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INTRODUCTION



1. INTRODUCTION

Black pepper (Piper nigrum L.), often called as ‘The King of Spices’ is
one of the most important and widely used spice in the world since prehistoric
times. Black pepper is a flowering climber in the family Piperaceae, cultivated for
its fruit which is usually dried and used as a spice and a very highly priced market
commodity. India is the centre of origin of black pepper and lot of species

diversity is reported in quantitative and qualitative traits.

Wild type inflorescence of black pepper is a slender spike which is
unbranched. But black pepper type ‘Thekken’ reported by farmer T. T. Thomas
from Idukki district, Kerala has branching inflorescences (Farm innovators, 2010).
Number of branches per inflorescence increases the number of flowers and
thereby the final berry yield. As the production and productivity of black pepper
in India shows a drastic decline, the studies on the branching inflorescence trait

can be useful in increasing production as well as productivity.

Exploitation of this economically important trait requires knowledge about
mechanisms controlling inflorescence architecture and genes involved in different

pathways controlling flowering in black pepper.

Molecular basis of inflorescence architecture has been extensively studied
in model plants such as Arabidopsis, rice, maize, etc. Different genes (e.g. PINI,
RAMOSA2, TFLI, BIF1, etc.) have been reported to control the inflorescence
architecture in different plants (Ohshima ef al., 1997; Vernoux ef al., 2000; Bortiri
et al., 2006; McSteen et al., 2007).

Inflorescence branching appears to be largely regulated through the
RAMOSA gene network, and the name ‘ramosa’, originates from the Latin word
‘ramus’ means branch. This reflects the phenotype of the ra mutants, which have
a highly branched inflorescence. The RAMOSA family mainly involves three
genes viz., RAMOSAI (RAI), RA2 and RA3. RAI encodes a zinc-finger domain
protein (Vollbrecht and Sigmons, 2005), RA2 encodes lateral organ boundary

domain protein (Bortiri ef al., 2006) and RA3 encodes a metabolic enzyme, a



trehalose-6-phosphate phosphatase (Satoh-Nagasawa et al., 2006). Mutation in
any of the genes shows different patterns of inflorescence branching in different

plants.

RAMOSA family genes have been reported in a wide range of plants
(Kellogg, 2000; Vollbrecht and Sigmon, 2005; Bortiri et al., 2006; Satoh-
Nagasawa et al., 2006; McSteen, 2006; Kellogg, 2007; Koppolu et al., 2013;
Ishiai et al., 2016). It is possible that RAMOSA family genes may control
inflorescence architecture in black pepper. Therefore, the objective of the present
study was to detect the presence and differential expression of RAMOSA family
genes (RAI, RA2 and RA3) and analyse their influence in contributing to the
branching trait in black pepper type ‘Thekken’.
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2. REVIEW OF LITERATURE

Black pepper (Piper nigrum L.) (Family: Piperaceae) is a perennial,
climbing vine. It is cultivated for the mature berries which are used as spice and in
medicines (Karthikeyan and Rani, 2003). It is the most important spice crop due
to its everyday use and its high market price. Black pepper requires tropical
weather (i.e. high rainfall and humidity) therefore it is mostly cultivated in India

and Southeast Asian countries such as Vietnam, Indonesia and Malaysia.

In India, hot and humid climate of sub mountainous regions of Western
Ghats is found ideal for black pepper cultivation. Ideal range of temperature for
growth of black pepper is 23 °C - 32 °C and the ideal range of relative humidity is
75-80%. Annual rainfall of 1250-2000 mm is considered ideal for black pepper
(Thomas and Rajeev, 2015).

Black pepper is one of the most ancient crops cultivated in India. A lot of
species diversity is reported in India in quantitative and qualitative traits of black
pepper (Parthasarathy et al., 2006; Bhasi et al., 2010; Wu et al., 2016). Piper
genus is reported with 700 species in American tropics, followed by 300 species
in South Asia (Jaramillo and Manos, 2001). Black pepper (Piper nigrum L.) has
originated in the hills of South-Western India i.e. from North Kanara to
Kanyakumari (Pruthi, 1974; Ravindran, 2000a; Thangaselvabal et al., 2008; Wu
etal. 2016).

Over 75 cultivars of black pepper are being cultivated in India.
‘Karimunda’ is the most popular cultivar in Kerala. The other important cultivars
are Kottanadan (South Kerala), Narayakodi (Central Kerala), Aimpiriyan
(Wayanad), Neelamundi (Idukki), Kuthiravally (Kozhikode and Idukki),
Balancotta, Kalluvally (North Kerala), Panniyur (Kannur), Malligesara and
Uddagare (Karnataka). Kuthiravally and Balancotta exhibit alternate bearing habit
(Thomas and Rajeev, 2015).



Kerala alone accounts for 94 % of the total area and 96 % of the total
production of pepper in India, followed by Karnataka with 3.5 % production. The
rest is contributed by Tamil Nadu, Pondicherry and Andaman and Nicobar. Even
though black pepper is cultivated all over Kerala, only four districts viz.,
Kozhikode, Kannur, Kottayam and Idukki account for 67 % of the total pepper
area (Thomas and Rajeev, 2015).

Black pepper is used as a condiment, on its own and also in spice blends.
Use of black pepper as a natural preservative for perishable foods has been known
for centuries. It is one of important ingredients in Ayurvedic, Chinese, Unani and
other traditional medicines. The main therapeutic use of pepper is for digestive

purpose and is also used as a tonic (Thomas and Rajeev, 2015).
2.1 FLOWERING AND POLLINATION IN BLACK PEPPER

In India, flowering season of black pepper is during May to July monsoon
season, generally about two to three years after planting. Flowers are staminate,
pistillate, or hermaphrodite. Both male and female flowers can be present on a
single spike. Based on the floral composition, a plant can be either pistillate or
staminate. It takes about 11 to 37 days for complete emergence of spike
depending on the cultivar (Menon, 1981). Flowering on spikes starts 10 to 15 days
after spike emergence and will be completed in about 6 to 10 days. Protogyny of
bisexual flowers is more pronounced in ‘Karimunda’. In protogynous cultivars,
male and female maturity phases are spaced by intervals of 1 to 14 day. Perianth
is usually absent in flowers. Two small stamens are formed on each side of the
ovary in bisexual flowers and are 0.1 cm long with small anthers having two sacs.
The ovary is globose, one ovulated, surmounted by three to five lobed, star shaped
stigma, covered with papillae, white when receptive, later turn brown (Ravindran

et al, 2000b; Parthasarathy et al., 2008).

Black pepper is mainly self-pollinated (Sasikumar et al., 1992). But
various levels of protogyny are also found. Selfing in black pepper spike is

stimulated by positive geotropism, spatial arrangement of flowers, sequential



ripening of the stigma, and non-chronological dehiscence of anthers (Sasikumar et
al., 1992; Ravindran, 2003). Anandan (1924) reported importance of splashing
rain on pollination. Rain drops help in dispersal of pollen grains in all directions,
either wash down the pollen grains to lower spikes or carry them to adjacent black

pepper vines (Ravindran, 2003).
2.2 INFLORESCENCE OF BLACK PEPPER

The inflorescence of black pepper is a glabrous, filiform, pendulous spike
borne opposite to the leaves on plagiotropic branches. Orientation of the spike is
either pendulous or erect in the genus Piper. Species of Piper are diverse in spike
shape and length (Amma et al., 2001). Spikes in black pepper can be straight or
curved (Parthasarathy et al., 2007). In black pepper inflorescence, flowers are
borne in the axils of ovate, fleshy bracts in long pendant spikes, which are single
in nature and appear opposite to the leaves on the plagiotropic branches. The
sessile, white, small flowers on inflorescence vary in number from 25 to 100,
arranged in four to five rows (Parthasarathy et al., 2007). The apical buds of the
plagiotropic branches transform into inflorescence. The apical meristem of the

inflorescence grows in length before any organs are formed.

Mostly wild type black pepper species have unbranched spikes. Branching
in spikes of black pepper is very rare. Varieties of black pepper ‘Aimpiriyan’ and
‘Kathirinmelkkathir’ show spike branching characteristic. But these branches are

rudimentary and bear very few berries (Sasikumar et al., 2006).

2.3 ‘THEKKEN’- A MUTANT OF BLACK PEPPER

A pepper type viz., ‘Thekken’, a natural mutant of Piper nigrum, identified
by T. T. Thomas in the forest area of Kanchiyar in Kattappana Panchayat, Idukki
district, has been observed to have altered inflorescence architecture with
remarkable spike branching character. Spike branching in ‘Thekken’ is more
profuse and with more berry yield than ‘Aimpiriyan’ and ‘Kathirinmelkkathir’

(Sasikumar et al., 2006; Farm innovators, 2010).



In ‘Thekken’ both branched and unbranched
type of spikes are seen. The proliferating spikes are
of indeterminate growth habit. Some spikes of
pepper plant appear as grape bunches and they are
with persistent and large bracts (Sasikumar et al.,
2006). The proliferating spikes are of indeterminate

growth with pronounced bracts and bear up to 30

branches with about 300 berries altogether. This

gives four times the reported yield of berries than

Branching spike of black

from spikes of the highest yielding varieties, pepper type “Thekken’

Panniyur-1, Panniyur-3 and Panniyur-5.

Yield is a quantitative trait and is directly dependent on number of flowers
per spike (Mohsin et al., 2009). Spike branching trait is of great economic
significance as it can contribute to high yield. Modifications in inflorescence
architecture is reported in different crop species such as Oryza sativa, Arabidopsis
thaliana and Zea mays due to mutations in different genes such as LEAFY,
APETALAI, TERMINAL FLOWERI, FLOWERING LOCUS T, RAMOSA family
genes etc (Gallavotti ef al., 2010; Zhang et al., 2015; Wickland and Hanzawa,
2015; Ishiai et al., 2016).

2.4 GENES CONTROLLING INFLORESCENCE ARCHITECTURE

Environmental and genetic regulation of flowering time, branch
complexity (e.g. number of iterations of branching prior to flowering), number of
flowers per node and the extent of terminal meristem growth in the reproductive
phase contribute to the overall pattern of an inflorescence. Inflorescence form
varies enormously among different species and seems to play a determinant role

in reproductive success as it has a strong effect on pollination and fruit set.

Inflorescence architecture is highly diversified among flowering plants.
Diversity among inflorescences has been attributed to factors such as: extent of

growth in each of the three dimensions of stem and stem-like structures,



determinacy or indeterminacy of meristems within the shoot system, specification
of meristem identity and relative positions of lateral shoots and/or flowers
(Ainsworth, 2006). These factors are controlled by genes performing different

functions in tissues and individual cells.

From the studies on floral development and floral meristem identity genes
in Arabidopsis, Antirrhinum majus, cauliflower, maize, rice, etc., it is now known
that floral genes are highly conserved in the plant kingdom (Goto et al., 2001;
Jack, 2004; Song et al., 2010).

After transition from vegetative phase to reproductive phase shoot apical
meristem gives rise to different meristems viz., inflorescence meristem, branch
meristem, spikelet meristem and floral meristem. These meristems form different
architectures in the inflorescence. There are different levels of architecture in
inflorescence, and each of them is formed from different meristems (Wu et al.,

2009; Tanaka et al., 2013; Kyozuka et al., 2014).

2.4.1 Genes controlling inflorescence meristem formation

First meristem produced during transition from vegetative to reproductive
phase is inflorescence meristem. The development of the Arabidopsis
inflorescence meristem is controlled by mutual regulation of three genes viz.,
TERMINAL FLOWERI (TFLI), LEAFY (LFY) and APETALAI (API) (Liljegren
et al., 1999; Blazquez et al., 2006; Kaufmann et al., 2010; Yoo et al., 2010).
These genes maintain the balance between inflorescence meristem and floral
meristem identity at the inflorescence apex (Ratcliffe et al., 1999; Blazquez et al.,

2006; Benlloch et al., 2015).

Key elements of how the repressor of flowering and shoot meristem gene
TFLI acts were tested by Baumann et al. (2015), by changing its spatiotemporal
pattern and showed 7FLI can act outside of its normal expression domain in leaf
primordia or floral meristems to repress flower identity. Baumann et al. (2015)

proposed that 7FL] and other floral genes both can act and compete in the same



meristem. Kobayashi et al. (2012) proposed that PANICLE PHYTOMER?2 (PAP2)
and the three APETALAI (API1)/FRUITFULL (FUL)-like genes co-ordinately act
in the meristem to specify the identity of the inflorescence meristem downstream

of the florigen signal.

In Arabidopsis, AGAMOUS (AG) gene is also found to be regulating
meristem determinacy (Barton, 2010; Sun and Ito, 2010). In ag mutants, a set of
floral organs (sepal-petal-petal) are repeatedly formed (Bowman et al., 1989;
Yanofsky et al., 1990). Expression of WUSCHEL (WUS) gene occurs in the floral
meristem of the ag mutant at a late stage of flower development. But in wild type
inflorescence, expression of WUS disappears after formation of the carpel
(Lenhard et al., 2001, Lohmann et al., 2001). Therefore, in the floral meristem,
AG regulates meristem determinacy by repressing WUS. Another gene
KNUCKLES (KNU) encoding a transcriptional repressor, represses the expression
of WUS by AG (Sun et al., 2009).

BARREN INFLORESCENCE? (BIF2) gene encodes a maize ortholog of
the Arabidopsis serine-threonine kinase PINOID. McSteen et al. (2007) found
mutation in B/F2 gene fails to initiate all axillary meristems of the inflorescence

in maize indicating the role in determinacy of branch meristem.

2.4.2 Genes controlling branch meristem formation

Genetic control of branching is a primary determinant of yield, regulating
seed number and harvesting ability, yet little is known about the molecular

networks that shape grain bearing inflorescences of cereal crops.

In maize, inflorescence branching appears to be largely regulated through
the RAMOSA gene network (viz., RAI, RA2 and RA3) and mutations in these
genes reflect highly branched inflorescences (Vollbrecht and Sigmon, 2005;
Bortiri et al., 2006; Satoh-Nagasawa ef al., 2006).

LAXI gene from rice and BARREN STALKI (BAI) gene from maize are

homologous genes. Mutation in these genes causes failure of initiation of axillary



meristems in both the vegetative and reproductive phases (Komatsu et al., 2003,

Gallavotti et al., 2004; Gallavotti et al., 2008).

Rice gene TAWAWAI (TAWI) encodes a nuclear protein with an ALOG
domain. In tawl/-D mutant, promotion of inflorescence meristem activity and
delay in spikelet development was observed and this caused increased branching
in rice inflorescence. In contrast, loss of TAWI function causes reduction in

inflorescence meristem indeterminacy and small inflorescences (Yoshida et al.,

2013).

2.4.3 Genes controlling spikelet meristem and spikelet pair meristem

formation

Spikelet and spikelet pair meristem identity in maize is combinatorially
regulated by REVERSED GERM ORIENTATIONI and INDETERMINATE
SPIKELET (IDS1) (Kaplinsky and Freeling, 2003; Chuck et al., 2007; Chuck et
al., 2008).

PUCHI gene from Arabidopsis is the homology to maize BRANCHED
SILKLESS!I (BDI1) and rice FRIZZY PANICLE (FZP). A partial conversion from
floral meristem to inflorescence meristem is observed in the puchi mutant, in

addition to other phenotypes (Karim et al., 2009).

In Arabidopsis, AGAMOUS (AG), which encodes a C-class MADS-box
transcription factor, is a very important gene responsible for determinacy of
meristem. The ag mutants produce indeterminate flowers in which a set of sepal-
petal-petal are repeatedly formed (Bowman et al., 1989; Yanofsky et al., 1990).
WUSCHEL (WUS) expression persists in the floral meristem of the ag mutant at a
late stage of flower development, whereas it disappears after formation of the
carpel in the wild type (Lenhard et al., 2001; Lohmann et al., 2001). Therefore, in
the floral meristem, AG regulates meristem determinacy by repressing WUS.
KNUCKLES (KNU), which encodes a transcriptional repressor, has an important
role to mediate the repression of WUS by AG (Sun et al., 2009).



Ikeda-Kawakatsu et al. (2011) characterised rice aberrant panicle
organization 2 (apo2) mutant. Map-based cloning showed that APO? is identical
to RFL gene which is a rice ortholog of the Arabidopsis LEAFY (LFY) gene. The
apo2 mutant exhibits small panicles with reduced number of primary branches
due to formation of spikelet meristems. The apo2 mutants also displayed late

flowering, aberrant floral organ identities and loss of floral meristem determinacy.

API regulates cytokinin levels by directly suppressing the cytokinin
biosynthetic gene LONELY GUYI and activating the cytokinin degradation gene
CYTOKININ OXIDASE/DEHYDROGENASE3 (Han et al., 2014). In Arabidopsis,
Han et al. (2014) concluded that suppression of cytokinin biosynthesis and
activation of cytokinin degradation mediates AP/ function in establishing

determinate floral meristem.

2.5 RAMOSA FAMILY GENES

Diversity in the patterns of inflorescence architecture is due to different
gene combinations and expression patterns in the plant. Mutation in these genes
can result in altered inflorescence architecture. Several genes affect these patterns
of inflorescence architecture differently in different plants, allowing
morphological differentiation that permits diversification. RAMOSA family genes
are involved in maize inflorescence development. RAMOSA family genes (viz.,
RAMOSAI, RAMOSA2 and RAMOSA3) have been cloned from maize and can
form part of a network of genes that control the production of lateral branching

(Tanaka et al., 2013).

2.5.1 Role of RAMOSA family genes

All three RAMOSA genes have been cloned and their protein products are
studied. R4/, a member of RAMOSA family, encodes a zinc-finger domain
protein, a presumed transcription factor (Vollbrecht and Sigmon, 2005). RA2 is a
LOB domain protein also presumed to be a transcription factor (Bortiri et al.,
2006). RA1 appears to act downstream of R42. RA3 encodes a metabolic protein,
a trehalose-6-phosphate phosphatase, suggesting that trehalose-6-phosphate (T6P)

10



might have a role in the regulation of development (Satoh-Nagasawa et al., 2006).
In a3 mutants, the expression of ral is reduced, suggesting that ra3 regulates ral

either directly or indirectly.

2.5.2 Occurrence of RAMOSA family genes

The paired spikelet of maize inflorescence is a feature of other members of
the tribe Andropogoneae (e.g. sorghum and sugarcane), but do not occur in many
other grasses, such as wheat or rice (Kellogg, 2000). Consistent with the
taxonomic distribution of this feature, ral and ra3 are present in Andropogoneae,
but both are missing in rice (although rice has a duplicate of ra3, namely sister of
ramosa3 [sra]) (Satoh-Nagasawa et al., 2006). Either these genes have been lost
in rice or they were gained in the Andropogoneae by duplication after divergence
from the common ancestor of rice and maize (Kellogg, 2007). Koppolu et al.
(2013) reported Six-rowed spike4 (Vrs4) ortholog of maize RA2 in barley while
Ishiai et al. (2016) reported presence of all RAMOSA family genes in Vitis

vinifera.

2.5.3 RAMOSAI

Gallavotti et al. (2010) showed in maize (Zea mays), that the zinc (Zn)-
finger transcription factor RAMOSAI interacts with the TPL/TPR factor
RAMOSAI ENHANCER LOCUS?2 (REL?2) to repress indeterminate meristem fate.
REL2 was identified as a transcriptional corepressor of the indeterminant
branching pathway, important in enforcing the differentiated fate of reproductive

maize organs (Gallavotti ef al., 2010).

Changing aspects of genes targeted in vivo by the transcription factor
RAMOSAI, a key regulator of determinacy, revealed potential mechanisms for
repressing branches in distinct stem cell populations, including interactions with
KNOTTEDI which is a master regulator of stem cell maintenance (Eveland et al.,

2014).
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RAI encodes a transcription factor that regulates meristems to control the
branching architecture of inflorescences. Another classical mutant, ramosa?2,
controls branching similarly, through the ral genetic pathway. RAI acts by
establishing a boundary between lower-order meristems and the principal
inflorescence axis, thereby controlling the fundamental property of the duration of
meristem activity. Reduced nucleotide diversity at R4/ in modern maize implies
that the gene was a target of selection during domestication or improvement.
While the original loss-of-function mutant conferred extreme ear branching,
intermediate levels of ral gene activity led ears with crooked rows, suggesting
selection for ral forms that preserved straight rows in the massive ear of

domesticated maize (Vollbrecht and Sigmon, 2005).
2.5.4 RAMOSA2

The ramosa2 (ra2) mutant of maize results in increased branching, with
short branches replaced by long indeterminate ones (Bortiri et al., 2006). Function
analysis showed that R42 encodes the AS2/LOB domain transcription factor
which controls the developments in stem cells of branch meristems in maize
(Bortiri et al., 2006). Koppolu et al. (2013) reported ortholog of maize RAMOSA?2
in barley and it is named as Six-rowed spike4 (Vrs4) gene. Genetic mapping and
mutant analysis in barley showed that Vrs4 controls spikelet determinacy and row

type in barley.
2.5.5 RAMOSA3

Satoh-Nagasawa et al. (2006) showed that RA3 encodes a trehalose-6-
phosphate phosphatase expressed in discrete domains subtending axillary
inflorescence meristems. Genetic and molecular data indicate that RA3 functions

through the transcriptional regulator RA 1.

Satoh-Nagasawa et al. (2006) proposed that RA3 regulates inflorescence
branching by modification of a sugar signal that moves into axillary meristems.

Apart from a potential metabolic role, mutant phenotype of R43 suggests that it is
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involved in transcriptional regulation. Metabolic and transcriptional activity is
evocative of other metabolic genes, such as HEXOKINASE, which has been
shown to act as transcription factor as well as metabolic enzyme (Cho et al.,

2006).

RAMOSA genes and BARREN STALKI (BAI) gene express in ring like
domains at the base of the branch meristem. Location of ring like domain and
mutant phenotypes of the genes suggests that the fate of branch meristem is
controlled by a mobile signal whose import or export is regulated by the
branching proteins. Candidates for such a signal could be carotenoid-derived
molecules, which may have a role in auxin signaling (Booker et al., 2005;

Snowden et al., 2005), and/or T6P produced by activity of R43.
2.5.6 Expression related studies

Satoh-Nagasawa et al. (2006) selected ears with uniform size at a growth
stage of 2 mm, where they found expression of R43 was the highest in the wild
type and the very first signs of the mutant phenotype were visible as outgrowths

of the spikelet pair meristems.

During early inflorescence development in maize, RA3 gene was
expressed in a narrow band subtending spikelet pair meristems (Satoh-Nagasawa
et al., 2006). As trehalose-6-phosphate is a mobile signal, such as a sugar, it could
be mediating RA3’s control of development of axillary meristem (Rolland et al.,

2006).

Eveland et al., (2010) found that down-regulated expression of RAMOSA3
gene showed reduced production of trehalose phosphate synthase. In contrast to
this, an uncharacterized gene was up-regulated in the mutant maize which showed
sequence similarity to a trehalose-6-phosphate phosphatase of Arabidopsis,

possibly as compensation for reduced RA43 levels.
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2.5.7 Mutant phenotypes of RAMOSA family genes

In the maize ear (female flower), there is no branching while, in maize
tassel (male flower), branches are normally either long or short and there are no
intermediate branches. In three classical mutants of maize, ramosal (ral), ra2 and
ra3, branching in ear and shift from long to short branches in tassel was disrupted,
with branches being produced that are intermediate in length between the long and
short branches (Heck et al., 1999). Specific function of RAMOSA family genes
(RA1, RA2 and RA3) is to maintain determinate identity of spikelet pair meristems
(SPM), thereby limiting branch outgrowth (Vollbrecht and Sigmon, 2005; Bortiri
et al., 2006; Satoh-Nagasawa et al., 2006). RAMOSAI ENHANCER LOCUS?2
(REL2) is another gene, reported to interact with RAJ, which regulates the
determinacy of the spikelet pair meristem (Gallavotti et al., 2010).

Normal functioning of RAMOSA genes causes determinate spikelet pair
meristem growth (Wu et al., 2009). But when any of the three RAMOSA genes are
mutated, the spikelet pair meristems on both the tassel and the ear become more
indeterminate (Vollbrecht and Sigmon, 2005; Bortiri et al., 2006; Satoh-
Nagasawa et al., 2006). Spikelet pair meristems with altered RAMOSA genes
shows a development more like branch meristems and forms highly branched
inflorescences. So the different phenotypes of long branches and spikelet pairs
may be seen as the consequences of different meristem identities. If meristems
produced by the inflorescence meristem are determinate spikelet pair meristems,
they will produce spikelet pairs and if they are indeterminate branch meristems,
they will form lateral branches. RAMOSA family genes regulate the switch
between spikelet pair meristems and branch meristems and control the meristem
determinacy and identity. This suggests the RAMOSA genes promote the

determinate fate of spikelet pair meristem (Tanaka et al., 2013).
2.5.8 QTL studies

QTL studies indicate that allelic variation in the RAMOSA genes might

control diversity in inflorescence architecture within a species. Brown et al.
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(2006) studied inflorescence development in sorghum. For this study they used
population created by crossing a plant having spreading branches in inflorescence
with one that had upright branches in inflorescence. One QTL corresponded to the
region of RA2. Upadyayula et al. (2006) found a QTL in mapping population of
maize, which was related to tassel branch number. This QTL corresponded to the

location of R47 and other QTL in the region of FASCIATED EAR2.
2.5.9 Studies in black pepper type ‘Thekken’

Vimarsha (2009) reported 7FLI homologous band in black pepper and
used RAPD primers to study relatedness and diversity among different black
pepper varieties. He found that the variety Vellamundi depicted near relativeness
(74%) with ‘Thekken’ compared to the wide cluster formed by famous local

cultivar ‘Karimunda’.

Subba (2014) performed molecular analysis of ‘Thekken’ using RAPD,
SSR markers and SDS-PAGE. These studies showed no difference between
branched and non-branched spikes of ‘Thekken’ at molecular level. Studies based
on candidate genes showed difference in PIN/ and LOGI profile between
‘Thekken’ and ‘Karimunda’ and absence of BP amplification in ‘Thekken’ and

difference in RA2 gene amplification.

2.6 COMPARATIVE GENOMICS FOR CANDIDATE GENE
IDENTIFICATION

Candidate genes are genes with known biological function directly or
indirectly regulating the developmental processes of selected trait which could be
analysed in target organism by using molecular techniques (Tabor et al., 2002).
Comparative genomics strategy can be used to identify and characterize the
effects of selected candidate genes. It includes comparative functional genomics
approach and comparative structural genomics approach, which results in
comparative functional candidate gene approach and comparative positional

candidate gene approach, respectively (Zhu and Zhao, 2007). In comparative
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genomics approach, candidate gene selected may be functionally conserved or
structurally homologous with genes identified in other plants (Phillips et al.,
2002). Comparative genomics strategy can be more effectively used if candidate
gene showing phenotypic variation of interest has already been confirmed in other

plants (Ewart-Toland and Balmain, 2004).

Many of the genes governing inflorescence architecture have been found
to be conserved in plant species (Ambrose et al., 2000; Ng and Yanofsky, 2001;
Benlloch et al., 2007). Candidate gene approach could be advantageous in
exploring the presence of these genes and their functions in different plant species
using degenerate primers. Degenerate primers will be designed based on the

conserved sequences among available variants of gene sequence (Garg et al.,

2008).
2.6.1 Primer designing

A primer is a short oligonucleotide which is the reverse complement of a
region of a DNA template. It would anneal to a DNA strand to facilitate the
amplification of the targeted DNA sequence. Generally, two primers are used in

PCR i.e. forward and reverse primer (Garg et al., 2008).

Degenerate primers are with degenerate bases which can base pair with
other nucleotides. They are well-situated if the same gene is to be amplified from
different organisms, as loci in genomes of different species are probably similar

but not identical in different species (Patel and Prakash, 2013).

The primer sequence determines several parameters such as the length of
the primer, its melting temperature, its annealing temperature and ultimately the
yield (Wu et al., 1991; Wittwer and Schiitz, 2001). If primers are not designed
carefully, PCR result can be little or no product due to non-specific amplification.
Primer dimer formation can suppress the PCR reaction with no amplification

(Patel and Prakash, 2013). The sequences of the primers used for PCR
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amplification can have a major effect on the specificity and sensitivity of the

reaction.

The specificity is controlled by length of primer and annealing temperature
of PCR reaction. Primer between 18-35 nucleotides is very specific for PCR
(Garg et al., 2008). Primers with long runs of a single base should generally be
avoided. In general, shorter the primer more quickly it will anneal to target DNA

(Ahsen et al., 2001).

Primers longer than 30 bases do not show high specificity. GC content is
an important feature of primer. Primers should have a GC contents between 50
and 60 %. GC content, melting temperature and annealing temperature of primer
are dependent on each other (Rychlik et al., 1990; Wu ef al., 1991; Garg et al.,
2008). GC percentage present in primers is used to calculate their annealing
temperature to the template DNA during PCR reaction. Melting temperature of
primer will be higher if its GC content is higher, as the bond between G and C is
bound by 3 hydrogen bonds. The 3’ terminal position in PCR primers is necessary
for reducing nonspecific bands (Kwok et al., 1994; Garg et al., 2008). Stronger
hydrogen bonding of G and C bases helps to promote correct binding of primer if
they are included at the 3’ end (Sheffield ef al., 1989; Garg et al., 2008). This GC
clamp reduces secondary bands on