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INTRODUCTION



 

 

1. INTRODUCTION 

Black pepper (Piper nigrum L.), often called as ‘The King of Spices’ is 

one of the most important and widely used spice in the world since prehistoric 

times. Black pepper is a flowering climber in the family Piperaceae, cultivated for 

its fruit which is usually dried and used as a spice and a very highly priced market 

commodity. India is the centre of origin of black pepper and lot of species 

diversity is reported in quantitative and qualitative traits.  

Wild type inflorescence of black pepper is a slender spike which is 

unbranched. But black pepper type ‘Thekken’ reported by farmer T. T. Thomas 

from Idukki district, Kerala has branching inflorescences (Farm innovators, 2010). 

Number of branches per inflorescence increases the number of flowers and 

thereby the final berry yield. As the production and productivity of black pepper 

in India shows a drastic decline, the studies on the branching inflorescence trait 

can be useful in increasing production as well as productivity. 

Exploitation of this economically important trait requires knowledge about 

mechanisms controlling inflorescence architecture and genes involved in different 

pathways controlling flowering in black pepper.  

Molecular basis of inflorescence architecture has been extensively studied 

in model plants such as Arabidopsis, rice, maize, etc. Different genes (e.g. PIN1, 

RAMOSA2, TFL1, BIF1, etc.) have been reported to control the inflorescence 

architecture in different plants (Ohshima et al., 1997; Vernoux et al., 2000; Bortiri 

et al., 2006; McSteen et al., 2007).  

Inflorescence branching appears to be largely regulated through the 

RAMOSA gene network, and the name ‘ramosa’, originates from the Latin word 

‘ramus’ means branch. This reflects the phenotype of the ra mutants, which have 

a highly branched inflorescence. The RAMOSA family mainly involves three 

genes viz., RAMOSA1 (RA1), RA2 and RA3. RA1 encodes a zinc-finger domain 

protein (Vollbrecht and Sigmons, 2005), RA2 encodes lateral organ boundary 

domain protein (Bortiri et al., 2006) and RA3 encodes a metabolic enzyme, a 
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trehalose-6-phosphate phosphatase (Satoh-Nagasawa et al., 2006). Mutation in 

any of the genes shows different patterns of inflorescence branching in different 

plants. 

RAMOSA family genes have been reported in a wide range of plants 

(Kellogg, 2000; Vollbrecht and Sigmon, 2005; Bortiri et al., 2006; Satoh-

Nagasawa et al., 2006; McSteen, 2006; Kellogg, 2007; Koppolu et al., 2013; 

Ishiai et al., 2016). It is possible that RAMOSA family genes may control 

inflorescence architecture in black pepper. Therefore, the objective of the present 

study was to detect the presence and differential expression of RAMOSA family 

genes (RA1, RA2 and RA3) and analyse their influence in contributing to the 

branching trait in black pepper type ‘Thekken’. 
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2. REVIEW OF LITERATURE 

Black pepper (Piper nigrum L.) (Family: Piperaceae) is a perennial, 

climbing vine. It is cultivated for the mature berries which are used as spice and in 

medicines (Karthikeyan and Rani, 2003). It is the most important spice crop due 

to its everyday use and its high market price. Black pepper requires tropical 

weather (i.e. high rainfall and humidity) therefore it is mostly cultivated in India 

and Southeast Asian countries such as Vietnam, Indonesia and Malaysia. 

In India, hot and humid climate of sub mountainous regions of Western 

Ghats is found ideal for black pepper cultivation. Ideal range of temperature for 

growth of black pepper is 23 oC - 32 oC and the ideal range of relative humidity is 

75-80%. Annual rainfall of 1250-2000 mm is considered ideal for black pepper 

(Thomas and Rajeev, 2015). 

Black pepper is one of the most ancient crops cultivated in India. A lot of 

species diversity is reported in India in quantitative and qualitative traits of black 

pepper (Parthasarathy et al., 2006; Bhasi et al., 2010; Wu et al., 2016). Piper 

genus is reported with 700 species in American tropics, followed by 300 species 

in South Asia (Jaramillo and Manos, 2001). Black pepper (Piper nigrum L.) has 

originated in the hills of South‐Western India i.e. from North Kanara to 

Kanyakumari (Pruthi, 1974; Ravindran, 2000a; Thangaselvabal et al., 2008; Wu 

et al., 2016).  

Over 75 cultivars of black pepper are being cultivated in India. 

‘Karimunda’ is the most popular cultivar in Kerala. The other important cultivars 

are Kottanadan (South Kerala), Narayakodi (Central Kerala), Aimpiriyan 

(Wayanad), Neelamundi (Idukki), Kuthiravally (Kozhikode and Idukki), 

Balancotta, Kalluvally (North Kerala), Panniyur (Kannur), Malligesara and 

Uddagare (Karnataka). Kuthiravally and Balancotta exhibit alternate bearing habit 

(Thomas and Rajeev, 2015). 
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Kerala alone accounts for 94 % of the total area and 96 % of the total 

production of pepper in India, followed by Karnataka with 3.5 % production. The 

rest is contributed by Tamil Nadu, Pondicherry and Andaman and Nicobar. Even 

though black pepper is cultivated all over Kerala, only four districts viz., 

Kozhikode, Kannur, Kottayam and Idukki account for 67 % of the total pepper 

area (Thomas and Rajeev, 2015).  

Black pepper is used as a condiment, on its own and also in spice blends. 

Use of black pepper as a natural preservative for perishable foods has been known 

for centuries. It is one of important ingredients in Ayurvedic, Chinese, Unani and 

other traditional medicines. The main therapeutic use of pepper is for digestive 

purpose and is also used as a tonic (Thomas and Rajeev, 2015). 

2.1 FLOWERING AND POLLINATION IN BLACK PEPPER 

In India, flowering season of black pepper is during May to July monsoon 

season, generally about two to three years after planting. Flowers are staminate, 

pistillate, or hermaphrodite. Both male and female flowers can be present on a 

single spike. Based on the floral composition, a plant can be either pistillate or 

staminate. It takes about 11 to 37 days for complete emergence of spike 

depending on the cultivar (Menon, 1981). Flowering on spikes starts 10 to 15 days 

after spike emergence and will be completed in about 6 to 10 days. Protogyny of 

bisexual flowers is more pronounced in ‘Karimunda’. In protogynous cultivars, 

male and female maturity phases are spaced by intervals of 1 to 14 day. Perianth 

is usually absent in flowers. Two small stamens are formed on each side of the 

ovary in bisexual flowers and are 0.1 cm long with small anthers having two sacs. 

The ovary is globose, one ovulated, surmounted by three to five lobed, star shaped 

stigma, covered with papillae, white when receptive, later turn brown (Ravindran 

et al, 2000b; Parthasarathy et al., 2008). 

Black pepper is mainly self-pollinated (Sasikumar et al., 1992). But 

various levels of protogyny are also found. Selfing in black pepper spike is 

stimulated by positive geotropism, spatial arrangement of flowers, sequential 
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ripening of the stigma, and non-chronological dehiscence of anthers (Sasikumar et 

al., 1992; Ravindran, 2003). Anandan (1924) reported importance of splashing 

rain on pollination. Rain drops help in dispersal of pollen grains in all directions, 

either wash down the pollen grains to lower spikes or carry them to adjacent black 

pepper vines (Ravindran, 2003). 

2.2 INFLORESCENCE OF BLACK PEPPER 

The inflorescence of black pepper is a glabrous, filiform, pendulous spike 

borne opposite to the leaves on plagiotropic branches. Orientation of the spike is 

either pendulous or erect in the genus Piper. Species of Piper are diverse in spike 

shape and length (Amma et al., 2001). Spikes in black pepper can be straight or 

curved (Parthasarathy et al., 2007). In black pepper inflorescence, flowers are 

borne in the axils of ovate, fleshy bracts in long pendant spikes, which are single 

in nature and appear opposite to the leaves on the plagiotropic branches. The 

sessile, white, small flowers on inflorescence vary in number from 25 to 100, 

arranged in four to five rows (Parthasarathy et al., 2007). The apical buds of the 

plagiotropic branches transform into inflorescence. The apical meristem of the 

inflorescence grows in length before any organs are formed. 

Mostly wild type black pepper species have unbranched spikes. Branching 

in spikes of black pepper is very rare. Varieties of black pepper ‘Aimpiriyan’ and 

‘Kathirinmelkkathir’ show spike branching characteristic. But these branches are 

rudimentary and bear very few berries (Sasikumar et al., 2006). 

2.3  ‘THEKKEN’- A MUTANT OF BLACK PEPPER 

A pepper type viz., ‘Thekken’, a natural mutant of Piper nigrum, identified 

by T. T. Thomas in the forest area of Kanchiyar in Kattappana Panchayat, Idukki 

district, has been observed to have altered inflorescence architecture with 

remarkable spike branching character. Spike branching in ‘Thekken’ is more 

profuse and with more berry yield than ‘Aimpiriyan’ and ‘Kathirinmelkkathir’ 

(Sasikumar et al., 2006; Farm innovators, 2010). 
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In ‘Thekken’ both branched and unbranched 

type of spikes are seen. The proliferating spikes are 

of indeterminate growth habit. Some spikes of 

pepper plant appear as grape bunches and they are 

with persistent and large bracts (Sasikumar et al., 

2006). The proliferating spikes are of indeterminate 

growth with pronounced bracts and bear up to 30 

branches with about 300 berries altogether. This 

gives four times the reported yield of berries than 

from spikes of the highest yielding varieties, 

Panniyur-1, Panniyur-3 and Panniyur-5.  

Yield is a quantitative trait and is directly dependent on number of flowers 

per spike (Mohsin et al., 2009). Spike branching trait is of great economic 

significance as it can contribute to high yield. Modifications in inflorescence 

architecture is reported in different crop species such as Oryza sativa, Arabidopsis 

thaliana and Zea mays due to mutations in different genes such as LEAFY, 

APETALA1, TERMINAL FLOWER1, FLOWERING LOCUS T, RAMOSA family 

genes etc (Gallavotti et al., 2010; Zhang et al., 2015; Wickland and Hanzawa, 

2015; Ishiai et al., 2016). 

2.4 GENES CONTROLLING INFLORESCENCE ARCHITECTURE 

Environmental and genetic regulation of flowering time, branch 

complexity (e.g. number of iterations of branching prior to flowering), number of 

flowers per node and the extent of terminal meristem growth in the reproductive 

phase contribute to the overall pattern of an inflorescence. Inflorescence form 

varies enormously among different species and seems to play a determinant role 

in reproductive success as it has a strong effect on pollination and fruit set.  

Inflorescence architecture is highly diversified among flowering plants. 

Diversity among inflorescences has been attributed to factors such as: extent of 

growth in each of the three dimensions of stem and stem-like structures, 

 
Branching spike of black 

pepper type ‘Thekken’ 
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determinacy or indeterminacy of meristems within the shoot system, specification 

of meristem identity and relative positions of lateral shoots and/or flowers 

(Ainsworth, 2006). These factors are controlled by genes performing different 

functions in tissues and individual cells.  

From the studies on floral development and floral meristem identity genes 

in Arabidopsis, Antirrhinum majus, cauliflower, maize, rice, etc., it is now known 

that floral genes are highly conserved in the plant kingdom (Goto et al., 2001; 

Jack, 2004; Song et al., 2010).  

After transition from vegetative phase to reproductive phase shoot apical 

meristem gives rise to different meristems viz., inflorescence meristem, branch 

meristem, spikelet meristem and floral meristem. These meristems form different 

architectures in the inflorescence. There are different levels of architecture in 

inflorescence, and each of them is formed from different meristems (Wu et al., 

2009; Tanaka et al., 2013; Kyozuka et al., 2014). 

2.4.1 Genes controlling inflorescence meristem formation 

First meristem produced during transition from vegetative to reproductive 

phase is inflorescence meristem. The development of the Arabidopsis 

inflorescence meristem is controlled by mutual regulation of three genes viz., 

TERMINAL FLOWER1 (TFL1), LEAFY (LFY) and APETALA1 (AP1) (Liljegren 

et al., 1999; Blazquez et al., 2006; Kaufmann et al., 2010; Yoo et al., 2010). 

These genes maintain the balance between inflorescence meristem and floral 

meristem identity at the inflorescence apex (Ratcliffe et al., 1999; Blazquez et al., 

2006; Benlloch et al., 2015). 

Key elements of how the repressor of flowering and shoot meristem gene 

TFL1 acts were tested by Baumann et al. (2015), by changing its spatiotemporal 

pattern and showed TFL1 can act outside of its normal expression domain in leaf 

primordia or floral meristems to repress flower identity. Baumann et al. (2015) 

proposed that TFL1 and other floral genes both can act and compete in the same 
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meristem. Kobayashi et al. (2012) proposed that PANICLE PHYTOMER2 (PAP2) 

and the three APETALA1 (AP1)/FRUITFULL (FUL)-like genes co-ordinately act 

in the meristem to specify the identity of the inflorescence meristem downstream 

of the florigen signal. 

In Arabidopsis, AGAMOUS (AG) gene is also found to be regulating 

meristem determinacy (Barton, 2010; Sun and Ito, 2010). In ag mutants, a set of 

floral organs (sepal-petal-petal) are repeatedly formed (Bowman et al., 1989; 

Yanofsky et al., 1990). Expression of WUSCHEL (WUS) gene occurs in the floral 

meristem of the ag mutant at a late stage of flower development. But in wild type 

inflorescence, expression of WUS disappears after formation of the carpel 

(Lenhard et al., 2001, Lohmann et al., 2001). Therefore, in the floral meristem, 

AG regulates meristem determinacy by repressing WUS. Another gene 

KNUCKLES (KNU) encoding a transcriptional repressor, represses the expression 

of WUS by AG (Sun et al., 2009). 

BARREN INFLORESCENCE2 (BIF2) gene encodes a maize ortholog of 

the Arabidopsis serine-threonine kinase PINOID. McSteen et al. (2007) found 

mutation in BIF2 gene fails to initiate all axillary meristems of the inflorescence 

in maize indicating the role in determinacy of branch meristem. 

2.4.2 Genes controlling branch meristem formation 

Genetic control of branching is a primary determinant of yield, regulating 

seed number and harvesting ability, yet little is known about the molecular 

networks that shape grain bearing inflorescences of cereal crops.  

In maize, inflorescence branching appears to be largely regulated through 

the RAMOSA gene network (viz., RA1, RA2 and RA3) and mutations in these 

genes reflect highly branched inflorescences (Vollbrecht and Sigmon, 2005; 

Bortiri et al., 2006; Satoh-Nagasawa et al., 2006). 

LAX1 gene from rice and BARREN STALK1 (BA1) gene from maize are 

homologous genes. Mutation in these genes causes failure of initiation of axillary 
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meristems in both the vegetative and reproductive phases (Komatsu et al., 2003, 

Gallavotti et al., 2004; Gallavotti et al., 2008). 

Rice gene TAWAWA1 (TAW1) encodes a nuclear protein with an ALOG 

domain. In taw1-D mutant, promotion of inflorescence meristem activity and 

delay in spikelet development was observed and this caused increased branching 

in rice inflorescence. In contrast, loss of TAW1 function causes reduction in 

inflorescence meristem indeterminacy and small inflorescences (Yoshida et al., 

2013). 

2.4.3 Genes controlling spikelet meristem and spikelet pair meristem 

formation 

Spikelet and spikelet pair meristem identity in maize is combinatorially 

regulated by REVERSED GERM ORIENTATION1 and INDETERMINATE 

SPIKELET (IDS1) (Kaplinsky and Freeling, 2003; Chuck et al., 2007; Chuck et 

al., 2008). 

PUCHI gene from Arabidopsis is the homology to maize BRANCHED 

SILKLESS1 (BD1) and rice FRIZZY PANICLE (FZP). A partial conversion from 

floral meristem to inflorescence meristem is observed in the puchi mutant, in 

addition to other phenotypes (Karim et al., 2009). 

In Arabidopsis, AGAMOUS (AG), which encodes a C-class MADS-box 

transcription factor, is a very important gene responsible for determinacy of 

meristem. The ag mutants produce indeterminate flowers in which a set of sepal-

petal-petal are repeatedly formed (Bowman et al., 1989; Yanofsky et al., 1990). 

WUSCHEL (WUS) expression persists in the floral meristem of the ag mutant at a 

late stage of flower development, whereas it disappears after formation of the 

carpel in the wild type (Lenhard et al., 2001; Lohmann et al., 2001). Therefore, in 

the floral meristem, AG regulates meristem determinacy by repressing WUS. 

KNUCKLES (KNU), which encodes a transcriptional repressor, has an important 

role to mediate the repression of WUS by AG (Sun et al., 2009).  
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Ikeda-Kawakatsu et al. (2011) characterised rice aberrant panicle 

organization 2 (apo2) mutant. Map-based cloning showed that APO2 is identical 

to RFL gene which is a rice ortholog of the Arabidopsis LEAFY (LFY) gene. The 

apo2 mutant exhibits small panicles with reduced number of primary branches 

due to formation of spikelet meristems. The apo2 mutants also displayed late 

flowering, aberrant floral organ identities and loss of floral meristem determinacy. 

 AP1 regulates cytokinin levels by directly suppressing the cytokinin 

biosynthetic gene LONELY GUY1 and activating the cytokinin degradation gene 

CYTOKININ OXIDASE/DEHYDROGENASE3 (Han et al., 2014). In Arabidopsis, 

Han et al. (2014) concluded that suppression of cytokinin biosynthesis and 

activation of cytokinin degradation mediates AP1 function in establishing 

determinate floral meristem.  

2.5 RAMOSA FAMILY GENES 

Diversity in the patterns of inflorescence architecture is due to different 

gene combinations and expression patterns in the plant. Mutation in these genes 

can result in altered inflorescence architecture. Several genes affect these patterns 

of inflorescence architecture differently in different plants, allowing 

morphological differentiation that permits diversification. RAMOSA family genes 

are involved in maize inflorescence development. RAMOSA family genes (viz., 

RAMOSA1, RAMOSA2 and RAMOSA3) have been cloned from maize and can 

form part of a network of genes that control the production of lateral branching 

(Tanaka et al., 2013). 

2.5.1 Role of RAMOSA family genes 

All three RAMOSA genes have been cloned and their protein products are 

studied. RA1, a member of RAMOSA family, encodes a zinc-finger domain 

protein, a presumed transcription factor (Vollbrecht and Sigmon, 2005). RA2 is a 

LOB domain protein also presumed to be a transcription factor (Bortiri et al., 

2006). RA1 appears to act downstream of RA2. RA3 encodes a metabolic protein, 

a trehalose-6-phosphate phosphatase, suggesting that trehalose-6-phosphate (T6P) 
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might have a role in the regulation of development (Satoh-Nagasawa et al., 2006). 

In ra3 mutants, the expression of ra1 is reduced, suggesting that ra3 regulates ra1 

either directly or indirectly. 

2.5.2 Occurrence of RAMOSA family genes 

The paired spikelet of maize inflorescence is a feature of other members of 

the tribe Andropogoneae (e.g. sorghum and sugarcane), but do not occur in many 

other grasses, such as wheat or rice (Kellogg, 2000). Consistent with the 

taxonomic distribution of this feature, ra1 and ra3 are present in Andropogoneae, 

but both are missing in rice (although rice has a duplicate of ra3, namely sister of 

ramosa3 [sra]) (Satoh-Nagasawa et al., 2006). Either these genes have been lost 

in rice or they were gained in the Andropogoneae by duplication after divergence 

from the common ancestor of rice and maize (Kellogg, 2007). Koppolu et al. 

(2013) reported Six-rowed spike4 (Vrs4) ortholog of maize RA2 in barley while 

Ishiai et al. (2016) reported presence of all RAMOSA family genes in Vitis 

vinifera. 

2.5.3 RAMOSA1 

Gallavotti et al. (2010) showed in maize (Zea mays), that the zinc (Zn)-

finger transcription factor RAMOSA1 interacts with the TPL/TPR factor 

RAMOSA1 ENHANCER LOCUS2 (REL2) to repress indeterminate meristem fate. 

REL2 was identified as a transcriptional corepressor of the indeterminant 

branching pathway, important in enforcing the differentiated fate of reproductive 

maize organs (Gallavotti et al., 2010). 

Changing aspects of genes targeted in vivo by the transcription factor 

RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for 

repressing branches in distinct stem cell populations, including interactions with 

KNOTTED1 which is a master regulator of stem cell maintenance (Eveland et al., 

2014). 
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RA1 encodes a transcription factor that regulates meristems to control the 

branching architecture of inflorescences. Another classical mutant, ramosa2, 

controls branching similarly, through the ra1 genetic pathway. RA1 acts by 

establishing a boundary between lower-order meristems and the principal 

inflorescence axis, thereby controlling the fundamental property of the duration of 

meristem activity. Reduced nucleotide diversity at RA1 in modern maize implies 

that the gene was a target of selection during domestication or improvement. 

While the original loss-of-function mutant conferred extreme ear branching, 

intermediate levels of ra1 gene activity led ears with crooked rows, suggesting 

selection for ra1 forms that preserved straight rows in the massive ear of 

domesticated maize (Vollbrecht and Sigmon, 2005). 

2.5.4 RAMOSA2 

The ramosa2 (ra2) mutant of maize results in increased branching, with 

short branches replaced by long indeterminate ones (Bortiri et al., 2006). Function 

analysis showed that RA2 encodes the AS2/LOB domain transcription factor 

which controls the developments in stem cells of branch meristems in maize 

(Bortiri et al., 2006). Koppolu et al. (2013) reported ortholog of maize RAMOSA2 

in barley and it is named as Six-rowed spike4 (Vrs4) gene. Genetic mapping and 

mutant analysis in barley showed that Vrs4 controls spikelet determinacy and row 

type in barley. 

2.5.5 RAMOSA3 

Satoh-Nagasawa et al. (2006) showed that RA3 encodes a trehalose-6-

phosphate phosphatase expressed in discrete domains subtending axillary 

inflorescence meristems. Genetic and molecular data indicate that RA3 functions 

through the transcriptional regulator RA1. 

Satoh-Nagasawa et al. (2006) proposed that RA3 regulates inflorescence 

branching by modification of a sugar signal that moves into axillary meristems. 

Apart from a potential metabolic role, mutant phenotype of RA3 suggests that it is 
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involved in transcriptional regulation. Metabolic and transcriptional activity is 

evocative of other metabolic genes, such as HEXOKINASE, which has been 

shown to act as transcription factor as well as metabolic enzyme (Cho et al., 

2006).  

RAMOSA genes and BARREN STALK1 (BA1) gene express in ring like 

domains at the base of the branch meristem. Location of ring like domain and 

mutant phenotypes of the genes suggests that the fate of branch meristem is 

controlled by a mobile signal whose import or export is regulated by the 

branching proteins. Candidates for such a signal could be carotenoid-derived 

molecules, which may have a role in auxin signaling (Booker et al., 2005; 

Snowden et al., 2005), and/or T6P produced by activity of RA3.  

2.5.6 Expression related studies 

Satoh-Nagasawa et al. (2006) selected ears with uniform size at a growth 

stage of 2 mm, where they found expression of RA3 was the highest in the wild 

type and the very first signs of the mutant phenotype were visible as outgrowths 

of the spikelet pair meristems. 

During early inflorescence development in maize, RA3 gene was 

expressed in a narrow band subtending spikelet pair meristems (Satoh-Nagasawa 

et al., 2006). As trehalose-6-phosphate is a mobile signal, such as a sugar, it could 

be mediating RA3’s control of development of axillary meristem (Rolland et al., 

2006). 

Eveland et al., (2010) found that down-regulated expression of RAMOSA3 

gene showed reduced production of trehalose phosphate synthase. In contrast to 

this, an uncharacterized gene was up-regulated in the mutant maize which showed 

sequence similarity to a trehalose-6-phosphate phosphatase of Arabidopsis, 

possibly as compensation for reduced RA3 levels. 
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2.5.7 Mutant phenotypes of RAMOSA family genes 

In the maize ear (female flower), there is no branching while, in maize 

tassel (male flower), branches are normally either long or short and there are no 

intermediate branches. In three classical mutants of maize, ramosa1 (ra1), ra2 and 

ra3, branching in ear and shift from long to short branches in tassel was disrupted, 

with branches being produced that are intermediate in length between the long and 

short branches (Heck et al., 1999). Specific function of RAMOSA family genes 

(RA1, RA2 and RA3) is to maintain determinate identity of spikelet pair meristems 

(SPM), thereby limiting branch outgrowth (Vollbrecht and Sigmon, 2005; Bortiri 

et al., 2006; Satoh-Nagasawa et al., 2006). RAMOSA1 ENHANCER LOCUS2 

(REL2) is another gene, reported to interact with RA1, which regulates the 

determinacy of the spikelet pair meristem (Gallavotti et al., 2010). 

Normal functioning of RAMOSA genes causes determinate spikelet pair 

meristem growth (Wu et al., 2009). But when any of the three RAMOSA genes are 

mutated, the spikelet pair meristems on both the tassel and the ear become more 

indeterminate (Vollbrecht and Sigmon, 2005; Bortiri et al., 2006; Satoh-

Nagasawa et al., 2006). Spikelet pair meristems with altered RAMOSA genes 

shows a development more like branch meristems and forms highly branched 

inflorescences. So the different phenotypes of long branches and spikelet pairs 

may be seen as the consequences of different meristem identities. If meristems 

produced by the inflorescence meristem are determinate spikelet pair meristems, 

they will produce spikelet pairs and if they are indeterminate branch meristems, 

they will form lateral branches. RAMOSA family genes regulate the switch 

between spikelet pair meristems and branch meristems and control the meristem 

determinacy and identity. This suggests the RAMOSA genes promote the 

determinate fate of spikelet pair meristem (Tanaka et al., 2013).  

2.5.8 QTL studies  

QTL studies indicate that allelic variation in the RAMOSA genes might 

control diversity in inflorescence architecture within a species. Brown et al. 
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(2006) studied inflorescence development in sorghum. For this study they used 

population created by crossing a plant having spreading branches in inflorescence 

with one that had upright branches in inflorescence. One QTL corresponded to the 

region of RA2. Upadyayula et al. (2006) found a QTL in mapping population of 

maize, which was related to tassel branch number. This QTL corresponded to the 

location of RA1 and other QTL in the region of FASCIATED EAR2.  

2.5.9 Studies in black pepper type ‘Thekken’ 

Vimarsha (2009) reported TFL1 homologous band in black pepper and 

used RAPD primers to study relatedness and diversity among different black 

pepper varieties. He found that the variety Vellamundi depicted near relativeness 

(74%) with ‘Thekken’ compared to the wide cluster formed by famous local 

cultivar ‘Karimunda’. 

Subba (2014) performed molecular analysis of ‘Thekken’ using RAPD, 

SSR markers and SDS-PAGE. These studies showed no difference between 

branched and non-branched spikes of ‘Thekken’ at molecular level. Studies based 

on candidate genes showed difference in PIN1 and LOG1 profile between 

‘Thekken’ and ‘Karimunda’ and absence of BP amplification in ‘Thekken’ and 

difference in RA2 gene amplification. 

2.6 COMPARATIVE GENOMICS FOR CANDIDATE GENE 

IDENTIFICATION 

Candidate genes are genes with known biological function directly or 

indirectly regulating the developmental processes of selected trait which could be 

analysed in target organism by using molecular techniques (Tabor et al., 2002). 

Comparative genomics strategy can be used to identify and characterize the 

effects of selected candidate genes. It includes comparative functional genomics 

approach and comparative structural genomics approach, which results in 

comparative functional candidate gene approach and comparative positional 

candidate gene approach, respectively (Zhu and Zhao, 2007). In comparative 
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genomics approach, candidate gene selected may be functionally conserved or 

structurally homologous with genes identified in other plants (Phillips et al., 

2002). Comparative genomics strategy can be more effectively used if candidate 

gene showing phenotypic variation of interest has already been confirmed in other 

plants (Ewart-Toland and Balmain, 2004). 

 Many of the genes governing inflorescence architecture have been found 

to be conserved in plant species (Ambrose et al., 2000; Ng and Yanofsky, 2001; 

Benlloch et al., 2007). Candidate gene approach could be advantageous in 

exploring the presence of these genes and their functions in different plant species 

using degenerate primers. Degenerate primers will be designed based on the 

conserved sequences among available variants of gene sequence (Garg et al., 

2008). 

2.6.1 Primer designing 

A primer is a short oligonucleotide which is the reverse complement of a 

region of a DNA template. It would anneal to a DNA strand to facilitate the 

amplification of the targeted DNA sequence. Generally, two primers are used in 

PCR i.e. forward and reverse primer (Garg et al., 2008). 

Degenerate primers are with degenerate bases which can base pair with 

other nucleotides. They are well-situated if the same gene is to be amplified from 

different organisms, as loci in genomes of different species are probably similar 

but not identical in different species (Patel and Prakash, 2013). 

The primer sequence determines several parameters such as the length of 

the primer, its melting temperature, its annealing temperature and ultimately the 

yield (Wu et al., 1991; Wittwer and Schütz, 2001). If primers are not designed 

carefully, PCR result can be little or no product due to non-specific amplification. 

Primer dimer formation can suppress the PCR reaction with no amplification 

(Patel and Prakash, 2013). The sequences of the primers used for PCR 
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amplification can have a major effect on the specificity and sensitivity of the 

reaction.  

The specificity is controlled by length of primer and annealing temperature 

of PCR reaction. Primer between 18-35 nucleotides is very specific for PCR 

(Garg et al., 2008). Primers with long runs of a single base should generally be 

avoided. In general, shorter the primer more quickly it will anneal to target DNA 

(Ahsen et al., 2001). 

Primers longer than 30 bases do not show high specificity. GC content is 

an important feature of primer. Primers should have a GC contents between 50 

and 60 %. GC content, melting temperature and annealing temperature of primer 

are dependent on each other (Rychlik et al., 1990; Wu et al., 1991; Garg et al., 

2008). GC percentage present in primers is used to calculate their annealing 

temperature to the template DNA during PCR reaction. Melting temperature of 

primer will be higher if its GC content is higher, as the bond between G and C is 

bound by 3 hydrogen bonds. The 3’ terminal position in PCR primers is necessary 

for reducing nonspecific bands (Kwok et al., 1994; Garg et al., 2008). Stronger 

hydrogen bonding of G and C bases helps to promote correct binding of primer if 

they are included at the 3′ end (Sheffield et al., 1989; Garg et al., 2008). This GC 

clamp reduces secondary bands on PCR reaction (Sheffield et al., 1989).  

Difference between melting temperatures of both the forward and reverse 

oligonucleotide primers should be similar. Melting temperature of primers can be 

calculated by using formula given by Wallace et al. (1979). The stability of a 

primer template DNA duplex can be measured by its melting temperature.  

2.6.2 DNA isolation 

Isolation of DNA from leaf tissues with high levels of polysaccharide and 

polyphenol contents is very difficult. Method used for DNA extraction and quality 

of genomic DNA obtained could affect downstream analytical techniques 

(Boiteux et al., 1999; Fredricks et al., 2005). Several types of contaminants in the 
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DNA can reduce the activity of restriction endonucleases, polymerases and ligases 

(Shioda et al., 1987, Richards et al., 1988; Do and Adams, 1991; Maltas et al., 

2011; Sahu et al., 2012). DNA extraction from black pepper is challenging due to 

the presence of large amount of polyphenolic compounds, polysaccharides and 

other secondary metabolites (Dhanya et al., 2007). 

Antioxidants are used to reduce problems related to phenolic compounds 

during DNA isolation. Antioxidants like β-mercaptoethanol, ascorbic acid, bovine 

serum albumin (BSA), sodium azide and polyvinylpyrrolidone (PVP) are used in 

DNA isolation methods (Horne et al., 2004; Li et al., 2007). Oxidation of 

polyphenols causes browning of DNA samples which can be avoided by the use 

of PVP. It to removes polyphenols from mature, damaged and improperly stored 

leaf tissues (Doyle and Doyle, 1990; Howland et al., 1991; Li et al., 2007).  

Presence of polysaccharides in DNA samples may become problematic 

and it may cause inhibition of enzymes like Taq polymerase (Fang et al., 1992) 

and restriction enzymes (Pandey et al., 1996). Lodhi et al. (1994) modified 

protocol reported by Doyle and Doyle (1990) including high concentration of 

NaCl in the buffer to remove polysaccharides. The addition of NaCl at 

concentrations higher than 0.5 M, along with CTAB, removes polysaccharides 

during DNA extraction (Paterson et al., 1993; Moreira and Oliveira, 2011; Sahu et 

al., 2012) Cetyltrimethylammonium bromide (CTAB) does not precipitate nucleic 

acids in high ionic strength solutions and form complexes with proteins. 

Therefore, CTAB is useful for purification of nucleic acid from plants with large 

quantities of polysaccharides (Sambrook and Russel, 2001; Tyagi and Sharma, 

2013). 

Dhanya et al. (2007) isolated DNA from black pepper berries. They used 

potassium acetate (5M) which helped in removing most of secondary metabolites 

and polysaccharides from the DNA and use of PEG for precipitation of DNA 

resulted in comparatively purified homogenous DNA without proteins and 

polysaccharides. 
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Subba et al. (2014) isolated genomic DNA from mature leaves and spikes 

of black pepper by using modified CTAB method using higher concentrations of 

CTAB, NaCl, EDTA and PVP in DNA extraction buffer. Isolated DNA was of 

good quality and higher concentration. 

2.6.3 RNA isolation 

RNA degrading enzyme i.e. RNase is present ubiquitously. So, RNA is 

very unstable due to its presence (Buckingham and Flaws, 2007; Tadokoro and 

Kanaya, 2009). For success of RNA analysing techniques RNase enzymes are 

very critical factors.  

Extracting a good quality RNA depends on good laboratory practices and 

RNase free technique. RNAse enzyme is thermo stable and renatures after heat 

denaturation. It is difficult to inactivate as it does not require cofactors (Doyle, 

1996; Hongbao et al., 2008; Rezadoost et al., 2016). RNAses problem can be 

eliminated by using RNAse free equipment, glassware and chemicals used for 

RNA extraction. They should be maintained and stored separate from common lab 

equipment and treated with various harsh chemicals that destroy RNases (Kansal 

et al., 2008; Rezadoost et al., 2016). 

Several RNA extraction protocols are based on the denaturation, 

separation and elimination of proteins, polyphenols, and polysaccharides (Hu et 

al., 2002; Vasanthaiah et al., 2008; Rai et al., 2010; Ghawana et al., 2011; Dash, 

2013). Efficiency of RNA extraction depends on the type of reagents and 

homogenization procedures used (Portillo et al., 2006). Generally the extraction 

protocols use reagents such as acidic guanidinium thiocynate, cetyl- trimethyl 

ammonium bromide (CTAB), sodium dodecyl sulfate (SDS), phenol, chloroform, 

lithium chloride, sodium acetate, among other reagents, in order to obtain pure 

RNA samples free from proteins, polysaccharides, and polyphenolic compounds 

(Gesteira et al., 2003; Verica et al., 2004; Rezadoost et al., 2016). Various 

companies offer different kits for RNA extraction. Extraction of RNA from 
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different samples with extraction kits does not always result in satisfactory quality 

and quantity of RNA (Yu et al., 2012). 

Strong denaturants used to inhibit endogenous RNases are mostly harmful 

and corrosive agents (Doyle, 1996). TRIzol reagent is a ready to use reagent for 

the extraction of RNA from different samples. TRIzol is a monophasic solution of 

phenol and guanidine isothiocynate and it is an upgrading of single-step RNA 

extraction method developed by Chomczynski and Sacchi (Gauthier et al., 1997; 

Hongbao et al., 2008; Rio et al., 2010). 

Variety of RNA samples of various molecular sizes can be isolated by 

using TRIzol reagent (Ahmann et al., 2008). During sample homogenization, 

TRIzol reagent disrupts cells and dissolves cell components and maintains the 

integrity of RNA. The mixture separates into an aqueous phase and an organic 

phase. RNA remains in the aqueous phase after addition of chloroform followed 

by centrifugation. Aqueous phase is transferred to fresh tube and RNA can be 

precipitated with isopropanol (Chomczynski, 1993). 

Another problem with RNA extraction is primary and secondary plant 

metabolites (e.g., phenolic compounds, polysaccharides). These metabolites vary 

within and between species, and can interfere with RNA extraction (Bilgin et al., 

2009; Rajakani et al., 2013). Handayani et al. (2016) used polyvinyl pyrrolidone 

(PVP) in DNA extraction buffer to reduce phenolic compounds and 

polysaccharides from mature leaves of Durio kutejensis.  

Birtic and Kranner (2006) isolated high quality RNA from seeds of five 

plant species by using standardised concentration of polyvinyl pyrrolidone with 

DNase and ethanol precipitation. Xie et al. (2013) developed modified RNA 

extraction methods to obtain high quality RNA from cotton roots. Siju et al. 

(2007) isolated RNA from berries of black pepper by modifying the standard 

RNA extraction protocol (Chomczynski and Sacchi, 1987) for detection of 

Cucumber mosaic virus in RT-PCR. 
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2.6.4 Quantity and purity of nucleic acids 

Sambrook et al. (1989) used spectrophotometer to detect concentrations 

and purity of the DNA. This method of quantification and assessment of purity of 

DNA samples uses absorbance values at 260 nm and 280 nm (Glasel, 1995). Pure 

DNA would give concentration of 50 μg/ml and RNA of 40 μg/ml when the 

absorbance value at 260 nm is 1.0. The ratio of absorbance at 260 nm and 280 nm 

for DNA sample should be around 1.8 and for RNA it should be around 2.0 

(Maniatis et al., 1982). 

2.6.5 PCR technique  

Polymerase chain reaction uses in vitro enzymatic reaction to amplify 

specific DNA fragment. This technique of DNA amplification uses multiple 

cycles of template denaturation, primer annealing, and primer extension. This 

process is an exponential amplification of DNA fragments because products from 

each cycle serve as templates for the next cycle (Mullis et al., 1986). It is a highly 

sensitive technique for the detection of target DNA fragment. After 20 to 40 

cycles of PCR, enough amplified product is generated, so that it can be visualized 

on an agarose gel by using specific staining method (e.g. ethidium bromide). 

Components of PCR reaction are as follows: template, primers, magnesium ion, 

dNTPs, buffer for PCR reaction, and thermostable DNA polymerase enzyme 

(Mullis et al., 1986). The template used can be DNA; RNA or cDNA. Primers i.e. 

forward and reverse primers decide length of the amplicons (Saiki et al., 1985). 

Taq DNA polymerase is a most commonly used thermostable DNA polymerase 

and it is suitable for routine amplifications. The magnesium ion acts as cofactor 

for Taq polymerase. Its concentration affects enzyme activity, primer annealing, 

melting temperature of the template and the PCR product (Jordan et al., 2001; 

Zamft et al., 2012).  

PCR is a very sensitive technique and it can be utilised for detecting and 

amplifying nucleic acids from any source, regardless of quantity and combination 
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(Joshi and Deshpande, 2010; Krohn-Molt et al., 2013; Johansen et al., 2013; 

Culley et al., 2014; McCall et al., 2015).  

2.6.6 RT-PCR 

The development of RT-PCR started from the discovery of enzyme 

reverse transcriptase, which is a RNA dependent DNA polymerase (Bustin, 2000; 

LeGrice and Gotte, 2013). With modifications in RT-PCR, it has become the 

standard technology for gene expression studies. Reverse transcriptase has 

revolutionized gene expression analysis. Qualitative and quantitative expression 

of RNA can be easily studied by using RT-PCR (Bustin et al., 2005; Arya et al., 

2005; Maurya et al., 2015; Ravnikar et al., 2016). 

First step in RT-PCR is the production of complementary copy of RNA 

using the reverse transcriptase enzyme (Freeman et al., 1999) followed by 

exponential amplification by PCR (Bustin, 2000; Bustin, 2002) 

RT-PCR can be performed in single step or in two steps. In the one-step 

approach, the entire reaction occurs in a single tube under conditions optimized 

for both reverse transcription and PCR. As a disadvantage in one-step approach, 

reverse transcriptase could inhibit Taq polymerase at low concentrations of 

template in RT-PCR (Sellner et al., 1992; Chumakov, 1994; Chandler et al., 1998; 

Suslov and Steindler, 2005; Saunders et al., 2013). The sensitivity of RT-PCR can 

be improved by the use of non-homologous RNA in the reaction (Levesque-

Sergerie et al., 2007), especially for templates in low concentration.  

On the other hand, the two-step reaction requires that the cDNA synthesis 

and its PCR amplification be performed in different tubes. The one-step approach 

is thought to minimize experimental variation by containing all of the enzymatic 

reactions in a single environment (Wong and Medrano, 2005; Al-Shanti et al., 

2009). Two-step RT-PCR is easy, popular and useful for detecting multiple genes 

expressed in the same sample, whereas one-step RT-PCR is more advantageous 
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with multiple samples, as carryover contamination is minimized (Arya et al., 

2005; Al-Shanti et al., 2009; Ravnikar et al., 2016). 

Gene expression can be studied at the level of single cell and can be 

performed on large number of samples and different genes in the same experiment 

(Wang and Brown, 1999). RT-PCR can be used to analyse differential gene 

expression or cloned cDNAs without constructing a cDNA library (Maurya et al., 

2015; Frisen, 2015). RT-PCR is more sensitive and easier to perform than other 

RNA analysis techniques, including Northern blots, RNAse protection assays, in 

situ hybridization, and S1 nuclease assays (Okada et al., 1996; Preshaw et al., 

1998; Garlet et al., 2003; Khodakov et al., 2008; Frisen, 2015). 
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3. MATERIALS AND METHODS 

The study entitled “Analysis of differential expression of genes 

determining inflorescence architecture in black pepper (Piper nigrum L.) type 

‘Thekken’” was conducted at the Department of Plant Biotechnology, College of 

Agriculture, Vellayani, Thiruvananthapuram during 2014-2016. Details regarding 

the experimental materials used and the methodology followed for various 

experiments are presented in this chapter. 

3.1 COLLECTION OF SAMPLES 

 Leaf and non-branching spikes of ‘Karimunda’ variety were collected 

from College of Agriculture, Vellayani. Young leaves were collected for DNA 

isolation and different stages of non-branching spikes were collected for RNA 

isolation. 

 Leaves and branching spikes of type ‘Thekken’ were collected from 

farmer’s field at Idukki district. All samples were collected in liquid nitrogen and 

stored at -80 oC (Panasonic - MDF U55V PE). Different stages were selected 

according to criteria given in Table 1. 

Table 1. Criteria for selection of developmental stages of spikes 

Stage Length of spikes 

(cm) 

Days after 

emergence of bud 

Stage I 1 to 2 12 to 15 

Stage II 6 to 8 22 to 25 

Stage III 9 to 12 32 to 35 

3.2 ISOLATION OF GENOMIC DNA 

 Genomic DNA was isolated from type ‘Thekken’ and ‘Karimunda’ leaves 

by using modified CTAB method of DNA extraction developed by Subba (2014) 

with a few modifications. 
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Young leaves were washed with tap water followed by distilled water and 

dried by wiping with blotting paper. Leaves were cut with sterile blade and 

crushed in mortar and pestle using liquid nitrogen. CTAB extraction buffer 

(Appendix I) was added to it (1 ml per 100 mg of plant sample) and 0.2% of -

mercaptoethanol and PVP were added and homogenised well with pestle and 

transferred to 2 ml centrifuge tubes. The samples were incubated in water bath at 

60 oC for 30 min with intermittent shaking. After incubation, equal volume of 

chloroform/isoamyl alcohol in ratio 24: 1 (v/v) was added to it and mixed gently 

by inverting the tubes. The tubes were centrifuged at 8000 g for 15 min at 4 oC. 

The upper phase was transferred to a fresh centrifuge tube and equal volume of 

chloroform/isoamyl alcohol was added and centrifuged at 8000g for 15 min at 4 

oC. Aqueous phase was taken in new tube and 0.7 volume of chilled isopropanol 

was added and mixed by inversion. Visible DNA was transferred to a fresh tube 

by using Pasteur pipette. The pellet was washed with 70% ethanol twice and 

dissolved in 100 µl of nuclease free water. The extracted DNA samples were 

stored at -20 oC (Samsung RS21HUTPN1). 

3.3 ISOLATION OF RNA  

Total RNA was isolated from spikes at different developmental stages 

using Trizol reagent (Invitrogen, USA). All the materials used for RNA extraction 

were treated with 3 per cent hydrogen peroxide overnight and autoclaved twice 

for sterilization. 

The frozen samples (100 mg) were ground into a fine powder in liquid 

nitrogen using mortar and pestle. Trizol reagent was added to the powdered 

content (1 ml Trizol per 100 mg of plant sample) and samples were ground 

thoroughly. About 1 ml of homogenized mixture was then transferred to a two ml 

centrifuge tube. To this, 200µl of chloroform and 50 µl of -mercaptoethanol 

were added and incubated for 2-3 min at room temperature after vigorous mixing. 

The samples were centrifuged at 9000 g for 15 min at 4 oC. The aqueous phase of 

the sample was transferred into a fresh tube. For RNA precipitation 0.7 volume of 

absolute isopropanol was added and content was mixed by inverting it slowly. 

25 



 

 

Visible RNA pellet was transferred to fresh tube by using Pasteur pipette. The 

pellet was washed with 1 ml of 70% ethanol. The sample was briefly vortexed and 

centrifuged at 9000 g for 10 min at 4oC. RNA pellet was air dried for 20 min and 

suspended in 100 µl RNase free sterile water, followed by incubation in a water 

bath at 60 oC for 10 min. Finally, RNA samples were stored at -20oC until used. 

3.4 QUALITY AND QUANTITY OF NUCLEIC ACIDS 

Quality and quantity of nucleic acids were measured by using UV 

spectrophotometer. UV spectrophotometer was calibrated to blank at 260 nm and 

280 nm wavelengths by using nuclease free water as blank. Absorbance at both 

wavelengths was measured by taking 2μl of respective nucleic acid (DNA or 

RNA) in 2 ml nuclease free water in quartz cuvette. 

Quality of nucleic acids was determined by using ratio of absorbance at 

260 nm (A260) and 280 nm (A280), where a ratio of 1.8 denotes pure DNA and a 

ratio of 2.0 denotes pure RNA. 

Formulae used for quantity determination of nucleic acids are as follows: 

 

Amount of DNA = (A260 x 50 x Dilution factor) ng/μl 

& 

Amount of RNA = (A260 x 40 x Dilution factor) ng/μl 

3.5 PRIMER DESIGNING 

Degenerate primers were designed for RAMOSA family genes viz., RA1, 

RA2 and RA3 selected as candidate genes influencing inflorescence architecture. 

Bioinformatic tools i.e. Primer3 and Oligocalc were used for primer designing.  

Sequences of selected candidate genes were retrieved from NCBI 

Nucleotide database from different organisms. Multiple sequence alignment of 

these sequences was performed using Clustal-Omega tool from EMBL database. 

Conserved regions spacing 200 bases to 600 bases were selected. Fragments of 
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approximately 20 bases were checked for ideal primer properties by using online 

software Oligocalc. Degenerate bases were used for less conserved bases in 

selected primers. The primers were synthesized from Sigma-Aldrich. 

3.6 PCR AMPLIFICATION 

PCR amplification of the genomic DNA was carried out using the 

degenerate primers designed. PCR master mix and conditions used for 

amplification are given in Table 2 and Table 3 respectively. PCR products were 

checked on agarose gel electrophoresis (1.5 % agarose) (Appendix II). 

3.7 REVERSE TRANSCRIPTION- POLYMERASE CHAIN REACTION (RT-

PCR) 

RT-PCR was performed in two steps viz., cDNA synthesis and PCR with 

designed primers. cDNA was synthesized by using First strand synthesis kit 

(Invitrogen, USA) and PCR was performed as described above and PCR products 

were checked by using agarose gel electrophoresis. 

3.7.1 Synthesis of cDNA 

 RNA samples stored at -80 oC were taken out and incubated at 60 oC in 

water bath for 5 min. 1000 ng of RNA from respective sample was transferred to 

the microfuge tube and volume made to 10 µl and incubated at 60 oC for 10 min. 

Simultaneously, reaction mixture for reverse transcription was prepared as 

follows:  

 Rnasin     : 0.5 µl (20 U) 

 5 X Assay Buffer   : 4 µl 

 10 mM dNTP mix   :  2 µl 

 Oligo d(T)18 primer   : 0.5 µl 

 AMV-Reverse Transcriptase  :  1 µl (20 U) 

 Nuclease Free Water   :  2 µl 

 Total Volume    :   10 µl 
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This reaction mixture was added to the RNA sample after 10 min 

incubation. The contents were mixed well and incubated at 42 oC for 1 h. The 

tubes were then incubated at 92 oC for 2 min and quickly placed the tubes on ice 

and spun briefly (for denaturation of RNA-cDNA hybrids). The cDNA samples 

were stored at -20 o C (Samsung RS21HUTPN1) until use. 

Table 2. The components, volume and concentration of PCR reaction mixture  

Sl. No. Components 
Volume for 

one reaction 

Final 

concentration 

1 10 X PCR buffer 2.5 l 1X 

2 dNTPs 0.5 l 0.2 mM 

3 Taq DNA polymerase 1.5 l 1.5 U 

4 MgCl2 2.5 l 2.5 mM 

5 Primer (forward) 1.0 l 70 pmol 

6 Primer (reverse) 1.0 l 70 pmol 

7 Genomic DNA 1.0l 50 ng 

8 Sterile double distilled water 15 l  

 Total 25.0 l  

Table 3. Temperature profile used for DNA amplification  

 

Step 

No. 
Temp (OC) Duration Cycles Function 

1 94 3 min  Initial denaturation 

2 94 45 s 

34 

Denaturation 

3 

W.R.T. 

primer 

(annexure 

no. 2) 

45 s Annealing 

4 72 1 min Extension 

5 72 5 min  Final extension 

6 4 Hold  Final hold 
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3.7.2 PCR amplification of cDNA with designed primers 

The cDNA samples were subjected to PCR with designed primers as given 

in Table 6. The PCR mixture of the total volume of 25 µl was prepared similarly 

as described in the Table 2, except that 1.5 µl of cDNA was used as template 

instead of 1µl of genomic DNA. The PCR programme was set as mentioned in 

Table 3. 

3.7.3 Sequencing of amplicons 

Amplicons obtained from RT-PCR were eluted from agarose gel and were 

sequenced at regional facility Rajiv Gandhi Centre for Biotechnology, 

Thiruvananthapuram (RGCB). And remaining quantity of eluted products was 

cloned using TA cloning kit and stored at -20 oC. 

3.7.3.1 Gel Elution Using Gel Extraction Kit (GeNeiTM) 

 Gel piece containing the amplicon was carefully cut and weighed and 

placed in a centrifuge tube. The gel was then crushed and 3 volume of gel 

solubilizer solution was added. This mixture was kept at 50 oC for 5 min to 

solubilize the gel. The dissolved gel was transferred to GeNei column with 

collection tube and centrifuged at 1000 g for 1 min. Column was transferred to 

new collection tube. 700 µl of was buffer was added and centrifugation was 

repeated. Finally, 50 µl of elution buffer was added to the column and centrifuged 

at 1000 g for 1 min. Eluent was cloned using TA cloning kit. 

3.7.3.2 Cloning 

For cloning of PCR products TA cloning kit (Invitrogen, USA) was used. 

Vial of pCR®2.1 vector was centrifuged to collect all the liquid in the bottom of 

the vial. Ligation reaction of 10 µl was prepared as follows:  
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Fresh PCR product    4 µl  

10X Ligation Buffer    1 µl  

pCR®2.1 vector    (25 ng/µl) 2 µl  

Sterile water     2 µl  

T4 DNA Ligase    1 µl  

Final volume     10 µl  

This reaction was incubated at 14°C for 4 hours. After incubation ligated 

PCR product was stored at -20 oC. 

3.7.4 Sequence analysis  

The resultant sequences of the amplicons were analyzed using 

bioinformatic tools viz., BLAST (TBLASTX and BLASTN), NCBI conserved 

Domain Search and Clustal omega. In TBLASTX, translated nucleotide query 

was used to search in translated nucleotide sequence database. NCBI conserved 

domain search uses nucleotide query and finds the conserved domain for which it 

belongs. Clustal omega was used as multiple sequence alignment tool and is 

available on EMBL database. 
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4. RESULTS 

The study entitled “Analysis of differential expression of genes 

determining inflorescence architecture in black pepper (Piper nigrum L.) type 

‘Thekken’”, was carried out at the Department of Plant Biotechnology, College of 

Agriculture, Vellayani during 2014-2016. The results related to the study are 

presented in this chapter. 

4.1 DNA ISOLATION 

Young leaves of control variety ‘Karimunda’ and branching type 

‘Thekken’ were used for genomic DNA isolation. Plate 1 shows the agarose gel 

electrophoresis (1.0 %) of the extracted genomic DNA from ‘Thekken’ and 

‘Karimunda’ leaves. The gel showed intact bands of genomic DNA. Lane 1, 2 and 

3 shows the genomic DNA from young leaves from different ‘Thekken’ plant 

samples named A, B and C. Lane 4 and lane 5 shows the genomic DNA from 

different ‘Karimunda’ plant samples (D and E).  

Further absorbance reading of the extracted genomic DNA by using 

spectrophotometric method revealed good quality and quantity of DNA (Table 4). 

Value of A260/A280 for DNA samples ranged between 1.52 and 1.83. Yield of 

DNA ranged between 1300 ng/μl to 2800 ng/μl. 

4.2 RNA ISOLATION 

Different stages of spike development were used for extraction of total 

RNA. Plate 2 shows three intact bands of 28S, 18S and 5S RNA on agarose gel 

electrophoresis (1.8 %) of total RNA isolated from all stages of ‘Thekken’ and 

‘Karimunda’. There was no DNA contamination observed on agarose gel (Plate 

2a and 2b). 

Further quality and quantity of RNA was checked by using spectrometric 

method. Absorbance values at 260 nm and 280 nm and their ratio values of 

different RNA samples are mentioned in Table 5. For RNA, value of A260/A280 
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ranged between 1.76 and 2.27. The yield of RNA ranged between 1200 ng/μl and 

2200 ng/μl.  

Table 4. Quality and quantity of isolated genomic DNA 

Sample  Sl. 

No. 

A260 A280 A260/A280 DNA yield 

(ng/μl) 

‘Thekken’ 1 0.026 0.016 1.625 1300 

2 0.032 0.021 1.523 1600 

3 0.044 0.024 1.833 2200 

‘Karimunda’ 4 0039 0.023 1.695 1950 

5 0.056 0.036 1.555 2800 

 

Table 5. Quality and quantity of isolated total RNA  

Sample 
Sl. 

No. 
A260 A280 A260/A280 RNA yield 

(ng/μl) 

‘Thekken’ 1 0.055 0.029 1.890 2200 

2 0.030 0.017 1.764 1200 

3 0.050 0.022 2.272 2000 

‘Karimunda’ 4 0.044 0.021 2.095 1760 

5 0.050 0.026 1.923 2000 

6 0.035 0.018 1.944 1400 

 

4.3 PRIMER DESIGNING 

 Primers for candidate genes i.e. RAMOSA family genes were designed 

based on the conserved regions shown by the Clustal Omega tool. The details of 

primers are given in Table 6. Properties of primers were analyzed by using online 

software Oligocalc.  

The analysis of primers using Oligocalc tool revealed desirable GC 

content and annealing temperature, and also none of the designed primers 

exhibited any hairpin formation and 3’ complementarity. 
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1- Thekken A 

2- Thekken B 

3- Thekken C 

4- Karimunda A 

5- Karimunda B 

 

 

Plate 1 Agarose gel electrophoresis of genomic DNA from Thekken and 

Karimunda varieties 

 

  
  

1- Thekken Stage-I 

2- Thekken Stage-II 

3- Thekken Stage-III 

  

1- Karimunda Stage-I 

2- Karimunda Stage-II 

3- Karimunda Stage-III 

2a 2b 

 

Plate 2 Agarose gel electrophoresis of total RNA from spikes of different 

developmental stages 

 



 

 

Table 6. Primers designed for RAMOSA family genes 

Gene Primer 

name 

5'<-----Sequence----->3' GC 

content 

(%) 

Length 

(no. of 

bases) 

Tm 

(oC) 

RAMOSA1 

(RA1) 

RA1F CGCCRCAGRTAAGGTCGTC 58 19 59.5 

RA1R ARCAGCGACGACAAGYTRAG 45-60 20 59.8 

RAMOSA2 

(RA2) 

RA2F GAGCACCAGCAACAACTCGG 60 20 56.5 

RA2R GTGGTTCCGCATGAAGTAGC 55 20 53.8 

RAMOSA3 

(RA3) 

RA3F GSAAGCARATMGTGATGTT 40-50 19 51.8 

RA3R GACCTGACCTCCTCGTTCA 58 19 54.6 

4.4 PCR ANALYSIS OF GENOMIC DNA WITH DESIGNED PRIMERS 

Genomic DNA from young leaves of ‘Thekken’ and ‘Karimunda’ were 

used as template for PCR. For RA1 gene RA1F and RA1R primers were used for 

PCR analysis of genomic DNA. These primers amplified four bands of size 200 

bp, 400 bp, 550 bp and 600 bp in both ‘Thekken’ and ‘Karimunda’ (Plate 3). 

RA2 gene was analyzed using primers RA2F and RA2R in both black 

pepper varieties. These primers amplified fragment of 450 bp in both ‘Thekken’ 

and ‘Karimunda’ (Plate 4).  

 Two amplicons of 450 bp and 650 bp size were produced with RA3 gene 

primers (RA3F and RA3R) in both ‘Thekken’ and ‘Karimunda’ (Plate 5). There 

was no variation in banding patterns for all genes screened in both varieties. 

4.5 RT-PCR ANALYSIS  

Presence of cDNA was confirmed by using Ubiquitin gene (housekeeping 

gene) specific primers. Ubiquitin gene specific primers amplified amplicon of size 

99 bp in all cDNA samples. Plate 6 shows PCR amplification of cDNA of 

different stages of spike from both ‘Thekken’ and ‘Karimunda’. 
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A:Template blank 

B: 100 bp ladder 

C: Thekken 

D: Primer blank 

E: Karimunda 

 

Plate 3 Agarose gel electrophoresis of PCR product from genomic DNA of 

Thekken and Karimunda using RA1 primers 

 

 

 

 

 

 

A- Template blank 

B- Thekken 

C- 100bp ladder 

D- Karimunda 

E- Primer blank 

Plate 4 Agarose gel electrophoresis of PCR product from genomic DNA of 

Thekken and Karimunda using RA2 primers 

 



 

 

  

 

 

 

A- Template blank 

B- Thekken  

C- 100bp ladder  

D- Karimunda  

E- Primer blank 

 

Plate 5 Agarose gel electrophoresis of PCR product from genomic DNA of 

Thekken and Karimunda using RA3 primers 

 

 

 

 

A- Stage I (Karimunda) 

B- Stage II (Karimunda) 

C- Stage III (Karimunda) 

D- Stage I (Thekken) 

E- Stage II (Thekken) 

F- 100 bp ladder 

G- Stage III (Thekken)  

 

Plate 6 Agarose gel electrophoresis of PCR product from cDNA of Thekken and 

Karimunda from different developmental stages using Ubiquitin gene primers 

 



 

 

cDNA from different stages of spike development of ‘Karimunda’ and ‘Thekken’ 

showed no amplification with RAMOSA1 gene specific primers (Plate 7). When 

PCR was performed using primers designed for RAMOSA2 gene showed no clear 

amplification on agarose gel electrophoresis. Smear was obtained in stage II of 

‘Thekken’ while other stages of ‘Thekken’ and all stages of ‘Karimunda’ showed 

no amplification (Plate 8). 

RT-PCR produced a band of size of 450 bp in stage II of branching type of 

black pepper ‘Thekken’ with RAMOSA3 gene specific primers. Plate 9 shows 

differentially expressed band (Lane- F) in stage II of ‘Thekken’. There was no 

amplification in any other stages of ‘Thekken’ as well as ‘Karimunda’. 

4.6 SEQUENCING  

 Amplicons produced by the degenerate primers were eluted from the 

agarose gel and purified using Gel Extraction Kit, the eluted products were cloned 

and sequenced at RGCB, Thiruvananthapuram. Three sequences were obtained; 

two sequences were obtained from genomic DNA with RA2 primers (RA2F and 

RA2R) and one sequence from cDNA using RA3 forward primer). 

Sequences of the amplicons are given below:  

 1. Sequence of genomic DNA fragment amplified with RA2F primer 

>GDNA-RA2F-Forward primer (5’ to 3’) 

AGGGGGTAATTTTTTTACTCCCCAGAGAGTGAGGGAGGTGAAAAGGG

GGGCGACTTACCATTGGACTACATCCATCCAACCAAAAAAGTCACCCT

TTTCTTGTTCGTTCTTCGAATTACGCTGTGGAGACTAATTCCTTCCGGC

TAATGAAGAGACTACTCCAGTCTTCCCATTCATTCCAAGTGGATCCTTC

TTATTCCTAAGAATTGAACAAACCAAGTTCACCTATACGAGAGTGAGG

AAGACATTTCCAACAAGAAACTTCCTTTGATGTCCCGTTTGACGATTCG

ATTCCGCTAGTTTATAGAAACTCAGGAGAAGGACAGGGGTCGTCGCTA

GGTCAGAAAAGCGATAACTAAAAAATCTCCCCAAGTAGGATTTGAAC

CTACGACCAGTCAGTTAACAGCCGACCGCTCTACCACTGAGCTACTTC

ATGCGGAACCACCAAA 
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 2. Sequence of genomic DNA fragment amplified with RA2R primer 

>GDNA-RA2R-Reverse primer (5’ to 3’) 

CGGATTGGGTTGGCTGTTACTGACTGGTCGTAGGTTCAAATCCTACTTG

GGGAGATTTTTTAGTTATCGCTTTTCTGACCTAACGACGACCCCTGTCC

TTCTCCTGAGTTTCTATAAACTAGCGGAATCGAATCGTCAAACGGGAC

ATCAAAGGAAGTTTCTTGTTGGAAATGTCTTCCTCACTCTCGTATAGGT

GAACTTGGTTTGTTCAATTCTTAGGAATAAGAAGGATCCACTTGGAAT

GAATGGGAAGACTGGAGTAGTCTCTTCATTAGCCGGAAGGAATTAGTC

TCCACTAGCGTAATTCGAAGAACGAACAAGAAAAGGGTGACTTTTTTG

GTAGGATGGATGTAGTCCAATGGCTAAAGCTCTGCCAGCTTCTTGTAG

ACTGGCAGTCTCCGAGTTGTTGCTGGTGCTCCAAAA 

 

 

 3. Sequence of cDNA fragment amplified with RA3F primer 

>cDNA-RA3F-forward primer (5’ to 3’) 

ATGAAATTTTGCTTTTCATCCTCTCCTTAACTTGCTTATGTAACTTCTTC

ACCAAATCTGCCTTAGAATTAGCATCAACACTCACAAAATTGTTAGGT

GGCAATGGCAATAAATCAATAGGGGTGAGTGGATTAAAACCATAAAC

AATCTCAAATGGAGAACAATGAGTAGTGCTATGAATAGCCCTATTGTA

AGCAAACTCCACAAATGGTAAACAATCCTCCCATGTCCTAATGTTCTTT

TCTATGATTGCACTAAGCAAAGTAATCAAAGTCCTATTAACTACTTCA

GTTTGCCCATCTGTTTGAGGGTGACAAGTAGTTGAAAATAATAGCTTA

GTTCCTAACTTTCCCCACAACACACGCCAAAAATGACTCAAAAACTTA

ACATCACTATCTGCTTCCCACAGG 
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A- Stage I (Karimunda) 

B- Stage I (Thekken) 

C- Stage II (Karimunda) 

D- Stage II (Thekken) 

E- Stage III (Karimunda) 

F- Stage III (Thekken), 

G- 100 bp ladder 

 

 

Plate 7 Agarose gel electrophoresis of PCR product from cDNA of Thekken and 

Karimunda from different developmental stages using RA1 gene primers 

 

 

 

 

A- Stage I (Karimunda) 

B- Stage I (Thekken) 

C- Stage II (Karimunda) 

D- Stage II (Thekken) 

E- 100 bp ladder 

F- Stage III (Karimunda) 

G- Stage III (Thekken) 

 

Plate 8 Agarose gel electrophoresis of PCR product from cDNA of Thekken and 

Karimunda from different developmental stages using RA2 gene primers 

 

 

 



 

 

 

 

 

 
  

A- Stage I (Karimunda) 

B- Stage II (Karimunda) 

C- Stage III (Karimunda) 

D- 100bp ladder 

 

E- Stage I (Thekken) 

F- Stage II (Thekken) 

G-Stage III (Thekken) 

 

 

Plate 9 Agarose gel electrophoresis of PCR product from cDNA of Thekken 

and Karimunda from different developmental stages using RA3 gene primers 

 

 

 

 

 

 

 

 



 

 

4.7 ANALYSIS OF THE AMPLIFIED SEQUENCE 

The sequences of the amplicons obtained with RA2 and RA3 primers were 

analysed using bioinformatic tools viz., TBLASTX, BLASTN, Clustal Omega and 

NCBI Conserved Domain Search. 

4.7.1. Sequences obtained from genomic DNA with RA2 primers 

Two sequences (GDNA-RA2Fand GDNA-RA2R) obtained from genomic 

DNA were analysed (Forward and reverse primer) using above mentioned tools. 

1. TBLASTX 

TBLASTX is a BLAST program which searches translated nucleotide 

database using a translated nucleotide query. Amplicon of RA2 with RA2F primer 

gave 2031 hits and with RA2R gave 2487 hits (Plate 10a and 10b) when searched 

against non-redundant database. The results for RA2F primer showed best match 

with sequence from chromosome 3B of Triticum aestivum with E-value of 1e-31 

and 94% query cover. For sequence obtained with RA2R primer best match was 

with mitochondrial genome of Phoenix dactylifera with 98% query cover and E-

value of 2e-31. 

2. BLASTN 

Sequence obtained using RA2F primer showed from 121 hits and 

sequence obtained with RA2R primer showed 109 hits when searched using 

BLASTN tool. Best hit result for both sequences was NADH dehydrogenase 

subunit 2 (nad2) gene from Parinari campestris with 83% query cover and E-

value of 2e-93 reported at NCBI database. Output files of BLASTN are shown in 

Plate 11a, 11b and Plate 12a, 12b. 

3. NCBI Conserved Domain Search 

This uses nucleotide query and finds the conserved domain for which the 

query sequence belongs to. No conserved domains were found in both sequences 

obtained using RA2 primers. 
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Plate 10a Screenshot showing the result of TBLASTX of sequence obtained 

with primer RA2F of RA2 gene 

 

 



 

 

 

 

 

 

 

 

 
 

Plate 10b Screenshot showing the result of TBLASTX of sequence obtained 

with primer RA2F of RA2 gene 

 

  



 

 

 
 

Plate 11a Screenshot showing the result of TBLASTX of sequence obtained 

with primer RA2R of RA2 gene 

 

  



 

 

 

 

 

 

 
 

Plate 11b Screenshot showing the result of TBLASTX of sequence obtained 

with primer RA2R of RA2 gene 

 

  



 

 

 
 

Plate 12a Screenshot showing the result of BLASTN of sequence obtained with primer 

RA2F of RA2 gene 

 

 
 

Plate 12b Screenshot showing the result of BLASTN of sequence obtained 

with primer RA2F of RA2 gene 



 

 

4.7.2 Sequence obtained using RA3 primer- RA3F (cDNA) 

1. TBLASTX  

Amplicon of RA3 primers gave 3574 hits (Plate 13a and 13b) when 

searched against non-redundant database. The results show the uncharacterised 

protein. The best match was with chromosome 8 of Cucumis melo with 99% 

query cover and E-value of 1e-56. 

2. BLASTN 

With BLASTN, 52 hits (Plate 14a and 14b) were obtained and best hit was 

contig sequence from Vitis vinifera with 70% query cover and E-value of 7e-52. 

Sequence showed similarity to uncharacterized mRNA sequence from Brassica 

napus with 60% query cover and E-value of 3e-41. 

3. CLUSTAL OMEGA  

Clustal Omega analysis showed 39.21 and 40.94 percent identity (Table 7) 

with the reported sequences of RA3 of Zea mays and Vitis vinifera in the NCBI 

database, and these two reported sequences among themselves showed 61.30 

percent identity. An alignment of sequences is shown on Plate 15. 

Table 7 Percent Identity Matrix ‐ created by Clustal2.1 

SR564‐8‐F_H10 100.00  39.21 40.94 

gi|162459858|ref|NM_001112394.1| 39.21  100.00 61.30 

gi|787035541|dbj|LC037416.1| 40.94  61.30 100.00 
 

4. NCBI Conserved Domain Search 

On CDD search, the presence of an integrase core domain was revealed in 

the sequence obtained (Plate 16). The specific hit obtained was located at 269 and 

382 bases interval near to the 3’ end. CDD search showed E-value of 3.06e-05 for 

integrase core domain obtained. 
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Plate 13a Screenshot showing the result of BLASTN of sequence obtained 

with primer RA3F of RA3 gene 

 

 
 

Plate 13b Screenshot showing the result of BLASTN of sequence obtained 

with primer RA3F of RA3 gene 

  



 

 

 

 
Plate 14a Screenshot showing the result of TBLASTX of sequence obtained 

with primer RA3F of RA3 gene 

 

  



 

 

 
 

Plate 14b Screenshot showing the result of TBLASTX of sequence obtained 

with primer RA3F of RA3 gene 

 

 
 

Plate 15 Screenshot showing the result of Multiple sequence alignment of 

sequence obtained with primer RA3F of RA3 gene and RA3 gene sequences 

available in database 
 



 

 

 

 

Plate 16 Screenshot showing the result of Conserved domain database search of sequence 

obtained with primer RA3F of RA3 gene 
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5. DISCUSSION 

 A mutant of black pepper (Piper nigrum L.) type ‘Thekken’ reported from 

Idukki district of Kerala shows altered inflorescence architecture with remarkable 

spike branching character. As branching is a trait of high economic value that can 

contribute to increase in yield, the study entitled “Analysis of differential 

expression of genes determining inflorescence architecture in black pepper (Piper 

nigrum L.) type ‘Thekken’” was carried out to analyze the trait at the genomic 

level and at different stages of spike development at the transcriptome level in 

‘Thekken’ and a non-branching variety ‘Karimunda’. The study was carried out at 

the Department of Plant Biotechnology, College of Agriculture, Vellayani during 

2014-2016. Discussions pertaining to this study are discussed in this chapter. 

5.1 DNA ISOLATION  

Genome is specific to respective organism and DNA-based techniques are 

used in differentiating the varieties, identifying genes and for marker assisted 

selection (Kaur et al., 2015). Quality of isolated DNA is an important factor, as it 

can affect molecular techniques (Henderson et al., 2013). Isolating good quality 

DNA from black pepper is challenging due to the presence of a large amount of 

polyphenolic compounds, polysaccharides and other secondary metabolites 

(Dhanya et al., 2007). 

In the present study, DNA was isolated from young leaves of black pepper 

using modified CTAB extraction protocol reported by Subba et al. (2014). Plate 4 

shows the 1 % (w/v) agarose gel electrophoresis of isolated DNA. Gel picture 

showed no contamination of RNA. Any degradation occurring during the DNA 

preparations can be easily viewed as smearing or indistinct bands. Presence of 

single distinct DNA bands in Plate 4 indicated good quality DNA. 

Smith et al. (1991) reported that increase in CTAB and NaCl 

concentrations increase the yield of cellular DNA. CTAB is generally used as a 

detergent to separate out polysaccharides with higher concentration of NaCl (Fang 

et al., 1992). In the present study, increased concentrations of CTAB (2.5% to 
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3%) and NaCl (1.5 M to 2.5 M) showed increase in DNA quantity. George et al. 

(2005a) isolated DNA from black pepper leaves by using the protocol reported by 

Doyle and Doyle (1990) with increased concentrations of CTAB (4%) and β-

mercaptoethanol (0.5%). Table 1 shows the spectrophotometric evaluation of 

DNA samples. The DNA yield ranged from 1300 ng/μl to 2800 ng/μl in different 

samples. 

Vimarsha et al. (2014a) isolated genomic DNA from eight black pepper 

varieties by using protocol reported by Doyle and Doyle (1990) and the 

absorbance ratio A260/A280 ranged between 1.71 and 1.88 indicating good 

quality of DNA. Subba et al. (2014) modified this protocol (Doyle and Doyle, 

1990) to isolate genomic DNA from mature spikes and berries of black pepper 

and the absorbance ratio of A260/A280 ranged between 1.7 and 2.2. In the present 

study, DNA was isolated by using protocol reported by Subba et al. (2014) with 

minute modifications and the absorbance ratio, A260/A280 of the DNA samples 

from ‘Thekken’ and ‘Karimunda’ ranged between 1.63 and 1.83 which indicated 

good quality DNA. 

In this study, the DNA was hooked out using wide bore pipette after 

addition of isopropanol. This step reduced the contaminants precipitating along 

with DNA during centrifugation. The present protocol used for DNA isolation 

from leaves of black pepper also yielded good quantity of DNA.  

5.2 RNA ISOLATION 

In the present study, high quality total RNA was successfully isolated from 

different developmental stages of spikes of black pepper (‘Karimunda’ and 

‘Thekken’) by using Trizol reagent. Plate 5 shows the 1.8 % (w/v) agarose gel 

electrophoresis of isolated RNAs. Distinct 28S, 18S and 5S eukaryotic ribosomal 

RNA bands were viewed on ethidium bromide stained agarose gel. Ribosomal 

RNA represents more than 90% of the total RNAs (Asif et al., 2000). Any 

degradation occurring during the RNA preparations can be easily viewed as 
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smearing or indistinct bands. Presence of distinct ribosomal RNA bands in Plate 5 

indicated good quality of RNA without any degradation. 

In the present study, use of PVP and β-mercaptoethanol during extraction 

process increased the yield of RNA. Table 2 shows the spectrophotometric 

evaluation of RNA samples. The RNA yield ranged from 1200 ng/μl to 2200 

ng/μl in different samples. George et al. (2005b) reported that use of PVP in 

strong denaturing buffer containing guanidinum thiocyanate yielded good quality 

RNA suitable for reverse transcription experiments. 

 Siju et al. (2007) isolated RNA from black pepper samples by using 

modified acid guanidium thiocyanate-phenol-chloroform protocol and found that 

use of sodium sulphite in RNA extraction buffer increases the quality and yield of 

total RNA and also the sensitivity of virus detection by RT-PCR. 

 The purity of isolated RNAs was determined by the absorbance ratio 

A260/A280 (Logemann et al., 1987; Manning, 1990) and it ranged between 1.7 

and 2.2. This ratio suggested less contamination of protein substances during 

RNA preparations (Gehrig et al., 2000). RNA was hooked out using wide bore 

pipette after addition of isopropanol. This step reduced the contaminants 

precipitating with RNA during further centrifugation. 

5.3 PCR ANALYSIS 

PCR was performed with genomic DNA to detect the presence of 

RAMOSA family genes in black pepper. DNA isolated from leaves of black 

pepper mutant type ‘Thekken’ and control variety ‘Karimunda’ was used as 

template for PCR.  

When PCR was performed using degenerate primers designed for RA1 and 

RA3 genes, multiple bands were obtained on agarose gel electrophoresis. RA1 

gene primers amplified four bands, while RA3 gene primers amplified two bands 

in black pepper genome in both ‘Thekken’ and ‘Karimunda’. Non-specific bands 

can sometimes occur when degenerate primers are used in PCR (Nix et al., 2006). 
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Multiple bands obtained may be due to degeneracy of the primers or presence of 

primer homologous sequences in black pepper genome. 

When PCR was performed using primers designed for RA2, only a single 

band was obtained. This primer pair was without any degeneracy. The single band 

obtained was cloned and sequenced for further analysis by assuming it as a RA2 

gene specific amplicon.  

Sequences obtained with RA2 gene primers showed best match with 

sequence from chromosome 3B of Triticum aestivum on BLASTN analysis and 

sequence from mitochondrial genome of Phoenix dactylifera on TBLASTX 

analysis. BLAST analysis of sequence of the amplicon did not showed any direct 

hit with RA2 sequences available at NCBI database. This can be due to diversity 

of RA2 gene sequence over different plants or lower specificity of primers to the 

gene.  

Vimarsha et al. (2014b) performed PCR with primers designed for TFL1 

gene of Arabidopsis and reported homolog of TFL1 gene in black pepper type 

‘Thekken’ and ‘Karimunda’. 

Vimarsha et al. (2014a) studied diversity among different black pepper 

varieties. In this study ‘Karimunda’ formed a separate cluster indicating the 

genomic diversity from ‘Thekken’. However, in present the study all genes 

showed no polymorphism in both varieties of black pepper i.e. all bands were 

present in both varieties with same molecular size. This indicates the relatedness 

of ‘Karimunda’ and ‘Thekken’ at amplified loci with gene specific primers.  

5.4 RT-PCR ANALYSIS 

Total number of genes in the genome of plant shows diversity in terms of 

expression levels, both temporally and spatially. Different genes controlling 

inflorescence development express at different developmental stages (Tanaka et 

al., 2013). In the present study, three stages of spike development were selected 

with 10 days interval and with specific length. Respective stages selected from 
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‘Thekken’ and ‘Karimunda’ were at same developmental stage by considering 

days after emergence of bud and length of spike at the time of collection.  

In the present study, we used RT-PCR to detect the presence and 

differential expression of RAMOSA family genes (viz., RA1, RA2 and RA3) in the 

spikes of black pepper ‘Thekken’ and ‘Karimunda’. RT-PCR was performed in 

two steps. Two step RT-PCR is easier to perform and has been used to detect 

multiple genes expressed in the same sample (Ravnikar et al., 2016). RT-PCR can 

be used for gene identification, quantitative expression of particular gene, tissue 

specific expression studies, and differential gene expression analysis (Simpson 

and Brown, 1995).  

Housekeeping genes are usually used to check intactness of cDNA. 

Housekeeping genes express continuously in the cell and these could be detected 

easily at any time and in any tissue of the plant. Different housekeeping genes 

(e.g. Ubiquitin, Actin, 18S rRNA etc.) have been used for confirming intactness of 

cDNA (Bansal and Das, 2013; Hemanth, 2014; Rayani and Nayeri, 2015).  

In the present study, intactness of cDNA was confirmed by using 

housekeeping gene Ubiquitin specific primers which yielded a PCR product of 

expected size (99 bp). 

5.4.1 Expression of RA1 and RA2 genes in black pepper 

RA1 and RA2 gene specific primers showed no amplification in cDNA of 

all stages of both ‘Thekken’ and ‘Karimunda’. Absence of amplification may 

indicate the absence of expression of RA1 and RA2 genes in selected stages. 

RAMOSA genes are expressed usually at very early stage during development of 

inflorescence in ring like domain at the base of the branch meristem of maize 

(Booker et al., 2005; Snowden et al., 2005). Satoh-Nagasawa et al. (2006) found 

very high expression of RAMOSA genes in ears with uniform size at a growth 

stage of 2 mm length. In black pepper, RAMOSA family genes may express very 

early during development of inflorescence. Another reason for no amplification of 

RA1 and RA2 in cDNA can be absence of homologous regions selected for primer 
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designing. McSteen (2006) reported absence of RA1 in Arabidopsis plant, whereas 

Kellogg (2007) reported absence of RA1 and RA3 but presence of SRA in rice. 

Koppolu et al. (2013) found that ortholog or homolog of RA1 is missing in barley. 

In Vitis vinifera, Ishiai et al. (2016) reported the presence of all the RAMOSA 

homolog genes and their expression in grape inflorescence. These reports may 

indicate the diversity and evolution of RAMOSA genes over different plant groups 

and their involvement in the evolution of inflorescence morphogenesis. 

5.4.2 Differential expression of RA3 specific sequence in type ‘Thekken’ 

 RT-PCR yielded an amplicon of size 450 bp in stage II of mutant black 

pepper type ‘Thekken’ and it was absent in all stages of control variety 

‘Karimunda’. RA3 gene in maize and homolog of RA3 (OsSRA) in rice is reported 

to show highly localized expression pattern at the base of inflorescence branches 

(Satoh-Nagasawa et al., 2006). The differential expression pattern in the present 

study may indicate the involvement of RA3 amplicon in inflorescence 

development in black pepper. Expression of the amplicon needs to be checked in 

different stages of spike development in black pepper control variety ‘Karimunda’ 

to confirm the actual time of expression in normal spike development.  

In the present study, amplicon obtained in branching inflorescence of 

black pepper type ‘Thekken’ indicate a possible role of RA3 in spike branching in 

black pepper. 

5.4.3 Diversity of RA3 gene 

BLAST analysis of sequence of the RA3 specific amplicon did not showed 

any direct hit with RA3 sequences available at NCBI database. BLASTN analysis 

of the sequence obtained showed similarity with uncharacterized mRNA sequence 

from Brassica napus while TBLASTX analysis showed similarity with 

uncharacterised sequence from Cucumis melo. This can be due to diversity of RA3 

gene sequence over different plants or lower specificity of primers to the gene. 
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To know the diversity among RAMOSA3 gene sequences available at 

NCBI database, we compared two RAMOSA3 gene sequences of Zea mays and 

Vitis vinifera by using clustal omega and found that these sequences contain only 

61.30 percent identity. Sequence obtained with RA3 primers showed 39.21 and 

40.94 percent identity with the reported sequences of RA3 of Zea mays and Vitis 

vinifera respectively. Further sequence analysis with CDD search showed 

presence of integrase core domain which is absent in RA3 gene sequences 

available at NCBI database. Presence of integrase core domain can be a possible 

reason for reduced percent identity of the amplicon obtained. 

A homolog of RA3, named SISTER OF RAMOSA3 (SRA), has been 

identified in barley (HvSRA) (Koppolu et al., 2013) and related grasses (Satoh-

Nagasawa et al., 2006). This may indicate RA3 gene sequence is widely 

diversified in different plants. 

5.4.4 Presence of integrase core domain in RA3 primer amplicon 

Presence of integrase core domain in the sequence obtained with RA3 gene 

primers is another important finding from the present study. Integrase core domain 

is important domain of Integrase enzyme, which carries out integration of a DNA 

copy of the viral genome into the host chromosome (Dyda et al., 1994). These 

domains are particularly abundant in plant genomes and are intimately involved in 

the evolution of genome structure and size (Feschotte et al., 2002; Vitte and 

Panaud, 2005). 

Presence of integrase core domain has been reported in transposable 

elements. Every prokaryotic and eukaryotic genome contains transposable 

elements and which exert a complex mutagenic activity that leads to changes in 

chromosome architecture, generation of new regulatory networks and increases in 

the protein collection (Feschotte, 2008; Bourque, 2009; Shapiro, 2010). On the 

basis of structural-functional characteristics, transposable elements have been 

separated into two major classes each comprising subclasses or orders, 

superfamilies, families and subfamilies (Kapitonov and Jurka, 2008; Wicker et al., 
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2010). Among the most widespread retrotransposons are the LTR superfamilies 

Gypsy and Copia, which include two ORFs coding for the structural virus-like 

protein GAG and the reverse transcriptase (RT)/integrase (INT) enzyme POL 

(Neumann et al., 2003; Havecker et al., 2004; Amyotte et al., 2012; Santana et al., 

2014). 

Retroviral integration of integrase core domain in differentially amplified 

band obtained with RAMOSA3 gene primers can be a possible reason for the 

altered inflorescence architecture in the novel mutant variety of black pepper 

‘Thekken’. 

  

45 



 

 

 

 

 

 

 

 

 

 

 

 

 

SUMMARY 

  



 

 

6. SUMMARY 

The project entitled “Analysis of differential expression of genes 

determining inflorescence architecture in black pepper (Piper nigrum L.) type 

‘Thekken’” was conducted at the Department of Plant Biotechnology, College of 

Agriculture, Vellayani during 2014-2016, with the objective to detect the presence 

and differential expression of RAMOSA family genes (RA1, RA2 and RA3) and 

analyse their influence in contributing to the branching trait in black pepper (Piper 

nigrum L.) type ‘Thekken’. 

A mutant of black pepper (Piper nigrum L.) type ‘Thekken’ reported from 

Idukki district of Kerala shows altered inflorescence architecture with remarkable 

spike branching character. As branching is a trait of high economic value that can 

contribute to increase in yield, a study was carried out to analyze the trait at 

molecular level. Screening using degenerate primers designed for RAMOSA 

family genes, reported to contribute to branching trait in other crops, was carried 

out in ‘Thekken’ and a non-branching variety ‘Karimunda’ at the genomic level 

and at different stages of spike development at the transcriptome level.  

Samples used in the study viz., leaves and spikes of black pepper type 

‘Thekken’ and the control non branching variety ‘Karimunda’ were collected 

from farmer`s field. Genomic DNA was extracted from the leaf samples and RNA 

was extracted from the spikes at three different stages of development (Stage I - 1 

cm; Stage II - 4 cm and Stage III - 9 cm). Methods used for nucleic acid 

extractions yielded good quality DNA and RNA. Value of A260/A280 for DNA 

samples ranged between 1.52 and 1.83 and the yield of DNA ranged between 

1300 ng/μl to 2800 ng/μl. For RNA, value of A260/A280 ranged between 1.76 and 

2.27 and the yield of RNA ranged between 1200 ng/μl and 2200 ng/μl 

Degenerate primers were designed for RA1, RA2 and RA3 genes using 

Primer3 and Oligocalc tools and these primers were used for screening at the 

genome and transcriptome level by PCR and RT-PCR. The amplicons obtained 

were resolved on agarose gel. At genomic level, a band of size 450 bp was 
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obtained for RA2 primers, whereas RA1 primers produced four bands (600 bp, 550 

bp, 400 bp and 200 bp) and RA3 primers produced two bands (650 bp and 450 

bp). There was no difference in the banding profile in ‘Thekken’ and 

‘Karimunda’. The RA2 specific band (450 bp) obtained in ‘Thekken’ was 

sequenced and analysis with TBLASTX showed similarity with sequence from 

chromosome 3B of Triticum aestivum with E-value of 1e-31 and 94% query 

cover. When sequence was analysed using BLASTN it showed similarity with 

NADH dehydrogenase subunit 2 (nad2) gene of Parinari campestris with 83% 

query cover and E-value of 2e-93. On CDD search, no conserved domains were 

found in both sequences obtained using RA2 primers. 

On screening the cDNA, the primers designed for RA1 and RA2 gene 

showed no amplification in both ‘Thekken’ and ‘Karimunda’. However, the 

primers designed for RA3 gene showed differential expression in Thekken and 

‘Karimunda’. A band of size 450 bp was obtained in stage II of the spike of 

‘Thekken’, whereas no amplification was obtained in the ‘Karimunda’ variety. 

The amplicon obtained using RA3 primer was cloned and sequenced.  

Analysis of the RA3 specific sequence using TBLASTX showed best 

match with chromosome 8 of Cucumis melo with 99% query cover and E-value of 

1e-56 and BLASTN analysis showed similarity to uncharacterized mRNA 

sequence from Brassica napus with 60% query cover and E-value of 3e-41. 

Clustal Omega analysis showed 39.21 and 40.94 percent identity with the reported 

sequences of RA3 of Zea mays and Vitis vinifera while these two sequences 

among themselves showed 61.30 percent identity. Conserved domain database 

(CDD) search revealed the presence of an integrase core domain in this sequence.  

All the three sequences obtained with RA2 and RA3 primers have been 

deposited in the NCBI database as ‘Floral architecture related sequence isolated 

from branching type black pepper’ (Accession numbers: KX518738, KX518739 

and KX518740). 
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The present study is the first report of the presence of an integrase core 

domain in the genome of black pepper. Differential amplification of cDNA of 

stage II from ‘Thekken’ and ‘Karimunda’ with RA3 primers suggests that altered 

expression of the region under study may play a role in the induction of spike 

branching in ‘Thekken’. The presence of the integrase core domain also suggests 

a possible role of retroviral integration in differential expression. 
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APPENDIX I 

CTAB Extraction Buffer 

C-TAB   3 % 

Tris- HCl (pH 8.0)  150 mM 

EDTA    50 mM 

NaCl    2.5 M 

β-mercaptoethanol  0.2 % (v/v)        freshly added prior to DNA  

PVP    3 % (w/v)        extraction 

 

APPENDIX II 

TAE Buffer (5X) for 1 liter solution 

Tris base  242 g         

Acetic acid  57.1 ml      

0.5 M EDTA (pH 8.0)  100 ml       
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ABSTRACT 

The project entitled “Analysis of differential expression of genes 

determining inflorescence architecture in black pepper (Piper nigrum L.) type 

‘Thekken’” was conducted at the Department of Plant Biotechnology, College of 

Agriculture, Vellayani during 2014-2016. The objective of the study was to detect 

the presence and differential expression of RAMOSA family genes (RA1, RA2 and 

RA3) that determine the inflorescence architecture and to analyse their influence 

on the branching trait in black pepper (Piper nigrum L.) type ‘Thekken’. 

Samples used in the study viz., leaves and spikes of black pepper type 

‘Thekken’ and the control non branching variety ‘Karimunda’ were collected 

from farmer`s field. Genomic DNA was extracted from the leaf samples and RNA 

was extracted from the spikes at three different stages of development (Stage I -   

1 cm; Stage II - 4 cm and Stage III - 9 cm). Methods used for nucleic acid 

extractions yielded good quality DNA and RNA.  

Degenerate primers were designed for RA1, RA2 and RA3 genes using 

Primer3 and Oligocalc tools and these primers were used for screening at the 

genome and transcriptome level by PCR and RT-PCR respectively. The 

amplicons obtained were resolved on agarose gel. At genomic level, a band of 

size 450 bp was obtained for RA2 primers, whereas RA1 primers produced four 

bands (600 bp, 550 bp, 400 bp and 200 bp) and RA3 primers produced two bands 

(650 bp and 450 bp). There was no difference in the banding profile in ‘Thekken’ 

and ‘Karimunda’. The RA2 specific band (450 bp) obtained in ‘Thekken’ was 

sequenced and showed similarity with NADH dehydrogenase subunit 2 (nad2) 

gene of Parinari campestris. 

On screening the cDNA, the primers designed for RA1 and RA2 genes 

showed no amplification in both ‘Thekken’ and ‘Karimunda’. However, the 

primers designed for RA3 gene showed differential expression in ‘Thekken’ and 

‘Karimunda’. A band of size 450 bp was obtained in stage II of the spike of 
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‘Thekken’, whereas no amplification was obtained in the ‘Karimunda’ variety. 

The amplicon obtained using RA3 primer was cloned and sequenced.  

Analysis of the RA3 specific sequence using tBLASTx showed best match 

with fragment of chromosome 7 of Cucumis melo and BLASTn analysis showed 

similarity to uncharacterized mRNA sequence from Brassica napus. Clustal 

Omega analysis showed 39.21 and 40.94 percent identity with the reported 

sequences of RA3 of Zea mays and Vitis vinifera while these two sequences 

among themselves showed 61.30 percent identity. Conserved domain database 

(CDD) search revealed the presence of an integrase core domain in this sequence.  

All the three sequences obtained with RA2 and RA3 primers have been 

deposited in the NCBI database as ‘Floral architecture related sequence isolated 

from branching type black pepper’ (Accession numbers: KX518738, KX518739 

and KX518740). 

The present study is the first report of the presence of an integrase core 

domain in the genome of black pepper. Differential amplification of cDNA of 

stage II from ‘Thekken’ and ‘Karimunda’ with RA3 primers suggests that altered 

expression of the region under study may play a role in the induction of spike 

branching in ‘Thekken’. The presence of the integrase core domain also suggests 

a possible role of retroviral integration in differential expression. 
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