MODELLING HABITAT SUITABILITY AND CLIMATE CHANGE
IMPACTS ON ENDEMIC BIRDS OF SOUTHERN WESTERN °
GHATS, KERALA, INDIA

by
SREEHARI. K. MOHAN

(2019-17-010)

THESIS
Submitted in partial fulfilment of the

requirements for the degree of

MASTER OF SCIENCE IN FORESTRY

Faculty of Forestry

Kerala Agricultural University

\Y

z
<
m
b
-q
L -

(&

NRFHICS L

DEPARTMENT OF WILDLIFE SCIENCES
COLLEGE OF FORESTRY
VELLANIKKARA, THRISSUR, 680 656

2021



DECLARATION

[, hereby declare that this thesis entitled "MODELLING HABITAT
SUITABILITY AND CLIMATE CHANGE IMPACTS ON ENDEMIC
BIRDS OF SOUTHERN WESTERN GHATS, KERALA, INDIA" is a
bonafide record of research work done by me during the course of research and the
thesis has not previously formed the basis for the award to me of any degree,

diploma, associateship, fellowship or other similar title, of any other University or

Society.

Place: Vellanikkara Sr 1. K. Mohan

Date: 20} 12 /202, (2019-17-010)



CERTIFICATE

Certified that this thesis entitled "MODELLING HABITAT
SUITABILITY AND CLIMATE CHANGE IMPACTS ON ENDEMIC
BIRDS OF SOUTHERN WESTERN GHATS, KERALA, INDIA" is a record

of research work done independently by Mr. Sreehari. K. Mohan under my

guidance and supervision and that it has not previously formed the basis for the

award of any degree, diploma, fellowship or associateship to hi

\

Place: Vellanikkara Dr. P. O. Nameer
(Major Advisor, Advisory Committee)
Date: 30/}2[202 | Professor and Head |
Department of Wildlife Science
College of Forestry

Kerala Agricultural University
Vellanikkara

i



CERTIFICATE

We, the undersigned members of the advisory commiftee of Mr. Sreehari. K.
Mobhan, a candidate for the degree of Master of Science in Forestry with major in
Wildlife Science, agree that the thesis entitled "MODELLING HABITAT
SUITABILITY. AND CLI CHANGE IMPACTS ON ENDEMIC
BIRDS OF SOUTHERN WESTERN, GHATS, KERALA, INDIA" may be

submitted by Mr. S . K. Mohan n partial fulfilment of the requirement for
the degree.
Dr P.O. Nameer Dr A nthoshkumar
(Major advisor, Advisory Committee) (Member;, Advisory Committee)

Professor and Head

Professor and Head
Department of Forest Biology and Tree

Department of Wildlife Science

College of Forestry Improvement
Vellanikkara, Thrissur College of Forestry

Vellanikkara

Dr M. Shaji

Dr B. Ajithkumar
(Member, Advisory Committee)
Assistant Professor and Head
Department of Agricultural Meteorology
College of Agriculture
Kerala Agricultural University
Vellanikkara, Thrissur.

(Member, Advisory Committee)
Assistant Professor
Department of Wildlife Science
College of Forestry
Kerala Agricultural University
Vellanikkara, Thrissur

i



ACKNOWLWDGEMENT

With great respect and admiration, I place my déep sense of gratitude and thanks to my
project advisor Dr PO Nameer, Professor and Head (Wildlife Science), College of Forestry, for his
guidance, support, constant evaluation and comments throughout the study period. I express my
sincere thanks to hgn

[ owe my sincere thanks to The Dean, College of Forestry, for the moral support in
completing my project. I express my deep sense of gratitude to the College of Forestry, Kerala
Agricultural University for the financial and technical support for the pursuance of my research. |
am thankful to the Kerala Forests and Wildlife Department for allowing me to conduct the field

surveys in various protected areas of the state.

[ am incredibly grateful to my advisory committee members Dr AV Santhoshkumar

(Professor and Head, Dept. Forest Biology and Tree Improvement), Dr M Shaji (Assistant
Professor, Dept. Wildlife Science, College of Forestry) and Dr B Ajithkumar (Assistant Professor

and Head, Dept.  Agricultura Meteorology, College of Agriculture) for their constant

encouragement and constructive suggestions throughout the study period, and for the critical

evaluation of the thesis. I am extremely thankful to Dr Sreekumar, ER for giving valuable
t guidance throughout the course of my work for my work. My
wholehearted thanks are to Dr Ashish Jha, Mr. Vivek Chandran, Mr Sreehari R and Dr Josh
Banta for their guidance in developing methodology. I am grateful to Mr Lathish Babu R Nath,

Mr Sreekumar K Govindankutty, Mr Subin KS, Dr Dilip KG and Mr Rathish Nest for their
in collecting field data. 1 also, extend my thanks to all teachers

suggestions and constan

immense support and assistance
and staff in the College of Forestry for their support.
Special thanks to my dearest friends, Ms PS Devika, Dr Devika Sanghamithra, Mr Sachin

K Aravind, Mr Shijith S Nair, Shifin S Ravuther, Ms Shahina NN, Mr Arjun MS and Mr Naveen

imenon for their support, field assistance and valuable comments.

I am very thankful to my friends Ms Neha Tamhankar, Mr Vivek Noel, Mr Shibu C, Mr
Azhar Ali, Mr Bhavane Akash Kailash, Mr Santhosh DT, Mr Sankar Thampuran, Ms Mamatha
NA, Ms Devi SR, Mr Deepak Ranjan Sahoo for continuous support. 1 will never forget the support
and help rendered from Ms Varsha, Ms Smisha, Ms Rajani, Ms Mini J and Ms Sobhana.

Apology to those who have not mentioned above in person and thanks to one and all who
worked for the successful completion of this endeavour.

Above all, I thank my Family and relatives for their blessings and guidance!
Sreehari. K. Mohan

Unn

iv



CONTENTS

INTRODUCTION......coiereerreteeeiesiiieeseeseesassessessassesssssessessessassassessans 01
REVEEW OF LITERATURE.......cccociiiiiitennnntentennesessteseenessessneenns 03
MATERIALS AND METHODS ...t 23
REULTS coeeeeeeeeeeeeeeeeetessesseesaesassesseessesmassasssssestentssentessestsssssssssssenns 37
DISCUSSION. ...oceeeeeeeeeeerresressesiaesssnssssssasstssstsstssstsstssstsssssatssssssssseses 59
SUMMOARY oooeeeeeeeeeeeetesseseseseesssessasstsssstessstessasstsnsstsssassssassssssssssens 67
REFERENCES ....cooeeeeeeevieressescesesssssassssesssstssssssstsasstsstsnsssssssesssssnsasans 70
ABSTRACT coooeeeeeeeeevesesssesessassssssssttatsstatssesesssesssssssssststssssssssesesans 97
APPENDIX ..oooeveveeeecasasssesessesssssstssessssssssssssssssssssssssssasasssssssssasasasasssns 99



LIST OF TABLES

TABLE |. SPECIES SELECTED FOR THE STUDY ....ceueiiiiiuinmmietintensaessstessssssssssssssssiasassassans 23
TABLE 2. MODEL DEVELOPMENT AND ASSOCIATED ACCURACY INDICES OF THE
ASHAMBU LAUGHINGTHRUSH. ....cveveererererseneeresissssmssesessesesesesssssssssssassssssesessassssasases 38
TABLE 3. VARIABLES INCLUDED IN THE FINAL MODEL OF ASHAMBU LAUGHINGTHRUSH
AND ASSOCIATED CALCULATIONS .....oeveeenccesemcscsesmemesssasansssssssssssssssssssssencasasesesecsnss 39
TABLE 4. MODEL DEVELOPMENT AND ASSOCIATED ACCURACY INDICES OF THE NILGIRI
PIPIT oo eee s seasseeeeasasessesasas s saseseecssss b s R s s s R s RS RS eEsCRsasLRS R S bR s e 41
TABLE S. VARIABLES INCLUDED IN THE FINAL MODEL OF NILGIRI PIPIT AND ASSOCIATED
CALCULATIONS .. voveeeeeaesaesasaseasesssssssssssastasessssssssssssssasssssssssssssssassississinsasssssiscasense 42
TABLE 6. SUITABLE HABITAT AVAILABLE FOR BOTH SPECIES UNDER CURRENT CLIMATE
SCENARIOS on.voevosvssesessessssassasssssessessssasssasessesessss e s s 44
TABLE 7. TOTAL SUITABLE HABITAT AND ANALYSIS OF THE QUALITY OF SUITABILITY
FOR EACH SPECIES wecvvrnesaneessecsssrsasssssssersssssnsssssssssssssessssass s s samssssm st 47
TABLE 8. HABITAT LOSS AND GAIN OF ASHAMBU LAUGHINGTHRUSH ...cooovvnvivniinininnnee. 51
TABLE 9. HABITAT SUITABILITY CHANGES IN THE FUTURE FOR NILGIRI PIPIT ................ 53
TABLE 10. HABITAT QUALITY REDUCTION OF ASHAMBU LAUGHINGTHRUSH UNDER
DIFFERENT RCP SCENARIOS .....ovvvumssecsssmmmsssssssssssssessssssmsssssssssssmsss s 55
TABLE 11. HABITAT QUALITY GAIN OF ASHAMBU LAUGHINGTHRUSH UNDER DIFFERENT
RCP SCENARIOS .ovvvessssssesssssssssssssssssssss sttt st s e 56
TABLE 12. HABITAT QUALITY REDUCTION OF NILGIRI PIPIT UNDER DIFFERENT RCP
SCENARIOS ovveeeeeesonnssssssssssssssssssssssssssssssss b 11001 57
TABLE 13. HABITAT QUALITY GAIN OF NILGIRI PIPIT UNDER DIFFERENT RCP SCENARIOS
58

eesssacsssee ..........o..-u-u-u.ou-.o...n.o.-.-..u............o.u..u.u-..u................... .
. sessssccee

vi



LIST OF FIGURES

FIGURE 1. LANDSCAPES FALL WITHIN SOUTHERN WG AND ITS ELEVATION CLASS......... 25
FIGURE 2. OCCURANCE POINTS OF ASHAMBU LAUGHINGTHRUSH FROM WESTERN GHATS
.................................................................................................................................. 28
FIGURE 3. OCCURRENCE POINTS OF NILGIRI PIPIT FROM THE WESTERN GHATS ............. 28
FIGURE 4. JACKKNIFE TEST GRAPHS SHOWING THE TEST GAIN OF DIFFERENT VARIABLES
USED IN THE MODEL BUILDING OF ASHAMBU LAUGHINGTHRUSH........ccccuvviininnncs 39
FIGURE 5. RESPONSE CURVES OF THE VARIABLES USED FOR THE MODEL BUILDING OF
ASHAMBU LAUGHINGTHRUSH. ........cvereeresenccsssssssssssssssssesssssssssssssssnssssasasasssssssessssss 40
FIGURE 6. JACKKNIFE TEST GRAPHS SHOWING THE TEST GAIN OF DIFFERENT VARIABLES
USED IN THE MODEL BUILDING OF NILGIRI PIPIT ..covuvuuruimiiininnsissisesiuncnsincusinsinnsnnss 42
FIGURE 7. RESPONSE CURVES OF THE VARIABLES USED FOR THE MODEL BUILDING OF
NILGIRI PIPIT «.voeeveveveseeseseseeeesessssssassasesesssaesassssssssnsssssstassasssssassssstissssssiasiastsisssses 43
FIGURE 8. PREDICTED HABITAT SUITABILITY OF ASHAMBU LAUGHINGTHRUSH.............. 45
FIGURE 9. CURRENT SUITABLE HABITAT OF NILGIRI PIPIT ccvuiiisinseuremennsinsinsnnsinssnnsininses 46
FIGURE 10. EXTENT OF SUITABLE HABITAT AND ITS QUALITY FOR ASHAMBU
LAUGHINGTHRUSH ..covvverrrvvsaesseseeessssesssssstssssstssssssssssssssissssstssssssssssssssssnsssssnnss s 48
FIGURE 11. EXTENT OF SUITABLE HABITAT AND ITS QUALITY FOR NILGIRI PIPIT ........... 49
FIGURE 12. SUITABLE HABITAT OF ASHAMBU LAUGHINGTHRUSH UNDER DIFFERENT RCP
GCENARIOS....ovvvssossseeeeesesmaesssssssssssesssssasssesssasssss s 50
FIGURE 13. PROBABLE HABITAT QUALITY CHANGE FOR ASHAMBU LAUGHINGTHRUSH
UNDER DIFFERENT RCP SCENARIOS ..ccvuusssessssssssssmssssssssmsssssssmssssssmssssssssssssss s 51
FIGURE 14. AVAILABLE HABITAT FOR NILGIRI PIPIT IN 2070S ACCORDING TO DIFFERENT
RCP SCENARIOS .evvveooeeeeeessssssesssssssssssssssasssssssssss 1130884150000 52
FIGURE 15. PROBABLE HABITAT CHANGES FOR NILGIRI PIPIT UNDER DIFFERENT RCP
SCENARIOS ...vvveresseseeesssssssssssssssssssesssssss 11111 53

vii



LIST OF PLATES

PLATE 1. PHOTOGRAPHS OF THE SPECIES SELECTED FOR THE CURRENT STUDY.......cuvruuecurmresmecennes 24

LIST OF APPENDICES

APPENDIX I. DETAILS OF THE OCCURRENCE DATA USED FOR DEVELOPING THE MODELS OF THE
SELECTED BIRDS.......osvveseeeesensessssssessesssseessssssssssessssssssssssssssssssesssssssssssssssssssssssssasssssssanssosssses 99

APPENDIX [I. DESCRIPTION OF ENVIRONMENTAL VARIABLES USED TO DEVELOP THE MAXENT
MODELS OF SELECTED BIRDS w..vccvvvessssssssssssssssssssssssssssssssssssssssssssesssssesssesssssssssssssssssssssssseees 104

APPENDIX III. PEARSON’S CORRELATION COEFFICIENT BETWEEN ENVIRONMENTAL VARIABLES

USED FOR DEVELOPING MAXENT MODELS FOR SELECTED SPECIES..........ccccccoiiirirrininnnannnneens 114

viii



INTRODUCTION



1 INTRODUCTION

Among the numerous anthrop'oge.nic factors responsiblé for the decline of
biodiversity, two are considered to have overwhelming importance, global climatic
change and the destruction, fragmentation and disturbance of habitats (Parmesan,
2006; Kampichler et al., 2014). Although human-induced land use is considered to

be the primary driving force of today's species decline, climate change is also being

attributed as a significant causative factor. Drastic alterations in the distributions
and abundances of species' have been connected to elevating temperatures (Spooner

et al., 2018; Cook et al., 2020). Correlational studies over large numbers of regions

and taxa have disclosed clear associations between climate change and observed

‘changes in geographical range and suitability of many plant and animal taxa

(Hickling et al., 2006; Stephens et al., 2016; Spooner et al., 2018; Mason et al.,

2019).

Each of the previous four decades has been successively warmer than any

decade that preceded it since 1850. In 2019, atmospheric CO2 concentrations were

higher than at ahy time in at least 2 million years. The frequency and intensity of

heavy precipitation events have increased since the 1950s over the most land area

(IPCC, 2021). We have already started experiencing intermittent extreme climate

events in floods, cyclones, unprecedented rain spells and severe drought. So, it is

urgently needed to understand the possible effect of global change on biodiversity.

Global temperature surge of 1.5°C to 2°C is highly likely to lead us to a situation

of losing half of the suitable habitats of 4% to 8% of the world's vertebrates (IPCC,

2018)

Unfortunately, our understanding of regional biodiversity patterns in the

subcontinent of India remains feeble (Ramachandran ef al, 2017). At the same

time, tropical montane ecosystems are highly diverse and harbour high endemicity

(Ricketts et al., 2005; Lele et al., 20
as they hold threatened species with restricted distributions (Ricketts ef al., 2005;

20). These regions are extinction risk hotspots



Hoffmann ef al., 2010). Montane habitat specialists may also be pressurized by
climate change, forcing them to move to a higher elevation (Stihldreher &
Fartmann, 2018). Where such movements are inhibited by topography, sp_eéies may
face habitat decline and eventually local extinctions (Parmesan, 2006; Lele et al.,
2020).

The Western Ghats mountain range in south India is the hottest hotspot of
biodiversity (Myers et al., 2000) that also includes locations of high extinction risk
(Ricketts et al, 2005). Two significant landscapes in fhe WG (Nilgiri and
Agasthyavanam) have been recognized as Biosphere Reserves by the United
Nations Educational, Scientific and Cultural Organization (UNESCO) (UNESCO,
2012,2016). The sky islands at the highest elevations of the Western Ghats (WG)
hold a naturally bi-phasic mosaic of evergreen forests and grasslands known as the
shola ecosystem (Lele et al, 2020). This ecosystem is dominated by montane

grasslands (Thomas & Palmer, 2007; Das ef al, 2015), which harbour unique
species assemblages (Sankaran, 2009).

Many birds are endemic to the sky islands of WG. Ashambu Laughingthrush
Montecincla meridionalis and Nilgiri Pipit Anthus nilghiriensis are included in this
list. Ashambu Laughingthrush is endemic to the Agasthyamalai landscape of
southern WG (del Hoyo et al,, 2020), whereas Nilgiri Pipit is endemic to the Nilgiris
and Palani-Anamalai hills of WG. Understanding their habitat suitability and
distribution is essential since climate change could influence them, and the time is
already late. Understanding the habitat preferences and dispersal ability of such
sensitive speciés would help prevent them from becoming extinct, and it can
address long-term conservation of the species as well (Peterson and Robins, 2003)

The prime objective of this research is to detect the environmental and

climatic variables that influence the distribution of such
Along with that, the study

quality for these birds and p

endemic birds of the WG,
also intended to map the suitable habitats and their

redicts the future changes in their habitat suitability and

quality change under different climate chan

ge scenarios such as RCPp 4.5, RCpP 6.0,
and RCP 8.5 for the time the 2070s (2061

-2080) by using the MaxEnt algorithm_
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2 REVIEW OF LITERATURE

2.1 SPECIES DISTRIBUTION AND FACTORS

Comprehensive knowledge of species’ ecological and geographic
distributions is essential for conservation planning (Ferrier 2002; Funk and
Richardson 2002; Rushton et al., 2004; Elith et al., 2006), and for understanding
ecological and evolutionary factors of spatial patterns of biodiversity (Rosenzweg
1995, Brown and Lomolino 1998, Ricklefs 2004, Graham et al., 2006; Elith et al,
2006). But factors affecting the species distribution was an unsolved problem in
ecology (Araujo and Guisan, 2006) and species distribution studies need
understanding of how organisms interact with the abiotic and biotic factors that
constitute species environment (MacArthur 1984; Gaston 2003; Chase and Leibold

2004; Spence and Tingley 2020). Such information on species distribution is useful

for population monitoring (Shaffer et al., 1998), biodiversity mapping (Bojo rquez-

Tapia et al., 1995), and conservation management (Corsi et al., 1999).

Availability of feeding habitat is one of the major concerns for the

distribution of specie. Jordano (1993) evaluated the significance of distribution of

pers as a major diet supplier of frugivorous thrushes. Similarly, Beale et al.,

Juni
(2006) concluded that the decline in the population of Turdus torquatus (Ring

Ougzel) in Britain was mainly due to the increase in summer temperature and at the

same time decrease in summer precipitation. Adverse weather conditions were also

a likely factor in the population decline of the song thrush Turdus philomelos in

Britain (Robinson ef al, 2014)

Scheffers et al., (2016) commented that researchers are leaned towards

understanding how species are currently responding to a changing environment,

dicting how species will respond to upcoming
Climate change is likely to induce

and in pre éhanges in a period pfrapid

human-induced environmental change.

tation change that will force wild plant and anim

vege
in response to the newer environmental variable (IPCC, 2001). Species’
d by many factors other than

al species to shift their range

i
populations and distributions are also modifie



prevailing climate (Clavero ef al., 2011), and local climate adaptation may lead to
different responses in different parts of a species tange (Visser et al., 2003; Mason

et al., 2019), so such unexplained variation can also occur.

22 CLIMATE CHANGE IN WESTERN GHATS

Like most of the other biogeographic zones in India, Western Ghats also
face risks associated with prevailing global climate change. Rajendran and Kitoh
(2008) noted a likely surge in the monsoon rainfall over the interior zones of the
Indian subcontinent under the future climatic conditions and a drastic reduction in
orographic rainfall over the west coasts of Kerala and Karnataka states. The rainfall
reduction over parts of Western Ghats were mostly to the south of 16° N and was
accompanied by a significant reduction in the south-westerly winds and moisture
transport into the region. Several studies have also proposed the possibility of the
weakening and normalization of the tropical large-scale overturning circulation in
response to global warming conditions (Sugi et al., 2002; Cherchi et al., 2010).
Robinson (1994) who considered past climatic changes in WG suggest that the
vegetétional changes may also be influenced by CO2 rather than soil moisture
alone. Ravindranath et al., (1997) had projected climate change impact under the
‘most-likely’ scenario was an expansion in the area under evergreen forests due to
increased precipitation and an increase in dry thorn forest due to increased

temperature. Furthermore, there was a noticeable decline in dry deciduous forest
and modest decrease in montane forest/grassland.

The indigenous species in Western Ghats are undergoing adverse pressures
because of anthropogenic disturbances, such as land use land cover changes,
presence of invasive species, forest fire etc. A study by Gopalakrishnan et al.,
(2011) shows that under the A1B conditions the fdrests of central and Northern
Western Ghats are prone to climate change, while another study by Krishnakumar
et al., (2011) shows that the tropical evergreer;'vforests of Southern Western Ghats

are shown to be resilient with a predicted surge in its precipitation. However, few




studies from this region highlights the importance of climate change in changing
distributions of endemic species using niche modeling approaches (Sen et al.,.
2016a, 2016b). The results are alarming which shows a decrease in their suitable
habitats and range. The third as.sessmerul{ of IPCC (2001) also ‘caution that apart
from habitat loss, wild species are at risk from changes in environmental conditions
that favor forest fires and drought. If the frequency of these extreme events

EptY
increases, the frequency of forest fire also increases.

2.3 IMPACT OF CLIMATE CHANGE ON BIRDS

Climate change may negatively affect an animal species through changes in
vegetation and environment affecting the suitability of its habitat, which take time
to occur, leading to an extinction debt (Kuussaari et al. 2009; Mason et al. 2019).
Birds have the capacity to be considered as strong Bio-indicators, since birds are
very popular and have an iconic status all over the world (Crick, 2004). Katti and
Price (1996) have.recorded a decrease in the density and persistence of Green Leaf

Warblers on their wintering grounds in the WG in response to drought.

However, Thomas et al. (2006) highlighted the likely artifactual perception
that because of climate change, range expansions and population increases are more
common than range retractions and population decline. In support of this findings,
Stephens et al. (2016) and Mason et al. (2019) also concluded similar positive
relationship between population trend and climate suitability

2.4 RESPONSES OF ORGANISMS TOWARDS CLIMATE CHANGE

Globally, many species have already shifted their extant to evade elevating
temperatures and track historic climate, either by poleward shifts (Parmesan and
Yohe 2003), to greater elevations (Moritz et al. 2008, Chen et al. 2011), to deeper
waters (Perry et al. 2005, Dulvy et al. 2008), or the forest floor (Scheffers et al.
2013). Spence and Tingley (2020) further investigated and found out regardless of

species moving poleward, upslope or deeper, all three thermal gradients covary with



other environmental variables that can have dominant and substantial effects on the

biology and biogeography of species in the future.

Nevertheless, despite our limited understanding of speciesfspeciﬁc
responses to varS'ing abiotic factors, we know organisms have three primary
mechanisms to cope up with abiotic challenges of novel environments (Spence and
Tingley, 2020). First, either through behavioral variation or innate tolerance,
organisms need not require any physiological adaptations to flourishingly colonize
an area with novel conditions (Parmesan and Yohe 2003). Sécond, species may
display physiological flexibility and acclimatory potential to get rid of the abiotic
challenge after an initial exposure (Somero 2010, Valladares et al. 2014). Third,
populations may be locally resilient to varying abiotic conditions across the range,
and intraspecific variation may furnish evolutionary potential to overcome the
conditions (Diamond 2018). However, those species which are unable show innate
tolerance, physiological or the genetic potential to evolve to absurd abiotic factors,
these factors may even diminish the ability for that population to shift its range to

~ keep away from rising temperatures (Spence and Tingley, 2020).

2.5 CLIMATE CHANGE AND BIRDS DISTRIBUTIONAL RANGE

The general effect of projected human induced climate change is that the
habitats of many species will move towards higher latitudes from their present
location. 1t is also worth noting that organisms will migrate at different rates
through fragmented landscapes, and ecosystems dominated by long-lived trees may
change slowly (Singh, 2011). Abraham and Jefferies (1997) found out that the
breeding ranges of some migratory birds, such as waterfowl, have been expanding
poleward in response to climate amelioration. Both amphibians and birds in Great

Britain have been forced to prepone their breeding dates by about 7 to 21 days since

the 1970s in association with temperature surge (Beebee 1995; Crick et al. 1997:
Hansen et al. 2001). | ’




To compute the changes in distribution of a species, it is important to
understand the likely responses of each species with respect to the changing
environment. An increased temperature and decreased precipitation would almost
certainly stress the habitat specialists (kavindranath et dl_, 1997). It is also
noteworthy that, in the case of montane forests (or sholas), the increase in
temperature may smoothen the migration of plant species from lower elevation
forests to the montane areas, thus causing a reduction in montane forests. Species
having limited climatic ranges or restricted habitat requirements or small population
(endemic mountain species and birds restricted to islands, peninsulas) tend to be the

most threatened to face the risk of extinction (Singh, 2011).

2.6 IMPORTANCE OF RANGE DISTRIBUTION STUDIES

To convey regional biogeographic patterns, it needs eithér large
phylogenetic datasets at small spatial scales (Agarwal et al. 2014; Vijayakuthar et
al. . 2014) or community-level.distribution studies (Tamma and Ramakrishnan,
2015; Ramachandran et al., 2016). Even though birds of the Indian sub-continent
have poor phylogenetic data (Reddy 2014), there have been extensive bird
distributional surveys over the last two centuries (Oates and Blanford 1889; Stuart
Baker 1930; Ali and Ripley 1987; Rasmussen and Anderton 2012) with clear
understanding on geographical limits of species. Ramachandran ef al, (2016)
identified six potential biogeographic barriers in Western Ghats, which are (starting

from north) Narmada River, Goa Gap, Cauvery River, Chaliyar River, Palghat Gap
and Shenkottah Gap.

2.7 MODELLING OF SPECIES HABITAT SUITABILITY

2.7.1 IMPORTANCE OF HABITAT SUITABILITY MODELLING

Root and Schneider (1993) found an evident correlation between population

distribution and climatic factors in 148 wintering terrestrial birds. Similarly, Mason



et al. (2019) examined the relationship between species-specific regional
population changes and climate suitability trends, using long:term information of
population change for 525 breeding bird species in Europe and in USA and
concluded that population is varying positively and negatively for different taxa of
birds. They’ve used multiple species distribution models for obtaining correlation
between varying factors. Habitat Suitability Modelling (HSM) OR Species
" Distribution Modelling (SDM) establish the relationship between species records
in an area and environmental characteristics and spatial characteristics of those

areas (Franklin, 2009; Kumar and Stohlgren, 2009; Elith et al, 2011).

They represent an empirical method to draw statistical conclusions about
the drivers of species distribution under various conservation, ecological and
evolutionary processes (Zimmermann ef al., 2010). Particularly, in those areas
where systematic surveys have not been conducted, distribution models help
conservation practitioners in estimating and assessing the extent of suitable areas
for the species of interest (Elith, 2002). By using known distribution of the species,

environmental variables are defined, and this information is used in identifying

similar regions with similar environmental variables and the new distribution can

be modelled (Pearson and Dawson, 2003).

Overlays of geospatial species samples with environmental variables such
as elevation, vegetation and land use were oﬁen used to understand wildlife-habitat
relationships and predict distributions (Stoms et al., 1992; Anderson ef al., 2003).
The only way to test the hypothesis foretelling the future is by waiting for the future

to unfold or testing the past changes and comparing it with the current distribution
(Araujo et al., 2005).

An understanding of climate warming and their impact on projections of
species distributions will benefit in communicating and reducing climate-related
gncertainty in the output of SDMs (Beaumont et al, 2008). These models were
widely used as a tool to understand the various hypotheses in ecology,
and conservation (Elith ef al., 2006). Apart from predicting range shifts

with future climatic scenarios, SDMs are also used to understand env

evolution
associated

ironmental



correlates of species occurrences (Wollan et al., 2008; Monterroso et al., 2009; Elith
et al., 2011), predict and explore expanding distribution of invasive species (Ward,.
2007; Wang et al., 2007, Ehth et al., 2011) and understanding genetic diversity,
endemism and evolutionary niche dynam1cs (Young et al., 2009; Lamb ef al,

2009). Pautesso et al., (2011) concluded that when the species range shift occurs,
current protected area networks may not be able to provide adequate protection to

the species considering the fact that the species distribution may shift to outside of

the protected area.

2.7.2 PROCESS OF HSM

2.7.2.1 STEPS IN HSM

Major steps followed in case of modelling of specieé distribution; (1)
Available present data of occurrences of the selected species (Peterson et ai;, 1998;
Peterson and Stockwell, 2001); (2) Developing ecological niche models and testing
with the distribution (Guisan and Zimmerman, 2000; Kobler and Adamic, 2000);
(3) Change in species distribution is projected based on the general circulation
models of climate change; (4) Ecological niche model of the species is projected
onto the predicted landscape distribution (Soberon and Peterson, 2005) and using
this, model could derive the probability of occurrence of a species for any given

area or trace the specific environmental variable that suits (Elith ez al., 2011)



2.7.2.2 TESTING ACCURACY AND RESOLUTION

The accuracy of model description depends upon the degree of
environmental gradients that define the species distributional limits (Pearson et al.,
2007). Various rules in different models were made up of individual algorithms
and the areas would be identified within and outside the realized niche based on
these rules (Peterson, 2001). In other words, models were built mainly based on
correlations between the variables and pattern of distribution and this did not

consider the causal relationship due to autocorrelation among the interacting

variables (Bahn and McGill, 2007; Beale et al, 2008). To improve the

interpretation of the responses of the species distribution, large geographical
landscapes were studied. This réduces the correlation of environmental variables
with climatic variables (Maclean et al., 2008). It can be used to resolve ambiguities
due to correlated predictors, but it may fail to find out the spurious correlations
among the environmental variables which was used to define distribution (Ashcroft
etal, 2011). The problem of accuracy may become more important when models
are developed for undulating terrain with heterogeneous topography, where

vegetation is distributed with sharp transitions from one vegetation type to another
(Fischer, 1994; Zimmermann and Kienast, 1999)

Concerns of the accuracy of species prediction are addressed based on
varying climatic conditions and testing the climatic envelope models (Pearson et
al., 2006). However, it is implicit in distribution modelling that a perfect truth is
hard to obtain (Greskes et al., 1994; Guisan and Zimmerman, 2000). There is now
a plethora of methods for modelling species’ distributions that vary in how we want

to model the distribution, select relevant predictor variables, define fitted functions
for variable, quantify variable contribufions, allow for i

. nteractions, and predict
geographic patterns of occurrence (Guisan and Zimme

Tman 2000, Burgman et al.
2005; Elith et al,, 2006; Elith et al., 201 1). = w
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2.8 SPECIES DISTRIBUTION STUDIES

Correlational studies over many species, regions and similar taxa have
revealed clear bonding betweeq recent climate fluctuations and observed changes
in geographical range and abundance of many plant and animal taxa (Hickling et
al., 2006; Spooner et al., 2018; Stephens et al., 2016). Change in distribution of a
species may fall into three categories; (1) range reduction (Peterson et al., 2002;
Thuiller et al., 2(;35); (2) range expansion (Mason et al., 2019; Sanjo and Nameer,
201 9); and (3) range shifts (Pearson ef al., 2002; Mason et al., 2019). These varying
results were also explained in detail using associated environmental variables
(Maclean et al., 2008). However, positive changes in species abundance in
response to beneficial climate change is generally perceived to be robust and more
plentiful than for populations expected to be negatively affected (Parmesan and
Yohe 2003; Root et al., 2003; Thomas et al., 2006). But, Mason et al., (2019) warns
that results associated with range expansion should be approached with caution as
it only considers climate change but not climate change associated with vegetation
change. Meanwhile, Goetz ef al., (2014) found out a strong correlation between
temperature variation and richness of forest birds and at the same time precipitation

has a severe influence on richness of open woodland birds.

2.9 DATA USED FOR MODELLING

2.9.1 PRESENCE AND ABSENCE RECORD

Most of the studies on progress of distribution modelling approaches have
focused on generating models using presence/absence or abundance data, where
regions of interest have been sampled systematically (Hirzel and Guisan 2002;
Cawsey et al., 2002; Elith et al., 2006). Clear majority of this data consists of
occurance records from herbariums and museum collections (Elith ef al., 2006)
which are electronically accessible (Heutmann, 2005). Since the intent and method
of collecting are relatively unknown, absence cannot be concluded with certainty

(Elith ef al., 2006). This information can also have biases and errors (Hijmans et
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al., 2000). For example, field surveys can incorrectly identify a species as present
that is absent in a certain location (false presence) and may fail to detect a species
that is present (false absence) (Reese et al.,, 2005). In either situation,’the prevalence
of false absence or false presence records may affect attempts to predict species
distributions based on environmental variables (Tyre et al., 2003). For enhancing
evaluation of model performance in predicting distributions of species, it is
advisable to use independent, structured presence-absence information for
validation (Elith ef al., 2006). Due to poor sampling or missing species occurrences
during field survey, absence data won’t be available for methods which require both
the data set. In this case, it is advisable to use ‘pseudo-absences’. instead of real

absence data (Ferrier et al., 2002) or some methods used background data for the
entire study area (Hirzel et al., 2002).

In today’s world, species occurrence data is widely available and can be
easily accessed through communications as they are created using satellite
imageries. But it is challenging to validate the absence data since wildlife-habitat
connection was absent even though there exists a potential for a species to be seen
at a site (MacKenzie et al., 2004; Gu and Swihart, 2004). However, with the
prevailing datasets, Reese et al., (2005) assumed that false presence is less likely to
occur as compared to false absence. At the same time Baldwin (2009) used

presence only data and showed that the necessity of absence data is minimal.

2.10 REPRESENTATIVE CONCENTRATION PATHWAYS

The IPCC fifth assessment report (ARS) introduced the Representative

Concentration Pathways (RCPs) as the new approach of representing the range of

possible radiative forcing scenarios, The RCPs are the pathways showing

greenhouse gas (GHG) and aerosol concentrations, together with land-use change,
consistent with a set of broad climate outcomes used by the climate modelling

community. All pathways are simulating the emission tjl] the end of the 21st
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century. . Due to additional GHG presence in the atmosphere, the heat gets trapped,

known as radiative forcing and measured in Watts per square meter (W/m?2).

Accordmg to the IPCC future emlssmns class1ﬁcat10n there are four
scenarios, each covering 1850 to 2100. The RCPs include a low level (RCP 2.6),
two intermediate levels (RCP 4.5 and RCP 6.0) and one high level (RCP 8.5). The
RCP 2.6 is the ambitious pathway, and it shows an early peak in atmospheric CO2
level then fall due to various CO2 removal activities. The RCP 8.5 predicted a
high CO2 level in the atmosphere beyond 2100 due to little effort and failure in the
CO2 removal activities. The atmospheric CO2 equivalent of RCP 2.6 and RCP 8.5
" are 490ppm and >1370ppm, respectively. For the RCP 4.5 and RCP 6.0, the CO2

level is 650ppm and 850ppm, respectively (IPCC, 2014).

2.11 SHARED SOCIOECONOMIC PATHWAYS

IPCC sixth assessment report (AR6) introduced considering Climate Model
Inter-comparison Project Phase six (CMIP6) where a new set of emission scenarios
come into play. Which is named as Shared Socioeconomic Pathways (SSPs). It
discusses how particular trends in social, economic, and environmental
developments make changes to the world. The SSPs have been developed to
provide five distinctly different pathways about future socioeconomic
developments as they might unfold in the absence of explicit additional policies and
measures to limit climate forcing or to enhance adaptive capacity. They are
intended to enable climate change research and policy analysis, and are designed to
span a wide range of combinaﬁons of challenges to mitigation and adaptation to
climate change (Riahi ef al., 2017). SSPs describe plausible alternative trends in

the evolution of society and natural systems over the 21st century at the level of the

world and large world regions (Kriegler et al., 2012)
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There are five SSPs and the likely scenarios are as follows;

SSP1 Sustainability — Taking the Green Road (Low challenges to mitigation
and adaptation). The world shifts gradually, toward a more sustainable path,
emphasizing more inclusive development that respects environmental boundaries.
Driven by an increasing commitment to achieving development goals, inequality is

reduced both across and within countries.

SSP2 Middle of the Road (Medium challenges to mitigation and adaptation).
The world follows a path in which social, economic, and technological trends do
not shift markedly from historical patterns. Development and income growth
proceeds unevenly, with some countries making relatively good progress while

others fall short of expectations.

SSP3 Regional Rivalry — A Rocky Road (High challenges to mitigation and
adaptation). A resurgent nationalism, concerns about competitiveness and security,
and regional conflicts push countries to increasingly focus on domestic or, at most,
regional issues. Investments in education and technological development decline.
Economic development is slow, consumption is material-intensive, and inequalities

persist or worsen over time.

SSP4 Inequality — A Road Divided (Low challenges to mitigation, high
challenges to adaptation) Highly unequal investments in human capital, combined
with increasing disparities in economic opportunity and political power, lead to
increasing inequalities and stratification both across and within countries.
Technology development is high in the high-tech economy and sectors. The
globally connécted energy sector diversifies, with investments in both carbon-
intensive fuels like coal and unconventional oil, but also low-carbon energy

sources.

SSP5 Fossil-fueled Development — Taking the Highway (High challenges to
mitigation, low challenges to adaptation). This world places increasing faith in
competitive markgts, innovation and participatory societies to produce rapid

technological progress and development of human capital as the path to sustainable
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development. There are also strong investments in health, education, and
institutions to enhance human and social capital. At the same time, the push for *
economic and social development is coupled with the exploitation of abundant
fossil fuel resources and the adoption of resource and énergy intensive lifestyles
around the world. All these factors lead to rapid growth of the global economy,
while global popu!gtion peaks and declines in the 21st century.

The RCPs and SSPs can be brought together into a two-dimensional
RCP/SSP matrix. Here, each cell can describe a plausible trajectory of emissions
and concentrations resulting in a given level of forcing by 2100 that is consistent
with and superimposed on pathways of socio-economic development (van Vuuren,
2013). When SSPs are combined with radiative forcing pathways or climate change
outcomes in integrated scenarios, policy assumptions will be necessary to produce
emissions that would achieve the desired climate outcomes, as well as to
characterize adaptation measures (van Vuuren, 2011). The new framework
combines so-called Shared Socioeconomic Pathways (SSPs) and the RCPs (and

other climate scenarios) in-a Seenario-Matrix Architecture (Riahi et al., 2017).

2.12 ASSESSMENT OF CLIMATIC CHANGES

For assessing the likely effects of climate change on biodiversity, many
tools can be used which include global climate models, regional climate models,
species bioclimatic envelope models, dynamic and equilibrium vegetation models
and site-specific sensitivity analysis (Sulzman et al.,1995). The most detailed
information on future climate is given by General Circulation Models (GCMs),
often refined with regional climate models (RCMs) and with empirical-statistical
post-processing methods (Maraun, 2013; Mendlik and Gobiet, 2015). Despite
being a sophjstiéated model, GCMs are also subjected to considerable uncertainties
(Mendlik and Gi;biet, 2015). And these uncertainties are often investigated using
Multi Model Ensembles (MMEs). As per Masson and Knutti (2011) the aim of

ensemble design should be to maximize model diversity to seize model uncertainty
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properly while ensuring better model performance. These model simulations are
considered as the best possible alternatives of the future (Hansen etal, 2001). Both
equilibrium and transient model scenarios are used in species assessment to
incorporate a broad range of possible futures (Aber et al., 2001). GCMS and RCMs
are generally used by dynamic vegetation models, biome envelope models and
gpecies envelope models to reveal different aspects of the biogeography because of

the future climate change (Cramer et al., 2000).

2.13 HSM TYPES AND TECHNIQUES

2.13.1 FOREST GAP MODEL

The Forest Gap Model became widely popular among forest ecologists as it
addresses a wide range of applied research questions. It can be effectively used to
understand the impacts of environmental alteration on long-term dynamics of forest
structure, biomass, vegetation and composition (Bugmann, 2001). However, our
attempt to synthesize knowledge about vegetation dynamics or to distinguish
different assumptions regarding forest growth faces severe challenges because of
the complexity of a forest ecosystem (Botkin ef al., 1972). Bugmann et al., (1996)
also mentioned the complexity of each forest and the requirement of additional
region-specific sub-models to improve model performance. The model runs based
on several assumptions which are; (1) The forest is considered as a composite of
many small fragments in which each vegetation can have a different age and
successional stage; (2) Tree position within a patch is not taken into account; i.e.,
patches are horizontally homogeneous; (3) the canopy or the leaf layer of each tree
are located in an indefinitely thin layer at the top of the trunk; and (4) there are no

functional interactions between each patch; i.e., successional processes are

described on each patch separately These simplifications made it possible to

analyze mixed-species, uneven-aged forests, which had been difficult previously

mainly because of computing limitations (Bugamann, 2001).
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2.13.2 SPECIES BIOCLIMATIC ENVELOPE MODEL

For assessing conservation planning measures, species-specific climate”
interaction needs to be studied and the bioclimatic envelope model provides the best .
altefnative for it. Bioclimatic models in their purest férm consider climatic
variables only and do not consider processing other environmental factors that
influence the distribution of species, such as soil parameters and land-cover type
(Pearsoh and Dawson, 2003). Adding to it, other studies have questioned its
validity by pointing out factors other than climate such as biotic interactions,
evolutionary change and dispersal ability (Davis et al, 1998; Lawton, 2000;
Woodward and Beerling, 1997; Pearson and Dawson, 2003). Bioclimatic envelope
shares the same principle of biome envelope models, where which the current
distribution of species was used to ‘train’ a model for the future incorporating the

predicted climatic conditions (Hannah et al., 2002)

2.13.3 GENERALIZED DISSIMILARITY MODELS (GDM)

Generalized dissimilarity modelling (GDM) is a statistical tool for analyzing
and predicting spatial patterns of turnover in community composition i.e., beta
diversity across large landscapes (Ferrier et al., 2007). For the estimation of
probability of occurrence of species distribution, kernel regression algorithm is used
within the transformed environmental space produced by GDM (Lowe, 1995). The
approach can be applied to range of assessment activities including visualization of
spatial ~patterns in community composition, constrained environmental
classification, distributional modellingof community types or species, survey gap

analysis, conservation assessment (Ferrier ef al., 2007)

2.13.4 GLM AND GAM MODELS

GLM and GAM were widely used in species distribution modelling because
ecological and environmental relationships can be modelled realistically and can be
explained with strong statistical foundations (Austin, 2002). In addition to that

GAM s can also be effectively used for time series studies of air pollution (He et al.,
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2005). It can also model complex ecological responses than GLM because of

greater flexibility (Yee and Mitchell, 1991).

2.13.5 MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

Multivariate Adaptive Regression Splines is a method for better modelling
of high dimensional data (Friedman and Roosen, 1995). The advantage of MARS
lies in its ability to capture the intrinsic complicated data mapping in multi-
dimensional patterns and produce uncomplicated, easier-to-interpret models
(Zhang and Goh, 2016). It is very easy to use in GIS applications for mgking

prediction maps and are faster compared to GAMs and can analyze community data

(MARS-COMM) (Leathwick et al., 2005)

2.13.6 GENENTIC ALGORITHM FOR RULE-SET PREDICTION (GARP)

GARP is an integrated spatial analysis system for predicting distributions of
both plants and animals. It is having two versions; (1) DK-GARP which is used for
modelling data obtained from natural history collections; and (2) OM-GARP, anew
open modeler implementation, where both uses a genetic algorithm for selecting a
set of rules for adaptations of regression and range specifications, thus predicting
species suitability (Stockwell and Peters, 1999). The algorithm of GARP can

generate pseudo-absence points as it works using presence-absence data.

2.13.7 MAXIMUM ENTROPY MODELLING (MAXENT)

For some species, detailed account on presence/absence data may be
available. But in the case of most species, absence data may not be available
(Phillips et al., 2006). In such cases, MaxEnt can be used for effectively modelling

distribution of a species. MaxEnt estimates species’ distributions by learning the

distribution of maximum entropy subject to the constraint that the expected value

of each environmental variable or interactions under this estimated distribution

matches its empirical mean (Phillips et al., 2006). MaxEnt can precisely build a

model even if there are a smaller number of presence records and it again an
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advantage since there is a chance for not getting dependable locations for mapping
spreading of species (Baldwin, 2009). It was observed that MaxEnt have done-
better than other similar modelling techniques (Elith e al., 2006; Hernandez et al.,
2006; Philips et al., 2006). MaxEnt achieCed higher suécess rate and it marked the

differences even at low sample sizes as compared to other models (Pearson et al.,

2007).

AN

2.13.8 BOOSTED REGRESSION TREES (BRT)

BRT is a technique that look to improve the performance of a single model
by fitting many models and combining them for prediction (Elith et al., 2008). And
it is modelled in stage wise manner, where several modifications are made in each
step (Friedman et al., 2000). Over fitting of data are avoided by using cross-
validation. This is to grow the models progressively during the predictive accuracy
testing on withheld portions of the data (Elith er al, 2006). It combines the
strengths of two algorithms; (1) regression trees and boosting (an adaptive method

for combining simple models. to improve. predictive performance) (Elith et al,

2008).

2.14 FACTS ABOUT THE SPECIES

2.14.1 ASHAMBU LAUGHINGTHRUSH (ASHAMBU CHILAPPAN)

Montecincla meridionalis

Ashambu Laughingthrush is a high-altitude endemic bird of Southern WG.
Earlier the species was treated as a subspecies of Kerala Laughingthrush
Trochalopteron fairbanki (Rasmussen and Anderton, 2005); Strophocincla
fairbanki (Praveen and Nameer, 2013). But later analysis indicated considerable
divergence and suggested erection of a new species (Praveen and Nameer, 2013;
Robin et al., 2017; del Hoyo et al., 2020) in the name of Montecincla meridionalis
where a dedicated generic name has given to it as it inhabits the montane evergreen-

shola ecosystems of Southern WG (Robin ef al., 2017). Within Southern WG, the
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species disjunct and restricted distribution is confined to Ashambu (Agasthyamalai)
hills (Sashikumar et al., 2011; Chandran and-Praveen, 2013) which is located South
of Shenkottah/Achenkovil Gap, in extreme south WG (del Hoyo et al., 2020).

Being a habitat specialist, they &e found in the altitude above 1200m and
prefers edges of broadleaved evergreen forest, Ochlandra reeds, secondary forest;
also, plantations (including tea and cardamom), especially those with thicket-lined
streams running through them (del Hoyo e al., 2020). It can be found in altitudes
up to 2135m as per del Hoyo et al., (2020) and IUCN (2016). However, it is
arguable that the upper-limit is lower than this, since the highest peak in the
landscape is Agasthyamalai which spans 1878m above msl. They forage in parties
of 6-14 individuals and are omnivorous in nature. Their diet includes insects,

berries and fruits (Rasmussen and Anderton, 2005; del Hoyo et al., 2020).

Chandran and Praveen (2013) points out that nearly 90% of the species
habitat falls under protected area networks including wildlife sanctuaries and tiger
reserves. This says that the potential habitat is legally protected. However, they
also warn that the spread of Ochlandra may impact the distribution of the species in
future. Since the species requires highly specialized habitat, it is believed that the
population of the species may lie in between 2,500-10,000 (del Hoyo et al., 2020;
TUCN, 2016). It is classified as ‘Vulnerable’ as per IUCN (IUCN, 2016). And the
population is declining because of habitat loss, degradation, increased
anthropogenic pressure and associated land use change (Somasundaram and

Vijayan, 2007; Chandran and Praveen, 2013; IUCN, 2016; del Hoyo et al., 2020).

2.14.2 NILGIRI PIPIT Anthus nilghiriensis

The Nilgiri ‘pipit is a high-altitude specialist bird endemic to the montane
grasslands of Southern Western Ghats (Sashikumar et al., 2011; Robin et al, 2014;
Lele et al., 2020). It inhabits upland grassland, open grassy and rocky hills, also in
coffee plantations, preferably 100-2300m above msl (may be even higher up to

2600m) (Tyler, 2020). It is a locally common insectivore, resident in its breeding
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range, Also the species has no records of long-distance movements and are mostly

sedentary (Vinod, 2007).

They forage on ground, in short grass and when disturbed, flies to nearest
bush or tree (Tyler, 2020). Even though they are insectivores, they also been
reported consuming seeds of grasses found in their habitats (Vinod, 2007; IUCN,
2016). They breed during the month of March to July. Nest a shallow cup of coarse
grass and roots, li;éd with finer grass, hair and stems, built among roots or in tuft
of grass or in depression at base of bush on open hillside (Tyler, 2020) or in marshy

grasslands with slightly taller grasses and sedges, particularly near streams (Vinod
2007).

Increase in the reports of the species from different parts of the Western
Ghats over the past few decades have led to a substantial extension of its known
range (Robin ef al., 2014). This includes WG regions of South Karnataka, relatively
lower elevations of WG of Kerala and Tamil Nadu, Periyar landscapes, Ponmudy
hills etc. However, extensive field study by Robin et al., (2014) couldn’t detect the
presence of this species from much of the locations except for high-altitude
grasslands of Nilgiris, Anamalai and Palani hills. Besides, they questioned the

occurrence records from Periyar — Agasthyamalai landscapes and Brahmagiris by

pointing out possible misidentification with nominate Paddyfield Pipit Anthus

rufulus and proposed that the Nilgiri plateau and the Anamalai Hills (including the

Palani Hills) be considered as distributional limits for this species. The species is

“Vulnerable’ as per IUCN

By considering it habitat specificity and requirement of high-elevation
landscapes the spcies is under the threat of climate change and associated landscape
alteration (IUCN, 2016). Land use changes, habitat loss, expanding plantations of
tea, cardamom, wattles and eucalyptus, tourism activities are all major threat for the
species (Robin ef al., 2014; TUCN, 2016; Tyler, 2020)
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2.15 THE SOUTHERN WESTERN GHATS

Ramachandran et al. (2017) defined southern Western Ghats as pa;rt of the WG
found south_of the Goa gap.- These regions are again divided into bfogeographic
units bounded by geographic barriers. The major biogeographic units include south
of Goa gap, south of Cauvery river, south of Chalayar river, south of Palghat Gap
and sputh of Shenkottah Gap. It has much more endemicity as compared to the
northe;m WG (Ramachandran et al., 2017). According to Vijayakumar et al. (2016)
and Haffer (1969) palacoclimate-based models or the ‘refuge model’, the isolation
of populations during dry glacial periods in forest refuge areas is hypothesized to
have led to vicariance and speciation. This hypothesis can also be applied in the
case of Western Ghats where there are several geographical barriers that contribute

for species isolation (Vijayakumar et al., 2016)

22




MATERIALS AND METHODS



3 MATERIALS AND METHODS

3.1 SELECTED SPECIES

Based on the availability of occurrence data and ecologlcal 1nformat10n two

Western Ghats endemic bird species were selected for the current study These

species are Ashambu Laughingthrush (ALT), Montecincla meridionalis and Nilgiri

Pipit (NP) Anthus nilghiriensis (Plate 1).

Both ALT and NP are categorized as

“Vulnerable’ according to [UCN, and both are listed under schedule IV of Wildlife
(Protection) Act, 1972, and both have High conservation concerns in the State of

India's Birds (SoIB) report (WPA, 1972; SolB, 2018; TUCN, 2021) (Table 1)

Table 1. Species selected for the study

English Malayalam Scientific IUCN status | SolB
Common Common Name Name status
Name
‘Ashambu @R U006 Montecincla | Vulnerable High
Laughingthrush | ,{)p} ‘A:I“b meridionalis
(Ashambu
Chilappan)
Nilgiri Pipit oelaUMUMD | Anthus Vulnerable | High
nilghiriensis
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Asambu Laughingthrush

‘Nilgiri Pipit

late 1. Photographs of the <pecies selected for the current study
Plate 1.
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Figure 1. Landscapes fall within Southern WG and its elevation class

3.3 SPECIES PRESENCE RECORDS
Species presence records or occurrence points are the prime input for SDM.

These are georeferenced point data that include longitude and latitude besides

species names. It can also contain the date and time of point taken, location name,

clevation and additional comments by the observer.

3.3.1 Gathering Occurrence Points

The method of point count is used to record species presence. Every point
count was taken for 15 minutes and consisted of the following information; species,
time, geo-coordinates of the point using Global Positioning System (GPS).
conducted from February 2020 to April 2021 by visiting various
m Biological Park, Shenduruney Wildlife Sanctuary,

date,
The survey was
locations like Agasthyavana

Periyar Tiger Reserve, Eravikulam National Park, Munnar Territorial Division,

Marayur Sandal Division, Silent Valley National Park and Mannarkkad Forest
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Division. All collected data were uploaded to the website eBird India

(www.ebird.org/India) database.

Collected species occurrence points (Primary data) can only represent the
extant species falling within the Kerala statc. Since the species (both ALT and NP)
prefer montane ecosystems of Southern Western Ghats, additional occurrence data
that fall outside the state boundary can significantly help frame the species' full

extent. This extra data was downloaded from eBird primary dataset and constitute
the secondary data.

eBird is a freely available web-enabled community of bird watchers who

collect, manage and store their bird observations in g globally accessible unified

database (Sullivan et al., 2009). eBird data is used by

Birders, scientists, and
conservationists for understanding avian biolo gical patterns and the environmental

anthropogenic factors that influence them. A proper multi-leve] Teview process
makes the eBird data pure and available for research and conservation programmes
including the development of species distribution models (Sullivan etal, 2017),.
So, the species presence data was downloaded from eBird, including Primarily
collected data. eBird basic dataset version 'EBD_relJun-2021' used to extract
occurrence data. Details of the occurrence datg are provided under

Appendix 1.

3.3.2 Vetting of occurrence points

Since secondary occurrence data were collecteq from a public gatay,
quality of data would highly be depended oy the r ecognitiop S ase, the.
observer, spatial and temporal coverage by the contributor oo lltl.e.s of the
species, the rare bird recording method of the databage and attentj, C a. ility of 4
reviewer to vet the data (Isaac et al., 2014; Kam petal, 2016) . n g.IVen by the
to recheck the data and further filter it before making jt usab1e. 1:1, it OIS advisable
were modified after Strimas-Mackey o o (2020) ang incl;ld ; tering methoqg
filtering techniques; (a) included ail checklistg havin & travel €d the following
protocols; (b) excluded all checklists with more than or Ing and stationary

CQual to 15 Minutes of
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- duration; (c) removed checklists with transect distance of 2km or more; (d) removed
checklists with more than ten observers. Modifications were made by considering

habitat specificity of the species, abrupt elevation gain and vegetation change in the

habitat.

After vetting occurrence points, spatial thinning was also done to avoid spatial
clustering. When multiple occurrence points get clustered at specific regions, it
may lead to overfitting of the model. Thinning was carried out in R using the
package spThin (Aiello-Lammens et al., 2015). According to the number of
available points and the nature of clustering, records of NP were thinned at 1km.
Whereas in the case of ALT, due to minimal data, thinning was not carried out.

Figure 2 and Figure 3 shows the occurrence records of ALT and NP respectively.
All of which is gathered from southern WG.

Since ALT is endemic to the Agasthyamalai landscape (south of Shenkottah
pass), there are no records from the north. In NP, this bird is confined only to high-
ranges of the southern WG, including Nilgiri hills and Palani-Anamalai hills.
Hence, there are two disjunct populations of this species on either side of the
Palghat gap. The topography of this gap makes the species isolated on either side

with no dispersal between its disjunct population.
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- 3.4 ENVIRONMENTAL VARIABLE

Patterns in species diversity and dissimilarity of species composition across
geographic space are a. function of environmental heterogeneity (Graham et al.,
2005). Hence determining environmental variables and estimating their

contribution to species of interest is essential in modelling studies (Araujo and
Guisan, 2000)

The following environmental variables are considered based on species
ecology and extant; bioclimatic variables (BIO 1-19) (Hijmans et al., 2005), Digital
Elevation Model (DEM) and Enhanced Vegetation Index (EVI) (Appendix II). The
dataset was downloaded from the website; Climatologies at high resolution for the
earth's land surface areas (CHELSA) climate dataset (Karger et al,, 2017). The
DEM (GTOPO30) was downloaded from the United States Geological Survey
(USGS) Earth Resources Observation and Science (EROS) Centre. Topographic
variables like altitude, slope, and aspect are calculated using QGIS (version 3.16)
from the obtained DEM file. Enhanced Vegetation Index is like Normalised
Difference Vegetation Index NDVI, but it is more responsive to canopy variations,

canopy type and architecture, and plant physiognomy (Heute e al., 2002).

All EVI layers were downloaded at the spatial resolution of 30 arc seconds
(~1 km) from the USGS Landsat dataset and projected to WGS 84 EPSG:4326
(WGS 1984). The satellite has a revisit period of 28 days. EVI layers of each
month ranging from 2011-2020 were accessed. Thus, downloaded data then
averaged out in three ways; (1) by taking an average of EVI for the whole ten years
(evi_avg); (2) 10-year average EVI of the wettest quarter of the year (peak
monsoon; June-August) (evi_wet); (3) 10-year average EVI of the driest quarter
(peak summer; March-May) (evi_dry). All these three layers were used along with

other variables for the SDM process.
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1 List of environmental variables usgd for SDM
3.4.

3.4.1.1 Bioclimatic variables

' : refers to the average of the maximum
i Annual Temperature): re
1. Biol (Mean :

i total energy
fa year. This corresponds to the
ini temperatures o
and minimum

inputs for an ecosystem

ini crature averaged for a year.
; d minimum temp
maximum an

3. B 03 (I othermality)' quantifles how latge the day-to-night temperatures

1 -(ls . ! .
- illate relative to the summer-to-winter (annual) oscillations ((Bio2/Bio 7)
0SCl1

0). This can determine the influence of monthly variation of
x100).
temperature comparable to that of a year.

4 (Temperature Seasonality): this is a measure of temperature variation
Bio

r a year relative to monthly temperature averages,
ove

More significant
iability in temperature is inferred from a larger standarg deviation.
varia

Bio5 (Maximum temperature of the warmest month): this is g measurement
5. Bio . .
f the temperature of the hottest month, whicp can be used for determining
o

ecies distribution changes related to warm temperatyre anomalies,
sp

6. Bio6 (Minimum temperature of the coldest month): indicates the lowest
| temperature of the coldest month

between Bios and Bio6
(Bio5-Bio6)
8. Bio8 (Mean temperature of the wettest quarter).
(1/4th of a year). It is the measure of the average temperature of the wettest
season.

9. Bio9 (Mean temperature of the drjest quarter); g

Measure of the average dry
season temperature of a year,

10. Biol0 (Mean temperature of the Warmest Quarter): average temperagyre of
the hottest season of the year
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11. Biol1 (Mean temperature of the coldest quarter): average temperature of the

coldest season of the year.
12. Biol2 (Annual precipitation): it is the cumulative total of rainfall over 12

months. It gives an account of total water inputs.

13. Biol 3 (P’recipitation of the wettest month): total rainfall of the month which

has got the highest rainfall
14. Biol4 (Precipitation of the driest month): total rainfall of the month which

has got the least rainfall
15. Biol5 (Precipitation seasonality) is the ratio of the standard deviation of

monthly precipitation to the monthly mean precipitation.

16. Biol6 (Precipitation of the wettest quarter): total rainfall of the wettest

quarter (three months) of a year
17. Bio17 (Precipitation of the driest quarter): total rainfall of the driest season

of a year
18. Bio18 (Precipitation of the warmest quarter): total rainfall of the hottest

season of a year
19. Biol9 (Precipitation of the coldest quarter): total rainfall of the coldest

season of a year

3.4.1.2 Digital Elevation Model (DEM)

20. Altitude
21. Slope
22. Aspect

3.4.1.3 Enhanced Vegetation Index

23. Evi_avg: 10-year average of enhanced vegetation index for the year 2011-

2020
24. Evi_wet: 10-year average of enhanced vegetation index of the wettest

~ quarter (June - August) for the year 2011-2020
25. Evi_dry: 10-year average of enhanced vegetation index of the driest quarter

(March-May) for the year 2011-2020
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The temperature is measured in "C (degree celsius),.and precipitation is C:n f:;nn

illi All the bioclimatic variables (biol - bio19) are calculate
(mllhmetrei)x.f Il and minimum, mean and maximum monthly temperature. And
Zzlttgiez:lw:re generated by intérpolating average m?n&ﬂy data. av'flilabi:nf;:)r;l
regional weather stations. As per the World Meteorological Org.am.z.::ltlon ( ;
the climate is defined as the measurement of the mean and va.mablhty of releffan
quantities of variables (such as temperature, precipitation or wind) over some time,

ing from months to thousands of years. The classical period is 25-30 years.
rangin

CHELSA (Climatologies at high resolution for the earth's land surface areas)

is a very high resolution (30 arc sec, ~1km) global climate data set currently hosted
isa
by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). 1t

is built to provide free access to high-resolution climate data for research and
is

application and is constantly lipdated and refined. Tt includes climate layers for
various periods and variables, ranging from the Last glacial maximum to current

times to several future scenarios. CHELSA is based on a mechanjstig.statistical

downscaling of global reanalysis data or global circulation mode] output and is
freely available.

3.42 MULTICOLLINEARITY TEST

eliminate one ecologically

less significant Variable. Thus, variables with less
correlation are selected for the model building

of each species. The
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multicollinearity results suggested 12 variables for ALT whereas ten for NP
(Appendix III).

3.5 SPECIES DISTRIBUTION MODELLING USING MAXENT

Maximum entropy (Phillips et al., 2006, 2017) algorithm (MaxEnt version
3.4.4) is used to develop species distribution models. Feeding data for the

modelling is presence-only occurrence points of the species.

To moderate goodness-of-fit with model complexity and to evaluate models
with spatially independent data, there is a need to smoothing model performance
and calibrate overfitting. R package ENMeval (Muscarella et al., 2014) (Ecological
Niche Model Evaluation) can be used for this. It can also provide us with model
settings like the selection of Maxent featﬁres, regularization multiplier (RM) and
the number of background points for building a Maxent model. Regularization or
Regularization Multiplier (RM) is a relaxation component added to Maxent to
costeain the estimated distribution, thereby allowing the average value of each

sampled variable to approximate its empirical average and thereby reducing the

overfitting of the model (Baldwin, 2009). It could also provide us with a bias file

for building Maxent models.
on (AIC), which is a measure of model performance and model

ENMeval results could also give a value of Akaike

Information Criteri
The lower the AIC value, the higher the performance of the model.

suggestions.
Maxent allows us to analyze the variable

The initial model developed by
permutation importance, area under the curve (AUC), and jackknife

contribution,
output to understand the contribution of each variable in the process of model

test
building. Several models must be run discarding variables with the most negligible

contribution, a.nd the model with the lowest AIC value is selected from the
Thus, it identifies the best performmg model with the lowest

ENMeval results
nt and ENMeval multiple times.

AIC and AUC values by running Maxe
s of analysis are available in Maxent, and here complementary

Different type:
utput was selected for the study. Cloglog type of output was a

log-log (cloglog) ©
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recently released analysis by the Maxent development team and is considered the |

most appropriate output for explaining the species habitat suitability (Phillips et al., ‘

adjusted, referring ENMeval output. All other settings are kept as default.

3.6 FUTURE SIMULATIONS

Habitat suitability was then modelled using future simulations. The
projections developed under different Représentative Concentration Pathways
(RCPs) like RCP 2.6, RCP 4.5 and RCP 8.5 for 206] — 2080 (the 2070s).
Bioclimatic variables associated with future climate models and static topographic
. variables used to build prediction outputs. The EVI layers were excluded from the

prediction models because of the unavailability of such layers in the future.

Four different ESMs such as the Community Climate System Model version
4 (CCSM4), Model for Interdisciplinary Research on Climate version 5 (MIROCS);“
Norwegian Earth System Model 1 (NorESM1-M) and Model for Interdisciplinary
Research on Climate Earth System Model Chemistry (MIROC-ESM-CHEM)

downloaded. All these models were used to build habitat suitability predictions for |

both species.

Evaluation of model performance is an unavoidable step in the process of
SDM. Among indices available for assessing model performance, Area Under the
Receiver Operating Characteristic Curve (AUC) value assessment is one method.
AUC measures how well parameters can distinguish between two diagnostic groups
(random and background points). It is computed from the Receiver Operating
Characteristic (ROC) curve by checking the sensitivity against 'I-specificity’ across
the range of possible thresholds. The AUC ranges from 0 to 1, and the model's
goodness is indicated by values close to one. This measure of model performance
provided the results of Maxent out. Since AUC value alone could not evaluate

model performance due to its limitations (Phillips ez al., 2006), another model
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evaluation measurement is the True Skill Statistic (TSS), which can be defined as
'sensitivity + specificity — 1'. TSS ranges from —1 to +1, and values close to one
indicate high accuracy. Model robustness can be understood by calculating the

AIC value and here. used AIC, AUC and TSS for model performance evaluation.

3.7 ASSESSMENT OF HABITAT SUITABILITY

The Maxent output provides prediction maps in raster file format (Ascii file
'asc’). Obtained raster files are then converted into a binary map by using a
threshold value. Maximum test sensitivity plus specificity (maxSSS) of cloglog is
considered as the best threshold for Maxent output reclassification for habitat
suitability determination (Liu ef al., 2013). All the habitat values which are less
than this threshold can be regarded as unsuitable habitats, whereas greater values

are suitable. Based on this, current and future raster output could be reclassified to

binary raster with two values, 0 (unsuitable) and 1 (suitable), by using ArcGIS or

QGIS..
Binary maps hence formed can be used to plot and assess habitat suitability
change. This can be done using the function raster calculator in QGIS 3.16 by

subtracting the current binary map from the future binary maps. The resultant map

will have three-pixel values; a value of 0 indicates no change in species suitability

(either suitable or unsuitable both in current and future scenarios). A value of 1

indicates areas that will be converted into suitable habitat in the future from an

unsuitable habitat in the current situation, and —1 represents areas that will be

changing from suitable habitat in the present to an unsuitable habitat in the future;

lost habitats!

The suitable habitat of the species coming under the protected area network

is also calculated. The protected area network maps were developed using ENVIS

Centre on Wildlife and Protected Areas database (ENVIS Centre on Wildlife and

Protected Areas, 2020).
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3.8 HABITAT SUITABILITY INDEXING

e

Since maximum test sensitivity plus specificity (maxSSS) of cloglog is |

considered as the best threshold for Maxent output reclassification for habltat
suitability determination (Liu et al 2013), it can also be used effectively for

indexing habitat suitability. Values that are greater than maxSSS indicate su1tabl

/

l

habitats, and it ranges up to 1. Further, it can be reclassified into four subclasses
Highly suitable habitat (0.8- -1.0), Moderately suitable habitat (0.6-0.8), Less
suitable habitat (maxSSS-0. 6) and Non-suitable habitats (less than maxSSS). It |

\
i
/(
|
I
/

could give us an idea about the extent and quality of suitable habitats of a species.

J

*This analysis is done for both current and future scenarios of the species. | 1

S

Subtracting these raster layers (future minus current) could give an idea about thC
change of quality of a species habitat. -

/
/

r
(

/ .
J
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RESULTS



4 RESULTS

4.1 SELECTION OF THE MODEL BASED ON IMPORTANT PREDICTIVE
VARIABLES | | '

The contribution and permutation importance of the variables in the finalised
model; the model with the lowest AIC value, highest TSS and AUC value were
selected. The significance of variables was also evaluated by doing a jackknife
test, and a different set of variables appeared in the suggested models. The

response curves of each gave the best suitable conditions of the species concerning

the variable

4.1.1 Ashambu Laughingthrush

Ten models have been developed for the species ALT based on the
permutatiofl importance of environmental variable, AIC, AUC and TSS values.
Out of these models, Model eight is selected as the final model with five variables

and Maxent features as Linear (L), Quadratic (Q) Hinge (H) and Product (P) with

one as regularisation multiplier (RM). Low AIC value, high AUC value and

moderately good TSS value show the final model's robustness. Overall accuracy

can also be used as an additional value for assessing model performance (Table 2).
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Table 2. Model development and associated accuracy indices of the Ashambu Laughingthrush

Model Variables RM AIC TSS AUC
No
1 . Biol, Bio2, Bio3, Bioll, Biol2, 3 1105.1 0.807 0.934
Biol4, Biol9, aspect, slope. evi_wet,
evi_dry
2 Biol, Bio2, Biol2, Biol4, Biol5, 4 1057.4 0.811 0.934

aspect, slope, evi_wet, evi_dry

3 Biol, Bio2, Bio3, Bioll, Biol2, 2.5 1098.1 0.823 0.925
Biol4, evi_wet

4 Biol, Bio3, Biol1l, Biol2, Biol4, 25 1101.5 0.819 0.922
evi_wet .

5 Biol, Bio2, Bioll, Biol2, Biol4, 2 1117.1 0.767 0.911
evi_wet

6 Biol, Bio2, Bio3, Bioll, Biol2, 3 1078.9 0.734 0.929
Biol4, Biol5, evi_wet ‘

7 Biol, Biol 1, Biol2, Biol4, Biol5, 3 1077.1 0.860 0.929 -
evi_wet

8 Biol, Bio12, Biol4, Biol5, evi_wet 1 1050.1 0.881 0.932

0.5 1054.6 0.874 0.924

9 Biol, Biol2, Biol4, Biol5

2 1098.3 0.729 0.902

10 Biol, Biol2, Biol4

d to the model building with noticeable |

All five variables contribute
ge of contribution and |

BIO 1 has the highest percenta

permutation importance. |
i wet is identified as the least essential variable |

permutation importance, whereas ev

(Table 3)
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Table 3. Variables included in the final model of Ashambu Laughingthrush and associated calculations

Variables PC PI MAX MIN MEAN SD
BIO 1 87.6 60.6 28.67 17.03 22.85 3.36
BIO 12 5 19.2 "228.7 72 150.4 453
BIO14 4.2 11.3 5.02 1.18 3.1 1.11
BIO15 2.8 7. 79.6 48.4 64 9.02

EVI_WET 0.4 1.2 6575.4 810.6 3693 1666.6

PC: Percentage Contribution; PI: Permutation Importance; SD: Standard Deviation

Jackknife analysis also shows the importance of the BIO 1 in model testing.

The evi_wet has a minor t

referring to the response curves of the variables, the best

ALT are defined around 18.5

precipitation (BIO 12) (Figure 5).

0.2

Figure 4. Jackknife test graphs showin

0.4

0.6

est gain in the jackknife analysis (Figure 4).
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4.1.2 NILGIRI PIPIT

Three models have been developed for the species NP based on the®
permutation importance of environmental] variables, AIC, AUC and TSS values.
Out of these models, Model three is selected as the final model with five variables
and Maxent features as Linear (L), Quadratic (Q) and Hinge (H) with 1.5 as
regularisation multiplier (RM). Low AIC value, high AUC value and moderately
good TSS value show the final model's robustness. Overall accuracy can also be

used as an additional value for asseSsing model performance (Table 4).

Table 4. Model development and associated accuracy indices of the Nilgiri Pipit

Model
No Variables

bio3, bio4, bio7, bioll, biol2,
1 | biol4, biol8, bio19, wetave, dryave | 3.5 1,441.847 | 0.868 0.901

RM | AIC TSS | AUC

bio4, bio7, biol1, biol2, biol4,

2 | biol8, dryave
3 | bio7, bioll, bio12, bio14, dryave 1.5 1,435.271 | 0.843 | 0.920

1.5 1,433.438 | 0.848 | 0.911

BIO 11 is considered the single most crucial variable, with 74% contributing

to the model building. It also has permutation importance of 74%. All other

variables contributed a little to the model (Table 5). Jackknife analysis also

indicates the importance of BIO 11, and it has a higher test gain (Figure 6).
Furthermore, the species' habitat suitability is hi gher when the mean temperature of

the coldest quarter (BIO 11) is around 12°C.
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Table 5. Va S 1N : e fin [ of N
¢ Variables included in the final model of Nilgiri Pipit and associated calculations

Variable PC PI MAX MIN MEAN SD
BIO 11 74..2 73.8 27.71 10.8 19.25 4.9

EVI DRY 11.4 4.8 6261.4 592.6 3427 1638.9
BIO 12 6.4 9.8 394.24 39.76 217 102.4
BIO 7 945 4.1 18.15 12.75 15.45 1.56 .
BIO14 2.5 7.5 3.23 0.47 1.85 0.79

PC: Percent Contribution; PI: Permutation Importance; SD: Standard Deviation

bio11 1 withoutvariable ®

' | With only variakle ®

hio12 With all variables ®
hio14 )
hio7? i
evi_dry 1

02 03 04 05 06 07 08 09 10 11 12 13 14 15
test gain

st gain of different variables used in the model building of

Figure 6. Jackknife test graphs showing the te
Nilgiri Pipit

When referring to the response curves of the variables, the best suitabl®

conditions of the ALT defined around 12.5°C of BIO 11 and 2885 mm of averag®

annual precipitation (BIO 12) (Figure 7).
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4.2 CURRENT HABITAT SUITABILITY ANALYSIS

4.2.1 Ashambu Laughingthrush

The best performing model of the ALT (AIC = 1050.1) predicted an area of
303 km?2 as suitable habitat across the background. The suitable habitat covered
9% of the background area used in the Maxent modelling (Table 6). Out of the
total suitable area, 80.5% fall under the protected area network of Kerala and Tamil
Nadu state. The model also predicted a new suitable habitat, where previous
records were unavailable, particularly the eastern part of Kalakkad - Mundanthurai

Tiger Reserve (Figure 8).

Table 6. Suitable habitat available for both species under current climate scenarios

Total Percentage
Suitable background of suitable
Species maxSSS* Habitat area habitat
Ashambu '
Laughingthrush 0.4169 303 3356 9.03
Nilgiri Pipit 0.3901 1792 | 8628 20.77

*Maximum test sensitivity plus specificity cloglog threshold
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4.2.2 Nilgiri Pipit

For NP, the final model (AIC = 1435.27; Table) resulted in a 1792 km? area as
suitable habitat, 20.77% of the background area selected (Table 6). The species is
mainly distributed in the high altitudes of Nilgiri Hills and the Palani-Anamalai
hills. Itis also interesting that apart from these two significant populations. a hi ghly
fragmented and isolated population lies north of the Palghat G

ap in the Shiruvani
hills (Figure 9).

Itis estimated to be around 18.79 of the total suitable areq of the
species fall within the boundaries of the protected area network of Kerala

and Tamil
Nadu states (Figure 9).
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4.3 ESTIMATING QUALITY OF AVAILABLE HABITAT

4.3.1 Ashambu Laughingthrush

While assessing the quality of the total suitable habitat of ALT. It is estimated
that approximately 10% of the total suitable area falls under highly suitable habitat
(HSH), remaining habitats are equally distributed among moderately suitable
habitat (MSH) and less suitable habitat (LSH), with both having approximately
45% of total suitable habitat (Table 7)

Table 7. Total suitable habitat and analysis of the quality of suitability for each species

Total HSH MSH LSH
Suitable
Species habitat | (km2) % (km2) % (km2) %
Ashambu
Laughingthrush | 303 30 9.9 136 449 137 45.2
Nilgiri Pipit 1792 289 16.1 540 30.1 963 53.7

HSH: Highly Suitable Habitat; MSH: Moderately Suitable Habitat; LSH: Less Suitable
Habitat; Percentage: available area written as a percentage of total suitable habitat

Figure 10 shows the quality of suitable habitat available for ALT. It is
identified that all the highly suitable habitats also have the highest elevation.
Moderately suitable habitats and less suitable habitats together contribute up to 90%

of the suitable habitat.
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4.3.2 Nilgiri Pipit

More than half (~53%) of the current suitable habitat of NP falls under less
suitable areas. 30% of available habitat is moderately suitable, while the remaining
16% is estimated to be falling under HSH (Table 7). Figure 11 shows the extent of
habitats falling in these criteria. It is interesting to note that HSHs are all situated
in higher elevations. Eravikulam National Park holds a significant share in
providing HSH for this species, particularly for its southern population (south of

Palghat Gap)
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Figure 11. Extent of suitable habitat and its quality for Nilgiri Pipit
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4.4 PREDICTING FUTURE HABITAT CHANGES AND SUITABILITY

4.4.1 Ashambu Laughingthrush

According to selected RCP scenarios, maxent could predict a considerable loss in
the suitable habitat of ALT. The species would be losing 20.5% of its current
suitable area in the RCP 4.5 (the 2070s) scenario, 40% in RCP 6.0 (2070s) and a
drastic 76.6% loss in the RCP 8.5 (2070s) scenario (Table 8). Thus, under the
extreme climate change scenario, the NP would lose four-f;

: fths of its suitable area
within 50 years (Figure 12 and Figure 13).
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Table 8. Habitat loss and gain of Ashambu Laughingthrush

Net
RCP maxSSS Loss Gain CSH FSH Gain
Scenario Threshold (km?) | (km? (km2) (km?) (%)
4.5 (the
2070s) 03487 | 65 3 303 241 205
6.0 (the
2070s) 03104 | 229 108 303 182 | -39.9
8.5 (the
2070s) 0.3284 241 9 303 71 -76.6

yvoew
1

Loss: Suitable habitat changes to unsuitable habitat in future; Gain: Unsuitable habitat
changes to suitable habitat in future; CSH: Current Suitable Habitat; FSH: Future Suitable

Habitat; Net Gain = (FSH-CSH)/CSH) *100

Background Unchanged Habitat - Habitat
Area Habitat Loss Gain
RCP 4.5 RCP 6.0
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Figure 13. Probable habitat quality change for Ashambu Laughingthrush under different RCP scenarios
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4.4.2 Nilgiri Pipit

In all the three RCP scenarios, maxent could predict a considerable loss in the
suitable habitat of NP. The species would be losing 41.2% of its current suitable
area in the RCP 4.5 (the 2070s) scenario, 50.45% in RCP 6.0 (2070s)

and a drastic
79% loss in the RCP 8.5 (2070s) scenario (Table 9).

Thus, under the extreme
climate change scenario, the NP would lose four-fifth of its suit

able area within 30
years (Figure 14 and Figure 15)

N

- Suitable area l Background area A

CURRENT

RCP 45
F ' s‘ }
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Table 9. Habitat suitability changes in the future for Nilgiri Pipit

Net
Loss Gain CSH | FSH Gain
RCP max SSS
Scenario Threshold (km?) (km?) (km?) | (km?) | (%)
4.5 (the 1792
2070s) 0.3688 893 154 1053 -41.24
6.0 (the 1792
2070s) 0.3620 1032 128 888 | -50.45
8.5 (the 1792
2070s) 0.3601 1417 0 375 -79.07

Loss: Suitable habitat changes to unsuitable habitat in future; Gain: Unsuitable

habitat changes to suitable habitat in future; CSH: Current Suitable Habitat;

FSH: Future Suitable Habitat; Net Gain = ((F SH-CSH)/CSH) *100

I Background
A Area

Unchanged
Habitat

RCP 4.5

-

Habitat
Loss

4

o3

X5
ﬁ,’.' I
*t'fs\

RCP 6.0

a¥

7P

Habitat
Gain

Figure 15. Probable habitat changes for Nilgiri Pipit under different RCP scenarios
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4.5 ANALYSING HABITAT QUALITY CHANGE

4.5.1 ASHAMBU LAUGHINGTHRUSH

4.5.1.1 QUALITY REDUCTION

RCP 6.0 suggests much more loss than the Previous scenario (Table 10), with
22% of the current available habitat being degr

aded, close tq 37% of the suitable
habitat. 80% (109 km2) of LSH in the current hahy:
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Table 10. Habitat quality reduction of Ashambu Laughingthrush under different RCP scenarios

Complete habitat loss Reduction in habitat quality | Total habitat quality reduced

% of
HSH |MSH |LSH ‘THSH | MSH the | %. of the
to to to HSH to | to to initial | remaining

RCP NSH NSH NSH | LSH MSH | LSH Total* | area | area
Scenario | (km?) | (km?) | (km?) | (km?) (km?) | (km?) | (km?) | % %

4.5 (the

2070s) 0 3 62 0 6 36 42 13.9 17.4

6the .0

(2070s) | 21 99 109 |4 60 3 67 22.1 36.8

8the .5

(the

2070s) 15 113 113 13 2 17 32 10.6 | 45.1
LSH: Less Suitable Habitat;

HSH: Highly Suitable Habitat; MSH: Moderately Suitable Habitat;
*Tota al: a total area that has reduced its quality (excluding complete loss); Initial area=303 km?2:

remaining area: FSH of Table 8

The table shows the suitability degradation of the RCP 8.5 scenario as well.

Even though the reduction of habitat quality is lower, the model shows a severe loss
of habitat for the species. The species must come up with a degraded 32km2 of
land in future, and that is nearly 45% of the total habitat available for the species in

the 2070s.
4.5.1.2 QUALITY GAIN

As per the RCP 4.5 scenario, a negligible erection of new possible habitat is
seen (3 km?). It is worth noting that 20% of the current suitable habitat will gain
its quality by 2070 (Table), accounting for nearly one-fourth of available habitat in
the future. The almost equal extent of both LSH and MSH will be upgraded into

MSH and HSH, respectively.
" RCP 6.0 predicted a bit differently. There will be new areas available for the
species in future; at the same time, nearly 49 km? suitable area will become much

more suited for the species climatic preference (see Table 11).
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RCP 8.5 is the worst scenario among the three where the only negligible are
will be upgraded and created in the future. 2km? area of LSH will become MSH
and some 8km? area will be added to the list of LSH.

Table 11. Habitat quality gain of Ashambu Laughingthrush under different RCP scenarios

Complete Gain in habitat Total habitat
habitat gains quality quality gain
NSH |NSH [NSH |(LSH | MSH | LSH % % of the
to to to to to to initial | remaining
LSH | MSH | HSH | MSH | HSH | HSH | Total | area | area
RCP (km?) | (km?) | (km?) | (km?) [ (km?) | (km?) | (km?) | % %
4.5
(the
2070s) | 3 0 0 28 30 0 58 19.1 24.07
6.0 N
(the
2070s) | 51 20 37 3 30 16 49 16.2 [ 26.92
8.5 ]
(the
2070s) | 8 1 0 2 0 0 2 0.7 2.82

HSH: Highly Suitable Habitat; MSH: Moderately Suitable Habitat; LSH: Less Suitable
Habitat; *Total: a total area that has gained its quality (excluding complete gain); Initial
area=303 km2; remaining area: FSH of Table 8

56




4.5.2 Nilgiri Pipit

4.5.2.1 QUALITY REDUCTION

A.dramatic decline is observed in the case of NP in all three RCP scenarios
(Table 12). The most habitat loss is seen in LSH. In RCP 4.5, nearly half of the
current suitable habitat will be lost by the 2070s. At the same time, the 323km?
area of MSH will be changed to LSH. The bird will be forced to live in a habitat
with 40% of deteriorated habitat compared to the current suitable habitat.

The same trend exists in RCP 6.0 as well. 22% of the current suitable habitat
will likely be facing quality deterioration. Nearly half of the LSH (863 km?) will
not be available for the species to survive. Itis slightly larger than that of RCP 4.5.
Almost 45% of the future habitat will be in a state of deterioration.

Drastic habitat loss and quality reduction are seen in the RCP 8.5 scenario.
Deteriorated habitat of around 367km? accounts for almost 98% of the future habitat
of NP. 67% of the HSH will be converted into LSH (196 km?), whereas 18% of

HSH will become MSH.

Table 12. Habitat quality reduction of Nilgiri Pipit under different RCP scenarios

Complete habitat loss Reduction in quality Total quality reduced
HSH | MSH |LSH |HSH | HSH | MSH % of the | % of the
to to to to to to initial remaining
NSH |NSH |NSH |LSH | MSH |LSH | Total | area area’

RCP km?) | (m?) | (km?) | (km?) | (km?) | (km?) | (km’) % %

4.5 (the
2070s) 12 63 818 14 86 323 423 23.60 40.17

6.0 (the
2070s) 14 155 863 40 101 256 397 22.15 44.70

8.5 (the

2070s) 40 419
HSH: Highly Suitable Habitat; MSH: Moderately Suitable Habitat; LSH: Less Suitable Habitat;

*Total: a total area that has reduced its quality (excluding complete loss); Initial area=303 km2;

958 196 52 119 367 20.48 97.87

remaining area: FSH of Table 9
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4.5.2.2 QUALITY GAIN

According to RCP 4.5, 129, of the remainin

g habitat will be gaining its
. . 2
quality, out of which 13km

area will be converted into HSH from NS},

155 km2
additional area will be available for the bird to survive,

RCP 6.0 indicates a bit more increase in

a new suitable areq for NP. around
171 km? (Table 13). Out of which 101 km? comes under I.SH.

significant improvement in habitat quality, of which aboy; 28 km?
converted into HSH in the future.

It shows a
of LSH will be

It is noteworthy that there will be no new areas and qQuality upgrades for the
RCP 8.5 scenario. A fraction of suitable habitat may remain by will be degrading
(see Table 13)

der differens RCP scenarips
Complete habitat gains m Total qua;
al quality gained
NSH | NSH NSH | Lsyg D o ————
MSH [ Lsg % of the | o, of the
to to to to to to S,
LSH | ms HSH MSH S s o Initial remaining
Ota area '
RCP | () [ (k) | Gy (k) | (kem?) (km2) | ) T |
4.5 (the \o\ %
R ]
2070s) |77 |64 13 4181 39 134
748 1
6.0 (the I e ey 2
\
2070s) | 101 64 6 29 78 28 1
. 35 7.53
EXaT™ e \\\ . 15.2
[
2070s) | o 0 0 0 0 0 -
0
HSH: i 0
H: Highly Suitable Habitat; MSH Moderately Suitable Habitat. °
Total: a tota] area that hag gained ’
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5 DISCUSSION

5.1 CONTRIBUTION OF VARIABLES IN BUILDING THE MODEL

The selection of predictor variat;l.es' is a significant step in almost all
modelling studies (Guisan & Zimmermann, 2000; Heikkinen et al., 2006; Araujo
& Guisan, 2006). This variable should also reflect the ecology of the species and
could explain the habitat requirement of a species (Austin and Van Niel, 2011).
Altogether, 25 environmental variables were used in the current based on the
availability of the variable and the current understanding of the ecology of the
species. After careful examination and statistical analysis, an adequate number of
variables are finally selected for the model building. The species in this study (ALT

and NP) are high-altitude specialists (del Hoyo et al., 2020). Even though altitude

seems a significant

variable (temperatur
to the species habitat selection. It was also proven statistically using a

where. altitude correlated with other variables and got

predictor variable for the species, it is the other bioclimatic

e and precipitation) that are shaped by the altitude, contribute

multicollinearity test

removed. It is thus evident and significant that global temperature rise is likely to

cause an impact on species suitability regardless of the topography of the landscape

Different temperature, precipitation and vegetation variables contribute

significantly to both the species habitat selection. Among them, temperature

variables were identified as the major contributing factors on which the species is

highly dependent. Mean annual temperature (BIO 1) and mean temperature, e

coldest quarter (BIO 11) are the critical variable for ALT and NP, respectively.

Apart from that, annual precipitation and precipitation seasonality also help form

the required habitat of both species. Not only temperature and precipitation, but

vegetation structure is also significant for both species. Field studies indicate that

the ALT prefers thick evergreen forests and forest edges of the high-altitude region.
NP prefers shola grasslands and open lands found in high-altitude areas

In contrast,
It can be concluded that a change in these bioclimatic

and avoided canopies.

predictors may significantly affect the survival of the species in question.
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5.2 .

45 2.1 Ashambu Laughingfhrush

020) classify this species as an inhabitant of evergreen forests

del Hoyo (2 00m, reaching at least 2135m above MSL. It is adequately

over an altitude of 12 f“t‘l’le tower reach.  We couldn't find the bird belowy fhgq

observed in the cas‘e zhe surveyed region, and we could observe the bird as soon
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thyamalai landscape (Sashikumar et al,, 201 1; Chandran and P
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del Hoyo et al.,

Agasthyamalai
that spans 1868m above MSL (Amarnath ¢ al, 2003),
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suita

DO recordg available for
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no
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imo |
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hills as 1
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NP seems like an overlooked species among bjrq

Watchers) Accordip
99), the bird inhabits an altitude from 1050 Onwards,
(1999),

g to Alj
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from north of Nilgiris and south of Palani and Anamalai hills. Also, they did
observe similar-looking Paddyfield Pipit (Anthus rufulus), Richard's Pipit (4Anthus
richardi) and Long-billed Pipit (Anthus similis travancoriensis) from these
locations. They postulate that the hjstofical records of Nilgiri Pipit could have been

other similarly looking pipits as they are a potential candidate for misidentification.

So, by following Robin et al. (2014), a study could identify potential habitat
available for the NP now. High-altitude mountain ranges running across the Nilgiri
Landscape in the north of the Palghat gap and Palani-Anamalai landscape in the
south has been shown as the suitable current habitat for NP. As it inhabits grassy,
rocky hilltops interspersed with sholas (Ali, 1999; Sashikumar et al., 2011; Robin
et al., 2014; Taylor, 2020), the health of the habitat is crucial for its survival. The
species can't disperse beyond the extends of the background because of the

unavailability of suitable habitats like shola at the northern extent and drier habitats
at the eastern slopes and Palghat gap, which is a 30km plain

5.3 HABITAT QUALITY OF THE CURRENT SUITABLE HABITAT

" Mountain peaks and associated high-elevation forests indicate highly suitable
habitats (HSH) in the case of both ALT and NP. Similarly, less suitable habitats
are located at the periphery of the species suitability map. .

HSH for ALT lies in the Agasthyavanam Biological Park (ABP) as a chain
running along with the highest peaks in that system. Areas including
Chemunjimotta, Pandipath, Agasthyamalai, Kodayar and Mahendragiri are
identified as HSH. Moderately Suitable Habitats (MSH) lie surrounding HSH,
followed by Less Suitable Habitats (LSH). From this trend, it can be concluded
that due to global temperature rise, species are likely to be climbing up the hill

seeking suitable habitat.
" A similar trend can be observed in the case of NP as well. Half of the suitable

habitat of NP is,in fact, LSH, which is under severe threat. New Amarambalam
WLS in the north of the Palghat gap and Eravikulam NP in the south of the Palghat
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gap are the HSH for the species as per the present conditions owing to their high

elevated topography. HSH found in Ooty and Kodaikanal faces a significant threat
from anthropogenic pressures as they are currently unprotected,

54 CLIMATE CHANGE IMPACT AND HABITAT SUITABILITY

Based on the above discussion, it is evident that both the species would be
losing their suitable habitats under extreme climate change scenarios. One of the

possible responses of species' especially birds, against adverse climate conditions

is shifting their habitat either locally or by migration extinct (Parmesan, 2006). If

the species fail to migrate or are unable to relocate themselves, they should change
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5.4.2 Nilgiri Pipit

A 40% to 80% reduction in habitat is calculated under different RGP
scenarios. . A slight habitat gain is also poticed in the case of NP. It is noteworthy
that the significant share of areas that will be lost in the future are situated along the
western slopes of WG, falling in the state of Tamil Nadu. And the area gain in NP
is primarily observed along the eastern slope of WG. This suggests a drastic but
gradual temperature increase in the leeward side of WG, which also lie adjacent to
the drier plains of Tamil Nadu. A dramatic westward shift in habitat is clearly
observed in the case of NP. Within the available habitat, higher elevation ranges
seem to be free from the immediate temperature increase. But the altitudinal shift
of the species may then pave the way for intense competition among species'
sharing the same niche. Future expansion of evergreen forest (after Ravindranath
and Sukumar, 1998) may lead to a decline in grassland ecosystem (Sukumar ef al.,
1995) which is again a threat for this grassland bird. The evergreen forest has
already started licking grasslands from the valleys of Eravikulam national Park, as

observed from the field.

55 SUITABLE HABITAT UNDER PROTECTED AREA NETWORK

Close to four-fifths of the suitable habitat of ALT is estimated to, be falling
inside the PA network of Kerala and Tamil Nadu state. In that sense, most of its
habitat is legally well protected. Even then, hill ranges exist, especially in the

extreme north of the species habitat, that require conservation importance.

Kuttalam reserve forest in TN, adjacent to Shenduruney WLS, is one such area that

should be notified as part of PA Kalakkad-Mundanthurai TR of TN.

Even though most of these habitats are protected, forests adjommg'

Agasthyama1a1 peak are getting severe anthropogenic pressure born from

ecotourism and pilgrimage tourism. Panigrahi and Jins (2018) were also raised this

issue as one of the significant threats for the habitat of birds thriving in that region.

An urgent management intervention is recommended to regulate the flow of the
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tourist and pilgrims to the peak before it adversely affects these high-altitude
ouri
forests.

Only 18% of the current suitable habitat of NP falls within the boundary of
the PA network of Kerala and Tamil Nadu. Eravikulam national park, Silent Valley
national park of Kerala and New Amarambalam WLS of TN are the major PAs that
provide the necessary conditions for the species survival. The rest of the NP habitat

falls under reserve forests, eucalyptus, tea and cardamom plantations, degraded
lands tourism centres. Among the major tourist destinations in So

in Nilgiris and Kodaikanal in Anamalais are algq home to Np.
unprotected and highly vulnerable to land-use changes. Apart fro

uth India, Ooty
These areas are

m that; these are
the areas where a significant loss of future habitat is Projected. So,

these landscapes
need immediate policy intervention, land restoration and consery

ation action.

. C even severe if the global
temperature rise accompanies added anthropogenic Pressures, Wildfire, invasive
species, deliberate planting of exotic treeg Joshi er g, 2018) anq Competition for
resources will complicate this dilemmg_ If the habitatg become disconnected due
to forest deterioration, then the species Populationg become isolateq, Long-term
isolation of the fragmented populations would Jeaq to the loca] extinction of th
species (Wilcox and Murphy, 1985). 979 op 4y, emaining habitay o pp ill be
degraded as per the RCP 8.5 situation In that case, a hap, dful of me will be
may support this species in the nametag of HSH, th,

Untain peaks
At too with Severe

Competition.
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5.7 LIMITATIONS OF THE STUDY

This study is mainly focused on quantifying species distribution changes in
response to global temperature and changing climate. For that purpose, bioclimatic
variables, digital elevation model, and enhanced vegetation index Wére effectively
used to develop the present and future models. In turn, the qualification of the
model depends mainly on the goals of the study that explain the qualification
criteria and the usability of the model (Guisan and Zimmermann, 2000). Species
habitat selection is highly varied and can be complex than we think. Other than
temperature and precipitation, many other factors influence the distribution of a
species. Prey-predator relationship, inter, intra-specific competition, an abundance

of food and water, availability of healthy breeding ground and movements, to name

a few (after McEven and Wingfield, 2003)

But most of such variable layers are unavailable in the required format to

perform SDMs.
generate the statistically meaningful model. A detailed account on

This current study has tried incorporating the utmost variables as

possible to

species-speciﬁcity, habitat specialisation, dependants of the species to the

vailing microclimate of the location would throw more light into the accurate

pre
ution and quality of the available

mapping of species suitable habitat. The resol

ers may also vary among different mod

organisations. The high-resolution climate model rooted in different families were

lay els released by other climate

selected to overcome this problem.

A new array of socioeconomic scenarios (Shared Socioeconomic Pathways;

e available for modelling (Neill et al., 2013). This incorporates

SSPs) may soon b
administrational power, inter-

the social structure, development, education,
relations and economic structure of the world (after Riahi et al,

governmental
2016). That, coupled with the current emission scenarios, would likely give a much
an-modified world in all its essence.

more accurate model as it incorporates the hum
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SUMMARY



6 SUMMARY

Prevailing anthropogenic pressure on earth and associated global temperature
rise affect many taxa, including bitds.” Understanding these phenomena and how
they influence birds can be studied effectively by choosing endemic high-altitude-
dependent birds. Since montane habitat is more vulnerable to global temperature
rise, resident birds in these habitats can be selected as bioindicators. Modelling
habitat suitability is considered one of the best analyses for understanding the
relationship between a species and its environment. HSM can be done very
effectively by using Maxent because of its accuracy and ability to function

irrespective of species absence records.

This study aims to quantify the influence of environmental variables on the
distribution of selected endemic birds of the Western Ghats. The study also seeks
to identify the suitable habitats of the selected endemic birds of the Western Ghats.
Another quest in this study is to analyse the quality of available habitats for the

selected endemic birds of WG. It is also proposed to predict the future changes in

the habitat suitability of selected endemic birds of the Western Ghats under different

climate change scenarios such as RCP 4.5, RCP 6.0 and RCP 8.5 for the period of

2070s (2061-2080) by using the Maxent algorithm.

Habitat Suitability Models can be rendered by using the software maxent. It

can develop models by analysing presence-only information of the species of

interest. Rigorous field surveys within selected habitat could provide an adequate

number of presence data for the species. Occurrence data lying outside the state

can be retrieved from the eBird database, an online citizen science-based bird

monitoring platform. Bioclimatic variables (BIO 1 to BIO 19), digital elevation

model (elevation, slope and aspect) and 10-year averaged enhanced vegetation
d the HSM. Pearson'’s multicollinearity test is used to eliminate
d (R[>0.75) variables.  The ENM (Ecological Niche Modelling)

(ENMeval) was used to determine the Maxent features, several

index develope
highly correlate

evaluation tool
background points and regularisation. To reduce model bias, future predictions

were made by taking an average of five different earth system models under
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Coupled Model Inter-comparison Project 5 (CMIP5). Two other species, Ashambu
Laughingthrush (Ashambu Chilappan), Montecincla meridionalis and Nilgiri Pipit

Anthus nilghiriensis, are selected for the modelling study owing to their endemicity

and habitat specialisation.

The highlights of the results are summarised below:

%

S

#

#

& &

Mean annual temperature (BIO 1) and mean temperature of the coldest
quarter (BIO 11) was found to be the variables having the highest importance
for the species ALT and NP, respectively.

An area of 303 km? is calculated as suitable habitat for AL

T. Itonly ¢
9% of the total background area chosen for the study y covers

For NP, the model could identify an extent of 1792 km?2 as a suitable habitat
which covers one fifth (20%) of the total background area ’

80.5% of the total habitat of ALT and 18.7% of total habitat of NP are
distributed within the protected atea network of Kerala and Tami] Nadu state

Out of the suitable habitat of ALT, 9.9% of the area are HS o
MSHs, and the remaining 45.2% are LSH H. 44.9% are

16.1% of the available habitat of the NP currently
third of its habitat is moderately suitable, and ha
comes under LSH

comes under HSH, one-
If of its suitable habitat

Upon future climatic modelling, it is estimated that ALT will .
loss in its habitat ranging from 20.5% to 76.6% under ldit;:rzactm%a net
change scenarios. nt climate

In the case of NP, net habitat loss is predicted to range from 4] 2% to 79%
. (1) 0

The quality of the future habitat is also severe] aff .
ALT and NP. According to different RCP s 7 @ ooted in the case of both

cenari
survive in degraded land in the future, where 08, ALT would have to

the remaijn; . .
severely degraded by 40 to 97%. However,, there m-rﬁa:en:%l ll;:lti)tl;at Wll}£ be
gain too,

which will be around 24%, 26% and 2% in RCp 4.5
respectively. -3, RCP 6.0 and RCP 8.5,

An average of 25% of the current suitable habitat wj . )

of NP. And the b1rd will he}ve a future with a 97%"‘;:=1g(r1:;zréo;a;§ In the case
15% of the remaining habitat seems to be gaining jts ha .ltat. Nearly
whereas there will be no gain in the case of RCP 85 Quality in RCP 6.5,

Potentially suitable habitats which are ]
identified. Redrawing a protected are
recommended to ensure the long-term cq

Yieg outside of PAs should b
a netyvork in the WG is th .
nServation of hoth species *
Restoring degraded forests, woodlands and grassland .
Resorng degudd ands should be the prior
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Future Recommendations:

e Conducting periodic bird surveys in WG is needed for understanding the
most accurate distribution of the species and changes in population

dynamics

e Understanding of niche structure and habitat suitability of other endemic
birds of the WG

e Standardise earth system models for the Western Ghats

A collaborative effort on emission reduction, equitable sharing of
resources and policy implementation is urgently needed
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8 ABSTRACT

Finding factqrg influencing . change in species distribution is of
importance Lo scientiﬁg research. Dramatic alterations in species distribut(i)o' o
abundances have been connected to elevating global temperature. Th :s ?nd
specialists restricted to montane ecosystems could be used as ecolog.ical izd' o
of global temperature rise as ihey are sensitive to climate change. In thislc::ors
habitat suitability models of two high-altitude dependent birds thriving in tlf >
islands of the Western Ghats were developed, studied and analyzed togunder:tasulz

the patterns of their distribution in the wake of changing climate

The maximum entropy (MaxEnt) algorithm was selected as the modellin
tool for the study. ENM Evaluate tool was used to determine the settings for thi
model, and the best-performing model was selected based on the True Skill
Statistic (TSS) and Akaike Information Criterion (AIC) value. Two birds analyzed

in this study are Ashambu Laughingthrush Montecincla meridionalis (ALT)
,a

highly restricted-range species endemic to Agasthyamalai hills of the south
uthern

Western Ghats, and Nilgiri Pipit Anthus nilghiriensis (NP), which is endemic t
, ic to

Nilgiri and Palani-Anamalai hills of WG. Both are threatened, high-altitude habitat
s 1

specialists. Differe

models for each of these species.
ncing variable for ALT, whereas the mean temperature of the

nt environmental variables were incorporated to generate th
e

Mean annual temperature (BIO 1) is identified

as the most influe

coldest quarter (BIO 11) is the crucial one for NP.

Suitable habitats currently available for ALT and NP are estimated to be 303

km? and 1792 km?, respectively. These habitats are further classified into highl
y

relevant, moderately suitable and less suitable habitats as well. Future models
ion and loss of suitable habitat for both species under

predicted severe degradat
It is estimated that 2070s will lose 20%-76% of

various climate change scenarios.
the suitable habitat of ALT under different emission or RCP scenarios. In the case

of NP, a net loss of 40%-79% is estimated for various RCP scenarios. 82% of the
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suitable habitat of NP and 20% of that of ALT come outside the boundary of the
PA network.

Realignment of the protected area network of the WG considering suitable
habitat of these birds, elevating their conservation status, collaborative effort for

educating the public to ensure CO2 and other greenhouse gas emission reduction

equitable sharing of resources and policy implementations are urgently needed to
ensure the long-term conservation of these species.
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9 APPENDIX

Appendix I.
Species Longitude Latitude
ALT 77.2107 8.82927
ALT 77.21687 8.827843
ALT 77.21718 8.827496
ALT 77.21695 8.827659
ALT 77.21184 8.82941
~ ALT 77.2174 8.827395
~ALT 77.21082 8.829418
ALT 77.19808 8.832059
ALT 77.21937 8.824478
ALT 77.23329 8.626594
ALT 77.17279 8.744785
ALT 77.17282 8.744761
ALT 77.36393 8.512117
ALT 77.38395 8.488717
ALT 77.34767 8.52282
ALT 77.48611 8.47583
ALT 77.36643 8.55008
ALT 77.35627 8.54773

98

Details of the occurrence data used for developing the models of the selected birds

Species Longitude Latitude
ALT 77.35497 8.540735
ALT 77.1824 8.7376
ALT 77.26101 8.588936
ALT 77.18068 8.739632
ALT 77.26069 8.588524
ALT .77.18099 8.73819
ALT 77.18503 8.73739
ALT 77.18756 8.737578
ALT 77.18873 8.737823
ALT 77.2607 8.588972
ALT 77.20084 8.701535
ALT 77.18836 8.736875
ALT 77.18349 8.737441
ALT 77.26003 8.589151
ALT 77.21274 8.654842
ALT 77.18072 8.738133
ALT 77.18017 8.739099
ALT 77.1802 8.738094 |-




Species Longitude Latitude
ALT | 77.18063 8.739465
ALT 77.19359 8.679557
ALT 77.17333 8.7427
ALT 77.17194 8.74111
ALT 77.1708 8.7422
ALT 77.16666 8.7433
ALT 77.17222 8.74527
ALT 77.17555 8.7388
ALT 77.19222 8.68166
ALT 77.19388 8.6775
ALT 77.19444 8.67972
ALT 77.19888 8.6775
ALT 77.20444 8.67583
ALT 77.20666 8.68194
ALT | 77.20277 8.6725

| ALT | 77.20333 8.68722 |

| ALT | 77.25027 | 8.62166 |

| ALT | 77.24194 | 8.623611 |

[ ALT | 77.24694 | 8.62611 |

I ALT | 77.24055 | 8.62805

| AT | 77.21916 8.65

| ALT 77.21944 8.66805
ALT 77.2075 8.6669
ALT 77.26388 8.58777
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Species Longitude Latitude
ALT 77.26861 8.58194
ALT 77.26888 8.576944
ALT 77.27444 8.59138
ALT 77.2841 8.58944
ALT 77.27944 8.57888
ALT 77.27361 8.5675
ALT 77.29472 8.58416
ALT 77.28666 8.57027
ALT 77.28305 8.56166
ALT 77.44194 8.49916
ALT 77.4144 8.48416
ALT 77.41472 8.525
ALT 77.3877 8.5452
ALT 77.22194 8.815277
ALT 77.23 8.81

ALT 77.24305 8.8011
ALT 77.18333 8.73027
ALT 77.38277 8.529722
ALT 77.4008 8.52416
ALT 77.3532 8.521426
ALT 77.35558 8.518917
ALT 77.35468 8.520208
ALT 77.49173 8.37844
ALT 77.49374 8.377572




Species\ Longitude Latitude |
AT | 77.49416 8.37871
AT | 77.49475 | 8.383931
AT | 77.48424 8.39256
ALT 77.48623 8.38732
ALT 77.5005 8.38217
ALT 77.49245 8.391414
Species|  longitude | Latitude
NP 7713561 |  10.04169
NP | 77139 |  10.04292
NP 7713153 |  10.03926
NP 77.09654 | 10.04329
NP 77.09257 10.04682
NP 77.00915 10.05196
NP 77.10361 10.13306
NP 77.27135 10.13476
NP 77.27133 10.13489
NP 77.27201 10.1407
NP 77.03562 10.1428
NP 77.03637 10.14301
NP 77.03995 10.14309
NP 77.04124 10.1436
NP 77.04004 10.14371
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Species Longitude Latitude
ALT 77.4887 8.375831
ALT 77.4961 8.376277
ALT 77.35624 8.515348
ALT 77.49038 8.37263
ALT 77.17865 8.736145
ALT 77.22647 8.65626
Species Longitude | Latitude
NP _ 77.0351 10.14666 |
NP 77.08229 10.14972
NP 77.05544 10.16475
NP 77.01555 ©10.17178
NP 77.02229 10.1731
NP 77.01491 10.17372
NP 77.0476 10.17377
NP 77.02276 10.17387
NP 77.05091 10.17447
NP 77.02478 10.17519
NP 77.06283 10.1776
NP 77.06256 10.17776
NP 77.16809 10.1778
NP 77.0419 10.178 |
NP 77.04219 10.17876 |




Species Longitude Latitude
NP 77.07089 10.18774
NP 77.08656 10.19014
NP 77.2732 10.20722
NP 77.07 10.21
NP 77.2662 10.2144
NP 77.07382 10.21745
NP 77.07073 10.21813
NP 77.07972 10.22019
NP 77.07675 10.22026
NP 77.07663 10.22089
NP 77.07708 10.22154
NP 77.06014 10.22617
NP 77.05 10.227 |
NP 77.04754 10.22743 |
NP 77.07767 10.22774 |
[ NP | 77.05285 | 10.22818 |
| NP | 77.04152 | 10.22917 |
| NP | 77.05735 | 10.22931 |
| NP | 77.041 | 10.23 |
[ NP | 77.03992 | 10.23145
| NP | 77.08435 10.27122
| NP 77.10781 10.27538
[ NP 77.08914 10.28551
I NP 77.06986 10.32292

AQ\

Latitude

Species Longitude
NP 77.07107 10.323
NP 77.05455 10.3276
NP 76.44871 11.19524
NP 76.58325 11.22611
NP 76.52244 11.23617
NP 76.56115 11.24836
NP 76.59078 11.29955
NP 76.54499 11.31923
NP 76.552 11.333
NP 76.59573 11.3416
NP 76.55663 11.34215
NP 76.56056 11.34245
NP 76.57075 11.3446
NP 76.54679 11.36706
[ NP 76.73369 11.3905
[ NP 76.63576 10.93666
I NP 76.61957 10.94715
[ NP 76.71946 11.39103
[ NP 76.73586 11.40113
NP 76.77094 11.36964 |,
NP 76.75417 11.37527
NP 76.75882 11.39051
NP 76.77639 11.39878
NP 76.7829 11.39056

c s G|



\ Speues\ Longjtude | Latitude |
\ NP | 76.74918 | 11.40532 |
| NP | 76.81945 | 11.36473
\ NP | 76.835 | 11.43592
\ NP \ 76.77335 | 11.42324
\ NP 76.79973 11.47819
NP 76.71089 11.44192
NP 76.63121 11.38282
NP 76.56804 11.44652
NP 76.63525 11.4457
NP 76.50464 11.3981
NP 77.122 10.35993
NP 77.05947 10.34487
NP 77.03643 10.34021
NP 77.09267 10.31681
NP 77.11069 10.29877
NP 77.09 10.25194
NP 77.10317 10.2294
NP 76.59658 11.3411
NP 76.73072 11.40874
NP 76.73441 11.41271
NP 77.07073 10.27447
NP 77.23217 10.24513
NP 77.27662 10.2319
NP 77.25719 10.2285
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\ Species Longitude Latitude
NP 77.26601 10.21819
NP 77.27125 10.22194
NP 77.11714 10.03418
NP 77.09988 10.04248
NP 77.01425 10.04955
NP 77.04176 10.14398
NP 77.03569 10.14236
NP 77.03204 10.14204
NP 77.02935 10.14197
NP 77.02359 10.14511
NP 77.02068 10:14231
NP 77.0409 10.14757
NP 77.0494 10.15164
NP 77.07522 10.13525
NP 77.085 10.13553
NP 77.09223 10.138
NP 77.09278 10.10487
NP 77.10026 10.10919
NP 77.24683 10.25083
NP 77.22122 10.23889
NP 77.23497 10.25507
NP 77.06283 10.32386
NP 76.46138 11.1897,
NP 77.18796 10.09804

i




Species Longitude Latitude
NP - 77.34808 10.28984
NP 76.4799 11.23246
NP 77.51692 10.25059
NP 76.69924 11.40279
NP 77.47673 10.23596
NP 76.59734 11.50546
NP 77.48108 10.23188
NP 76.72972 11.35418

AN\LY

Species Longitude Latitude
NP 76.69172 11.39611
NP 77.06168 10.16969
NP 76.60723 11.33018
NP 76.5535 11.25111
NP 76.79931 11.35667
NP 76.87104 11.45967
NP 76.57397 11.47946




Appendix Il. Description of environmental variables used to develop the Maxent models of selected birds

Variable \ Description \ Definition Unit Formula
Annual Mean =12 ]
BIO 1 The annual mean temperature C M
Temperature 12
The mean of the monthl i=12 — Tmi
B10 2 Mean Diurnal Range Y ‘C 221" Tmax, — Tmin,
temperature ranges 12
It quantifies how large the day-to-
night temperatures oscillate relative B
BIO 3 Isothermality ght temp , C Blo2 oo
to the summer-to-winter (annual) BIO7
oscillations
The amount of temperature variation
over a given year (or averaged
BIO 4 Temperature Seasonality | years) based on the standard 'C SD{Tavg,, ....,Tavg,,}
deviation (variation) of monthly
temperature averages
The maximum monthly temperature
Max Temperature of occurrence over a given year (time-
BIO 5 C max{Tavg,, ....,Tavg,,}
Warmest Month

series) or averaged span of years

(normal)
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The minimum monthly temperature
Min Temperature of occurrence over a given year (time-
BIO 6 ) min{Tavg,, ....,Tavg,,}
Coldest Month series) or averaged span of years
(normal)
Temperature Annual A measure of temperature variation
BIO 7 . . BIO5 —BIO 6
Range over a given period :
Where monthly
i=3 1o temperature
M averages are based
on the three selected
months of Qpprinax
This quarterly index approximates OpPTmas
Mean Temperature of . i=3 -
BIO 8 mean temperatures that prevail [ PPT, || (Where precipitation
Wettest Quarter . =1 ( . _
during the wettest season =4 is evaluated for
PPT,, 12 consicutive
=2 sets of 3 months.
= max s00 c00 0,

[ —

\

The last two sets
span two years
for time — series
data

AQS




Where monthly
temperature

TiZi Tavg
— averages are based
on the three selected
months Of QPPTmin
This quarterly index approximates
Mean Temperature of a Y PP . QppTmin
BIO 9 . mean temperatures that prevail =
Driest Quarter = | N
during the driest quarter PPT;, || (Where precipitation
= is evaluated for
PPT,, 12 consicutive
- =2 sets of 3. months.
= min ese sas sse ey <
=1 The last two sets
2 PPT;, span two years
i=11 . .
=2 L for time — series
z PPT, data
=12 .
Where monthly
. . . =3 temperature
i Tav
Mean Temperature of This quarterly index approximates Z VIi averages are based
BIO 10 mean temperatures that prevail on the three selected
Warmest Quarter months of Qrmax

during the warmest quarter
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QTnax
=
,- Tavg,, (Where temperatures
it are evaluated for
Tavg,, 12 consicutive
= max -.!i% ey 4 sets Of 3 months.
=1 The last two sets
Zz— L 17"“’91' span two years
=2 for time — series
Z Tavg,|| * data
i=12

Where monthly

323 Tavg, temperature
This quarterly index approximates 3 averages are based
Mean Temperature of on the three selected
BIO 11 mean temperatures that prevail C months of Qrpmin
Coldest Quarter .
during the coldest quarter

A&7




801

nes

(Y71 019) + 1

31 JO UOIJBIASD PIEpUEIS dY} JO Onel

au I Xaput SIY], “Ieak Sy} JO 25M0d

00T X (Tdd " ‘ULdd}as 23 au JoA0 sejo3 uonendioaid Ajyyuowr Aureuosess vopeNdioald s1oid
Ul UOIJBLIBA 3]} JO SINSBW © ST SIYL
ypuout 1SoLIp
Yo
([*%2dd ‘" “lLdd])uru g | oy Surmp syreaaxd jeq uopendioard v1 old
15911 Jo uonendidaig
[e30) 9y} saynuspl Xopui  SIL
Iuouwr 1Sa119M
UON
([Z'Ldd ‘" lLdd])¥xew g | a3 Sunmp sjreaaid 1eyy uonendroaxd ® ¢l o1d
1sa19 M\ Jo uonendidaig
[e10) oyl SSYnUSp! Xopul STYL
: son[ea uonendioaxd
' A | uonendroald [enuuy c1old

=1
ldd W
1=

A[quou [e10} [[e Jo wms Y3 ST STy,

N
S
~
~N
o -t
i1

Ecﬁ
581438 — w13 L0 f 4
S4pak omi unds
$33s om3 18D] 3Y,[,
syjuout ¢ J0 S33s T e
241IM21SU0I 71
40 paipnypaa a.io

—
S
=Y
3

—
L
-t -
T

ul =

sa.nypiadwal a3y M/ ﬁ Ban]

:.._E._.O




monthly total precipitation to the

mean monthly total precipitation

=3
PPTy, 1 ‘Where precipitation
= is evaluated for 12
PPT, consecutive sets
L This quarterly index approximates ==2 of 3 months.
Precipitation of Wettest o ) max o 1 The last two
BIO 16 - total precipitation that prevails kg m
Quarter PP Ty, sets span
during the wettest quarter f;;l two years for
Z PPT;, time — series data
Lli=12
%
i=3 1
‘ ‘ PPT;, (Where precipitation
i is evaluated for 12
PPT,, consecutive sets
o . This quarterly index approximates . —i=2 of 3 months.
Precipitation of Driest ; e . o m? minf) o The last two
BIO 17 Quarter total precipitation that prevalls gm Z’ ] PPT,, sets span
during the driest quarter f;; ! two years for
Z PPT,|| \ time — series data
L i=

(.
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This quarterly index approximates

Where monthly
precipitation values

i=3
Precipitation of Warmest o Z PPT;{ are based on the
BIO 18 Quart total precipitation that prevails kg m'2 =1 three selected months
uarter
during the warmest quarter of Qrmax
Where monthly
This quarterly index approximates i=3 precipitation values
Precipitation of Coldest d i y . PP . z PPT;y are based on the
BIO 19 Qustter total precipitation that prevails kg m? =1 three selected months
during the coldest quarter of Qrmin
Elevatio | Digital Elevation Model .
Elevation of a location Meters NA
(DEM)
Digital Elevation Model Degree
Slope : Slope of a terrain NA
(DEM)
" Digital Elevation Model .
Aspect | _ Aspect of a terrain NA NA
(DEM)
Average Enhanced 10-year (2011-2020) average EVI
evi_avg . L NA NA
Vegetation Index (EVI) | by considering all months
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10-year (2011-2020) average EVI
. Peak monsoon Enhanced
evi_wet . by considering the months of June, NA NA
Vegetation Index (EVI)
July and August
10-year (2011-2020) average EVI
. Peak summer Enhanced
evi_dry . by considering the months of March, NA NA
Vegetation Index (EVI) .
. April and May
Notations:
i = month,; Tmax = monthly mean of daily maximum temperatures (°C); Tmin =

Tmaxi. ppT = total monthly precipitation (mm)

monthly mean of daily minimum temperatures (°C); Tabg; = Tming’
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Appendix lll. Pearson’s correlation coefficient between environmental variables used for developing Maxent models for selected species

Ashambu Laughingthrush
Pearson's
Layer 1 Layer 2 Correlation
Coefficient (R)

altitude evi_avg -0.01359
altitude evi_dry 0.097812
altitude evi_wet -0.10558
aspect evi_avg 0.060332
aspect evi_dry 0.130203
aspect evi_wet 0.044775
aspect altitude -0.04863
biol evi_avg 0.005171
biol evi_dry -0.1086
biol evi_wet 0.093288
biol altitude -0.99566
biol aspect 0.06158
biol slope -0.27083
biol bio19 -0.63202
biol bio18 -0.52075
biol biol7 -0.68005
biol bio16 -0.77343
biol biol5 0.287955
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Pearson's
Layer 1 Layer 2 Correlation
Coefficient (R)
biol bio14 -0.6555
bio1l bio13 -0.64918

biol bio12 -0.50673.
biol bio11 0.999166
bio1l bio10 0.999554
biol bio9 0.999346
biol bio8 0.996878
biol bio7 -0.25031
biol bio6 0.986369
biol bio5 0.980697
biol bio4 0.275967
biol bio3 -0.68547
biol bio2 -0.34782
. bio10 evi_avg 0.003587

bio10 evi_dry -0.10731
bio10 evi_wet 0.088159
biol0 altitude -0.9954
bio10 aspect 0.057826




Pearson's

|

! |

| I

| I

I |
|

Pearson's
Layer 1 Layer 2 Correlation

Coefficient (R)

bio10 slope -0.26738

bio10 bio19 -0.62586

bio10 bio18 -0.52266

bio10 bio17 -0.66817

bio10 bio16 -0.76893

bio10 bio15 0.281297

bio10 bio14 -0.64865

bio10 bio13 -0.64541

bio10 bio12 -0.50244

[ bio10 bio11 0.998365
| bio11 evi_avg 0.020058
| bio11 | evi_dry | -0.09148
| biol1 | evi_wet 0.110651
| bio11 | altitude | -0.99537
| biol1 |. aspect | 0.071465
| bio11 | slope | -0.27634
| bio11 | bio19 | -0.65418
| bio1l | bio18 -0.50069
| bio11 bio17 -0.69831
[ bio11 bio16 -0.7668
I bio11 bio15 0.2745
l bio11 bio14 -0.67694

Layer 1 Layer 2 Correlatjon:
Coefficient (R)

bio11 bio13 -0.63705
bio11 bio12 -0.4868
bio12 evi_avg 0.330523
bio12 evi_dry 0.56258
bio12 evi_wet 0.184642
bio12 altitude 0.496223
bio12 aspect 0.255318
bio12 slope 0.169509
bio12 bio19 -0.06308
bio12 biol8 0.86421
bio12 biol7 0.202179
bio12 bio16 0.831663
bio12 biol5 -0.57714
biol2 bio14 -0.01733
biol2 bio13 0.916313
biol3 evi_avg 0.236258
biol3 evi_dry 0.445397
bio13 evi_wet 0.082528
biol3 altitude 0.642026
biol3 aspect 0.230951
biol3 slope 0.285737
biol3 biol9 0.164425

1\




Pearson's

Layer 1 Layer 2 Correlation
Coefficient (R)
bie13 | bio18 | 0.805135
bio13 | bio17 | 0.346993
bio13 | bio16 | 0.923862
bio13 | bio15 | -0.31862
bio13 bio14 0.200029
biol4 evi_avg -0.17675
biol4 evi_dry -0.1828
biol4 evi_wet -0.24411
biol4 altitude 0.651818
biol4 aspect -0.33173
biol4 slope 0.262317
biol4 biol9 0.989883
biol4 biol8 -0.10445
biol4 biol7 0.932746
biol4 biol6 0.46799
biol4 biol5 0.059374
biol5 evi_avg -0.29157
biol5 evi_dry -0.43356
bio15 evi_wet -0.23738
biol5 altitude -0.27759
biol5 aspect -0.04607
biol5 slope -0.0065
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Pearson's
Layer 1 Layer 2 Correlation
Coefficient (R)
biol5 bio19 0.130781
biol5 biol8 -0.57734
biol5 biol7 -0.16352
biol5 biol6 -0.31094
bio16 evi_avg 0.168805
biol6 evi_dry 0.34906
bio16 evi_wet | 0.028867
bio16 altitude 0.763599
bio16 aspect 0.083269
biol6 slope 0.308851
bio16 bio19 0.446007
biol6 biol8 0.68619
biol6 biol7 0.603351
biol7 evi_avg -0.11391
biol7 evi_dry -0.05939
biol7 evi_wet -0.23769
biol7 altitude 0.672039
biol7 aspect -0.32422
biol7 slope 0.279141
biol7 biol9 0.925627
biol7 biol8 0.043577
bio18 evi_avg 0.27376




Pearson's

Layer 1 Layer 2 Correlation
Coefficient (R)

bio18 evi_dry 0.473218

bio18 evi_wet 0.162924

bio18 altitude 0.516445

biol8 aspect 0.296202

bio18 slope 0.147107

bio1l8 bio19 -0.15101

bio19 evi_avg -0.21909

bio19 evi_dry -0.23753

bio19 evi_wet -0.28682

bio19 altitude 0.628846

bio19 aspect -0.34212

biol9 slope 0.262106

bio2 evi_avg -0.01729

bio2 evi_dry 0.150955

bio2 | evi_wet | -0.19883

| bio2 | altitude | 0.34416
I bio2 I aspect I -0.13576
[ bio2 | slope 0.211018
I bio2 | bio19 0.426023
bio2 biol8 0.165774

bio2 biol7 0.66828

bio2 biol6 0.442605

s

Pearson's
Layer 1 Layer 2 Correlation
Coefficient (R)
bio2 bio15 -0.41723
bio2 bio14 0.477666
bio2 bio13 0.381533
bio2 bio12 0.361625
bio2 bio11 -0.3656
bio2 bio10 -0.32512
bio2 bio9 -0.35141
bio2 bio8 -0.35862
bio2 bio7 0.991251
bio2 bio6 -0.49617
bio2 bio5 -0.16101
bio2 bio4 0.769169
bio2 bio3 0.871162
bio3 evi_avg -0.04101
bio3 evi_dry 0.114892
bio3 evi_wet -0.20294
bio3 altitude 0.683153 °
bio3 aspect -0.15043
bio3 slope 0.28142
bio3 bio19 0.69145
bio3 bio18 0.240886
bio3 bio17 0.8226




Pearson's

Pearson's
Layer 1 Layer 2 Correlation Layer 1 Layer 2 Correlation
Coefficient (R) Coefficient (R)
bio3 | bio16 | 0.62633 | | bio4 bio16 -0.11429
bio3 biol5 -0.27869 bio4 bio15 -0.0637
bio3 biold | 0.745673 bio4 biol4 0.196837
bio3 biol3 0.512174 . bio4 biol3 -0.14031
bio3 bio12 0.381615 bio4 bio12 -0.13929
bio3 bioll -0.70283 bio4 bioll 0.24972‘4 ’
bio3 biol0 -0.66908 bio4 biol0 |- 0298774
bio3 bio9 -0.69212 bio4 bio9 0.2650?4
bio3 bio8 -0.69565 bio4 bio8 0.251508
bio3 bio7 0.809531 bio4 bio7 0.813262
bio3 bio6 -0.78792 bio4 bio6 0.119049
bio3 bio5 -0.54933 bio4 bio5 0.442193
bio3 ) bio4 0.471549 bio5 evi_avg 0.011029
bio4 evi_avg -0.13943 bio5 evi_dry -0.07076
bio4 evi_dry -0.08462 bio5 evi_wet 0.066205
bio4 evi_wet -0.25718 bio5 altitude -0.97739
bio4 altitude -0.2736 bioS aspect 0.042501
bio4 aspect -0.16022 bio5 slope -0.24344
bio4 slope 0.06863 bio5 bio19 -0.59456
bio4 bio19 0.177485 bio5 biol8 -0.49759
bio4 biol8 -0.32295 bio5 biol7 -0.58666
bio4 biol7 0.320619 bio5 biol6 -0.71576
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Pearson's
Layer 1 Layer 2 Correlation
Coefficient (R)
bio5 biol5 0.198781
bio5 biol4 -0.60849
bio5 biol3 -0.59335
bio5 biol2 -0.43981
bio5 bioll 0.977162
bio5 bio10 0.985061
bio5 bio9 0.980172
bio5 bio8 0.976461
bio5 bio7 -0.05793
bio5 bio6 0.936238
bio6 evi_avg 0.011369
bio6 evi_dry -0.12181
bio6 evi_wet 0.124108
bio6 altitude -0.98194
bio6 aspect 0.082175
bio6 slope -0.28877
bio6 bio19 -0.66369
bio6 bio18 -0.50685
bio6 biol7 -0.74816
bio6 biol6 -0.78992
bio6 biol5 0.335588
bio6 biol4 -0.6943
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Pearson's
Layer 1 Layer 2 Correlation
Coefficient (R)

bio6 biol3 -0.66325
bio6 bio12 -0.52564
bio6 bio11 0.989116 °
bio6 bio10 0.982124
bio6 bio9 0.986773"
bio6 bio8 0.985935
bio6 bio7 -0.40451
bio7 evi_avg -0.00452
bio7 evi_dry 0.161692
bio7 evi_wet -0.18238
bio7 altitude 0.246327
bio7 aspect -0.1236
bio7 slope 0.186585
bio7 bio19 0.340082
bio7 bio18 0.144332
bio7 biol7 0.600556
bio7 biol6 0.382339
bio7 biol5 -0.43513
bio7 biol4 0.390624
bio7 biol3 0.340295
bio7 biol2 0.34849
bio7 bioll -0.26734




Layer 1

Pearson's

Layer 2 Correlation
, Coefficient (R)
Bio7 - bio10 02269 |
bio7 | bio9 -0.25286 |
bio7 bio8 -0.2602
bio8 evi_avg 0.028332
bio8 evi_dry -0.07885
bio8 evi_wet 0.115394
bio8 altitude -0.99268
bio8 aspect 0.085404
bio8 slope -0.27444
bio8 bio19 -0.67044
bio8 bio18 -0.48425
bio8 biol7 -0.71103
bio8 biol6 -0.75653
bio8 biol5 0.277302
bio8 bio14 -0.69098
bio8 biol3 -0.61563
bio8 bio12 -0.4678
bio8 biol1 0.997999
bio8 bio10 0.996268
bio8 bio9 0.997783
bio9 evi_avg 0.017193
bio9 evi_dry -0.09235
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Pearson's
Layer 1 Layer 2 Correlation.
Coefficient (R)
| . bio9 evi_wet 0.105338
| bio9 altitude -0.99552
|  bio9 aspect 0.068408
bio9 slope -0.27394
bio9 bio19 -0.64881
bio9 bio18 -0.50264
bio9 bio17 -0.69044
bio9 bio16 -0.76481
bio9 bio15 0.272984
bio9 bio14 -0.67161
bio9 bio13 -0.63565
bio9 bio12 -0.48614
bio9 biol1 0.999623
bio9 bio10 . 0.998926
evi_dry evi_avg 0.903947
evi_wet evi_avg 0.86647
evi_wet evi_dry 0.706116
slope evi_avg 0.040273
slope evi_dry 0.048053
slope evi_wet -0.01318
slope altitude 0.26912
slope aspect -0.05832




il.

Nilgiri Pipit

Pearson's

Layer 1 Layer 2 Correlation
Coefficient (R)

altitude bio7 -0.28151
altitude biol6 0.063017
aspect bio7 -0.15962
aspect biol6 0.329714
aspect altitude 0.028382
aspect evi_avg -0.0366
aspect evi_wet -0.0651
aspect slope 0.011533
aspect evi_dry 0.102902
aspect bio9 -0.02365
aspect bio8 -0.0263
aspect bio6 -0.01111
aspect bio5 -0.05446
aspect bio4 -0.18249
aspect bio3 -0.06931
aspect bio2 -0.2159
aspect bio19 0.179268
aspect bio18 0.226119
aspect biol7 -0.30137
biol bio7 0.322825
biol bio16 -0.11264
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Pearson's

Layer 1 Layer 2 Correlation
Coefficient (R)

biol altitude -0:9949 .
biol evi_avg 0,144523
biol evi_wet 0.133431
bio1l slope -0.05369
biol evi_dry -0.00327
biol bio9 0.99442
biol bio8 0.998014
biol bio6 0.992758
biol bio5 0.996834
biol bio4 0.638116
biol bio3 -0.64104
biol bio2 -0.03541
biol biol9 0.338165
biol bio18 -0.48386
biol biol7 -0.47674
biol aspect -0.03756
bio10 bio7 0.341159
bio10 biol6 -0.14284
bio10 altitude -0.99188
bio10 evi_avg 0.139791
bio10 evi_wet 0.134379




Pearson's

Layer 1 Layer 2 Correlation
Coefficient (R)
bioi9 slope -0.05356
bio10 evi_dry -0.01691
biol0 bio9 0.991293
bio10 bio8 0.99741
bio10 bio6 0.987715
bio10 bio5 0.998837
bio10 bio4 0.664407
bio10 bio3 -0.62486
bio10 bio2 0.000354
biol0 bio19 0.311635
bio10 biol8 -0.49153
bio10 biol7 -0.45887
biol0 aspect -0.0469
'~ bio10 biol 0.999163
bioll bio7 0.292051
bioll biol6 -0.05689
bioll altitude -0.99549
bioll evi_avg 0.132194
bioll evi_wet 0.114098
bio11 slope -0.0588
bioll evi_dry 0.002495
bioll bio9 0.999595
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Pearson's

Layer 1 Layer 2 Correlation

Coefficient (R)
bioll bio8 0.992439
bioll bio6 0.997483
bioll bio5 0.987933
bioll bio4 0.561962
biol1l bio3 -0.71278 -
bioll bio2 -0.12254*
bio11 bio19 0.378242
bio11 bio18 -0.50419
bio11 bio17 -0.51799
bioll aspect -0.02273
bioll biol 0.994512
bioll biol0 0.991187
bioll biol5 0.208671
bioll biol4 -0.51562
biol1l biol3 -0.07297
bioll bio12 -0.19807
biol12 bio7 -0.5419
biol12 biol6 0.96986
biol2 altitude 0.203056
biol2 evi_avg 0.048812
biol2 evi_wet -0.17026 .
biol2 slope 0.050615




Pearson's
Layer 1 Layer 2 Correlation
Coefficient (R)
biol2 evi_dry 0.388692
biol2 bio9 -0.20369
biol2 bio8 -0.25726
bio12 bio6 -0.16191
bio12 bio5 -0.31753
bio12 bio4 -0.73113
bio12 bio3 © -0.18709
biol2 bio2 -0.78045
biol2 bio19 0.467974
bio12 bio18 0.527286
bio12 bio17 -0.26407
biol2 aspect 0.329611
bio12 biol -0.25705
bio12 bio10 -0.28633
bio12 biol5 0.756231
bio12 bio14 -0.25354
biol2 bio13 0.969384
biol3 bio7 -0.43985
biol3 biol6 0.998443
biol3 altitude 0.080008
bio13 evi_avg 0.054396
bio13 evi_wet -0.15606
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Pearson's

Layer 1 Layer 2 Correlation
Coefficient (R)
bio13 slope 0.038403
bio13 evi_dry 0.393298
bio13 bio9 -0:0758 "
bio13 bio8 40.13434
bio13 bio6 -0.03592
biol3 bio5 -0.18873
bio13 bio4 -0.6427
biol3 bio3 -0.28653
bio1l3 bio2 -0.77998
bio13 bio19 0.591893
biol3 biol8 0.44175
biol3 biol7 -0.42841
biol3 aspect 0.342751
biol3 biol -0.12938
bio13. bio10 -0.15958
bio13 biol5 0.877559
bio13 biol4 -0.41503
biol4 bio7 -0.0666
bio14 bio16 -0.40025
biol4 altitude 0.49717
biol4 evi_avg 0.0674
biol4 evi_wet 0.039374




Pearson's *\
Layer 1 Layer 2 Correlation
Coefficient (R)

biol4 slope 0.087558
bio14 evi_dry -0.00681
biol4 bio9 -0.52001
biol4 bio8 -0.47869
biol4 bio6 -0.52541
biol4 bio5 -0.45982
biol4 bio4 -0.00022
|  biola bio3 0.646689
| biola bio2 0.429047
biol4 bio19 -0.56442
biol4 bio18 0.329257
bio14 biol7 0.982128
biol4 aspect -0.30395
biol4 biol -0.4811
biol4 bio10 -0.46473
biol4 biol5 -0.69983
bio15 bio7 -0.17831
bio15 biol6 0.875167
biol5 altitude -0.19663
biol5 evi_avg 0.071308
biol5 evi_wet -0.07171
biol5 slope -0.01085
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Pearson's

Layer 1 Layer 2 Correlation
Coefficient (R)

biol5 evi_dry 0.32776
bio15 bio9 0.210205
bio15 bio8 0.146608 .
bio15 bio6 0239744
bio15 bio5 0.112517
bio15 bio4 -0.37472
bio15 bio3 -0.47887
bio15 bio2 -0.68654
biol5 bio19 0.68612
biol5 bio18 0.142395
biol5 biol7 -0.70718
biol5 aspect 0.306573
bio15 biol 0.160712
biol5 bio10 0.133869
bio16 bio7 -0.44669
biol7 bio7 -0.11496
biol7 bio16 -0.413
bio17 altitude 0.495025 -
biol7 evi_avg 0.06149
biol7 evi_wet 0.051737
biol7 slope 0.094975
biol7 evi_dry -0.02665




Pearson's Pearson's

Layer1 | Layer 2 Correlation Layer 1 Layer 2 Correlation
* Coefficient (R) Coefficient (R)

biol7 bio9 -0.52292 bio18 bio2 -0.0733
biol7 bio8 -0.47484 bio18 bio19 -0.01731
biol7 bio6 -0.52489 bio19 bio7 -0.17487"
biol17 bio5 -0.45522 bio19 biol6 |- 0.593741
biol7 bio4 0.04585 bio19 altitude -0.36885
biol7 bio3 0.690072 bio19 evi_avg 0.157173
biol7 bio2 0.464859 bio19 evi_wet 0.061926
biol7 bio19 -0.58521 bio19 slope 0.013259
biol7 bio18 0.339202 bio19 evi_dry 0.331167
bio18 bio7 -0.3851 biol9 bio9 0.385129
bio18 biol6 0.44714 bio19 bio8 0.324589
bio18 altitude 0.475146 biol9 bio6 0.413717
bio18 evi_avg 0.107069 biol9 bioS 0.291593
bio18 evi_wet -0.07268 biol9 bio4 -0.23079
biol8 slope 0.097872 biol9 bio3 -0.51911
bio18 evi_dry 0.342771 biol9 bio2 -0.64478
bio18 bio9 -0.51089 bio2 bio7 0.519333
biol8 bio8 -0.4751 bio2 biol6 -0.78264
bio18 bio6 -0.46533 bio2 altitude 0.100083
bio18 bio5 -0.51438 bio2 evi_avg -0.03673
bio18 bio4 -0.30989 bio2 evi_wet 0.106733
bio18 bio3 0.583711 bio2 slope 0.015326
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Pearson's

Layer 1 Layer 2 Correlation
Coefficient (R)
bio2 evi_dry -0.26956
bio2 bio9 -0.11817
bio2 bio8 -0.03196
bio2 bio6 -0.15368
bio2 bio5 0.030057
bio2 bio4 0.726911
bio2 bio3 0.579489
bio3 bio7 -0.09869
bio3 biol6 -0.28835
bio3 altitude 0.673666
bio3 evi_avg 0.031586
bio3 evi_wet 0.057858
bio3 slope 0.084105
bio3 . evi_dry 0.02125
bio3 bio9 -0.71545
bio3 bio8 -0.63554
bio3 bio6 -0.69896
bio3 bio5 -0.62471
bio3 bio4 0.070432
bio4 bio7 0.543962
bio4 bio16 -0.63088
bio4 altitude -0.58445
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Pearson's j
Layer 1 Layer 2 Correlation
Coefficient (R)
bio4 evi_avg 0.082244
bio4 evi_wet 0.17353
bio4 slope -0.01274
bio4 evi_dry -0.18193
bio4 bio9 0.564859
bio4 bio8 0.63799 -
bio4 bio6 0.545372
bio4 bio5 0.680849-
bio5 bio7 0.370164
bio5 biol6 -0.17293
bio5 altitude -0.98751
bio5 evi_avg 0.130141
bio5 evi_wet 0.134654
bio5 slope -0.05606
bio5 evi_dry -0.03543
bio5 bio9 0.988589
bio5 bio8 0.994918
bio5 bio6 0.981684
bio6 bio7 0.253638
bio6 bio16 -0.0189
bio6 altitude -0.99543
bio6 evi_avg 0.15002 .



Pearson's Pearson's
Layer 1 Layer 2 Correlation ~ layer1 Layer 2 Correlation
Coefficient (R) Coefficient (R)
bio6 evi_wet 0.122721 evi_avg altitude -0.14748
bio6 slope -0.05463 evi_dry bio7 -0.16546
bio6 evi_dry 0.031767 evi_dry biol6 0.403096
bio6 bio9 0.996893 evi_dry altitude | -0.01571
bio6 bio8 0.99033 evi_dry evi_avg 0.847386
bio8 bio7 0.318336 evi_dry evi_wet 0.584857
bio8 biol6 -0.11852 evi_dry slope 0.10358
bio8 altitude -0.99317 evi_wet bio7 0.078809
bio8 evi_avg 0.139167 evi_wet biol6 -0.15296
bio8 evi_wet 0.128366 evi_wet altitude -0.12852
bio8 slope -0.05337 evi_wet evi_avg 0.855863
bio8 evi_dry -0.0085 slope bio7 -0.0513
bio8 bio9 0.99201 slope biol6 0.040649
bio9 bio7 0.29913 | | slope altitude 0.05456
bio9 biol6 -0.06 7 ’ slope evi_avg 0.09801
/N bio9 altitude -0.99481 l slope evi_wet 0.06374
% = bic9 evi_avg 0.132663
%, %, ) bio9 evi_wet 0.117928
S bio9 slope -0.06008
k- bio9 evi_dry 0.002101
— evi_avg bio7 -0.01434
314 evi_avg bio16 0.066323
W
g
)
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