constitutes one of the prominent members of the pulse family in India. It is a naturally self-pollinated leguminous plant and therefore, affords very little genetic variability under natural If, by artificial means genetic variability is conditions. induced like that produced by ionizing radiations, selection of better yielding types becomes easy and economic. With this in view, Nair (1964) irradiated the seeds of the 'African' variety of cow pea with X-rays. The X-irradiated seeds were raised in X<sub>1</sub> generation from which five plants which showed seed colour changes were selected. The seeds from these five plants and a sample consisting of 125 seeds from each treatment, were carried forward to the X2 generation.Various morphological as well as physiological mutants were obtained. It was observed that among the various characteristics studied, seed colour was the most easily affected one. The author selected from this X, generation

twenty one distinct mutant seed types based on their seed coat colours.

It is the intension of the present investigation to probe in to the details of the morphological and the cytological behaviour of these twenty one mutant seed types during their  $X_3$  and  $X_4$  generations. This also aims at the study of the breeding behaviour of these mutants particularly with respect to their pod and seed colours. It is also, however, desired to isolate distinct pure breeding geno-types from the  $X_3$ and  $X_4$  variable populations.

.:000:-

# **REVIEW OF LITERATURE**

### REVIEW OF LITERATURE.

### 1. Germination.

Maldiney and Thouvenin (1898), just after three years of the discovery of X-rays by Roentgen, found that in <u>Convolvulus</u> and <u>Lepidium</u> germination was hastened by irradiation. A similar result was obtained by Pfiffer and Simmermacher (1915) on <u>Vicia faba</u> but Ancel (1924) obtained contradictory results that she could not find any hastening of germination by irradiation. Kumar and Joshi (1939) reported that X-irradiation was found to be deleterious to germination in <u>Brassica juncea</u>, <u>Nicotiana tabacum</u> and <u>Pennisetum typhoides</u>.

Jacob (1949) reported a higher germination percentage in irradiated seeds of Jute (<u>Corchorus sp.</u>) He also stated high survivability of plants in some varieties which were irradiated. Spencer and Cabanillas (1956) working with <u>Indigofera endecaphylla</u>, reported that X-ray irradiation appeared to promote earlier germination and that seedlings displayed no definite lethal effects, but Lesley and Lesley (1957) reported considerably reduced germination in irradiated tomato seeds. Similar results were obtained by <u>Matsura et al</u> (1957) in wheat seeds.

Gottschalk and Scheibe (1960) reported that the germinability of seeds of plants belongining to Leguminosae

was independent of X-ray dose which was supported by the findings of Kundu <u>et al</u> (1961) in Corchrus <u>sp</u>. Similar reports came from several workers as Ahasthry and Ramiah (1961) in <u>Oryza</u>, Jain <u>et al</u> (1961) in Chrysanthemum, -Sjodin (1962) in <u>Vicia faba</u>, and Katayama (1963) in <u>Oryza-</u> <u>sativa</u>. Nair (1964) reported that germination was unaffected in dry X-irradiated seeds of Cow Pea (<u>Vignasinensis</u>) but irradiation was found to affect germination in soaked seeds. In the  $X_2$  generation of certain mutants, reduction in germination was reported by him,

### 2. Growth habit.

Various workers reported changes in the pattern of growth in different crops in the segregating generations after X-ray irradiation. Gelin (1954) reported multibranched robust mutants of irradiated <u>Vicia faba</u> during the  $X_2$  generation. Bifurcate, concave asymmetric or funnel shaped leaves and bifurcate shoots were observed by Zwintzscher (1955) in the induction of mutant in fruit breeding. Down and Anderson (1956) obtained a bushy type of mutant induced by X-ray irradiation of the Navy bean which had a spreading habit. Wohrmann (1956) induced trailing habit in non-trailing types of <u>Alopecurus pratensis</u> by X-ray irradiation.

Vettel (1959) reported X<sub>2</sub> and X<sub>3</sub> mutants of wheat x rye (Triticale) hybrids with abnormal growth habit.

Jain <u>et al</u> (1962) obtained twelve  $X_2$  progenies from X-ray irradiated tomato which showed variable growth habit.  $X_2$ mutants of <u>Gicer</u>, characterised by small internodes and closely packed leaves and leaf lets, were observed by Athwal (1963).

Narahari and Bora (1963) observed in  $X_2$  generation rice mutant forms with short culms. Nair (1964) grouped the various growth patterns of  $X_2$  mutant cow pea under various heads. Unlike the erect growing 'African' variety, the mutants showed various changes in growth habit and were grouped as twining types, profusely branching and spreading types, dwarf mutants and straight stemmed mutants.

3. Plower Characteristics.

Interesting flower colour changes were observed by various workers in the segregating X-ray irradiated materials. Early in 1930 Goodspeed observed flower colour changes in the progenies of irradiated tobacco. Bruns (1954) reported flower colour changes in <u>Trifolium</u> and similar results were obtained by Hoffmann and Zoschke (1955) in Linnum, and by Mehlquist (1957) in Carnation.

Rai and Jacob (1956) isolated a white flower coloured mutant in the  $X_3$  generation of <u>Sesamum</u>. They also obtained white flowered mutants in Mustard in the  $X_2$ generation.

Nair (1964) reported flower colour changes from light purple of the 'African' variety (control) to pure white and to yellow in the X-irradiated Cow Pea. Among these three groups, various intermediate forms and colour combinations were noted.

Krishnaswamy (1945) found floral abnormalities including the occurrence of double standards, wing petallike growth from the androecium, dedoublement of the single separate stamen and increased or decreased number of floral parts in one variety of Cow Pea (<u>Vigna ugniculata</u> L. Walp.)

Later in 1961 Sjodin observed mutants characterised by short corolla tubes, abnormal petals and deformed stigmas in the  $X_2$  generation of <u>Vicia faba</u>. Double flowered mutants were reported by Jain <u>et al</u> (1961) in the  $X_2$  generation of <u>Chrysanthemum</u>. Jain <u>et al</u> (1962) working on tomato obtained plants in  $X_2$  generation with changes in floral structure consisting of an increase in the number of sepals, petals and stamens and thickening and flattening of the style. Bhatia and Swaminathan (1963) reported a multiple carpel flower mutant in the segregating generations of irradiated bread wheat.

Jagathesan and Shasthry (1963) obtained twisted and divided style in <u>Gossypium hirsutum</u> in the  $X_2$  generation after X-irradiation.

Tedin and Hagberg (1952) reported one mutant in the  $X_4$  generation of X-rayed Lupin with reduced petals and with pale greenish yellow colour and the flowers never opened. Hackbarth (1955) found in the  $X_2$  of X-irradiated Lupinus luteus, a plant with floral abnormalities leading to a high degree of physiologically conditioned sterility.

A spontaneous male sterile mutant in <u>Vigna-</u> <u>sinensis</u> catjang "poona" was reported by Sen and Ehowal (1962). The plant was vigorous but had reduced floral parts. A single gene pair involved homozygous recessivity and heterozygosity causing vigorous vegetative growth.

Working with radiation induced mutants in <u>Chrysanthemum</u>, Rana (1964) observed that breakdown of the tubular effect occurred only in the mixed tubular types and plants with perfect tubular flowers appeared quite stable with respect to their flower phenotype.

### 4. Chlorophyll Mutants.

Various types of chlorophyll mutations were recorded and identified by Gustafsson (1940) in the segregating populations of X-rayed barley. They included types such as 'Albino', 'Xantha''Virescens'and'Chlorina,' Such mutations were also found in barley by Freislben and Lein (1943) Froier (1946).

Gustafsson (1947) grouped the vargous types of mutants observed in the segregating generations of barley as:-

- 1). Chlorophyll mutants,
- 2). Sterility and lethality mutants of different types and
- 3). Vital mutants to include both morphological and physiological mutants.

Tedin and Hagberg (1952) observed that the most common type of mutant in the X3 generation of Lupinuswas chlorophyll defectives. They found two luteus 'chlorinas' in the  $X_A$  generation which were normal green in the rosette leaves, but the apical leaves of the stem Matsumura and Fujii (1955) were slightly chlorotic. reported chlorophyll deficiencies in the induced mutants of N. tabacum and N. sylvestris. Zwintzscher (1955) in his work on the induction of mutants as a method of fruit breeding, obtained forms with chlorophyll deficient in Xray irradiated populations. Chlorophyll deficient mutants were reported in the X<sub>3</sub> generation of X-ray and thermal neutrons irradiated rice by Beachell (1957).

Carpenter (1958) obtained 42% chlorophyll mutants in the Subterranion Clover. Korah (1959) grouped the various chlorophyll deficiencies observed in the  $X_1$  and  $X_2$ generations of X-irradiated <u>Oryza</u> as - Xantha or Lethal yellow mutants, and Lutescents. These were characterised by the absence of chlorophyll and subsequent death of the mutants.

**9** S

Vettel (1959) could isolate chlorophyll defect forms from the  $X_2$  and  $X_3$  generation of Triticale (wheat x rye) hybrids. Blixt (1961) identified a type of chlorophyll variegation in  $X_2$  and  $X_3$  of Peas.which has been named as 'chlorotica vario maculata' characterised by patches of green and yellow spots. It was Sjodin (1961) who reported that chlorophyll mutations were comparatively rare in the segregating generations of leguminous plants. He observed, the 'viridis' characterised by different shades of green to be the most common type.

Marki <u>et al</u> (1962) reported that 19% of the  $X_3$  plants of X-irradiated soyabean were albina mutants. Patil and Bora (1963) observed that X-ray induced mutants included an  $X_3$ Xantha mutant and some  $X_4$  virescent mutants in groundnut. A total of nine albino and seven Xantha seedlings were noted by Nair (1964) in the  $X_2$  generation of Cow Pea. He stated that a number of seedlings with chlorophyll spotting on the first leaves were observed. The spottings varied in intensity and extent.

### 5). Morphological Mutants.

a. Leaf types.

Crinkled and puckered leaves were reported by Goodspeed (1928) in the segregating of irradiated Tobacco. Horlachar and Killough (1931, 1932,) in cotton obtained mutants with forked leaves which were inherited as a simple recessive to the normal. Gustafsson (1947) working with

barley observed broader and narrower leaved mutants in the X<sub>2</sub> and X<sub>3</sub> generations. Krishnaswamy (1945) reported tetra-foliate and rarely penta-foliate leaves in a few varieties of Cow Pea. Jacob (1949) found gigantic plants in X-rayed <u>Corchorus</u> plants. Tedin and Hagberg (1952) observed a mutant in <u>Lupinus luteum</u> with deformation of leaf-lets.

An interesting unifoliate mutant in the  $X_2$  of <u>Vicia faba</u> was obtained by Sjodin(1962) with simple leaves instead of the normal trifoliate leaves. Such unifoliate mutants have also been reported by Scheibe and Gottschalk (1956) and Gottschalk (1958). Sjodin (1962) observed one plant with abnormal leaves in which the leaf-lets and stipules were narrow and pointed instead of the normal oval shape, in  $X_3$  irradiated <u>Vicia faba</u>. Athwal (1963) reported narrow and small leaved mutants in <u>Cicer</u>. Many crinkled and distorted seedlings were noted by Nair (1964) in the  $X_2$  generation of X-irradiated Cow Pea. He recorded one large leaved mutant in  $X_2$ .

Shasthry and Nadhachāry (1965) reported rolledleaved mutants in the  $X_2 - X_4$  generations of X-irradiated rice (NP.130). These plants exhibited an array of phenotypic abnormalities in various plant parts.

b. <u>Barly Mutants</u>.

Chaudhuri (1953-1955) obsorved five early mutants in

irradiated <u>Linum</u>, but no plants in the  $X_2$  and  $X_3$  generations were as early as these mutants. Onnfrijchuck (1953) reported that a genetically stable change affecting maturity had occurred in one speltoid mutant since  $X_2$  and  $X_3$  plants ripened several days earlier than the controls.

Matsumura and Fujii (1955) reported a mutant form flowering two weeks earlier than the control among the X-ray induced mutants of <u>Nicotina tabacum</u> and <u>N. sylvestris</u>. Earliness in flowering by seventeen days in mutant forms in the  $x_3$  generation of <u>Sesamum</u> was observed by Rai and Jacob (1956). Similar results were obtained by Gladstones (1958) in <u>Lupinus digitalis</u>. Ehrenberg (1961) obtained forth three early mutants in the  $x_3$  generation of barley subjected to ionizing radiations and chemical mutagens.

But Vettle (1959) observed among the Triticale (wheat x rye) hybrids, fewer early and late forms during the  $X_2$  and  $X_3$  generations. Similar results have been obtained by Abrams and Velez - Fortuno [1962] who reported early, intermediate and late flowering lines in the  $X_3$  and  $X_4$ generations.

c. Dwarf Mutants.

In the  $X_3$  generation in rice Parthasarathy (1938-1939) observed dwarf plants which produced only semisterile plants while the normal fertile plants bred true. He stated that 'stumpy' and 'beaked sterile' did not breed true and were found to be (2n + 1) types. [Tedin and Hagberg (1952)

reported dwarf mutants in <u>Lupinus luteum</u> in X<sub>3</sub>, usually accompanied by other characterestics indicative of a general disturbance of balance. These dwarfs appeared irregularly and in no cases studied there has been even a semblance of normal Mendelian segregation.

A Hackbarth (1955) observed in X<sub>2</sub> irradiated <u>Lupinusalbus</u>, a number of dwarf plants with short stems. A dwarf mutant was also obtained from <u>L</u>. <u>Angustifolius</u>. He also reported that changes in growth period were observed in all, especially in the X<sub>3</sub> of <u>Lupinus luteus</u>. Such similar dwarf mutants were reported by Matsumura and Fujii (1955) among induced mutants of <u>N</u>. <u>tabacum</u> and N. <u>sylvestris</u>. Beachell (1957) observed that most of the mutants in the X<sub>3</sub> generation of X-ray and thermal neutron irradiated rice were smaller than normal.

 $\left( \mathbf{G} \right)$ 

Carpenter (1958) reported that, of the  $X_2$  mutants in subterranean Clover, 28% were dwarf mutants. Quang and Chang (1959) showed that many dwarf mutants of the X-irradiated rice, in back crosses, were shown to be due to a single recessive gene. ()Korah (1959) observed dwarf mutants in the  $X_1$  and  $X_2$  generations of X-irradiated Oryza. Shell found that these dwarf mutants bred true in  $X_2$  and were also characterised by a high degree of 'Spike-let sterility'.

Nair (1964) fourddwarf mutants in  $X_2$  of X-irradiated Cow Pea. (1965) who worked

with X<sub>4</sub> generation of irradiated NP. 130 rice suggested that dwarfs are the most frequent of all viable mutations. 6. <u>Fruit Characteristics</u>.

Gustafsson (1947) reported erectoid mutants in the segregating generations of barley which were characterised by very compact ears with projecting kernals. Rai and Jacob (1956) obtained smaller seeded <u>Sesamum</u> mutants in the  $X_4$  generation. Rai (1959) isolated mutents with narrow slender and erect pods in the  $X_2$  segregating generation of <u>Brassica</u>. The same author in 1959 described a mutant with thickened pods in X-ray irradiated <u>Brassicanigra</u>.

Changes in the position of fruits in X-ray irradiated <u>Vicia faba</u> were reported by Lechner (1959). Sjodin (1961) pointed out the occurrence of plants in the  $X_2$  of <u>Vicia faba</u> with glabrous pods unlike the normal plants with hairy pods. He also reported long and narrow pods in the advanced generations. Jain <u>et al</u> (1962) found unform ripening fruits of <u>Lycopersecum esculentum</u> in four of the  $X_2$  populations. The plants showed reduced fruit set and changes in fruit shape.

Nair (1964) found many variations in the X<sub>2</sub> generation of Cow Pea, mainly those affecting the size and colour of pods. Colour variations included blackish, brownish, reddish white, reddish white with deep purple strêks and light green colours, the control being straw coloured. Size of pods varied from large to small.

7. Seed Colour changes.

A large number of seed colour mutants were observed by Stadler (1931) in Zea mays and these were found to be simple recessives. () Zachow (1958) obtained mutant plants in the  $X_2$  and  $X_3$  generations of irradiated <u>Lupinus luteus</u> having smaller seeds. (2) Papa and Williams (1959) reported small and large sized seed mutants in the  $X_3$  irradiated population of soyabean.

Smaller, smoother, and light coloured seeds obtained from the  $X_3$  population of X-ray irradiated <u>Sesamum</u> were reported by Nair (1961). The mutant characters were found to breed true in the  $X_4$  generation. Almost all the induced mutants in <u>Vicia faba</u> that Sjodin (1961) found were concerned with seed coat colour. He isolated fifteen mutants affecting the seed coat colour from the  $X_2$  population. It was observed that some of these colour changes were associated with other characters like earliness, growth habit, etc.,

Seed colour mutations in rice were reported by Nishimura and Kurakami (1952) and Campos and Espiritu (1960) Nair (1964) obtained five plants from the  $X_1$  germination of irradiated Cow Pea with colour variations. These plants, together with other selected mutants segregated for twenty one seed coat colours during the  $X_2$  generations.

# 8. Induced variability.

Marked variation in the  $X_2$  and  $X_3$  progenies of X-ray irradiated progenies of Peanuts was observed by Gregory (1955). Bora and Rao (1960) obtained a wide range of variation of characters such as seed sterility, albino seedlings, dwarfing, time of flowering etc., in the  $X_3$  generation of rice subjected to ionising radiations. Kato <u>et al</u> (1960) stated that reduetion in variability in the  $X_3$  population of irradiated rice may have been largely due to the result of natural elimination of unadapted mutations in the  $X_1$  and  $X_2$ .

Jain et al found in the X2 population of Tomato, induced variations including a macromutation affecting leaf, growth habit and flower form. They stated that the induced variation in respect of ripening of fruits and other characters like locule number was found to breed true in the X3 generation. In the X3 generation of X-ray irradiated Soyabean, Marki et al (1962) observed variability in morphology and yield characters. Palenzona (1962) pointed out a significant increase in variability in the X3-irradiated Triticum-He concluded that the increase in variability is aestivum. due to mutations in a multifactorial system rather than in the major genes. Rana (1964) working with radiation induced mutants in Chrysanthemum suggested that the variable expressivity is primarily a function of the variable genotypic background.

9. Sterility Mutations.

Sterility mutants are offrequent occurrence in segregating populations after X-ray irradiation. Some such plants which failed to flower were reported by Gustafsson (1947) in barley and Sjodin (1961) in <u>Vicia faba</u>.

(1) Tedin and Hagberg (1952) observed a fairly high frequency of partially sterile plants in the  $X_2$  and  $X_3$ generations of X-ray irradiated Lupin. They reported that one of the sterile types in  $X_2$  had reduced petals but with These workers obtained four distinct mutanormal pollen. tions with complete functional sterility in the homozygote combined with vegetative vigour. In the X2 generation of X-ray irradiated Hordeum vulgare, Das (1955) observed a number of semisterile plants characterised by high pollen and ovule abortion. Beachell (1957) stated that mutants obtained from X-ray and Thermal neutrons - irradiated rice showed considerable sterility during  $R_1 - R_3$  generations. TRESULTS of a similar nature have been obtained by Ouang and Chang (1960) who noted varying degrees of sterility in the progenies of irradiated rice in  $X_2$ ,  $X_3$  and  $X_4$  generations. S In the  $X_4$  generation of wheat Bozzini (1961) reported that the degree of sterility varied independently of the degree of meiotic abnormality.

Carpenter (1958) observed in  $X_2$  progenies of subterranian Clover that, complete fertility was shown by 31% while 41% were classed as semi-sterile and 28% as fully sterile. ©Contradictory to the above findings, Vettel (1959) reported that mutants in the  $X_2$  and  $X_3$  generations of Triticale hybrids were superior to the original form in fertility. Jain <u>et al</u> (1961) found that pollen and seed fertility in the  $X_3$  generation of <u>Chrysanthemum</u> was not found to be very much affected. So also in  $X_4$  most of the plants showing altered flower forms had over 80% pollen fertility compared to 95 - 100% in a corresponding group of controls.

 $7 X_3$  progenies of tomato within a culture showed variation in the fertility of their seeds. This was reported by Jain <u>et al</u> (1962). Athwal (1963) stated that the sterile mutants he obtained in <u>Cicer</u> had luxuriant vegetative growth. Two types of steriles were reported by him, in one the flowering was normal but the anthers failed to dehisce and the pistil deformed where as the other was with highly abnormal flowers. Nair (1964) reported two sterile mutants in the X<sub>1</sub> of X-ray irradiated Cow Pea, one plant failed to flower, and the other flowered but failed to set fruits.

10. Cytological abnormalities.

Parthasarathy (1938-1939) described the genetical and cytological behaviour of 3 mutants from  $X_3$  generations of X-ray irradiated rice. Cytological examination of these

C" ...

semisterile plants in X<sub>3</sub> showed that they contained the normal complement of chromosomes and the meiosis was regular although they did not set seeds. The origin of this mutants may probably be due to a small deficiency or a gene mutation.

Cytological studies of a number of semisterile plants in the  $X_2$  generation of <u>Hordeumvulgare</u> by Das (1965) revealed structural changes characterised by translocations and paracentric inversions in the chromosomes and frequent chromatin bridges and acentric fragments at meiosis in the pollen mother cells. Matsumura and Fujii (1955) reported chromosomal aberrations including translocations, univalents, fragment formation and asynaptic configurations and mutations resulting from  $\hat{X}$ -ray irradiated Nicotiana <u>sylvestris</u> and <u>Nicotiana tabacum</u>.

Onnfrijchuk's (1953) cytological analysis of one speltoid mutant in barley in  $X_3$  revealed that this mutant had 21 pairs of chromosomes +1 iso-chromosome or 20 pairs + 3 isochromosomes. It is assumed that in the production of this  $X_3$  mutant, at least two reciprocal translocations had occurred. Ouang and Chang (1959) observed in pollen mother cells of semisterile progenies obtained from X-ray irradiated rice, both quadrivalents and univalents at diakinesis and metaphase I. But Vettel (1959) could not find any relationship between fertility and the percentage of normal configurations in

melosis in  $X_2$  and  $X_3$  of Triticale hybrids subject to repeated irradiation in successive generations.

A study by Bozzini (1961) of the  $R_3$  generation of wheat previously irradiated showed the presence of reciprocal translocations in three plants. In the  $R_4$ , a line with  $2n = 26 \pm 1$  was isolated and associated anomalies were also noted. He suggested that the degree of sterility raised independently of the degree of meiotic abnormality.

11. Segregation of characters.

Levan (1944) obtained three families in  $X_2$  of flax which segregated for chlorophyll deficiency. Of the 95  $X_3$ families raised, no progenies of the mutant homozygote were present, thirty one progenies were constant and normal while sixty four segregated into normal and mutants in the expected 2:1 ratio. Further, it was observed that the distribution of mutants over  $X_3$  families strongly suggests at least two classes, one with one mutant and the other with between four and twentyone mutants.

Fujii (1955) reported chlorina mutants in <u>Triticum</u> -<u>monococcum</u> obtained by X-ray irradiation was found to be a simply inherited recessive character. Similar results have been obtained by Matsumura and Fujii (1955) in irradiated <u>T.monococcum</u>, who stated that the chlorophyll and other types of mutan<sup>S</sup> obtained from the  $X_2$  were found to be recessive and monogenic in inheritance.

In X-ray irradiated <u>Lupinus leteum</u>, Tedin and Hagberg (1952) observed that one of the chlorina mutant gave approximately 3:1 segregation. Hackbarth (1955) reported that in the case of the three X-ray irradiated <u>Lupinum sp</u>, changes in leaf colour appeared to depend upon a single recessive gene.

Bora and Rao (1960) working with  $X_3$  rice suggested that heterozygous deficiency for a segment carrying an inhibut for round grain is held to be responsible for  $X_3$  segregation for long grained: round grained plants in a 3:1 ratio.  $X_3$ segregations of 1:63 and 1:3 for albina : normal plants were also interpreted. X-ray induced chlorophyll mutants obtained by Patil and Bora (1963) in ground nut segregated in  $X_4$ and  $X_5$  for normal and virescent types in ratios ranging for 1:1 to 15:1 indicating that the development of chlorophyll is possibly controlled by more than one locus.

Some selection of irradiated <u>Corchrus olitorus</u> and <u>C. capsularis</u> segregated into normal and morphologically aberrant types in the  $X_3$  and  $X_4$  generations. (Anon. 1955, 1956) Ouang and Chang (1959) observed that many dwarf mutants of X-ray irradiated rice were shown in back crosses to be due to a single recessive.

Data collected by Murray and Craig (1962) from  $X_2$ ,  $X_3$  and  $X_4$  segregating lines in <u>Medicago sativa</u> demonstrate that two closely associated characters viz.

cauliflower head and single leaf are determined by a single recessive gene inherited tetrasomically.

-1 00 0 00 1-

# MATERIALS AND METHODS

#### MATERIALS AND METHODS.

### Experiment.

The present investigation aims at the "Studies on the morphological and cytological behaviour of  $X_3$  and  $X_4$  generations in cow pea (<u>Vigna sinensis</u> L.SAVI)", variety 'African'. The various morphological characteristics of the mutants mainly of a qualitative nature were studied combined with cytological studies.

### Experimental site and Layout.

The work was carried out in the Agricultural Botany Division, Agricultural College and Research Institute, Vellayani, Kerala; during the academic year 1964-65.

Simple field trials were followed in both generations of  $X_3$  and  $X_4$ . The entire area was divided into three blocks with twenty four beds (15' x 3') each, making altogether seventy two beds.  $X_3$  generation was raised in these beds. During the  $X_4$  generation twenty five beds (25' x 3') were taken and seeds sown in these beds. Cultural and manurial applications were uniform in all beds during the course of the experiment.

### Seed Material.

The material for the study consisted of twenty one different mutant seed types obtained from the X2generation

TABLE I.

X<sub>3</sub> Seed characters.

| Seed<br>type<br>numbers. | Number<br>of<br>seeds. | Seed types.                                 |
|--------------------------|------------------------|---------------------------------------------|
| i.                       | 133                    | ControlAfrican variety of Cow Pea.          |
| ii.                      | 180                    | White seed type.                            |
| iii.                     | 67                     | White with brown patch around the eye.      |
| iv.                      | 135                    | White with bluish mottling around the eye.  |
| V.                       | 66                     | White with Red patches around the eye.      |
| vi.                      | 24                     | White with black patches around the eye.    |
| vii.                     | 5 <b>75</b>            | Reddish with black mottlings.               |
| viii.                    | 360                    | Deep brown mottled.                         |
| ix.                      | 180                    | Light brown mottled.                        |
| ×.                       | 180                    | Reddish white with brown mottlings.         |
| Xi.                      | 90                     | Yellowish white with "light brown mottling. |
| xii.                     | 90                     | Greyash mottled.                            |
| xiii.                    | 40                     | Large brown.                                |
| xiv.                     | 370                    | Small brown.                                |
| XV.                      | 90                     | Brown medium seeds.                         |
| xvi.                     | 38                     | Reddish white.                              |

(continued)

of irradiated cow pea studied by Nair (1964). The material was first irradiated with different doses of X-rays from 1,000 r to 15,000 r using a Philips X-ray unit at the Agricultural College and Research Institute, Coimbatore. Each seed lot was divided into two groups viz. dry and soaked and 8 doses with 16 treatments were given. The present work there fore aims at studying the  $X_3$  and  $X_4$  generations with the twenty one selected mutant seed types.

a) Seed Material for X3

The twenty one mutant seed types isolated in  $X_2$  were carried forward in the  $X_3$  generation. The seed characters of these  $X_2$  types are presented in Table.I. These twenty one seed types consisted of 2,964 seeds all of which were sown, different types being sown in different beds.

During the harvest of theX<sub>3</sub> generation, individual plants were harvested separately. The plants raised from each type were classified into different groups based on their pod and seed colours. Types which show segregation and true breeding, are grouped separately and tabulated.

b) Seed Material for  $X_4$  generation.

The seed material for theX<sub>4</sub> generation included segregants obtained from three X<sub>3</sub> seed types which showed discernible segregation into different seed and pod characteristics.

 $\mathbf{24}$ 

| Seed<br>Sype<br>Numbers. | Number<br>of<br>seeds. | Seed types.                  |
|--------------------------|------------------------|------------------------------|
| Xvii.                    | 24                     | Half-red half-white type.    |
| XVIII.                   | 12                     | Deep violet mottled.         |
| xix.                     | 80                     | Deep ash mottled.            |
| XX.                      | 45                     | Greyish mottled large seeds. |
| xxi.                     | 113                    | Brown mottled.               |
| xxii.                    | 72                     | Light yellowish small seeds. |

TABLE I. (contd).

<u>-</u>

### I) <u>Seed type ii</u> in X<sub>3</sub> - White seeds.

The following seed types were selected from the segregants:-

1. Straw White (Parental type)

2. Straw Brown

3. Purple White

4. Purple Brown, and

5. Pink White.

2) Seed type iv in  $X_3$  White with bluish mottlings around the eye.

Following seed types were selected from the segregants:-

1. Straw White (Parental type)

2. Straw Brown mottled

3. Straw Ash mottled

4. Straw Brown, and

5. Pink White.

3) Seed type x in  $X_3$  - Brown mottled.

Following seed types were selected from the segregants:-

1. Straw Brown mottled (Parental type)

2. Straw Rose white

3. Straw Brown, and

4. Straw White.

Accordingly there were fourteen seed types which were obtained from three  $X_3$  types and were carried forward to the  $X_4$  generation. Depending on the total number of plants in each group one, two or three plants in the same group were selected for the  $X_4$  generation. A total of 25 plants were selected to represent the various fourteen  $X_3$  segregant lines from the three seed types. While sowing, seeds from each pod of each plant were sown separately without mixing them. 48 seeds taken either from one, two or three plants in equal numbers, were sown.

Apart from the characters viz., pod colour and seed colour, some other mutant characters were noticed in the  $X_3$ and selections of these mutant types and their carrying forward to the  $X_4$  generation were also made. They included,

1) Abnormal flower type.

One plant obtained from the type ii in  $X_3$  was with variation in the number of floral parts as well as variations in their disposition. All the pods of this plant were studied in pot culture in the  $X_4$  generation.

2) Large Leaved Mutant type.

Out of thirteen such large leaved mutant plants, one plant was selected in  $X_3$  and carried forward. This type was isolated from the seed types xiv and xv of  $X_3$  and 48 seeds were sown in  $X_4$ .

### 3) Crinkled plant type.

One pod obtained from a plant in the seed type (Small brown) in  $X_3$  and seeds were sown in pots.

#### OBSERVATIONS TAKEN.

During the course of the investigation of  $X_3$  and  $X_4$  individual plant characteristics were studied. The following were the observations taken.

### 1) Germination percentage.

The germinated seedlings in the field were enumerated from the 3rd day onwards of sowing and continued until the 7th day in both the trials and data were used for analysis.

2) Percentage of survival.

Counts of the survived plants were made at the time of harvest and the data tabulated.

### 3) Chlorophyll variations.

Fewer cases of chlorophyll variations found in the  $X_3$  population such as lethal, xantha mutants etc. were observed and some carried forward to  $X_4$  generation. The data are tabulated.

#### 4.) Leaf characteristics.

Second leaf characteristics such as bifoliate, tetra or penta foliate in lieu of the normal trifoliate leaves were observed and recorded.

## 5) Growth habit.

The natural growth tendency of each mutant type, either bushy or trailing, was noted in both generations. Flowering and flower types were also studied.

6) Pollen sterility.

Sterility studies in  $X_3$  were done in a random sample of 5 plants from each bed. The pollen grains were stained with glycerine--acetocarmine and sterility counts were made from 50 microscopic fields in each type and the data were used for calculating the percentage of sterility in each type.

In the X<sub>4</sub> generation, sterility studies were made in individual plants in each type, as in the previous case. In each type, 10 plants were studied within a progeny line and the data recorded. Separate counting was done among plants of a line as well as within one plant for different flowers, in the case of the "Floral-abnormality" type. Studies between individual plants were also made in two other types viz., the "Large leaved" mutant type and the "Crinkled mutant" type and data recorded.

7) Morphological abnormalities.

a) Floral-abnormality type.

The progenies of one plant isolated in  $X_3$  which

showed variations in the number of floral parts as well as in their arrangements were carried forward to  $X_4$  and subjected to various studies.

b) Large leaved Mutant type.

One of the plants, observed to be contrasting in many of its morphological characteristics, was carried to the  $X_4$  generation and various studies were conducted to determine whether it is a polyploid.

8) Colour of pods.

The colour of the unripe pods was studied both in  $X_3$  and  $X_4$  generations. The pod colour was either green, pink or shaded.

9) Colour of seeds.

Importance was given in the study of the behaviour of seed colour in the two generations. Classification of seed types in combination with pod colour was made in  $X_3$  and segregation or pure breeding nature of these types studied. Among the various types of  $X_3$ , three groups were carried forward to  $X_4$  for further studies.

#### 10) Association of characters.

a) Association of characters between colours shades on the surface and tip of the pod were observed during  $X_3$  and  $X_4$  generations.

b) Between flower colour and seed colour while flower and seed colours in some types were studied in  $X_3$  and  $X_4$  generations.

11) Weight of 100 seeds.

The seed weight of  $X_2$  seed material was taken initially. Later seed weight for the different parental and segregating classes of  $X_3$  was taken. In  $X_4$  the seed weight of the progeny materials was also taken, data recorded and analysed.

12) Cytological studies. Cow pea 2n = 22.

Cytological works consisted of studies of the stages of mitosis and meiosis. Cow pea is characterised by its very small chromosomes which rendered difficulty in handling the material in this investigation. Moreover, the cytoplasm in the pollen mother cells imbibed much stain which also was a handicap in meiotic studies to get good preparations.

For mitotic studies, five seeds each of the different seed types were germinated in Petri dishes on moist filter paper. When the roots were about two cm. in length,

root-tips were fixed in 3:1:1 (alcohol, acetic acid and chloroform) between 12 noon and 2 pm. Squashes were prepared in Haematoxylin following Heidenhains method. The procedure adopted was, hydrolysing the root tips at  $60^{\circ}$ C in NHcl for 15 minutes, mordanting in 4% Ferric ammonium sulphate and staining in 0.5% haematoxylin solution followed by squashing in 45% accetic acid.

Various mitotic stages obtained were studied. Meiotic studies were also conducted for all seed types especially for the large leaved mutant type. The method followed was-fixing young flower buds in acetic alcohol (1:3) between 11 am. and 1 pm. Smears were made from these buds using 1% Propionocarmine and various stages studied. Cameralucida drawings were also made for some of the stages.

# EXPERIMENTAL RESULTS

## EXPERIMENTAL RESULTS.

Results of the present investigations on the morphological and the cytological behaviour of the  $X_3$  and  $X_4$  generations in Cow Pea are presented below:-

I. Observations on the  $X_3$  generation.

## 1. Germination.

Observations were taken from the fourth day onwards after sowing. Good germination was found in types ii, vii, x, xi, xvi, and xviii on the fourth day and by the seventh day it was complete in all types. The percentages of germination for different seed types are given in Table.II.

Type No. vi was completely inviable and produced no plants. Delayed germination was observed in some seed types particularly in iii, xvii, and xxi.

#### 2. Seedling characteristics.

#### i) First pair leaves.

Table III illustrates the first leaf characteristics. The first visible observation recorded was that of the appearance of four yellow seedlings. Abnormal seedlings were found in types viii, x, and xiii, having one seedling each in these types.and the seedlings later produced normal leaves. Observations were made for those seedlings that were not well developed compared to the

## TABLE II

5

# Table showing 100 seed weight, germination percentage and percentage sterility of the different

seed types in X3

| <br>         | ون بزن هاه هه هه هه منه منه منه منه منه منه منه م | و برین بانه هره اینه برین برین می بانه برین برین می برد. |                                                           |
|--------------|---------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| Type No.     | Percentage<br>generation                          | Percentage<br>sterility                                  | Seed weight (gm.)<br>(X3) seed<br>material<br>(100 seeds) |
| 1            | 80.05                                             | 22.45                                                    | 6.75                                                      |
| · 11         | 84.44                                             | 39.39                                                    | 9.13                                                      |
| 111          | 74.53                                             | 31.48                                                    | 8.44                                                      |
| iv           | 97.04                                             | 34.31                                                    | 8.57                                                      |
| v            | 57.57                                             | 31.03                                                    | 6.82                                                      |
| vi.          |                                                   |                                                          | 12.92                                                     |
| vii          | 86.61                                             | 20.51                                                    | 8.40                                                      |
| viii         | 68.61                                             | 32.56                                                    | 8.61                                                      |
| ix           | 77.77                                             | 28.42                                                    | 8.72                                                      |
| X            | 85.55                                             | 16.71                                                    | 7.70                                                      |
| xi           | 77.77                                             | 18.30                                                    | 7.82                                                      |
| xii          | 90.00                                             | 30,54                                                    | 7.56                                                      |
| xiii         | 57.50                                             | 29.77                                                    | 13.32                                                     |
| xiv          | 84.32                                             | 26.42                                                    | 9.45                                                      |
| XV           | 60,00                                             | 24.06                                                    | 8.58                                                      |
| xvi          | 94.74                                             | 23.84                                                    | 11.44                                                     |
| x <b>vi1</b> | 20,83                                             | 31.91                                                    | 9.52                                                      |
| xviii        | 100.00                                            | 20.33                                                    | 13.30                                                     |
| xix          | 82,50                                             | 17.24                                                    | 9.92                                                      |
| XX           | 68, 88                                            | 23.27                                                    | 15.76                                                     |
| xxi          | 56.64                                             | 23.82                                                    | 7.90                                                      |
| xxii         | 90,02                                             | 19.68                                                    | 6.28                                                      |

control types. Seedlings with crinkled first pair of leaves were noticed in almost all seed types but more in types ii, iv, vili, xiv and xix. The time of emergence of the first pair of leaves varied in different types as well as in different seedlings in a type. Three seedlings in seed type ii, two seedlings in iii, five seedlings in iv, four seedlings in v, fifteen seedlings in type vii, three seedlings in x, one seedling in seed type xii, one seedling each in seed types xix and xx and two seedlings in seed type xxii - produced the first pair of leaves within 7-10 days after sowing unlike the control which took only 5-7 days for the same.

#### ii) Chlorophyll variations.

The chlorophyll variations in the first pair of leaves as well as the succeeding leaves consisted of partial absence of chlorophyll, chlorophyll deficient spots, or unevenly distributed yellow and green patches. Completely yellow seedlings were also noticed. Generally chlorophyll variations were observed in the first pair of leaves and rarely in the second pair of leaves also. The frequency of different types of chlorophyll variations in the first pair of leaves is given in Table III along with other seedling abnormalities.

Seedlings with the first pair of leaves partly yellow were noticed in seed types 11, 111, iv, vii, viii, ix, x, xii, xiii, xiv, and xxii.

## TABLE III

Characteristics of the first pair of leaves in  $X_3$ 

|             | No. of             | No. of                          | No. of<br>plants           | No. of<br>Chlorop                     | No. of plants showing<br>Chlorophyll variations |                                |  |
|-------------|--------------------|---------------------------------|----------------------------|---------------------------------------|-------------------------------------------------|--------------------------------|--|
| Type<br>No. | abnormal<br>plants | plents<br>not well<br>developed | with<br>crinkled<br>leaves | Leaves<br>yellow                      | Partly<br>yellow                                | Yellow<br>or<br>white<br>spots |  |
| 1           |                    |                                 | · · ·                      | · · · · · · · · · · · · · · · · · · · |                                                 |                                |  |
| ii          | <b></b>            | 3 1                             | 24                         | , · · •                               | 2                                               |                                |  |
| 111         |                    | 2                               | 2                          | -                                     | 2                                               | **                             |  |
| iv          |                    | 11 · ·                          | 12                         | -                                     | · · ·                                           | 2                              |  |
| v           |                    | 3                               | 2                          | -                                     |                                                 | **                             |  |
| vi          | i                  | a an<br>An an                   | · · · ·                    |                                       | · · ·                                           |                                |  |
| vii         | <b>.</b>           | 15                              | 8                          |                                       | · . 3.                                          | 2                              |  |
| viii        | 1                  | 11                              | 12                         | x 👄                                   | » ** <b>2</b>                                   | 1                              |  |
| ix          |                    | 5                               | 7                          | •••                                   | 2                                               | 1                              |  |
| x           | 1                  | 3                               | 5                          |                                       | 3                                               | 1                              |  |
| xi          |                    | 1                               | 1                          |                                       | 3 <del></del>                                   | -                              |  |
| xii         | andia 1            |                                 | 8                          | 2                                     | × 2                                             | -                              |  |
| xiii        | • <b>1</b> ••••    |                                 | 1                          | . 👄                                   | * 3                                             | 1                              |  |
| xiy         | •                  | 7                               | 18                         | -                                     | 2                                               | 1                              |  |
| XV          | **                 | - 4                             | 2                          | -                                     | · · 🕳                                           | -                              |  |
| xvi         | <b>**</b> *        | 1<br>(****                      | 1                          | -                                     | ° 🗮                                             | <b>***</b>                     |  |
| xvii        | ÷.                 |                                 | 3                          | · · · · ·                             | n y k r                                         | · <b></b> .                    |  |
| xviii       |                    | -                               |                            | <b>.</b> .                            | · · · ·                                         |                                |  |
| xix         | -                  | 2                               | 11                         | 2                                     | ну м., <b>не</b>                                |                                |  |
| XX          |                    | 1                               | <b>.</b>                   | -                                     | * 🖛                                             | 3                              |  |
| xxi         | -                  | <u></u> 5 ′                     | 8                          |                                       | : 🜩                                             |                                |  |
| xxii        | -                  | 2                               | 7                          | -                                     | 1                                               | -                              |  |

.

.

Yellow or pale white spottings or markings found in some seedlings under seed types iv, vii, viii, ix, x, xiii, xiv, and xx.

Chlorophyll variations were observed later in the growth period also. One such case was found in seed type ii in which one plant showed three leaves with distinct yellow and white patches. This plant produced normal leaves in the earlier stage but showed chlorophyll variation in the eighth ninenth and tenth leaves. The later formed leaves were normal. Seed type xix had one plant with the second pair of leaves more or less yellowish and the third leaves were partly coloured. The variation in colour gradually decreased in the succeeding leaves.

Chlorophyll spottings were observed in the first and second leaves and rately in the third and fourth leaves. The frequency thereafter decreased and was completely absent in the later formed leaves. Almost all of these plants survived and produced pods but to a lesser extent.

#### iii) Lethal 'Xantha' mutants.

In seed types xii and xix, four Xantha mutants two in each type were observed. These seedlings were normal, earlier in germination but were compltely yellow. They remained for about one week and then faded out and none survived.

3. Leaf abnormalities.

This was a common feature of the seedlings during

their earlier growth period. Generally the second and other succeeding leaves have three leaflets of equal size and shape. Exceptions to this condition were noticed in many of the seed types. Plate 5 shows such abnormal leaves.

Unifoliate second pair of leaves were observed in one plant under seed type iv.

Seed types ii, iii, iv, v, vii, viii, ix, x, xi, xii, xiv, xv, xix, and xxi produced bifoliate leaves. Fourfoliate leaves were produced by some plants in seed types ii, iii, iv, vii, ix, xi and xii.

Four plants under seed types ii one in v and one in ix, produced five foliate leaves.

Many of these cases were modifications or abnormali ties of the second leaves of the seedlings. Only very few cases of abnormalities in the third or the succeeding leaves were noted.

4. Growth habit of plants.

In general, all seed types showed a uniform rate of growth like the control type. But there were variations in the final stature of the plants. The plants within a type were found to consist of tall or dwarf, erect or spreading or sometimes trailing. The growth habits of different seed types are summarised as follows. Seed types ii, iii, iv, v, vii, viii, ix, xi, xiv, xv, and xxii were of normal growth as that of the control type I.

## TABLE IV

Total Survived plants, Dwarf and Crinkled plants in the different Seed types in  $X_3$ 

| Seed<br>types | Total number of<br>plants in X <sub>3</sub> | Dwa <b>rf</b><br>plants | Crinkled<br>plants |
|---------------|---------------------------------------------|-------------------------|--------------------|
| <br>i         | 106                                         | 3                       |                    |
| 11            | 139                                         | 7                       | 2                  |
| 111           | 46                                          | 9                       | 3                  |
| iv            | 101                                         | 15                      | 3                  |
| • 🔻           | 29                                          | 5                       | . 1                |
| vi            |                                             |                         | -                  |
| vii           | 433                                         | 82                      | 2                  |
| viii          | 218                                         | 70                      | 3                  |
| ix            | 126                                         | 24                      | , " <b>—</b>       |
| X             | 140                                         | 24                      | 3                  |
| zi            | 60                                          | 10                      | e 🗰                |
| xii           | 76                                          | 19                      | ÷ .                |
| xiii          | 21                                          | 6                       | 2                  |
| xiv           | 277                                         | 53                      | 4                  |
| xv            | 23                                          | 6                       | ÷                  |
| xvi           | 27                                          | • <del></del>           |                    |
| x <b>vii</b>  | 3                                           | 2                       | 1 <b></b>          |
| viii          | 9                                           | 2                       | 1                  |
| xix           | 56                                          | 4                       | 1                  |
| XX            | 29                                          | 8                       | 2                  |
| xxi           | 41                                          | 16                      | 3                  |
| <b>zxii</b>   | 56                                          | 8                       |                    |

Majority of plants in these types were of medium stature and semi spreading or erect and fewer spreading. Dwarf plants were common in these types, the maximum frequency being in types vii, xiii, ix, x, and xiv which is presented in Table IV.

Medium or tall plants were common in seed types xii, xvi, xvii, xviii xix and xx which were also characterised by a robust or vigorous growth habit. Most of the plants in other types were found to be spreading in nature and dwarf plants were reduced to a minimum in these types.

Seed types xiv and xv were characterised by the presence of plants with large, dark green leaved, later flowering types. These were enumerated to be thirteen (nine from type xiv and four from type xv). In addition to the leaf character which is the most important feature, the robust growth habit combined with shy branching nature and trailing habit were also contrasting. This type was carried forward to the  $X_A$  generation for further studies.

5. Flowering and flower types.

Flowering was first observed in seed types ii, iii and vii on the 34th day after sowing. Flowering started in almost all types within a week and flower production was maximum within a fortnight. Later flowering was observed in types xii, xiii, xvi, xvii, xviii and xix which were about two weeks late compared to the control type. In between these two cate-

36

'n

gories come seed types iv, v, viii, ix, x, xi, xiv, Xv, xx, xxi, and xxii.

<u>Control type</u>. Plower colour typical to the 'African' variety characterised by a pink colour, the standard being more intense than the wings. There are two small white spots at the neck of the standard surrounded by a dark hallow from which dark streaks appear to emerge and terminate at the outer perifery. Wings are pinkish with a white patch at the centre.

The flower types produced by the different seed types varied from each other and the different types observed were grouped under nine types as follows:-

i. White flower type.

a) Pure white - This is characterestic of the seed type ii. The flowers were pure white with only a light yellow shade at the neck and were of equal size as the control.

b) White with pink shaded wings - White standard and wings partly shaded. This was produced by seed type iii.

c) White with pink shaded wings and standard - The wings were pink shaded on the upper side close to the standard and this was produced by seed type iv.

ii. Deeply pink shaded types.

The standard was deep pinkish compared to that of the control. Wings were also intensely coloured. Such flowers were noticed in seed types xiii,xviii, xix and xxii.

## iii. Pale coloured pink flowers.

The standard was pale coloured with clear hallows at the base. Wings were slightly bluish with a light white patch at the centre. This type was observed in seed types V, vii and viii.

iv. Bluish red.

The standard was slightly bluish red with clear yellow spots at the base while wings were pale coloured. This types was observed in seed types ix,x, xiv and xvii.

v. Small pink flowers.

Both standard and wings were pale pinkish usually with no black hallows around the yellow spots at the neck of the standard and was found in seed types xi, and xv.

vi. Pale coloured with prominent black hallows.

The wings were usually deep pink with a bluish tint at the apex. This was noted in seed types xii and xvi.

## vii.Bluish pink coloured

The standard was clearly bluish at the centre and the perifery with no black hallow at the base. Wings were with bluish and pinkish tints at upper and lower areas. This group of lowers was noted in seed type xx and xxi.

Variation of flower colour was observed within many of the seed types. It was not uncommon to find fewer coloured plants in the normally white flower types. So also white flowered plants were observed in many of the coloured types. Seed types ii, iii and iv consisted of some coloured plants while seed types v, vii, viii, ix, x, xi, xiii and xv were found to produce sparse white flowered plants.

### 6. Pod colour.

The colour of pods produced by the different seed types was studied when the pods were ripe. The different pod colours were recorded and listed out in the Table V along with the seed colours. A close observation of the data discloses that the commonest colour was straw like that of the control type. Variations to this were the purple coloured, pink shaded, and the pink variegated pods. All seeds types produced straw pods. In addition, types ii, viii, ix, x, xi and xiii produced purple pods, ii, iii, iv, v, vii, vii x, xi, xiii and xiii produced pink shaded pods while types xiv and xv had few plants with pink variegated pods. Plates 11 and 12 illustrate the different pod types obtained.

## 7. Seed colour types.

The seed colours obtained were tabulated and presented in the Table V along with their pod colours.

Plates 1 and 2 represent the parental seed types used as the seed material in  $X_3$ . The different seed types obtained from this generation were more or less similar, only three new seed types could be isolated.

It was interesting to note that among the twenty-one

|                                                                                                                 |                      |                 |                                                  | •                            |                                              |                     |                             |
|-----------------------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------------------------------------------|------------------------------|----------------------------------------------|---------------------|-----------------------------|
| Art <sup>a</sup> ndaliyihcaiyaank                                                                               | Segrege              | onto            |                                                  |                              | nigen gestand de Comme anders fan ste        | NACÉSTREACHDAINE SE | iate                        |
|                                                                                                                 |                      |                 | Parental                                         |                              | olour.                                       | own                 | Totel                       |
| Å                                                                                                               | •                    |                 | 4 (3.1 <b>(3.1 4</b> (3 <b>2</b> )               | 4 <b>9</b> 7 6               | L. VA                                        | UWAR                | TA 0597                     |
| Colour                                                                                                          | Straw                |                 | 65                                               | ·. ;                         | ,                                            | 2                   | 67                          |
| Pod C                                                                                                           | Purple.              | •               | 42                                               |                              |                                              | 1                   | 43                          |
| Po                                                                                                              | Pink                 | ÷ ,             | 20                                               |                              | •                                            | <b>* •</b>          | 20                          |
| •                                                                                                               | Total.               | · .             | 127                                              |                              |                                              | 3                   | 130                         |
|                                                                                                                 |                      |                 | n chuidh ann an Ann Ann Ann Ann Ann Ann Ann Ann  | an na si ci su cina na astar | ₩₩₩₽₽₩₩₩₩₩₩₩                                 | 2.<br>2.<br>2.      | ternife og Sambjärge skræme |
| I. Pe                                                                                                           | rental ty            | me              | 'White<br>around                                 | seeds<br>the                 | with b<br>eye.'                              | rown pat            | ch                          |
| fan e ferendasie e ee                                                                                           | rental. ty<br>gants. | 7 <b>00</b>     | 'White<br>around                                 | secds<br>1 tha               | with b<br>eye. '                             | rown pat            | ich                         |
| rjan se ferrestinis et ang                                                                                      |                      | /pe             | 'White<br>around<br>White y<br>out bro<br>patch. | d tha<br>vith                | with b<br>eye.'<br>Light<br>brown<br>nottled | Brown               | ,<br>                       |
| Segre                                                                                                           |                      | n Mara Mingda ( | eround<br>White v<br>out bro                     | d tha<br>vith                | eye. '<br>Light<br>brown                     | Brown               | а<br>                       |
| ofuntation and the second s |                      | Paren tal       | eround<br>White v<br>out bro<br>patch.           | d tha<br>vith                | eye. '<br>Light<br>brown<br>nottled          | Brown               | Tote                        |

TABLE V.

,

## TABLE V. (Contd.)

IV. Parental type ..... ' White seeds with bluish mottlings around the eye'.

| egregants.                                                                               | Parental<br>type.           | Rose<br>white<br>brown<br>mott-<br>led. | Ash<br>mott-<br>led. | Brown.                                 | Tota]                                                                                                                    |
|------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Straw                                                                                    | 61                          | 11                                      | 8                    | 3                                      | 83                                                                                                                       |
| Pink                                                                                     | 8                           | 1                                       | • •                  | ••                                     | 9                                                                                                                        |
| Total                                                                                    | 69                          | 12                                      | 8                    | 3                                      | 92                                                                                                                       |
| . Parental ty                                                                            | pe ' I                      | White sea                               | ds with R            | eyes                                   | 199 ann ann ann ann ann ann<br>7<br>8<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| . Parental ty<br>Segregants.                                                             | pe ' i<br>Parental<br>type. | 10 40 40 44 40 44 40 44 40              | Brown                | ی<br>میں ایک ایک میں میں ایک درب ایک ا | '.<br>Total                                                                                                              |
| ین این می وی می این می می می این می این می این می این این این این این این این این این ای | Parental                    | Rose<br>white<br>with-<br>out           | Brown                | ی<br>میں ایک ایک میں میں ایک درب ایک ا |                                                                                                                          |
| Segregants.                                                                              | Parental<br>type.           | Rose<br>white<br>with-<br>out<br>patch. | Brown                | ی<br>میں ایک ایک میں میں ایک درب ایک ا | Total                                                                                                                    |

# TABLE V. ( Contd.)

VII. Parental type ..... ' Red brown with black mottlings'.

| egregants.                                           | (Parental<br>type.)                 | White<br>with<br>brown<br>patch.                                                                                                                                                                                                                                                                                                                     | Ash<br>mott-<br>led.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Brown.                                     | Total |
|------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|
| Straw                                                | 61                                  | 6                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                          | 74    |
| Pink                                                 | 47                                  | • •                                                                                                                                                                                                                                                                                                                                                  | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ••                                         | 47    |
| Total.                                               | 108                                 | 6                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                          | 121   |
| VIII. Parenta                                        | 1                                   | و الإستانية المراجبة المراجبة<br>المراجبة المراجبة الم<br>المراجبة المراجبة الم | ing and a state of the state state state of the state of | nan wan taki in ang ban ana ana ing taga t |       |
| VIII. Parenta<br>Segregants.                         | 1                                   | و الإستانية المراجبة المراجبة<br>المراجبة المراجبة الم<br>المراجبة المراجبة الم | ing and a state of the state state state of the state of | White<br>with                              | Total |
| दान के रहा की की की का कि की का का का का का का का का | (Parental<br>type.)                 | Rose                                                                                                                                                                                                                                                                                                                                                 | Ash<br>mott <del>r</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | White<br>with<br>brown                     | Total |
| Segregants.                                          | (Parental<br>type.)<br>aw 26        | Rose<br>white.                                                                                                                                                                                                                                                                                                                                       | Ash<br>mott <del>.</del><br>led.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | White<br>with<br>brown<br>patch.           |       |
| Segregènts.<br>Stra                                  | (Parental<br>type.)<br>aw 26<br>c 3 | Rose<br>white.                                                                                                                                                                                                                                                                                                                                       | Ash<br>mott <del>.</del><br>led.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | White<br>with<br>brown<br>patch.           | 39    |

## TABLE V (contd.)

IX. Parental type ..... Deep Brown mottled.

:.

| Segregante. |
|-------------|
|-------------|

|        | (Parental<br>type) | rose<br>white | ash<br>mott-<br>led. | White<br>with<br>brown<br>patch. | Total. |
|--------|--------------------|---------------|----------------------|----------------------------------|--------|
| Straw  | 37                 | 3             | 1                    | 5                                | 46     |
| Purple | 1                  | · <b>1</b> ·  | . • •                | 4                                | б      |
| Total  | 38                 | 4             | .1                   | 9                                | 52     |
|        | -                  |               |                      | •<br>•                           |        |

;,

X. Parental type ..... Brown mottled.

(Parental type) rose white Brown White Total with Brown patch Straw 34 7 7 4 52 Pink 1 1 1 3 Purple 1 Total 35 56 8 9

Segregants.

TABLE V (contd.)

XI. Parental type ..... Light brown mottled.

| Segregants.       |        | · · ·                                | ent<br>Nel Sector M   | · ·   |
|-------------------|--------|--------------------------------------|-----------------------|-------|
| · · · · · · · · · |        | Light brown<br>mottled<br>(Parental) | rose<br>white         | Total |
|                   | Straw  | 19                                   |                       | 19    |
|                   | Pink   | 3                                    | <b>0</b> . <b>0</b> . | 3     |
| · · · · ·         | Purple | 25                                   | 1 1                   | 26    |
|                   | Total  | 47                                   | 1                     | 48    |

XII. Parental type ..... Densely mottled dull brown.

| • • • • • • |       | Densely<br>mottled<br>dull<br>brown<br>(Parental) | rose<br>white | dark brown<br>dense mott-<br>led | <sup>°</sup> Total |
|-------------|-------|---------------------------------------------------|---------------|----------------------------------|--------------------|
|             | Straw | 20                                                | · 8           | 7                                | 35                 |
| · .<br>. ·  | Total | 20                                                | 8             | 7                                | 35                 |

## TABLE V. (contd.)

..... Large light-brown. XIII. Parental type .

Segregants. (Parental) White Brown Total large light brown 1.1 . : Straw 10 10 . . Pink 2 5 . 3 Purple 5 6 1 . . Total 18 2 21 1 ..... 'Small brown'. XIV. Parental type .. Segregants. Small brown Total (Parental) 61 61 Straw Pink(Varigated) 3 3 64 Total 64

## TABLE V (contd.)

XV. Parental type - 'Small light brown'.

Segregants.

| · ', · '                                  |                      | (Parental)<br>small light<br>brown. | Brown. | Total. |
|-------------------------------------------|----------------------|-------------------------------------|--------|--------|
|                                           | Straw.               | 32                                  | 2      | 34     |
|                                           | Pink<br>(Variegated) | <b>3</b>                            | ••     | 3      |
| in an | Total.               | 35                                  | . 2    | 37     |

..... 'Reddish white'. XVI. Parental type .....

| Segregants. | * 2    | (Parental)        |          | Total. |
|-------------|--------|-------------------|----------|--------|
| •           | • • •  | Reddish<br>white. | 1 3<br>N |        |
|             | Straw. | ້ 25              | 12       | 25     |
|             | Total. | 25                |          | 25     |

•

XVII. Parental type ..... 'Half red- Half white'.

| Segregants. |        | · · · · ·               |        |        |
|-------------|--------|-------------------------|--------|--------|
| 2 · ·       |        | (Parental)<br>Half-red. | Brown. | Total. |
| - · ·       | Straw. | •                       | . 3    | 3      |
|             | Total. | ••                      | 3      | 3      |

TABLE V (contd.)

XVIII. Parental type ..... 'Ash-violet mottled!

| ,<br>* *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Paren<br>Ash-vi                         | olet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total.                                   |             |                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|----------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mottle                                   | <b>đ.</b> - N. 1997 - N. 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 | ٤ ،                                      |             | ÷                                      |  |
| Straw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 7           |                                        |  |
| lotal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                        | 7           | 11.                                    |  |
| IX. Parental t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ype                                      | •••••*Deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ash mot                                  | tled:       | . ,                                    |  |
| Segregants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1997-1996-1996-1996-1996-1996-1996-1996- |             | · · ·                                  |  |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | en e | Deep ash mot<br>(Parents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tled                                     | Total       | •                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Straw.                                   | <b>51</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ь                                        | 51          | ;                                      |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total.                                   | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | 51          |                                        |  |
| IX. Parental t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ype                                      | Ash-e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | grey mot                                 | tled.       |                                        |  |
| NO TOTOROCT V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |             |                                        |  |
| Segregants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b></b>                                  |             | ni in na si in te                      |  |
| and the subscription of th |                                          | (Parental)<br>Ash grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rose                                     | Ťotal       | •••••••••••••••••••••••••••••••••••••• |  |
| an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Straw                                    | Ash grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rose                                     | Total<br>25 |                                        |  |

## TABLE V. (contd.)

XXI. Parental type ..... Brown mottled.

Segregants.

|                                        | · · · · | (Parental)<br>Brown<br>mottled. | Rose white. | Total. |
|----------------------------------------|---------|---------------------------------|-------------|--------|
|                                        | Straw.  | 31                              | 6           | 37     |
| <b>Antipation in the second second</b> |         |                                 |             |        |

XXII. Parental type ..... Light yellow brown.

Segregants.

| ·<br>· | •      | Light yellow<br>brown<br>(Parental) |     | Brown. | Total. |
|--------|--------|-------------------------------------|-----|--------|--------|
|        | Straw. | 37                                  | X   | 10     | 47     |
| •      | Pink.  | 2                                   | . 1 | ••     | 2      |
|        | Total. | 39                                  |     | 10     | 49     |

seed types, only four of them (types xi, xvi, xviii and xix) bred true with respect their pod and seed colours while type xvii produced an entirely different seed types instead of its parental type. All others segregated into different seed colour types. White seed type was the commonest one among the segregating lines.

#### 8. Morphological abnormalities.

#### a) Floral abnormality.

One plant was isolated from seed type iv which showed abnormalities in the number of floral parts as well as in their order of arrangement. This plant, unlike the control, produced flowers with three standards, two standards or one standard. Other floral parts also showed similar increase or decrease in number or sometimes other structufal modifloations. In some flowers the staminal column was modifled into a triadelphous or tetra adelphous instead of the normal diadelphous condition. Plates 16, 17 and 18 illustrate the various floral abnormalities. In some flowers an increase in the total floral parts was also noticed. This plant was carried forward to the  $X_4$  generation.

#### b) 'Large - leaved' mutant.

Thirteen plants were selected from seed types xiv and xv and the plate 8 shows one such plant. These plants were characterised by large, dark green broad leaves unlike the control types, which had smaller leaves. These plants

had fewer but long trailing branches with a thick and stout main stem. They grew slow and produced flowers by about two weeks later than the control. Flowers were comparatively larger and produced fewer pods perpeduncie. It was intersting to note that some of these plants produced peduncies below the cotyledonary node and above the collar region. Pods were larger sized with irregularly distributed deep pink patches on a straw back ground.

These plants were found to be longer duration than other types. On selfing five fruits were secured which were used as seed material to raise the  $X_4$  generation. Plate 12 (x) shows the pod characteristics of this type.

#### 9. Pollen Sterility.

Pollen sterility was estimated from a random sample of plants, the size of the sample being proportionate to the total number of plants under each type. The data are included in Table II.

The data reveal that there is considerable variability in sterility in the different seed types in comparison to the control. It was highest in the seed type ii and lowest in x.

Pollen sterlity of individual plants was calculated for the Abnormal floral type and 'Large leaved' mutant type and data tabulated in Tables IX and X.

# II. Observations in the $X_4$ generation.

## 1. Germination.

The data representing the germination percentages of the three parental seed types and those of their progeny lines are tabulated and presented in Table VI.

Similar to the parental types, the seeds of the different progeny lines germinated from the third day after sowing and continued for one week. Delayed germination was noticed in lines, 13, 14, 21, 22 and 23.

A comparison of the parental percentage of seed type ii with those of its progeny lines shows that the latter excelled in germinability. Complete germination was observed in some lines and none of these progeny lines gave a lower germination percentage than the parental type.

Seed type iv showed very good germination where as its progenies showed varied percentage. There were lines which had germination percentages better than or equal to or lower than that of the parental type. Type x also simulates type iv in this respect.

# 2. Flowering and Flower types.

Flowering started by the fifth week after sowing in all lines in the  $X_3$  parental type ii which flowered on the  $34^{\text{th}}$  day of sowing. Early flowering was noticed in all lines of the type ii and those in types iv but lines in type x were slightly late.

| types of                              | the X <sub>3</sub> parental type<br>the X <sub>4</sub> progeny 11 |        |                             |              | š<br>1.                     |
|---------------------------------------|-------------------------------------------------------------------|--------|-----------------------------|--------------|-----------------------------|
| X <sub>3</sub> Parental<br>types.     | X <sub>4</sub> progeny lines                                      | nation | Flower<br>colour<br>'white' |              | 100<br>see<br>weigh<br>(Gms |
|                                       | 1<br>                                                             | 2      | 3                           | 4            | 5                           |
| li White<br>seed type.                |                                                                   | 84.44  | 127                         | 3            | 8.4                         |
| e e e e e e e e e e e e e e e e e e e | 1. Straw white.                                                   | 100.00 | 16                          | • • • •      | 8.2                         |
| · · · · ·                             | 2. ,, ,,                                                          | 100.00 | 13                          | 2            |                             |
|                                       | 3. ,, ,,                                                          | 100.00 | 14                          | ••           | ••                          |
|                                       | 4. Straw brown.                                                   | 91.66  | 6                           | 17           | 9.6                         |
| ,                                     | 5. ,, ,,                                                          | 100.00 | 3                           | 17           |                             |
| ,<br>,                                | 6. Purple white.                                                  | 94.66  | 24                          | * •          | 7.4(                        |
|                                       | 7. ,, ,,                                                          | 95.83  | 22                          | · · ·        |                             |
| j de t                                | 8. Purple Brown.                                                  | 91.66  | 7                           | 34           | 6.62                        |
| · · ·                                 | 9. Pink white.                                                    | 91.66  | 18                          | e 1          | 8.34                        |
|                                       | 10. ,, ,,                                                         | 95.83  | 22                          | 5 <b>8 6</b> | ••                          |
| White<br>with bluich                  |                                                                   |        |                             |              | ¢ +-                        |
| mottling.                             | • •                                                               | 97.04  | 69                          | 23           | 8.44                        |

# TABLE VI.

| TABLE | VI. | (Contd. | ) |
|-------|-----|---------|---|
|-------|-----|---------|---|

|                                                      | الثان على الله البلك بالله الله، الله الي غلي غلي على من على على عن جي الله عن الله على الله الله ال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | الله خان بين بين الأن في من جم بين    | من بأنه أمسالها إلى برب علي علي الله | ی<br>به میرودست: چیزو افتار میرو وارد د<br>د | ر بین این این این بین میل خود جود کرد. |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|
|                                                      | аларана<br>1997 — <b>1</b> .<br>1997 — <b>1</b> .<br>1997 — Полона<br>1997 — Поло | <b>* 2</b>                            | 3                                    | 4                                            | 5                                      |
| بى قەر بۇر بور، بۇر، بۇر، يېرى <u>مى مى مى مى مى</u> | ین در بالا میں بالد بالد بالد بالد بالد میں الدوا میں بین بالد بالد بالد بالد میں میں میں الدوا میں ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ي مي جي جي جي جي جي خي هد بين جي<br>' | ي<br>مو جو بنه مو بيه مو مو مو مو    | بوجي جيو پيو جد يور يو دي و                  |                                        |
|                                                      | 11 Straw<br>white.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.00                                | 15                                   |                                              | 8,11                                   |
| · · · ·                                              | 12 Straw white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.50                                 | 14                                   |                                              |                                        |
| •                                                    | 13 ,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.00                                | 15                                   |                                              |                                        |
|                                                      | 14 Straw brown mottled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91.66                                 | 3                                    | 1 <u>3</u>                                   | 8.06                                   |
|                                                      | 15 ,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.00                                | 8                                    | 14                                           |                                        |
|                                                      | 16 Straw ash mottled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.50                                 | 9                                    | 13                                           | 8.32                                   |
|                                                      | 17 ,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91.66                                 | 8                                    | 12                                           | •••• ·                                 |
|                                                      | 18 Straw brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.80                                 | 14                                   | 30                                           | 9.39                                   |
| •<br>•                                               | 19 Pink white.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.33                                 | 17                                   | 4                                            | 8.67                                   |
|                                                      | 20 ,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87.50                                 | 20                                   | اللبية البليه                                |                                        |
| x. Brown                                             | * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.50                                 | 12                                   | 44                                           | 7.70                                   |
| mottled.                                             | 21 Straw brown mottled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87.50                                 | 1                                    | 15.1                                         | 8.17                                   |
|                                                      | 22 ,, ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.00                                | - <b>1</b>                           | 19                                           |                                        |
|                                                      | 23. Straw rose<br>mottled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.00                                | 11                                   | 38 ·                                         | 6.42                                   |
| ·                                                    | 24. Straw brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.00                                | б                                    | 37                                           | 6 <b>.90</b>                           |
|                                                      | 25. Straw white,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.11                                 | 35                                   |                                              | 6 <b>.30</b>                           |

Table VI presents the frequency of occurrence of white and pink coloured flowers in the different progeny lines. It was found that almost all lines produced some white flowered plants even if they came from a prental type which had coloured flowers in  $X_3$ . This was the case with lines in type x. Parental types ii and iv also produced some pink coloured plants in some of the lines. Among these lines only the parental lines, 1, 3 of  $X_3$  parental type ii and 11, 12 and 13 of type iv bred true for white flower colour. Other lines disclosed a heterogenity for white and pink coloured flower characteristics by producing both white flowered plants and pink flowered plants within each line.

#### 3. Pollen sterility.

Table VII shows the range of sterility of the parental types, and sterility percentages of five individual plant in each progeny line. It was observed that lines 1, 3, 5 and 6 had not much of variation in sterility (less than 10%) while others had highly variable sterility percentages. Some lines showed plants with values which exceeded the parental range.

In the seed type iv, lines 13, 16 and 18 has sterility percentages which were within the parental range. All others showed greater variability and line 19 had one plant with more than 50% sterility.

# Comparison of the percentage sterilities in the X<sub>3</sub> parental types with those of X<sub>4</sub> progeny lines.

Parental sterility range in X<sub>3</sub> 39.30% -20.89%. Seed type. Progeny Plants, 2 3 5 1 4 ii. lines. 28.86 1 22.30 23.16 20.91 28.24 26.53 46.45 21.81 2 21.17 22.89 26.66 31.15 23.33 22.70 25.61 3 26.00 25.62 37.11 45.57 37.18 4 25.80 25.83 24.50 27.03 24.27 5 27.16 23.69 27.41 6 27.33 18.24 26.96 16.83 20.78 22.80 30.55 7 18.33 27.45 48.38 31.86 54.15 8 23.65 17.86 27.21 17.80 9 45.73 25.66 32.77 19.60 29.43 28.44 10

## TABLE VII.

|                                 |                                                                                                                                                                                                                                                                                                                                                      |                   | The city and the new are take of it whe                                            | والإزراعية بالبواعية بالبار                           | والمراقبة ويورقان والمراقب والمراقب |               |           |       |                     |         |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|---------------|-----------|-------|---------------------|---------|--|
|                                 |                                                                                                                                                                                                                                                                                                                                                      | - 19 F            |                                                                                    | Parental sterility range in X <sub>3</sub><br>20.84%. |                                     |               |           |       | X <sub>3</sub> 34.3 | 34.31 - |  |
|                                 | Seed<br>type<br><b>11.</b>                                                                                                                                                                                                                                                                                                                           | Progeny<br>lines. | Plants.                                                                            | 1                                                     | 2                                   | 3             | 4         | 5     |                     |         |  |
| · · · ·                         |                                                                                                                                                                                                                                                                                                                                                      | 11                |                                                                                    | 38.72                                                 | 36.78                               | 35.09         | 28.17     | 31.30 |                     |         |  |
|                                 |                                                                                                                                                                                                                                                                                                                                                      | 12                | ¢                                                                                  | 39.60                                                 | 28.39                               | 20.55         | 21.81     | 23.86 |                     |         |  |
|                                 | ,                                                                                                                                                                                                                                                                                                                                                    | 13                |                                                                                    | 27.10                                                 | 18.40                               | 20.06         | 21.87     | 27.28 |                     |         |  |
|                                 |                                                                                                                                                                                                                                                                                                                                                      | 14                | ،<br>بوء<br>،                                                                      | 24.74                                                 | 36.00                               | 37.66         | 32.49     | 31.35 |                     |         |  |
| a dese                          | алан на селото на се<br>Селото на селото на с<br>Селото на селото на с | 15                | پ بې د د د د په په ۱۹۹۰ ش                                                          | 30.30                                                 | 30.38                               | 45.24         | 38.83     | 27.77 |                     |         |  |
| -<br>,                          | , T , Se                                                                                                                                                                                                                                                                                                                                             | 16                | ·<br>                                                                              | 33.08                                                 | 25.61                               | <b>35.3</b> 3 | 27.39     | 25.44 |                     |         |  |
| · · · · ·                       |                                                                                                                                                                                                                                                                                                                                                      | 17                | · · · ·                                                                            | 39.47                                                 | 27.27                               | 29.70         | 20.16     | 32.04 |                     |         |  |
| •                               | 8<br>2                                                                                                                                                                                                                                                                                                                                               | 18                | r                                                                                  | 26.20                                                 | 32.41                               | 31.96         | 29.00     | 29.77 |                     |         |  |
| -                               | х<br>' Б                                                                                                                                                                                                                                                                                                                                             | 19                |                                                                                    | 52.22                                                 | 32.00                               | 47.02         | 44.53     | 16.16 |                     |         |  |
| - <sup>4</sup> 2 - <sup>1</sup> | с. <u>я</u><br>з                                                                                                                                                                                                                                                                                                                                     | 20                |                                                                                    | 31.44                                                 | 40.88                               | 43.90         | 27.61     | 29.07 |                     |         |  |
|                                 | Seed t                                                                                                                                                                                                                                                                                                                                               | ype               | اللي منه بين خلي في خلي الله من منه الله منه الله الله الله الله الله الله الله ال | Paren<br>27.65                                        | tel steri<br>%.                     | lity range    | e' 16.71% | to    |                     |         |  |
| -                               |                                                                                                                                                                                                                                                                                                                                                      | 21                | - · · · · · · · · · · · · · · · · · · ·                                            | 36.36                                                 | 23.91                               | 23.60         | 21.93     | 19.00 |                     |         |  |
|                                 | ŕ 4                                                                                                                                                                                                                                                                                                                                                  | 22                | ·                                                                                  | 23.66                                                 | 22.28                               | 24.12         | 19.69     | 22.43 |                     |         |  |
| -                               | · · · · ·                                                                                                                                                                                                                                                                                                                                            | 23                |                                                                                    | 20.65                                                 | 20.38                               | 19.00         | 20.88     | 21.47 |                     |         |  |
|                                 | •                                                                                                                                                                                                                                                                                                                                                    | 24                | · 1 ·                                                                              | 25.04                                                 | 24.80                               | 17.63         | 32.54     | 27.65 |                     |         |  |
| -                               | · · ·                                                                                                                                                                                                                                                                                                                                                | 25                |                                                                                    | 29.30                                                 | 20.00                               | 17.18         | 18.40     | 18.47 |                     |         |  |

TABLE VII. (Contd.)

Type x had all lines with sterility percentages which were within the parental range. Also there was not much of variability between lines and between plants in each line.

As a whole, types ii and iv produced marked diaparity in sterility percentages both within lines and within different plants of a line. Inter plant variation was particularly distinct in the seed type iv. Also the highest sterlity (52.22%) was observed in line 19 of this type.

#### 4. Association of Characters.

## a. Flower colour with seed colour.

It was observed in the different progeny lines that plants having white flowers had white seed colour also. In the case of the type ii which had pure white seed produced completely white flowers, and type iv which had white seeds with bluish brown mottlings around the eye, produce white flowers with pink shades on the standard and some times partly on the wings. In all but very few cases the number of plants having both white flowers and seeds equalled in free quency. Where there were no white flowered plants, as in lines 21, 22 and 24 there was also the non-occurrence of the white seed type. Therefore it is clear that there is a strong association between these two characteristics.

#### b. Pink pod colour with pod tip colour.

A direct and close relationship of the two pod characteristics namely pink pod colour and pod-tip colour were observed in four lines (9 and 10 from type ii and 19 and 20 from type iv) which resulted in the occurrence of both characters in equal frequencies.

5. Seed colour type.

Tables VIII (a), VIII (b) and VIII (c) faciliate comparative studies of the different  $X_4$  progeny lined with their  $X_3$  parental types. In the parental type ii, out of five combinations of pod and seed colours studied, none bred true to type but all segregated into different types either with respect to pod colour or seed colour.

A similar case was also observed in the parental type iv, where, out of five lines studied only one line alone bred true and other four lines segregated. (Vide Table VIII (b).

The parental type x was no exception to the general breeding behaviour of the other two types. This also had one progeny line breeding true while others segregated (Vide Table VIII (c).

It was evident that none of the parental types were true breeding. Out of a total of fourteen segregants consisting of 25 lines, only 2 bred true to type. In all cases, the parental types had been predominent among the segregating seed or pod colours.

6. 100 Seed weight.

The data collected are presented in Table VI, which

| X <sub>3</sub> Par                   | ental type                 | -'White!      |                       |      |                  |                             |                          |                  |                         |
|--------------------------------------|----------------------------|---------------|-----------------------|------|------------------|-----------------------------|--------------------------|------------------|-------------------------|
| Segregant                            | s.<br>White.               | Brown.        | Total.                |      | Lines 6 and      | 7.                          |                          | white.           | •                       |
| Straw.<br>Purple.<br>Pink.<br>Total. | 65<br>42<br>20<br>127      | 2<br>1<br>3   | 67<br>43<br>20<br>130 | •    |                  | Purple<br>Straw             | 3                        | ite<br>7<br>9    |                         |
| Progeny 1                            | ines in X <sub>4</sub>     |               |                       | •    |                  | · · ·                       | ,<br>, ,                 | • • •            | s.                      |
| Lines 1,                             | 2 and 3                    | Straw         | white.                | · ·  | Line 8           | *                           | Purple                   | brown.           |                         |
| Straw.                               | White<br>43                | . Brown.<br>2 | Total.<br>45          | ·    |                  | Purple.<br>Straw.<br>Total. | Brown.<br>21<br>13<br>34 | White.<br>7<br>7 | Total<br>28<br>13<br>41 |
| Sines 4 a                            | nd 5                       | Straw Bro     | wn.                   | ι τ. |                  |                             | Pink wl                  | nite.            |                         |
| В                                    | rown. Ash<br>mott-<br>led. | White.        | Total.                |      | Line 9 and<br>10 |                             |                          | White.           |                         |
| Straw.                               | s 31 3                     | 9             | 43                    | · ,  | ·<br>·           | Straw<br>Pink sha           |                          | 19<br>21         |                         |

۰,

٠.

٢,

| 8478         |                                                 | ··· A ··_ 957 ····                                                                                                     | #100                                                                                                                                                                        | B. +                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Straw as                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
|--------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| White.       |                                                 |                                                                                                                        | Brown.                                                                                                                                                                      | TOTAL.                                                                                                                                                                                                                    | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | Brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                                                 |
| 61<br>8      | 11<br>1                                         | 8                                                                                                                      | 3                                                                                                                                                                           | 83<br>9                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Straw.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                                                    |
| 6 <b>9</b> ` | 12                                              | 8                                                                                                                      | 3                                                                                                                                                                           | 92                                                                                                                                                                                                                        | Line 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Straw Br                                              | own.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
|              | 13 - <u>S</u>                                   | traw whi                                                                                                               | te (Pare                                                                                                                                                                    | ntal)                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Straw.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Brown.<br>30                                          | White.<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tota<br>44                                            |
|              |                                                 | Shite.<br>45                                                                                                           |                                                                                                                                                                             | ,<br>, ', ', ,                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
| and 15       | - <u>Straw</u>                                  | Brown m                                                                                                                | ottled.                                                                                                                                                                     |                                                                                                                                                                                                                           | Lines 19 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pink whi                                              | te.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                     |
|              |                                                 |                                                                                                                        |                                                                                                                                                                             | Total.                                                                                                                                                                                                                    | н<br>1. с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | White.                                                | mott-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tote                                                  |
|              | 21                                              | 7                                                                                                                      | 10                                                                                                                                                                          | 38                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Straw.<br>Pink<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>32<br>37                                         | 1ed.<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9<br>32<br>41                                         |
|              |                                                 | ر<br>اینه خان هری وی خصاصه ا                                                                                           | ويتجرب للتا بتبعين علو تبتري                                                                                                                                                |                                                                                                                                                                                                                           | و بين جو جواب من بار او حد الله خو الله من ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | و جديد الآل تريية المتحديد فينه التلك ق                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ان خوار میں درج شریع بنیو بخش سین سی                  | و بارد درب بارد میش است. است                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -               |
|              |                                                 |                                                                                                                        | а ,                                                                                                                                                                         | •                                                                                                                                                                                                                         | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
|              | · .                                             | • · .                                                                                                                  | · ·                                                                                                                                                                         | ·                                                                                                                                                                                                                         | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
|              | 8<br>69<br><u>Lines</u> .<br>, 12 and<br>and 15 | mott-<br>led.<br>61 11<br>8 1<br>69 12<br>Lines.<br>, 12 and 13 - <u>S</u><br>and 15 - <u>Straw</u><br>Brown<br>mottle | mott- mott-<br>led. led.<br>61 11 8<br>8 1<br>69 12 8<br>Lines.<br>12 and 13 - <u>Straw whi</u><br>Shite.<br>45<br>and 15 - <u>Straw Brown m</u><br>Brown Brown<br>mottled. | mott- mott-<br>led. led.<br>61 11 8 3<br>8 1<br>69 12 8 3<br><u>lines.</u><br>12 and 13 - <u>Straw white (Pare</u><br><u>White.</u><br>45<br>and 15 - <u>Straw Brown mottled</u> .<br>Brown Brown. Rose<br>mottled. white | mott-       mott-         led.       led.         61       11       8       3       83         8       1        9         69       12       8       3       92         lines.       12       8       3       92         lines.       12       8       3       92         lines.       12       and 13 - Straw white (Parental)       White.         Mhite.       45       45         and 15 - Straw Brown mottled.       Brown Brown. Rose Total.         mottled.       white.         21       7       10       38 | mott-       mott-         led.       led.         61       11       8       3       83         8       1       .       .9       9         69       12       8       3       92       Line 18.         Lines.       12       and 13 - Straw white (Parental)       Ines 18.         Mite.       45       45       Lines 19 & L | mott-       mott-       mott-         led.       led.         61       11       8       3       83         8       1        9       9         69       12       8       3       92       Line 18.         lines.         9       9       Line 18.         lines.           Straw.         12       and 13 - Straw white (Parental)       Straw.       Straw.         White.       45       Lines 19 & 20         Brown       Brown. Rose       Total.         mottled.       white.       21       7       10       38         21       7       10       38       Straw. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | mott-       mott-       mott-       mott-       led.         led.       led.       led.       led.       led.         61       11       8       3       83       Straw.       16       17         8       1       .       .       9       Line 18.       Straw.       16       17         69       12       8       3       92       Line 18.       Straw Br         lines.       .       .       .       .       .       .       .       Brown.       30         Mnite.       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

## TABLE VIII.(c)

Comparison between Pod and Seed colours of the X<sub>3</sub> parental type X with its X<sub>4</sub> progeny lines.

Parental type X. X<sub>3</sub> Parental type - Brown mottled.

| Segregants.                | Brown                  | Rose           | Brown.      | White.   | Total.       | •    | Line | 24      |               | Str                                          | ew Brown.                               | - ,                  |
|----------------------------|------------------------|----------------|-------------|----------|--------------|------|------|---------|---------------|----------------------------------------------|-----------------------------------------|----------------------|
| · · · ·                    | Brown<br>mott-<br>led. | white.         |             |          | · · ·        | •    | 7    |         |               | Brown.                                       | Rose<br>white.                          | Total                |
| Straw.                     | 34                     |                | 7           | 4        | 52           | ÷.,  | •    |         | Straw.        | 37                                           | 6                                       | 43                   |
| Pink.<br>Purple.<br>Total. | 1<br>35                | 1<br>8         | 1<br>1<br>9 | ••<br>4  | 3<br>1<br>56 |      | Line | ,<br>25 | لا می<br>بر ا | Str                                          | ew white.                               |                      |
|                            | ۳. ۳<br>۲. ۳           |                |             | *<br>*   | ,<br>,<br>,  | 1    | ·    |         | Straw.        | • • •                                        | White.<br>35                            |                      |
| X <sub>4</sub> Progeny     | lines.                 |                | 3           |          |              |      |      | ,       |               | , <u>,</u> , , , , , , , , , , , , , , , , , | 17<br>41                                | ة<br>معر<br>معر<br>ع |
| Lines 21 an                | d 22.                  | Straw Bro      | wn mottle   | ed (Pare | ntal)        | . ·  |      |         |               | ·<br>· · · ·                                 | Ne 14                                   |                      |
| Straw.                     | Brown<br>mottl<br>31   |                | Brown.<br>5 | • • • •  | Total.<br>36 | ~    | •    |         |               |                                              |                                         | ا<br>پ<br>ان         |
| Line 23.                   | Straw                  | Rose whit      | ie.         | · · · ·  | s<br>N       |      |      |         | · .           | . ·                                          |                                         |                      |
|                            |                        | Rose<br>white. | Brown.      | White.   | Total        | · .  |      | ۰.      |               | , <sup>*</sup> ,                             |                                         | , 1<br>, 1           |
| Straw.                     | - ,                    | 29             | 7           | 3        | 39           | n 2- |      | •       |               |                                              | 2012 - 12 - 12 - 12 - 12 - 12 - 12 - 12 | • <sup>•</sup> .     |

represent the weights of the parental types and those of the progeny lines. The data show that seed types ii and iv had lines showing more or less equal weights. In seed type x none of the segregants had seed weights which approximately equalled the parental type, but had only lower figures. The straw brown segregants of types ii and iv showed the highest seed weight.

## 7. Large leaved mutant.

One of the 13 plants isolated in X3 was carried for-50 seeds were sown and this type showed 87.50% ward to XA. germination. The seedlings from the very beginning revealed large sizes compared to the control. The progenies, were exact replicas of the parental type with their broad dark The trailing nature green leaves and with vigorous growth. of growth, fewer branches per plant and the delayed maturity were characteristic of the parental type. First flower appeared on the 50th day unlike the control type which took only 35 days for the same. There was also considerable variation in flowering among plants. The following studies were made to test whether this is a polyploid. (a) Pollen size. Measurement of pollen diameter was done for 100 pollen grains under high power (10 x 63) for 10 plants and data compared with those of the control. It was seen that the pollen grains of this type were considerably larger in size to suspect polyploidy.

### TABLE IX.

Percentage Sterilities of  $X_3$  parents and  $X_4$  progenies of 'Large-leaved' type.

X<sub>3</sub> Parental value ..... 25.14%

Line 26

 Plants.
 1
 2
 3
 4
 5

 Progenies.
 30.07
 23.45
 55.76
 35.63
 40.49

## (b) Leaf thickness and stomatal cells.

These studies revealed that the thickness of leaves and size of stomatal cells of this type were not distinctly different from those of the control.

(c) Meiosis.

It was observed that the number of chromosomes and their behaviour during meiosis were just like those of the control type. The type had formed eleven bivalents at metaphase I and during anaphase I normal separation was observed.

Pollen sterility (Table IX) studies indicated that there was considerable variation from the parental type as well as between plants.

Flower production, pod development, colour of pods and seeds were true to the parental type.

8. Abnormal flower type.

All the pods obtained from the isolated plant in seed type iv of  $X_3$  were carried forward to  $X_4$  generation. The progenies showed good germination like the parental type and were earlier in flower production. Flowers were true breeding in their colour, abnormalities and also in the order of arrangement of floral parts. The types of flower produced by the progenies were studied as follows:-

## TABLE X.

Percentage Sterilities of  $X_3$  parents and  $X_4$  progenies of the 'Abnormal Flower' type.

X<sub>3</sub> Parental value ..... 30.84%

| Line 27    | :<br>· · ·  |            | r     |       |               |       |
|------------|-------------|------------|-------|-------|---------------|-------|
|            | Plants.     | <b>1</b> . | 2     | 3     | 4             | 5     |
| Progenies. | 3 Standard. | 27.83      | 26.90 | 26.19 | 27.94         | 32.33 |
|            | 2 Standard. | 18.55      | 26.29 | 40.57 | 29.13         | 23.91 |
| :          | 1 Standard. | 33.92      | 25.53 | 33.00 | 23 <b>.96</b> | 26.67 |
|            | , · · ·     | · .        |       |       |               | •     |

a. Single standard flowers.

The flowers were either normal like the control with complete floral parts in tact or abnormal with increased or decreased floral parts and these showed irregular arrangements.

b. Double standard flowers.

Here one of the two wings gets modified into the second standard petal. In this case only one wing was found but when two wings were present as in some instance, an increase in floral parts mas noticed.

c. Trible standard flowers.

Plants which produced flowers with three standard petals were noted. In addition to the normal one standard, the two wing petals were enlarged and modified to produce the other standards. When present, they caused an increase in the number of corolla parts.

It was interesting to note that all these flower types were triadelphous and tetra adelphous. In many cases the styles were straight unlike the curved styles in the control.

Interplant as well as intra-plant variations in the floral abnormality were noticed in this type. One peculiarity noted was the protrusion of style and stamens earlier to flower opening. Emasculation and crossing of these flowers revealed that the stigmas were receptive. at the time of emergence.

Table X shows that the percentage of sterility in the parental plant and those of progenies and different flower types do not vary much.

Plates 16, 17 and 18 clearly illustrate the different types of abnormal flowers and their floral parts.

#### III. Cytological observations.

The behaviour of chromosomes during mitosis and meiosis was studied during the course of the investigation. Root-tip squashes of the  $X_3$  seed material were prepared and studied for all the twenty one seed types. Meiotic studies were also carried out for some of the seed types in  $X_3$  and  $X_4$  particularly for the 'large leaved type'.

1. Mitotic Studies.

It was observed that in all the cases studied, the chromosomes more or less behaved normally in comparison with the control. Normal orientation at metaphase and separation at anaphase were noticed. In no instance any abnormality was observed. Plate No. 19 shows normal metaphase and anaphase stages in root-tip squashes of seed type iv in  $X_3$ .

#### 2. Meiotic Studies.

Some good preparations were obtained in the large

leaved mutant type. Comparison with the control type was difficult but the various stages obtained revealed a normal behaviour of the chromosomes. Figures i and 2 illustrate the various meiotic stages obtained in some of the seed types.

The large leaved type which was suspected to be a polyploid by its gigas characteristics have been proved to be a mutant. This plant, during metaphase showed elevan separate and distinct bivalents (vide firure 3). Synapsis, disjunction, orientation and anaphasic separation were also noticed.

Camera-lucida drawings were made of the stages obtained in mitosis and meiosis and exact figures were prepared from these drawings.

000 0 000



# DISCUSSION

## DISCUSSION.

The results obtained in the present investigation on the 'Studies on the morphological and cytological behaviour of  $X_3$  and  $X_4$  generations in cow pea' are discussed and presented below:-

#### 1. Germination.

It was observed by many workers such as Pfiffer and Simmermacher (1915), Jacob (1949) and Spencer and Cabanillas (1956) that X-irradiation hastened germination of seeds. On the other hand Ancel (1924), Kumar and Joshi (1939) and Lesley and Lesley (1957) reported that X-irradiation was deleterious to germination. Still other workers such as Kundu <u>et al</u> (1961), Shasthry and Ramiah (1961), Jain <u>et al</u> (1961) and Sjodin (1962) reported that germination was independent of X-irradiation. Nair (1964) found germination unaffected when dry seeds were treated while it was considerably reduced when soaked seeds of cow pea (<u>Vigna sinensis</u>) were irradiated.

In the present investigation the different seed types in  $X_3$  showed varied germination. Of the twenty one seed types studied, some were early germinating and some were late in comparison to the control. Nine seed types showed higher percentages, four types showed lower percentages and seven seed types showed intermediate germination percentages in comparison to the control.

#### 2. Growth of the seedlings.

The seedlings in  $X_3$  and  $X_4$  generations showed varied growth habit during their development. In final stature, the plants were either erect, spreading or trailing and tall or dwarf. A few large leaved plants were also obtained and one non-branching sterile mutant was found in type xiv in  $X_3$ .

These findings were in line with those of previous workers such as Gelin (1954) who obtained multi-branched robust mutants of <u>Vicia faba</u> in the  $X_2$  generation and Down and Anderson (1956) who obtained a bushy type of mutant by X-irradiation of the Navy bean which had a spreading habit. Trailing types of <u>Alopecurus pratensis</u> was reported by Wohrmann (1956).

Jain <u>et al</u> (1962) obtained twelve  $X_2$  progenies in tomato which showed a variable growth habit. Nair (1964) grouped the various  $X_2$  mutants of the 'African' variety of cow pea into twining, profusely branching, dwarf and straight stemmed mutants.

From the foregoing discussion it is evident that various seedling abnormalities and morphological variations are common in the segregating generations of X-irradiated crop plants. The same statement holds good in the present study also in which similar results have been obtained.

#### 3. Sterile Mutants.

Sterile mutants were common in segregating populations of X-irradiated materials. Gustafsson (1947) in barley and Sjodin (1962) in <u>Vicia faba</u> obtained such mutants.

Athwal (1963) found that the sterile mutants which he obtained in X-irradiated <u>Cicer</u> had luxuriant/vegetative growth. He reported two types of sterile mutants. In one, the flowering was normal but the anthers failed to dehisce and the pistil was deformed where as in the other, the flowers were highly abnormal. Nair (1964) isolated two sterile mutants in cow pea of which one plant failed to flower and the other flowered but failed to set fruits.

The results of the present investigation are in agreement with the above reports. One sterile mutant was isolated from seed type xiv in  $X_3$  and three mutants from seed type ii during the  $X_4$  generation. All these plants showed robust vegetative growth and produced flowers but failed to set pods.

Genter and Brown (1941) reported that X-ray treatment caused no significant reduction in pollen sterility in field bean. Tedin and Hagberg (1952) reported a fairly high frequency of partially sterile mutants in  $X_2$  and  $X_3$ generations of Lupin. A number of semisterile plants characterised by high pollen and ovule abortion were observed by Das (1955) in barley. Considerable extent of sterility was

noticed by Beachell (1957) during the  $X_1$  to  $X_3$  generations of rice. Similar results have also been observed by Ouang and Chang (1960) and Bozzini (1961).

Jain <u>et al</u> (1961) reported that pollen and seed sterility was not affected much in the  $X_3$  generation of <u>Chrysanthemum</u>. The same authors in 1962 reported that  $X_3$ progenies of tomato within a culture showed variation in fertility.

The different seed types showed varying degrees of sterility in the X<sub>3</sub> generation. Highest percentage of sterility was observed in seed type ii. There were types like x, xi and xix which showed a lower degree of sterility than the control. Other types, however, had values more or less equal to that of the control.

Table VII presents a comparison of the percentage sterilities of three  $X_3$  seed types (ii, iv and x) with those of their  $X_4$  progeny lines. Seed type ii which had the highest sterility in  $\tilde{X}_3$  produced some lines which showed lesser extent of variability within themselves and come within the parental range while other lines showed a higher range of variability.

Seed type iv and its progenies showed a similar trend in the variability in sterility. In this case one line in  $X_4$  showed more than 50% sterility unlike the parental type which had only 34% sterility.

However, seed type x which had a sterility range of 16.71% to 27.65% in  $X_3$  produced progeny lines in  $X_4$ with sterility percentage within the parental range.

#### 4. Abnormal Flower type.

Ploral abnormalities were observed by Krishnaswamy (1945) in one variety of cow pea (Viene ugniculate). These abnormalities included the occurrence of double standards, wing petal - like growth from the androecium and increase or decrease in the number of floral parts. Breakdown of the papilionaceous structure in the double flowers of Clitoria ternatea was observed by Sen and Krishnan (1961). Jain et al (1962) isolated plants in X, generation of tomato with changes in floral structure consisting of an increase in the number of sepals, petal and stamens. Twiste and divided styles were observed by Jagethesan and Shasthry (1963) in the X<sub>2</sub> generation of <u>Gossypium birsutum</u>. Rana (1964) noted in X-irradiated Chrysanthemum a break down of the tubular condition. This was observed only in () mixed tubular type of flowers and appeared quite stable in perfect tubular types.

One plant was isolated in X<sub>3</sub> from seed type iv which produced flowers with an increase or decrease in the number of floral parts, abnormalities in floral parts like the modi fication of wing petals into normally developed standards, absence or increased number of wing and keel petals, more than one separate single stamen, incomplete development of

the staminal column etc., and also abnormalities in the disposition of the various floral parts. This plant was carried forward to  $X_4$  generation and the various abnormalities were found to be true breeding. Sen and Krishnan (1961) suggested that the break down of the papilionaceous structure in the Double flowers of <u>Clitoria</u> indicated a mutation of a single gene. It is assumed that the double type originated through a dominant gene mutation.

One interesting peculiarity noticed in the  $X_4$  generation was that in the latter part of the flowering season almost normal flowers were found on these abnormal plants.

Another feature peculiar to this abnormal type was that the inter-plant variation with respect to floral abnormalities. Intra-plant variation was also observed by Rana (1964) and he is of opinion that such a situation can best be explained by assuming the gene determining the tubular condition to be unstable. Such a locus mutates so frequently in the course of flower development in a plant that a highly variable phenotype is obtained. The intra - plant variation observed in the present investigation could similarly be explained.

However, the inter - plant variation for differential expressivity of the tubular character is difficult to explain according to the above interpretation. Other possibility according to Rana (1964) is that the expressivity of the gene

responsible for the mutant condition is variable depending upon the genotypic back ground of the plant.

Incomplete and variable expression of certain mutant types was noted by early investigators (Timoffeeff-Ressovsky) 1927, and Morgan 1929). It is becoming clear now that the variable expressivity of genetic potentialities is conditioned by modifier systems (Goldschmidt 1938, Bezem and Sobels 1953 and others). If a certain gene has variable expressivity, apparently its action during development is weak and can be modified by the action of other genes and also by external factors.

These explanations envisage a possible interpretation of the inter-plant differential expressivity observed in the abnormal flower type. It may be believed that modifier gene systems interact with the genotype of the plant and cause variability in expression.

Rana (1964) opined that qualitative variation may assume a pattern of the quantitative type through variable expressivity of typical Mendelian genes. Hence a proper consideration of variable expressivity of genetic potentialities will prove useful towards better understanding of the quantitative type of inheritance.

#### 5. Chlorophyll Mutants.

Chlorophyll variations noticed in the X<sub>3</sub> generation included partial absence of chlorophyll, chlorophyll deficient spots

unevenly distributed yellow patches and xantha mutants. These were mainly noted in seedlings. Chlorophyll varieations were also observed in a few seed types in the later stages of the plant growth.

Baburao and Kadam (1941) analysed the different deficiencies and grouped the various types as albino, lethal yellow, stunted yellow, twisted-pale green and tipburn yellow in X-irradiated rice. Gustafsson (1940) classified different chlorophyll mutants and viable chlorophyll mutants in barley. The former included xantha, albino, virescens and chloring while the latter group includes mutants like alboviridis, viridis and tigring.

Blixt (1961) identified a type of chlorophyll variegation in  $X_2$  and  $X_3$  of peas which was characterised by patches of green and yellow spots and he named it as 'chlorotica vario maculata'. During the course of  $X_3$  in the present study, four xantha seedlings were obtained and seedlings with yellow and green spots were observed in a total of twelve.

Sjodin (1962) reported that chlorophyll mutations were comparatively rare in the segregating generations of leguminous plants. This is in agreement with the results obtained in the present studies that in a large population of  $X_3$  plants only a few chlorophyll mutations were observed. Nair (1964) recorded a total of nine albinos and seven xanthas

in the  $X_2$  generation of cow pea and a number of chlorophyll spotting on the first leaves of few seedlings. Similar types were also observed in  $X_3$  in the present study.

#### 6. Large-leaved Mutant.

Gustafsson (1947) working with barley observed broader and narrower leaved mutants in the X<sub>2</sub> and X<sub>3</sub> generations. Some gignatic plants were observed by Jacob (1949) in X-rayed <u>Corchorus</u> plants.

Seed types xiv and XV in X<sub>3</sub> produced thirteen ' large leaved' plants which were characterised by large, dark green leaves, with trailing growth habit and shy branching nature. They were found to be late in flowering but produced larger pods.

The plants in general showed gigas characteristic and bred true in the  $X_4$  generation. Cytological studies revealed that this is the result of gene mutation and not due to any detectable chromosomal aberrations. Similar mutants were reported by Nair (1964) in the  $X_1$  generation of X-irradiated cow pea.

#### 7. Flower colour types.

Flower colour changes were recorded as early as 1930 when Goodspeed observed them in the progenies of irradiated tobacco and also by various workers like Bruns (1954) Hoffmann, Zoschke (1955), and others. Rai and Jacob (1956) isolated a white flower mutant in  $X_3$  generation of <u>Sesamum</u> and a similar mutant in mustard. Nair (1964) observed flower colour changes in the  $X_2$  generation of cow pea. The colours ranged from deep pink to complete white with various intermediate shades.

Similar results have been obtained in the present studies in  $X_3$  and  $X_4$  mutant cow pea which showed flower colour changes from deep pink to complete white. Nine new types were observed in  $X_3$ . Flower colour changes were frequent in the different seed types studied in both  $X_3$  and  $X_4$  generations. It was found that most of the seed types produced some white flowered plants in the progeny. This indicates that the seed types were not pure for flower colour character.

## 8. Seed colour Mutants.

The most interesting and important character studied in the present investigation was the seed colour of mutant types. Similar seed colour mutants were observed and recorded by different workers as early as 1931 when Stadler observed a large number of seed colour mutants in irradiated Zea mays. Interesting seed coat colour variations were reported by other workers as Nishimura and Kurakami (1952) in rice, Nair (1961) in <u>Sesamum</u>, Sjodin (1962) in <u>Vicia faba</u>. Nair (1964) obtained twenty one mutant seed types from the X<sub>2</sub> generation of cow pea which formed the

basis of the present investigation. The different colour changes included "whole colour" types such as white, lightred and brown, "eye colour" changes like white seeds with black eye, and "mottlings" like dark mottling, violet mottling etc.

Out of the twenty-one seed types studied in  $X_3$  it was found that a total of eight  $X_2$  seed types bred true to type, ( four with respect to seed colour and pod colour and three for seed colour alone and one for pod colour alone). All the remaining types segregated with respect to their pod and seed colours. Almost all  $X_2$  seed type colours were observed in the  $X_3$  population. Among the segregating lines of the three  $X_3$  parental types, lines 1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 19, 20 and 25 bred true while other lines showed segregation for different seed coat colours.

In <u>Vigna</u>, four factors were reported to be responsible for the 'whole colour' by Harland (1920, 1922). They were 'B' 'N' 'M' and 'R' and the various combinations gave various colours. 'R' forms the basic gene in the absence of which the seed colour would be white.

J.

Spillman and Sando (1930) suggested eight factors for seed coat colour in <u>Vigna</u>. They are 'B' ( Brown ), 'R' (Red), 'U' ( White) 'P' (Purple) 'F' ( dense bluish mottled) 'T' (sparse mottled) and 'X' ( inhibitor gene which inhibits the effect of 'F'). Various combinations of these eight genes

61

gave different seed coat colours. Any deletion or mutation would lead to seed colour changes.

Based on this explanation, the different seed coat colour development in the present investigation could be discussed.

#### 9. Cytological abnormalities.

Cytological analysis of mutants from X-irradiated <u>Nicotiana sylvestris</u> and <u>N. tabacum</u> by <u>Fujii</u> (1955) revealed chromosomal aberrations including translocations, univalents, and asynaptic configurations. Onnfrijchuk's (1953) cytological studies of one speltoid mutant in barley in  $X_3$  showed that this mutant had 21 bivalents + 1 isochromosome. It is assumed that in the production of this  $X_3$  mutant at least two reciprocal translocations would have occurred. Korah (1958, 1959) reported a number of meiotic and mitoitic aberrations in X-irradiated <u>Oryza sativa</u>. Shasthry and Ramiah (1961) observed in the  $X_2$  that multivalents were the most common abnormality in the M<sub>2</sub> generation of irradiated rice.

Contradictory results have been reported by Parthasarathy (1939) from the cytological analysis of  $X_3$ semistedle rice mutants. He observed that these mutants contained the normal complement of chromosomes and the meiosis was regular. He suggested that the origin of the mutants may probably be through a small deficiency or a gene alteration. Similar findings were obtained by Athwal (1963) who studied the various X-irradiated and spontaneous mutants during their  $X_2$  generation to detect chromosomal aberrations. No meiotic irregulairty was seen in any of these mutants.

Cytological studies on X<sub>3</sub> and X<sub>4</sub> generations in cow pea fully agree with the second set of observations. Out of the twenty one mutant seed types studied either by smears of FMC or by root tip squashes, no chromosomal abnormality was observed. The 'large leaved' mutant and 'abnormal flower' types also showed normal meiosis and 11 bivalents were observed in PMC smears. It may therefore be assumed that these two mutant types may be the result of some undetectable chromosomal aberrations or gene mutations.

:- 00 0 00 : -

# SUMMARY AND CONCLUSION

#### SUMMARY AND CONCLUSION

This piece of work embodies the results of an investigation carried out to study the morphological and cytological behaviour of mutant cow pea in the  $X_3$  and  $X_4$ generations. Twenty one seed types obtained from  $X_2$  formed the basis of the  $X_3$  generation. Three selected seed types from  $X_3$  were raised in the  $X_4$  generation. Various studies on the morphological characters supplemented with cytological studies were conducted during both generations.

Germination, chlorophyll variations, growth habit of plants, sterile mutants, flower colour types, seed colour mutants and some other mutants like abnormal flower type and 'large leaved' mutant type were studied. In addition to this, cytological studies to understand the behaviour of these mutant types during mitosis and meiosis were undertaken. No cytological abnormality was recorded in any of the types studied.

It was observed that the different seed types showed varied germination percentages. Higher, intermediate and lower values were obtained in both  $X_3$  and  $X_4$  generations. Chlorophyll variations were noticed only in a few seed types and were comparatively rare in the  $X_4$  generation. Abnormalities in the number of leaflets were also observed in some of the seed types in  $X_3$ . Plants were found to have varying growth habits as erect, spreading, trailing or twining tall or dwarf and branching or nonbranching in both generations. Nine new flower colour types were obtained in the  $X_z$  generation.

Pod colour types obtained were studied during  $X_3$ and  $X_4$  generations. Also the breeding behaviour of the different seed colour types were studied in combination with their pod colours. Different seed colours recorded were grouped as parental and segregating types in both the generations.

Pollen sterility in different seed types showed variations in  $X_3$  and  $X_4$  generations.

Four pure breeding progeny lines with respect to both pod colour and seed colour were isolated from the  $X_4$ generation. Three lines which bred true for seed colour alone and one which was true breeding with respect to pod colour were selected. Thus altogether eight lines were selected for further studies.

The important results obtained in the  $X_3$  and  $X_4$  generations were discussed in detail.

Scope and value of the present Investigation.

Mutation breeding has two objectives i.e., (1) to increase genetic variability and (2) to produce a specific

mutation that will confer a desired character to an otherwise superior variety (Myers 1960).

It may be presumed that the first condition was achieved in cow pea by X-irradiation which resulted in the selection of twenty one different seed types from the  $X_2$ generation. The present investigation provided ample chance for the various mutant types to express their breeding behaviour with respect to the genotypes. Pure breeding genotypic lines were selected from the  $X_4$  generation for further studies. Further investigation with these pure breeding lines to select better yielding strains is suggested.

## REFERENCES

# REFERENCES.

| Abrams., and<br>Velez - Fortuno, J. | 1962. | Radiation research with pigeon-<br>peas (cajanus cajan): Results<br>on X <sub>2</sub> and X <sub>4</sub> generations.<br>J. <u>Agric. Univ. P.R.46</u> : 34-42.                                                                                                                        |
|-------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ancel, S.                           | 1924  | Action de faibles doses de rayons<br>X sur des grains seches<br><u>Compt. Redn. Soc. Biol.</u> (Paris) <u>91</u> :<br>1453 - 1436 (cited by Johnson, E.L.<br>In, biological effects of radiation,<br>Vol.II (Ed) Duggar Pp.961-985 Mc -<br>Graw - Hill Book Company, Inc.<br>New York. |
| Anonymous.                          | 1955  | Report of the Bose Institute -<br>Calcutta for 1953 - '54 Pp.100.,<br>and for 1954 - '55 Pp. 124.                                                                                                                                                                                      |
| ••••                                | 1958  | Annual report of the Indian Central<br>Jute Committee for the year<br>1955 - '56.<br>PBA. 28: No.3 Pp 292.                                                                                                                                                                             |
| Athwal, D.S.                        | 1963  | Some X-ray induced and spontaneous<br>mutations in <u>Cicer</u> .<br><u>Indian J. Genet. 23</u> . 50-57.                                                                                                                                                                               |
| Baburao, and<br>Kadam, S.           | 1941  | Genetic analysis of Rice.<br>ii-Chlorophyll deficiencies.<br><u>Indian J. Genet. 2</u> : No.4                                                                                                                                                                                          |
| Beachell, N.M.                      | 1957  | The use of X-rayed thermal neutrons<br>in producing mutations in rice.<br><u>Rice Comm. 6</u> : 18-22.                                                                                                                                                                                 |
| Bhatic. and<br>Swaminathan, M.S.    | 1963  | An induced multiple carpel mutation<br>in bread wheat.<br><u>Genetica</u> . <u>34</u> : 58-65.                                                                                                                                                                                         |
| Blixt.                              | 1961  | Quantitative studies of induced<br>mutations in peas: V. Chlorophyll<br>mutations.<br>Agri. Hort. Gene. 19: 402-447.                                                                                                                                                                   |

| ς.    |                                            |                 |                                                                                                                                    |
|-------|--------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|
|       | 2 www. <b>ii</b>                           | 2 <sup>''</sup> |                                                                                                                                    |
|       | Bora, K.C. and<br>Rao, N.S.                | 1960            | Experiments with rice ( <u>Oryza</u> -<br><u>sativa</u> ) on the induction of<br>mutation by ionizing radiations.                  |
|       |                                            | 3 v             | Isotopes in Agriculture. U.N.<br>proce. on the peaceful uses of                                                                    |
| -     |                                            |                 | Atomic Energy. 1958. 306-313.                                                                                                      |
|       | Bozzini, A.                                | 1961            | Chromosome mutants induced by<br>ionizing radiations in the                                                                        |
| •     |                                            |                 | hard wheat Capelli.<br><u>Alli. Assoc. Genet.ital.6</u> :<br>365-370.                                                              |
|       | андар (1993)<br>Алар (1994)<br>Алар (1994) | 1054            | The induction of mutations                                                                                                         |
|       | Bruns, A.                                  | 1954            | through X-irradiation of                                                                                                           |
|       |                                            |                 | dormant seeds of <u>Trifolium</u><br>Pratense. Angew. <u>Bot. 28</u> :                                                             |
|       |                                            | 4               | 120 - 55.                                                                                                                          |
|       | Campos, F.F., and<br>Espiritu, L.          | 196 <b>6</b>    | Mutants isolated from X, and X, generations of rice ( <u>Oryza-sativa</u> ).                                                       |
| · ·   |                                            | · ·             | Phillip. Agric. 44: 299-307.                                                                                                       |
|       | Carpenter, J.A.                            | 1958            | The induction of mutation in subberranean Clover by X-                                                                             |
|       |                                            |                 | irradiation.<br><u>J. Aust. Inst. Agric. Sci.24</u> :<br>39-44.                                                                    |
|       | Chaudheri, K.L.                            | 1963            | Early maturing X-ray mutations<br>of Jute, ( <u>Corchorus olitorius</u> .                                                          |
|       | •                                          |                 | Linn).<br>Trans. Bose Res. Inst. 19:<br>89-105.                                                                                    |
|       | Chaudhuri, K.L. and<br>Das, K.             | 1956            | Effect of X-rays on the<br>fertility of pollen grains in<br><u>Sesamum orientale</u> .<br><u>Sci.</u> and <u>cul.21</u> : 550-553. |
|       | Das, K.                                    | 1955            | Cytogenetic studies of partial<br>sterility in X-ray irradiated<br>barley. Indian J. Genet. 15:                                    |
|       | Down, E.I., and<br>Anderson, A.L.          | 1956            | Agronomic use of an X-ray<br>induced mutant.<br>Science. 124: 223.24.                                                              |
| *     |                                            | 3               |                                                                                                                                    |
| · · · |                                            |                 |                                                                                                                                    |
| •     |                                            | · :             | · · · · · · · · ·                                                                                                                  |
| •     | · ·                                        | <u> </u>        |                                                                                                                                    |

|   |                                                      | · · · | ·                                                                                                                                                                                                                            |
|---|------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | Ehrenberg, A.<br>Gustafsson, A, and<br>Lundquist, U. | 1961  | Viable mutants in barley by<br>ionizing radiations and chemical<br>mutagens.<br><u>Hereditas</u> . <u>47</u> : 243-283.                                                                                                      |
|   | Elliot P.C.                                          | 1955  | Spring wheat breeding and the<br>transfer of economic characters<br>from related species and genera.<br>Wheat. Inform. Serv.Kyoto: <u>2</u> :30                                                                              |
| L | Freislben, R and<br>Lein, A.                         | 1943  | Preliminary work on the breeding<br>result of X-ray induced mutations.<br>I. Visible action of irradiation<br>in treated generation (X <sub>1</sub> ) of<br>dormant barley seeds.<br><u>3. Pflanzenzuchtt. 25</u> : 235-254. |
|   | Proier, K.                                           | 1946  | Genetic studies on the chlorophyll<br>apparatus on Oats and Wheat.<br><u>Hereditas</u> . <u>32</u> : 297-406.                                                                                                                |
|   | Fujii, T.                                            | 1955  | Mutations in Einkorn wheat<br>induced by X-rays., I. Chlorina<br>mutants.<br><u>Proc. Japan. Acad: 31</u> : 88-92.                                                                                                           |
| / | Gelin, O.E.V.                                        | 1954  | X-ray mutants in Peas and Vetches.<br>In Mutation Research in paints.<br><u>Acta - Agric. scand.4</u> : 558-68.                                                                                                              |
|   | Genter, and Brown.<br>H.M                            | 1941  | X-ray studies on the field bean.<br>J. <u>Hered. 32</u> : 39-44.                                                                                                                                                             |
|   | Gladstones, J.S.                                     | 1958  | Induction of mutation in the<br>West Australian blue Lupin<br>( <u>Lupinus digitatus</u> ., Forks) by<br>X-irradiation.<br><u>Aust. J. Agric. Res. 9</u> :473-82.                                                            |
|   | Goodspeed, T.H.                                      | 1928  | The effects of X-rays and redium<br>on spacies of the genus.<br><u>Nicotina</u> .<br>J. <u>Heredity</u> <u>20</u> .                                                                                                          |

iii

· . '

| Gottachalk, W.                                    | 1958         | Genetic problems of mutation<br>breeding in Peas ( <u>Pisum Sativum</u> ).<br>In "Effects of Ionizing Radiation<br>on seeds".                                                                                     |
|---------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | · · ·        | Reference cited by Gotteschalk<br>(1960)<br>I.A.E.A. symposiun, Vienna, 1961.                                                                                                                                     |
| Gottschalk, W.and<br>Scheibe.                     | 1960         | Genetic problems of mutation<br>breeding in peas ( <u>Pisum sativum</u> ).<br>In "Effect of ionizing radiations,<br>on seeds.<br>I.A.E.A. sympossium. Vienna Pp.<br>465-471.                                      |
| Gregory, W.C.                                     | 1955         | X-ray breeding of pea nuts.<br>( <u>Archis hypogsea.L</u> ).<br><u>Agron. J. 47</u> : 396-399.                                                                                                                    |
| ••••                                              | 1956         | Induction of useful mutation in<br>Pea nut. In ' Genetics in plant<br>Breeding'- Brook haven Symposia<br>in Biology No.9, Pp.177-191.                                                                             |
| Gregory, W.C., and<br>Cooper, W.E.                | 1959         | "Atomic Peanut".<br><u>Res</u> . and <u>Fmg.17</u> : No.4 Pp.3.                                                                                                                                                   |
| Gustafsson, A.                                    | 1940         | The mutation system of Chlorophyll<br>apparatus.<br><u>Acta. Univ. Lund. 236</u> : 1-40.                                                                                                                          |
| •••••                                             | 1947         | Mutations in Agricultural plants.<br><u>Hereditas</u> . <u>33</u> : 1-100.                                                                                                                                        |
| Hackbarth, J.                                     | 1955         | Experiments on the induction of<br>mutations in <u>Lupinus luteus.L.</u><br><u>angustifolins</u> and <u>L.Angustifolius</u><br>and L. <u>albus</u> by X-irradiation.<br><u>Z. Pflanzenz</u> . <u>34</u> : 375-90. |
| Harland, S.C.                                     | 1920<br>1922 | Reference cited by Krishnaswamy<br><u>et al</u> (1945). " Studies in cow pea<br><u>Madras. Agric. Jour</u> . No. 8.1945.                                                                                          |
| Hoffmann, W., and<br>Killough, D.T.<br>Zochke, U. | 1955         | Z-ray mutations in Flax.<br>( <u>Linum usitatissimum</u> )<br><u>Zuchtes. 25</u> : 199-206.                                                                                                                       |
| Norlacher, W.R., and<br>Killough, D.T.            | 1931<br>1932 | Radiation induced variation in<br>Cotton. Somatic changes induced<br>in X-raying seeds.<br>J. Heredity, 22: 253-262.                                                                                              |

.

c

| Jacub, K.T.                                             | 1949 | X-ray studies in Jute-II. A<br>comparative study of the germina-<br>tion percentage, size and external<br>morphology with different doses<br>of X-rays.<br><u>Transactions of the Bose.Rs.Insti</u> .<br>Calcutta Vol.xxviii. 23-29. |
|---------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jagathesan, D.<br>Swaminatha, M.S.,<br>and Puri, R.P.   | 1963 | Breeding for resistance to<br>Jassids in Cotton - use of induced<br>mutations.<br><u>Endian Cot. Gr. Review.17</u> : 96-99.                                                                                                          |
| Jain, H.K.<br>Bose, A.K.<br>SathpathyD<br>and Sur, S.C. | 1961 | Mutation studies in annual<br><u>Chrysanthemum</u> . 1. Radiation induced<br>variation in flower form. <u>Indian</u><br>J. <u>Genet. 21</u> : 68-74.                                                                                 |

Jain, H.K 1962 Sur, S.C., and Rant, R.N.

Katayama, T.

1963

Kato, K.N., 1960 Hu, C-H, Chang, W-T., and Oka, H-I.

Korah, M.

1959

1958

Krishnaswamy, N. 1945 Nambiar, K.K., and Mariakulandi, A.

istance to a - use of induced deview. 17: 96-99. in annual Radiation induced ver form. Indian -74. Genetic studies in Fomato. 1 Induced variability for uniform

fruit ripening and other characters. Indian. J. Genet. 22: 81

X-ray induced Chromosomal aberrations in rice plants. <u>Japanese. J. Genet. 38</u>: 21-31.

A biometrical genetic study of irradiated populations in rice. genetic variances due to different doses of X-rays. Bot. Bull. Acad. Sin; 1: 101-108.

Two rare chromosomal abnormalities in <u>Oryza</u> <u>sativa</u> L induced by X-rays <u>Pyton</u> 11, (2) <u>12</u>: 97-101.

Cytotaxonomical, radiation and cytological studies in Oryzasativa. I. Effect of gases on the mutagenic capacity of X-rays. Ph.D Thesis, Calcutta University. ( unpublished )

Studies in cow pea (Vigna ugniculat L. Walp). <u>Madras Agric. Jour.No.</u> 7 Pp.145-161 No. 8. Pp.193-200.

|              |                                              | •         | · · ·                                                                               |
|--------------|----------------------------------------------|-----------|-------------------------------------------------------------------------------------|
|              | ~                                            |           |                                                                                     |
| •            |                                              |           |                                                                                     |
|              |                                              |           |                                                                                     |
|              |                                              |           |                                                                                     |
| · .          |                                              |           |                                                                                     |
| · ·          |                                              | 4054      |                                                                                     |
|              | Kundu, B.C.,                                 | 1961      | Studies on the effect of X-                                                         |
|              | Ghosh, K., and<br>Sharma.                    |           | irradiation in <u>Corchorus</u><br><u>capsularis</u> . L. and <u>C. Olitorius</u> . |
|              | ₩ <b>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</b> |           | <u>Genetica</u> <u>32</u> : 51-73.                                                  |
|              | · .                                          |           |                                                                                     |
|              | Kumar, L.S.S and                             | 1939      | Experiments on the effect of                                                        |
| 4            | Joshi, W.V.                                  | ÷         | X-rays on <u>Pennisetum typhoides</u>                                               |
| · · ·        | •                                            |           | <u>Nicotiana</u> tabacum, and <u>Brassica</u><br>juncea.                            |
| •            |                                              |           | Indian J. Agric. Sci. 9: (4).                                                       |
|              | · · ·                                        |           | 675-684.                                                                            |
| (            | Lamprecht, H.                                | 1958      | On basic genes for the formation                                                    |
| ķ            | Trents Con 6 2 216                           | 1970      | of higher plants and on new and                                                     |
|              |                                              |           | already known X-ray mutants".                                                       |
| · .          |                                              |           | <u>Agri.Horti.Genet.16</u> : 145-195.                                               |
| •            |                                              | 4050      | 1300 of a good to set when when                                                     |
|              | Lesley, J.W. and                             | 1956      | Effect of seed treatments with<br>X-rays and P <sup>22</sup> on tomato plants       |
| · ·          | Lesley, M.M.                                 |           | on first, second and third                                                          |
| • .          |                                              |           | generations.                                                                        |
|              | •                                            |           | Genetics. 41: 575-588.                                                              |
|              |                                              | • • • • • |                                                                                     |
|              | Levan, A.                                    | 1944      | Experimentally induced chloro-                                                      |
|              | ¢ ÷ t                                        |           | phyll mutants in Flax.<br><u>Hereditas.30</u> : 225-230.                            |
| · · ·        |                                              | ·         |                                                                                     |
| • I          | Maldiney, and                                | 1898      | Reference cited by E.L.Johnson                                                      |
|              | Thouvenin.                                   | 2         | In Biological effects of                                                            |
| u            |                                              | v         | irradiation.                                                                        |
|              | 4                                            |           | Vol. 11. Duggar, B.M. (Ed.)<br>McGraw-Hill Book Company, Inc.                       |
|              |                                              | 9         | New York.                                                                           |
| • •          |                                              |           | A THIR AND A DO                                                                     |
|              | / Marki, A.,                                 | 1962      | Contributions to the study of                                                       |
| (m           | Sebok, C. and                                |           | the third generation of soybean                                                     |
|              | Rusu, E.                                     |           | irradiated with X-rays.                                                             |
|              |                                              |           | Stud. Cercet. Biol. Cluj. 13: 161-165.                                              |
| · · · ·      | Mashimo, I. and                              | 1959      | X-ray induced mutations in                                                          |
| •            | Sato, H.                                     | <i></i>   | Sweet Potato                                                                        |
| 1            |                                              |           | <u>Jap.J.Breeding.</u> <u>8</u> : 233-237.                                          |
|              | Print manage (1) and                         | 1055      | Pono mutation in Pinkam                                                             |
|              | Matsumura, S. and<br>Fujii, T.               | 1955      | Gene mutation in Einkorn<br>wheat induced by X-rays.                                |
| ۰ <i>۰</i> . | £ 14 j 1 j 4 j 4 j 4 j 4 j 4 j 4 j 4 j 4     | •         | Wheat Inform. Serv. Kyoto. No. 2                                                    |
| · · ·        |                                              |           | 13-40.                                                                              |
|              |                                              | 4-1-1-1   | Hohead an takanan makamba                                                           |
| · ·          | ****                                         | 1955      | "Studies on tobacco mutants                                                         |
|              | · · · · ·                                    | · .       | induced by X-ray irradiation.<br><u>Jap.J.Breeding. 5</u> : 41-46.                  |
|              |                                              |           |                                                                                     |
|              | · · ·                                        |           |                                                                                     |
| -            |                                              |           |                                                                                     |
|              |                                              |           |                                                                                     |

· ·

. . .

· · ·

. .

|                 | Murray, B.E. and<br>Craig, I.L.              | 1962             | A cytogenetic study of the X-ray<br>induced cauliflower head and<br>single leaf mutation in <u>Medicago</u><br><u>sativa. Canad.J.Genet.Cyt.4</u> :<br>379-385. |
|-----------------|----------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Myers, V.M.                                  | 1960             | Some limitations of Radiation<br>Genetics and Plant Breeding.                                                                                                   |
|                 | 1 * 1                                        | τ <sup>*</sup> 1 | Indian J. Genet. 20: 89-92.                                                                                                                                     |
|                 | Nair, G.G.                                   | 1961             | Small seeds-X-rays induced<br>higher yielding mutant in<br><u>Sesamum orientale L.</u><br><u>Sci.&amp; Cul. 27</u> : 310-311.                                   |
| · ·             | Nair, P.N.R.                                 | 1964             | Investigations on the effects<br>of X-rays on cow pea<br>( <u>Vigna sinensis</u> L. SAVI.)<br>M.Sc. Thesis (unpublished),<br>Kerala University.                 |
| •               | Narahari, P.,and<br>BORA, K.C.               | 1963             | Radiation induced spikelet abnor-<br>malities and mutations in rice<br><u>Indian J.Genet.23</u> : 7-18.                                                         |
| •<br>• •<br>• • | Nirad Sen, and<br>Krishnan.                  | 1961             | Break down of the Papilionaceous<br>Structure in the Double flowers<br>of <u>Clitoria ternatea</u> and its<br>inheritance.<br><u>Curr.Sci. 20</u> : 435.        |
|                 | Nishimura, Y. and<br>Kurakami, H.            | 1952             | Mutations in rice induced by<br>X-irradiation.<br>Japan.J.Breeding <u>2</u> : 65-71.                                                                            |
|                 | Oka, H-I.,<br>Hayashi, J. and<br>Shiojlri,I. | . 1958           | Induced mutation of poly genes<br>for quantitative characters in<br>rice. <u>J.Hered.49</u> : 11-14.                                                            |
| •               | Ouang, T.Y. and<br>Chang, M.T.               | 1959             | Mutations in rice induced by<br>X-irradiation.<br>Progress in Nuclear energy.<br>Series VI.<br><u>Biological sciences</u> . <u>2</u> : 22-28.                   |
|                 | Onnfrijchuk, T.                              | 1953             | Production of speltoid mutants<br>in spring wheat by X-ray<br>irradiation.<br>Plt breed that 2547. 23. Pp. 553                                                  |

vii

|      | •                                    |      |                                                                                                                                                                                                                                             |
|------|--------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Palenzona, D.L.                      | 1962 | Consequences of treatment of<br>seeds with X-rays in <u>Triticum</u><br><u>aestivum. Atti.Assoc.Genet.Ital</u> .<br><u>8</u> : 314-321                                                                                                      |
|      | Papa, K.E. and<br>Williams, J.H.     | 1959 | Selection for quantitative<br>characters in the 3rd generation<br>following irradication of soybean<br>seeds with X-rays and thermal<br>neutrons. In "Abstracts of the<br>Annual meeting of the American<br>Society of Agronomy Ohio, 1959. |
|      | Parthasarathy, N.                    | 1938 | "Cytogenetical Studies in <u>Oryza</u><br>and <u>Phalardieae</u> .I-Cytogenetics<br>of some X-ray derivatives in Rice<br>( <u>Oryza sativa</u> )"<br><u>Jour.Genet.27</u> : 1-40.                                                           |
| ,    | Patil, S.H. and<br>Bora, K.C.        | 1963 | Radiation induced mutation in groundnut. I-Chlorophyll mutations Indian J.Genet.22: 47-49.                                                                                                                                                  |
|      | Pfleffer, T. and<br>Simmermacher, W. | 1915 | The influence of Roentgen rays<br>on the seeds of <u>Vicia faba</u> as<br>shown in the development of the<br>plants.<br><u>Landw.Vers.Stat.86</u> : 35-43                                                                                   |
|      |                                      | · •  | (Cited by Johnson, E.L. in<br>biological effects of radiation<br>(Ed) Duggar, B.M. 1936 McGraw Hill<br>Book Company Inc.New York.                                                                                                           |
|      | Rai, U.K.                            | 1956 | X-ray induced appressed pod mutant<br>in <u>Brassica juncea</u><br><u>Sci. &amp; Cul. 24</u> : 46-47.                                                                                                                                       |
|      | •••••••••••                          | 1959 | X-ray induced high yielding<br>early flowering mutants in mustard<br>( <u>Brassica juncea</u> )<br><u>Genetica</u> , <u>30</u> : 123-128.                                                                                                   |
|      | ••••••                               | 1959 | Thickened poda morphological<br>recessive mutant in X-ray<br>treated <u>Brassica juncea.</u><br><u>Sci</u> .& <u>Cut.24</u> : 534.                                                                                                          |
| Q 1. | Rai, U.K. and<br>Jacob, K.T.         | 1956 | Induced mutation studies in<br><u>Sesamum</u> and mustard.<br><u>Sci.&amp; Cul.22</u> : 344-46                                                                                                                                              |
|      | Rana, R.S.                           | 1964 | Phenotypic variability of an induced mutant of annual                                                                                                                                                                                       |

viii

|             | · · · · · · · · · · · · · · · · · · ·                   | ,    |                                                                                                                                                                                           |
|-------------|---------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · .         |                                                         |      |                                                                                                                                                                                           |
| · · · ·     | · .                                                     |      |                                                                                                                                                                                           |
|             |                                                         | ix   |                                                                                                                                                                                           |
| ·<br>·<br>· | Sears, E.R.                                             | 1956 | The transfer of Leaf-rust<br>resistance from <u>Aegilops</u><br><u>umbellulata</u> to wheat ( <u>Triticum</u><br><u>vulgare</u> ) In 'Genetics in Plant<br>Breeding. Brook haven symposia |
|             |                                                         |      | in Biology No. 2: Pp. 1-23.                                                                                                                                                               |
| ·<br>• ·    | Sen, N.K. and<br>Bhowal, J.G.                           | 1962 | "A male sterile mutant cow pea"<br>J. <u>Hered</u> . <u>53</u> : 44-46.                                                                                                                   |
|             | Shastry, S.V.S. and<br>Nadhachary.                      | 1965 | X-ray induced mutations in culti-<br>vated Rice-NP. 130.<br><u>Curr.Sci. 34</u> : 55-56.                                                                                                  |
|             | Sikka, S.M.,<br>Swaminathan, M.S. and<br>Jagathesan, D. | 1956 | A note on some X-ray induced<br>variations in upland cotton.<br><u>Indian J.Cenet.16</u> : 144-145.                                                                                       |
|             | Sjodin, J.                                              | 1962 | Some observations in X <sub>1</sub> and X <sub>2</sub><br>generations of <u>Vicia faba</u><br>after treatment with different<br>mutagens.<br><u>Hereditas</u> : 565-586.                  |
| 2           | Spencer, J.L. and<br>Cabanillas.E.                      | 1956 | The effect of X-rays and thermal<br>neutrons on the development of<br>trailing Indigo ( <u>Indigofera</u><br><u>endecaphylla</u> ) plants.<br><u>Am.J.Bot.42</u> : 289-296.               |
|             | Stadler, L.J.                                           | 1928 | Mutations in barley induced by<br>X-rays and radium.<br><u>Science 68</u> : 186-187.                                                                                                      |
| •           | • • • • • • • • • • • • • • • • • • •                   | 1932 | On the genetic nature of induced<br>mutations in plants.<br><u>Proc.Sixth Int.Cong.Genet.1</u> :<br>274-294.                                                                              |
|             | Tan, J. and<br>Hehn, E.R.                               | 1961 | Cytological investigations of<br>irradiated wheat x rye<br>derivatives".                                                                                                                  |
| L           | Tedin, 0. and<br>Hagberg, A.                            | 1952 | Studies on X-ray induced mutation<br>in <u>Lupinus luteus</u> L.<br><u>Hered.Lund</u> : <u>28</u> : 267-96.                                                                               |
|             | Vettel, F.K.                                            | 1959 | Mutation experiments on wheat-rye<br>hybrids (Triticale) I-Induction<br>of mutation in Triticale, Rimpan.<br>Zucher.29: 293-317.                                                          |
|             |                                                         |      | •                                                                                                                                                                                         |

| Wohrmann, K.                            | 1955 | Investigations on the Physiology                                                                                                                                                      |
|-----------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |      | of germination, fertility and the<br>cytology of progenies from<br>X-irradiated seeds of<br><u>Alopecurus pratensis.</u>                                                              |
| Yagu, P. and<br>Morris, R.              | 1957 | Cytogenetic effects of X-rays<br>and thermal neutrons on dormant<br>tomato seeds.                                                                                                     |
| Yaguchi, H.                             | 1959 | <u>Genetics</u> <u>42</u> : 222-238.<br>On the estimation of segregation<br>of chlorophyll mutants in the<br>progeny of irradiated rice.<br><u>Jap.J.Breeding</u> <u>9</u> : 128-134. |
| Yanaguchi.                              | 1959 | On the expressivity of an awn<br>character in barley induced by<br>X-rays. Ikushugaku Zasshi<br>Jap.J.Breeding <u>9</u> : 28-32.                                                      |
| Zacharias, M.                           | 1956 | Mutation experiments on crop<br>plants, VI. X-irradiation of the<br>Soybean ( <u>Glysine soja</u> L.)<br><u>Zuchter 32</u> : 1-38.                                                    |
| • • • • • • • • • • • • • • • • • • • • | 1956 | Reference cited by Sjodin, J.<br>(1962). ( <u>Hereditas</u> . <u>48</u> : 565-586)                                                                                                    |
| Zachow, F.                              | 1958 | The inheritance and discovery of<br>some X-ray induced mutations of<br><u>Lupinus luteus</u> .<br><u>Zuchter.28</u> : 262-268.                                                        |
| Zwintzscher, M.                         | 1955 | The production of mutants as a<br>method of fruit breeding.I.<br>The isolation of mutants with<br>reference to primary changes.<br>Zuchter, 25: 200-302                               |

==:XoX:==

X

### PLATES

۵ . . . .

Camera lucida drawings of Anaphase I in seed type ii.

.a.J.

Photomicrograph of the PMC showing Anaphase I.

Fig. 2

Photomicrograph of the PMC in Metaphase I showing 11 bivalents, from the Large mutant.

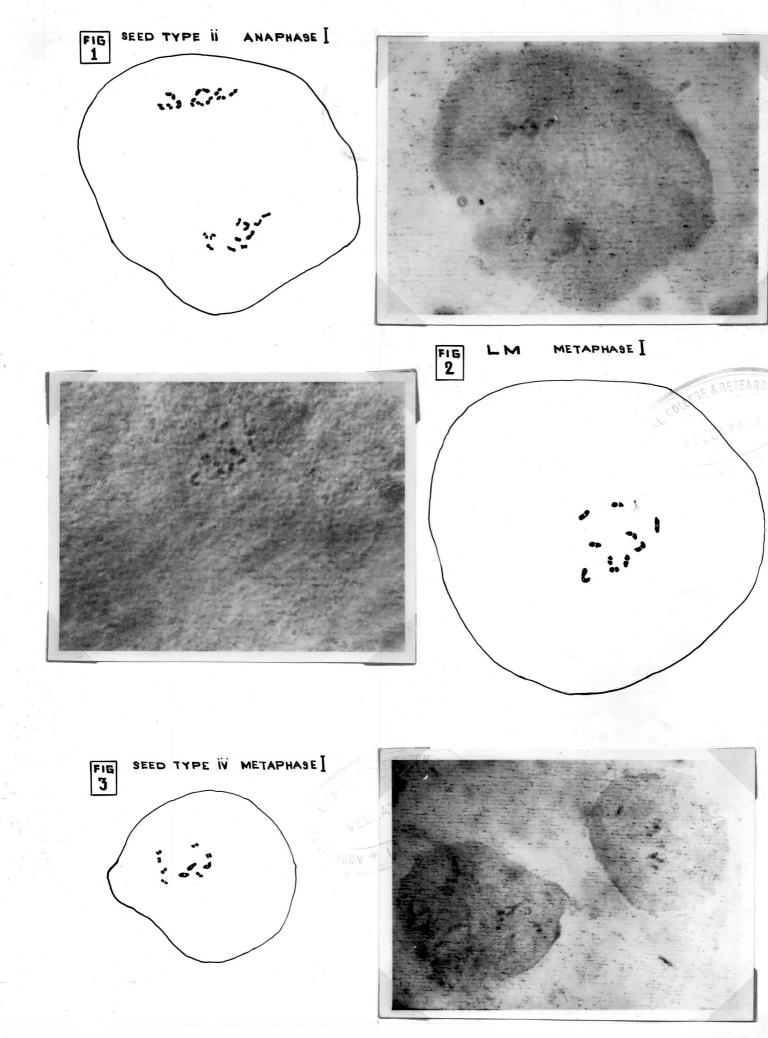
Camera lucida drawings of the corresponding stage at Metaphase I.

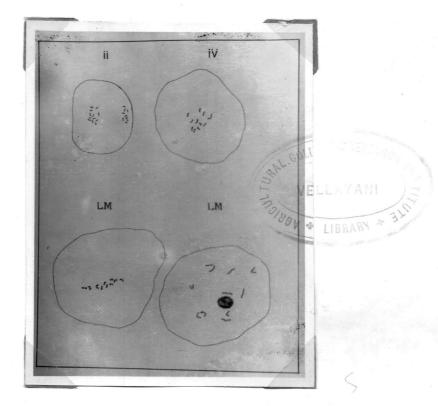
Fig. 3

Camera lucida drawings of Metaphase I from seed type iv.

Photomicrograph of Metaphase I.

Fig. 1





Plate showing normal meiotic stages in some of the seed types. ( Gamera-lucida drawings)

ii. Anaphase I observed in seed type ii.

iv. Metaphase I observed in seed type iv.

LM. Metaphase I and Diakinesis observed in the PMC of Large leaved mutants.

Plate showing normal somatic Metaphase and Anaphase in seed type iv.



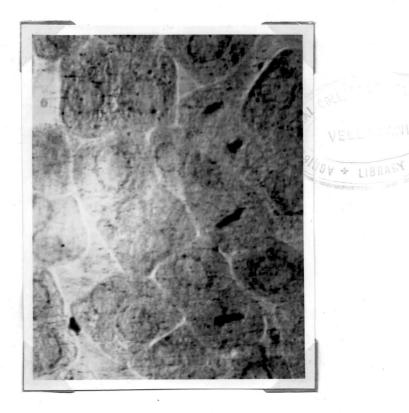
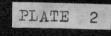



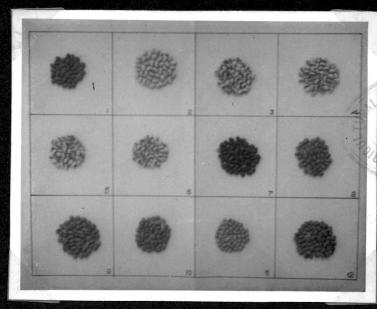

PLATE 1. General view of the Field Trial.

### PLATE 2. A normal Cow pea plant of the variety 'African'.

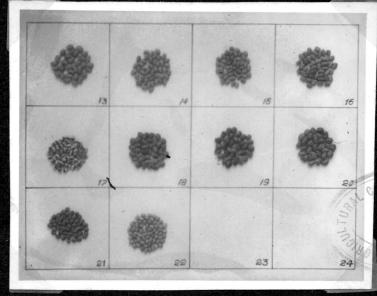






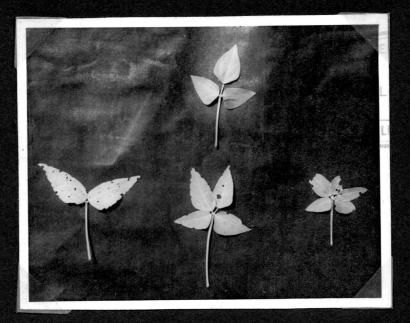



| 4.  | xiii.  | Large brown.                 |
|-----|--------|------------------------------|
|     | xiv.   | Small brown.                 |
|     | XV.    | Brown - medium sized.        |
|     | xvi.   | Reddish white.               |
| · . | xvii.  | Half - red half - white.     |
|     | xviii. | Deep violet mottled.         |
|     | xix.   | Deep ash mottled.            |
|     | XX.    | Greyish mottled large seeds. |
|     | xxi.   | Brown mottled.               |
|     | xxii.  | Light yellowish small seeds. |


PLATE

| •       | Seed material used in X <sub>3</sub> generation. |                                                  |  |
|---------|--------------------------------------------------|--------------------------------------------------|--|
| Plate 3 | i.                                               | 'African' variety of Cow Pea - Control.          |  |
|         | 11.                                              | White seed type.                                 |  |
|         | iii.                                             | White with brown patch around the eye.           |  |
|         | iv.                                              | White with bluish mottlings around the eye.      |  |
|         | ₹.                                               | White with red patches around the eye.           |  |
|         | vi.                                              | White with black patch around the eye.           |  |
| ÷ .     | vii.                                             | Reddish with black mottlings.                    |  |
|         | viii.                                            | Deep brown mottled.                              |  |
|         | ix.                                              | Light brown mottled.                             |  |
|         | . X.                                             | Reddish white and brown mottled.                 |  |
|         | xi.                                              | Yellowish white with light brown mott-<br>lings. |  |
|         | Xii.                                             | Grey - ash mottled.                              |  |

. . . . .








| PLATE | 5. | Leaflet abnormalities | observed | in | the |
|-------|----|-----------------------|----------|----|-----|
|       |    | $X_3$ generation.     |          |    |     |

## PLATE 6. Chlorophyll variations noted in seed types ii and xix in $X_3$ .







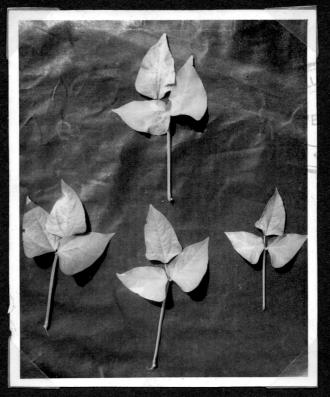



PLATE 7. One dwarf mutant in seed type iv in  $X_3$ . PLATE 8. A large leaved (LM) from seed type xv in the  $X_3$  generation.

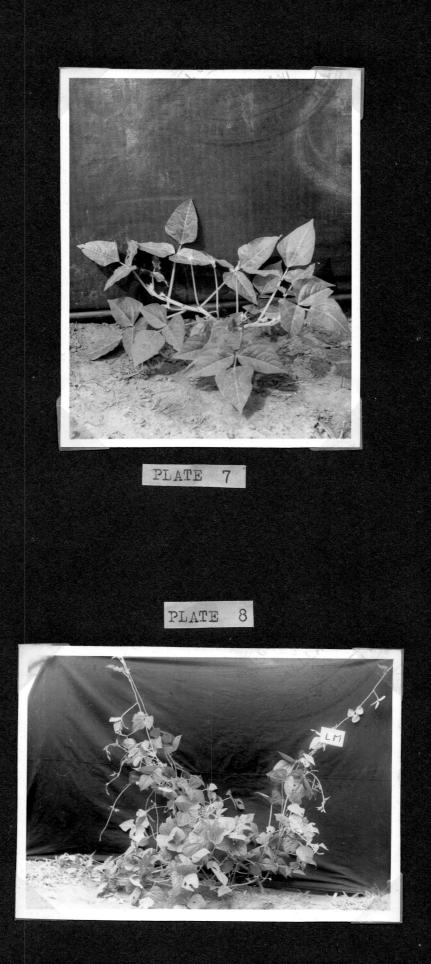



PLATE 9.

# A non branching Sterile mutant obtained from seed type xiv in $X_3$ .

PLATE 10.

A spreading mutant with large pods from seed type xviii in the X3 generation.



PLATE 9 PLATE 10



#### Pod types obtained in X3

PLATE 12.

Small light yellow pods.
 Medium straw pods (control).
 Medium broad straw pods.
 Medium light yellow pods.
 Broad and round straw pods.
 Large broad light straw pods.
 Large light pink shaded pods., and
 Large broad round light yellow pods.

PLATE 13.

9. Large broad pink shaded pods.
 10. Long pink- variegated pods.
 11. Medium pink shaded pods.
 12. Medium purple - tip coloured pods.
 13. Medium purple pods, and
 14. Medium light purple pods.

PLATE PLATE -

### X<sub>4</sub> Seed material.

| 1 | · •   |     |            |    |                                                                                             |
|---|-------|-----|------------|----|---------------------------------------------------------------------------------------------|
|   | PLATE | 13. | <u>A</u> . | 1. | Straw White (X3 parental type)                                                              |
|   |       |     |            | 2. | Straw Brown.                                                                                |
|   |       |     |            | 3. | Purple white.                                                                               |
|   |       |     |            | 4. | Purple Brown, and                                                                           |
|   |       |     | ·          | 5. | Pink white.                                                                                 |
|   | •     |     |            |    |                                                                                             |
|   | PLATE | 14. | <u>B</u> . | 1. | Straw - white with bluish mott-<br>lings around the eye. (X <sub>3</sub> parental<br>type). |
|   |       |     |            | 2. | Straw Brown mottled.                                                                        |
|   |       |     |            | 3. | Straw ash mottled.                                                                          |
|   |       |     |            | 4. | Straw Brown, and                                                                            |
|   |       |     |            | 5. | Pink white.                                                                                 |
|   | PLATE | 15. | <u>C</u>   | 1. | Straw Brown mottled (X <sub>3</sub> parental type)                                          |
|   |       |     |            | 2. | Straw - Rose white.                                                                         |
|   |       |     | ,          | 3. | Straw Brown, and                                                                            |
|   |       |     | ~ ·        | 4. | Straw white.                                                                                |
|   |       |     |            |    |                                                                                             |



#### Floral Abnormalities.

PLATE 16.

- Normal 1 standard petal 2 wing petals 1 pair keel petals ( not separated).
- 2. 2 Standards, 1 wing, 1 pair keel petals tetraddelphous, out growth from the staminal column.
- 3. 3 Standards, wing (nil) 1 pair keel and Triadelphous.

1. Normal flower parts .

- 1 Standard, 1 Wing, 2 pairs, keel petals ( not separated) triadelphous.
- 5. 2 Standards, 2 wings, keel petals (nil), abnormal staminal column, style straight.

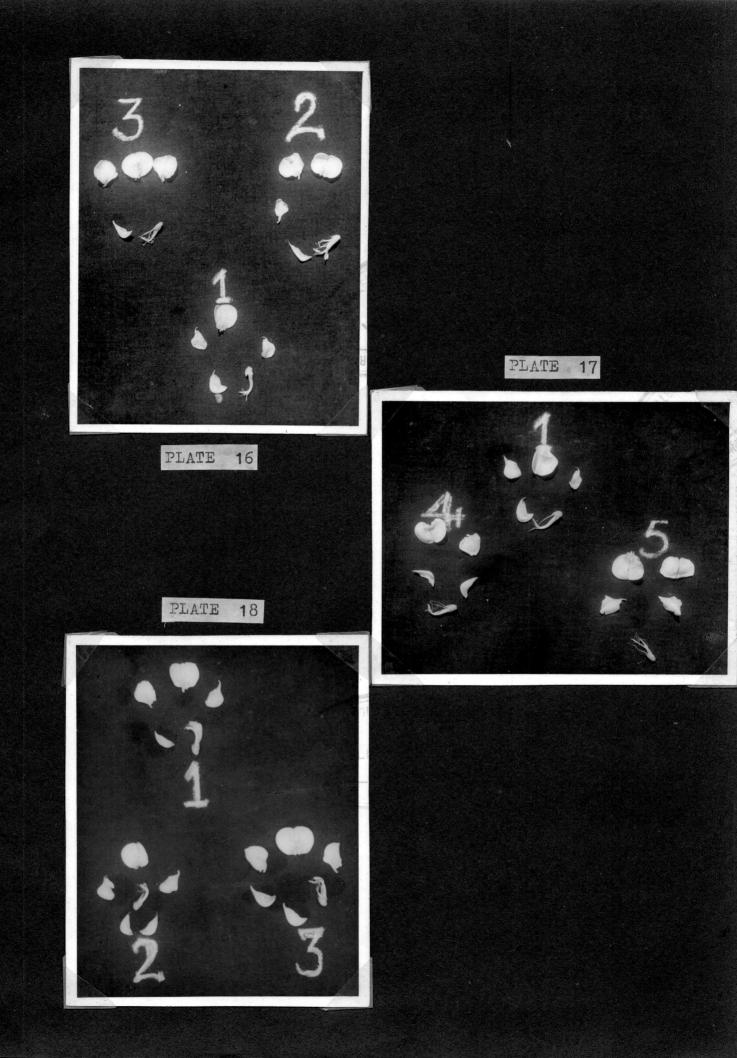
1 Standard, 2 wings, 1 pair keel petals (not separated) normal staminal column.

2 1 Standard, 2 Wings, 2 pairs keel petals ( not separated) normal staminal column.

3 1 Standard, 2 wings, 2 pairs keel petals ( not separated) tetra adelphous.

·

17.


PLATE

PLATE

•

18.

1

