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1  INTRODUCTION

Among the numerous anthropogenic factors responsible for the decline of
biodiversity, two are considered to have overwhelming importance, global climatic
rhangp and the destruction, fragmentation and disturbance of habitats (Parmesan,
2006; Kampichler et ai. 2014). Although human-induced iand use is considered to
be the primary driving force of toda/s species decline, climate change is also being
attributed as a significant causative factor. Drastic alterations in the distributions
and abundances of species' have been connected to eievating temperatures (Spooner
et af., 2018; Cook et aL 2020). Correlational studies over large numbers of regions
and taxa have disciosed ciear associations between climate change and observed
changes in geographical range and suitability of many plant and animal taxa
(Hickling et ai, 2006; Stephens et ai, 2016; Spooner et ai, 2018; Mason et ai,
2019).

Each of the previous four decades has been successively warmer than any
decade that preceded it since 1850. In 2019, atmospheric CO2 concentrations were
higher than at any time in at least 2 million years. The frequency and intensity of
heavy precipitation events have increased since the 1950s over the most land area
(IPCC 2021). We have already started experiencing intermittent extreme climate
events in floods, cyclones, unprecedented rain spells and severe drought. So, it is
urgently needed to understand the possible effect of global change on biodiversity.
Global temperature surge of 1.5»C to 2<>C is highly likely to lead us to a situation
of losing half of the suitable habitats of 4% to 8% of the world's vertebrates (IPCC,
2018)

Unfortunately, our understanding of regional biodiversity patterns in the
subcontinent of India remains feeble (Ramachandran er ai, 2017). At the same
time, tropical montane ecosystems are highly diverse and harbour high endemtc.ty
(Ricketts et ai, 2005; Lele et al., 2020). These regions are extinction nsk hotspots
as they hold threatened species with restricted distributions (Ricketts et ai, 2005;



Hoffinann et al, 2010). Montane habitat specialists may also be pressurized by

climate change, forcing them to move to a higher elevation (Stuhldreher &

Fartmann, 2018). Where such movements are inhibited by topography, species may

face habitat decline and eventually local extinctions (Parmesan, 2006; Lele et al,

2020).

The Westem Ghats mountain range in south India is the hottest hotspot of

biodiversity (Myers et al, 2000) that also includes locations of high extinction risk

(Ricketts et al, 2005). Two significant landscapes in the WG (Nilgiri and
Agasthyavanam) have been recognized as Biosphere Reserves by the United
Nations Educational, Scientific and Cultural Organization (UNESCO) (UNESCO,
2012,2016). The sky islands at the highest elevations of the Westem Ghats (WG)
hold a naturally bi-phasic mosaic of evergreen forests and grasslands known as the
shola ecosystem (Lele et al, 2020). This ecosystem is dominated by montane
grasslands (Thomas & Palmer, 2007; Das et al, 2015), which harbour unique
species assemblages (Sankaran, 2009).

Many birds are endemic to the sky islands of WQ. Ashambu Uughingthrush
Montecmcla meridionalis and Nilgiri VipitAnthm nilghiriensis are included in this
list. Ashambu Laughingthrush is endemic to the Agasthyamalai landscape of
southern WG (del Hoyo etal.. 2020), whereas Nilgiri Pipit is endemic to the Nilgiris
and Palani-Anamalai hills of WG. Understanding their habitat suitability and
distnbution is essential since climate change could influence them, and the time is
already late. Understanding the habitat preferences and dispersal ability of such
sensmve species would help prevent them from becoming extinct, and it can
address long-term conservation of the species as well (Peterson and Robins, 2003)

-nte prime objective of this research is to detect the environmental and
chmattev^ablesthat influence thedistributionofsuchendemiebi^^^

habitats mtd I^r
Oualityforthescbirdsandprediotsthefimneehangesintheirhabrslbr
Ou^tWahangemtderdifferentelimatechanges^muiossueh ^and RCP 8

and

.5 for the time the 2070s (2061-2080) by using thelfLTn^i^riZ "'
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2  REVIEW OF LITERATURE

2.1 SPECIES DISTRIBUTION AND FACTORS

Comprehensive knowledge of species' ecological and geographic

distributions is essential for conservation planning (Ferrier 2002; Funk and

Richardson 2002; Rushton et al, 2004; Elith et al, 2006), and for understanding

ecological and evolutionary factors of spatial patterns of biodiversity (Rosenzweg
1995, Brown and Lomolino 1998, Ricklefs 2004, Graham et al, 2006; Elith et al,
2006). But factors affecting the species distribution was an unsolved problem in
ecology (Araujo and Guisan, 2006) and species distribution studies need
understanding of how organisms interact with the abiotic and biotic factors that
constitute species environment (MacArthur 1984; Gaston 2003; Chase and Leibold
2004; Spence and Tingley 2020). Such information on species distribution is useful
for population monitoring (Shaffer al, 1998), biodiversity mapping (Bojo'rquez-
Tapia et al, 1995), and conservation management (Corsi et al, 1999).

Availability of feeding habitat is one of the major concerns for the
distribution of specie. Jordano (1993) evaluated the significance of distribution of
Junipers as a major diet supplier of fmgivorous thrushes. Similarly, Beale .r al,
(2006) concluded that the decline in the population of Turdus torquatus (Ring
Ouzel) in Britain was mainly due to the increase in summer temperature and at the
same time decrease in summer precipitation. Adverse weather conditions were also
a likely factor in the population decline of the song thrush Turdus philomelos in
Britain (Robinson et al, 2014)

Scheffers et al. (2016) commented that researchers are leaned towards
how species are currently responding to a changing environment,and inpredictinghow species wUl respond to upcoming changes inaperiodpfrapid

hnman-induced environmental change. Climate change is likely to induce
vegetation change that will force wild plant and animal species to shift thetr range
in response to the newer environmental variable (IPCC, 2001). Species-
populations and distributions are also modified by many factots other than



prevailing climate (Clavero el al, 2011), and local climate adaptation may lead to
different responses in different parts of a species range (Visser el al, 2003; Mason
et al, 2019), so such unexplained variation can also occur.

2.2 CLIMATE CHANGE IN WESTERN GHATS

Like most of the other biogeographic zones in India, Western Ghats also

face risks associated with prevailing global climate change. Rajendran and Kitoh

(2008) noted a likely surge in the monsoon rainfall over the interior zones of the

Indian subcontinent under the future climatic conditions and a drastic reduction in

orographic rainfall over the west coasts of Kerala and Kamataka states. The rainfall

reduction over parts of Western Ghats were mostly to the south of 16° N and was

accompanied by a significant reduction in the south-westerly winds and moisture

transport into the region. Several studies have also proposed the possibility of the

weakening and normalization of the tropical large-scale overturning circulation in

response to global warming conditions (Sugi et al, 2002; Cherchi et al, 2010).

Robinson (1994) who considered past climatic changes in WG suggest that the

vegetational changes may also be influenced by C02 rather than soil moisture

alone. Ravindranath et al, (1997) had projected climate change impact under the

'most-likely' scenario was an expansion in the area under evergreen forests due to

increased precipitation and an increase in dry thorn forest due to increased

temperature. Furthermore, there was a noticeable decline in dry deciduous forest

and modest decrease in montane forest/grassland.

The indigenous species in Western Ghats are undergoing adverse pressures

because of anthropogenic disturbances, such as land use land cover changes,
presence of invasive species, forest fire etc. A study by Gopalakrishnan et al,
(2011) shows that under the AlB conditions the forests of central and Northern

Western Ghats are prone to climate change, while another study by Krishnakumar
et al, (2011) shows that the tropical evergreen forests of Southern Western Ghats
are shown to be resilient with a predicted surge in its precipitation. However, few



studies from this region highlights the importance of climate change in changing

distributions of endemic species using niche modeling approaches (Sen et al.^.

2016a, 2016b). The results are alarming which shows a decrease in their suitable

habitats and range. The third assessment of IPCC (2001) also caution that apart

from habitat loss, wild species are at risk from changes in environmental conditions

that favor forest fires and drought. If the frequency of these extreme events

increases, the frequency of forest fire also increases.

2.3 IMPACT OF CLIMATE CHANGE ON BIRDS

Climate change may negatively affect an animal species through changes in

vegetation and environment affecting the suitability of its habitat, which take time

to occur, leading to an extinction debt (Kuussaari et al. 2009; Mason et al. 2019).

Birds have the capacity to be considered as strong bio-indicators, since birds are

very popular and have an iconic status all over the world (Crick, 2004). Katti and

Price (1996) have recorded a decrease in the densily and persistence of Green Leaf

Warblers on their wintering grounds in the WG in response to drought.

However, Thomas et al. (2006) highlighted the likely artifactual perception

that because of climate change, range expansions and population increases are more

common than range retractions and population decline. In support of this findings,

Stephens et al. (2016) and Mason et al. (2019) also concluded similar positive

relationship between population trend and climate suitability

2.4 RESPONSES OF ORGANISMS TOWARDS CLIMATE CHANGE

Globally, many species have already shifted their extant to evade elevating

temperatures and track historic climate, either by poleward shifts (Parmesan and

Yohe 2003), to greater elevations (Moritz et al. 2008, Chen et al. 2011), to deeper

waters (Perry et al. 2005, Dulvy et al. 2008), or the forest floor (Scheffers et al.
2013). Spence and Tingley (2020) further investigated and found out regardless of
species moving poleward, upslope or deeper, all three thermal gradients covary with



other environmental variables that can have dominant and substantial effects on the

biology and biogeography of species in the future.

Nevertheless, despite our limited understanding of species-specific

responses to varying abiotic factors, we know organisms have three primary

mechanisms to cope up with abiotic challenges of novel environments (Spence and

Tingley, 2020). First, either through behavioral variation or innate tolerance,

organisms need not require any physiological adaptations to flourishingly colonize

an area with novel conditions (Parmesan and Yohe 2003). Second, species may

display physiological flexibility and acclimatory potential to get rid of the abiotic

challenge after an initial exposure (Somero 2010, Valladares et al. 2014). Third,

populations may be locally resilient to varying abiotic conditions across the range,

and intraspecific variation may furnish evolutionary potential to overcome the

conditions (Diamond 2018). However, those species which are unable show innate

tolerance, physiological or the genetic potential to evolve to absurd abiotic factors,

these factors may even diminish the ability for that population to shift its range to

keep away from rising temperatures (Spence and Tingley, 2020).

2.5 CLIMATE CHANGE AND BIRDS DISTRIBUTIONAL RANGE

The general effect of projected human induced climate change is that the

habitats of many species will move towards higher latitudes from their present
location. It is also worth noting that organisms will migrate at different rates
through fragmented landscapes, and ecosystems dominated by long-lived trees may
change slowly (Singh, 2011). Abraham and Jefferies (1997) found out that the
breeding ranges of some migratory birds, such as waterfowl, have been expanding
poleward in response to climate amelioration. Both amphibians and birds in Great
Britain have been forced to prepone their breeding dates by about 7 to 21 days since
the 1970s m association with temperature surge (Beebee 1995; Crick et al. 1997-
Hansenetal. 2001).



To compute the changes in distribution of a species, it is important to

understand the likely responses of each species with respect to the changing.

environment. An increased temperature and decreased precipitation would almost

certainly stress the habitat specialists (Ravindranath et al, 1997). It is also

noteworthy that, in the case of montane forests (or sholas), the increase in

temperature may smoothen the migration of plant species from lower elevation

forests to the montane areas, thus causing a reduction in montane forests. Species

having limited climatic ranges or restricted habitat requirements or small population

(endemic mountain species and birds restricted to islands, peninsulas) tend to be the

most threatened to face the risk of extinction (Singh, 2011).

2.6 IMPORTANCE OF RANGE DISTRIBUTION STUDIES

To convey regional biogeographic pattems, it needs either large

phylogenetic datasets at small spatial scales (Agarwal et al. 2014; Vijayakumar et

«/. 2014) or conimunity^evel , distribution studies (Tamipa and Ramakrishnan,

2015; Ramachandran et al, 2016). Even though birds of the Indian sub-continent

have poor phylogenetic data (Reddy 2014), there have been extensive bird

distributional surveys over the last two centuries (Oates and Blanford 1889; Stuart

Baker 1930; Ali and Ripley 1987; Rasmussen and Anderton 2012) with clear

understanding on geographical limits of species. Ramachandran et al, (2016)

identified six potential biogeographic barriers in Western Ghats, which are (starting

from north) Narmada River, Goa Gap, Cauvery River, Chaliyar River, Palghat Gap

and Shenkottah Gap.

2.7 MODELLING OF SPECIES HABITAT SUITABILITY

2.7.1 IMPORTANCE OF HABITAT SUITABILITY MODELLING

Root and Schneider (1993) found an evident correlation between population

distribution and climatic factors in 148 wintering terrestrial birds. Similarly, Mason



et al. (2019) examined the relationship between species-specific regional

population changes and climate suitability trends, using long-term information of

population change for 525 breeding bird species in Europe and in USA and

concluded that population is varying positively and negatively for different taxa of

birds. They've used multiple species distribution models for obtaining correlation
between varying factors. Habitat Suitability Modelling (HSM) OR Species
Distribution Modelling (SDM) establish the relationship between species records
in an area and environmental characteristics and spatial characteristics of those

areas (Franklin, 2009; Kumar and Stohlgren, 2009; Elith et al, 2011).

They represent an empirical method to draw statistical conclusions about
the drivers of species distribution imder various conservation, ecological and
evolutionary processes (Zimmermann et al, 2010). Particularly, in those areas
where systematic surveys have not been conducted, distribution models help
conservation practitioners in estimating and assessing the extent of suitable areas
for the species of interest (Elith, 2002). By using known distribution of the species,
environmental variables are defmed, and this information is used in identifying
similar regions with similar environmental variables and the new distribution can
be modelled (Pearson and Dawson, 2003).

Overlays of geospatial species samples with environmental variables such
as elevation, vegetation and land use wete often used to understand wildlife-habitat
relationships and predict distribuUons (Stoms et al., 1992; Anderson et al 2003)
The only way to test the hypothesis foretelUng the future is by waiting for the future
to unfold or testing the past changes and comparing it with the current distribution
(Araujo et al, 2005).

Am understanding of climate warming and their impact on projections of
apeces dtstributions wiU benefit in communieating and redueing climate-related
unce^ty in the output of SDMs (Beaumont er al.. 2008). These models were
wtdely used as a tool to understand the various hypotheses in ecology, evolution
^d cor^rvation (Elith e, n/., 2006). Apart ftom predicting range shifts associated
wtth futute chmauc scenarios. SDMs are also used to understand environmental



correlates of species occurrences (WoIIan et al, 2008; Monterroso et al, 2009; Elith

et al, 2011), predict and explore expanding distribution of invasive species (Ward,.

2007; Wang et al, 2007; Elith et al, 2011) and understanding genetic diversity,

endemism and evolutionary niche dynamics (Young et al, 2009; Lamb et al,

2009). Pautesso et al, (2011) concluded that when the species range shift occurs,

current protected area networks may not be able to provide adequate protection to

the species considering the fact that the species distribution may shift to outside of

the protected area.

2.7.2 PROCESS OF HSM

2.7.2.1 STEPS IN HSM

Major steps followed in case of modelling of species distribution; (1)

Available present data of occurrences of the selected species (Peterson et al., 1998;

Peterson and Stockwell, 2001); (2) Developing ecological niche models and testing

with the distribution (Guisan and Zimmerman, 2000; Kobler and Adamic, 2000);

(3) Change in species distribution is projected based on the general circulation

models of climate change; (4) Ecological niche model of the species is projected

onto the predicted landscape distribution (Soberon and Peterson, 2005) and using

this, model could derive the probability of occurrence of a species for any given

area or trace the specific environmental variable that suits (Elith et al, 2011)



2.7.2.2 TESTING ACCURACY AND RESOLUTION

The accuracy of model description depends upon the degree of

environmental gradients that defme the species distributional limits (Pearson et al.,

2007). Various rules in different models were made up of individual algorithms

and the areas would be identified within and outside the realized niche based on

these rules (Peterson, 2001). In other words, models were built mainly based on

correlations between the variables and pattern of distribution and this did not

consider the causal relationship due to autocorrelation among the interacting
variables (Bahn and McGill, 2007; Beale et al., 2008). To improve the
interpretation of the responses of the species distribution, large geographical
landscapes were studied. This reduces the correlation of environmental variables
with climatic variables (Maclean et al, 2008). It can be used to resolve ambiguities
due to correlated predictors, but it may fail to find out the spurious correlations
among the environmental variables which was used to defme distribution (Ashcroft
et al, 2011). The problem of accuracy may become more important when models
are developed for undulating terrain with heterogeneous topography, where
vegetation is distributed with sharp transitions from one vegetation type to another
(Fischer, 1994; Zimmermann and Kienast, 1999)

Concerns of the accuracy of species prediction are addressed based
varying climatic conditions and testing the climatic envelope models (Pearson
al.. 2006). However, i, is implicit in distribution modelling that a perfect truth i
hard to obtain (Oreskes er at.. 1994; Guisan and Zimmerman, 2000) There
a plethom Of methods for modeUing species- distribuUons that vary in how we want
o model the distnbuUon, select relevant predictor variables, defme fitted fi .•
for variable, quantify variable contributions, allow for intern f
.eographiepattemsofoceurreneefOuisanandZimm;
2005; Elith el al.. 2006; Elith cf al.. 2011). ■

on
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2.8 SPECIES DISTRIBUTION STUDIES

Correlational studies over many species, regions and similar taxa have

revealed clear bonding between recent climate fluctuations and observed changes

in geographical range and abundance of many plant and animal taxa (Hickling et

al, 2006; Spooner et al, 2018; Stephens et al, 2016). Change in distribution of a

species may fall into three categories; (1) range reduction (Peterson et al, 2002;

Thuiller et al, 2005); (2) range expansion (Mason et al, 2019; Sanjo and Nameer,

2019); and (3) range shifts (Pearson e/a/., 2002; Mason e/a/., 2019). These varying

results were also explained in detail using associated environmental variables

(Maclean et al, 2008). However, positive changes in species abundance in

response to beneficial climate change is generally perceived to be robust and more

plentiful than for populations expected to be negatively affected (Parmesan and

Yohe2003; Kootetal, 2003; Thomas e/a/., 2006). But, Masoned a/., (2019) warns

that results associated with range expansion should be approached with caution as

it only considers climate change but not climate change associated with vegetation

change. Meanwhile, Goetz et al, (2014) foimd out a strong correlation between

temperature variation and richness of forest birds and at the same time precipitation

has a severe influence on richness of open woodland birds.

2.9 DATA USED FOR MODELLING

2.9.1 PRESENCE AND ABSENCE RECORD

Most of the studies on progress of distribution modelling approaches have

focused on generating models using presence/absence or abundance data, where

regions of interest have been sampled systematically (Hirzel and Guisan 2002;

Cawsey et al, 2002; Elith et al, 2006). Clear majority of this data consists of

occurance records from herbariums and museum collections (Elith et al, 2006)

which are electronically accessible (Heutmann, 2005). Since the intent and method

of collecting are relatively unknown, absence cannot be concluded with certainty

(Elith et al, 2006). This information can also have biases and errors (Hijmans et

11



al, 2000). For example, field surveys can incorrectly identify a species as present

that is absent in a certain location (false presence) and may fail to detect a species

that is present (false absence) (Reese et al, 2005). In either situation, the prevalence

of false absence or false presence records may affect attempts to predict species

distributions based on environmental variables (Tyre et al, 2003). For enhancing

evaluation of model performance in predicting distributions of species, it is

advisable to use independent, structured presence-absence information for

validation (Elith et al, 2006). Due to poor sampling or missing species occurrences

during field survey, absence data won't be available for methods which require both
the data set. In this case, it is advisable to use 'pseudo-absences', instead of real

absence data (Ferrier et al, 2002) or some methods used background data for the

entire study area (Hirzel et al, 2002).

In today's world, species occurrence data is widely available and can be

easily accessed through communications as they are created using satellite
imageries. But it is challenging to validate the absence data since wildlife-habitat
connection was absent even though there exists a potential for a species to be seen
at a site (MacKenzie et al, 2004; Gu and Swihart, 2004). However, with the
prevailing datasets, Reese et al, (2005) assumed that false presence is less likely to
occur as compared to false absence. At the same time Baldwin (2009) used
presence only data and showed that the necessity of absence data is minimal.

2.10 REPRESENTATIVE CONCENTRATION PATHWAYS

The IPCC fifih assessment report (AR5) introduced the Repiesentative
Concentration Pathways (RCPs) as the new approach of representing the range of
possible radiative forcing scenarios. The RCPs are the pathways showing
greenhouse gas (GHG) and aerosol eoneentrations, together with land-use change
consistent with a set of broad climate outcomes used by the climate modelling
commumty. All pathways are simulating the emission till the end of the 21s1
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century. Due to additional GHG presence in the atmosphere, the heat gets trapped,

known as radiative forcing and measured in Watts per square meter (W/m2).

According to the IPCC future emissions classification, there are four

scenarios, each covering 1850 to 2100. The RCPs include a low level (RCP 2.6),

two intermediate levels (RCP 4.5 and RCP 6.0) and one high level (RCP 8.5). The

RCP 2.6 is the ambitious pathway, and it shows an early peak in atmospheric C02
<rv.

level then fall due to various C02 removal activities. The RCP 8.5 predicted a

high C02 level in the atmosphere beyond 2100 due to little effort and failure in the

C02 removal activities. The atmospheric C02 equivalent of RCP 2.6 and RCP 8.5

are 490ppm and > 1370ppm, respectively. For the RCP 4.5 and RCP 6.0, the C02

level is 650ppm and 850ppm, respectively (IPCC, 2014).

2.11 SHARED SOCIOECONOMIC PATHWAYS

IPCC sixth assessment report (AR6) introduced considering Climate Model

Inter-comparison Project Phase six (CMIP6) where a new set of emission scenarios

come into play. Which is named as Shared Socioeconomic Pathways (SSPs). It

discusses how particular trends in social, economic, and environmental

developments make changes to the world. The SSPs have been developed to

provide five distinctly different pathways about future socioeconomic

developments as they might unfold in the absence of explicit additional policies and

measures to limit climate forcing or to enhance adaptive capacity. They are

intended to enable climate change research and policy analysis, and are designed to

span a wide range of combinations of challenges to mitigation and adaptation to

climate change (Riahi et al, 2017). SSPs describe plausible alternative trends in

the evolution of society and natural systems over the 21st century at the level of the

world and large world regions (Kriegler et al., 2012)
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There are five SSPs and the likely scenarios are as follows;

SSPl Sustainability — Taking the Green Road (Low challenges to mitigation

and adaptation). The world shifts gradually, toward a more sustainable path,

emphasizing more inclusive development that respects environmental boundaries.

Driven by an increasing commitment to achieving development goals, inequality is

reduced both across and within countries.

SSP2 Middle of the Road (Medium challenges to mitigation and adaptation).

The world follows a path in which social, economic, and technological trends do

not shift markedly from historical patterns. Development and income growth

proceeds unevenly, with some countries making relatively good progress while

others fall short of expectations.

SSPS Regional Rivalry - A Rocky Road (High challenges to mitigation and

adaptation). A resurgent nationalism, concerns about competitiveness and security,

and regional conflicts push countries to increasingly focus on domestic or, at most,

regional issues. Investments in education and technological development decline.

Economic development is slow, consumption is material-intensive, and inequalities

persist or worsen over time.

SSP4 Inequality - A Road Divided (Low challenges to mitigation, high

challenges to adaptation) Highly unequal investments in human capital, combined

with increasing disparities in economic opportunity and political power, lead to

increasing inequalities and stratification both across and within countries.

Technology development is high in the high-tech economy and sectors. The

globally connected energy sector diversifies, with investments in both CEirbon-

intensive fuels like coal and unconventional oil, but also low-carbon energy

sources.

SSPS Fossil-fueled Development - Taking the Highway (High challenges to

mitigation, low challenges to adaptation). This world places increasing faith in

competitive markets, innovation £ind participatory societies to produce rapid

technological progress and development of human capital as the path to sustainable
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development. There are also strong investments in health, education, and

institutions to enhance human and social capital. At the same time, the push for"

economic and social development is coupled with the exploitation of abundant

fossil fuel resources and the adoption of resource and energy intensive lifestyles

around the world. All these factors lead to rapid growth of the global economy,

while global population peaks and declines in the 21st century.

The RCPs and SSPs can be brought together into a two-dimensional

RCP/SSP matrix. Here, each cell can describe a plausible trajectory of emissions

and concentrations resulting in a given level of forcing by 2100 that is consistent

with and superimposed on pathways of socio-economic development (van Vuuren,

2013). When SSPs are combined with radiative forcing pathways or climate change

outcomes in integrated scenarios, policy assumptions will be necessary to produce

emissions that would achieve the desired climate outcomes, as well as to

characterize adaptation measures (van Vuuren, 2011). The new framework

combines so-called Shared Socioeconomic Pathways (SSPs) and the RCPs (and

other climate scenarios) in a Scenario Matrix Architecture (Riahi et al, 2017).

2.12 ASSESSMENT OF CLIMATIC CHANGES

For assessing the likely effects of climate change on biodiversity, many

tools can be used which include global climate models, regional climate models,

species bioclimatic envelope models, dynamic and equilibrium vegetation models
and site-specific sensitivity analysis (Sulzman Bt U!/.,1995). The most detailed
information on future climate is given by General Circulation Models (GCMs),

often refined with regional climate models (RCMs) and with empirical-statistical
post-processing methods (Maraun, 2013; Mendlik and Gobiet, 2015). Despite

being a sophisticated model, GCMs are also subjected to considerable uncertainties
(Mendlik and Gobiet, 2015). And these uncertainties are often investigated using
Multi Model Ensembles (MMEs). As per Masson and Knutti (2011) the aim of

ensemble design should be to maximize model diversity to seize model uncertainty
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properly while ensuring better model performance. These model simulations are

considered as the best possible alternatives of the future (Hansen et al, 2001). Both

equilibrium and transient model scenarios are used in species assessittent to

incorporate a broad range of possible futures (Aber et al, 2001). GCMs and RCMs

are generally used by dynamic vegetation models, biome envelope models and

species envelope models to reveal different aspects of the biogeography because of

the future climate change (Cramer et al, 2000).

2.13 HSM TYPES AND TECHNIQUES

2.13.1 FOREST GAP MODEL

The Forest Gap Model became widely popular among forest ecologists as it

addresses a wide range of applied research questions. It can be effectively used to

understand the impacts of environmental alteration on long-term d3mamics of forest

structure, biomass, vegetation and composition (Bugmann, 2001). However, our

attempt to synthesize knowledge about vegetation d)mamics or to distinguish

different assumptions regarding forest growth faces severe challenges because of

the complexity of a forest ecosystem (Botkin et al, 1972). Bugmann et al, (1996)
also mentioned the complexity of each forest and the requirement of additional
region-specific sub-models to improve model performance. The model runs based
on several assumptions which are; (1) The forest is considered as a composite of
many small fragments in which each vegetation can have a different age and
successional stage; (2) Tree position within a patch is not taken into account; i.e.,
patches are horizontally homogeneous; (3) the canopy or the leaf layer of each tree
are located in an indefinitely thin layer at the top of the trunk; and (4) there are no
functional interactions between each patch; i.e., successional processes are

described on each patch separately These simplifications made it possible to
analyze mixed-species, uneven-aged forests, which had been difficult previously
mainly because of computing limitations (Bugamann, 2001).
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2.13.2 SPECIES BIOCLIMATIC ENVELOPE MODEL

For assessing conservation planning measures, species-specific climate"

interaction needs to be studied and the bioclimatic envelope model provides the best

alternative for it. Bioclimatic models in their purest form consider climatic

variables only and do not consider processing other environmental factors that

influence the distribution of species, such as soil parameters and land-cover type

(Pearson and Dawson, 2003). Adding to it, other studies have questioned its

validity by pointing out factors other than climate such as biotic interactions,

evolutionary change and dispersal ability (Davis et al., 1998; Lawton, 2000;

Woodward and Beerling, 1997; Pearson and Dawson, 2003). Bioclimatic envelope

shares the same principle of biome envelope models, where which the current
distribution of species was used to 'train' a model for the future incorporating the
predicted climatic conditions (Hannah et al., 2002)

2.13.3 GENERALIZED DISSIMILARITY MODELS (GDM)

Generalized dissimilarity modelling (GDM) is a statistical tool for analyzing

and predicting spatial patterns of turnover in commumty composition i.e., beta
diversity across large landscapes (Ferrier et al. 2007). For the estimation of
probability of occurrence of species distribution, kernel regression algorithm is used
within the transformed environmental space produced by GDM (Lowe, 1995). The

approach can be applied to range of assessment activities including visualization of
spatial patterns in community composition, constrained environmental
classification, distributional modellingof community types or species, survey gap

analysis, conservation assessment (Ferrier et al, 2007)

2.13.4 GLM AND GAM MODELS

GLM and GAM were widely used in species distribution modelling because

ecological and environmental relationships can be modelled realistically and can be
explained with strong statistical foimdations (Austin, 2002). In addition to that
GAMs can also be effectively used for time series studies of air pollution (He et al.
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2005). It can also model complex ecological responses than. GLM because of

greater flexibility (Yee and Mitchell, 1991).

2.13.5 MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

Multivariate Adaptive Regression Splines is a method for better modelling

of high dimensional data (Friedman arid Roosen, 1995). The advantage of MARS

lies in its ability to capture the intrinsic complicated data mapping in multi

dimensional patterns and produce uncomplicated, easier-to-interpret models

(Zhang and Goh, 2016). It is very easy to use in GIS applications for making

prediction maps and are faster compared to GAMs and can analyze community data

(MARS-COMM) (Leathwick et ai, 2005)

2.13.6 GENENTIC ALGORITHM FOR RULE-SET PREDICTION (GARP)

GARP is an integrated spatial analysis system for predicting distributions of

both plants and animals. It is having two versions; (1) DK-GARP which is used for

modelling data obtained from natural history collections; and (2) OM-GARP, a new

open modeler implementation, where both uses a genetic algorithm for selecting a

set of rules for adaptations of regression and range specifications, thus predicting

species suitability (Stockwell and Peters, 1999). The algorithm of GARP can
generate pseudo-absence points as it works using presence-absence data.

2.13.7 MAXIMUM ENTROPY MODELLING (MAXENT)

For some species, detailed account on presence/absence data may be
available. But in the case of most species, absence data may not be available
(Phillips et al, 2006). In such cases, MaxEnt can be used for effectively modelling
distribution of a species. MaxEnt estimates species' distributions by learning the
distribution of maximum entropy subject to the constraint that the expected value
of each environmental variable or interactions under this estimated distnbution
matches its empirical mean (Phillips e, al.. 2006). MaxEnt can precisely build a
model even if there are a smaller number of presence records and it again an
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advantage since there is a chance for not getting dependable locations for mapping

spreading of species (Baldwin, 2009). It was observed that MaxEnt have done"

better than other similar modelling techniques (Elith et al, 2006; Hernandez et al,

2006; Philips et al, 2006). MaxEnt achieved higher success rate and it marked the

differences even at low sample sizes as compared to other models (Pearson et al,

2007).

2.13.8 BOOSTED REGRESSION TREES (BRT)

BRT is a technique that look to improve the performance of a single model

by fitting many models and combining them for prediction (Elith et al, 2008). And

it is modelled in stage wise manner, where several modifications are made in each

step (Friedman et al, 2000). Over fitting of data are avoided by using cross^

validation. This is to grow the models progressively during the predictive accuracy

testing on withheld portions of the data (Elith et al, 2006). It combines the

strengths of two algorithms; (1) regression trees and boosting (an adaptive method

for combining simple models to improve predictive performance) (Elith et al,

2008).

2.14 FACTS ABOUT THE SPECIES

2.14.1 ASHAMBU LAUGfflNGTHRUSH (ASHAMBU CHILAPPAN)

Montecincla meridionalis

Ashambu Laughingthrush is a high-altitude endemic bird of Southern WG.

Earlier the species was treated as a subspecies of Kerala Laughingthrush

Trochalopteron fairbanki (Rasmussen and Anderton, 2005); Strophocincla
I

fairbanki (Praveeh and Nameer, 2013). But later analysis indicated considerable
divergence and suggested erection of a new species (Praveen and Nameer, 2013;
Robin et al, 2017; del Hoyo et al, 2020) in the name of Montecincla meridionalis

where a dedicated generic name has given to it as it inhabits the montane evergreen-
shola ecosystems of Southern WG (Robin e/a/., 2017). Within Southern WG, the
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species disjunct and restricted distribution is confined to Ashambu (Agasthyamaiai)

hills (Sashikumar et a/., 2011; Chandran and*Praveen, 2013) which is located South

of Shenkottah/Achenkovil Gap, in extreme south WO (del Hoyo etal, 2020).

Being a habitat specialist, they are found in the altitude above 1200m and

prefers edges of broadleaved evergreen forest, Ochlandra reeds, secondary forest;

also, plantations (including tea and cardamom), especially those with thicket-lined

streams running through them (del Hoyo et al, 2020). It can be found in altitudes

up to 2135m as per del Hoyo et al., (2020) eind lUCN (2016). However, it is

arguable that the upper-limit is lower than this, since the highest peak in the

landscape is Agasthyamaiai which spans 1878m above ipsl. They forage in parties

of 6-14 individuals and are omnivorous in nature. Their diet includes insects,

berries and fhiits (Rasmussen and Anderton, 2005; del Hoyo et al., 2020).

Chandran and Praveen (2013) points out that nearly 90% of the species

habitat falls under protected area networks including wildlife sanctuaries and tiger

reserves. This says that the potential habitat is legally protected. However, they

also warn that the spread of Ochlandra may impact the distribution of the species in

future. Since the species requires highly specialized habitat, it is believed that the

population of the species may lie in between 2,500-10,000 (del Hoyo et al., 2020;

lUCN, 2016). It is classified as 'Vulnerable' as per lUCN (lUCN, 2016). And the

population is declining because of habitat loss, degradation, increased

anthropogenic pressure and associated land use change (Somasundaram and

Vijayan, 2007; Chandran and Praveen, 2013; lUCN, 2016; del Hoyo et al., 2020).

2.14.2 NILGIRI PIPIT Anthus nilghiriensis

The Nilgiri pipit is a high-altitude specialist bird endemic to the montane

grasslands of Southern Western Ghats (Sashikumar etal, 2011; Robin et al, 2014;
Lele et al, 2020). It inhabits upland grassland, open grassy and rocky hills, also in

coffee plantations, preferably 100-2300m above msl (may be even higher up to
2600m) (Tyler, 2020). It is a locally common insectivore, resident in its breeding
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range, Also the species has no records of long-distance movements and are mostly
sedentary (Vinod, 2007).

They forage on ground, in short grass and when disturbed, flies to nearest

bush or tree (Tyler, 2020). Even though they are insectivores, they also been

reported consuming seeds of grasses found in their habitats (Vinod, 2007; lUCN,
2016). They breed during the month of March to July. Nest a shallow cup of coarse
grass and roots, lined with finer grass, hair and stems, built among roots or in tuft
of grass or in depression at base of bush on open hillside (Tyler, 2020) or in marshy
grasslands with slightly taller grasses and sedges, particularly near streams (Vinod
2007).

Increase in the reports of the species from different parts of the Western

Ghats over the past few decades have led to a substantial extension of its known
range (Robin a/., 2014). This includes WG regions of South Kamataka, relatively
lower elevations of WG of Kerala and Tamil Nadu, Periyar landscapes, Ponmudy
hills etc. However, extensive field study by Robin et al, (2014) couldn t detect the
presence of this species from much of the locations except for high-altitude
grasslands of Nilgiris, Anamalai and Palani hills. Besides, they questioned the
occurrence records from Periyar - Agasthyamalai landscapes and Brahmagiris by

pointing out possible misidentification with nominate Paddyfield Pipit Anthus
rufulus and proposed that the Nilgiri plateau and the Anamalai Hills (including the
Palani Hills) be considered as distributional limits for this species. The species is
'Vulnerable' as per lUCN

By considering it habitat specificity and requirement of high-elevation
landscapes the spcies is under the threat of climate change and associated landscape
alteration (lUCN, 2016). Land use changes, habitat loss, expanding plantations of
tea, cardamom, wattles and eucalyptus, tourism activities are all major threat for the
species (Robin et al, 2014; lUCN, 2016; Tyler, 2020)
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2.15 THE SOUTHERN WESTERN GHATS

Ramachandran et al. (2017) defined southern Western Ghats as part of the WG

found south of the Goa gap.- These regions are again divided into biogeographic

units bounded by geographic barriers. The major biogeographic units include south

of Goa gap, south of Cauvery river, south of Chalayar river, south of Palghat Gap

and south of Shenkottah Gap. It has much more endemicity as compared to the

northern WG (Ramachandran et al., 2017). According to Vijayakumar et al. (2016)

and Haffer (1969) palaeoclimate-based models or the 'refuge model', the isolation

of populations during dry glacial periods in forest refuge areas is hypothesized to

have led to vicariance and speciation. This hypothesis can also be applied in the

case of Western Ghats where there are several geographical bamers that contribute

for species isolation (Vijayakumar et al, 2016)
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3  MATERIALS AND METHODS

3.1 SELECTED SPECIES

Based on the availability of occurrence data and ecological information, two

Western Ghats endemic bird species were selected for the current study. These

species are Ashambu Laughingthrush (ALT), Montecincla meridionalis and Nilgiri
Pipit (NP) Anthu:^ nilghiriensis (Plate 1). Both ALT and NP are categorized as
'Vulnerable' according to lUCN, and both are listed under schedule IV of Wildlife
(Protection) Act, 1972, and both have High conservation concerns in the State of
India's Birds (SoIB) report (WPA, 1972; SoIB, 2018; lUCN, 2021) (Table 1)

Table 1. Species selected for the study

English

Common

Name

Malayalam

Common Name

Scientific

Name

lUCN status SoIB

status

T T • 1

Ashambu (QTd(/8Do6nJ<? Montecincla Vulnerable High

Laughingthrush meridionalis

(Ashambu

Chilappan)

Nilgiri Pipit aejojtocTiJciS) Anthus Vulnerable lliS

nilghiriensis
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1

Ashambu Laughingthrush Nilgiri Pipit

Plate 1. Photographs oj the species selected for the
current study

3.2 BACKGROUND (LANDSCAPE OF INTEREST)

The background is nothing but the landscape of interest .
perform thespecies distribution modelling. The selection of background is a

SDM, and it determines the model's predictive nowerpuwer. The requirement for
selecting the background is that; (1) it should represent suitable habitats
species of interest, and (2) the dispersal ability of a species b • ^ ^ °
and local movement. Based on the extent of distribution and d" "^^S^^^ion
background selection differs between species (Elith et capacity,
2013). " " ■•2011;Merow«„;.,

Both species selected for the study (ALT and NP) ar
WG. Each species is distributed in different venm.. i.- to Southerngraphical landscanpc • i.due to the geographic, vegetational and climatic barri Within WO
(Ramachandran efa/., 2017). These landscapes are ftirth the WQ
Sky islands (Robin et al, 2010; Robin and Nandini orM the name of
species selected based on the birds' distribution and disp • for each
the biogeographic and climatic barriers present in m ^ capacity concerningregion (Figu^^j^ §
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Figure 1. Londscapesfall within Southern W6 and its elevation class

3.3 SPECIES PRESENCE RECORDS

Species presence records or occurrence points are the prime input for SDM.
These are georeferenced point data that include longitude and latitude besides
species names. It can also contain the date and time of point taken, location name,
elevation and additional comments by the observer.

3.3.1 Gathering Occurrence Points

The method of point count is used to record species presence. Every point
count was taken for 15 minutes and consisted of the following information; species,
date, time, geo-coordinates of the point using Global Positioning System (GPS).
The survey was conducted from February 2020 to April 2021 by visiting various
locations like Agasthyavanam Biological Park, Shenduruney Wildlife Sanctuary,
Periyar Tiger Reserve, Eravikulam National Park, Munnar Temtonal Division,
Marayur Sandal Division, Silent Valley National Park and Mannarkkad Forest
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Division. All collected data were uploaded to the website eBird India

(www.ebird.org/India) database.

Collected species occurrence points (Primary data) can only represent the

extant species falling within the Kerala state. Since the species (both ALT and NP)
prefer montane ecosystems of Southem Western Ghats, additional occurrence data

that fall outside the state boundary can significantly help frame the species' full
extent. This extra data was downloaded from eBird primary dataset and constitute
the secondary data.

eBird is a freely available web-enabled community of bird watchers who
collect, manage and store their bird observations in a globally accessible unified
database (Sullivan et al, 2009). eBird data is used bv Birders .•

^ oiraers, scientists, and
conservationists for understanding avian biological patterns and ti^«,the environmental,
anthropogenic factors that mfluence them. A proper multiF  uuui-ievel review process
makes the eBird data pure and available for research and conservation progr

al, 2017).

collected data. eBird basic dataset version 'EBD relJun P^manly
_  ~~ userl ^,,4

^  vctiion

including the development of species distribution modekoaeis (Sulhvan et al, 2017)
So, the species presence data was downloaded from eBird i l •
collected data. eBird basic dataset version 'EBD relJun-2021' ^
occurrence data. Details of the occurrence data are provided unde

3.3.2 Vetting of occurrence points

Since secondary occurrence data were collected from
quality of data would highly be depended on the recognif^ database,
observer, spatial and temporal coverage bv ^ ̂^P^bilities oj  contributor d t
species, the rare bird recording method of the Hatou ' ̂̂^^^ability

udiaoase and attenf
reviewer to vet the data (Isaac et al, 2014* Kamn ®ntion given b

uic uaiabase and att f
viewer to vet the data (Isaac et al, 2014- ®ntion given

' '^^hip et al, 2016^ q •recheck the data and further filter it before making t
ere modified after Strimas-Mackey et al (2020) filtering m

filtering techniques; (a) included all checklists h ' the fol
protocols; (b) excluded all checklists with more than ̂  sta

^  to 120 min
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duration; (c) removed checklists with transect distance of 2km or more; (d) removed

checklists with more than ten observers. Modifications were made by considering

habitat specificity of the species, abrupt elevation gain and vegetation change in the

habitat.

After vetting occurrence points, spatial thinning was also done to avoid spatial

clustering. When multiple occurrence points get clustered at specific regions, it

may lead to overfitting of the model. Thinning was carried out in R using the

package spThin (Aiello-Lammens et al, 2015). According to the number of

available points and the nature of clustering, records of NP were thinned at 1km.

Whereas in the case of ALT, due to minimal data, thinning was not carried out.

Figure 2 and Figure 3 shows the occurrence records of ALT and NP respectively.

All of which is gathered fi"om southern WG.

Since ALT is endemic to the Agasthyamalai landscape (south of Shenkottah

pass), there are no records firom the north. In NP, this bird is confined only to high-

ranges of the southern WG, including Nilgiri hills and Palani-Anamalai hills.

Hence, there are two disjunct populations of this species on either side of the

Palghat gap. The topography of this gap makes the species isolated on either side

with no dispersal between its disjxmct population.
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3.4 ENVIRONMENTAL VARIABLE

Patterns in species diversity and dissimilarity of species composition across

geographic space are a function of environmental heterogeneity (Graham et al,

2005). Hence determining environmental variables and estimating their

contribution to species of interest is essential in modelling studies (Araujo and

Guisan, 2006)

The following environmental variables are considered based on species

ecology and extant; bioclimatic variables (BIO 1-19) (Hijmans etal, 2005), Digital

Elevation Model (OEM) and Enhanced Vegetation Index (EVI) (Appendix II). The

dataset was downloaded from the website; Climatologies at high resolution for the

earth's land surface areas (CHELSA) climate dataset (Karger et al, 2017). The

OEM (GTOPO30) was downloaded from the United States Geological Survey

(USGS) Earth Resources Observation and Science (EROS) Centre. Topographic

variables like altitude, slope, and aspect are calculated using QGIS (version 3.16)

from the obtained OEM file. Enhanced Vegetation Index is like Normalised

Difference Vegetation Index NDVl, but it is more responsive to canopy variations,

canopy type and architecture, and plant physiognomy (Heute et al, 2002).

All EVI layers were downloaded at the spatial resolution of 30 arc seconds

(~1 km) from the USGS Landsat dataset and projected to WGS 84 EPSG:4326

(WGS 1984). The satellite has a revisit period of 28 days. EVI layers of each

month ranging from 2011-2020 were accessed. Thus, downloaded data then

averaged out in three ways; (1) by taking an average of EVI for the whole ten years

(evi avg); (2) 10-year average EVI of the wettest quarter of the year (peak

monsoon; June-August) (evi wet); (3) 10-year average EVI of the driest quarter

(peak summer; March-May) (evi_dry). All these three layers were used along with

other variables for the SDM process.
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3.4.1 List of environmental variables used for SDM

3.4.1.1 Bioclimatic variables

1. Biol (Mean Annual Temperature): refers to the average of the maximum

and minimum temperatures of a year. This corresponds to the total energy
inputs for an ecosystem

2. Bio2 (mean Diumai Range); tlie mean difference between the monthly
maximum and minimum temperature averaged for a year.

3. Bio3 (Isothermality): quantifies how large the day-to-night temperatures
oscillate relative to the summer-to-winter (annual) oscillations ((Bio2/Bio7)
xlOO). This can determine the influence of monthly variation of
temperature comparable to that of a year.

4. Bio4 (Temperature Seasonality): tins is a measure of temperature variation
over a year relative to monthly temperahrre averages. More significant
variability in temperature is inferred from a larger standard deviation

5. Bio5(Maximumtemperatureofthewarmestmonth):thisisameasurem ,
Of the temperature of the hottest month, which can be used for det '
species distribution changes related to warm temperature

6. Bio6 (Minimum temperature of the coldest monthV •
temperature of the coldest month ^ rentes the lowest

7. Bio7 (Temperature annual range): quantifies the variatio '
over a year determined by taking the differ u temperature
(Bio5-Bio6) etween Bio5 and Bio6

8. BioS (Mean Wperature of the wettest quarter)-
(l/4thofayear). It is the measure of the av is three montl
season. temperature of the wette

9. Bio9 (Mean temperature of the driest quarter)- a
season temperature of a year. '^^asure of the average d

10. BiolO (Mean temperature of the warms^o*
™est quarterV

the hottest season of the year average temperature
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11. Bio 11 (Mean temperature of the coldest quarter): average temperature of the

coldest season of the year.

12. Bio 12 (Annual precipitation): it is the cumulative total of rainfall over 12

months. It gives ah account of total water inputs.

13. Biol 3 (I'recipitation of the wettest month): total rainfall of the month which

has got the highest rainfall

14. Biol4 (Precipitation of the driest month): total rainfall of the month which

has got the least rainfall

15. Bio 15 (Precipitation seasonality) is the ratio of the standard deviation of

monthly precipitation to the monthly mean precipitation.

16. Bio 16 (Precipitation of the wettest quarter): total rainfall of the wettest

quarter (thiee months) of a year

17. Bio 17 (Precipitation of the driest quarter): total rainfall of the driest season

of a year

18. Bio 18 (Precipitation of the warmest quarter): total rainfall of the hottest

season of a year

19. Bio 19 (Precipitation of the coldest quarter): total rainfall of the coldest

season of a year

3.4.1.2 Digital Elevation Model (DEM)

20. Altitude

21. Slope

22. Aspect

3.4.1.3 Enhanced Vegetation Index

23. Evi avg: 10-year average of enhanced vegetation index for the year 2011-
2020

24. Evi wet: 10-year average of enhanced vegetation index of the wettest

quarter (June - August) for the year 2011-2020

25. Evi dry: 10-year average of enhanced vegetation index of the driest quarter
(March-May) for the year 2011-2020
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The temperature is measured in "C (degree celsius), and precipitation is in mm

(millimetres). All the bioclimatic variables (bid - bid 9) are calculated from

monthly rainfall and minimum, mean and maximum monthly temperature. And

data layers were generated by interpolating average monthly data available from

regional weather stations. As per the World Meteorological Organization (WMO),
the climate is defined as the measurement of the mean and variability of relevant
quantities of variables (such as temperature, precipitation or wind) over some time,
ranging from months to thousands of years. The classical period is 25-30 years.

CHELSA (Climatologies at high resolution for the earth's land surface areas)
is a very high resolution (30 arc sec, ~lkm) global climate 4ata set currently hosted
by the Swiss Federal Institute for Forest. Snow and Landscape Research (WSL). It
IS built to provide ftee access to high-resolution climate data for research and
application and is constantly updated and refined. It includes climate layers for
various periods and variables, ranging fiom the Last glacial maximum to current
toes to several fiitme scenarios. CHELSA is based on a mechanistic statistical
dowmscaling of global reanalysis data or global circulation model output and is
freely available.

3.4.2 MULTICOLLINEARITY TEST

s.,,,zzrzz z::r -
eliminate highly correlated variables and improve model 7 '
study, variables with high correlation with each other i! p

eliminate one ecologically less significant vrbte'^r"
~o« are selected for the model building 071^'^"
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multicollinearity results suggested 12 variables for ALT whereas ten for NP

(Appendix III).

3.5 SPECIES DISTRIBUTION MODELLING USING MAXENT

Maximum entropy (Phillips et al, 2006, 2017) algorithm (MaxEnt version

3.4.4) is used to develop species distribution models. Feeding data for the

modelling is presence-only occurrence points of the species.

To moderate goodness-of-fit with model complexity and to evaluate models

with spatially independent data, there is a need to smoothing model performance

and calibrate overfitting. R package ENMeval (Muscarella er al, 2014) (Ecological

Niche Model Evaluation) can be used for this. It can also provide us with model

settings like the selection of Maxent features, regularization multiplier (RM) and
the number of background points for building a Maxent model. Regularization or

Regularization Multiplier (RM) is a relaxation component added to Maxent to
constrain the estimated distribution, thereby allowing the average value of each

sampled variable to approximate its empirical average and thereby reducing the
overfitting of the model (Baldwin, 2009). It could also provide us with a bias file
for building Maxent models. ENMeval results could also give a value of Akaike
Information Criterion (AIC), which is a measure of model performance and model
suggestions. The lower the AIC value, the higher the perfomiance of the model.
The initial model developed by Maxent allows us to analyze the variable
contribution, permutation importance, area under the curve (AUC), and jackknife
test output to understand the contribution of each variable in the process of model
building. Several models must be run discarding variables with the most negligible
contribution, ai^ the model with the lowest AIC value is selected from the
ENMeval relults. Thus, it identifies the best performing model with the lowest
AIC and AUC values by running Maxent and ENMeval multiple times.

Different types of analysis are available in Maxent, and here complementary
log-log (cloglog) output was selected for the study. Cloglog type of output was a
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recently released analysis by the Maxent development team and is considered the

most appropriate output for explaining the species habitat suitability (Phillips et ai,
2017). Maxent replication run type selected as cross-validation and number of

iterations set as 5000. The number of backgrounds points, features, and RM were
adjusted, referring ENMeval output. All other settings are kept as default.

3.6 FUTURE SIMULATIONS Si

Habitat suitability was then modelled using future simulations. The

projections developed under different Representative Concentration Pathways
(RCPs) like RCP 2.6, RCP 4.5 and RCP 8.5 for 2061 — 2080 (the 2070s).
Bioclimatic variables associated with future climate models and static topographic
variables used to build prediction outputs. The EVI layers were excluded from the
prediction models because of the unavailability of such layers in the future.

Four different ESMs such as the Community Climate System Model version
4 (CCSM4), Model for Interdisciplinary Research on Climate version 5 (MIROC5),
Norwegian Earth System Model 1 (NorESMl-M) and Model for Interdisciplinary
Research on Climate Earth System Model Chemistry (MIROC-ESM-CHEM)
downloaded. All these models were used to build habitat suitability predictions for
both species.

Evaluation of model performance Is an unavoidable step in the process of
SDM. Among indices available for assessing model performance. Area Under the
Receiver Operating Characteristic Curve (AUC) value assessment is one method.
AUC measures how well parameters can distinguish between two diagnostic groups
(random and background points). It is computed from the Receiver Operating
Characteristic (ROC) curve by checking the sensitivity against 'l-specificity' across
the range of possible thresholds. The AUC ranges from 0 to 1, and the model's
goodness is indicated by values close to one. This measure of model performance
provided the rasults of Maxent out. Since AUC value alone could not evaluate
model performance due to its limitations (Phillips et al.. 2006), another model
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evaluation measurement is the True Skill Statistic (TSS), which can be defined as

'sensitivity + specificity - T. TSS ranges from -1 to +1, and values close to one

indicate high accuracy. Model robustness can be understood by calculating the

AIC value and here, used AIC, AUC and TSS for model performance evaluation.

3.7 ASSESSMENT OF HABITAT SUITABILITY

The Maxent output provides prediction maps in raster file format (Ascii file

'.asc'). Obtained raster files are then converted into a binary map by using a
threshold value. Maximum test sensitivity plus specificity (maxSSS) of cloglog is

considered as the best threshold for Maxent output reclassification for habitat

suitability determination (Liu et al, 2013). All the habitat values which are less
than this threshold can be regarded as unsuitable habitats, whereas greater values

are suitable. Based on this, current and future raster output could be reclassified to
binary raster with two values, 0 (unsuitable) and 1 (suitable), by using ArcGIS or
QGIS,

Binary maps hence formed can be used to plot and assess habitat suitability
change. This can be done using the function raster calculator in QGIS 3.16 by
subtracting the current binary map from the future binary maps. The resultant map
will have three-pixel values; a value of 0 indicates no change in species suitability
(either suitable or unsuitable both in current and future scenarios). A value of 1
indicates areas that will be converted into suitable habitat in the future fi-om an
unsuitable habitat in the current situation, and -1 represents areas that will be
changing from suitable habitat in the present to an unsuitable habitat in the future;
lost habitats!

The suitable habitat of the species coining under the protected area network
is also calculated. The protected area network maps were developed using ENVIS
Centre on Wildlife and Protected Areas database (ENVIS Centre on Wildlife and
Protected Areas, 2020).
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3.8 HABITAT SUITABILITY INDEXING

Since maximum test sensitivity plus specificity (maxSSS) of cloglog is
considered as the best threshold for Maxent output reclassification for habitat
suitability determination (Liu et al, 2013), it can also be used effectively for
indexing habitat suitability. Values that are greater than maxSSS indicate suitable
habitats, and it ranges up to 1. Further, it can be reclassified into four subclasses:
Highly suitable habitat (0.8-1.0), Moderately suitable habitat (0.6-0.8), Less
suitable habitat (maxSSS-0.6) and Non-suitable habitats (less than maxSSS). It
could give us an idea about the extent and quality of suitable habitats of a species.

•This analysis is done for both current and future scenarios of the species
Subtracting these raster layers (future minus current) could give an idea about the
change of quality of a species habitat.
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4  RESULTS

4.1 SELECTION OF THE MODEL BASED ON IMPORTANT PREDICTIVE

VARIABLES

The contribution and permutation importance of the variables in the finalised

model; the model with the lowest AIC value, highest TSS and AUC value were

selected. The significance of variables was also evaluated by doing a jackknife

test, and a different set of variables appeared in the suggested models. The

response curves of each gave the best suitable conditions of the species concerning

the variable

4.1.1 Ashambu Laughingthrush

Ten models have been developed for the species ALT based on the

permutation importance of environmental variable, AIC, AUC and TSS values.

Out of these models. Model eight is selected as the fmal model with five variables

and Maxent features as Linear (L), Quadratic (Q) Hinge (H) and Product (P) with

one as regularisation multiplier (RM). Low AIC value, high AUC value and
moderately good TSS value show the final model's robustness. Overall accuracy

can also be used as an additional value for assessing model performance (Table 2).
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Table 2. Model development and associated accuracy indices of the Ashambu Laughingthrush

1  Model

No

Variables RM Aic TSS AUC

1 • Biol, Bio2. Bio3, Biol I, Bio 12,

Bio 14, Bio 19, aspect, slope, evi_wet,

evi_dry

3 llOS.l 0.807 0.934

2 Biol, Bio2, Biol2, Biol4, BiolS,

aspect, slope, evi_wet, evi_dry

4 10S7.4 0.811 0.934

3 Biol, Bio2, Bio3, Biol 1, Bio 12,

Bio 14, evi_wet

2.S 1098.1 0.823 0.92S

4 Biol, Bio3, Biol 1, Bio 12, Bio 14,

evi_wet

2.S llOl.S 0.819 0.922

5 Biol, Bio2, Bioll, Bio 12, Bio 14,

evi__wet

2 1117.1 0.767 0.911

6 Biol, Bio2, Bio3, Biol 1, Bio 12,

Biol4, BiolS, evi_wet

3 1078.9 0.734 0.929

7 Biol, Biol 1, Biol2, Biol4. BiolS,

evi_wet

3 1077.1 0.860 0.929

8

9

10

Biol, Biol2, Biol4, BiolS, evi_wet

Biol, Biol2, Biol4, BiolS

Biol, Biol2, Biol4

1

"as

~~2

1050.1

10S4.6

1098.3

0.881

0.874

0.729

0.932

0.924

0.902

All five variables contributed to the model building with noticeable
^  RTO 1 Hes thc highcst percentage of contribution anpermutation importance. BlU l nas me g f . ue

f  • ;o as the least essential vanaoi*'permutation importance, whereas evi_wet is identitied as me
(Table 3)
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Table 3. Variables Included In the final model of Ashambu Laughingthrush and associated calculations

Variables PC PI MAX MIN MEAN SD

BIO 1 87.6 60.6 28.67 17.03 22.85 3.36

BIO 12 5 19.2 •228.7 72 150.4 45.3

BI014 4.2 II.3 5.02 1.18 3.1 l.Il

BI015 2.8 7.7 79.6 48.4 64 9.02

EVI_WET 0.4 1.2 6575.4 810.6

C1

3693 1666.6

Jackknife analysis also shows the importance of the BIO 1 in model testing.

The evi_wet has a minor test gain in the jackknife analysis (Figure 4). When
referring to the response curves of the variables, the best suitable conditions of the
ALT are defined around IS.S'C of BIO 1 and 2287 mm of average annual
precipitation (BIO 12) (Figure 5).

eviwet

test gain

Without variable '

With only variable
With all variables

Figure 4. Jackknife testgraphs showing the test gain of different variables used in the modei building ofAshambu Laughingthrush
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Figure 5. Response curves of the variables used for the model building ofAshambu Laughingthrush
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4.1.2 NILGIRI PIPIT

Three models have been developed for the species NP based on the '

permutation importance of environmental, variables, AIC, AUC and TSS values.

Out of these models. Model three is selected as the final model with five variables

and Maxent features as Linear (L), Quadratic (Q) and Hinge (H) with 1.5 as

regularisation multiplier (RM). Low AIC value, high AUC value and moderately

good TSS value show the final model's robustness. Overall accuracy can also be

used as an additional value for assessing model performance (Table 4).

Table 4. Model development and associated accuracy indices of the Nilgiri Pipit

Model

No Variables RM AIC TSS AUC

1

bio3, bio4, bio7, biol 1, biol2,

biol4, biol8, biol9, wetave, dryave 3.5 1,441.847 0.868 0.901

2

bio4, bio7, bioll, biol2, biol4,

biol 8, dryave 1.5 1,433.438 0.848 0.911

3 bio7, bioll, blol2, blol4, dryave 1.5 1,435.271 0.843 0.920

BIO 11 is considered the single most crucial variable, with 74% contributing

to the model building. It also has permutation importance of 74%. All other

variables contributed a little to the model (Table 5). Jackknife analysis also

indicates the importance of BIO 11, and it has a higher test gain (Figure 6).

Furthermore, the species' habitat suitability is higher when the mean temperature of

the coldest quarter (BIO 11) is around 12°C.
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Tohle 5. Vanables included in the final model of Nilgin Pipit and associated calculations

Variable PC PI MAX MIN MEAN SD

BIO ! 1 74.2 73.8 27.71 10.8 19.25 4.9

BVI DRY 11.4 4.8 6261.4 592.6 3427 1638.9

BIO 12 6.4 9.8 394.24 39.76 217 102.4

BIO 7 5.5 4.1 18.15 12.75 15.45 1.56

BI014 2.5 7.5 3.23 0.47 1.85 0.79

Without variable ■

With only variable ■
With all variables ■

,2 0 3 0.4 0.5 06 0.7 0.0 0.9 1.0 1.1 1 2 ' 2 '« 1.5
test gain

When referring to the response curves of the vanables the ®

annual precipitation (BIO 12) (Figure 7),
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Figure 7. Response curves of the variables used for the model building ofNiigiri Pipit
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4.2 CURRENT HABITAT SUITABILITY ANALYSIS

4.2.1 Ashambu Laughingthrush

The best performing model of the ALT (AIC = 1050.1) predicted an area of
303 km2 as suitable habitat across the background. The suitable habitat covered

9% of the background area used in the Maxent modelling (Table 6). Out of the
total suitable area, 80.5% fall under the protected area network of Kerala and Tamil
Nadu state. The model also predicted a new suitable habitat, where previous
records were unavailable, particularly the eastern part of Kalakkad - Mundanthurai
Tiger Reserve (Figure 8).

Table 6. Suitable habitat avallabre for both species under current climate
scenarios

Species maxSSS*

Suitable

Habitat

Total

background

area

Percentage

of suitable

habitat
Ashambu

Laughingthrush 0.4169 303 3356 9.03

Nilgiri Pipit

*lV/fnYitniinn tfad

0.3901 1792 8628 20.77
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Figure 8. Predicted habitat suitability ofAshambu Laughingthrush
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4.2.2 Nilgiri Pipit

For NP, the final model (AIC = 1435.27; Table) resulted in a 1792 km-' area as
suitable habitat, 20.77% of the background area selected (Table 6). The species is
mainly distributed in the high altitudes of Nilgiri Hills and the Palani-Anamalai
hills. It IS also interesting that apart from these two significant populations, a highly
fragmented and isolated population lies north of the Palghat Gap in the Shimvani
hills (Figure 9). It is estimated to be around 18.7% of the total suitable area of the
species fall within the boundaries of the protected area network of Kerala and Tamil
Nadu states (Figure 9).

?-

TT-Jtote

mr

?7'lC0t

Inside of

PAs

round

Outside of
PAs

*5.

Current suitable habitat
'SOO-E

of Nilgiri Pipn
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4.3 ESTIMATING QUALITY OF AVAILABLE HABITAT

4.3.1 Ashambu Laughingthrush

While assessing the quality of the total suitable habitat of ALT. It is estimated

that approximately 10% of the total suitable area falls under highly suitable habitat

(HSH), remaining habitats are equally distributed among moderately suitable

habitat (MSH) and less suitable habitat (LSH), with both having approximately

45% of total suitable habitat (Table 7)

Table 7. Total suitable habitat and analysis of the quality of suitability for each species

Species

Total

Suitable

habitat

HSH MSH LSH

(kni2) % (km2) % (km2) %

Ashambu

Laughingthrush 303 30 9.9 136 44.9 137 45.2

Nilgiri Pipit 1792 289 16.1 540 30.1 963 53.7

HSH: Highly Suitable Habitat; MSH: Moderately Suitable Habitat; LSH: Less Suitable

Habitat; Percentage: available area written as a percentage of total suitable habitat

Figure 10 shows the quality of suitable habitat available for ALT. It is

identified that all the highly suitable habitats also have the highest elevation.

Moderately suitable habitats and less suitable habitats together contribute up to 90%

of the suitable habitat.

47



77 'OE 77 j:o i

Not suitable/

Background

Less suitable

Moderately suitable

Highly suitable

s

0

L

10 20

_L_

40 KM

z

h
-u'>

TT'OO-E 77'»5'0-E 77'J:0'S

Figure 10. Extent of suitable habitat and its quality for Ashambu Laughingthrush
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4.3.2 Nilgiri Pipit

More than half (-53%) of the current suitable habitat of NP falls under less

suitable areas. 30% of available habitat is moderately suitable, while the remaining

16% is estimated to be falling under HSH (Table 7). Figure 11 shows the extent of

habitats falling in these criteria. It is interesting to note that HSHs are all situated

in higher elevations. Eravikulam National Park holds a significant share in

providing HSH for this species, particularly for its southern population (south of

Palghat Gap)
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Figure 11. Extent of suitable habitat and its quality for Nilgiri Pipit
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4.4 PREDICTING FUTURE HABITAT CHANGES AND SUITABILITY

4.4.1 Ashambu Laughiiigthrush

According to selected RCP scenarios, maxent could predict a considerable loss in
the suitable habitat of ALT. The species would be losing 20.5% of its current
suitable area in the RCP 4.5 (the 207,0s) scenario, 40% in RCP 6 0 i
drastic 76.6% loss in the RCP 8.5 (2070s) scenario (Table 8) Thus\inder tbl ^
extreme climate change scenario, the NP would lose four-fifths nf it'.- c.n.. i
within 50 years (Figure 12 and Figure 13). ' ^ Oable arei

I  I Background area

■l
CURRENT

S

RCP 6.0

•i.

v\

Suitable habitat

N

RCP 4.5

\

RCP 8.5

F'9ure 12. Suitable habitat of Ashambu Laughingthrush
different RCP

scenarios
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Table 8. Habitat loss and gain of Ashambu Laughingthrush

RCP

Scenario

maxSSS

Threshold

Loss Gain CSH FSH

Net

Gain

(km^) (km^) (km2) (km^) (%)

4.5 (the

2070s) 0.3487 65 3 303 241 -20.5

6.0 (the

2070s) 0.3104 229 108 303 182 -39.9

8.5 (the

2070s) 0.3284 241 9 303 71 -76.6

changes to suitable habitat in future; CSH: Current Suitable Habitat; FSH: Future Suitable

Habitat; Net Gain = ((FSH-CSH)/CSH) *100

□
Background

Area

Unchanged
Habitat

Habitat

Loss

Habitat

Gain

N

RCP 4.5

0  10 20KM
1  t "

RCP 6.0 RCP 8.5

•  \

s
<■ r-

Figure 13. Probable habitat quality change for Ashambu Laughingthrush under different RCP scenarios

If,,  \

^lV.l

51



4.4.2 Nilgiri Pipit

In all the three RCP scenarios, maxent could predict a considerable loss in the

suitable habitat of NP. The species would be losing 41.2% of its cun ent suitable

area in the RCP 4.5 (the 2070s) scenario. 50.45% in RCP 6.0 (2070s) ami a drastic

79% loss in the RCP 8.5 (2070s) scenario (Table 9). Thus, under the extreme
climate change scenario, the NP would lose four-fifth of its suitable area within .M)
years (Figure 14 and Figure 15)

Suitable area
Background area

CURRENT
RCP 4 5

RCP 6.0

RCP 8.5

Figure 14. Available habitat for Nilgin Pipit
to different RCP scenarios

52



Table 9. Habitat suitability changes in the future for Nilgirl Pipit

RCP

Scenario

max SSS

Threshold

Loss Gain CSH FSH

Net

Gain

(km^) (km^) (km^) (km^) (%)

4.5 (the

2070s) 0.3688 893 154

1792

1053 -41.24

6.0 (the

2070s) 0.3620 1032 128

1792

888 -50.45

8.5 (the

2070s) 0.3601 1417 0

1792

375 -79.07

habitat changes to suitable habitat in future; CSH: Current Suitable Habitat,

FSH: Future Suitable Habitat; Net Gain = ((FSH-CSH)/CSH) *100

□ Background | | Unchanged
Area I I Habitat

RCP 4.5

I Habitat
LOSS

RCP 6.0

s

I Habitat
Gain

RCP 8.5

Figure 15. Probable habitat changes for Nilgiri Pipit under different RCP scenarios
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4.5 ANALYSING HABITAT QUALITY CHANGF

4.5.1 ASHAMBU LAUGHINGTHRUSH

4.5.1.1 QUALITY REDUCTION

Upon calculating the reduction in habitat quality (Table 10) under the RCP
4.5 sc^ario, it is estintated that 2070s will deteriorate nearly U". of the cu«n.
suitable habitat. This account for more than 17% of -i ui • n.  fc f- , '"^ofthe available habitat. HSH willnot suffer from complete loss, but 20% of it will h ^ •
status in the future. Total habitat loss will be severe
will be lost entirely, but at the satne titne, 000! '"
to LSH from MSB. downgraded

RCP 6.0 suggests mueh more loss than the ore
22% of the current available habitat b.- a

^ttuudi oeing deeradeH

habitat. 80% (109 km2) of LSH in ft, ' the suitable/ v/x i^on in tne current hah t

species in the future. Reduction in habitat • ^ available for the
However, the complete loss of qualitv io relatively lower in this scenario.

%ts much more Significant here.
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Table 10. Habitat quality reduction ofAshambu Laughingthrush under different RCP scenarios

Complete habitat loss Reduction in habitat quality Total habitat quality reduced

% of

HSH MSH LSH HSH MSH the %. of the

to to to HSH to to to initial remaining

RCP NSH NSH NSH LSH MSH LSH Total* area area

Scenario (km^) (km^) (km2) (km^) (km^) (km^) (km^) % %

4.5 (the

2070s) 0 3 62 0 6 36 42 13.9 17.4

6the .0

(2070s) 21 99 109 4 60 3 67 22.1 36.8

Sthe .5

(the

2070s) 15 113 113 13 2 17 32 10.6 45.1

HSH: Highly Suitable Habitat; MSH: Moderately Suitable Habitat; LSH: Less Suitable Habitat;

*Tota al: a total area that has reduced its quality (excluding complete loss); Initial area=303 km2;

remaining area: FSH of Table 8

The table shows the suitability degradation of the RCP 8.5 scenario as well.

Even though the reduction of habitat quality is lower, the model shows a severe loss

of habitat for the species. The species must come up with a degraded 32km2 of

land in future, and that is nearly 45% of the total habitat available for the species in

the 2070s.

4.5.1.2 QUALITY GAIN

As per the RCP 4.5 scenario, a negligible erection of new possible habitat is

seen (3 km^). It is worth noting that 20% of the current suitable habitat will gain

its quality by 2070 (Table), accounting for nearly one-fourth of available habitat in

the future. The almost equal extent of both LSH and MSH will be upgraded into

MSH and HSH, respectively.

RCP 6.0 predicted a bit differently. There will be new areas available for the

species in future; at the same time, nearly 49 km^ suitable area will become much
more suited for the species climatic preference (see Table 11).
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RCP 8.5 is the worst scenario among the three where the only negligible are
will be upgraded and created in the future. 2km^ area of LSH will become MSH

and some 8km^ area will be added to the list of LSH.

Table 11. Habitat quality gain of Ashambu Laughingthrush under different RCP scenarios

RCP

habita

Complete

gains

Gain in habitat

quality

Total habitat

quality gain

NSH

to

LSH

NSH

to

MSH

NSH

to

HSH

LSH

to

MSH

MSH

to

HSH

LSH

to

HSH Total

%

initial

area

% of the

remaining

area

(km^) (km^) (km^) (km^) (km^) (km^) (kra^) % %

4.5

(the

2070s) 3 0 0 28 30 0 58 19.1 24.07

6.0

(the

2070s) 51 20 37 3 30 16 49 16.2 26.92

8.5

(the

2070s) S 1 0 2 0 0 2 0.7 2.82

HSH: Highly Suitable Habitat; MSH: Moderately Suitable Habitat; LSH: Less Suitable

Habitat; *Total: a total area that has gained its quality (excluding complete gain); Initial

area=303 kni2; remaining area: FSH of Table 8
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4.5.2 Nilgiri Pipit

4.5.2.1 QUALITY REDUCTION

A dramatic decline is observed in the case of NP in all three RCP scenarios

(Table 12). The most habitat loss is seen in LSH. In RCP 4.5, nearly half of the

current suitable habitat will be lost by the 2070s. At the same time, the 323km^

area of MSH will be changed to LSH. The bird will be forced to live in a habitat

with 40% of deteriorated habitat compared to the current suitable habitat.

The same trend exists in RCP 6.0 as well. 22% of the current suitable habitat

will likely be facing quality deterioration. Nearly half of the LSH (863 km^) will

not be available for the species to survive. It is slightly larger than that of RCP 4.5.

Almost 45% of the future habitat will be in a state of deterioration.

Drastic habitat loss and quality reduction are seen in the RCP 8.5 scenario.

Deteriorated habitat of around 367km^ accounts for almost 98% of the future habitat

of NP. 67% of the HSH will be converted into LSH (196 km^), whereas 18% of

HSH will become MSH.

Table 12. Habitat quality reduction of Nilgiri Pipit under different RCP scenarios

RCP

Complete habitat loss Reduction in quality Total quality reduced

HSH

to

NSH

MSH

to

NSH

LSH

to

NSH

HSH

to

LSH

HSH

to

MSH

MSH

to

LSH Total

% of the

initial

area

% of the

remaining

area

(km^) (km^) (km2) (km^) (km2) (km^) (km2) % %

4.5 (the

2070s) 12 63 818 14 86 323 423 23.60 40.17

6.0 (the

2070s) 14 155 863 40 101 256 397 22.15 44.70

8.5 (the

2070s) 40 419 958 196 52 119 367 20.48 97.87

♦Total: a total area that has reduced its quality (excluding complete loss); Initial area-303 kni2;
remaining area: FSH of Table 9
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4.5.2.2 QUALITY GAIN

» RCP ,.i, of

additional area will be available for the bird to survive.
RCP 6.0 indicates a bit mote increase in »

171 km^ (Table 13). Out of which 101 km^ T
sisniricant intprovcent h. habitat .ualit,, of whicTalrt J ^
converted into HSH in the future. " ° ^ill be

It is noteworthy that there will he no new areas a .
RCP 8.5 scenario. A fraction of suitable bah-, " "Pgrades for the(see Table 13) ' '«may remain but will be degrading

6.0

2070s)

8-5 (thetme

raWe IS. HOMO,

Complete habitat

NSH

to

LSH

Skills Gain
different

NSH

to

MSH

NSH LSH

habitat

msfT

scenarios

quality

XsiT

to

hsh

4.5 (the

Total quality

 ..a

7170s) 0 0 0 0 " " ^
Suitable HibiLrMSHnCTT-^-^-^ " 0

•To.a,:a.„.,area.balbasgal„^ai2S^^^ "remaming area: FSH of Table 9 (deluding compie,. „ ■ ' ^"'1'''= Habitat;
''«^>'»i'ni.ialarea.303l

gained

% of the

remaining
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5  DISCUSSION

5.1 CONTRIBUTION OF VARIABLES IN BUILDING THE MODEL

The selection of predictor variables is a significant step in almost all

modelling studies (Guisan & Zimmermann, 2000; Heikkinen et al, 2006; Araujo
& Guisan, 2006). This variable should also reflect the ecology of the species and
could explain the habitat requirement of a species (Austin and Van Niel, 2011).
Altogether, 25 environmental variables were used in the current based on the
availability of the variable and the current understanding of the ecology of the
species After careful examination and statistical analysis, an adequate number of
variables are fmally selected for the model building. The species in this study (ALT
and NP) are high-altitude specialists (del Hoyo et al, 2020). Even though altitude
seems a significant predictor variable for the species, it is the other bioclimatic
variable (temperature and precipitation) that are shaped by the altitude, contribute
to the species habitat selection. It was also proven statistically using a
multicollinearity test where, altitude correlated with other variables and got
removed It is thus evident and significant that global temperature rise is likely to
cause an impact on species suitabiUty regardless of the topography of the landscape.

Different temperature, precipitation and vegetation variables contribute
significantly to both the species habitat selection. Among them, temperature
variables were identified as the major contributing factors on which the species is
highly dependent. Mean annual temperature (BIO I) and mean temperature of the
coldest quarter (BIO 11) are the critical variable for ALT and NP, respectively.
Apart from that, annual precipitation and precipitation seasonality also help form
the required habitat of both species. Not only temperature and precipitation, but
vegetation structure is also significant for both species. Field studies indicate that
the ALT prefers thick evergreen forests and forest edges of the high-altitude region.
In contrast, NP prefers shola grasslands and open lands found in high-altitude areas
and avoided canopies. It can be concluded that a change in these bioclimatic
predictors may significantly affect the survival of the species in question.
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5.2 CURRENT SUITABLE HABITAT AVAILABLE FOR THE SPECIES

5.2.1 Ashambu Laughingthrush

del Hoyo (2020) classify this species as an Inhabitant of evergreen forests
over an altitude of 1200m, reaching at least 2135m above Mqt t. • ,

"ve It IS adequatelyobserved in the case of the lower reach. We couldn't find the b'd b I
elevation anywhere in the surveyed region, and we could observe tk u- !

vc ific Dircl 3,s soon,
as we got past that elevation mark. But, having said that the bird is
Agasthyamalai landscape (Sashikumar et al, 2011; Chandran
del Hoyo et al, 2020), and the upper reach of this landscape is the
peak that spans 1868m above MSL (Amamath et al 2nn^\ ^ '^S^^%amalai

M the species* imrkd:^of elevation can be updated to below 1868m. In this research "
ft). In fact, it shows a very restricted distribution. The ' (4812
suitable habitat for the species in Tamil Nadu ^ suggested a
the species from that region, namely the Kuttalam reserve ^ ̂  ̂^^ilable for
Pandimotta (Shenduruney WLS). Proper field survey sho Id^b^^' '^^rtheast of
hills as it can provide suitable habitat for the species whi h ^ those
northern boimdary for the species. ^®garded as thenorthern boimdary for the species.

5.2.2 Nilgiri Pipit

NP seems like an overlooked species among birdw
(1999), the bird inhabits an altitude from 1050 onward According t<
by Sashikumar et al, (2011) and Tyler (2020) But^ ^tipp,
collection from the state of Kerala covering all • ^ ^i^tense field
couldn't find any bird below the altitude of 1 fiftn ^^^scapes thf.

Auuuin^ ^ j
was also backed up by Robin et al (2014). Accord" Hifis)
drd is less likely to be found in an elevation less than is (^014
ills of Palakkad district. This intense field surv. ̂  c-

isurvey couldn't o
spot/catch^ .

a single
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from north of Nilgiris and south of Palani and Anamalai hills. Also, they did

observe similar-looking Paddyfield Pipit {Anthus rufulus), Richard's Pipit {Anthm

richardi) and Long-billed Pipit (Anthus similis travancoriensis) from these

locations. They postulate that the historical records of Nilgiri Pipit could have been

other similarly looking pipits as they are a potential candidate for misidentification.

So, by following Robin et al. (2014), a study could identify potential habitat

available for the NP now. High-altitude mountain ranges running across the Nilgiri

Landscape in the north of the Palghat gap and Palani-Anamalai landscape in the

south has been shown as the suitable current habitat for NP. As it inhabits grassy,

rocky hilltops interspersed with sholas (AJi, 1999; Sashikumar et al, 2011; Robin

et al, 2014; Taylor, 2020), the health of the habitat is crucial for its survival. The

species can't disperse beyond the extends of the background because of the

unavailability of suitable habitats like shola at the northem extent and drier habitats

at the eastern slopes and Palghat gap, which is a 30km plain

5.3 HABITAT QUALITY OF THE CURRENT SUITABLE HABITAT

Mountain peaks and associated high-elevation forests indicate highly suitable

habitats (HSH) in the case of both ALT and NP. Similarly, less suitable habitats

are located at the periphery of the species suitability map.

HSH for ALT lies in the Agasthyavanam Biological Park (ABP) as a chain

running along with the highest peaks in that system. Areas including

Chemunjimotta, Pandipath, Agasthyamalai, Kodayar and Mahendragiri are

identified as HSH. Moderately Suitable Habitats (MSH) lie surrounding HSH,

followed by Less Suitable Habitats (LSH). From this trend, it can be concluded

that due to global temperature rise, species are likely to be climbing up the hill

seeking suitable habitat.

A similar trend can be observed in the case of NP as well. Half of the suitable

habitat of NP is, in fact, LSH, which is under severe threat. New Amarambalam

WLS in the north of the Palghat gap and Eravikulam NP in the south of the Palghat
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gap are the HSH for the speeies as per the present conditions owing to their high
elevated topography. HSH found in Ooty and Kodaikanal faces a significant threat
fiom anthropogenic pressures as they are currently unprotected.

5.4 CLIMATE CHANGE IMPACT AND HABITAT SUITABILITY

losutg then suttable habttafs under extreme climate change scenarios One of the
possible responses of species' especially birds, against adver.. >•

become locally/globaUy extinct (Bellard el al.. 2012) Tb''
be a possible solution to overcome climate warming (Snrhld'T"""^
2018). These elevational shifts may eventually lead to conflirt T""
resources among other habitat specialists, including birds and oZ

5.4.1 Ashambu Laughingthrush

According to different RCP scenarios, the Maxentm a ,habitat loss ranging from 20% to 770/0. Even tho ^ ® severe
expanding its habitat in all these scenarios, itl^llrf Zit will lose. Upon careful examination of sites that 11 b ̂  ̂  balance areas that
be concluded that most of the lost regions are fo Jd in T""' "
current habitat, i.e. areas with relatively lower elevati
mountain ranges seem to be maintaining the habZ

surrounding Agasthyamalai peak and Chemunjimotta Of"!.Ravindranath and Sukumar (1998) predicted a likely

forestinthefirmreduetoanincreaseinmeanannualpre?"^'"" of the evergreen.s needed whether this expansion benefits the species in^ "' ̂
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5.4.2 Nilgiri Pipit

A 40% to 80% reduction in habitat is calculated under different RGP

scenarios. A slight habitat gain is also noticed in the case of NP. It is noteworthy

that the significant share of areas that will be lost in the future are situated along the

western slopes of WG, falling in the state of Tamil Nadu. And the area gain in NP

is primarily observed along the eastern slope of WG. This suggests a drastic but

gradual temperature increase in the leeward side of WG, which also lie adjacent to

the drier plains of Tamil Nadu. A dramatic westward shift in habitat is clearly

observed in the case of NP. Within the available habitat, higher elevation ranges

seem to be free from the immediate temperature increase. But the altitudinal shift

of the species may then pave the way for intense competition among species'
sharing the same niche. Future expansion of evergreen forest (after Ravindranath

and Sukumar, 1998) may lead to a decline in grassland ecosystem (Sukumar et al,

1995) which is f'gain a threat for this grassland bird. The evergreen forest has
already started licking grasslands from the valleys of Eravikulam national Park, as
observed from the field.

5.5 SUITABLE HABITAT UNDER PROTECTED AREA NETWORK

Close to four-fifths of the suitable habitat of ALT is estimated to.be falling
inside the PA network of Kerala and Tamil Nadu state. In that sense, most of its
habitat is legally well proteeted. Even then, hill ranges exist, especially in the
extreme north of the species habitat, that require conservation importance.
Kunaiam reserve forest in TN, adjacent to Shenduruney WLS, is one such area that
should be notified as part of FA Kalakkad-Mundanthurai TR of TN.

Even though most of these habitats are protected, forests adjoining
Agasthyamalai peak are getting severe anthropogenic pressure bom from
ecotourism and pilgrimage tourism. Panigrahi and Jins (2018) were also raised this
issue as one of the significant threats for the habitat of birds thriving in that region.
An urgent management intervention is recommended to regulate the flow of the
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tourist

forests.

ist and pilgrims to the peak before it adversely affects these high-altitude
;StS.

Only 18% of the cunent suitable habitat of NP falls within the boundary of
the PA network of Kerala and Tamil Nadu. Eravikulam national park, Silent Valley
national park of Kerala and New Amarambalam WLS of TN are the major PAs that
provide the necessary conditions for the species survival. The rest of the NP habitat
falls under re«=rve forests, encalypurs, tea and cardamom plantations degraded
lands tourism centres. Among the major tourist destinations in South India. Ootv
in Nilgiris and Kodaikanal in Anamalais are also home to NP Th
unprotected and highly vulnerable to land-use changes A™., tv

.  ar . ^igcs. Apart from that-these arethe areas where a sigmficant loss of future habitat is projected S h
need immediate policy intervention, land restoration and conser^lfrT'^ ̂ ^dscapes

5.6 QUALITY DEGRADATION OF AVAILABLE FUTURE HABITATS
We have already discussed the future habitat loss of ALT

to that, the quality ofthe habitat is also eoinotfsri , andNP. In addition
going to degrade severelv HcHalf of the remaming habitat of ALT will be d -y as per the analysis,

scenario (RCP 8.5). Owing to its extended area, NP sho ^orst-case
II OX Liie rciiid-iiuiig iiaDiia.1 01 ALT will bo d

inario (RCP 8.5). Owing to its extended area, NP sho worst-
its habitat. This degradation in its habitat will ^ ^^gradj

temperature rise accompanies added anthropogenic ^^vere if the gl
species, deliberate planting of exotic trees (Joshi et ^i^dfire, inv£
resources will complicate this dileituna.

to forest detenoration, then the species populations be ^^^^^nnected
isolation of the fragmented populations would lead ^^^^^ted. Long-
species (Wilcox and Murphy, 1985). 97% of the ^ ^''tinction o
degraded as per the RCP 8.5 situation. In that case'^^^'^^ ̂ ^^itat of Np
may support this species in the nametag of HSH tha ̂  "fountain p

'  severe competl
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5.7 LIMITATIONS OF THE STUDY

This study is mainly focused on quantifying species distribution changes in

response to global temperature and changing climate. For that purpose, bioclimatic
variables, digital elevation model, and enhanced vegetation index were effectively
used to develop the present and future models. In turn, the qualification of the
model depends mainly on the goals of the study that explain the qualification
criteria and the usability of the model (Guisan and Zimmermann, 2000). Species
habitat selection is highly varied and can be complex than we think. Other than
temperature and precipitation, many other factors influence the distribution of a
species. Prey-predator relationship, inter, intra-specific competition, an abundance
of food and water, availability of healthy breeding ground and movements, to name
a few (after McEven and Wingfield, 2003)

But most of such variable layers are unavailable in the required format to
perform SDMs. This current study has tried incorporating the utmost variables as
possible to generate the statistically meaningful model. A detailed account on
species-specificity, habitat specialisation, dependants of the species to the
prevailing microclimate of the location would throw more light into the accurate
mapping of species suitable habitat. The resolution and quality of the available
layers may also vary among different models released by other climate
organisations. The high-resolution climate model rooted in different families were
selected to overcome this problem.

A new array of socioeconomic scenarios (Shared Socioeconomic Pathways;
SSPs) may soon be available for modelling (Neill .r a/.. 2013). This incorporates
the social structure, development, education, administrational power, inter-
governmental relations and eeonomie structure of the world (after Riahi er al
2016) That, coupled with the current emission scenanos, would likely give a muc

accurate model as it incorporates the human-modified world ,n all its essence.more
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SUMMARY



6  SUMMARY

-O

Prevailing anthropogenic pressure on earth and associated global temperature

rise affect many taxa, including birds. "Understanding these phenomena and how

they influence birds can be studied effectively by choosing endemic high-altitude-
dependent birds. Since montane habitat is more vulnerable to global temperature

rise, resident birds in these habitats can be selected as bioindicators. Modelling

habitat suitability is considered one of the best analyses for understanding the

relationship between a species and its environment. HSM can be done very

effectively by using Maxent because of its accuracy and ability to function

irrespective of species absence records.

This study aims to quantify the influence of environmental variables on the

distribution of selected endemic birds of the Western Ghats. The study also seeks

to identify the suitable habitats of the selected endemic birds of the Western Ghats.
Another quest in this study is to analyse the quality of available habitats for the
selected endemic birds of WG. It is also proposed to predict the future changes in
the habitat suitability of selected endemic birds of the Westem Ghats under different
climate change scenarios such as RCP 4.5, RCP 6.0 and RCP 8.5 for the period of
2070s (2061-2080) by using the Maxent algorithm.

Habitat Suitability Models can be rendered by using the software maxent. It

can develop models by analysing presence-only information of the species of
interest Rigorous field surveys within selected habitat could provide an adequate
number of presence data for the species. Occurrence data lying outside the state

be retrieved from the eBird database, an online citizen science-based bird
.  • Bioclimatic variables (BIO 1 to BIO 19), digital elevationmonitoring platiorm.

model (elevation slope and aspect) and 10-year averaged enhanced vegetation
d  developed the HSM. Pearson's multicollinearity test is used to eliminate

hi hly correlated (|R|>0.75) variables. The ENM (Ecological Niche Modelling)
1 ation tool (ENMeval) was used to determine the Maxent features, several

background points and regularisation. To reduce model bias, future predictions
were made by taking an average of five different earth system models under
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Coupled Model Inter-comparison Project 5 (CMIP5). Two other species, Ashambu

Laughingthrush (Ashambu Chilappan), Montecincla meridionalis and Nilgiri Pipit

Anthus nilghiriensis, are selected for the modelling study owing to their endemicity

and habitat specialisation.

The highlights of the results are summarised below:

^ Mean annual temperature (BIO 1) and mean temperature of the coldest
quarter (BIO 11) was found to be the variables having the highest importance
for the species ALT and NP, respectively,

^ An area of 303 km^ is calculated as suitable habitat for ALT. It only covers
9% of the total background area chosen for the study

4. For NP, the model could identify an extent of 1792 km^ as a suitable habitat
which covers one fifth (20%) of the total background area '

4. 80.5% of the total habitat of ALT and 18.7% of total habitat of NP ar..
distributed within the protected afea network of Kerala and Tamil Nadu st^

4. Out of the suitable habitat of ALT, 9.9% of the area are H9H an oo/
MSHs, and the remaining 45.2% are LSH ^ HbH. 44.9% are

4. 16.1% of the available habitat of the NP currently comes unH..r h«u
third of its habitat is moderately suitable, and half of its suitaW
comes under LSH ® ̂""^We habitat

A Upon future climatic modelling, it is estimated that ALT will u •
loss in its habitat ranging from 20.5% to 76 6% unH^^r ^net
change scenarios. o'imate

^ In the case of NP, net habitat loss is predicted to range from 41.2% to 79%
A The quality of the future habitat is also severelv affert^-H • u

ALT and NP. According to different RCP scenario . of both
survive in degraded land in the future, where the m • • ^ould have to
severely degraded by 40 to 97%. However,, there habitat will be
which will be around 24%, 26% and 2% in'kcp 4 'n quality gain too,
respectively. ' ' b.O and RCP 8.5,

A An average of 25% of the current suitable habitat a . •
of NP. And the bird will have a future with a 970/ a in the case
15% of the remaining habitat seems to be gainiL Nearly
whereas there will be no gain in the case of RCP 85 ^^^hty in RCP 6.5,

A Potentially suitable habitats which are lying 01 vi
identified. Redrawing a protected area network be
recommended to ensure the long-term conservation ofioth

A Restoring degraded forests, woodlands and . species.
management policy should be the prior
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Future Recommendations:

•  Conducting periodic bird surveys in WG is needed for understanding the
most accurate distribution of the species and changes in population
dynamics

•  Understanding of niche structure and habitat suitability of other endemic
birds of the WG

•  Standardise earth system models for the Western Ghats

•  A collaborative effort on emission reduction, equitable sharing of
resources and policy implementation is urgently needed
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8  ABSTRACT

Finding factors influencing. change in species distribution is of great

importance lo scientific research. Dramatic alterations in species distributions and

abundances have been connected to elevating global temperature. The habitat

specialists restricted to montane ecosystems could be used as ecological indicators

of global temperature rise as they are sensitive to climate change. In this study,
habitat suitability models of two high-altitude dependent birds thriving in the sky

islands of the Western Ghats were developed, studied and analyzed to understand

the patterns of their distribution in the wake of changing climate.

The maximum entropy (MaxEnt) algorithm was selected as the modelling

tool for the study. ENM Evaluate tool was used to determine the settings for the
model, and the best-performing model was selected based on the True Skill
Statistic (TSS) and Akaike Information Criterion (AIC) value. Two birds analyzed
in this study are Ashambu Laughingthrush Montecincla meridionalis (ALT), a
highly restricted-range species endemic to Agasthyamalai hills of the southem
Western Ghats, and Nilgiri Pipit Anthus nilghiriensis (NP), which is endemic to
Nilgiri and Palani-Anamaiai hills of WG. Both are threatened, high-altitude habitat
specialists Different environmental variables were incorporated to generate the
models for each of these species. Mean annual temperature (BIO 1) is identified
rth7most influencing variable for ALT, whereas the mean temperature of the
coldest quarter (BIO 11) is the crucial one for NP.

Suitable habitats currently available for ALT and NP are estimated to be 303
km2 1792 km^ respectively. These habitats are further classified into highly
rdevit, moderately suitable and less suitable habitats as well. Future models

^rarrradation and loss of suitable habitat for both species underDrcdicted severe degr

I • ,te change scenarios. It is estimated that 2070s will lose 20%-76% ofvarious cliniaie ciicui^v.

u U F nf ALT under different emission or RCP scenarios. In the case
the suitable habitai oi

f 4no/n.79% is estimated for various RCP scenarios. 82% of the
of NP, a net loss of w/o
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suitable habitat of NP and 20% of that of ALT come outside the boundary of the
PA network.

Realignment of the protected area network of the WG considering suitable
habitat of these birds, elevating their conservation status, collaborative effort for
educating the public to ensure C02 and other greenhouse gas emission reduction,
equitable sharing of resources and policy implementations are urgently needed to
ensure the lofig-term conservation of these species.
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9  APPENDIX

Appendix I. Details of the occurrence data used for developing the models of the selected birds

Species Longitude Latitude

ALT 77.2107 8.82927

ALT 77.21687 8.827843

ALT 77.21718 8.827496

ALT 77.21695 8.827659

ALT 77.21184 8.82941

ALT 77.2174 8.827395

ALT 77.21082 8.829418

ALT 77.19808 8.832059

ALT 77.21937 8.824478

ALT 77.23329 8.626594

ALT 77.17279 8.744785

ALT 77.17282 8.744761

ALT 77.36393 8.512117

ALT 77.38395 8.488717

ALT 77.34767 8.52282

ALT 77.48611 8.47583

ALT 77.36643 8.55008

ALT 77.35627 8.54773

Species Longitude Latitude

ALT 77.35497 8.540735

ALT 77.1824 8.7376

ALT 77.26101 8.588936

ALT 77.18068 8.739632

ALT 77.26069 8.588524

ALT 77.18099 8.73819

ALT 77.18503 8.73739

ALT 77.18756 8.737578

ALT 77.18873 8.737823

ALT 77.2607 8.588972

ALT 77.20084 8.701535

ALT 77.18836 8.736875

ALT 77.18349 8.737441

ALT 77.26003 8.589151

ALT 77.21274 8.654842

ALT 77.18072 8.738133

ALT 77.18017 8.739099

ALT 77.1802 8.738094
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1  Species | Longitude 1 Latitude 1 1  Species;  Longitude Latitude

ALT 1 77.18063 8.739465 ALT 77.26861 8.58194

ALT 77.19359 8.679557 ALT 77.26888 8.576944

ALT 77.17333 8.7427 ALT 77.27444 8.59138

ALT 77.17194 8.74111 ALT 77.2841 8.58944

ALT 77.1708 8.7422 ALT 77.27944 8.57888

ALT 77.16666 8.7433 ALT 77.27361 8.5675

ALT 77.17222 8.74527 ALT 77.29472 8.58416

ALT 77.17555 8.7388 ALT 77.28666 8.570-27

ALT 77.19222 8.68166 ALT 77.28305 8.56166

ALT 77.19388 8.6775 ALT 77.44194 8.49916

ALT 77.19444 8.67972 ALT 77.4144 8.48416

ALT 77.19888 8.6775 ALT 77.41472 8.525

ALT 77.20444 8.67583 ALT 77.3877 8.5452

ALT 77.20666 8.68194 ALT 77.22194 8.815277

ALT 1 77.20277 8.6725 ALT 77.23 8.81

1  1 77.20333 8.68722 ALT 77.24305 8.8011

1  ALT 1 77.25027 8.62166 ALT 77.18333 8.73027

1  ALT 1 77.24194 8.623611 ALT 77.38277 8.529722

1  1 77.24694 8.62611 ALT 77.4008 8.52416

ALT 1 77.24055 8.62805 ALT 77.3532 8.521426

1  alt 77.21916 8.65 ALT 77.35558 8.518917

ALT 77.21944 8.66805 ALT 77.35468 8.520208

ALT 77.2075 8.6669 ALT 77.49173 8.37844

1  alt I 77.26388 | 8.58777 1 1  ALT 77.49374 8.377572



Species Longitude Latitude

ALT 77.49416 8.37871

ALT 77.49475 8.383931

ALT 77.48424 8.39256

ALT 77.48623 8.38732

ALT 77.5005 8.38217

ALT 77.^45 8.391414

Species Longitude Latitude

ALT 77.4887 8.375831

ALT 77.4961 8.376277

ALT 77.35624 8.515348

ALT 77.49038 8.37263

ALT 77.17865 8.736145

ALT 77.22647 8.65626

Species Lpngitude: Latitude

m 77.13561 m04|69

HP 77.139 10.04292

HP 77.13153 m03926

HP 77.09654 10.04329

HP 77.09257 10.04682

NP 77.00915 10.05196

NP 77.10361 10.13306

NP 77.27135 10.13476

NP 77.27133 10.13489

NP 77.27201 10.1407

NP 77.03562 10.1428

NP 77.03637 10.14301

NP 77.03995 10.14309

NP 77.04124 10.1436

NP 77.04004 10.14371

Species Longitude Latitude

NP 77.0351 10.14666

NP 77.08229 10.1?1972

NP 77.05544 10.16475

NP 77.01555 10.17178

NP 77.02229 10.1731

NP 77.01491 10.17372

NP 77.0476 10.17377

NP 77.02276 10.17387

NP 77.05091 10.17447

NP 77.02478 10.17519

NP 77.06283 10.1776

NP 77.06256 10.17776

NP 77.16809 10.1778

NP 77.0419 10.178

NP 77.04219 10.17876
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1  Species 1 Longitude 1 Latitude 1 1  Species Longitude Latitude

NP 77.07089 10.18774 NP 77.07107 10.323

NP 77.08656 10.19014 NP 77.05455 10.3276

NP 77.2732 10.20722 NP 76.44871 11.19524

NP 77.07 10.21 NP 76.58325 11.22611

NP 77.2662 10.2144 NP 76.52244 11.23617

NP 77.07382 10.21745 NP 76.56115 11.24836

NP 77.07073 10.21813 NP 76.59078 11.29955

NP 77.07972 10.22019 NP 76.54499 11.31923

NP 77.07675 10.22026 NP 76.552 11.333

NP 77.07663 10.22089 NP 76.59573 11.3416

NP 77.07708 10.22154 NP 76.55663 11.34215

NP 1 77.06014 10.22617 NP 76.56056 11.34245

NP 77.05 10.227 NP 76.57075 11.3446

NP 77.04754 10.22743 NP 76.54679 11.36706

NP 1 77.07767 10.22774 NP 76.73369 11.3905

NP 1 77.05285 10.22818 NP 76.63576 10.93666

1  1 77.04152 10.22917 NP 76.61957 10.94715

1  NP / 77.05735 10.22931 NP 76.71946 11.39103

1  1 77.041 10.23 NP 76.73586 11.40113

77.03992 10.23145 NP 76.77094 11.36964 .
1  f

1  1 77.08435 10.27122 NP 76.75417 11.37527

1  1 77.10781 10.27538 NP 76.75882 11.39051

NP 77.08914 10.28551 NP 76.77639 11.39878

1  NP 1 77.06986 1 10.32292 1 1  NP 1 76.7829 11.39056
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Spedes

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

Longitude

76.74918

76.81945

76.835

76.77335

76.79973

76.71089

76.63121

76.56804

76.63525

76.50464

77.122

77.05947

77.03643

77.09267

77.11069

77.09

77.10317

76.59658

76.73072

76.73441

77.07073

77.23217

77.27662

77.25719

Latitude

11.40532

11.36473

11.43592

11.42324

11.47819

11.44192

11.38282

11.44652

11.4457

11.3981

10.35993

10.34487

10.34021

10.31681

10.29877

10.25194

10.2294

11.3411

11.40874

11.41271

10.27447

10.24513

10.2319

10.2285

Spedes Longitude Latitude

NP 77.26601 10.21819

NP 77.27125 10.22194

NP 77.11714 10.03418

NP 77.09988 10.04248

NP 77.01425 10.04955

NP 77.04176 10.14398

NP 77.03569 10.14236

NP 77.03204 10.14204

NP 77.02935 10.14197

NP 77.02359 10,14511

NP 77.02068 10:i4231

NP 77.0409 10.14757

NP 77.0494 10.15164

NP 77.07522 10.13525

NP 77.085 10.13553

NP 77.09223 10.138

NP 77.09278 10.10487

NP 77.10026 10.10919

NP 77.24683 10.25083

NP 77.22122 10.23889

NP 77.23497 10.25507

NP 77.06283 10.32386

NP 76.46138 11.1897,

NP 77.18796 10.09804
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Species Longitude Latitude

4iP 77.34808 10.28984

NP 76.4799 11.23246

NP 77.51692 10.25059

NP 76.69924 11.40279

NP 77A7673 10.23596

NP 76.59734 11.50546

NP 77.48108 10.23188

NP 76.72972 11.35418

Species Longitude Latitude

NP 76.69172 11.39611

NP 77.06168 10.16969

NP 76.60723 11.33018

NP 76.5535 11.25111

NP 76.79931 11.35667

NP 76.87104 11.45967

NP 76.57397 11.47946



Appendix II. Description of environmental variables used to develop the Maxent models of selected birds

Variable

BIO 1

Description Definition

Annual Mean

Temperature
The aimual mean temperature

Unit Formula

ZiZiTavgi
12

BIO 2 Mean Diurnal Range
The mean of the monthly

temperature ranges

Tmaxi — Tmirii

12

BIO 3 Isothermality

It quantifies how large the day-to

night temperatures oscillate relative

to the summer-to-winter (annual)

oscillations

•c
BIO 2

BIO 7
X 100

BIO 4 Temperature Seasonality

The amoimt of temperature variation

over a given year (or averager

years) based on the standarc

deviation (variation) of monthly

temperature averages

SD{Tavgx,..... Tavg^i)

BIOS
Max Temperature of

Warmest Month

The maximum monthly temperature

occurrence over a given year (time

series) or averaged span of years

(normal)

*C max{Tavgi, ....,Tavg^z]
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J  1 1 The minimum monthly temperature

1  BIO 6 1 Temperature of occurrence over a given year (time-
1  Coldest Month series) or averaged span of years

(normal)

•c min{Tavgi,...., Tavgi2]

I  Temperature Annual 1 A measure of temperature variation
BIO 7

1  Range over a given period
•c BIO 5 - BIO 6

ZlZiTavgi
3

r  Where monthly
temperature

averages are based
on the three selected

< months of QppTmax j

BIOS

I This quarterly index approximates
Mean Temperature of

mean temperatures that prevail
Wettest Quarter

during the wettest season

QpPTrr

'C
■,1=3

y  ppT[, i
\^i=i

= max

P
11

i

1

1=2

1=1

=ll
i=2

PPTol

PPTi\

(Where precipitation
is evaluated for
12 consicutive

sets of 3 months.
The last two sets
span two years

for time — series
data

=12



Where monthly
temperature

averages are based
on the three selected
months of QppTmin

Y}iZ\Tavgi

This quarterly index approximates

mean temperatures that prevail

during the driest quarter

Mean Temperature of

Driest Quarter
BIO 9 Where precipitation

is evaluated for
12 consipitive

sets of 3 months.
The last two sets

span two years

for time — series
data

= mm

Where monthly
temperature

averages are based
on the three selected
months of Qmiax

LiZiTavgt
This quarterly index approximates

mean temperatures that prevail

during the warmest quarter

Mean Temperature of

Warmest Quarter
BIO 10
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Where temperatures
are evaluated for
12 consicutive

sets of 3 months.
The la^t two sets
span two years

for time — series

data

= max

Where monthly
temperature

averages are based

on the three selected

months of Qrmin

lillTavg.
This quarterly index approximates

mean temperatures that prevail

during the coldest quarter

Mean Temperature of

Coldest Quarter
BIO 11
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monthly total precipitation to the

mean monthly total precipitation

rWhere precipitation
is evaluated for 12
consecutive sets

of 3 months.
The last two

sets span

two years for
time — series data

This quarterly index approximates

total precipitation that prevails

during the wettest quarter

max

Precipitation of Wettest

Quarter

fWhere precipitation
is evaluated for 12
consecutive sets

of 3 months.
The last two

sets span

two years for
time — series data

This quarterly index approxunates

total precipitation that prevails

during the driest quarter

Precipitation of Driest

Quarter

\09



I This quarterly index approximates
, Precipitation of Wannest 1

BIO 18 1 1 total precipitation that prevails
Quarter 1

during the wannest quarter

kgm",-2

«i=3

>  PPTi
^i=l

Where monthly
precipitation values
are based on the

three selected months

QTmax

I This quarterly index approximates
,  Precipitation of Coldest 1

BIO 19 I total precipitation that prevails
Quarter

during the coldest quarter

kgm'r2

Zi=3
PPTi

1=1 I

Where monthly
precipitation values
are based on the

three selected months

of QTmln

Elevatio 1 Digital Elevation Model

(DEM)
Elevation of a location Meters NA

Slope
Digital Elevation Model

(DEM)
Slope of a terrain

Degree
NA

Aspect
Digital Elevation Model

(DEM)
Aspect of a terrain NA NA

evi_avg
Average Enhanced I 10-year (2011-2020) average EVi

Vegetation Index (EVl) by considering all months
NA NA
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evi_wet
Peak monsoon Enhanced

Vegetation Index (EVI)

10-year (2011-2020) average EVI

by considering the months of June,

July and August

NA NA

evi_dry
Peak summer Enhanced

Vegetation Index (EVI)

10-year (2011-2020) average EVI

by considering the months of March,

April and May

NA NA

Notations:

i = month; Tmax = monthly mean of daily maximum temperatures ("C); Tmin =

monthly mean of daily minimum temperatures (°C); Tc&gi = PPT = total monthly precipitation (mm)

ni



Appendix III. Pearson's correlation coefficient between environmental variables used for developing Maxent models for selected species

Ashambu Laughingthrush

Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)

altitude evi_avg -0.01359

altitude evi_dry 0.097812

altitude evi wet -0.10558

aspect evi_avg 0.060332

aspect evi_dry 0.130203

aspect evi wet 0.044775

aspect altitude -0.04863

biol evi_avg 0.005171

biol evi_dry -0.1086

biol evi wet 0.093288

biol altitude -0.99566

biol aspect 0.06158

biol slope -0.27083

biol biol9 -0.63202

biol biolS -0.52075

biol biol7 -0.68005

biol bioie -0.77343

biol biolS 0.287955

Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)
biol biol4 -0.6f555

biol biol3 -0.64918 '

biol biol2 -0.50673.

biol bioll 0.999166

biol biolO 0.999554

biol bio9 0.999346

biol bio8 0.996878

biol bio7 -0.25031

biol bio6 0.986369

biol bio5 0.980697

biol bio4 0.275967

biol bio3 -0.68547

biol bio2 -0.34782

biolO evi_avg 0.003587

biolO evi_dry -0.10731

biolO evi wet 0.088159

biolO altitude -0.9954,

biolO aspect 0.057826 ?
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Layer 1 Layer 2

Pearson's 1
Correlation

Coefficient (R)

biolO slope -0.26738

biolO biol9 -0.62586

biolO biol8 -0.52266

biolO biol7 -0.66817

biolO biol6 -0.76893

biolO biol5 0.281297

biolO biol4 -0.64865

biolO biol3 1 -0.64541

biolO blol2 -0.50244

biolO bioll 0.998365

bioll evi_avg j 0.020058

bioll evi_dry -0.09148 1
bioll

bioll

bioll

bioll

evi wet

altitude

aspect

slope

0.110651

-0.99537

0.071465

-0.27634

1  bioll biol9 j -0.65418 1
bioll biolS -0.50069

1  bioll biol7 -0.69831

bioll biol6 1 -0.7668

bioll biol5 1 0.2745

1  bioll biol4 1 -0.67694 1

Layer 1

bioll

bioll

biol2

biol2

biol2

biol2

biol2

biol2

biol2

biol2

biol2

biol2

biol2

biol2

biol2

biol3

biol3

biol3

biol3

biol3

biol3

biol3

Layer 2

biol3

biol2

evi_avg

evi_dry

evi we

altitude

aspect

slope

biol9

biolS

biol7

biolS

biolS

biol4

biol3

evi_avg

evi_dry

evi wet

altitude

aspect

slope

biol9

PearsOT's

Correlation;

Coeffident (R)

-0.63705

-0.4868

0.330523

0.56258

0.184642

0.496223

0.255318

0.169509

-0.06308

0.86421

0.202179

0.831663

-0.57714

-0.01733

0.916313

0.236258

0.445397

0.082528

0.642026

0.230951

0.285737

0.164425



Layer 1 Layer 2

Pearson's

Correlation

1  1 Coefficient (R) 1
biolS I 0.805135 1

biol3 1 biol7 1 0.346993

biol3 1 biol6 1 0.923862

biol3 1 biolS I -0.31862

biol3 1 biol4 1 0.200029

biolA evi_avg -0.17675

biol4 evi_dry 1  -0.1828
j  biol4 evi_wet' -0.24411

biol4 1  altitude 0.651818

biol4 1  aspect -0.33173

biol4 slope 0.262317

biol4 biol9 0.989883

blol4 biolS -0.10445

biol4 biol7 0.932746

biol4 biol6 0.46799

biol4 biolS 0.059374

biolS evi_avg -0.29157

blolS evi_dry -0.43356

biolS evi wet -0.23738

biolS altitude -0.27759

biolS aspect -0.04607

biolS slope -0.0065

Layer 1 Layer 2

Pearson's

Correlation

Coefficient {R)
biol5 biol9 0.130781

biol5 biol8 -0.57734

biol5 biol7 -0.16352

biol5 biol6 -0.31094

biol6 evi_avg 0.168805

biol6 evi_dry O.34906'

biol6 evi wet 0.028867

biol6 altitude 0.763S99

biol6 aspect 0.083269

blol6 slope 0.308851

biol6 biol9 0.446007

blol6 biolS 0.68619

blol6 biol7 0.603351

blol7 evi_avg -0.11391

blol7 evi_dry -0.05939

blol7 evi wet -0.23769

blol7 altitude 0.672039

biol7 aspect -0.32422

blol7 slope 0.279141

blol7 biol9 0.925627

blol7 biolS 0.043577 ;

biolS evi_avg 0.27376 ?
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Layer 1 Layer 2
Pearson's 1

Correlation

Coefficient (R)
biol8 evi_dry 1 0.473218

biol8 evi_wet 1 0.162924

biol8 altitude 0.516445

biol8 aspect 1 0.296202

biol8 slope 1 0.147107

biol8 biol9 -0.15101

biol9 evi_avg 1 -0.21909

biol9 evi_dry j -0.23753

biol9 evi_wet 1 -0.28682

biol9 altitude 1 0.628846

biol9 aspect 1 -0.34212

biol9 slope 1 0.262106

1  bio2 1 evi_avg 1 -0.01729

1  bio2 1 evi_dry j 0.150955

1  bio2 1 evi_wet j -0.19883

1  bio2 1 altitude j 0.34416

1  bio2 1 aspect 1 -0.13576

1  bio2 1 slope 1 0.211018

1  bio2 1 biol9 0.426023

bio2 biolS 0.165774

1  bio2 1 biol7 0.66828

1  bio2 1 biol6 1 0.442605 1

Layer 1

bio2

bio2

Layer 2

biolS

biol4

bio2 biol3

bio2 biol2

bio2 bioll

bio2 biolO

bio2 bio9

bio2 bioS

bio2 bio7

bio2 bio6

bio2 bio5

bio2 bio4

bio2 bio3

bio3 evi_avg

bio3 evi_dry

bio3 evi wet

bjo3 altitude

bio3 aspect

blo3 slope

bio3 blol9

bio3

bjo3

biolS

biol7

Pearson's

Correlation

Coefficient (R)

-0.41723

0.477666

0.381533

0.361625

-0.3656

-0.32512

-0.35141

-0.35862

0.991251

-0.49617

-0.16101

0.769169

0.871162

-0.04101

0.114892

-0.20294

0.683153

-0.15043

0.28142

0.69145

0.240886

0.8226



Pearson's Pearson's

Layer 1 1 Layer 2 Correlation

Coefficient (R)
Layer 1 Layer 2 Correlation

Coefficient (R)
1  bit^ \ biolG 0.62633 bio4 biol6 -0.11429

1  bio3 1 biolS -0.27869 bio4 biol5 -0.0637

1  bio3 biol4 0.745673 bio4 biol4 0.196837

1  bio3 1 biol3 0.512174 bio4 biol3 -0.14031

1  bio3 1 biol2 0.381615 bio4 biol2 -0.13929

1  bio3 1 bioll -0.70283 bio4 bioll 0.249774 '

bio3 biolO -0.66908 bio4 biolO 0.1298774

1  bio3 1 bio9 -0.69212 bio4 bio9 0.265074

1  bio3 1 bio8 -0.69565 bio4 bio8 0.251508

bio3 bio7 0.809531 bio4 bio7 0.813262

I  bio3 bio6 -0.78792 bio4 bio6 0.119049

1  bio3 bio5 -0.54933 bio4 bio5 0.442193

bio3 bio4 0.471549 bio5 evi_avg 0.011029

1  bio4 evi_avg -0.13943 bio5 evl_dry -0.07076

bio4 evi_dry -0.08462 blo5 evi_wet 0.066205

1  bio4 evi_wet -0.25718 blo5 altitude -0.97739

bio4 1  altitude -0.2736 blo5 aspect 0.042501

bio4 aspect -0.16022 bio5 slope -0.24344

1  bio4 slope 0.06863 blo5 biol9 -0.59456

bio4 blol9 0.177485 bio5 biol8 -0.49759

bio4 blolS -0.32295 blo5 biol7 -0.58666

bio4 biol7 0.320619 bio5 biol6 -0.71576 ?
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Layer 1

bio5

bio5

bio5

bio5

bio5

bio5

bio5

bio5

bioS

bio5

bio6

bio6

bio6

bio6

bio6

bio6

bio6

bio6

bio6

bio6

bio6

bio6

Pearson's

Layer 2 Correlation
Coefficient (R)

biol5

biol4

biol3

biol2

bioll

biolO

bio9

bioS

bio7

bio6

evi_avg

evi_dry

evi wet

altitude

aspect

slope

biol9

biolS

biol7

biol6

biolS

biol4

0.198781

-0.60849

-0.59335

-0.43981

0.977162

0.985061

0.980172

0.976461

-0.05793

0.936238

0.011369

-0.12181

0.124108

-0.98194

0.082175

-0.28877

-0.66369

-0.50685

-0.74816

-0.78992

0.335588

-0.6943

Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)

bio6 bio 13 -0.66325

bio6 biol2 -0.52564

bio6 bioll 0.989116

bio6 biolO 0.982124

bio6 bio9 0.986773

bio6 bio8 0.985935

bio6 bio7 -0.40451

bio7 evi_avg -0.00452

bio7 evi_dry 0.161692

bio7 evi_wet -0.18238

bio7 altitude 0.246327

bio7 aspect -0.1236

bio7 slope 0.186585

bio7 biol9 0.340082

bio7 biol8 0.144332

bio7 biol7 0.600556

bio7 biol6 0.382339

bio7 biol5 -0.43513

bio7 biol4 0.390624 ■

bio7 biol3 0.340295

bio7 biol2 0.34849

bio7 bioll -0.26734

\\1



\  \ ~T
'  Layer 1\ Layer!

Pearsor^'s

Correlation

Coefficient (?)
biolO -0.2269

bio7 bio9 -0.25286

blo7 bio8 -0.2602

bio8 evi_avg 0.028332

bioS evi dry -0.07885

bio8 evi wet 0.115394

blo8 altitude -0.99268

bio8 aspect 0.085404

bio8 slope -0.27444

bio8 biol9 -0.67044

bioS blol8 -0.48425

bioS biol7 -0.71103

bio8 biol6 -0.75653

bio8 biolS 0.277302

bioS biol4 -0.69098

bioS biolS -0.61563

bioS blol2 -0.4678

bio8 bloll 0.997999

bio8 biolO 0.996268

bio8 bio9 0.997783

bio9 evi_avg 0.017193

bio9 evl_dry -0.09235

Layer 1 Layer 2
Pearson's

Correlation

Coefficient (R)
bio9 evi_wet 0.105338

bio9 altitude -0.99552

bio9 aspect 0.068408

bio9 slope -0.27394

bio9 biol9 -0.64881
bio9 biol8 -0.S0264'
blo9 biol7 -0.69044
bio9 biol6 -0.76481

bio9 biol5 0.272984
bio9 biol4 -0.67161

bio9 biol3 -0.63565

bio9 biol2 -0.48614

blo9 bioll 0.999623

bio9 biolO 0.998926

evl_drv evi_avg 0.903947
evi wet evi_avg 0.86647

evi wet evLdry 0.706116

slope evi_avg 0.040273

slope evi_drv 0.048053

slope evi wet -0.01318

slope altitude 0.26912

slope aspect -0.05832 °
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ii. Nilgiri Pipit

Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)

Layer 1 Layer 2

Pearson's

Correlation

Coefficiesit (R)

altitude bio7 -0.28151 biol altitude -0.9949 .

altitude biol6 0.063017 biol evi_avg 0.144523

aspect bio7 -0.15962 biol evi wet 0.133431

aspect biol6 0.329714 biol slope -0.05369

aspect altitude 0.028382 biol evi_dry -0.00327

aspect evi avg -0.0366 biol bio9 0.99442

aspect evi wet -0.0651 biol bio8 0.998014

aspect slope 0.011533 biol bio6 0.992758

aspect evi_dry 0.102902 biol bio5 0.996834

aspect bio9 -0.02365 biol bio4 0.638116

aspect bloS -0.0263 biol bio3 -0.64104

aspect blo6 -0.01111 biol bio2 -0.03541

aspect blo5 -0.05446 biol biol9 0.338165

aspect blo4 -0.18249 biol biol8 -0.48386

aspect bio3 -0.06931 biol biol7 -0.47674

aspect bio2 -0.2159 biol aspect -0.03756

aspect biol9 0.179268 biolO bio7 0.341159 .

aspect biolS 0.226119 biolO bio 16 -0.14284

aspect biol7 -0.30137 biolO altitude -0.99188

biol bio7 0.322825 biolO evi_avg 0.139791

biol blol6 -0.11264 biolO evi wet 0.134379
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Layer 1 Layer 2

Pearsorr's

Correlatlor^

Coefficier^t (R)
bioiS slope -0.05356

biolO evi_dry -0.01691

biolO bio9 0.991293

biolO bio8 0.99741

biolG bio6 0.987715

biolO bioS 0.998837

biolO bio4 0.664407

biolO bio3 -0.62486

biolO bio2 0.000354

biolO biol9 0.311635

biolO biolS -0.49153

biolO biol7 -0.45887

biolO aspect -0.0469

biolO biol 0.999163

bioll bio7 0.292051

bioll biol6 -0.05689

bioll altitude -0.99549

bioll evi_avg 0.132194

bioll evi wet 0.114098

bioll slope -0.0588

bioll evi_dry 0.002495

bioll bio9 0.999595

Layer 1 Layer 2
Pearson's

Correlation

Coefficient (R)
.  bioll bio8 0.992439

bioll bio6 0.997483

bioll bio5 0.987933

bioll bio4 0.561962

bioll bio3 -0.71278-

bioll bio2 -0.12254'

bioll biol9 0.378242

bioll biol8 -0.504i9
bioll biol7 -0.51799

bioll aspect -0.02273

bioll biol 0.994512

bioll biolO 0.991187

bioll biol5 0.208671

bioll biol4 -0.51562

bioll biol3 -0.07297

bioll biol2 -0.19807

biol2 bio7 -0.5419

biol2 biol6 0.96986

biol2 altitude 0.203056

biol2 evi_avg 0.048812

biol2 evi wet -0.17026 :

biol2 slope 0.050615
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Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)

bio 12 evi_clry 0.388692

biol2 bio9 -0.20369

biol2 bio8 -0.25726

biol2 blo6 -0.16191

biol2 bio5 -0.31753

biol2 bio4 -0.73113

biol2 blo3 -0.18709

biol2 bio2 -0.78045

biol2 biol9 0.467974

blol2 biolS 0.527286

biol2 biol7 -0.26407

biol2 aspect 0.329611

biol2 bid -0.25705

biol2 biolO -0.28633

biol2 biolS 0.756231

biol2 biol4 -0.25354

biol2 blol3 0.969384

biol3 bio7 -0.43985

btol3 biol6 0.998443

blol3 altitude 0.080008

biol3 evi_avg 0.054396

biol3 evi wet -0.15606

Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)

biol3 slope 0.038403

biol3 evi_dry 0.393298

biol3 bio9 -Oj07S8 •

biol3 bio8 -0.13434

biol3 bio6 -0.03^2

biol3 bio5 -0.18873

biol3 bio4 -0.6427

biol3 bio3 -0.28653

biol3 bio2 -0.77998

biol3 biol9 0.591893

biol3 biol8 0.44175

biol3 biol7 -0.42841

biol3 aspect 0.342751

biol3 bid -0.12938

biol3. bidO -0.15958

biol3 bid5 0.877559

biol3 bid4 -0.41503

biol4 bio7 -0.0666

biol4 bid6 -0.40025 •

biol4 altitude 0.49717

biol4 evi_avg 0.0674

biol4 evi wet 0.039374
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Layer 1

biol4

biol4

biol4

biol4

biol4

biol4

bio 14

biol5

biol5

biol5

biolS

biol5

biol5

Layer 2

biol9

biolS

biol7

aspect

bid

biolO

biolB

bio7

biol6

Pearson's

Correlation

1  1 Coefficient IR\
biol4 slope 1 0.087558
biol4 1 evi_dry 1 -0.00681
bio 14 1 bio9 -0.52001
biol4 1 bio8 -0.47869
biol4 1 bio6 1 -0.52541
biol4 1 bio5 1 -0.45982
biol4 1 bio4 -0.00022

biol4 1 bio3 1 0.646689
biol4 1 bio2 1 0.429047

altitude

evi_avg

evi wet

slope

-0.56442

0.329257

0.982128

-0.30395

-0.4811

-0.46473

-0.69983

-0.17831

0.875167

-0.19663

0.071308

-0.07171

-0.01085

,  • Layer 1 Layer 2
Pearson's

Correlation

Coefficient (R)
biol5 evi_dry 0.32776
biol5 bio9 0.210205
biol5 bio8 0.14i5608.
biol5 bio6 0,239744
biol5 bio5 0.112517
biol5 bio4 -0.37472
biol5 bio3 -0.47887
biol5 bio2 -0.68654
biol5 biol9 0.68612

biol5 biol8 0.142395
biol5 biol7 -0.70718
biol5 aspect 0.306573
biol5 biol 0.160712

biol5 biolO 0.133869
biol6 bio7 -0.44669

biol7 bio7 -0.11496

biol7 biol6 -0.413

biol7 altitude 0.495025

biol7 evi_avg 0.06149 -

biol7 evi wet 0.051737 ■

biol7 slope 0.094975

1  biol7 evi_dry -0.02665
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Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)

Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)

biol7 blo9 -0.52292 biol8 bio2 -0.0733

blol7 bloS -0.47484 biol8 biol9 -0.01731

blol7 bio6 -0.52489 biol9 bio7 -0.17487'

btol7 blo5 -0.45522 biol9 biol6 0.593741

biol7 bio4 0.04585 biol9 altitude -0.36885

biol7 blo3 0.690072 biol9 evi_avg 0.157173

blol7 bio2 0.464859 biol9 evi_wet 0.061926

biol7 biol9 -0.58521 biol9 slope 0.013259

biol7 biolS 0.339202 biol9 evi_dry 0.331167

biolS bio7 -0.3851 biol9 bio9 0.385129

biolS bioie 0.44714 biol9 bio8 0.324589

biolS altitude 0.475146 biol9 bio6 0.413717

biolS evi_avg 0.107069 biol9 bio5 0.291593

biolS evl_wet -0.07268 biol9 bio4 -0.23079

biolS slope 0.097872 biol9 bio3 -0.51911

bio 18 evl_dry 0.342771 biol9 bio2 -0.64478

biolS bio9 -0.51089 bio2 bio7 0.519333

biolS bloS -0.4751 bio2 biol6 -0.78264

biolS blo6 -0.46533 bio2 altitude 0.100083

blolS blo5 -0.51438 bio2 evi_avg -0.03673

blolB blo4 -0.30989 bio2 evi_wet 0.106733

blolS bio3 0.583711 bio2 slope 0.015326
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1  1 1 Pearson's
Layer 1 Layer 2 Correlation

Coefficient (R)
bio2 evi_dry 1 -0.26956

bio2 bio9 1 -0.11817

bio2 bio8 1 -0.03196

1  bio2 1 bio6 1 -0.15368

bio2 bibS 1 0.030057

bio2 1 bio4 1 0.726911

1  bio2 1 bio3 0.579489

1  bio3 1 bio7 1 -0.09869

1  bio3 1 bioie -0.28835

1  bio3 1 altitude | 0.673666

1  bio3 1 evi_avg 1 0.031586

1  bio3 1 evi_wet 1 0.057858

1  bio3 1 slope 1 0.084105

1  bio3 1 .  evi_dry 1 0.02125

bio3 1 bio9 -0.71545

bio3 bio8 -0.63554

bio3 1  bio6 1 -0.69896

bio3 1  bioS 1 -0.62471

bio3 1  bio4 1 0.070432

bio4 bio7 0.543962

1  bio4 biol6 -0.63088

1  bio4 1  altitude | -0.58445

1  Layer 1 Layer 2
Pearson's

Correlation

Coefficient (R)
bio4 evi_avg 0.082244

bio4 evi wet 0.17353

1  bio4 slope -0.01274

1  bio4 evi_dry -0.18193

1  bio4 bio9 0.564859

1  bio4 bio8 0.63.799" •

1  bio4 bio6 0.545372

1  bio4 bio5 0.680849-

bio5 bio7 0.370164

bio5 biol6 -0.17293

bio5 altitude -0.98751

bio5 evi_avg 0.130141

bio5 evi wet 0.134654

bio5 slope -0.05606

bio5 evi_dry -0.03543

bio5 bio9 0.988589

1  bio5 bio8 0.994918

bio5 bio6 0.981684

bio6 bio7 0.253638

1  bio6 biol6 -0.0189

bio6 altitude -0.99543

1  bio6 evi_avg 0.15002 . :
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Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)
bio6 evi wet 0.122721

bio6 slope -0.05463

bio6 evi_dry 0.031767

bio6 blo9 0.996893

bio6 bio8 0.99033

bio8 bio7 0.318336

bio8 bioie -0.11852

bio8 altitude -0.99317

bio8 evi_avg 0.139167

bio8 evI wet 0.128366

bio8 slope -0.05337

bio8 evl_dry -0.0085

bio8 blo9 0.99201

bio9 bio7 0.29913

bio9 biol6 -0.06

bio9 altitude -0.99481

bio9 evi_avg 0.132663

bio9 evi wet 0.117928

bio9 slope -0.06008

bio9 evi_dry 0.002101

evi_avg bio7 -0.01434

Gvi_avg biol6 0.066323

Layer 1 Layer 2

Pearson's

Correlation

Coefficient (R)
evi_avg altitude -0.14748

evi_dry bio7 -0.16546

evi_dry biol6 0.403096

evi_dry altitude -0.01571

evi_dry evi_avg 0.847386

evi_dry evi wet 0.584857

evi_dry slope 0.10358

evi wet bio7 0.078809

evi wet biol6 -0.15296

evi wet altitude -0.12852

evi_wet evi_avg 0.855863

slope bio7 -0.0513

slope biol6 0.040649

slope altitude 0.05456

slope evi_avg 0.09801

slope evi wet 0.06374
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