# STANDARDISATION OF INDẸX LEAF/LEAVES FOR ASSESSING the nutritional status of clove in relation to soil fertility 

By<br>D. GNANADAS, B.Sc. (Hort.)



THESIS
Submitted in partial fulfilment of the requirement for the degree
Master of Science in Agriculture
Faculty of Agriculture
Kerala Agricultural University

DEPARTMENT OF SOIL SCIENCE AND AGRICULTURAL CHEMISTRY COLLEGE OF AGRICULTURE

Vellayani - Trivandrum,
"You will have to work hard and sweat to make the soil produce anything until you go back to the soil from which you were formed"

Genesis. 3 : 19

Dedicated to
MY LOVING PARENTS

## decinanaion

I hereby declare that this thesis entitled "standendsertion of index leaf/ heaves for assessing the nutritional status of clove in relation to sod l fertility" is a bonalicie record of research work done by me during the course of research and that the thesis hos pot been previausiy formed the basis For the sward to me any dore, diploma, assoclatom ships fellowship or other similar title of any other University or Society.

VBLLAKAMI.
23th April. 1989.


## iii

## CERTIFICATE

## Certified that this thesis entitled

Standardisation of index leaf/leaves for assessing the nutritional status of clove in relation to soil fertility" is a record of research work done independently by Sri. D. Gnanadas under my guidance and supervision and that It has not been previously formed the basis for the award of any degree, fellowship or associateship to him.

Vellay̆ani, 28th April, 1989


## Approved by

## CHAIRMAN

MEMBERS


External Examiner


I whis to place my deep sense of gratitude and hoartfelt thanks to

- Professor abdul Hameed: Project Leader. Department of Agricultural Electronics and Chaiman of the Advisory Comittee for suggesting the problem and guiding me expertisely through out the courge of my studies.
- DroReScAiyer. Drofessor and Head. Department of soil Science and Agricultural Chemigtry and Aember of the Advisory Comattee for having given mo valuable euggention and guidance to take up the programe and also for the constant encouragements given through out the studies.
- Dr. N.Mohanakumaran, Assoc. Director. NARP (Southern Region) and Member of the Adrisory Committee for his constructive idess, positive suggostions and also guidance.
- Dr.S.Rushkala, Assoc. Professor, Department of Soll Science and Agricultural Chemistry and Member of the Advisory Comittee for the encouragements given during the course of the studies.
- My brother, Sri.D.Clarson, Ph.D. Scholar, Department of Soil Science and Agricultural Chemistry. Tamil Nadu Agricultural Univeraity. for the constant encouragement given to me and also for the speedy execution of this thesis.
- Sri.p.prabhakaran, Professor, Department of Agricultural statistics for helping me in the atatistical scrutiny of the data through computer.
- Mias. Mercy Kutty Joseph, Fh.D. Scholar, Dept. of soil science and Agricultural Chemistry, Tamil Nadu Agricultural University for the kind help rendered for the proparation of the manuscript.
- Sri.P.Suseelen, Fommer Director of Agriculture and Sri.h.L.Rose, Additional Director of Agriculture for having kind enough to depute me for the post graduate studies.
- My father-in-law Sri.S.Sarjanam, for his keen intarest and sincere efforts taken for my studies.
- Miss.mini Mani, Agricultural officer, for the encouragements given to me for the completion of the thesis.

My brother-in-laws, sisters, all my family
members and friends for their good wishes and prayers for the successful completion of the studies, and

- Lastly but not the least to my wife and pon for their kind co-operation and prayerful wishes extended to me through out my studies.



## V11

## CONPEMIS

Chapter Page
INTRODUCIION ..... 1
REVIEN OF LIIERAIURE ..... 4
MATERIALS AND MEHEHODS ..... 15
RESULIS ..... 27
DISCUSSION ..... 141
SUMMARY ..... 166
REEERENCES ..... 172

## IIST OE TABLES

TABLE PAGE
10 ..... HO

1. Phyelco-chemical properites of the ..... 28 representative soils of the four locations
2. Soil fertility statas in relation ..... 33 to arailable putrients at Vithura
3. Solls fertility statue in relation ..... 36 to available mutrients at Patton
4. Soli fertility status in relation ..... 40 to available nutrients at Vellayant
5. Soil fortility status in relation ..... 43 to arallable nutrients at Kulase- kharen
6. Nitrogen concentration in leaf at ..... 47 Vithura
7. Mitrogen concentration in leaf at ..... 49 pattom
8. Nitrogen concentration in leaf at ..... 52 Vellayani
9. Mitrogen concentration in leaf at ..... 54 Kulasekharan
10. Phosphorus concentration in leaz at ..... 56 Vithura
11. Phosphorus concentration in leaf at ..... 58 pattom
12. Phosphorus concentration in Ieaf at ..... 60 Vellayani
13. Phosphoris corcentration in leaf at ..... 62 Kulmsekharam
14. Potassium concentration in leaf at ..... 63 Vithura

> LIST OE TAELES (COMID..)
TAELE PAGENO.KO.
15. Potessium concentration in leaf at ..... 65 pattom
16. Potassium concentration in leaf at ..... 67 Vellayani
17. Potassium concentration in leaf at ..... 69 Kulasekharan
18. Calcium concentration in leaf at ..... 71 Vithura
19. Calcium concentration in leaf at ..... 73 Patton
20. Calcium concentration in leaf at ..... 75 Vellayeni
21. Calcium concentration in leaf at ..... 76 Kulasekharam
22. Hegneaium concentration in leaf at ..... 78 Vithura
23. Megnesiun concentration in leaf at ..... 81 Pattom
24. Magnestum Concentration in leat at ..... 83 Vellayant
25. Magnesium concentration in leaf at ..... 85 Kulasekharam
26. Copper concentration in leaf at ..... 87 Vithura
27. Copper concentration in leaf at ..... 91 patton
28. Copper concentration in leaf at ..... 96 Vellayani
29. Copper concentration in leaf at ..... 100 Kulasekharem
30. Manganese concentration in leaf at ..... 88 Vithura

## LIST OF TAELES (CONTD..)

| $\begin{aligned} & \text { TABLE } \\ & \text { ND } \end{aligned}$ |  | $\begin{aligned} & \text { PAGE } \\ & \text { MO } \end{aligned}$ |
| :---: | :---: | :---: |
| 32. | Manganese concentration in leaf at pattom | 92 |
| 32. | Manganese concentration in leaf at Vellayani | 97 |
| 33. | Manganese concentration in leaf at Kulasekharam | 101 |
| 34. | Zinc concentration in leaf at Vithura | 89 |
| 35. | Zinc concentration in leaf at pattom | 93 |
| 36. | zinc concentration in leaf at Vellayani | 98 |
| 37. | zinc concentration in leaf at Kulasekharan | 102 |
| 38. | Correlation coefficients ( $x$ ) between soll available $N$ and leaf N | 105 |
| 39. | Correlation coefficients (r) between soil available $P$ and leaf $P$ | 108 |
| 40. | Correlation coefficients ( I ) botween soll available $K$ and leaf K | 112 |
| 41. | Correlation coefficients ( 5 ) between soil available ca and leaf ca | 116 |
| 42. | Correlation coefficients (x) betweea soil available Mg and leaf Mg | 120 |
| 43. | Correlation opefficients ( $x$ ) between soil DTPA Gu and leaf Cu | 123 |

## LIST OF TABLES (OONFD..)

TABLE ..... PAGE
NO ..... NO
44. Correlation ooefficients (r) ..... 126 between soil DTPA Mn and Leaf Mn
45. Correlation coefficients (r) ..... 128 betwean soil DTPA $2 n$ and lear Zn
46. Yield data of dried flower buds ..... 131
47. Correlation coerficients between ..... 133 leaf nutrient concentrations and the Field

## LIST OF FIGURES

| $\begin{gathered} \text { FIGURE } \\ \text { NO } \end{gathered}$ | TITLE | $\begin{aligned} & \text { PAGE } \\ & \text { NO } \end{aligned}$ |
| :---: | :---: | :---: |
| 1. | Relationship between leaf N content of top (Wi) and the yield at Vithura | 135 |
| 2. | Relationship between leaf $p$ content of bottom (w1) and the yield at Kulasekharam | 136 |
| 3. | Relationship between leaE $K$ content of top (W1) and the yield at Kulasekharam | 137 |
| 4. | Relationship between leaf Ca content of bottom (w3) and the yield at Vithura | 138 |
| 5. | Relationsh1p between leaf Mg content of top (W3) and the yield at Kulasekharam | 139 |

## LIST OF PLATES

PLATE TITLE PAGE
NO. ..... NO

1. Clove tree indicating different ..... 19 regions viz.. top, midde and bottom
Fome
2. Branchlet of clove plant showing ..... 20
different whorls viz ..... $W_{1}, W_{2}$
and $W_{3}$

Clove, Syzyotum aromaticum Syn. Eucenia earyphylins. is one of the most ancient and valuable species of the orient and holds a unique position in the international spice trede. In India, clove was introduced around 1800 A。D. by the East India Company. The important clove growing regions in India are Nilgiris, Tiruneiveli, Kanyakumari and Rananathapuram districts of Tarail Nadu, Calicut, Kottayam, Quilon and Trivandrum districts of Kerala and South Kanara district of Karnataka. Kerela has the largest area with 596 he under clove (Amon, 1979).
since the production in the country is insufficiant to meat the domestic demand, cloves worth pu. 15 lakhe are imported apmully to India from other countries like Zanzibar and Pamba. It has been eatimated that the area under clove has to be increased to about 4000 ha, to meet the internal demand. The long pre-bearing age, lack of scientific knowledge on the culture of the crop and dearth of reliable planting material, seem to have stood in the way of its large scale cultivation.

In India, it is grown in loany soil rich in human. Reaponses to fertilizers have been obsorved in many of the clove growing countrias, such as Indonesia, Zanaibar,

Madagascar etc. Though clove is a highly priced spice, not much work has been done in increasing its productivity. Being seed propagated, clove exhibits tremendous plant to plant variation: This variation, at present, is not taken into account while making the fertilizer recomendations. Further, studies on the mineral nutrient requirement of this crop in India is very limited.

Clove, being a perennial crop, soil analysis alone may not provice a comprehenaive picture of the fertilizer requirement of the crop. Foliar diagnosis has to be coupled with soil analysis for correct interpretation. In this context, establishment of index leaf/leaves for the essential nutrients would pave way for accounting individual variability and for making scientific fertilizer recommendations so that the production of this elite spice can be maximised.

The present study was initiated in order to shed some light on the above aspects with the following objectives.

1) To assess the fertility status of the clove growing soils and the nutritional status of the clowe plants growing on them.
2) To establish the relationship between the soil nutrient content and the corresponding leaf nutrient concentrations.
3) To standardise the index leaf/leaves for assessing the nutritional status of the clove in relation to soll fertility.

REVIEW OF LITERATURE

## 2 RREVIEH OF LITERATURE

Studies on the nutritional aspects of clove in relation to soil fertility are meagre and the foliar content of different essential mutrients has been gaining more attention recently. Literature on these aspects are practically iimited. Even in the biggest clove produccing countries like Zanzibar, Madegascar and Indonesid. very few or nor work has been carried out on the lines of the present approach. The available references in relation to clove culture and similar aspects related to this study viz.. relationships between soil nutrients and leaf concentrations, follar analysis, soil analysis etc., are sumarised in this chapter.
2.1. SOIL ANALYGIS

For the officient and economic use of fertilizers. it is necessary to assess the requirement of each nutrient for any plant. The diagnostic methods primarily involved are soil enalysis and leaf analysis. Soil testing aims at assessing the fertilizer status of soil through guicic chemical tests. These tests give infomation on the potential of the soil to supply nutrients to plants.

Kowal (2959), from the analysis of soils under 14 year old cocoa plants in $N_{i}$ geria stated that the soil analysis may prove very useful in bringing out the causal factors of other growth problems, which are less obviously related to mutrition.

According to Pushpadas and Ahamed (1980). though routine soil testing gives some idea about the total quantity of available nutrient in the soil. it fails to give adequate information on the rate at which these nutrients would become available to rubber crops. It also does not take into account the availability of organic form of nutrient such as phosphorus. Sometimes the nutrient present in the 3011 may not become available to the plant because of adverse physicomenemical or biochemical properthes of soil which may not be evident from the routine soil testing. Hence these limitations of soil testing could be overcome by the use of leaf analysis.
2.2. FOLIAR ANALYSIS/FOLIAR DIAOGMOSIS

The concept of tissue analysis as aliagnostic technique for mineral deficiency in plants was given a rational and scientific footing (Lagatu and Maume,1926). Plant analysis has now come to be viewed as a satisfactory guide to nutrient status and nutritional requirements for optimal growth and yield of crops rather than an index of
soil fertility (Góodall and Gregory, 1947). The mutritional requirement of certain crops particulariy temperate and subtropical fruit crops, have been formulated suaing this technique (smith.1962). General principles of leaf analyais have been thoroughly reviewed by several outhors (Thomas, 1945; Goodall and Gregory. 1947s and Smith, 1962). This is specifically true with reference to fruit crops (Boynton and Compton, 1945).

Loue (1962), did chemical analyais of cocoo leaf from field plentations in the Ivory Coast and reported that In shaded plantations, a nitrogen concentration of 2.352.50 per cent was normal. normal phosphorus concentration was approximately 0.18 per cent. Potassium was considered deflcient when present in proportions of less than 1-2 per cent. Burridge et al. (1964), recorded the highest veriations in the concentration of nutrients in the leaves of cocoa. The same trend was also observed in cocoa by Murray and maliphant (1965). Santana and Igue (1979). also reported that the cocoa leaf nitrogen and potessium tended to decrease with leaf agê.

Pushpadas and Ahamed (1980). found that analysis of leaf samples collected from rubber plants observing the correct sampling techniques provided reliable information
on the state of the nutrient content of plants at the time of sampling. Based on the leaf analysis, they have given the critical leaf nutrient level for rubber plant as, below 3.00 per cent as low, 3-3.5 per cent as medium, above 3.5 per cent as high for nitrogen g below 0.2 per cent as low, 0.2 to 0.25 per cent as medium and above 0.25 per cent as high for phosphorus and below one per cent as low, 1-1.5. per cent as medium and above 1.5 per cent as high for potassium.

Annie (1982), reported that $M, P, K, C a$ and $M g$ content of cocoa leaves varied depending on the age of the leaf. In most of the cases, $P$ and $K$ status increased from the second to the third leaf and then decreased to the fourth leaf. Calcium and magnesium content tended to decrease with age. The petioles contained the highest concentration of $P, K, C a$ and $M g$ and the lowest concentreCion of N. The third leaf petiole was suggested as the ideal foliar diagnostic ample for cocoa plant irrespecfive of soil type.
2.3. SOIL NUTRIEITT Vs. LEAF NUTRIENT

Hardy et al. (1935). stated that the relationship that existed between the plant and its environment were not simple, and factors other than nutrient supply
might affect the growth and composition of the plant. Schroo (1960), compared the results of soil analysis with those obtained from leaf analysis and used it as a guide to the nutritional demands of young cocoa. He observed closest relationship between soil phosphorus and magnesium with that of leaves and also found that agreement between leaf and soil nitrogen, potassium and calcium was less satisfactory. In an experiment with four year old cocoa plants, Acquaya at al. (1965), observed positive correlations between soil exchangeable $K$ and leaf $K$. Verliere (1965), also found that the growth rate of cocoa was significantly correlated with soil P.

Wessel (1970), reported that nitrogen content of soil was indicative of the N availability to cocoa plant and that leaf nitrogen could only be used in detecting the deficiency of nitrogen in the soil. He found a'positive relationship between soil and leaf phosphorus. He concluded that the soil and leaf analysis are of limited value for assessing the nitrogen requirement of cocoa, but can fairly determine the phosphorus requirement of the crop.

Annie (1982), reported that the foliar diagrosis of cocoa plant indicated a good relationship between the soil nutrient status and leaf nutrient status. She has also observed positive correlation between soil test values
and leaf nutrients concentration in the order of Mg followed by Ca, N. $K$ and the least by P.
2.4. POSITION OF LEAF SAMPLIMG

In follar dognosis, sampling of the leaves is of prime importance as the position of the leaf is significant in their nutrient status. MeDonald (1934) recommended the use of most recently matured leaf for analysis. Hardy et al. (1935) sampled the first hardened shoot leaf of cocoa. but Thomas (1945) pointed out that. in general the older leaf may be preferable since they reflect the stage of internal starvation before the younger ones, because nutrients are drawn most rapidiy from the older leaves when new growth is taking place. Murray (1952) sampled 8 to 10 leaves of the second or third leaf from the apex of different matured Elushes while toue (2962) recommended sampling leaves of ranks 2 and 3 from the first fully green sprout from 5 branches, thus yielding 10 leaves per tree in cocoa. Use of second or third fully matured leaf below the apex of shoot in cocoa for sampling was suggezted by Acquaye (1964) and Chapman (1964).

Burridge et al. (1964) sampled the recently matured leaf from the lower shaded part of the canopy. Pushpadas and Ahammed (1980) reported that leaf samples
from the immature rubber trees and trees under tapping should be collected from the base of the terminal whorl of lower branches. They again suggested that if 30 trees are selected, collect only the middle leaflets from each leaf, if 15 trees, collect the two leaflets from either side and if 10 trees, collect all the three leaflets so that above 120 leaflets would be available in one composite sample.

Josepth (1931) suggested the leaf ranked fifth from the apex as standard leaf for leaf analysis in cocoa. Annie (1982) sampled second, third and fourth rank orders on 10 fan branches from each plant of cocoa and collected 10 leaves per plant from each rank order. Sushama et al. (1984) sampled the first mature leaf of full bearing laterals of pepper vines for the follar diognosis in a study to standardise the most suitable geason in the Cannanore district of Kerala.

### 2.5. SAMPLING OF SPECTFIC PARTS

## Eventhough leaf is the most ideal tissue to

 sample for analysis for most nutrient elements, it has to be decided as to whether the petiole or the lamina or the whole leaf should be used for the accurate and precise observation.Thomas (1945). concluded that in cocoa the entire leaf should be used when the purpose is to determine the relationship of mineral nutrition to yields. Chapmen and Brown (1980), found that the petiole showed no advantage over the lahina with regard to $k$ estimation in citrus, while Ramig and Vandecaveye (1950) observed that In raspberry, lamina was more sensitive than petiole for diagnosing nitrogen status and petiole was more sensitive than lamina for P, K and Ca. Murray (1952), used the leaf with petiole attached for cocoa. Bould (1961), emphasised the importance of incluaing the petiole in case of soft fruits if sampling errors are to be kept at minimum.

Smyth (1962), suggested that the variations can be avoided by omtting the petiole, if the petioles are large, in the follar diagnosis of cocoa. Adquaeye (1964) found that the petioles contained the highest concentration of $\mathrm{Ca} . \mathrm{Mg}, \mathrm{P}$ and K and the lowest concentration of $N$ and recommended the use of whole leaf for cocoa follar analysis. Pushpadas and Ahammed (1980), detached the leaflets from the petiole using a sharp knife or blade when they collected leaf semples for the use of follar analysis in rubber plants. Annie (1982), used lamina and petiole samples separately for follar analysis of cocoa and she found that the petiole gave more appropriate diagnosis in cocoa than lamina or whole leaf.
2.6. RELATIONSHIP BETHEEN LEAT CONCENTRATION AND YIELD

A close relationship between leaf composition and yield was noticed by Hardy et al. (1935). They gaxpressed their results asiratios and indicated that high yields are associated with ratios of $N / P=4.66$; $\mathrm{N} / \mathrm{K}=0.89$ and $\mathrm{K} / \mathrm{P}=5.21$. Varliere (1965), obtained highly significant correlation between cocoa yield on the one hand and N/P and $C a / K$ ratios in the leaf leaf on the other hand. Hessel (1965) also reported that leaf $P$ content and the yield of cocoa were having high positive correlations.

Wessel (1971), again in a study in Nigeria, reported that a linear relationship existed between concentrations of $P, K$ and $C a$ and that of dry matter content. The same trend was also recorded by Salesh (1973), in his study in Indonesia.
2.7. RESPONSE OF CLOVE TO FERTILIZERS

Indonesia which is one of the major clove producing countries in the world, has attempted some experiments on fertilizer responses to clove. Tidbury (1949). conducted an experiment on clove at the bearing stage with ammonium suiphate, potassium sulphate and superphosphate each at 0.9 kg per tree and observed a
positive response to amonium sulphate, half of the response to potassium sulphate and no response to superphosphate.

In an experiment conducted at Madagascar,
Dufournet and Rodriguez (1972) epplied fertilizers at the following rates to clove planted in 1958; N as urea at 115 kg per ha, ( 9.449 kg per tree); $\mathrm{P}_{2} \mathrm{O}_{5}$ as triple superphosphate at 480 kg per ha ( 1.875 kg per tree) and $K_{2} \mathrm{O}$ as potassium chloride at 150 kg per ha ( 0.585 kg per tree). The result showed that the control plot gave an yleld of 698 kg and 1375 kg per ha in the year 1969 and 1970 respectively. The N, P combination gave 1295 kg and 1729 kg per ha (mean yield of 1512 kg ) ; whereas the NPK combination gave 1191 and 1434 kg per ha (mean yield of 1312 kg ). The pK treatment gave 1191 kg and NK treatment 1139 kg per ha.
2.8. Climate aid soil requirement for clove culture

Clove trees grow well in humid tropical climate with an annual rainfall of $\mathbf{1 5 0 - 2 0 0} \mathrm{cn}$ and from almost sea level to 1000 metres and a mean temperature range of $20-30^{\circ} \mathrm{C}$. Ridley (1922) was of the opinion that sandy soil is unsuitable and water logged condition is still worse. According to Redgrove (1933) if clove is grown in a too moist climate, it will not flower. According to him
alternating periods of $d r y$ and wet weather as in zanzibar and Pemba are essential for successful clove cultivation.

A rainfall of $1500-2500 \mathrm{~mm}$ or more per year is reguired with an interruption of a marked dry spell for some months and adequate exposure to sunlight seems to be essential for abundant development of flower buds (Francois 1936) auferferi). A rainfall exceeding 2500 mm per annum together with insignificant non seasonal periods of drought and little sunlight tends to promote luxuriant vegetative growth. Under these conditions relatively few floral buds develop (Maistre, 1964).

In India, clove is grown in loamy soil rich in humus. Deep and rich loams with high humus content and laterite soils are found best suited for the successful cultivation of clove and the plants thrive well if they are periodically irrigated during the earlier years of planting during drought (Shanmugavelu and Madhava Reo, 1977). Deep black loam soil with high humus content found in the forest region is best suited for clove cultivation. It grows satisfactorily on laterite soils, clay loam and rich black soils having good drainage (Anon, 1979).

## MATERIALS AND METHODS

## 3. MATERIAL AND METHODS

In this chapter, the details of the experimental sites, the methodology followed for the collection of soil and leaf samples, the procedures adopted for the chemical analysis of soil and leaf samples and the statistical methods followed are furnished below. 3.1. SELECTION OF EXPERIMENTAL SITE

Clove plantations of similar age goup (10 years) were selected from four locations for the present investigations. The flushing periods were also more or less same (May-June) in these locations during which time collection of leaf and soil samples were carried out.

| District : | Trivandrum* | Trivandrum* | Trivandrum* | Kanyakumari** |
| :---: | :---: | :---: | :---: | :---: |
| State : | Kerala | Kerala | Kerala | Tamil $\mathrm{Na}_{\text {alu }}$ |
| Address of: the cultivators <br>  | Mr.Ravindran Nair. Parankan thottam Vithura P.O. | Bishop palace. Trivandrum | College Farm. Agri. College, Vellayand | M/s.Carmelgiri estate Palkulam PO. Nagercoil |
| $\begin{aligned} & \text { Soil : } \\ & \text { type } \end{aligned}$ | Forest $3011$ | Laterite | Red soil | Forest soil |


| Cropping system | 2 | clove <br> intercropped with coconut | Pure crop | Clove intercropped with coconut | Clove intercropped with nutmeg |
| :---: | :---: | :---: | :---: | :---: | :---: |

[^0]3.2. SELECTION OF EXPERIMENTAL PLANTS
since clove treas begin to yield when they are 8-10 years old, plants for this study were selected from the 10-year old plantations, from the four locations.

Twenty trees each under the above age group were selected from Vithura, Pattom and Kulasekharam and 10 trees from Vellayani (as in this tract, enough trees of the same age group were not available). Thus, a total of 70 trees were selected.
3.3. COLLECTION OF SOIL SAMPLES

For collection of soll samples three zones were marked around the plant, the first zone at 0.5 m radius the second, at 1 m radius and the third at 1.5 m radius from the base of the main trunk. Then surface soil: sample to a depth of 30 cm , and at the rate of five soil samples Erom each zone were collected, composited to draw a representative sample during the flushing period before the application of manure and fertilizers. Thus. 210 soil samples were collected from 70 plants of four experimental sites, and numbered. The collected soil samples were air dried in shade, ground well and seived through a 2 mm nylon sieve. The samples were then stored in polythene bags for chemical analysis.
3.4. COLLECTION OE LEAF SAMPLE (Plate 2)

As in the case of soil collection, leaf samples were collected from each tree for follar diagnosis during the flushing period. For collection of leaf samples, the canopy of each tree was first equally divided into three regions as top, middle and bottom giving due consideration to the height of the canopy. Then from each region, branchlets oriented towards south, north, east and west were selected and from each branchlet leaves having the same index number viz. whorl-I (first emergence leaf), whorl-II (leaves njust below the first whorl) and whorl-III (leaves just below the second whorl) were collected,pooled and representative leaf samples at the rate of three from were drawn. each region (whorl-I. II and III) A Thus totally nine samples from each tree were collected. So a total of 180 leaf samples from the first, second and fourth locations and 90 leaf samples from the 3rd location (Vellayani) were drawn.

The leaf samples collected from each location were cleaned with 0.1 NHCl and rinsed with distilled water a number of times to free them of dusts and other contaminations. Since the petioles of leaves are so small the whole leaf was taken for analysis. Later the dried samples were fed to an ultracentrifugal mill and powdered

well using a 0.5 mm mesh. The samples thus processed were stored in airtight polythene jars and kept for chemical analysés.
3.5. ANALYSIS OE SOIL SAMPLES
3.5.1. zechanical analysis

The proportion of different particle size fractions viz.. coarse sand, fine sand, silt and clay were estimated by the Bouyoucos hydrometer method (Bouyoucos, 1962) after renoval of organic matter by hydrogen peroxice treatment.
3.5.2. Electro chemical properties 3.5.2.1.Soil reaction ( pH )

The pH of fresh and air dried soll samples was determined in a $1: 2.5$ soil water suspension using a Perkin Elmer pH meter (Hessee, 1971).
3.5.2.2.Electrical conductivity

The electrical conductivity of the soils was determined by introducing a conductivity cell into the clear supernatent solution of the same soil suspension used for pH measurement using a direct reading Elico conductivity bridge.
3.5.3. Chemical analysis
3.5.3.1. Organic carbon
organic carbon was determined by the chromic acid met dugestion method as prescribed by Walkely and Black (1934).
3.5.3.2. Cation exchange capacity (CEC)

CEC was determined by saturating the soil with neutral normal ammonium acetate as proposed by Jackson (1973).
3.5.3.3. Total nitrogen

Total nitrogen of the soil was determined by the microkjel dahl digestion and distillation method (Jackson, 1973).
3.5.3.4. Available nitrogen

Available nitrogen was determined by the alkaline permangnate method (Subbiah and Asija, 1956).
3.5.3.5. Total phosphorus

Total phosphorus content of the soil was precipitated as amonium phosphomolybdate, from the hCL extract and was estimated volumetrically (Permberton,1945).
3.5.3.6. Available phosphorus

The available phosphorus content was determined by the chlorostannuous reduced phosphomolybdic blue colour method in hydrochloric acid system after extracting the soil with Bray No. 1 reagent (Bray and Kurtz, 1945).
3.5.3.7. Total potassium

HCl extract was diluted and fed into an EEL flame photometer and total potassium content of soil was estimated from the standard graph (Stanford and English, 1949).
3.5.3.8. Exchangeable potassium

Exchangeable potassium was determined in the neutral nomal amonium acetate extract of the soll after destroying the organic matter by treatment with aqualregia, using an EEL flame photometer (Stanford and English,1949)..
3.5.3.9. Total calcium and magnesium
(Piper, 1966)
Total Ca and Mg in soil were determined from the HCl extract using the Perkin Elmer ( PE 3030) Atomic absorption spectrophotometer available at the Central Instruments Laboratory of the NARP (SR), at the wave length of 422.7 nm for Ca and 285.2 nm for Mg .
3.5.3.10. Exchangeable Cations (Ca and Mg)

Exchangeable Ca and Mg vere determined from neutral normal ammonium acetate extract and the readings were recorded in the Perkin Elmer ( PE 3030) Atomic absorp-tion-spectrophotometer available at the Central Instruments Laboratory of the NARP (SR).
3.5.3.11. Total copper, manganese and zinc

The samples were digested with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and perchloric acid and the extracts were used after filtration and dilution (Holmes,1945) for the determination of total Cu, Mn and zn by the Perkin Elmer (PE 3030) Atomic absorption spectrophotometer avallable at the Central Instruments Laboratory of the NARP (SR).
3.5.3.12. Available copper, manganese and zinc (Lindsay and Norvell, 1969)

Available $\mathrm{Cu}, \mathrm{Mn}$ and Zn content of the soil were estimated from the DTPA extract, using the Perkin Elmer (PE 3030) Atomic absorption spectrophotometer available at the Central Instruments Laboratory of the NARP (SR). 3.6. AMALYSIS OE LEAF SAMPLES 3.6.1. Total nitrogen

The total nitrogen content present in the leaf samples were analysed by Microkjeldahl method (Humphries, 1956).

## Preparation of leaf extract

Triple acid extract was used for the determination of $\mathrm{P}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Mn}$ and Zn in the leaf. (Johnson and Ulrich, 1959). For this 500 mg of the powdered leaf sample was digested with 10 ml of triple acid mixture (nitric, perchloric and sulphuric acids in the ratio of 10.4 : 1). The digest was made upto 10 ml with distilled water, filtered and used for further analysis.
3.6.2. Phosphorus

From an allquot of the triple acid extract of the plant sample, phosphorus was determined by vandomolybdophosphoric yellow colour method in nitric acid system (Jackson, 1973).
3.6.3. Potassium

The triple acid extract was diluted and potassium in the extract was estimated using an EEL flame photometer. 3.6.4. Calcium and magnesium

Calcium and magnesium in the leaf extract was determined in an Atomic absorption spectrophotometer (PE 3030) available at the Central Instruments Laboratory of NARP (SR), after diluting the extract.
3.6.5. Copper, manganese and zinc

The triple acid extract was diluted and copper, manganese and zinc were estimated using the Perkin Elmer (PE 3030) A Atomic absorption spectrophotometer. 3.7. COLLECTION OF YIELD DATA

The unopened flower buds (Economic produce) were collected from the experimental treas for two years. The collected buds were dried in shade and the yield data (dry weight) were recorded separately and the results expressed in kg per tree as given in Table 46.
3.8. STATISTICAL ANALYSIS

All the data obtained from the chemical analysis was analysed statistically. The coefficients of variation were worked out as suggested by Pase and Sukhatme (1967). simple correlation and regression coefficients were worked out to observe the degree of dependence of variables as suggested by Snedecor and Cochran (1967).

## RESULTS

## 4. RESULTS

The results of the analysis of 210 soil samples and 630 leaf samples collected from representative clove growing soils of Trivandrum and Kanyakumari districts are presented in this chapter. The nutrient status of the soils and leaf samples in relation to their $N, P_{0}, K, C a$, $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Mn}$ and zn content was determined. In the case of soil samples both total and available nutrients and their particle size percentages were also determined. The results of analysis are presented in Tables 1 to 37.
4.1. SOIL ANALYSIS
4.1.1. Mechanical composition of soils

The percentage of course sand fractions at Vellayani was 39.40, which was followed by Pattom (34.40 per cent), then by Vithura ( 32.20 per cent) and then by Kulasekharam (22.60 per cent).

The percentage of fine sand fraction at Pattom was 31.70, which is followed by Vellayani ( 27.40 per cent), then by Kulasekharam ( 22.10 per cent) and by vithura (20.30 per cent).

TABLE 1. Physico-chemical properties of the representative soils of the four locations

| Properties | Location |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Vithura | pattom | Vellayan | Kulame Kharem |
| Textural composition |  |  |  |  |
| Coarse sand (\%) | 32.20 | 34.40 | 39.60 | 22.60 |
| Fine sand (\%) | 20.30 | 31.70 | 27.40 | 22.10 |
| silt (\%) | 16.60 | 17.20 | 18.20 | 19.20 |
| Clay (\%) | 24.30 | 15.80 | 14.60 | 28.10 |
| Soll texture | Sanay clay | sandy <br> clay | $\begin{aligned} & \text { sandy } \\ & \text { clay } \end{aligned}$ | $\begin{aligned} & \text { Clay } \\ & \text { lom } \end{aligned}$ |
| Soil type | Forest soil | Iaterite | Red soll | Forest soll |
| pH | 4.7 | 5.8 | 4.6 | 5.5 |
| EC (m.mhos/ $\mathrm{cm}^{2}$ ) | 0.2 | 0.2 | 0.3 | 0.8 |
| Total nitrogen (\%) | 0.04 | 0.04 | 0.02 | 0.08 |
| Total phosphorus (\%) | 0.06 | 0.045 | 0.05 | 0.04 |
| Total potassium (\%) | 0.29 | 0.30 | 0.27 | 0.32 |
| CEC ( $\mathrm{m}_{\cdot} \mathrm{e} / 100 \mathrm{~g}$ ) | 20.6 | 22.8 | 18.4 | 28.2 |
| Totol calcium (\%) | 0.68 | 0.70 | 0.58 | 0.72 |
| Total magnesium (\%) | 0.42 | 0.46 | 0.36 | 0.48 |
| Total copper (ppm) | 870 | 940 | 870 | 960 |
| Total manganese ( ppm ) | 1160 | 1180 | 1070 | 1340 |
| Total zinc (ppm) | 940 | 960 | 880 | 980 |

The silt content of Kulasekharam was 19.20 per cent and that of Vellayani was 18.20 per cent and which is followed by Pattom ( 17.20 per cent) and then by vithura ( 16.60 per cent).

The highest percentage of clay content was observed at Kulasekharam (28.10), which is followed by Vithura ( 24.30 per cent), then by Pattom ( 15.80 per cent) and then by Vellayani ( 14.60 per cent).

Texturally, the soils were sandy clay at Vithura, sandy clay loam at Pattom, sandy clay at Vellayani and clay loam at Kulasekheram.

The types of soils were forest soils at Vithura, laterite soils at Pattom, red soils at Vellayani and forest soils at Kulasekharam.
4.1.2. Soil Reaction (pH)

The pH of soils were recorded as 4.7. 5.3, 4.6 and 5.5 for Vithura, Pattom, Vellayani and Kulasekharam. 4.1.3. Electrical conductivity (EC)

The electrical conductivity of the soils were recorded as $0.2 \mathrm{~ms} / \mathrm{cm}$ at Vithura and Pattom and as $0.3 \mathrm{~ms} / \mathrm{cm}$ at Vellayani and $0.8 \mathrm{~ms} / \mathrm{cm}$ at Kulasekharam.
4.1.4. Cation exchange capacity (CEC)

The CEC was in the order of Kulasekharan ( $28.2 \mathrm{~m} . \mathrm{e} / 100 \mathrm{~g}$ ). Pattom ( $22.8 \mathrm{~m} \cdot \mathrm{e} / 100 \mathrm{~g}$ ). Vithura ( $20.6 \mathrm{~m} . \mathrm{e} / 100 \mathrm{~g}$ ) and Vellayani ( $18.4 \mathrm{~m} . \mathrm{e} / 100 \mathrm{~g}$ ).
4.1.5. Total nutrient content of soils

The total N content of Vithura and Pattom soils were 0.04 per cent, that of Vellayani so1l 0.02 per cent, and that of Kulasekharam 0.08 per cent.

The total $P$ content of the soils of vithura, Pattom, Vellayani and Kulasekharam were 0.06 per cent, 0.045 per cent, 0.05 per cent and 0.04 per cent respectively.

The total K was in the order of Kulasekharam ( 0.32 per cent), Pattom ( 0.30 per cent), Vithura ( 0.29 per cent) and vellayani ( 0.27 per cent).

In the case of calcium, Kulasekharam soils registered the highest value of 0.72 per cent, which is followed by Pattom ( 0.70 per cent) . Vithura ( 0.68 per cent) and Vellayani ( 0.53 per cent).

The total Mg content of the soils were in the order of Kulasekharam ( 0.48 per cent, Pattom ( 0.46 per cent). Vithura ( 0.42 per cent) and vellayani ( 0.36 per cent).

In the case of micro nutrients, its total content varied from place to place. The total Cu content of Kulasekharam 8011 was 960 ppm which was followed by Pattom ( 940 ppm ). The Cu content of both Vithura and Vellayani soils were 870 ppm.

The total in content of the soils of Vithura, Pattom, Vellayeni and Kulasekharam were 1160 ppm, 1180 ppm. 1070 ppm and 1340 ppm respectively.

The total Zn content of the soil was in the order of Kulasekharam ( 980 ppm ). Pattom ( 960 ppm ). Vithura ( 940 ppm ) and Vellayani ( 880 ppm ).
4.1.6. Location wise available nutrient status of soils

The available nutrients ( $\mathrm{m}, \mathrm{P}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Cu}$, Mn and Zn ) of the soils collected from all the locations were determined. The following are the location wige details of available nutrients.

Soll samples collected from three radial distances from each tree were analysed. The mean values of
analytical data pertaining to the soils collected from around 20 trees each from Vithura, Pattom and Kulasekharam and 10 trees fram Vellayani is presented in Table 2 .
4.1.6.1. Vithura (Table 2)

The available N atatus for the first half metre distance of surface soil ranged from 0.015 to 0.028 per cent with a mean value of 0.23 per cent. The samples of one metre distance from the tree recorded values between 0.01 to 0.022 per cent with a mean value of 0.018 per cent. The samples collected from one and half metre distance provided an available $N$ content ranging firan 0.008 to 0.16 per cent with mean value of 0.01 per cent.

The available $P$ status of soils from half metre distance ranged Erom 0.0009 to 0.0012 per cent with a mean value of 0.0011 per cent. Samples from one metre distance fegistered a value of 0.0007 to 0.0012 per cent of available $p$ with a mean value of 0.0010 per cent. The available $p$ content of soils from one and half metre distance ranged between 0,0005 to 0,00012 per cent with a mean value of 0.001 per cent.

The available $K$ content of the samples collected from half metre distance ranged from 0.016 to 0.038 per cent

TABLE 2. Soil fertility status in celation to available mutients at vithura
(Mcan values for 20 trees)

| $\begin{aligned} & \text { SL } \\ & \text { Nto. } \end{aligned}$ | Nutrient | Samping distonce from themain trunk |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.5 metre |  |  | 100 metre |  |  | 1.5metre |  |  |
|  |  | M1n. | Max. | Meen | M1n. | Max, | Mean | M1n. | Max. | Mean |
| 1. | N (\%) | 0.015 | 0.028 | 0.023 | 0.010 | 0.022 | 0.018 | 0.008 | 0.016 | 0.01 |
| 2. | P (\%) | 0.0009 | 0.0012 | 0.0011 | 0.0007 | 0.0012 | 0.0010 | 0,0005 | 0.0012 | 0.001 |
| 3. | K (\%) | 0.016 | 0.038 | 0.03 | 0.015 | 0.032 | 0.024 | 0.007 | 0.028 | 0.016 |
| 4. | Ca (\%) | 0.005 | 0.032 | 0.019 | 0.002 | 0.029 | 0.012 | 0.002 | 0.018 | 0.009 |
| 5. | Mg (\%) | 0.011 | 0.022 | 0.017 | 0.011 | 0.021 | 0.015 | 0.010 | 0.022 | 0.015 |
| 6. | Cu (ppm) | 5.780 | 26.24 | 16.736 | 3.71 | 18.42 | 10.821 | 3.78 | 28.44 | 12.26 |
| 7. | Mn (ppm) | 1.980 | 27.91 | 6.194 | 2.220 | 15.32 | 6.341 | 2.20 | 10.56 | 5.83 |
| 8. | 2n (ppm) | 0.712 | 19.19 | 3.498 | 0.878 | 8.00 | 2.656 | 0.703 | 8.00 | 2.27 |

with a mean value of 0.03 per cent. The samples collected from the one metre distance had an available $k$ content ranging from 0.015 to 0.032 per cent with a mean value of 0.024 per cent. At 1.5 metre distance the values ranged betseen 0.007 to 0.028 per cent with a mean value of 0.016 per cent.

The exchangeable Ca content ranged from 0.005 to 0.032 per cent with a mean of 0.019 per cent for the solls collected from half metre distance from the main trunk, 0.002 to 0.029 per cent with a mean value of 0.012 per cent at one metre, and it ranged between 0.002 to 0.018 per cent with a mean of 0.009 per cent at the distance of 1.5 metre.

The exchangeable Mg content ranged from 0.011 to 0.022 per cent with a mean of 0.017 per cent for the solls at half metre distanci, while the values recorded were 0.011 to 0.021 per cent with a mean value of 0.015 per cent at one metre distance. The soils at 1.5 metre distance had an exchangeable Mg content ranging from 0.01 to 0.022 per cent with a mean value of 0.015 per cent.

The DTPA extractable Cu at the distance of 0.5 metre ranged between 5.78 to 26.24 ppm with a mean value of 16.736 ppm . The corresponding values for the solls at one metre distance were 3.71 to 18.42 ppm (mean
$10.821 \mathrm{ppm})$ and that or soils at 1.5 metre distance were 3.78 to $28.44 \mathrm{ppm}(m e a n 12.26 \mathrm{ppm})$.

The DTPA extractable Mn ranged between 1.98 ppm and 27.91 ppm with a mean value or 6.194 ppm at the distance of 0.5 metre. The corresponding values for soils at one metre distance were 2.22 ppm to 15.32 ppm (mean $6.34 \mathrm{ppm})$ and that for soils at 1.5 metre, the values ranged between 2.20 ppm and 10.56 ppm with a mean value of 5.83 ppm.

For DTPA extractable Zn the maximum and minimum Values were 0.712 ppm and 19.19 ppm at 0.5 metre distance from the tree (mean 3.498 ppm ). At one metre the values ranged between 0.878 ppm and 8.00 ppm (mean value 2.656 ppm ) and 1.5 metres the range was between 0.703 ppm and 8.00 ppm with a mean value of $\mathbf{2 . 2 7} \mathrm{ppm}$.
4.1.6.2. Pattom (Table 3)

The available nutrient status of this location varied appreciably from distance to distance from the tree base.

The available N status of the solls collected from half metre dis tance of the main trunk ranged from 0.020 to 0.036 per cent with a mean value of 0.027 per cent.

TABLE 3. Soll fertility status in ralation to available nutrients at pattom (Mean ralues)


The soils of one metre distance ranged from 0.008 to 0.031 per cent with a mean value of 0.021 per cent. At 1.5 metre distance the value ranged from 0.008 to 0.021 per cent with a mean value of 0.015 per cent.

The available $P$ content of the soil at half metre distance ranged from 0.0009 to 0.0012 per cent with a mean value of 0.001 per cent. The same numerical values were obtained for the soils at one metre distance and also for the solls at 1.5 metre distance.

The aval lable $K$ status of the soils collected from half metre distance varied from 0.016 to 0.038 per cent with a mean value of 0.030 per cent. The values ranged from 0.015 to 0.032 per cent with a mean value of 0.024 for the soils at one metre distance. Solls at one and half metre distance gave a range of 0.014 to 0.093 per cent with a mean of 0.031 per cent.

The exchangeable ca content of the soils at half metre distance recorded a range value of 0.039 to 0.164 per cent with a mean value of 0.101 per cent. At one metre distance the values ranged from 0.049 to 0.162 per cent with a mean value of 0.090 per cent and at 1.5 metre distance the values ranged between 0.059 per cent and 0.098 per cent with mean value of 0.082 per cent.

The exchangeable Mg content of the soils at 0.5 metre distance recorded a range value from 0.011 ppm to 0.022 ppm with a mean value of 0.017 per cent, and at one metre distance the values ranged from 0.011 to 0.021 per cent with a mean value of 0.015 per cent. At 1.5 metre distance the values ranged from 0.10 to 0.022 per cent with a mean value of 0.015 per cent.

The DIPA extractable Cu at the distance of 0.5 metre ranged between 4.42 ppm and 16.21 ppm with a mean value of 9.674 ppm . The corresponding values for soils at one metre distance ranged from 1.77 ppm to 21.20 ppm (mean 5.723 ppm ) and that of the soils at 1.5 metre distance ranged from 5.54 ppm to 21.12 ppm (mean 10.987 ppm )

The DTPA extractable Mn ranged between 6.28 ppm and 186.52 ppm with mean value of 62.98 ppm . The corresponiing values for soils at one metre distance ranged from 11.94 ppm to 118.14 ppm (mean value 64.29 ppm ) and that of the soils at 1.5 metre distance the values ranged between 21.72 ppm and 121.34 ppm with a mean value of 73.75 ppra .

For the DTPA extractable $2 n$, the maximum and minimum values were 0.864 ppm and 4.154 ppm at 0.5 metre
distance with a mean value of 2.539 ppm . At one metre, the values ranged between 1.006 ppm and 3.261 ppm (mean 2.105 ppm ) and at 1.5 metre the values ranged from 1.007 ppm to 3.224 ppm with a mean value of 2.022 ppm . 4.1.6.3. Vellayani (Table 4)

The available $N$ ranged from 0.012 to 0.018 per cent with amean value of 0.014 per cent for the soll collected from 0.5 metre distance. A range value of 0.011 to 0.018 per cent with a mean value of 0.013 per cent was registered for the soils of one metre distance. phe soils of 1.5 metre distance recorded a range value of 0.01 to 0.018 per cent with a mean value of 0.011 per cent.

The available $P$ status of the soils of 0.5 metre distance ranged from 0.001 to 0.0012 per cent with a mean value of 0.0012 per cent. The same numerical values were obtalned for both the soils collected from one metre and 1.5 metre distances.

The available $K$ status of the soils of 0.5 metre distance registered a range value of 0.008 to 0.031 per cont with a mean value of 0.018 per cent. Solls collected from one metre and 1.5 motre from the plant yielded mean value of 0.015 per cent with a range value of 0.004 to 0.021

TABLE 4. Soil Eertility status in relation to available nutrienta at Vellayond

> (Mean velues)

| SI Nowtertent | Sampling distance from the main trunk |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.5 metre |  |  | 1.0 metre |  |  | 1.5 metre |  |  |
|  | Range - | Value | Mean | Range - | Value | Mean | Range - | Value | Mean |
| 1. N (\%) | Min. $0.012$ | $\begin{aligned} & \text { Max. } \\ & 0.018 \end{aligned}$ | 0.014 | $\begin{aligned} & \text { Min. } \\ & 0.011 \end{aligned}$ | $\begin{aligned} & \text { Max. } \\ & 0.018 \end{aligned}$ | 0.013 | Mis. $0.010$ | $\begin{aligned} & M 2 x \\ & 0.018 \end{aligned}$ | 0.011 |
| 2. $E(\%)$ | 0.001 | 0,0022 | 0.0012 | 0.001 | 0.0012 | 0.0012 | . 0.0010 | 0.0012 | 0.0012 |
| 3. K (\%) | 0.008 | 0.031 | 0.018 | 0.004 | 0.021 | 0.015 | 0.004 | 0.023 | 0.015 |
| 4. Ca (\%) | 0.011 | 0.026 | 0.019 | 0.004 | 0.029 | 0,014 | 0.005 | 0.024 | 0.011 |
| 5. Mg (\%) | 0.010 | 0.012 | 0.011 | 0.01 | 0.012 | 0.011 | 0.01 | 0.012 | 0.011 |
| G. Cu (pmm) | 0.242 | 0.92 | 0.648 | 0.380 | 0.862 | 0.585 | 0.170 | 0,944 | 0.742 |
| 7. Mn ( ppm ) | \% 10.60 | 21.45 | 18.30 | 8.67 | 26.00 | 17.38 | 13.93 | 28.00 | 19.28 |
| 8. Zn (ppm) | 0.732 | 3. 232 | 1.64 | 0.628 | 3.231 | 1.391 | 0.540 | 6.714 | 1.710 |

per cent for the soils at one metre distance and from 0.004 to 0.023 per cent for the solls at 1.5 metre distance.

The exchangeable ca content ranged from 0.011 per cent to 0.226 per ceent with a mean of 0.019 per cent for the soil collected from 0.5 metre distance. The corresponding value for the soils at one metre distance vere 0.004 per cent to 0.029 per cent (mean 0.014 per cont) and that for soils at 1.5 metre distance the value $r$ anged between 0.005 per cent and 0.02 s per cent with a mean of 0.011 per cent.

The exchangeable Mg content ranged from 0.010 to 0.012 per cent with a mean of 0.011 per cent fot the soils at 0.5 metre distance, while the values recorded were 0.01 to 0.012 per cent with a mean value of 0.011 per cent at one metre. The soils at. 1.5 metre distance had the exchangeable Mg content ranging from 0.01 to 0.012 per cent with a mean value of 0.011 per cent.

The DTPA extractable cu at 0.5 metre distance
ranged from 0.242 to 0.92 ppm with a meen value of 0.648 ppm . The corresponding value for the soils at 1.0 metre distance were 0.380 to 0.862 ppm (mean 0.685 ppm ) and that for soils at 1.5 metre distance were 0.170 to 0.941 ppm (mean 0.742 ppm ).

The DTPA extractable Mn ranged between 10.60 ppm and 21.45 ppm with a mean value of 18.30 ppm at the distance of 0.5 metre. The corresponding values for the soils at one metre distance were 8.67 ppm to 26.00 ppm (mean 17.38 ppm ) and that of solls at 1.5 metre distance the values ranged between 13.93 ppm and: 23.00 ppm with a mean value of 19.28 ppm.

In the case of DTPA extractable $2 n$, the maximum and minimum values were 0.732 and 3.232 ppan at 0.5 motre distance from the tree (mean 2.69 ppm ). At one metre the values ranged betreen 0.628 ppm and 3.231 ppm (mean 1.391 ppm ) and at 1.5 metre the range was between 0.54 ppm and 6.714 ppm with a mean value of 1.71 ppm.
4.1.6.4. Kulasekharam (Table-5)

The available N status ranged from 0.012 to 0.018 per cent with a mean value of 0.017 per cent for the soils collected from 0.5 metre distance. Solls of both at one metre and 1.5 metre distances recorded a range value from 0.01 to 0.018 per cent with a mean value of 0.014 per cent.

The available $p$ status of the soils collected from half metre distance registered a range value of 0.0005 to 0.0008 per cent with a mean value of 0.0007 per cent.

TABLE 5. Soil fertility status in relation to available nutrients at Kulasekharam (Mean values)

| Nutrient | Sampling distance Erom the main trunk |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.5 mêtre |  |  | 1.0 metre |  |  | 1.5 metre |  |  |
|  | Range - | Value | Mean | Range | - Value | Mean | Range | - Value | Mean |
| 1. $N(\%)$ | $\begin{aligned} & \text { Min. } \\ & 0.012 \end{aligned}$ | $\begin{aligned} & \text { Max. } \\ & 0.018 \end{aligned}$ Fit | 0.016 | Min. $0.010$ | $\begin{aligned} & \text { Max. } \\ & 0.018 \end{aligned}$ | . 0.014 | $\begin{aligned} & \min \\ & 0.010 \end{aligned}$ | $\begin{aligned} & \text { M2x. } \\ & 0.018 \end{aligned}$ | 0.018 |
| 2. $\mathrm{P}(\%)$ | 0.0005 | 0.0008 | 0.0007 | 0.0006 | 0.0009 | 0.0007 | 0.0005 | 0.0009 | 0.0007 |
| 3. $\mathrm{K}(\%)$ | 0.022 | 0.033 | 0.025 | 0.018 | 0.037 | 0.026 | 0.020 | 0.034 | 0.023 |
| 4. $\mathrm{CA}(\%)$ | 0.017 | 0.124 | 0.081 | 0.03 | 0.202 | 0.070 | . 0.021 | 0.102 | 0.085 |
| 5. Mg(\%) | 0.016 | 0.024 | 0.020 | 0.015 | 0.023 | 0.019 | 0.014 | 0.022 | 0.018 |
| 6. Cu(ppm) | 1.6 | 4.0 | 2.47 | 0.98 | 20.26 | 2.97 | 1.75 | 7.22 | 3. 52 |
| 7. $M \Omega(p p m)$ | 8.2 | 67.0 | 35.1 | 10.18 | 283.32 | 69.63 | 33.12 | 87.16 | 66.47 |
| 8. Zn (ppm) | 2.83 | 7.62 | 4.81 | 2.14 | 7.61 | 4.80 | 2.23 | 10.11 | 5.31 |

The soils of one metre distance and 1.5 metre distance exhibited the same mean value of 0.0007 per cent of available $P$ with a range value from 0.0006 to 0.0009 per cent and from 0.0005 to 0.0009 per cent respectively.

The available K content of the soils collected from half metre distance had a range value of 0.022 to 0.033 per cent with a mean value of 0.025 per cent. A range value of 0.018 to 0.037 was observed for the solls from one metre distance with a mean value of 0.026 per cent. The soils from 1.5 metre distance had available $K$ content between 0.020 and 0.034 per cent with a mean value of 0.025 per cent.

The exchangeable Ca content of the solls at 0.5 metre distance recorded a range value between 0.017 and 0.124 per cent and a mean value of 0.081 per cent. The soils at one metre distance registered a range value between 0.030 per cent and 0.102 per cent with a mean value of 0.070 per cent while the soils collected at 1.5 metre distance recorded minimum and maximum values of 0.014 and 0.022 per cent with a mean value of 0.018 per cent.

The exchangeable Mg content of the soils at half metre distance registered a range value between 0.016 per cent and 0.024 per cent with a mean value of 0.02 per cent, while the soils at one metre distance reccrded
maximum and minimum values of 0.015 per cent and 0.023 per cent with mean of 0.019 per cent. The values for solls from 1.5 metre distance, ranged from 0.014 to 0.022 per cent with a mean value of 0.018 per cent.

The DTPA extractable Cu content of the soils at 0.5 metre distance varied from 1.60 ppm to 4.00 ppm with a mean value of $2.42 \cdot \mathrm{pmm}$ while the solls at one metre distance varied from 0.98 ppm to 10.26 ppm with a mean value of 2.97 ppm . Soils at 1.5 metre distance registered a range value from 1.75 ppm to 7.22 ppm with a mean value of 3.52 ppm .

The DTPA extractable Mn content of soils at 0.5 metre varied from 8.20 ppm to 67 ppm with a man value of 35.1 ppm and values for the soils collected at one metre distance varied from 33.12 ppm to 87.16 ppm with a mean value of 66.47 ppm . The values for soils at 1.5 metre distance ranged between 35.12 ppm and 87.16 ppm with a mean value of 6647 ppm .

The DTPA extractable $Z_{n}$ content of the soils at 0.5 metre distance varied from 9.82 ppm to 7.62 ppm with a mean value of 4,81 ppm. Soils collected at one metre distance showed a range value of 2.14 ppr (minimum) and 7.61 ppm (maximum) with a mean value of 4.8 ppm . The so11s
at 1.5 metre distance ragistered a range value between 2.23 ppm and 10.11 ppm with a mean value of 5.31 ppm . 4.2. NUTRIENI CONCENTRATIONS IN LEAF SAMPLES

The leaf samples were analysed for their nutrient concentrations with reference to $\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Mn}$ and $Z n$. The entire canopy was divided into 3 regions viz.. top, middle and bottom. Three shorls starting from the tip of branchlets were sampled for analysis ( $W_{1}, W_{2}, W_{3}$ ). The results indinuted appreciable variations within a tree also
Erom region to region and among lear positions (whorl to Whorl). The reaults obtained for each location are presented below.
4.2.1. Nitrogen
4.2.1.1. Vithura (Table 6)

The nitrogen content of different whoris in all the three regions of the canopy showed wide variation. In the first wholr of leaves in the top portion, the $N$ content ranged from 1.587 to 2.262 per cent with a mean value of 2.133 per cent. Whorl II had a nitrogen content the range value of 1.293 to 2.2 per cent $w i t h$ a mean value of 1.981 per cent. The morl III had a range value of 1.47 per cent and 2.116 per cent with a mean value of 1.861 per cent. The coefficients of variation for $W_{1}$. $W_{2}$ and $W_{3}$ were 7.757, 11.289 and 10.589 respectively.

TABLE 6. Nitrogen concentration in leaf at Vithura
(Mean values - per cent)

| $\begin{aligned} & \text { Tree } \\ & \text { No. } \end{aligned}$ | Tree Reglons |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 209 |  |  | Hidale |  |  | Botton |  |  |
|  | $\mathrm{H}_{1}$ | $\mathrm{N}_{2}$ | $\%_{3}$ | $\mathrm{W}_{1}$ | $W_{2}$ | $\mathrm{N}_{3}$ | $W_{1}$ | $W_{2}$ | $\mathrm{N}_{3}$ |
| 1. | 2.234 | 2.175 | 1.587 | 2.822 | 2.234 | 2.058 | 1.882 | 1.546 | 1.470 |
| 2. | 1.882 | 1.293 | 1.587 | 1.528 | 1.411 | 1.411 | 1.764 | 1.293 | 1.352 |
| 3. | 1.587 | 1.470 | 1.470 | 1.528 | 1.470 | 1.352 | 1.705 | 1.587 | 1.528 |
| 4. | 2.234 | 2.116 | 2.116 | 2.175 | 2.053 | 2.058 | 2.293 | 1.587 | 1.646 |
| 5. | 2.058 | 1.999 | 1.940 | 1.999 | 1.940 | 1.940 | 1.881 | 1.822 | 1.822 |
| 6. | 2.175 | 2.058 | 1.999 | 2.116 | 1.940 | 1.822 | 1.940 | 1.940 | 1.764 |
| 7. | 2.258 | 2.058 | 1.881 | 1.940 | 1.881 | 1.882 | 1.822 | 1.822 | 1.646 |
| 8. | 2.234 | 2.058 | 1.999 | 2.116 | 1.940 | 1.822 | 1.940 | 1.940 | 1.764 |
| 9. | 1.999 | 1.881 | 1.999 | 1.881 | 1.882 | 1.764 | 1.822 | 1.764 | 1.764 |
| 10. | 2.058 | 1.999 | 1.999 | 1.940 | 1.881 | 1.881 | 1.881 | 1.881 | 1.764 |
| 11. | 2.202 | 2.000 | 1.824 | 2.200 | 1.800 | 1.802 | 1.982 | 1.802 | 1.682 |
| 12. | 2.220 | 2.120 | 1.624 | 2.002 | 2.002 | 1.824 | 2.202 | 1.824 | 1.802 |
| 13. | 2.220 | 2.120 | 1.624 | 2.002 | 2.002 | 1.824 | 2.202 | 1.824 | 1.802 |
| 14. | 2.211 | 2.001 | 1.852 | 2.220 | 1.862 | 1.682 | 1.982 | 1.684 | 1,600 |
| 15. | 2.121 | 1.864 | 1.662 | 2.001 | 1.982 | 1.868 | 1.940 | 1.881 | 1.764 |
| 16. | 2.206 | 2.001 | 1.925 | 2.001 | 2.001 | 2.068 | 2.002 | 2.000 | 1.862 |
| 17. | 2.244 | 2.200 | 2.112 | 2.202 | 2.100 | 2.001 | 2.240 | 1.988 | 1.892 |
| 18. | 2.118 | 2.006 | 2.008 | 2.218 | 2.020 | 2.018 | 2.008 | 2.001 | 1.886 |
| 19. | 2.242 | 2.118 | 2.008 | 2.118 | 2.002 | 1.982 | 2.242 | 2.1de | 2.008 |
| 20. | 2.262 | 2.086 | 2.002 | 2.246 | 2.186 | 2.008 | 2.216 | 2.086 | 2.006 |
| Mean | 2.133 | 1×981 | 1.861 | 2.062 | 1.929 | 1.859 | 1.997 | 1.827 | 1.744 |
| CV | 7.757 | 11.289 | 10.589 | 13.031 | 10.256 | 10.453 | 8.822 | 10.704 | 9.677 |

In the midale region $N$ content in the first whorls ranged from 1.528 to 2.822 per cent with a mean value of 2,062 per cent. The $2 n d$ whorls registered a range value of 1.411 to 2.234 per cent if with a mean of 1.929 per cent. The leaves from the 3 rid whorl recorded N content ranging from 2.411 to 2.058 per cent with a mean of 1.859 per cent. In this region the coefficients of variation for $W_{1}, W_{2}$ and $W_{3}$ were $13.031,10.256$ and 10.453, respectively.
in the boltom region
The $N$ content of the $W_{1}$ leaf samples $A^{\text {ranged }}$
between 1.705 and 2.293 per cent with a mean value of 1.997 per cent while the $\mathrm{N}_{2}$ leaf samples had a minimun of 1.293 per cent and a maximum of 2.116 per cent with a mean value of 1.827 per cent. The $H_{3}$ leaf samplea recorded a $N$ content ranging from 1.352 per cent (minimun) to 2.003 per cent (maximum) with a mean value of 1.744 per cent. The coefficients of variation for $H_{1}$, $H_{2}$ and $W_{3}$ saraples were 8.822. 10.704 and 9.677,rospectively.
4.2.1.2. Pattom (rable 7)

The top region of the trees had appreciable variation in their N content from whorl to whorl as found in Vithura locality. The $\mathrm{H}_{1}$ smples recorded a range value of 2.234 to 2.6 per cent with a mean value of 2.385 per cent.

(Mean value - per cent)

| $\begin{aligned} & \text { Tree } \\ & \text { NO. } \end{aligned}$ | Top |  |  | 18idale |  |  | Bottom |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $N_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{W}_{2}$ | ${ }_{3}$ |
| 1 | 2.923 | 2.116 | 2.116 | 2.234 | 2.175 | 2.116 | 2.175 | 1.992 | 1.992 |
| 2. | 2. 450 | 2.350 | 2.175 | 2.340 | 2.175 | 2.175 | 2.175 | 2.058 | 1.952 |
| 3 | 2.350 | 2.116 | 2.058 | 2.116 | 2.058 | 2.116 | 2.175 | 2.116 | 2.053 |
| 4 | 2.410 | 2.116 | 2.234 | 2.116 | 2.116 | 2.058 | 2.175 | 2.058 | 1.940 |
| 5. | 2.293 | 2.234 | 2.175 | 2.175 | 2.058 | 1.992 | 2.058 | 1.940 | 1.890 |
| 6 | 2.234 | 2.175 | 2.116 | 2.058 | 1.992 | 1.940 | 2. 116 | 2.058 | 1.992 |
| 7. | 2.293 | 2.234 | 2.175 | 2.234 | 2.175 | 2.116 | 2.175 | 2.058 | 1.992 |
| 8. | 2.475 | 2.175 | 2.058 | 2.116 | 2.050 | 2.005 | 1.992 | 1.998 | 1.881 |
| 9 | 2.234 | 2.175 | 2.175 | 2.216 | 2.058 | 2.058 | 2.058 | 1.892 | 1.686 |
| 10. | 2.293 | 2.058 | 2.982 | 2.058 | 2.116 | 1.992 | 1.992 | 1.940 | 1.822 |
| 11. | .2.421 | 2.201 | 2.116 | 2.301 | 2.028 | 2.001 | 2.224 | 2.108 | 2.002 |
| 12. | 2.401 | 2.231 | 2.024 | 2.323 | 2.001 | 1.982 | 2.248 | 2.201 | 1.987 |
| 13. | 2.368 | 2.168 | 2.106 | 2.301 | 2.001 | 2.986 | 2.420 | 2.002 | 1.968 |
| 14. | 2.520 | 2.200 | 2.001 | 2.382 | 2.101 | 2.061 | 2.268 | 2.002 | 2.002 |
| 15. | 2.600 | 2.400 | 2.201 | 2.464 | 2.202 | 2.002 | 2.325 | 2.002 | 1.968 |
| 16. | 2.464 | 2.026 | 2.002 | 2.363 | 2.116 | 2.001 | 2.168 | 1.908 | 1.608 |
| 17. | 2.358 | 2.201 | 2.002 | 2.202 | 2.002 | 1.968 | 2.200 | 2.100 | 1.900 |
| 18. | 2.456 | 2.202 | 2.101 | 2.026 | 2.156 | 2.002 | 2.101 | 2.101 | 1.980 |
| 19. | 2.368 | 2.060 | 2.002 | 2.460 | 2.006 | 2.116 | 2.026 | 2.268 | 2.300 |
| 20. | 2.424 | 2.002 | 2.042 | 2.062 | 2.006 | 1.868 | 2.074 | 2.001 | 1.976 |
| Mean | 2.385 | 2.189 | 2.093 | 2.234 | 2.068 | 2.025 | 2.107 | 2.039 | 1.946 |
| cV | 3.611 | 3.728 | 4.317 | 7.041 | 3.932 | 4.217 | 13.071 | 4.593 | 7. 122 |

The $W_{2}$ leaf samples recorded a lowest value of 0.026 and a highest value of 2.400 per cent with a mean of 2.189 per cent of $N$. The $W_{3}$ samples registered a $N$ content ranging from 2.001 to 2.234 per cent (mean value 2.093 per cent. The coefficients of variation for the $W_{1}, W_{2}$ and $W_{3}$ samples of top region were 3.611, 3.728 and 4.317, respectively.

In the middie region the $H_{1}$ had a range value of 2.026 to 2.464 per cent with a mean of 2.234 per cent. The $\mathrm{H}_{2}$ leaf samples recorded a lowest value of 1.992 per cent and a highest value of 2.202 per cent with a mean of 2.068 per cent of $N$ content. The $W_{3}$ samples registered N content ranging from 1.858 per cent to 2.175 per cent with a mean value of 2.025 per cent. At this region the cv values were 7.041, 3.932 and 4.217 for $W_{1}, W_{2}$ and $H_{3}$ leaves,respectively.

The $W_{1}$ leaf samples of bottom region registered N contents ranging from 1.99 to 2.42 per cent (mean value 2.107 per cent). The $W_{2}$ leaf samples had $N$ content ranging from 1.892 to 2.268 with a mean value of 2.039 per cent. The $N$ content ranged from 1.686 to 1.822 per cent (mean value -1.946 per cent), for the $W_{3}$ leaf samples. The cv values for this region were 13.071, 4.593 and 7.122 for $W_{1}, W_{2}$ and $W_{3}$, respectively.
4.2.1.3. Vellayani (Table 8)


The $N$ content of the leaf samples collected from the top region of clove plants at Vellayani showed marked variation from whorl to whorl. The $W_{1}$ leaf samples exhibited the lowest $N$ content of 1.992 and a highest value of 2.258 per cent with a mean of 2.143. The $\mathrm{H}_{2}$ and $W_{3}$ samplea registered more or less the same variation, i.e., from 1.881 to 2.116 per cent with a mean of 1.970 and 1.939 per cent respectively. At this region the cr values for $W_{1}, W_{2}$ and $W_{3}$ were 2.457. 4.391 and 4.501, respectively.

In the midale region the $W_{1}$ samples had a lowest IN content of 1.940 per cent and a highest value of 2.234 per cent with mean of 2.07 per cent, whereas the $N_{2}$ leaf samples showed a range value from 1.822 to 2.200 per cent with a mean of 1.98 per cent. $I_{n}$ the case of $\mathrm{H}_{3}$ leaf sample, the lowest value was 1.764 per cent and the highest value was 2.058 per cent with a mean value of 1.981. The cv values were 4.663. 5.57 and 5.016 for $\mathrm{H}_{1}$. $W_{2}$ and $W_{3}$, respectively.

The $W_{1}$ leaf samples of bottom region had a N status ranging from 1.94 to 2.16 per cent with a mean of 2.014 per cent. The $W_{2}$ leaf samples exhibited a range value from 1.822 to 2.116 per cent with a mean of 1.952.

TABLE 8. Mierogen concentration of leaf at vellayal
(Mean value per cent)


| $\begin{aligned} & \text { Tree. } \\ & \text { NO. } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Midale |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | ${ }_{17}$ | $\mathrm{V}_{1}$ | $\mathrm{W}_{2}$ | ${ }^{W} 3$ | $W_{1}$ | K | $\mathrm{H}_{3}$ |
| 1.4 | 2.175 | 2.116 | 2.116 | 2.175 | 2.058 | 1.992 | 2.116 | 2.116 | 1.992 |
| 2. | 2.258 | 1.992 | 1.940 | 2.116 | 2.058 | 2.058 | 1.940 | 1.940 | 1.940 |
| 3. | 2.059 | 1.992 | 1.981 | 2.116 | 1.992 | 1.881 | 1.992 | 1.940 | 1.822 |
| 4. | 1.992 | 1.822 | 1.822 | 1.940 | 1.822 | 1.822 | 2.058 | 2.005 | 1.902 |
| 5. | 2.202 | 1.902 | 1.882 | 2.002 | 2.200 | 1.001 | 1.992 | 1,882 | 1.822 |
| 6. | 2.234 | 2.053 | 1.992 | 1.234 | 1.992 | 1.940 | 1.992 | 1.940 | 1.882 |
| 7. | 2.116 | 2.002 | 2.001 | 2.116 | 2.002 | 2.002 | 2.000 | 2.001 | 1.884 |
| 8. | 2.008 | 1.881 | 1.822 | 2.058 | 1.881 | 1.822 | 2.001 | 1.822 | 1.764 |
| 9. | 2.175 | 1.940 | 1.882 | 1.940 | 1.822 | 1.764 | 2.059 | 1.992 | 1.940 |
| 10. | 2.216 | 2.002 | 2.001 | 2.039 | 1.922 | 1.900 | 1.992 | 1.884 | 1.822 |
| Mean | 2.143 | 1.9707 | 1.939 | 2.0745 | 1.9809 | 1.918 | 2,0131 | 1.952 | 1.883 |
| CV | 2.457 | 4.391 | 4.501 | A. 663 | 5.557 | 5.016 | 3.981 | 3.555 | 4.201 |

The $N$ content of the $H_{3}$ leaf' samples varied from 1.764 to 1.992 per cent with a mean value of 1.883 per cent. At this region the cv value for $W_{1}, W_{2}$ and $W_{3}$ samples were 3.981. 3.555 and 4.201, respectively.
4.2.1.4. Kulasekharan (Table 9)

The mean value of $N$ content of leaf in this region also showed a marked variation from region to region within the plant and also among the three whorls.

A range of values between 2.058 and 2.442
per cent $N$ were recorded in the $W_{1}$ leaf samples of top region with a mean of 2.75. In the $W_{2}$ and $W_{3}$ leaf samples, variations in $N$ content from 1.802 to 2.276 per cent and 1.682 to 2.22 per cent respectively were recorded with mean values of 2.123 and 2.016 per cent. For this Iegion, the cv values were $3.838,6.843$ and 8.325 for $w_{1}, W_{2}$ and $W_{3}$ leaves, respectively.

In the midale region the $W_{1}$ sample showed a Variation fwm 2.008 to 2.334 per cent nitrogen (mean value of 2.185 per cent) and $W_{2}$ samples registered a lowest value of 1.992 and a highest value of 2.274 per cent (mean value 2.092 per cent). The $\mathrm{N}_{3}$ leaves registered N
nes
TABLE 9．N⿰亻⿱丶⿻工二十⿴⿱冂一⿰丨丨丁口𧘇保 concentrotion in leat at Kulasekhexem

> (Mean values - per cent)

| Tres SO． | FOP |  |  | Midde |  |  | Bottom |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | $\mathrm{V}_{3}$ | $\nabla_{1}$ | $\mathrm{K}_{2}$ | ${ }^{+1}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ |
| 1 | 2.392 | 2.200 | 2.102 | 2.234 | 2.174 | 2.100 | 2.058 | 1.928 | 1.628 |
| 2． | 2.305 | 2.175 | 1.800 | 2.175 | 2.115 | 1.082 | 2.116 | 1.992 | 1.686 |
| 3. | 2.175 | 1.803 | 1.682 | 2.116 | 2.008 | 1.018 | 2.116 | 2.058 | 1.726 |
| 4. | 2.294 | 2.084 | 2.116 | 2.234 | 2.058 | 2.002 | 2.058 | 2.001 | 1.678 |
| 5. | 2.410 | 2.200 | 2.002 | 2.175 | 2.111 | 2．002 | 2.275 | 2.162 | 2.084 |
| 6. | 2.175 | 2.116 | 2.116 | 2.176 | 2.116 | 1.984 | 2.212 | 2.008 | 1.986 |
| 7. | 2.058 | 1.992 | 1.992 | 2.116 | 2.058 | 2.116 | 1.992 | 1.992 | 1.040 |
| 8. | 2.175 | 2.116 | 2.178 | 2.175 | 2.058 | 2.058 | 2.116 | 2.002 | 2.992 |
| 9. | 2.293 | 2.175 | 2.175 | 2.234 | 0.020 | 1.992 | 2.175 | 2.116 | 2.058 |
| 10. | 2.234 | 2.058 | 1.940 | 2.058 | 1.992 | 1.668 | 2.116 | 2.020 | 1.668 |
| 11. | 2.310 | 2.210 | 2.110 | 2.334 | 2.274 | 2.200 | 2.158 | 1.928 | 1．528 |
| 12. | 2．405 | 2.276 | 1.900 | 2.275 | 2.116 | 1.802 | 2.226 | 2.100 | 1.028 |
| 13. | 2.176 | 1.902 | 1.782 | 2.226 | 2.200 | 2.008 | 2.226 | 2.058 | 1.738 |
| 14. | 2.284 | 2.084 | 2.116 | 2.234 | 2.058 | 2.100 | 2.226 | 2.002 | 1.678 |
| 15. | 2.442 | 2.300 | 2.100 | 2.176 | 2.202 | 2．008 | 2.276 | 2． 262 | 2.086 |
| 16. | 2.317. | 2.226 | 2.118 | 2.178 | 2.008 | 1.982 | 2.202 | 2.008 | 1.986 |
| 17. | 2.168 | 1.992 | 1．668 | 2.116 | 2.068 | 2.116 | 1.909 | 1.808 | 1.640 |
| 18. | 2.175 | 2.080 | 2.211 | 2.118 | 2.008 | 2.006 | 2：008 | 2.002 | 1.932 |
| 19. | 2.383 | 2.276 | 2.220 | 2.244 | 2.222 | 2.100 | 2.168 | 2.116 | 2.002 |
| 20. | 2.234 | 2.002 | 1.940 | 2.008 | 1.992 | 1.668 | 2.116 | 2.000 | 2．668 |
| Mean | 2.755 | 2.123 | 2.016 | 2.185 | 2.092 | 1.936 | 2.136 | 2.078 | 1.819 |
| CV | 3.838 | 6.843 | 8.325 | 4.328 | 0.016 | 13.423 | 4.681 | 11.293 | 9.767 |

content ranging from 1.018 to 2.2 per cent with a mean of 1.936 per cent. The cv value for $\omega_{1}, \omega_{2}$ and $\omega_{3}$ were 4.328, 4.016 and 13.423 , respectively.

In the bottom region the $N$ percentage varied in the $W_{1}, W_{2}$ and $W_{3}$ samples from 1.909 to 2.226 (mean value 2.136) from 1.808 to 2.262 (mean 2.078) and from 1.628 to 2.086 (mean 1.819 ) respectively. The cv values ŵere 1.681, 11.293 and 9.767 , respectively.
4.2.2. Phosphorus
4.2.2.1. Vithura (Table 10)

The phosphorus status at the top region of the tree showed a remarkable variation with reference the three whorls studied. The $W_{1}$ samples at the top region registered a lowest value of 0.140 per cent and a highest value of 0.280 (mean 0.270 per cent). For the $W_{2}$ and $W_{3}$ samples, the $P$ content varied from 0.012 to 0.24 per cent (mean 0.173 ) and from 0.110 to 0.270 per cent (mean 0.165 ), respectively. The cv values for $\mathrm{H}_{1}, \mathrm{~W}_{2}$ and $\mathrm{W}_{3}$ leaves were 16.110, 23.655 and 26.417 , respectively.
$I_{n}$ the midale region the $P$ status varied among the $N_{1}, W_{2}$ and $H_{3}$ samples from 0.160 to 0.260 per cent (mean 0.213 ), 0.120 to 0.260 per cent (mean 0.180 ) and 0.110 to 0.210 per cent (mean 0.160 ), respectively. The cv

FABLE 10. Phosphofus concentrations in leaf at Vithura
(Mean value - per cent)

| $\begin{aligned} \text { Tree } \\ \text { Ho. } \end{aligned}$ | Frec Regions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | MIddle |  |  | Bottora |  |  |
|  | ${ }^{H}$ | $\mathrm{W}_{2}$ | $W_{3}$ | ${ }^{W}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | W3 |
| 1. | 0.16 | 0.14 | 0.12 | 0.18 | 0.15 | 0.11 | 0.26 | 0.19 | 0.12 |
| 2. | 0.18 | 0.14 | 0.13 | 0.20 | 0.14 | 0.16 | 0.20 | 0.19 | 0.22 |
| 3. | 0.18 | 0.13 | 0.20 | 0.20 | 0.13 | 0.13 | 0.21 | 0.12 | 0.11 |
| 4. | 0.14 | 0.12 | 0.13 | 0.18 | 0.12 | 0.12 | 0.20 | 0.16 | 0.12 |
| 5. | 0.16 | 0.14 | 0.12 | 0.18 | 0.14 | 0.16 | 0.18 | 0.14 | 0.14 |
| 6. | 0.18 | 0.14 | 0.12 | 0.16 | 0.16 | 0.14 | 0.20 | 0.18 | 0.18 |
| 7. | 0.21 | 0.20 | 0.18 | 0.20 | 0.18 | 0.16 | 0.20 | 0.18 | 0.14 |
| 8. | 0.16 | 0.14 | 0.12 | 0.18 | 0.16 | 0.12 | 0.18 | 0.12 | 0.11 |
| 9. | 0.14 | 0.12 | 0.11 | 0.16 | 0.14 | 0.12 | 0.18 | 0.12 | 0.11 |
| 10. | 0.20 | 0.18 | 0.16 | 0.20 | 0.14 | 0.12 | 0.16 | 0.14 | 0.12 |
| 11. | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.19 | 0.26 | 0.18 | 0.18 |
| 12. | 0.22 | 0.18 | 0.16 | 0.23 | 0.20 | 0.21 | 0.26 | 0.20 | 0.16 |
| 13. | 0.24 | 0.20 | 0.16 | 0.23 | 0.21 | 0.19 | 0.24 | 0.21 | 0.19 |
| 14. | 0.25 | 0.21 | 0.20 | 0.22 | 0.18 | 0.16 | 0.26 | 0.25 | 0.15 |
| 15. | 0.26 | 0.24 | 0.27 | 0.23 | 0.27 | 0.21 | 0.22 | 0.21 | 0.18 |
| 16. | 0.24 | 0.20 | 0.21 | 0.22 | 0.22 | 0.18 | 0.26 | 0.24 | 0.22 |
| 17. | 0.23 | 0.21 | 0.18 | 0.26 | 0.21 | 0.19 | 0.26 | 0.22 | 0.21 |
| 18. | 0.28 | 0.20 | 0.21 | 0.26 | 0.21 | 0.18 | 0.26 | 0.19 | 0.16 |
| 19. | 0.26 | 0.24 | 0.20 | 0.24 | 0.26 | 0.18 | 0.26 | 0.23 | 0.18 |
| 20. | 0.24 | 0.21 | 0.20 | 0.26 | 0.21 | 0.18 | 0.26 | 0.21 | 0.16 |
| Mean | 0.207 | 0.173 | 0.165 | 0.213 | 0.180 | 0.160 | 0.382 | 0.179 | 0.169 |
| cv | 16.110 | 23.655 | 26.417 | 16.315 | 22.484 | 19.957 | 15.389 | 20.327 | 7.28 |

values were $16.315,22.484$ and 19.957 for $w_{1}, W_{2}$ and $w_{3}$ samples,respectively.

In the bottom region the $W_{1}, W_{2}$ and $W_{3}$ samples registered values ranging from 0.180 to 0.260 per cont (mean 0.382), from 0.110 to 0.250 per cont (mean 0.179) and from 0.110 to 0.220 per cent (mean 0.165 ) with cv values of $15.389,20.327$ and 27.281 , respectively.
4.2.2.2. Pattom (Table 11)

In the top region of the trees $P$ status of $\mathrm{H}_{1}$. $W_{2}$ and $W_{3}$ samples varied from 0.210 to 0.280 per cent (mean 0.251 ) from $0.162,0.240$ per cent (mean 0.196 ) and from 0.140 to 0.240 per cent (mean 0.179 ) with cv values of $12.511,11.634$ and 15.065 , respectively.

In the midale region the $W_{1}$ samples had a variation from 0.200 to 0.280 per cent with a mean value of 0.241 . The $\mathrm{H}_{2}$ and $H_{3}$ samples recorded $P$ content from 0.140 to 0.260 per cent (mean values 0.194 ) and from 0.120 to 0.250 per cent (mean 0.170 ), respectively. at this region the $\mathrm{N}_{1}, \mathrm{H}_{2}$ and $\mathrm{H}_{3}$ samples had the cv values of 9.414, 17.131 and 19.252 , respectively.

She $P$ concentration
A in the bottom region $W_{1}, W_{2}$ and $W_{3}$ samples, the $p$ concentration varied from 0.220 to 0.280 per cent (mean
yens
TNBLE 11. Phosphorus concentration in leaf at Patton
(Mean value - per cent)

Tree Regions

0.258 ) . 0.160 to 0.260 per cent (mean 0.208 ) and from 0.120 to 0.210 per cent (mean 0.181 ) respectively. The corresponding cv values were 6.859. 16. 180 and 16.794, respectively for $W_{1}, W_{2}$ and $W_{3}$.
4.2.2.3. Vellayani (Table 12)

In the top region of the trees the $W_{1}$ samples had a $P$ content ranging from 0.110 to 0.160 per cent with a mean value of 0.132 . The $P$ status of $V_{2}$ and $V_{3}$ samples varied from 0.080 to 0.160 per cent (mean 0.116 ) and from 0.080 to 0.120 per cent (mean 0.090 ), respectively. The cv values for $W_{1}, W_{2}$ and $W_{3}$ leaves were 16.524, 19.147 and 18.885, respectively.

In the midale region the $P$ status of $W_{1}, W_{2}$ and $W_{3}$ samples ranged from 0.080 to 0.160 per cent (mean 0.117 ) from 0.080 to 0.120 per cent (mean 0.100 ) and from 0.040 to 0.110 per cent (mean 0.084 ) respectively. The cu values for the three whorls were recorded as 17.117, 17.638 and 22.587 , respectively.

The bottom region of the tree also showed a variation in $P$ status from whorl to whorl ranging from 0.080 told 0.240 per cent (mean 0.165 ) for the first whorl. from 0.060 to 0.120 per cent (mean 0.100 ) for the $2 n d$ whorl and from 0.060 to 0.120 per cent (mean 0.090 ) for

SABLE 12. Phosphoxus concentrations in leaf at Vellayani (Mean value per cent)

| $\begin{aligned} & \text { Tree } \\ & \text { NO. } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fmop |  |  | Midale |  |  | Botton |  |  |
|  | $\mathrm{H}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{3}$ | $W_{1}$ | $\mathrm{k}_{2}$ | $\mathrm{Ni}_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ |
| 1. | 0.15 | 0.10 | 0.08 | 0.16 | 0.12 | 0.11 | 0.24 | 0.12 | 0.08 |
| 2. | 0.12 | 0.16 | 0.08 | 0.12 | 0.10 | 0.08 | 0.20 | 0.10 | 0.11 |
| 3. | 0.14 | 0.12 | 0.10 | 0.12 | 0.11 | 0.10 | 0.12 | 0.11 | 0.10 |
| 4. | 0.16 | 0.14 | 0.12 | 0.12 | 0.10 | 0.08 | 0.14 | 0.12 | 0.10 |
| 5. | 0.12 | 0.10 | 0.08 | 0.11 | 0.10 | 0.08 | 0.10 | 0.08 | 0.06 |
| 6. | 0.14 | 0.12 | 0.11 | 0.12 | 0.11 | 0.08 | 0.21 | 0.08 | 0.08 |
| 7. | 0.11 | 0.08 | 0.06 | 0.08 | 0.06 | 0.04 | 0.20 | 0.11 | 0.12 |
| 8. | 0.22 | 0.11 | 0.09 | 0.12 | 0.11 | 0.09 | 0.13 | 0.11 | 0.09 |
| 9. | 0.14 | 0.12 | 0.09 | 0.12 | 0.11 | 0.10 | 0.22 | 0.11 | 0.09 |
| 10. | 0.12 | 0.11 | 0.09 | 0.10 | 0.08 | 0.08 | 0.08 | 0.06 | 0.06 |
| Mean | 0.132 | 0.116 | 0.09 | 0.117 | 0.100 | 0.084 | 0.265 | 0.100 | 0.09 |
| CV | 16.524 | 19.147 | 18.885 | 17.117 | 17.638 | 22.587 | 12.267 | 19.999 | 22.12\% |

the third whorl. with cv values of 12.267, 19.999 and 22.125 , respectively.
4.2.2.4. Kulasekharam (Table 13)

The leaf $P$ status of $W_{1}$ of the top region indicated a variation from 0.100 to 0.120 per cent (mean 0.110 ). The $\mathrm{H}_{2}$ and $\mathrm{it}_{3}$ samples recorded $P$ content from 0.100 to 0.120 per cent (mean 0.107 ) and from 0.010 to 0.120 per cent (mean 0.106 ), sespectively. The cv values for this position were 19.147 .18 .880 and 17.121 respectively for the three whorls.

In the midale region the $W_{1}, W_{2}$ and $W_{3}$ semples yielded $p$ content ranging from 0.110 to 0.150 per cent (mean 0.125). from 0.100 to 0.130 per cent (mean 0.115) witha and from 0.100 . to 0.130 per cent (mean 0.114) cv values of 17.116. 17.63 and 22.58, respectively.

In the bottom region the $p$ status of $W_{1}$ samples varied from 0.120 to 0.190 per cent (mean value 0.140 ), and Irom 0.110 to 0.130 per cent (mean 0.117 ) for both the $H_{2}$ and $W_{3}$ samplos. The $c V$ values for $P$ content for the three whorls were $14.260,16.520$ and 22.12 , respectively.
4.2.3. Potassium
4.2.3.1. Vithura (Table 14)

In the top region, the $K$ atatus of $W_{1} . W_{2}$ and $W_{3}$ leaf samples varied from 2.176 to 2.720 per cent (mean

TABLE 13. Phosphorus concentration in laaf at Kulasekhara
(Mean values per cent)

| $\begin{gathered} \text { Tree } \\ \text { No. } \end{gathered}$ | Free Regions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | MEdale |  |  | Bottom |  |  |
|  | $\mathrm{W}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{H}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{W}_{3}$ |
| 2\% | 0.11 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | $0.13{ }^{*}$ | 0.12 | 0.13 |
| 2. | 0.12 | 0.11 | 0.10 | 0.12 | 0.12 | 0.12 | 0.19 | 0.12 | 0.12 |
| 3. | 0.11 | 0.10 | 0.10 | 0.13 | 0.12 | 0.11 | 0.13 | 0.11 | 0.12 |
| 4. | 0.10 | 0.11 | 0.11 | 0.14 | 0.12 | 0.13 | 0.14 | 0.12 | 0.13 |
| 5. | 0.12 | 0.11 | 0.11 | 0.14 | 0.11 | 0.11 | 0.14 | 0.13 | 0.12 |
| 6. | 0.11 | 0.10 | 0.10 | 0.15 | 0.12 | 0.11 | 0.14 | 0.11 | 0.11 |
| 7. | 0.10 | 0.11 | 0.11 | 0.12 | 0.11 | 0.11 | 0.14 | 0.12 | 0.13 |
| 8. | 0.11 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.11 |
| 9. | 0.12 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | 0.14 | 0.11 | 0.11 |
| 10. | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | 0.11 | 0.19 | 0.12 | 0.11 |
| 11. | 0.11 | 0.10 | 0.10 | 0.14 | 0.12 | 0.12 | 0.14 | 0.11 | 0.11 |
| 12. | 0.12 | 0.11 | 0.10 | 0.13 | 0.11 | 0.11 | 0.14 | 0.13 | 0.12 |
| 13. | 0.10 | 0.10 | 0.11 | 0.12 | 0.11 | 0.10 | 0.12 | 0.12 | 0.12 |
| 14. | 0.10 | 0.11 | 0.10 | 0.13 | 0.12 | 0.12 | 0.13 | 0.11 | 0.12 |
| 15. | 0.10 | 0.11 | 0.10 | 0.11 | 0.11 | 0.11 | 0.14 | 0.11 | 0.11 |
| 16. | 0.11 | 0.11 | 0.31 | 0.14 | 0.13 | 0.12 | 0.14 | 0.13 | 0.12 |
| 17. | 0.12 | 0.11 | 0.11 | 0.12 | 0.12 | 0.11 | 0.12 | 0.12 | 0.12 |
| 18. | 0.10 | 0.10 | 0.10 | 0.11 | 0.12 | 0.12 | 0.14 | 0.11 | 0.11 |
| 19. | 0.11 | 0.11 | 0.10 | 0.12 | 0.11 | 0.10 | 0.13 | 0.12 | 0.12 |
| 20. | 0.12 | 0.12 | 0.12 | 0.13 | 0.11 | 0.12 | 0.14 | 0.11 | 0.11 |
| Mean | 0.11 | 0.107 | 0.105 | 0.125 | 0.115 | 0.114 | 0.140 | 0.117 | 0.117 |
| cv | 19.147 | 18.88 | 17.21 | 17.117 | 17.63 | 22.58 | 14.26 | 16.52 | 22.125 |

TABLE 14. Potassium concentration in leaf at Vithura
(Mean value - per cent)

| $\begin{aligned} & \text { Tree } \\ & \text { No. } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Middle |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | ${ }^{1} 3$ | $\mathrm{H}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ |
| 1. | 2.176 | 2.112 | 1.792 | 2.432 | 2.368 | 1.984 | 2.496 | 2.432 | 2.112 |
| 2. | 2.304 | 2.176 | 2.112 | 2.496 | 2.304 | 2.176 | 2.624 | 2.432 | 2.048 |
| 3. | 2.612 | 2.240 | 1.984 | 2.240 | 2.240 | 2.112 | 2.496 | 2.496 | 2.176 |
| 4. | 2.240 | 2.240 | 2.048 | 2.112 | 2.048 | 1.984 | 1.980 | 2. 222 | 1.856 |
| 5 | 2.240 | 2.176 | 1,920 | 1.920 | 1.856 | 1.600 | 2.176 | 2.112 | 1.856 |
| 6. | 2.432 | 2.368 | 1.984 | 2.368 | 2.304 | 2.112 | 2.368 | 2.368 | 2.240 |
| 7. | 2.344 | 2.176 | 2.112 | 2.176 | 2.176 | 1.824 | 2.400 | 2.304 | 2.048 |
| 8. | 2.240 | 2.304 | 1.920 | 2.304 | 2.368 | 1.984 | 2.240 | 2.176 | 1.984 |
| 9. | 2.720 | 1.948 | 1.920 | 2.112 | 2.112 | 1.984 | 2.176 | 2.176 | 1.920 |
| 10. | 2.368 | 1.984 | 2.084 | 2.496 | 2.368 | 2.336 | 2.368 | 2.368 | 2.272 |
| 11. | 2.432 | 2.368 | 1.984 | 2.176 | 2.112 | 1.792 | 2.400 | 2.112 | 1.984 |
| 12. | 2.496 | 2.304 | 2.176 | 2.624 | 2.432 | 2.048 | 2.112 | 2.400 | 2.240 |
| 13. | 2.402 | 2.240 | 2.112 | 2.112 | 1.980 | 1.792 | 2.211 | 1.980 | 1.792 |
| 14. | 2.240 | 2.112 | 2.048 | 2.112 | 2.048 | 1.984 | 2.112 | 1.980 | 1.856 |
| 15. | 2.400 | 2.176, | 1.920 | 2.176 | 2.112 | 1.856 | 1.920 | 1.856 | 1.600 |
| 16. | 2.304 | 2.112 | 2.304 | 2.432 | 2.368 | 2.112 | 2.368 | 2.112 | 2.112 |
| 17. | 2.400 | 2.304 | 2.048 | 2.144 | 2.176 | 2.112 | 2.176 | 2.176 | 1.824 |
| 18. | 2.304 | 2.002 | 1.984 | 2.240 | 2.304 | 1.920 | 2.176 | 1.984 | 1.984 |
| 19. | 2.612 | 2.112 | 2.048 | 2.176 | 2.176 | 1.920 | 1.920 | 1.984 | 1.856 |
| 20. | 2. 568 | 2.368 | 2.272 | 2.368 | 1.984 | 2.084 | 2.496 | 2.368 | 2.336 |
| Mean | 2.262 | 2.192 | 2.038 | 2.260 | 2.198 | 1.985 | 2.256 | 2.246 | 2.004 |
| CV | 5.582 | 6.236 | 6.074 | 7.687 | 4.706 | 8.260 | 8.994 | 11.091 | 9.482 |

2.262) from 1.984 to 2.368 per cent (mean 2.192) and from 1.792 to 2.304 per cent (mean 2.038) , with cv values of 5.582. 6.236 and 6.074, respectively.

In the midale region the K status of $\mathrm{W}_{1}, \mathrm{H}_{2}$ and $H_{3}$ ranged from 1.920 to 2.624 per cent (mean 2.26 ) from 0.186 to 2.432 per cent (mean 2.198 ) and from 1.600 to 2.336 per cent (mean 1.985) with cv values of 7.687 .6 .706 and 8.260 , respectively.

In the bottom region the $K$ status of $W_{1}, W_{2}$ and $W_{3}$ leaf samples ranged from 1.920 to 2.624 per cent (mean 2.256) from 1.856 to 2.432 per cent (mean 2.246 ) and from 1.600 to 2.240 per cent (mean 2.004) with cv values. of 8.994 . 11.091 and 9.482, respectively.
4.2.3.2. Pattom (Table 15)

In the top region of the trees of pattom location the $K$ content varied from 2.176 to 2.688 per cent (mean 2.486 ) for $W_{1}$ smples, from 1.408 to 2.560 per cent (mean 2.169) for $W_{2}$ and from 1.408 to 2.496 per cent (mean 2.024 ) for $W_{3}$ leaf samples. The coefficients of varlation for $\mathrm{K}_{1}, \mathrm{~W}_{2}$ and $H_{3}$ leaves were $6.650,12.374$ and 12.211 , respectively.

In the midale region of the tree, the K status of $W_{1}$. $W_{2}$ and $W_{3}$ leaf samples varled from 2.020 to 2.680 per cent (mean 2.393 )。 fifom 1.792 to 2.680 per cent (mean 2.174) and from 1.504 to 2.464 per cent (mean 1.997)

TABLE 15 Potassium concentration In leaf at Pattom

> (Hean value - per cent)

| $\begin{gathered} \text { Tree } \\ \text { Ho. } \end{gathered}$ | Pree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Midale |  |  | Bottom |  |  |
|  | $W_{1}$ | ${ }^{7}$ | $W_{3}$ | $W_{1}$ | $\mathrm{H}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ |
| 1. | 2.368 | 1.920 | 1.760 | 2.496 | 1.920 | 2.464 | 2.560 | 2.400 | 1.856 |
| 2. | 2.560 | 2.176 | 2.240 | 2.680 | 2.680 | 2.336 | 2.400 | 2.212 | 2.020 |
| 3. | 2.400 | 2.368 | 2.112 | 2.624 | 2.368 | 2.240 | 2.656 | 2.656 | 2.688 |
| 4. | 2.56\% | 2.432 | 1.984 | 2.496 | 2.464 | 2.368 | 2.560 | 2.624 | 2.304 |
| 5. | 2.688 | 1.408 | 1.984 | 2.368 | 2.368 | 2.176 | 2.560 | 2.560 | 2.496 |
| 6. | 2.496 | 2.240 | 2.144 | 2.400 | 2.144 | 2.144 | 2.240 | 2.144 | 1.856 |
| 7. | 2.625 | 2.560 | 2.496 | 2.556 | 2.432 | 1.760 | 2.304 | 2.208 | 1.920 |
| 8. | 2.212 | 2.176 | 1.984 | 2.432 | 2.240 | 2.016 | 2.432 | 2.240 | 2.240 |
| 9. | 2.660 | 2.400 | 2.112 | 2.464 | 2.240 | 1.920 | 2.368 | 2.208 | 2.176 |
| 10. | 2.176 | 1.984 | 1.696 | 2.368 | 2.240 | 1.632 | 2.432 | 2.368 | 1.696 |
| 11. | 2.368 | 1.920 | 1.920 | 2.112 | 2.020 | 2.016 | 2.020 | 2.020 | 1.920 |
| 12. | 2.660 | 2.112 | 2.020 | 2.432 | 1.792 | 1.504 | 2.112 | 1.982 | 1.982 |
| 13. | 2.560 | 2,202 | 2.020 | 2.400 | 2.020 | 1.920 | 2.202 | 2.020 | 2.016 |
| 14. | 2.368 | 1.920 | 1.920 | 2.202 | 1.920 | 1.760 | 2.112 | 2.020 | 2.020 |
| 15. | 2.688 | 1.984 | 1.408 | 2.368 | 2.176 | 1.984 | 2.400 | 2.212 | 2.016 |
| 16. | 2.240 | 2.202 | 1.920 | 2.020 | 2.020 | 1.760 | 2.144 | 2.144 | 1.920 |
| 17. | 2.624 | 2.560 | 2.496 | 2.400 | 2.169 | 2.020 | 2.212 | 1.982 | 2.020 |
| 18. | 2.400 | 2.212 | 2.176 | 2.240 | 2.016 | 2.016 | 2.400 | 2.020 | 2.976 |
| 19. | 2.660 | 2.400 | 2.122 | 2.400 | 2.240 | 1.920 | 2.400 | 2.240 | 1.920 |
| 20. | 2.420 | 2.220 | 2.020 | 2.420 | 2.020 | 2.001 | 2.240 | 2.016 | 2.016 |
| Mean | 2.486 | 2.169 | 2.024 | 2.393 | 2.174 | 1.997 | 2.337 | 2.227 | 2.053 |
| cv | 6.650 | 12.374 | 22.211 | 6.585 | 9.981 | 12.302 | 7.454 | 9.307 | 11.195 |

respectively with correaponding cy values of 6.686. 9.981 and 12.302, reepectively.

The bottom region of the trees exinibited marked variation in the $K$ status in $W_{1}$. $W_{2}$ and $W_{3}$ amples. the values being 2.020 to 2.656 per cent (mean 2.337) : Eron 1.982 to 2.656 per cent (mean 2.227) and Efron 1.696 to 2.688 per cent (mean 2.053). The cv values obtained were 7.454. 9.307 and 11,195, xespectively. for whole 1,2 and 3. 4.2.3.3. Vellayani (Table 16)

At this location the leaf namples of top region recorded varied values for $K$ in the $H_{1} H_{2}$ and $H_{3}$ positions. The values ranged from 2.048 to 2.648 per cent (mean 2.227) EOF the Elsat whorl. From 1.600 to 1.98 per cent fmean 1.794) for the second whori and from 1.600 to 1.792 per cent (mean 1.693) for the third whorl. The corresponding cy values were 4.613. 7.141 and 6.433, respectively.

In the midale region the $K$ tatus of $W_{1}, W_{2}$ and $W_{3}$ positions ranged from 2,728 to 2.304 per cent (mean 2.009). Erom 1.664 to 2.212 per cent (mean 1.844) and Exom 1.536 to 1. 324 per cent (mean 1,657) with correaponding cv values of 10.074. 8. 189 and 4.724, respectivaly

In the bottom region the $K$ content of $W_{1}, W_{2}$ and $W_{3}$ Leaf samples varied from 1,664 to 2.582 per cont (rean 2.094) Erom 1.536 to 2.432 per cent (mean 1.99) and from
table 16. Potassium concentrations in leaf at Vellayani
(Mean value par cent)

| risee Dio. | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TOP |  |  | Middie |  |  | Botton |  |  |
|  | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{W}_{3}$ |
| 1. | 2.048 | 1.696 | 1.600 | 2.176 | 2.112 | 1. 536 | 2.240 | 2.400 | 1.600 |
| 2. | 2.281 | 1. 792 | 1.600 | 2.240 | 3.856 | 1.664 | 2.368 | 2.240 | 2.240 |
| 3. | 2.048 | 1.760 | 1.760 | 2.016 | 1.766 | 1.632 | 2.176 | 1.884 | 1.696 |
| 4. | 2.200 | 1.728 | 1.728 | 1.728 | 1.664 | 1.664 | 1.664 | 1.536 | 1.440 |
| 5. | 2.272 | 1.984 | 1.792 | 2.308 | 1.824 | 1.824 | 2.582 | 2.432 | 1.738 |
| 6. | 2.048 | 1.600 | 1.600 | 2.112 | 2.048 | 1.600 | 2.176 | 2.112 | 1.536 |
| 7. | 2.176 | 1.984 | 1.792 | 2.048 | 1.856 | 1.664 | 1.984 | 1.792 | 1.600 |
| 8. | 2.220 | 1.728 | 1.728 | 1.920 | 1.664 | 1.664 | 1.760 | 1.760 | 1.664 |
| 9. | 2.618 | 1.920 | 1:664 | 1.728 | 1.728 | 1.600 | 1.984 | 1.984 | 1.600 |
| 10. | 2.304 | 2.760 | 1.664 | 2.227 | 1.920 | 1.720 | 2.016 | 1.760 | 1.632 |
| Mean | 2.227 | 1.794 | 1.693 | 2.009 | 1.344 | 1.657 | 2.094 | 1.990 | 1.673 |
| CV | 4.613 | 67.141 | 6.433 | 10.074 | 3.189 | 4.724 | 13.074 | 15.012 | 12.843 |

1.440 to 2.240 per cent (mean 1.673) respectively. The corresponding ev values obtained were 13.074, 15.012 and 12.843 for the first, second and third whorls.
4.2.3.4. Kulasekharam (Table 17)

At this location the $K$ status of leaves showed marked variation among the three regions of the plants. In the top region, the $K$ status of $W_{1}, W_{2}$ and $W_{3}$ leaf sartiples varied from 2.176 to 2.688 per cent (mean 2.412) from 1.882 to 2.304 per cent (mean 2.188) and from 1.760 to 2.284 per cent (mean 1.969 per cent) with Cv values of 4.846. 7.151 and 6.935, respectively.

In the middle region, the $K$ status of $W_{1}, W_{2}$ and $W_{3}$ leaf samples ranged from 2.048 to 2.368 per cent (mean 2.23), from 1.856 to 2.202 per cent ( mean 2.050) and 1.680 to 2.100 per cent (mean 1.916) with cv values of 5.810. 6.139 and 6.155 , respectively for the three whorls.

In the bottom region, the $K$ status ranged between 2.048 and 2.304 per cent for whorl 1, Erom 1.920 per cent to 2.304 per cent for whorl 2 and from 1.62 to 2.048 per cent for whorl 3 with corresponding means of 2.205, 2.011 and 1.900 per cent. The respective cv values were 8.969, 10.565 and 5.240.

TABLE 17. Potassium concentration in leas at Kulasokharm
(Mean value - per cont)

| Tree No. | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | M1ade |  |  | Bottan |  |  |
|  | $\mathrm{W}_{1}$ | $\mathrm{F}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $W_{2}$ | $\mathrm{W}_{3}$ | $W_{2}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ |
| 1. | 2.368 | 1.920 | 1.760 | 2.368 | 2.176 | 1.920 | 2.112 | 1.984 | 1.920 |
| 2. | 2.688 | 1.984 | 1.950 | 2.560 | 2.176 | 1.920 | 2. 304 | 2.304 | 2.048 |
| 3 | 2.560 | 2.176 | 2.176 | 2:240 | 2. 176 | 2.048 | 2.176 | 2.176 | 1.920 |
| 4. | 2.368 | 2.112 | 2.112 | 2.176 | 1.920 | 1.920 | 2.112 | 1.920 | 1.856 |
| 5. | 2.400 | 2.208 | 2.920 | 2.176 | 2.112 | 1.856 | 2.176 | 1.920 | 1.856 |
| 6 | 2.400 | 1.920 | 1.856 | 2.208 | 2.048 | 1,696 | 2.240 | 2.176 | 2.856 |
| 7. | 2.304 | 2.304 | 1.920 | 2.176 | 2.048 | 1.856 | 2.112 | 1.920 | 1.856 |
| 8. | 2.464 | 2.882 | 1.802 | 2.112 | 1.920 | 1.920 | 2.176 | 1.920 | 1.856 |
| 9. | 2.240 | 2.176 | 1,856 | 2.112 | 1.984 | 1.920 | 2.048 | 1.920 | 1.856 |
| 10. | 2.176 | 1.920 | 1.856 | 2.048 | 1.856 | 1.984 | 2.112 | 2.002 | 1.920 |
| $11 \%$. | 2.400 | 2.028 | 2.002 | 2.176 | 2.112 | 2.002 | 2.112 | 2.112 | 1.920 |
| 12. | 2.304 | 2.048 | 2.984 | 2.112 | 1.984 | 1.920 | 2.176 | 1.920 | 1.984 |
| 13. | 2.368 | 2.300 | 2.048 | 2.176 | 2.980 | 1.680 | 2.112 | 1.980 | 1.788 |
| 14. | 2.550 | 2.176 | 2.008 | 2.300 | 2.048 | 2.068 | 2.176 | 1.980 | 1.620 |
| 15. | 2.688 | 2.084 | 1.861 | 2.200 | 2.008 | 2:002 | 2.112 | 1.920 | 1.856 |
| 16. | 2.460 | 2.008 | 1.882 | 2.240 | 2.002 | 1.882 | 2.176 | 2.112 | 2,002 |
| 17. | 2.240 | 2.176 | 1.856 | 2.140 | 2.070 | 1.746 | 2. 200 | 2.100 | 1.800 |
| 18. | 2.223 | 2.176 | 2.006 | 2.167 | 2,008 | 2.001 | 2.176 | 2.176 | 2.048 |
| 19. | 2. 443 | 2,284 | 2,284 | 2.224 | 2.184 | 1.800 | 2.114 | 2.004 | 1.900 |
| 20. | 2.604 | 2.404 | 2.200 | 2.404 | 2.202 | 2.100 | 2.304 | 2.304 | 2.048 |
| Mean | 2.412 | 2.118 | 1.969 | 2.230 | 2.050 | 1.916 | 2.205 | 2.011 | 1.900 |
| CV | 4.486 | 7.151 | 6.935 | 5.801 | 6.139 | 6.155 | 0.969 | 10.565 | 5.240 |


#### Abstract

4.2.4. Calcium 4.2.4.1. Vithura (Tabla 18)


The calcium concentration in the leaves of the top region of the trees at Vithura location varicd from whorl to whorl. The $W_{1}, W_{2}$ and $W_{3}$ samples registered calcium content ranging from 0.233 to 0.363 per cent (mean value being 0.288 per cent). from 0.189 to 0.362 per cent (mean value of 0.286 per cent) and from 0.182 to 0.386 per cent (mean value 0.300 per cent) with $C$ values of 16.812 , 25.893 and 21.268 ,respectively.

In the midale region the ca atetus of $H_{1}$ leaf indicated a lowest value of 0.101 per cent and a highest value of 0.370 per cent, withe nean beirg 0.271 per cent. A range value from 0.174 to 0.362 per cent (mean 0.280 per cent) and from 0.159 to 0.386 per cent (mean 0.299 per cent) wore observed in the $W_{2}$ and $W_{3}$ leaf amples. The coefficients of variation were 20.469, 19.739 and 21.185 for $w_{1}, W_{2}$ and $w_{3}$ leaves, respectively.

$$
\text { The calcium status of } W_{1}, W_{2} \text { and } W_{3} \text { leaf amples }
$$ of bottom region of the tree varied from 0.235 to 0.385 per cent (mean 0.303 per cent). Erom 0.168 to 0.366 per cert (mean value 0.287 per cent) and from 0.211 to 0.386 per cent (méan value 0.307 per cent) with corrasponding cv values of 14.242, 15.916 and 12.573 , respectively.

## TABLE 18. Calcium concentration in leaf at Vithura

(Mean values - per cont)

| $\begin{aligned} & \text { Tree } \\ & \text { No. } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Top |  | Middle |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{K}_{2}$ | $W_{3}$ | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ | $\mathrm{H}_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ |


| 1. | 0.233 | 0.205 | 0.226 | 0.101 | 0.174 | 0.217 | 0.235 | 0.241 | 0.283 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | 0.241 | 0.285 | 0.194 | 0.222 | 0.233 | 0.272 | 0.310 | 0.273 | 0.285 |
| 3. | 0.312 | 0.324 | 0.297 | 0.296 | 0.319 | 0.291 | 0.313 | 0.281 | 0.345 |
| 4. | 0.292 | 0.263 | 0.311 | 0.370 | 0.273 | 0.265 | 0.385 | 0.267 | 0.326 |
| 5. | 0.336 | 0.253 | 0.272 | 0.320 | 0.260 | 0.230 | 0.325 | 0.226 | 0.238 |
| 6. | 0.363 | 0.326 | 0.297 | 0.298 | 0.215 | 0.223 | 0.280 | 0.279 | 0.251 |
| 7. | 0.252 | 0.189 | 0.182 | 0.245 | 0.175 | 0.159 | 0.371 | 0.276 | 0.227 |
| 8. | 0.358 | 0.304 | 0.235 | 0.228 | 0.283 | 0.275 | 0.368 | 0.345 | 0.278 |
| 9. | 0.259 | 0.270 | 0.273 | 0.242 | 0.262 | 0.268 | 0.352 | 0.280 | 0.246 |
| 10. | 0.295 | 0.260 | 0.213 | 0.272 | 0.210 | 0.273 | 0.251 | 0.168 | 0.211 |
| 11. | 0.234 | 0.210 | 0.262 | 0.210 | 0.286 | 0.310 | 0.230 | 0.240 | 0.281 |
| 12. | 0.268 | 0.301 | 0.386 | 0.302 | 0.342 | 0.368 | 0.298 | 0.280 | 0.301 |
| 13. | 0.290 | 0.311 | 0.362 | 0.266 | 0.304 | 0.344 | 0.290 | 0.326 | 0.386 |
| 14. | 0.298 | 0.318 | 0.336 | 0.282 | 0.300 | 0.309 | 0.268 | 0.301 | 0.322 |
| 15. | 0.268 | 0.308 | 0.362 | 0.302 | 0.362 | 0.384 | 0.301 | 0.344 | 0.368 |
| 16. | 0.300 | 0.362 | 0.384 | 0.306 | 0.340 | 0.366 | 0.322 | 0.366 | 0.386 |
| 17. | 0.260 | 0.298 | 0.309 | 0.296 | 0.316 | 0.266 | 0.296 | 0.342 | 0.342 |
| 18. | 0.286 | 0.290 | 0.309 | 0.322 | 0.346 | 0.386 | 0.311 | 0.323 | 0.368 |
| 19. | 0.302 | 0.322 | 0.382 | 0.276 | 0.306 | 0.368 | 0.296 | 0.286 | 0.306 |
| 20. | 0.302 | 0.304 | 0.380 | 0.268 | 0.312 | 0.346 | 0.288 | 0.292 | 0.342 |
| Mean | 0.288 | 0.286 | 0.300 | 0.271 | 0.280 | 0.299 | 0.303 | 0.286 | 0.307 |

CV $16.812 \quad 15.893 \quad 21.268 \quad 20.45919 .73921 .185 \quad 14.24215 .916 \quad 12.573$
4.2.4.2. Pattom (Table 19)

The calciun status of $W_{1}, W_{2}$ and $W_{3}$ leaf samples of the top region of the clove plants at Pattom varied from 0.173 to 0.435 per cent (mean 0.277 per cent), from 0.131 to 0.326 per cent (mean 0.221 per cent) and 0.173 to 0.424 per cent (mean 0.297 per cent) sespectively. The cv values Eor $W_{1}, W_{2}$ and $W_{3}$ vere 23.787, 24.377 and 26.488, respectively.

In the midale region the calcium content in leaves varied from 0.198 to 0.440 per cent (mean value 0.284 per èent). from 0.194 to 0.299 per cent (mean 0.274 per cent) and Erom 0.194 to 0.44 per cent (mean value 0.294 per cent) for $W_{1}, W_{2}$ and $W_{3}$ leaf samples, respectively. The cr values were $19.163,22.057,21.003$.

In the bottom region of the tree, the leaf samples collected from $W_{1}, W_{2}$ and $W_{3}$ positions registered calcium content ranging from 0.177 to 0.383 per cent (mean value of 0.273 per cent). from 1.900 to 0.472 per cent (mean value of 0.259 per cent) and from 0.177 to 0.425 per cent (mean value 0.309 per cent), respectively. At this region the cv for=ca=content were 21.308, 29.093 and 17.439 for $W_{1}$. $W_{2}$ and $W_{3}$,respectively.
rable 19. Calcium concentration in leaf at Pattom
(Mean value - per cent)

| $\begin{aligned} & \text { Tree } \\ & \text { No } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Midale |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{FH}_{2}$ | $W_{3}$ | ${ }^{+1}$ | $\mathrm{V}_{2}$ | $W_{3}$ |


| 1. | 0.346 | 0.296 | 0.415 | 0.293 | 0.345 | 0.291 | 0.365 | 0.290 | 0.425 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | 0.319 | 0.131 | 0.173 | 0.312 | 0.235 | 0.194 | 0.325 | 0.306 | 0.315 |
| 3. | 0.335 | 0.234 | 0.307 | 0.275 | 0.197 | 0.260 | 0.228 | 0.190 | 0.206 |
| 4. | 0.206 | 0.183 | 0.224 | 0.262 | 0.202 | 0.206 | 0.247 | 0.196 | 0.232 |
| 5. | 0.281 | 0.150 | 0.186 | 0.247 | 0.307 | 0.215 | 0.311 | 0.301 | 0.177 |
| 6. | 0.248 | 0.201 | 0.211 | 0.304 | 0.294 | 0.285 | 0.224 | 0.203 | 0.212 |
| 7. | 0.253 | 0.256 | 0.274 | 0.440 | 0.334 | 0.300 | 0.277 | 0.316 | 0.320 |
| 8. | 0.435 | 0.273 | 0.424 | 0.309 | 0.299 | 0.326 | 0.383 | 0.472 | 0.336 |
| 9. | 0.245 | 0.197 | 0.242 | 0.353 | 0.316 | 0.207 | 0.311 | 0.130 | 0.253 |
| 10. | 0.285 | 0.240 | 0.318 | 0.316 | 0.252 | 0.280 | 0.311 | 0.275 | 0.338 |
| 11. | 0.345 | 0.296 | 0.405 | 0.292 | 0.305 | 0.296 | 0.325 | 0.290 | 0.413 |
| 12. | .0 .173 | 0.172 | 0.319 | 0.235 | 0.291 | 0.346 | 0.325 | 0.291 | 0.414 |
| 13. | 0.307 | 0.234 | 0.336 | 0.198 | 0.194 | 0.313 | 0.190 | 0.227 | 0.316 |
| 14. | 0.210 | 0.182 | 0.226 | 0.261 | 0.202 | 0.273 | 0.197 | 0.246 | 0.282 |
| 15. | 0.186 | 0.150 | 0.281 | 0.215 | 0.265 | 0.307 | 0.177 | 0.301 | 0.311 |
| 16. | 0.218 | 0.219 | 0.248 | 0.285 | 0.294 | 0.304 | 0.212 | 0.203 | 0.304 |
| 17. | 0.274 | 0.256 | 0.356 | 0.301 | 0.334 | 0.440 | 0.277 | 0.308 | 0.320 |
| 18. | 0.286 | 0.326 | 0.404 | 0.308 | 0.299 | 0.289 | 0.286 | 0.296 | 0.346 |
| 19. | 0.242 | 0.196 | 0.245 | 0.207 | 0.265 | 0.384 | 0.253 | 0.230 | 0.362 |
| 20. | 0.268 | 0.248 | 0.363 | 0.268 | 0.258 | 0.366 | 0.253 | 0.130 | 0.311 |
| Mean | 0.277 | 0.221 | 0.297 | 0.284 | 0.274 | 0.294 | 0.273 | 0.259 | 0.309 |

CV $23.78724 .37726 .448 \quad 19.16322 .05721 .003 \quad 21.30829 .09317 .439$
4.2.4.3. Vellayani (Table 20)

The calciun content in the three whorls of
leaver at Vellayani aite ranged from 0.165 to 0.240 per cent (mean 0.201 per cent). from 0.167 to 0.236 per cent) (mean 0.197 per cent) and from 0.148 to 0.265 per cent (nean 0.222 per cent) for $H_{1}, W_{2}$ and $H_{3}$ leaf amples with or Talues of $12.892,15.476$ and 16.591 , xespectively.

The middie region yielded calcium values from $0.18 \sigma^{6}$ to 0.256 per cent (mean 0.221 per cent). Erom 0.142 to 0.288 per cent (mean 0.224 per cent) and from 0.156 to 0.291 (mean 0. 224 per cent) for $W_{1}, W_{2}$ and $H_{3}$ leaf samples with er values of $20.388,18.905$ and 18.758 , respectively.

At the bottom region of the trees, calcium status in leaves of the different whorls $\mathrm{Viz} . \mathrm{W}_{1}, \mathrm{H}_{2}$ and $W_{3}$ ranged from 0.194 to 0.296 per cent (mean 0.229 per cent). from 0.133 to 0.259 per cent (mean value 0.189 per cent) and from 0.160 to 0.333 per cent (mean value 0.234 per cent) with coefficients of variation values of 14.175, 21.039 and 11.172 ,respectivaly. 4.2.4.4. Kulasekharam (Table 21)

The calcium content of $\mathrm{H}_{1}, \mathrm{H}_{2}$ and $\mathrm{H}_{3}$ leaf somples of the top region of the trees at Kulasekharam had varied

TABLE 20. Calcium concentration in leaf at Vellayani
(Mean value per cent)

| Tre* NO. | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TOP |  |  | ficale |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ |
| 1. | 0.165 | 0.175 | 0.221 | 0.256 | 0.188 | 0.209 | 0.206 | 0.133 | 0.333 |
| 2. | 0.236 | 0.236 | 0.251 | 0.246 | 0.288 | 0.291 | 0.237 | 0.154 | 0.227 |
| 3. | 0.240 | 0.180 | 0.227 | 0.185 | 0.142 | 0.206 | 0.296 | 0.193 | 0.210 |
| 4. | 0.172 | 0.261 | 0.148 | 0.210 | 0.214 | 0.192 | 0.247 | 0.254 | 0.241 |
| 5. | 0.198 | 0.251 | 0.240 | 0.250 | 0.264 | 0.290 | 0.227 | 0.145 | 0.294 |
| 6. | 0.168 | 0.156 | 0.187 | 0.196 | 0.167 | 0.157 | 0.194 | 0.169 | 0.160 |
| 7. | 0.222 | 0.156 | 0.187 | 0.196 | 0.167 | 0.156 | 0.194 | 0.236 | 0.218 |
| 8. | 0.201 | 0.206 | 0.265 | 0.220 | 0.226 | 0.246 | 0.201 | 0.194 | 0.222 |
| 9. | 0.216 | 0.206 | 0.265 | 0.201 | 0.216 | 0.218 | 0.220 | 0.221 | 0.224 |
| 10. | 0.204 | 0.198 | 0.234 | 0.211 | 0.216 | 0.226 | 0.201 | 0.200 | 0.216 |
| Mean | 0.201 | 0.197 | 0.222 | 0.221 | 0.213 | 0.224 | 0.229 | 0.189 | 0.234 |
| CV | 12.892 | 15.476 | 16.591 | 20.388 | 18.905 | 18.758 | 14.175 | 21.039 | 11.172 |

mABLE 21. Caicium concentration in leaf at Rulasekharan

> (Hean value - per cent)

| $\begin{gathered} \text { Tree } \\ \text { ino } \end{gathered}$ | Tree Ragion |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Midale |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1}$ | $W_{2}$ | $W_{3}$ | $\sqrt{1}$ | $\mathrm{V}_{2}$ | ${ }^{+}$ |
| 1. | 0.367 | 0.423 | 0.397 | 0.476 | 0.404 | 0.414 | 0.103 | 0.327 | 0.367 |
| 2. | 0.389 | 0.312 | 0.304 | 0.318 | 0,302 | 0.307 | 0.382 | 0.385 | 0.312 |
| 3. | 0,316 | 0.301 | 0.321 | 0.274 | 0.306 | 0.353 | 0.368 | 0.316 | 0.268 |
| 4. | 0.396 | 0.366 | 0.354 | 0.309 | 0.317 | 0.302 | 0.276 | 0.247 | 0.412 |
| 5. | 0.374 | 0.366 | 0.382 | 0.316 | 0.302 | 0.311 | 0.366 | 0.302 | 0.293 |
| 6. | 0.376 | 0.304 | 0.316 | 0.351 | 0.370 | 0.378 | 0.363 | 0.323 | 0.465 |
| 7. | 0.304 | 0.398 | 0.387 | 0.414 | 0.401 | 0.396 | 0.376 | 0.355 | 0.345 |
| 8. | 0.387 | 0.365 | 0.366 | 0.345 | 0.360 | 0.310 | 0.386 | 0.298 | 0.299 |
| 9. | 0.380 | 0.360 | 0.360 | 0.396 | 0.377 | 0.392 | 0.365 | 0.364 | 0.309 |
| 10. | 0.296 | 0.265 | 0.291 | 0.290 | 0.261 | 0.265 | 0.286 | 0.271 | 0.250 |
| 11. | 0.366 | 0.323 | 0.312 | 0.365 | 0.323 | 0.365 | 0.382 | 0.385 | 0.388 |
| 12. | 0.367 | 0.327 | 0.403 | 0.293 | 0.302 | 0.366 | 0.312 | 0.382 | 0.385 |
| 13. | 0.327 | 0.367 | 0.403 | 0.323 | 0.365 | 0.365 | 0.368 | 0.336 | 0.404 |
| 14. | 0.293 | 0.302 | 0.306 | 0.276 | 0.247 | 0.312 | 0.312 | 0.227 | 0.385 |
| 15. | 0.247 | 0.271 | 0.312 | 0.268 | 0.287 | 0.302 | 0.234 | 0.233 | 0.388 |
| 16. | 0.368 | 0.380 | 0.404 | 0.357 | 0.387 | 0.398 | 0.368 | 0.336 | 0.412 |
| 17. | 0.366 | 0.323 | 0.312 | 0.244 | 0.312 | 0.365 | 0.312 | 0.328 | 0.404 |
| 18. | 0.296 | 0.265 | 0.291 | 0.294 | 0.266 | 0.284 | 0.266 | 0.248 | 0.340 |
| 19. | 0.327 | 0.360 | 0.396 | 0.311 | 0.316 | 0.366 | 0.302 | 0.308 | 0.382 |
| 20. | $0.38 \overline{8}$ | 0. 204 | 0.312 | 0. $0^{-36 \%}$ | 0. 316 | $0.40{ }^{0}$ | $0.36{ }^{\text {c }}$ | 0..3̄8̀2ิ | 0.4093 |
| Mean | 0.345 | 0.339 | 0.344 | 0.334 | 0.329 | 0.345 | 0.339 | 0.322 | 0.350 |
| CV | 14.009 | 13.718 | 15.56 | 25.533 | 14.644 | 17.138 | 14.029 | . 448 | 12.578 |

from 0.247 to 0.396 per cent (mean value 0.346 per cent). from 0.265 to 0.423 per cent (mean value of 0.339 per cent) and from 0.291 to 0.404 per cent (mean value 0.347 per cent). with coefficients of variation of 14.009. 13.718 and 15.56, respectively.

The midale region of the trees had varied values of calcium content among $V_{1}=W_{2}$ and $W_{3}$ samples. The values ranged from 0.268 to 0.476 per cent (mean 0.334 per cent). 0.261 to 0.404 per cent (mean value 0.239 per cent) and from 0.265 to 0.414 per cent (mean value 0.345 per cent) with coefficients of variation of 15.533, 14.644 and 17.138 for $H_{1}$, $W_{2}$ and $H_{3}$, respectively.

The bottom region of the trees also showed marked variation in their calcium content which ranged from 0.240 to 0.403 per cent (mean value of 0.339 per cent). from 0.233 to 0.385 per cent (mean 0.322 per cent) and from 0.250 to 0.465 per cent (mean 0.360 per cent) for $W_{1}, W_{2}$ and $W_{3}$ samples vith corresponding ov values of 14.029, 14.448 and 11.578 , respectively.
4.2.5. Magnesium
4.2.5.1. Vithara (Table 22)

The magnesium concentration in the leaf samples of $w_{1}, w_{2}$ and $w_{3}$ positions of the top region of the tree at

TABLE 22. Magnesium concentrations in leaf at Vithura
(Hean value - per cent)

| $\begin{aligned} & \text { Tree } \\ & \text { No. } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Midale |  |  | Bottora |  |  |
|  | $W_{1}$ | $W_{2}$ | $\mathrm{W}_{3}$ | $\bar{W}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $W_{2}$ | $W_{3}$ |
| 1. | 0.226 | 0.203 | 0.195 | 0.190 | 0.183 | 0.152 | 0.212 | 0.190 | 0.185 |
| 2. | 0.205 | 0.192 | 0.241 | 0.203 | 0.178 | 0.173 | 0.230 | 0.177 | 0.186 |
| 3. | 0.167 | 0.181 | 0.217 | 0.215 | 0.209 | 0.188 | 0.216 | 0.189 | 0.207 |
| 4. | 0.212 | 0.190 | 0.200 | 0.215 | 0.171 | 01262 | 0.209 | 0.172 | 0.175 |
| 5. | 0.218 | 0.170 | 0.278 | 0.208 | 0.159 | 0.194 | 0.196 | 0.201 | 0.212 |
| 6. | 0.234 | 0.287 | 0.285 | 0.252 | 0.190 | 0.227 | 0.246 | 0.251 | 0.211 |
| 7. | 0.288 | 0.207 | 0.286 | 0.260 | 0.185 | 0.268 | 0.247 | 0.204 | 0.192 |
| 8. | 0.294 | 0.311 | 0.290 | 0.275 | 0.288 | 0.230 | 0.308 | 0.222 | 0.223 |
| 9. | 0.312 | 0.276 | 0.289 | 0.259 | 0.299 | 0.221 | 0.326 | 0.257 | 0.275 |
| 10. | 0.308 | 0.296 | 0.240 | 0.251 | 0.229 | 0.239 | 0.312 | 0.180 | 0.203 |
| 11. | 0.195 | 0.201 | 0.224 | 0.162 | 0.173 | 0.192 | 0.185 | 0.180 | 0.212 |
| 12. | 0.140 | 0.182 | 0.206 | 0.172 | 0.178 | 0.202 | 0.186 | 0.176 | 0.232 |
| 13. | 0.218 | 0.180 | 0.216 | 0.188 | 0.209 | 0.220 | 0.189 | 0.206 | 0.216 |
| 14. | 0.190 | 0.192 | 0.214 | 0.162 | 0.172 | 0.226 | 0.172 | 0.175 | 0.210 |
| 15. | 0.170 | 0.178 | 0.212 | 0.190 | 0.159 | 0.221 | 0.162 | 0.182 | 0.212 |
| 16. | 0.186 | 0.216 | 0.312 | 0.223 | 0.192 | 0.226 | 0.211 | 0.241 | 0.246 |
| 17. | 0.186 | 0.207 | 0.288 | 0.148 | 0.166 | 0.260 | 0.160 | 0.204 | 0.256 |
| 18. | 0.210 | 0.311 | 0.294 | 0.230 | 0.275 | 0.288 | 0.221 | 0.202 | 0.312 |
| 19. | 0.268 | 0.276 | 0.301 | 0.259 | 0.298 | 0.220 | 0.316 | 0.246 | 0,275 |
| 20. | 0.302 | 0.268 | 0.244 | 0.261 | 0.228 | 0.236 | 0.312 | 0.262 | 0.202 |
| Mèan | 0.226 | 0.225 | 0.251 | 0.216 | 0.206 | 0.219 | 0.231 | 0.205 | 0.222 |
| cv | 22.773 | 21.644 | 14.625 | 17.971 | 22.924 | 16.253 | 23.593 | 20.971 | 15.635 |

Vithura showed varied values from 0.140 to 0.302 per cent (mean 0.226 per cent). from 0.170 to 0.311 per cent (mean 0.225 per cent) and from 0.195 to 0.312 per cent (nean 0.251 per cent), respectively. The coefficiants of variation of the above samples were 22.773. 21.644 and 18.625,respectively.

In the middle region, the $W_{1}$ heaf samples raried in Mg concentration from 0.148 to 0.275 per cent (mean value - 0.216 per cent) thereas $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$ samples gave magnesium content ranging from 0.159 to 0.298 per cent (mean 0.206 per cent) and from 0.152 to 0.288 per cent (mean 0.219 per cent), respectively. The coefficients of variation were $17.971,22.924$ and 26.253 for $W_{1}, W_{2}$ and $H_{3}$, respectively.

The magnesium content of the leaf samples of bottom region $v$ aried from whorl to whorl and the values ranged from 0.162 to 0.326 per cent (mean 0.231 per cent) from 0.172 to 0.262 per cent (mean 0.205 per cent) and from 0.175 to 0.312 per cent (mean 0.222 per cent) for $W_{1} . W_{2}$ and $W_{3}$ amples, respectively. The cv values for magnestun for these leaf samples were $23.595,20.471$ and 15.635 , respectively.

### 4.2.5.2. Pattom (Table 23)

The top region of the trees at this location showed remarkable vaziation in the magnesium content from whorl to whorl. The $W_{1}, W_{2}$ and $W_{3}$ leaf acmplea registered magnesium content varying from 0.154 to 0.338 per cent (mean 0.223 per cent). from 0.138 to 0.312 per cent) (mean 0.212 per cent) and from 0.233 to 0.362 per cent (mean 0.275 per cent) rospectivaly. The coefficients of variation for magnesium in these samples were 28.100, 25.665 and 12.777,respectively.

In the middle region, the nagnesiura content of $W_{1}$. $W_{2}$ and $W_{3}$ samples were found to very from 0.161 to 0.284 per cent (mean 0.215 per cent). from 0.172 to 0.276 per cent (mean 0.235 per cent) and from 0.171 to 0.362 per cent (mean 0.253 per cent), respectively. The cy values for the above samples were 21.017. 28.017 and 19.506 £or $W_{1}$. $\mathrm{H}_{2}$ and $W_{3}$ leaves, respectivelye

In the bottom region the magnesium content of $W_{1}, W_{2}$ and $H_{3}$ leaf samples registered values from 0.156 to 0.278 per cent (mean 0.218 per cent), from 0.170 to 0.264 per cent (mean 0.216 per cent) and from 0.131 to 0.286 per cent (mean 0.237 per cent) with cv values of 15.688 , 13.591 and 22.464 , respactively.

TABLE 23. Magnesium concentrations in leaf at Pattom
(Mean value - per cont)


| 1. | 0.312 | 0.312 | 0.226 | 0.279 | 0.250 | 0.289 | 0.226 | 0.246 | 0.247 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | 0.161. | 0.244 | 0.278 | 0.172 | 0.276 | 0.172 | 0.213 | 0.226 | 0.246 |
| 3. | 0.169 | 0.169 | 0.290 | 0.272 | 0.272 | 0.172 | 0.231 | 0.213 | 0.131 |
| 4. | 0.244 | 0.173 | 0.264 | 0.161 | 0.196 | 0.227 | 0.278 | 0.229 | 0.196 |
| 5. | 0.338 | 0.132 | 0.233 | 0.249 | 0.241 | 0.179 | 0.260 | 0.257 | 0.150 |
| 6. | 0.287 | 0.194 | 0.266 | 0.166 | 0.193 | 0.226 | 0.178 | 0.193 | 0.250 |
| 7. | 0.289 | 0.225 | 0.274 | 0.284 | 0.228 | 0.236 | 0.237 | 0.211 | 0.194 |
| 8. | 0.153 | 0.156 | 0.254. | 0.232 | 0.248 | 0.286 | 0.249 | 0.235 | 0.192 |
| 9. | 0.237 | 0.270 | 0.271 | 0.209 | 0.229 | 0.236 | 0.278 | 0.170 | 0.186 |
| 10. | 0.279 | 0.234 | 0.249 | 0.283 | 0.257 | 0.223 | 0.244 | 0.204 | 0.194 |
| 11. | 0.226 | 0.302 | 0.312 | 0.269 | 0.260 | 0.298 | 0.236 | 0.257 | 0.266 |
| 12. | 0.261 | 0.272 | 0.362 | 0.170 | 0.172 | 0.273 | 0.203 | 0.226 | 0.256 |
| 13. | 0.168 | 0.168 | 0.296 | 0.172 | 0.271 | 0.362 | 0.241 | 0.242 | 0.362 |
| 14. | 0.168 | 0.174 | 0.244 | 0.162 | 0.196 | 0.228 | 0.196 | 0.226 | 0.282 |
| 15. | 0.136 | 0.138 | 0.301 | 0.178 | 0.242 | 0.268 | 0.156 | 0.168 | 0.262 |
| 16. | 0.166 | 0.194 | 0.284 | 0.168 | 0.192 | 0.236 | 0.178 | 0.183 | 0.260 |
| 17. | 0.176 | 0.224 | 0.284 | 0.228 | 0.236 | 0.323 | 0.194 | 0.211 | 0.263 |
| 18. | 0.154 | 0.156 | 0.262 | 0.231 | 0.248 | 0.286 | 0.198 | 0.264 | 0.286 |
| 19. | 0.271 | 0.270 | 0.290 | 0.201 | 0.249 | 0.262 | 0.186 | 0.170 | 0.278 |
| 20. | 0.269 | 0.234 | 0.268 | 0.226 | $0.2 〔 7$ | 0.284 | 0.194 | 0.204 | 0.244 |
| Mean | 0.223 | 0.212 | 0.275 | 0.215 | 0.235 | 0.253 | 0.218 | 0.216 | 0.237 |
| cv | 28.10 | 25.665 | 12.777 | 21.017 | 28.017 | 19.506 | 15.688 | 13.591 | 22.464 |

### 4.2.5.3. Vellayani (Table 24)

The top region of the trees of this location also had variable magnesium content between the three whorls. The values ranged from 0.150 to 0.242 per cent (mean 0.178 per cent), from 0.135 to 0.233 per cent (mean 0.179 per cent) and from 0.200 to 0.278 per cent (mean 0.247 per cent) for $W_{1}, W_{2}$ and $\omega_{3}$ samples respoctively. The coefficients of variation were found to be 20.973. 14.427, 9.577 for the three respective whorls.

The middle region showed marised variation in magnesium content ranging from 0.150 to 0.239 per cont (mean 0.102 per cent). from 0.138 to 0.239 per cent (mean 0.194 per cent) and from 0.142 to 0.232 per cent (mean 0.195 per cent) with coefficients of variation of 17.150, 10.601 and 16.746 for $H_{1}$, $H_{2}$ and $H_{3}$, respectively.

The magnesium content at the bottom region of the trees was found to vary from 0.157 to 0.302 per cent (mean 0.181 per cent). from 0.133 to 0.196 per cent (mean 0.171 per cent) and from 0.191 to 0.302 per cent (mean 0.212 per cent) for $W_{1}, H_{2}$ and $W_{3}$ Ieaf samples, respectively. The coefficients of variation for the above leaf samplea were calculated to be $27.241,10.713$ and 22.451 respectively.

TABLE 24. Magnesium concentration in leaf at Vellayani
(fean value - par cent)

|  | Tree Region |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Top |  | Middre |  |  | Bottora |  |  |
|  | $\nabla_{1}$ | $\mathrm{k}_{3}$ | ${ }^{1}$ | $\mathrm{H}_{2}$ | ${ }^{1 / 3}$ | $W_{1}$ | $\mathrm{N}_{2}$ | $W_{3}$ |


| 1. | 0.196 | 0.183 | 0.200 | 0.239 | 0.215 | 0.142 | 0.235 | 0.183 | 0.302 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | 0.242 | 0.233 | 0.233 | 0.231 | 0.232 | 0.226 | 0.169 | 0.133 | 0.193 |
| 3. | 0.150 | 0.168 | 0.273 | 0.152 | 0.138 | 0.194 | 0.166 | 0.161 | 0.191 |
| 4. | 0.175 | 0.162 | 0.252 | 0.167 | 0.140 | 0.197 | 0.157 | 0.196 | 0.205 |
| 5. | 0.134 | 0.135 | 0.248 | 0.191 | 0.192 | 0.230 | 0.135 | 0.173 | 0.195 |
| 6. | 0.196 | 0.183 | 0.200 | 0.215 | 0.239 | 0.142 | 0.302 | 0.183 | 0.302 |
| 7. | 0.233 | 0.233 | 0.242 | 0.226 | 0.231 | 0.232 | 0.166 | 0.162 | 0.193 |
| 8. | 0.152 | 0.168 | 0.274 | 0.156 | 0.138 | 0.196 | 0.166 | 0.168 | 0.191 |
| 9. | 0.152 | 0.166 | 0.278 | 0.168 | 0.180 | 0.198 | 0.162 | 0.064 | 0.192 |
| 10. | 0.152 | 0.162 | 0.275 | 0.167 | 0.190 | 0.197 | 0.157 | 0.192 | 0.205 |

$\begin{array}{llllllllll}\text { Mean } & 0.178 & 0.179 & 0.247 & 0.192 & 0.194 & 0.195 & 0.181 & 0.171 & 0.212\end{array}$ CV $20.97317 .477 \quad 9.57717 .1518 .60116 .746 \quad 27.241 \quad 10.713122 .451$

### 4.2.5.4. Kulamekharam (Table 25)

The magnesium content in the $W_{1}, W_{2}$ and $W_{3}$ leaves ranged from 0.205 to 0.325 per cent (mean 0.261 per cent). from 0.216 to 0.322 per cent (mean 0.264 per cent) and from 0.224 to 0.365 per cent (mean 0.278 par cent), Eespectively. The coefficients of variation vere found to be $50.448,12.525$ and 10.397 for $W_{1}$. $\mathrm{H}_{2}$ and $\mathrm{K}_{3}$, respectivaly.

In the middle region the magnesiur content of $W_{1}, W_{2}$ and $H_{3}$ leaf samples Langed from 0.220 to 0.323 per cent (mean 0.247 per cent), from 0.207 to 0.340 per cent (mean 0.241 per cent) and from 0.211 to 0.360 per cent (mean 0.269 per cent) respectively. At this region the $w_{1}, W_{2}$ and $w_{3}$ leave samples gave coefficients of variation values for magnesium content as 11.098, 12.769 and 12.919, respectively.

The magnesium content of the leaf samples of $W_{1}, W_{2}$ and $H_{3}$ of tho bottom region registered range valuas from 0.197 to 0.296 per cent (mean value 0.247 per cont) . from 0.200 to 0.304 per cent (mean 0.247 per cent) and from 0.197 to 0.296 per cent (mean value 0.245 per cent) with the coefficients of variation of 16.542, 13.014 and 11.161, respectively.

TABLE 25. Maqnesium coneantrations in Laaf at Kulasekharam
(Mean volue - per cent)

| TLee <br> No. | Tres Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mincosion |  |  | Midale |  |  | $\cdots$ - Botton |  |  |
|  | $W_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{3}$ | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | $W_{3}$ |
| 1. | 0.285 | 0.265 | 0.236 | 0.242 | 0.262 | 0.304 | 0.250 | 0.227 | 0.262 |
| 2. | 0.265 | 0.238 | 0.285 | 0.266 | 0.262 | 0.288 | 0.247 | 0.268 | 0.328 |
| 3. | 0.325 | 0.322 | 0.365 | 0.323 | 0.295 | 0.262 | 0.288 | 0.304 | 0.296 |
| 4. | 0.312 | 0.306 | 0.130 | 0.244 | 0.262 | 0.284 | 0.221 | 0.225 | 0.197 |
| 5. | 0.244 | 0.260 | 0.284 | 0.240 | 0.250 | $0.268{ }^{\prime}$ | 0.296 | 0.292 | 0.270 |
| 6 | 0.244 | 0.236 | 00.264 | 0.259 | 0.254 | 0.211 | 0.223 | 0.224 | 0.205 |
| 7. | 0.250 | 0.277 | 0.282 | 0.244 | 0.267 | 0.286 | 0.212 | 0.212 | 0.262 |
| 8. | 0.217 | 0.268 | 0.268 | 0.223 | 0.244 | 0.260 | 0.212 | 0.222 | 0.240 |
| 9. | 0.288 | 0.288 | 0.304 | 0.224 | 0.243 | 0.300 | 0.240 | 0.223 | 0.264 |
| 10. | 0.297 | 0.299 | 0.312 | 0.225 | 0.221 | 0.322 | 0.197 | 0.221 | 0.225 |
| 11. | 0.270 | 0.292 | 0.296 | 0.240 | 0.262 | 0.268 | 0.210 | 0.210 | 0.246 |
| 12. | 0.205 | 0.223 | 0.224 | 0.200 | 0.213 | 0.238 | 0.210 | 0.212 | 0.264 |
| 13. | 0.262 | 0.227 | 0.250 | 0.242 | 0.221 | 0.240 | 0.262 | 0.200 | 0.260 |
| 14. | 0.238 | 0.247 | 0.268 | 0.218 | 0.207 | 0.262 | 0.210 | 0.206 | 0.285 |
| 15. | 0.288 | 0.287 | 0.304 | 0.266 | 0.247 | 0.306 | 0.242 | 0.262 | 0.286 |
| 16. | 0.270 | 0.292 | 0.297 | 0.230 | 0.340 | 0.360 | 0.210 | 0.230 | 0.260 |
| 17. | 0.205 | 0.223 | 0.224 | 0.205 | 0.222 | 0.246 | 0.212 | 0.236 | 0.284 |
| 18. | 0.250 | 0.226 | 0.280 | 0.230 | 0.260 | 0.280 | 0.210 | 0.200 | 0.240 |
| 19. | 0.212 | 0.216 | 0.262 | 0.202 | 0.220 | 0.240 | 0.200 | 0.246 | 0.228 |
| 20. | 0.240 | 0.264 | 0.284 | 0.223 | 0.256 | 0.304 | 0.212 | 0.218 | 0.226 |
| Man | 0.261 | 0.264 | 0.273 | 0.247 | 0.241 | 0.269 | 0.247 | 0.227 | 0.245 |
| CV | 50.448 | 10.397 | 10.397 | 11.088 | 12. 769 | 12.919 | 16.542 | 13.044 | 11.161 |

4.2.6. Copper manganese and zinc
4.2.6.1. Vithura (Table 26, 30 and 34)

At this location the Cu , un and $\mathrm{zn}_{\mathrm{n}}$ concentration in leaves varied from fegion to region of the tree. The mean values for Cu concentration in the leaves in whoris $W_{1} ; W_{2}$ and $W_{3}$ of the top region were $5.06,5.13$ and 5.38 ppm , reapectivaly. The cv values were 48.24 . 47.11 and 46.21 respectively for the three whorls. In the midale region the mean values of leaf Cu content were 5.41, 5.45 and 5.69 ppan with respect to whorls $\mathrm{H}_{1}, \mathrm{H}_{2}$ and $W_{3}$. The cv values for these samples were $45.84,45.62$ and 43.25 for $W_{1}, H_{2}$ and $H_{3}$, respectively. In the bottom region the mean values were $5.70,5.83$ and 5.92 ppa for $W_{1}, W_{2}$ and $W_{3}$ leaf samples,respectively. The coefficionts of variation for these three whorls were found to be 44.67, 42.69 and 42.08.

The manganose concentration of the leaf samples of $W_{1}$, $W_{2}$ and $W_{3}$ of top region of the trees gave mean values of 247. 231 and 250 ppm,respectively. The coefficients of variation for the above samples were 22.81. 23. 46 and 20.9, respectively. In the middle region the mean values of Mn concentration in the leaves of $W_{1}, W_{2}$ and $W_{3}$ were found to be 221, 217 and 226 ppm with coefficients of variation values of $29.24,30.14$ and 29.01 , respectively. In the

TRABLE 26.
(Mean value - ppm)

| $\begin{aligned} & \text { Tree } \\ & \text { EO. } \end{aligned}$ |  | 200 |  |  | Mndar |  |  | Botcon |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{K}_{2}$ | $\mathrm{H}_{2}$ | ${ }^{17}$ | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ | $\nabla_{2}$ | $\mathrm{W}_{2}$ | ${ }^{6} 3$ |
| 2. | 3.8 | 8.0 | 4.4 | 4.6 | 48 | 5.2 | 5.2 | 5.3 | 5.4 |
| 2. | 4.0 | 4.4 | 4.6 | 4.6 | 4.9 | 5.0 | 5.2 | 5.4 | 5.3 |
| 3. | 6.0 | 6.2 | 6.5 | 6.2 | 6.4 | 6.6 | 6.6 | 6.8 | 6.4 |
| 4. | 4.0 | 4.2 | 4.4 | 4.6 | 4.6 | 4.8 | 5.0 | 5.2 | 5.4 |
| 5. | 7.0 | 6.9 | 6.8 | 6.8 | 6.8 | 7.0 | 6.8 | 6.4 | 6.6 |
| 6. | 7.0 | 6.6 | 7.1 | 6.8 | 6.8 | 6.9 | 6.6 | 6.4 | 6.8 |
| 7. | 5.0 | 5.2 | 5.4 | 5.6 | 5.8 | 5.8 | 6.0 | 6.2 | 6.4 |
| 8. | 3.0 | 3.2 | 3.4 | 3.6 | 3.6 | 4.0 | 4.0 | 4.2 | 4.4 |
| 9. | 6.0 | 6.1 | 6.6 | 6.6 | 6.8 | 7.0 | 6.6 | 6.8 | 7.0 |
| 10. | 7.0 | 7.0 | 7.1 | 6.8 | 6.3 | 7.0 | 7.0 | 7.2 | 7.4 |
| 11. | 4.0 | 4.2 | 4.6 | 4.0 | 4.2 | 4.8 | 5.0 | 5.2 | 5.4 |
| 12. | 6.0 | 6.1 | 6.6 | 6.2 | 6.2 | 6.4 | 6.2 | 6.4 | 6.6 |
| 13. | 6.0 | 6.2 | 6.3 | 6.2 | 6.4 | 6.3 | 6.2 | 6.6 | 6.4 |
| 14. | 4.0 | 4.2 | 4.6 | 6.2 | 6.3 | 6.4 | 6.8 | 6.8 | 6.8 |
| 15. | 7.0 | 7.0 | 6.9 | 7.1 | 7.0 | 7.2 | 7.0 | 7.2 | 7.4 |
| 16. | 2.2 | 2.6 | 3.1 | 3.2 | 3.2 | 3.5 | 4.0 | 4.2 | 4 |
| 17. | 7.0 | 6.8 | 7.0 | 7.1 | 7.0 | 7.2 | 6.6 | 6.8 | 6.4 |
| 18. | 2.8 | 3.1 | 3.2 | 3.2 | 3.3 | 3.4 | 3.6 | 3.8 | 3.4 |
| 19. | 6.0 | 6.2 | 6.4 | 6.2 | 6.3 | 6.4 | 6.6 | 6.4 | 6.5 |
| 20. | 2.4 | 2.6 | 21.8 | 2,6 | 2.8 | 3.0 | 3.2 | 3.4 | 3.6 |
| Mean | 5.06 | 5.13 | 5. 38 | 5.41 | 5.45 | 5,69 | 5.7 | 5.83 | 5.92 |
| CV | 48.24 | 47.11 | 45.21 | 45.84 | 45.62 | 43.25 | 44.67 | 42.69 | 42.08 |

TABLE 30. Mgaganese concentretion in leaf at Vithura
(Mean value - ppan)

| $\begin{gathered} \text { Tree } \\ \text { No. } \end{gathered}$ | Free Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Midale |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{N}_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{w}_{3}$ |
| 1. | 271 | 205 | 234 | 186 | 151 | 151 | 222 | 209 | 215 |
| 2. | 263 | 253 | 214 | 253 | 264 | 276 | 247 | 227 | 287 |
| 3. | 360 | 300 | 277 | 303 | 329 | 325 | 242 | 245 | 309 |
| 4. | 229 | 235 | 261 | 294 | 256 | 254 | 324 | 259 | 292 |
| 5. | 358 | 285 | 285 | 354 | 280 | 253 | 347 | 300 | 313 |
| 6. | 211 | 185 | 169 | 138 | 139 | 154 | 189 | 199 | 179 |
| 7. | 248 | 286 | 176 | 200 | 151 | 139 | 241 | 206 | 193 |
| 8. | 234 | 228 | 232 | 210 | 198 | 166 | 330 | 280 | 284 |
| 9. | 219 | 225 | 236 | 184 | 205 | 209 | 301 | 244 | 254 |
| 10. | 197 | 177 | 160 | 156 | 151 | 180 | 205 | 185 | 185 |
| 11. | 205 | 236 | 272 | 152 | 166 | 186 | 212 | 246 | 310 |
| 12. | 260 | 286 | 288 | 250 | 264 | 282 | 227 | 248 | 282 |
| 13. | 300 | 340 | 386 | 312 | 342 | 368 | 240 | 266 | 312 |
| 14. | 221 | 234 | 262 | 254 | 256 | 298 | 250 | 282 | 360 |
| 15. | 280 | 286 | 342 | 280 | 238 | 334 | 300 | 316 | 318 |
| 16. | 210 | 212 | 318 | 138 | 139 | 254 | 188 | 198 | 202 |
| 17. | 232 | 188 | 186 | 168 | 200 | 212 | 221 | 242 | 265 |
| 18. | 232 | 221 | 230 | 242 | 198 | 199 | 302 | 346 | 388 |
| 19. | 218 | 240 | 262 | 182 | 206 | 208 | 268 | 282 | 298 |
| 20. | 202 | 217 | 218 | 156 | 162 | 180 | 200 | 212 | 218 |
| Mean | 247 | 231 | 250 | 221 | 217 | 226 | 247 | 251 | 269 |
| cV | 22.81 | 23.46 | 20.90 | 29.24 | 30.14 | 29.09 | 22.81 | 19.03 | 17.59 |

TABLE 34, zinc concentration in lemf at Vithura
(Mean value - ppa)

| $\begin{gathered} \text { Tree } \\ \text { No. } \end{gathered}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stemestar |  |  | Madre |  |  | Botton |  |  |
|  | $W_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{V}_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{H}_{2}$ | ${ }^{W}$ | ${ }_{1}$ | $\mathrm{H}_{2}$ | $W_{3}$ |
| 1. | 48.6 | 83.6 | 173.6 | 230.8 | 190.2 | 26.8 | 155.6 | 38.6 | 74.6 |
| 2. | 29.4 | 9.8 | 16.4 | 11.4 | 21.4 | 9.8 | 10.2 | 108.4 | 109.4 |
| 3. | 17.2 | 12.0 | 23.4 | 42.2 | 14.8 | 12.2 | 5.4 | 5.0 | 7.0 |
| 4. | 12.8 | 17.2 | 7.6 | 89.0 | 25.0 | 8.2 | 10.0 | 8.0 | 5.8 |
| 5. | 4.2 | 14.8 | 12.0 | 21.0 | 7.6 | 8.6 | 9.0 | 13.0 | 8.4 |
| 6. | 14.0 | 51.8 | 10.0 | 42.0 | 2.6 | 3.4 | 4.0 | 7.2 | 104.4 |
| 7. | 7.6 | 7.6 | 12.0 | 34.4 | 157.8 | 5.2 | 12.0 | 29.0 | 129.8 |
| 8. | B. 4 | 62.6 | 7.6 | 45.6 | 17.0 | 4.0 | 9.8 | 8.8 | 3.2 |
| 9. | 15.6 | 6.4 | 6.0 | 3.8 | 6.8 | 1.2 | 38.8 | 8.2 | 6.0 |
| 10. | 24.0 | 8.0 | 9.8 | 18.6 | 4.2 | 29.6 | 9.6 | 32.2 | 14.2 |
| 11. | 40.2 | 80.6 | 170.2 | 102.2 | 104.2 | 40.6 | 66.6 | 40.2 | 80.6 |
| 12. | 9.4 | 9.2 | 18.4 | 12.4 | 26.2 | 18.8 | 12.2 | 110.2 | 113.4 |
| 13. | 16.2 | 18.2 | 48.4 | 42.1 | 24.2 | 22.4 | 4.4 | 6.0 | 9.2 |
| 14. | 10.8 | 18.2 | 14.4 | 80.0 | 26.0 | 24.2 | 10.0 | 16.2 | 15.8 |
| 15. | 44.6 | 14.4 | 16.0 | 12.0 | 17.6 | 18.6 | 10.0 | 23.0 | 26.4 |
| 16. | 12.0 | 64.8 | 20.0 | 12.0 | 2.4 | 6.4 | 4.0 | 6.2 | 104.6 |
| 17. | 7.7 | 14.6 | 19.2 | 30.4 | 164.8 | 124.0 | 12.0 | 24.0 | 224.4 |
| 18. | 8.4 | 62.6 | 7.6 | 42.6 | 27.0 | 4.0 | 9.8 | 18.8 | 3.2 |
| 19. | 14.6 | 6.4 | 6.0 | 3.8 | 6.8 | 4.2 | 30.8 | 18.8 | 16.0 |
| 20. | 12.0 | 8.0 | 16.8 | 12.0 | 4.2 | 26.6 | 8.6 | 30.2 | 24.2 |
| Mean | 148.5 | 28.55 | 30.74 | 34.22 | 42.4 | 19.9 | 21.57 | 27.33 | 53.61 |
| CV | 149.6 | 124.2 | 113.4 | 95.46 | 82.2 | 140.6 | 134.01 | 121.2 | 75.5 |

botton region tine mean values for $W_{1}, H_{2}$ and $k_{3}$ were 247 , 251 and 269 ppm with CV values of 22.81 . 19.03 and 17.59.

The mean values of in concentration in $\mathrm{H}_{1}$. $\mathrm{W}_{2}$ and $H_{3}$ leaf samples of top region were 14.865 .28 .55 and 30.73 ppa, respectively with cy values of 149.6 .124 .2 and 113.4 per cent respectively. In the midale region the $W_{1}$. $W_{2}$ and $H_{3}$ leaf samples, the mean values of $Z_{n}$ concentration were $34.22,42.40$ and 19.90 ppm,respectively. The cv values for these samples were arrived at 95.46 , 82. 20 and 140.60 ,respectively. In the botton region the $W_{1}$. $H_{2}$ and $W_{3}$ samples had mean values of $21.57,27.23$ and 53.61 ppm zinc with ev values of $134.02,121.20$ and 75.50 , respectively.
4.2.6.2. Pattom (Table 27, 31 and 35)

The Cu concentration of $W_{1}, W_{2}$ and' $H_{3}$ leaf top
eaplea of patom region had maan values of 2.92 .2 .79 and 5.99 ppm with ov values of $139.06,141.10$ and 117.45, respectively. In the midale repion the mean values of copper content in $H_{1}, \mathrm{H}_{2}$ and $\mathrm{N}_{3}$ leaf samples were found to be 3.21, 6.75, 8.33 ppm with cv values of 122.60 .85 .01 and 66.43 , respecitively. In the bottom region the $W_{1}, W_{2}$ and $H_{3}$ sample registered mean values of 4.625. 6.445 and 9.26 ppm . The respective of volues Herc 119.42, 48.99 and 56.00.

TABLE 27. Copper concentration in leaf at Patten
(Mean values - ppm)

| Tree | Mro Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Mıada |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{H}_{2}$ | W3 | ${ }_{1}$ | $W_{2}$ | ${ }^{\mathrm{H}} 3$ | $W_{1}$ | $\mathrm{H}_{2}$ | $W_{3}$ |
| 1. | 7.2 | 1.6 | 5.0 | 5.0 | 5.4 | 2.6 | 1.6 | 2.2 | 2.6 |
| 2. | 5.0 | 1.0 | 4.4 | 2.2 | 4.4 | 1.0 | 2.4 | 4.4 | 8.2 |
| 3. | 1.0 | 1.2 | 1.0 | 3.2 | 2.8 | 2.6 | 7.4 | 1.3 | 2.8 |
| 4. | 1.2 | 1.4 | 2.8 | 4.4 | 504 | 7.0 | 2.6 | 1.0 | 3.6 |
| 5. | 3.4 | 2.0 | 4.4 | 3.6 | 8.8 | 8.8 | 1.2 | 2.2 | 5.4 |
| 6. | 3.6 | 4.4 | 5.0 | 5.0 | 2.4 | 6.2 | 6.2 | 8.4 | 4.8 |
| 7. | 2.4 | 1.0 | 4.0 | 1.0 | 1.4 | 3.0 | 1.0 | 2.2 | 3.6 |
| 8. | 1.0 | 1.2 | 3.2 | 1.0 | 2.0 | 2.2 | 3.8 | 3.2 | 1.8 |
| 9. | 1.2 | 1.6 | 1.0 | 1.0 | 2.2 | 3.2 | 1.2 | 1.2 | 6.2 |
| 10. | 2.0 | 2.4 | 3.2 | 2.6 | 2.8 | 3.2 | 1.8 | 2.2 | 4.6 |
| 11. | $1:{ }^{*}$ | 1.4 | 3.2 | 1.6 | 1.8 | 2.6 | 1.8 | 2.2 | 3.6 |
| 12. | 1.4 | 2.2 | 1.8 | 2.0 | 8.6 | 8.8 | 2.6 | 2.4 | 2.6 |
| 13. | 2.6 | 2.8 | 3.2 | 3.0 | 3.2 | 3.6 | 1.8 | 3.2 | 3.6 |
| 14. | 2.2 | 2.6 | 3.3 | 3,2 | 4.2 | 6.2 | 4.2 | 8.4 | 4.2 |
| 15. | 3.4 | 12.4. | 6.8 | 4.4 | 12.6 | 2.2 | 5.0 | 2.2 | 4.4 |
| 16. | 2.6 | 2.8 | 10.2 | 4.4 | 10.2 | 10.8 | 6.2 | 8.2 | 4.6 |
| 17. | 3.2 | 3.6 | 4.8 | 2.2 | 10.2 | 12.6 | 3.8 | 3.8 | 9.8 |
| 18. | 8.2 | 4.2 | 10.0 | -8:6 | 10.2 | 12.2 | 4.5 | 12.2 | 3.2 |
| 19. | 2.6 | 2.8 | 2.2 | 2.6 | 2.6 | 2.8 | 3.0 | 3.2 | 3.6 |
| 20. | 3.0 | 3.3 | 3.6 | 3.2 | 3.8 | 4.0 | 3.3 | 4.2 | 4.8 |
| Mean | 2.92 | 2.79 | 5.99 | 3.21 | 6.75 | 8.33 | 4.625 | 6.445 | 9.26 |
| cV | 139.06 | 141.10 | 117.45 | 122.60 | 85.01 | 65.11 | 119.43 | 88.99 | 56.00 |

TABLE 31. Mpnganese concentration in leaś at pattom
(Mean Value - mpm)

| rice No. | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TOP |  |  | Midale |  |  | Bottom |  |  |
|  | $\mathrm{W}_{2}$ | $\mathrm{V}_{2}$ | $W_{3}$ | $\bar{W}_{1}$ | $\mathrm{N}_{2}$ | $\mathrm{N}_{3}$ | $\mathrm{H}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ |
| 1. | 130 | 131 | 164 | 206 | 162 | 160 | 137 | 139 | 288 |
| 2. | 588 | 146 | 123 | 299 | 555 | 332 | 146 | 286 | 312 |
| 3. | 384 | 398 | 670 | 472 | 516 | 615 | 434 | 499 | 491 |
| 4. | 802 | 723 | 620 | 389 | 583 | 549 | 589 | 520 | 668 |
| 5. | 338 | 341 | 287 | 281 | 265 | 641 | 242 | 232 | 263 |
| 6. | 308 | 220 | 284 | 290 | 299 | 384 | 389 | 596 | 670 |
| 7. | 151 | 186 | 195 | 143 | 384 | 192 | 184 | 211 | 262 |
| 8. | 143 | 129 | 142 | 237 | 169 | 202 | 184 | 172 | 207 |
| 9. | 232 | 290 | 247 | 113 | 131 | 169 | 299 | 137 | 332 |
| 10. | 389 | 384 | 455 | 300 | 315 | 376 | 282 | 309 | 363 |
| 11. | 132 | 136 | 264 | 216 | 186 | 158 | 162 | 188 | 265 |
| 12. | 348 | 246 | 423 | 253 | 399 | 346 | 247 | 286 | 366 |
| 13. | 322 | 368 | 570 | 272 | 416 | 530 | 232 | 366 | 389 |
| 14.: | 402 | 416 | 723 | 284 | 283 | 449 | 389 | 420 | 468 |
| 15. | 318 | 380 | 420 | 481 | 480 | 398 | 442 | 436 | 502 |
| 16. | 218 | 298 | 299 | 240 | 260 | 360 | 288 | 398 | 580 |
| 17. | 252 | 286 | 298 | 240 | 380 | 290 | 286 | 298 | 272 |
| 19. | 242 | 229 | 212 | 212 | 262 | 280 | 182 | 178 | 242 |
| 19. | 212 | 280 | 268 | 112 | 130 | 162 | 280 | 288 | 389 |
| 20. | 289 | 284 | 406 | 212 | 312 | 366 | 286 | 310 | 368 |
| Mean | 308 | 347 | 355 | 267 | 321 | 347 | 284 | 308 | 370 |
| CV | 47.38 | 43.61 | 40.75 | 62.21 | 50.11 | 43.61 | 51.12 | 47.38 | 37.76 |

TABLE 35. Zinc concentration in leaf at Pattom

> (Mean values - ppin)

| $\begin{array}{r} \text { Tree } \\ \text { No. } \end{array}$ | Iree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Miadre |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{K}_{2}$ | ${ }^{\prime} / 3$ | $W_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{W}_{3}$ | $W_{2}$ | $\mathrm{W}_{2}$ | $W_{3}$ |
| 1. | 9.8 | 19.2 | 8.8 | 8.6 | 13.6 | 13.6 | 15.6 | 24.6 | 38.6 |
| 2. | 12.2 | 21.4 | 11.4 | 9.4 | 9.8 | 16.4 | 10.2 | 9.4 | 8.4 |
| 3. | 8.2 | 14.8 | 42.2 | 17.2 | 12.0 | 23.4 | 5.4 | 7.0 | 15.0 |
| 4. | 8.6 | 25.0 | 9.0 | 12.8 | 17.2 | 7.6 | 10.0 | 5.8 | 8.0 |
| 5. | 3.4 | 7.6 | 11.0 | 4.2 | 14.8 | 12.0 | 9.0 | 8.4 | 13.0 |
| 6. | 5.2 | 2.6 | 42.0 | 14.0 | 4.8 | 10.0 | 4.0 | 4.4 | 67.2 |
| 7. | 4.0 | 7.8 | 34.2 | 7.6 | 7.6 | 17.0 | 12.0 | 29.8 | 29.0 |
| 8. | 4.2 | 27.0 | 46.6 | 8.4 | 12.6 | 7.6 | 9.8 | 3.2 | 8.8 |
| 9. | 29.6 | 6.8 | 3.8 | 15.6 | 6.4 | 6.0 | 38.8 | 6.0 | 18.2 |
| 10. | 10.6 | 4.2 | 18.6 | 24.0 | 8.0 | 9.8 | 9.6 | 14.2 | 32.6 |
| 11. | 18.6 | 4.2 | 2.2 | 10.2 | 10.6 | 10.2 | 6.6 | 10.6 | 40.2 |
| 12. | 22.4 | 26.2 | 12.4 | 9.4 | 9.2 | 18.4 | 12.2 | 18.4 | 30.2 |
| 13. | 24.2 | 24.2 | 42.1 | 16.2 | 18.2 | 44.4 | 4.4 | 9.2 | 16.0 |
| 14. | 18.6 | 26.0 | 8.0 | 10.8 | 18.2 | 14.4 | 10.0 | 15.8 | 16.2 |
| 15. | 6.4 | 17.6 | 12.0 | 4.6 | 14.4 | 16.0 | 10.0 | 16.4 | 23.0 |
| 16. | 4.2 | 2.6 | 12.0 | 12.0 | 4.8 | 20.0 | 4.0 | 4.6 | 6.2 |
| 17. | 4.0 | 4.8 | 10.4 | 7.7 | 14.6 | 19.2 | 12.0 | 24.4 | 24.0 |
| 18. | 4.2 | 27.0 | 42.6 | 8.4 | 12.6 | 7.6 | 9.8 | 3.2 | 18.0 |
| 19. | 26.6 | 6.8 | 3.8 | 14.6 | 6.4 | 6.0 | 30.8 | 16.0 | 18.8 |
| 20. | 6.6 | 4.2 | 12.0 | 12.0 | 8.0 | 16.8 | 8.6 | 24.2 | 30.2 |
| Mean | 12.9 | 13.35 | 20.62 | 12.36 | 11.05 | 14.73 | 11.57 | 12.61 | 23.05 |
| cV | 123.7 | 116.42 | 97.46 | 132.3 | 134.02 | 107.3 | 130.2 | 118.84 | 82.42 |

The leaf Mn concentration of whorls $W_{1}, W_{2}$ and $\mathrm{H}_{3}$ of top region of the trees at pattom Yielded mean values of 308,347 and 355 ppre,respectively. The coefficients of variation for the 3 whorls were 47.38. 43.61 and 40.75 , respectively. In the middle region the $W_{1}, W_{2}$ and $W_{3}$ samples recorded mean values of 267, 321 and 347 ppm of kn with ev values of $62.21,50.11$ and 43.61, respectively. In the bottom region in the $W_{1}, W_{2}$ and $w_{3}$ leaf samples, mean $h n$ concentrations were found to be 284,208 and 370 ppm. The respective $c v$ values were 51.12. 47.38 and 37.76.

The mean zn concentration of $W_{1}, W_{2}$ and $W_{3}$ leaf samples of top region of the trees located at Pattom were found to be $12.90,13.35$ and 20.62 pmn with cv values of 123.70, 116.42 and 97.46 , respectively. In the middie region, leaf samples exinibited mean values of $11.36,11.05$ and 14.73 ppm Zn in whorls $W_{1}, W_{2}$ and $W_{3}$. The corresponding cv values were 132.30, 134.02 and 107.3. In the bottom region, the $W_{1}, W_{2}$ and $W_{3}$ leaf samples recorded mean $2 n$ concentrations as $11.57,12.61$ and 23.03 ppm with coefficients of varlation volue of 130.2. 118.84 and 82.43, respectively.
4.2.6.3. Vellayant (Table 28,32 and 36)

The copper concentration of $W_{1}, W_{2}$ and $W_{3}$ leaf samples of the top region of the trees at Vellayani gave mean values of 4.72, 4.63 and 4.98 ppm with corresponding cr values of 55.42, 51.81 and 43.83. In the midale region the leaf amples of $W_{2}, W_{2}$ and $W_{3}$ registered mean values of Cu concentration as 5.14. 5.23 and $\$ 5.47$ with cv values of 37.21, 32.55 and 29.30 .

The $M n$ concentration of $H_{1}, \mathrm{H}_{2}$ and $\mathrm{H}_{3}$ leaf samples of top region recorded mean values of $339.0,338.5$ and 352.6 ppm with cv valuos of $22.13,15.45$ and 21.61. In the middue region mean leaf Mn content were 350.4 , 345.6 and 373.4 ppm for $\mathrm{H}_{1} . \mathrm{W}_{2}$ and $\mathrm{H}_{3}$ leaves. The corresponding coefficients of variation were 13.10, 1s.58 and 10.85, respectively for $W_{1}, W_{2}$ and $W_{3}$. In the bottom region. $\mathrm{Fj}_{1}$. $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$ leaves registered mean values of $350.0,376.5$ and 379.6 ppm Nn with correspording cv values of 13.90. 10.76 and 9.59 , respectivcly.

The leaf Zn concentration of $\mathrm{W}_{1}, \mathrm{H}_{2}$ and $\mathrm{H}_{3}$ leaves of the top region registered mean values of 12.82. 13.20 and 13.58 ppm and cv values of 107.02, 90.21 and 08.12 , respectively. $I_{n}$ the midale region the above whorls had mean values of $13.30,13.64$ and 14.32 ppm zn concentration

TABLE 28. Copper concentration in leaf at Vellayani
(Mean value - ppa)

| $\begin{aligned} & \text { Tree } \\ & \text { No. } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Midare |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{W}_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{W}_{3}$ | ${ }^{W}$ | $\mathrm{H}_{2}$ | ${ }_{6}$ |
| 1. | 5.5 | 5.1 | 5.0 | 5.2 | 5.4 | 5.6 | 5.4 | 5.6 | 5.8 |
| 2. | 6.2 | 6.2 | 6.2 | 6.2 | 6.4 | 6.6 | 6.6 | 6.8 | 7.0 |
| 3. | 6.2 | 6.0 | 6.4 | 6.4 | 6.4 | 6.7 | 6.4 | 6.8 | 6.6 |
| 4. | 5.4 | 5.2 | 5.6 | 5.4 | 5.6 | 5.8 | 5.6 | 5.2 | 5.4 |
| 5. | 5.4 | 5.6 | 5.8 | 5.6 | 5.6 | 6.0 | 6.2 | 6.4 | 6.4 |
| 6. | 3.6 | 3.2 | 3.8 | 3.6 | 3.6 | 4.1 | 4.2 | 4.2 | 4.8 |
| 7. | 3.4 | 3.2 | 3.6 | 3.4 | 3.6 | 3.8 | 3.6 | 3.8 | 4.0 |
| 8. | 3.2 | 3.2 | 3.2 | 3.3 | 3.6 | 3.9 | 3.6 | 3.3 | 3.9 |
| 9. | 2.4 | 2.6 | 2.8 | 3.0 | 3.2 | 3.4 | 3.4 | 3.6 | 3.8 |
| 10. | 6.2 | 6.0 | 6.4 | 6.4 | 6.2 | 6.6 | 6.4 | 6.6 | 6.8 |
| Mean | 4.72 | 4.63 | 4.98 | 4.85 | 4.98 | 5.25 | 5.14 | 5.23 | 5.47 |
| CV | 55.42 | 51.81 | 43.83 | 40.25 | 40.00 | 29.31 | 37.21 | 32. 55 | 29.30 |

TABLE 32. MANGANESE CONCENPRATION IN LEAF AT VELIAYANI
(Mean value opal


TABLE 36. zinc concentration in leaf at vellayani
(Mean value - ppa)

| $\underset{\substack{\text { Trees } \\ \text { Nob }}}{ }$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Midale |  |  | - Bottom |  |  |
|  | ${ }^{H}$ | $W_{2}$ | $\mathrm{W}_{3}$ | ${ }^{W} 1$ | $\mathrm{W}_{2}$ | $W_{3}$ | $\mathrm{W}_{2}$ | $W_{2}$ | $W_{3}$ |
| 1. | 8.2 | 9.2 | 10.2 | 11.0 | 11.2 | 11.6 | 12.2 | 12.4 | 14.6 |
| 2. | 7.2 | 8.2 | 9.4 | 10.2 | 10.2 | 11.0 | 11.2 | 11.6 | 14.8 |
| 3. | 12.2 | 12.4 | 13.0 | 12.6 | 12.8 | 13.2 | 13.2 | 23.6 | 14.0 |
| 4. | 13.4 | 13.6 | 13.8 | 13.6 | 14.0 | 16.2 | 16.4 | 16.8 | 16.8 |
| 5. | 24.2 | 24.4 | 24.4 | 20.4 | 21.2 | 23.0 | 22.2 | 22.0 | 22.4 |
| 6. | 11.2 | 12.2 | 11.6 | 11.8 | 12.0 | 12.4 | 12.4 | 12.2 | 14.8 |
| 7. | 12.0 | 12.6 | 12.4 | 12.6 | 13.0 | 13.0 | 13.2 | 13.4 | 13.6 |
| 8. | 13.4 | 13.6 | 13.8 | 14.0 | 18.2 | 16.4 | 14.2 | 14.8 | 14.8 |
| 9. | 14.2 | 14.4 | 14.6 | 14.2 | 15.0 | 15.2 | 35.4 | 15.4 | 16.0 |
| 10. | 12.2 | 12.4 | 12.6 | 12.6 | 12.8 | 13.2 | 13.2 | 13.6 | 14.0 |
| Mean | 12.82 | 13.20 | 13.58 | 13.3 | 13.64 | 14.32 | 14.36 | 14.58 | 25.58 |
| cv | 107.02 | 90.21 | 88.12 | 89.67 | 86.13 | 74.66 | 74.13 | 72.29 | 52.5 |

with cr values of $89.67,86.13$ and 74.66. In the bottom region mean values of $14.36,14.58$ and 15.58 ppm of $2 n$ were recorded in leaves of $W_{1}, W_{2}$ and $W_{3}$. The ov veluen Here computed to be 74.13. 72.29 and 92.5 for the three whorls.
4.2.6.4. Kulasekharam (Table 29.33 and 37)

The cu concentration of $W_{1}, W_{2}$ and $W_{3}$ leaf samples of the top region of the trees located at Kulasekharam registered mean values of 4.12, 4.93 and 7.86 ppm with cv values of $80.91,57.52$ and 52.62 . In the midale region, the leaf samples from $W_{1}, H_{2}$ and $H_{3}$ yielded mean values of $6.16,6.92$ and 9.35 ppm . The cv values were found to be 57.22, 55.64 and 41.67 for the three whorls. In the bottom region, mean values of 9.03 , 10.06, and 14.71 ppm Cu content were observed in $W_{1}, W_{2}$ and $W_{3}$ leaf samples $f i t h$ corresponding ev values of 46.10 . 37.96 and 35.75.

The Mn concentration of $W_{1}, W_{2}$ and $W_{3}$ leaf samples of top region of the trees registered mean values of 274, 314 and 372 ppm and cv values of $15.01,15.11$ and 15.14. In the midale region, mean values of 304, 375 and 485 ppm Mn content were registered by $\mathrm{w}_{1}, W_{2}$ and $W_{3}$ leaf samples uith corresponding ov values of 15.73. 15.87. 13.12.

TABLE 29. Copper concentration in leaf at kulasekharam
(Maan value - ppan)

| $\begin{aligned} & \text { Tree } \\ & \text { bro. } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Madale |  |  | Bottom |  |  |
|  | $W_{1}$ | $\mathrm{H}_{2}$ | ${ }_{3}$ | $\mathrm{H}_{2}$ | $\mathrm{H}_{2}$ | $\mathrm{W}_{3}$ | $\mathrm{N}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ |
| 1. | 1.2 | 1.6 | 2.0 | 1.6 | 1.8 | 2.2 | 2.1 | 2.6 | 3.2 |
| 2. | 1.4 | 4.1 | 6.2 | 2.6 | 3.3 | 4.4 | 4.2 | 8.2 | 6.2 |
| 3. | 2.6 | 2.8 | 3.2 | 3.2 | 3.8 | 22.0 | 11.4 | 11.0 | 12.0 |
| 4. | 8.2 | 8.6 | 10.2 | 11.2 | 10.2 | 8.6 | 12.2 | 12.4 | 13.0 |
| 5. | 4.4 | 4.6 | 6.6 | 6.3 | 7.2 | 8.2 | 11.6 | 11.8 | 12.2 |
| 6. | 8.2 | 12.0 | 11.0 | 8.8 | 12.2 | 14.2 | 12.6 | 12.2 | 14.2 |
| 7. | 1.4 | 1.6 | 2.4 | 2.4 | 3.8 | 12.2 | 11.6 | 11.6 | 14.4 |
| B. | 2.8 | 8.2 | 8.8 | 6.2 | 6.8 | 10.2 | 10.4 | 10.6 | 22.8 |
| 91 | 6.2 | 10.2 | 6.6 | 11.6 | 11.8 | 13.0 | 12.2 | 12.4 | 12.4 |
| 10. | 2.2 | 2.6 | 2.8 | 3.8 | 3.6 | 6.2 | 11.6 | 12.2 | 12.4 |
| 11. | 2.2 | 2.8 | 4.0 | 2.2 | 3.6 | 4.4 | 2.2 | 2.4 | 3.6 |
| 12. | 2.2 | 8.2 | 10.2 | 8.2 | 8.6 | 12.2 | 12.2 | 12.4 | 14.4 |
| 13. | 4622 | 6.8 | 7.2 | 8.2 | 8.6 | 8.2 | 11.4 | 12.4 | 12.8 |
| 14. | $3.6{ }^{\circ}$ | 3.8 | 3.6 | 4.4 | 4.8 | 12.2 | 4.8 | 4.0 | 11.2 |
| 15. | 6.2 | 8.2 | 8.8 | 8.4 | 8.8 | 12.2: | 11.2 | 11.6 | 11.8 |
| 16. | $4_{8} 2$ | 4.4 | 6.2 | 4.8 | 4.8 | 6.8 | 6.2 | 12.2 | 6.2 |
| 17. | 8.2 | 11.2 | 12.4 | 11.1 | 11.4 | '12.6 | 10.2 | 12.4 | 12.4 |
| 18. | 4.6 | 4.8 | 6.2 | 6.6 | 6.8 | 10.2 | 11.1 | 12.2 | 12.2 |
| 19. | 2.2 | 2.2 | 2.6 | 2.4 | 2.8 | 4.4 | 2.8 | 4.4 | 4.8 |
| 20. | 4.2 | 10.2 | 11.2 | $18: 2$ | 8.8 | 12.2 | 8.6 | 12.2 | 6.4 |
| Mean | 4.12 | ${ }^{*} 5.93$ | 7.86 | 6.16 | 6.92 | 9.35 | 9.03 | 10.06. | 14.71 |
| CV | 80.91 | 57.52 | 52.62 | 57.22 | 55.64 | 41.67 | 46.40 | 37.96 | 35.75 |

TABLE 33. Manganese concentration in leaf at kuInseknaran
TABLE 33. Manganese concentration in leat at kinasixiaran
TABLE 33. Manganese concentration in leaf at Kunasekiaran
$=$
(Mean value - ppm)

| $\begin{aligned} & \text { Tree } \\ & \text { No. } \end{aligned}$ | Tree Region |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Top |  |  | Madale |  |  | Bottom |  |  |
|  | $\mathrm{F}_{1}$ | $\cdots{ }_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | ${ }^{W}$ | $W_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ |
| 1. | 310 | 360 | 380 | 320 | 460 | 516 | 376 | 555 | 437 |
| 2. | 366* | 398 | 412 | 410 | 380 | 466 | 407 | 363 | 524 |
| 3. | 282 | 330 | 382 | 275 | 306 | 402 | 309 | 308 | 369 |
| 4. | 210 | 332 | 420 | 238 | 420 | 612 | 441 | 479 | 612 |
| 5. | 300 | 310 | 340 | 312 | 340 | 386 | 321 | 357 | 459 |
| 6. | 310 | 346 | 366 | 353 | 440 | 794 | 360 | 449 | 484 |
| 7. | 280 | 320 | 436 | 342 | 620 | 760 | 350 | 440 | 482 |
| 8. | 266 | 282 | 320 | 310 | 412 | 560 | 368 | 466 | 520 |
| 9. | 320 | 380 | 420 | 340 | 412 | 488 | 360 | 412 | 510 |
| 10. | 312 | 280 | 318 | 320 | 360 | 382 | 344 | 368 | 478 |
| 11. | 288 | 289 | 340 | 298 | 292 | 320 | 412 | 480 | 612 |
| 12. | 266 | 198 | 320 | 238 | 312 | 380 | 389 | 460 | 484 |
| 13. | 312 | 368 | 416 | 344 | 412 | 620 | 460 | 480 | 500 |
| 14. | 360 | 288 | 340 | 300 | 366 | 380 | 420 | 512 | 602 |
| 15. | 244 | 346 | 506 | 288 | 484 | 720 | 320 | 360 | 480 |
| 16. | 217 | 336 | 420 | 270 | 320 | 440 | 430 | 480 | 606 |
| 17. | 226 | 260 | 320 | 288 | 306 | 388 | 360 | 394 | 476 |
| 18. | 210 | 262 | 320 | 240 | 288 | 340 | 320 | 354 | 436 |
| 19. | 260 | 310 | 380 | 280 | 340 | 380 | 366 | 394 | 476 |
| 20. | 260 | 288 | 360 | 266 | 320 | 366 | 342 | 368 | 456 |
| Mean | 274 | 314 | 372 | 304 | 375 | 485 | 372 | 424 | 503 |
| CV | 15.01 | 15.11 | 15.14 | 15.73 | 15.87 | 13.12 | 13.99 | 13.82 | 11.68 |

TABLE 37. zinc concentration in leaf at kulasekharan
(mean value - ppm)

| $\begin{aligned} & \text { Tree } \\ & \text { NO. } \end{aligned}$ | Tree Ragion |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TOP |  |  | M1dale |  |  | Bottom |  |  |
|  | $\mathrm{F}_{1}$ | $\mathrm{H}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{W}_{2}$ | ${ }^{\mathrm{H}} 3$ |
| 1. | 2.4 | 6.2 | 8.4 | 3.2 | 6.2 | 7.4 | 4.2 | 8.0 | 5.8 |
| 2. | 16.2 | 12.2 | 120.2 | 4.2 | 10.0 | 6.2 | 4.6 | 5.0 | 3.2 |
| 3. | 3.4 | 2.8 | 60.2 | 6.9 | 1.6 | 23.2 | 5.0 | 34.6 | 114.6 |
| 4. | 2.2 | 8.2 | 36.2 | 2.0 | 10.2 | 26.2 | 1.0 | 5.2 | 18.6 |
| 5. | 4.2 | 12.2 | 62.2 | 6.2 | 8.4 | 12.2 | 4.8 | 1.0 | 115.2 |
| 6. | 12.1 | 24.2 | 26.2 | 70.2 | 13.2 | 8.4 | 50.2 | 4.2 | 5.8 |
| 7. | 3.6 | 8.2 | 12.4 | 4.2 | 7.3 | 14.0 | 5.3 | 16.0 | 12.2 |
| 8. | 12.2 | 24.0 | 28.2 | 6.2 | 12.0 | 110.0 | 5.7 | 10.0 | 106.4 |
| 9. | 4.4 | 6.2 | 12.2 | 7.2 | 4.7 | 36.2 | 10.0 | 12.2 | 8.8 |
| 10. | 4.4 | 12.2 | 30.2 | 4.4 | 12.1 | 66.2 | 2.0 | 6.2 | 28.6 |
| 11. | 5.2 | 13.4 | 84.2 | 7.2 | 9.4 | 16.0 | 6.8 | 2.0 | 110.2 |
| 12. | 13.2 | 24.2 | 26.0 | 72.2 | 23.2 | 7.4 | 60.2 | 14.2 | 15.8 |
| 13. | 3.6 | 4.2 | 6.2 | 5.2 | 8.3 | 12.0 | 6.2 | 12.0 | 14.2 |
| 14. | 14.2 | 16.2 | 36.2 | 12.0 | 11.0 | 120.0 | 6.2 | 5.0 | 216.4 |
| 15. | 4.6 | 3.2 | 5.2 | 3.2 | 14.7 | 46.2 | 11.0 | 22.0 | 18.8 |
| 16. | 2.6 | 4.2 | 24.2 | 24.4 | 22.1 | 60.2 | 3.0 | 12.2 | 38.2 |
| 17. | 6.2 | 12.4 | 83.2 | 8.2 | 10.4 | 76.2 | 8.8 | 4.0 | 12.2 |
| 18. | 4.2 | 12.4 | 74.4 | 6.2 | 8.4 | 115.0 | 5.8 | 2.0 | 119.2 |
| 19. | 12.2 | 22.2 | 25.0 | 62.0 | 13.2 | 62.2 | 50.2 | 12.2 | 10.5 |
| 20. | 3.6 | 2.2 | 3.2 | 4.2 | 5.2 | 7.2 | 3.2 | 6.2 . | 12.2 |
| Mean | 6.73 | 11.55 | 33.26 | 15.97 | 10.58 | 41.63 | 12.71 | 9.65 | 44.34 |
| cV | 144.22 | 88.15 | 68.43 | 82.87 | 140.51 | 63.98 | 83.97 | 142.2 | 49.31 |

In the bottom region the $W_{1}, W_{2}$ and $W_{3}$ leaf amples gave mean values of 372,424 and 503 ppm of nn with ef values of $13,99,13.48$ and 11.68 , roppectively.

The mean $2 n$ concentration of $W_{1}, W_{2}$ and $W_{3}$ leaf samples of the top region were found to be 6.13. 11.55 and 33.26 ppm . The corresponding cv volues were 144.22 . 84. 15 and 68.43. In the middle region, the $W_{1}, W_{2}$ and $W_{3}$ samples registered mean values of $15.97,10.58$ and 41.63 ppm of zn content with cv values of 82.87 . 140.51 and 69.98. In the bottom region the mean values wore 12.71, 9.65 and 44.34 ppm of $\mathrm{Z}_{\mathrm{n}}$ for whorls $\mathrm{w}_{1}, \mathrm{~W}_{2}$ and $W_{3}$. The or values for the 3 whorls were found to be $83.97,142.2$ and 49.31, respectively
4.3. CORRELATION STUDIES

Correlation studies were undertaken to find out the correlations between the soil nutrients and leaf nutrient concentrations. simple correlation coefficients between the available soil nutrient status with reference to $N, P, K$, $C a . M g, C u, M n$ and $\mathrm{Zn}_{\mathrm{n}}$ and the content of these nutrients in the leaves of whorl $I\left(W_{1}\right)$, whorl II $\left(W_{2}\right)$ and whorl III ( $w_{3}$ ) of top region, midale region and bottom region of the trees (totally 20 trees) were also workd out for each location except Vellayani (where only 10 trees were selected). The results are presented in Tables 38 to 45 .

# 4.3.1. Correlation between soil availoble $N$ and leaf $N$ (Table 38) <br> s.3.1.1. Vithura 

In the top region ( $W_{1}$ ). significant positive correlation was observed between 2011 n and $\mathrm{H}_{1}$ leaf samples ( $x=0.453 *$ ). The $W_{2}$ samples had positive zelationship with soil in but was not found to be statistically aignificant. The leaf $N$ content in $W_{3}$ amples showed negntive relationship with the soil available nitrogen. In the piddle region invariably all the whorls showed positive relationship with the soil nitrogen, though not significant. In the bottom region the same trend of positive relationahips as in the midele region were observedt

The pooled analysis for all the regions of the canopy also indicated a positive relationship between leaf N content and the respective aoil available N. But the relationship was not found to be ztatistically eignificant. 4.3.1.2. Pattom

At this location the top region yielded significant positive correlation between the soil available $N$ and the leaf $N(x=0.492 *)$. With reference to the $W_{2}$ and the $W_{3}$ leaf samples a negative relationship was observed between leaf and soil available N. Similariy in

TABLE 38. Correlation coefficients (r) between soil avollable $N$ and leaf $N$

| Locations | Top |  |  | Kidale |  |  | Bottom |  |  | Regtons pooled |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ |
| Vithores | 0.453 | 0.066 | -0.150 | 0.057 | 0.206 | 0.173 | 0.177 | 0.305 | 0.335 | 0.055 | 0.206 | 0.126 |
| Pattom | 0.492 | -0.004 | -0.440 | 0.110 | -0.401 | -0.369 | 0.004 | 0.069 | -0.183 | $0.50{ }^{\text {a }}$ | -0.173 | -0.440 |
| Vellayand | 0.064 | -0.349 | -0.521 | 0.108 | -0i054 | -0.088 | 0.135 | 0.005 | 0.044 | $0.64{ }^{*}{ }^{*}$ | 0.311 | 0.286 |
| Kularekharam | 0.110 | 0.307 | 0.343 | 0.167 | 0.290 | 0.051 | 0.382 | 0 -036 | 0.345 | $0.48{ }^{\text {者 }}$ | 0.225 | 0.319 |
| Locations pooled | $0.51{ }^{* *}$ | 0.016 | -0.110 | -0.004 | -0,026 | -0.057 | 0.179 | 0.119 | 0.139 |  |  |  |

* Significant at 0.05 level
** signiflcant at 0.01 level
the aidele region also the $W_{2}$ and $W_{3}$ leaf anples had negative relationship with the soil available $N$. But the $W_{1}$ leaf sample yielded a posituve though not significant relationship between soil available $N$ and leaf $N_{0}$ In the bottom region both $W_{1}$ and $W_{2}$ leaf nitoo gen had positive relationships with the soil $N_{6}$ while the $W_{3}$ samples showed negative celationship with the soll available N.

The pooled analysis of the three regions indicated that a aignificant relationship ( $x=0.502$ *) exdsts between the $H_{1}$ leaf samples and the soil No But in the case of $W_{2}$ and $H_{3}$ amples pooled analysis gave a negative relationship with the soil available N.

### 4.3.1.3. Vellayani

At this location, the relationahip between the leaf N content and soil available N content with respect to all the whorls as wall as in all the regions, were found to be positive though atatistically not significant.

But the pooled analysis for all the 3 regions of the plant showed a significantly positive correlation between leaf $N$ and soil available $N$ in the case of $W_{1}$ leaves only.
4.3.1.4. Kulasakharan

In the top region the correlation coefficient volues for leaf in content in all the whorls, had poaitive zelationahips with their respective soil m contente. The same trend was also exhibited by both midale and bottom regions.

The pooled analysis for all the three regions showed significant positive correlation betwen $W_{1}$ leaf $N$ and the respective sail content ( $\mathrm{r}=0.448^{* \pi}$ ). The other two whorls had also positive relationships though not algnificant.
4.3.2. Correlation coefficient between so12 ayailable $P$ and leaf $P$ (Table 39)
4.3.2.1. Vithura

In the top region, $W_{1}$ and $W_{3}$ leaf $P$ had positive correlation with the soil $P$ content. The $H_{2}$ leaf samples showed negative relationship with the soil $P$ content. In the midele region. in contrast to top region the $H_{1}$ leaf samples showed negative relationship and the $W_{2}$ and $W_{3}$ leaves had positive relationahip with the soil P content. In the bottom region, significantly positive relationship ( $\Sigma=0.477 * *$ ) was observed between $W_{1}$ jeaf $P$ content with soil avallable P. The other two whorls were also having positive relationship but not statisticaliy significant:

TABLE 39. Correlation coefficients $(r)$ between soil availabie $P$ and leaf $p$

| Locations | Top |  |  | Midale |  |  | Botton |  |  | Reatons pool ed |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $W_{1}$ | $W_{2}$ | ${ }^{W}$ | $\mathrm{H}_{2}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{H}_{2}$ | $W_{3}$ | $\mathrm{H}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{3}$ |
| Vithura | 0.247 | -0.307 | 0.107 | -0.289 | 0.412 | 0.188 | $0.47 \%$ | 0.294 | 0.205 | 0.241 | 0.418** | 0.302 |
| Pattom | 0.317 | 0.214 | 08066 | 0.266 | 0.127 | 0.223 | 0.307 | 0.336 | 0.088 | 0.446 | 0.177 | 0.065 |
| Vellayoni | 0.426 | -0.105 | 0.354 | 0.039 | 0.106 | 0.223 | $0.750^{*}$ | 0.109 | 0.358 | 0.158 | -0.064 | 0.279 |
| Kulasekharem | -0.314 | -0.263 | 0.374 | 0.111 | 0.428 | 0.365 | 0.51 .3 | 0.327 | 0.023 | $0.576^{* *}$ | 0.174 | 0.102 |
| Locations pooled | 0.060 | 0.0579 | 0.209 | 0.153 | 0.291 | $0.280^{\circ}$ | $0.474^{*}$ | 0.327 | 0.168 |  |  |  |

* Significant at 0.05 level
** Significant at 0.01 level

Pooled analysis for all the whorls in the three regions showed positive relatiohinip with their respective soil $P$ content. But the correlation values were statiatically significant oniy in the case of $W_{2}$ followed by $W_{3}(x=0.418 * *$ and 0.302*).
4.3.2.2. Patton

At this location invariably all the leaf whorls of all the regions had positive relationships with their respective soil $P$ content though not significant.

The pooled analysis indicated that the moil $P$ correlated well with the leaf $P$ content of whorl 1 leaf samples ( $x=0.446 * *$ ). The others also indicated positive relationghip though not statistically significant.
4.3.2.3. Vellayand
it this location, in the top region except $W_{2}$ leaves, leaves of the other two regions showed positive relationship, though not sigmificant. In the midale region the soil $P$ had positive relationship with the leaf p. Similarly in the bottom region also the soil available $p$ had shown positive relationehip with the leaf $p$ content. But highly significant positive correlation was observed only between $W_{1}$ leaf samples ( $x=0.750 * *$ ) and the soil $P$ content.

A pooled analysis of all the 3 whorls of the different regions, yielded positive correlations in whorls one and three only whereas the correlation value was negative with reference to $W_{2}$ leaves.

### 4.3.2.4. Kulasekharam

In the top region, the soil avallable $P$ had negative relationship with leaves of $W_{1}$ and $W_{2}$ whorls but expressed positive relationship with $\mathrm{H}_{3}$ leaf samples. But positive relationship vas obteined among available soil $P$ content and leaf $P$ content of $H_{2}$ and $H_{3}$ vhorls of the midale and bottom regions. Positive and significant correlation was obtained only in the case of leaves of whorl I in the bottom region and the soil available $P$ $(x=0.513 *)$.

The pooled analysis of the three regions indicated that the soil available $P$ had significant positive correlation with the $W_{1}$ leaf $P$ content ( $x=0.576 * *$ ). The $P$ content of $W_{2}$ and $W_{3}$ leaves and soil available $P$ in all the three regions vere also found to be positively correlam ted with the soil available $P$, but the correlation values were not found to be statistically significant.
4.3.3. Correlation coefficients between soil available $K$ and leaf $K$ (rable 40)
4.3.3.1. Vithurs
$I_{n}$ the case of top region, soil K content was found to be poritively correlated only with leaves of $W_{1}$ and $W_{3}$ whorls whereas the relationship was negstive with reference to $W_{2}$.

The relationship betwaen the leaf K content and the soil available K was posithve in relation to all the three whorls of both midide and bottom regions.

The pooled analysis for this relationship was found to positive but not significont in the case of ell the three whorls.
4.3.3.2. Pattom

The correlation between soil avaliable $K$ and leaf $K$ in whorl $I$ of the top region was significantly positive thereas the correlation wan negative in the case of leaves of $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$ memples. In the case of the middle region $h_{1}$ and $w_{3}$ leaf $K$ content was found to be negatively correlated with aoll available K . though the 2nd whorl had a positive but statistically inaignificant correlation. In the bottom region of the

TABLE 40. Correlation coefilcients ( $r$ ) betwaen moil available $k$ and leaf $k$

| Locations | Top |  |  | Madale |  |  | Botem |  |  | Regione pooled |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{W}_{2}$ | $\mathrm{W}_{2}$ | ${ }^{W}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ |
| Vithure | 0.151 | -0.007 | 0.186 | 0.322 | 0.250 | 0.003 | 0.149 | 0.113 | 0.090 | 0.123 | 0.148 | 0.104 |
| Pettom | $0.48{ }^{*}$ | -0.345 | -0.066 | -0.310 | 0.277 | $-0.370$ | 0.430 | -0.180 | 0.170 | 0.455 | -0.398 | -0.241 |
| Vellayani. | 0.311 | -0.342 | -0.315 | 0.009 | 0.106 | -0.323 | 0.283 | $-0.315$ | 0.002 | 0.249 | -0.288 | -0.198 |
| Kulasekharam | $0.510{ }^{\text {a }}$ | -0.266 | -0.128 | 0.317 | 0.419 | 0.226 | -0.103 | 0.060 | 0,093 | 0.478 | 0.043 | 0.179 |
| Lodatilons pooled | 0,280 | 0.226 | 0.041 | 0.097 | 0.103 | -0.087 | -0.236 | -0.042 | 0.102 |  |  |  |

* Significant at 0.05 levele
canopy the correlation between the $k$ content of $H_{1}$ and $W_{2}$ leaves were negatively correlated with the soil available $K$. The corresponding correlation was positive but not statistically significant in the case of $\mathrm{N}_{3}$.

The pooled analyais for the the regions revealed that leaves of the $W_{1}$ whorl gave significantly positive correlation botween leaf $K$ and soil arailable K. whereas the rel ationship was negative, in the case of $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$ whorls.
4.3.3.3. Vellayani

The soil available K was positively correlated with the $K$ content of leaves of $H_{1}$ leaves in the top region whereas the relationship was negative with reference to leaves of whorl ${ }_{2}$, and $H_{3}$. In the case of the midale region, the correlation was positive but not significant in relation to whorl 1 and whorl 3. The correlation between soil availeble $K$ and leaf $K$ in whorls 1 andwhorl 2 was negative whereas the value was positive uith feference to $W_{3}$ in the bottom region.

The pooled enalysts shoued positive though not signiEicant relationship in whorl 1 while the corresponding correlation values were nagative in the case of $W_{2}$ and $W_{3}$.
4.3.3.4. Kulaselcharem

The correlation between the soll available $K$ and the $N_{1}$ leaf $k$ wes found to be positive and statistically significant in the top region of the plants, whereas the relationship was negative in the case of $\mathrm{H}_{2}$ and $W_{3}$ thorl leave. In the middle region $W_{1}, W_{2}$ and $W_{3}$ leaves yielded a positive but not. gignificant relationship betseen the soil available $k$ and leaf $k$. In contrant to the above results, a negative correlation was found to exist between the solin and leaf $K$ in whorl 1 of botton region whereas $H_{2}$ and $W_{3}$ gave a positive but not significent reletionship.

Pooling anl the threc regions and the tirree whorls, the correlation coefficient value for the whorl I was found to bo statistically superior to $W_{2}$ and $W_{3}$, where as also the values ware positive but not sigoificant.

Pooling the results of the four locations top region showed that leaf $K$ content of the $H_{1}$ leavea was positively and significantly coxrelated uith coil available K.
4.3.4. Correlation coofficient between aoil available Ca and leaf Ca (Table 41).
4.3.4.1. Vithura

The available ca content of the soil was found to be positively correlated $w i$ th the $W_{1}, W_{2}$ and $W_{3}$ leavas of the top region of the clove plants at this site. But the relationship was not found to be statistically signiEicant. In the midale region a negative correlation was found to exist in the case of $W_{1}$ leaves where as $w_{2}$ and $W_{3}$ leaves showed a positive but statistically non-significant relationship. The same trend was noticed in the case of bottom region of the clove plants at this location.

The pooled analysis also gave positive correletion between soil and leaf Ca in all the three whorls, with highly statistically significant values in the case of $W_{2}$ and $W_{3}$.
4.3.4.2. Pattom

As against the Vithura location. a negative correlation was observed in the case of $W_{1}$ whorl wiile the correlation values were positive but not significant for $\mathrm{H}_{2}$ and $\mathrm{W}_{3}$. In contrast to the top region the correlation values for the midale region were all positive for the leaves of all the whorls. The bottom region

TABLE 41. Correlation coefficients (x) between moil available Ca and leaf ce

| Locations | Tos |  |  | sidade |  |  | Bottom |  |  | Regions pooled |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ |
| V1thura | 0.112 | 0.317 | 0.293 | -0.241 | 0.353 | 0.347 | -0.122 | 0.356 | 0.324 | 0.141 | $0.36{ }^{\text {T* }}$ | $0.35{ }^{\text {d }}$ |
| Pattom | -0.128 | 0.120 | 0.025 | 0.001 | 0.234 | 0.296 | -0.309 | 0.034 | 0.559 | 0.184 | 0.116 | 0.53** |
| Vellayand. | 0.197 | 0.025 | 0.109 | -0.121 | 0.015 | 0.019 | -0.289 | 0.112 | 0.126 | 0.222 | 0.085 | 0.012 |
| Kulasekharam | -0.253 | -0.054 | 0.283 | 0.109 | 0.085 | 0.166 | -0.02A | 0.151 | 0.477 | 0.060 | 0.074 | 0.206 |
| Locationa pooled | -0.073 | 0.119 | 0.187 | -0.057 | 0.197 | 0.245 | 0.168 | 0.226 | 0.32** |  |  |  |

[^1]premented a different pleture with a negative correlation value for whorl 1 and positive values for whorls 2 and 3. the last being statistically sigmificant.

On a pooled analysis of this parmeter for all the regions the correlation coefficient valuea of all the three whorls were found to be positive, the vaiue for whorl 3 being highly statistically significant. 4.3.4.3. Vellayani

As in the case of Vithura location, the correlation values between Ieaf and soil ca of the top region were found to be positive but not stasticelly significant. $I_{n}$ the case of midale region, segative correlation was observed for $\mathrm{U}_{1}$ and positive palues for $W_{2}$ and $H_{3}$. None of the values prere statistically significant. The trend in the bottom fegion vas the same as in the case of middle region. Leaves of $w_{2}$ and $w_{3}$ whoris gave a positive yhough not significant values.

The pooled analysis showed a positive corrolationsinip between the ca content of the soil and that of the leaf of all the three whorls. But the values mere not statistically significant.

### 4.3.4.4. Kulasekharam

The correlation between leaf Ca and soll Ca in $W_{1}$ and $W_{2}$ of the top region was found to be negative while the value was positive in the case of $W_{3}$ leaver. The correlation coefficient values for $W_{1}, W_{2}$ and $W_{3}$ leaves Vs. soil $C a$ of the middle region were all positive but not statistically significant. In the bottom region the correlation coefficient value was negative with reference to $C a$ content $\operatorname{In} W_{1}$ leaves as in the case of the previous three locations. The corresponding values were positive with raference to $w_{2}$ and $w_{3}$ leaves, the latter being statistically significant as in the case of the plants of pattom location. The results of the pooled analysis for all the regions of the plant showed that the correlation coefficients were positive, but not significant among $W_{1}, W_{2}$ and $W_{3}$ leaves.

However, a highly significant correlation ( $0.329 * *$ ) vas obtained in the case of $\mathrm{H}_{3}$ leaves taking into consideration the leaves of all the whoris in all the regions of the plant at all the localities.
4.3.5. Correlation coefficient between soll available Mg and leaf Mg (Tablo 42)
4.3.5.1. Vithura

At Vithura location the correlation coefficient between soil extractable Mg and leaf Mg were positive in $W_{2}$ and $W_{3}$ while it was negative in $W_{2}$ of the top region. The corresponding value for $\mathrm{W}_{3}$ was found to be statistically significant ( $x=0.580^{* *}$ ) . In the middle region the correlation coeificient values were negative in $W_{1}$. positive in $W_{2}$ and $W_{3}$ but not atatintically aignificant. In the bottom region the cozrelation coofficients between soil Mg and leaf Mg were all positive, but not aignificent.

When all the three regions were pooled, the value for $W_{1}$ was found to be statistically significant ( $x=0.271 *$ ). The corrclation between soil available Mg and the leaf Mg was found to be positive and significant in the case of $\mathrm{H}_{3}$ leaves also. ( $x=0.439 * *$ ).
4.3.5.2. Pattom

The corresponding values were positive but not significant for $W_{1}$ leaves, megative for $W_{2}$ and positive and statistically $s$ ignificant for $H_{3}$ with regard to the top region. In the middle region the 'r' value was negative in relation to $W_{1}$ and positive in the case of

TABLE 42. Cortelation coofficient (r) between moll availablo Mg and leaf Mg

| Locations | Top |  |  | midale |  |  | Bottom |  |  | Regionm pooled |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $W_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $W_{1} \quad W_{2}$ | $\mathrm{W}_{3}$ |
| vithura | 0.183 | -0.298 | $0.580^{\star}{ }^{*}$ | -0.234 | 0.278 | 0.403 | 0.345 | 0.147 | 0.077 | 0.27离 - 0.285 | $0.439^{\star *}$ |
| Pattom | 0.209 | -0.205 | 0,48 ${ }^{\text {® }}$ | -0.325 | 0.329 | 0.076 | 0.169 | 0.084 | 0.255 | -0,311-0,263 | 0.38 ${ }^{\text {\% * }}$ |
| vellayani | 0.011 | 0.104 | 0.183 | 0.011 | 0.037 | 0.140 | 0.017 | 0.137 | 0.029 | $0.017 \quad 0.037$ | 0.018 |
| Kulasekharam | 0.331 | -0.358 | $0.47{ }^{\text {* }}$ | 0.150 | 0.416 | 0.155 | 0.424 | 0.385 | 0.393 | $0.172-0.259$ | $0.499^{\text {\%* }}$ |
| Locations pooled | -0.138 | 0.273 | 0.409* | -0.134 | 0.216 | 0.039 | 0.013 | -0.143 | -0.0714 |  |  |

[^2]$W_{2}$ and $W_{3}$, both of which were not tetistically aignificant. All the correlation coefficient values for $W_{1}$, $W_{2}$ and $W_{3}$ leaves for the botton region vere positive but not atatistically significant. When all the values were pooled and analysed, the correlation between soil and leaf Mg were found to be negative for $H_{1}$ and $H_{2}$ while the value was positive and significant for $W_{3}(x=0.387 * *)$.
4.3.5.3. vellayand

The correlation between soil and plant Mg vas invariable found to be positive mong the regions and among the whorla and also when pooled. None of the value was found to be statistically significant.

### 4.3.5.4: Rulasekharam

The correlation cocificient was positive but not significant in $W_{2}$, negative in $W_{2}$ and positive and atatistically significant in $W_{3}$ in the top region of the plant. In the middle region the 'r' values vere all positive, but not significant. The same trend was noticed in the bottom region of the plants in ell the three whorls. On pooling the reculte of all the locations, it wa: found that $\mathrm{H}_{3}$ was statistically superior ( $\mathrm{r}=0.499 * *$ ) to $W_{1}$ and $W_{2}$.

Considering locations, regions of the plant and leaves of different whosls, it was found that $W_{3}$ was very much statiseically comrelated between the leaf and soil $\mathrm{Mg}(x=0.409 * *)$.
4.3.6. Conrelation coesficients between soil DTPA extractable Cu and the leaf content (Table 43.) 4.3.6.1. Vithura

The correlation between the DTPA extracteble Cu and the leaf Cu content was found to be negative in $W_{3}$ of top region, $W_{2}$ of middle segion and $H_{1}$ and $W_{2}$ leaves in the bottom region only. The correlation coefificient values were positive but not significent with reference to all other whorls of the three regions. The pooled analysis showed that a positive correlation exd st betwen the soil Cu and leaf Cu in $\mathrm{W}_{2}$ and $\mathrm{W}_{3}$ leaves of all the three regions of the plant ( $x=2.77$ and $R=2.64 *)$.

### 4.3.6.2. Pattom

At this site all the correlation values were positive between the DTPA extractable $C u$ and leas cu but statistically significant only in the case of $W_{3}$ leaves of the bottom region of the plant $(x=0,513 *)$. The pooled anslysis revealed that the relationahip betreen

TABLE 43. Correlation coofficient ( $x$ ) between soil DTPA Cu and leaf Cu

| Location | Top region |  |  | midde |  |  | Eottom |  |  | Regions pooled |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $W_{1}$ | $\mathrm{H}_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ |
| Vithura | 0.119 | 0.220 | -0.043 | 0.242 | -0.145 | 0.128 | -0.073 | -0.408 | 0.300 | 0.002 | 0.277 | 0.26 |
| Pattom | 0.267 | 0.399 | 0.178 | 0.363 | 0.432 | 0.432 | 0.068 | 0.033 | $0.51{ }^{\text {\% }}$ | 0.241 | 0.412** | $0.54{ }^{\text {* }}$ |
| Vellayani | 0.078 | 0.373 | -0.031 | -0.395 | 0.300 | 0.365 | -0.039 | -0.110 | $0.583^{* *}$ | -0.178 | 0.105 | $0.53{ }^{\text {* }}$ * |
| Kulazekharam | 0.355 | 0.071 | -0.073 | 0.294 | 0.176 | 0.082 | 0.262 | 0.214 | 0.491 | $0.335^{* *}$ | 0.175 | 0.107 |
| Location pooled | 0.159 | 0.254 | 0.112 | 0.216 | 0.149 | 0.076 | 0.072 | -0.064 | 0.472* |  |  |  |

* Significant at 0.05 level
** Significant at 0.01 levol
soil DTPA extractable and soil Cu was highiy aignificant in $W_{2}$ and $W_{3}$ leaves ( $5=0.412 * *$ and $5=0.543 * *$ ). 4.3.6.3. Vellayand

67,
The correlation between coll and leaf Gu content was found to be positive in $W_{1}$ and $W_{2}$ of top region, $W_{2}$ and $W_{3}$ of middle region and $W_{3}$ of botton region, the last only being statieticelly sigmiticant ( $\mathbf{r}=0.583 * *$ ) . Pooled analysis of the date from all the three regions of the plant showed a positive and significant correlation in the case of $H_{3}$ only ( $x=0.535 * *$ ). 4.3.6.4. Kulasekherem

Except $\mathrm{H}_{3}$ of the top region the correlation confficient values were positive in all other cases. But among these, the value was statistically significant in $W_{3}$ of the bottom region only ( $x=0.191 *$ ). The pooled analysis howaver yielded statisticelly aignificant coefficient of variation in the case of $\mathrm{H}_{1}$ leaves alone ( $5=0.335^{* *)}$.

A pooled analysis of the data from all the regions of the plant from the four locations studied, gave significantly positive relationship in $\mathrm{H}_{2}$ of top region ( $\Sigma=0.254 *$ ) and $v_{3}$ of bottom region ( $x=0.471 * *$ ) only.
4.3.7. Correlation between DTPA extractable soil Mn
and leaf in content (Table 44) 4.3.7.1. Vithura

All the correlation coefficient values except for $\mathrm{H}_{1}$ of middle region were positive, but statistically not significant. The pooled analysis also did not reveal any superioxity among $W_{1}, \mathrm{H}_{2}$ and $\mathrm{W}_{3}$. 4.3.7.2. Pettom

At this site the extractable $M n$ and the leaf Mn content were positively correlated. But the value was statistically significant only in the case of $w_{3}$ of bottom region only ( $x=0.493 *$ ). The pooled malyais gave positive correlationships in the case of all the
 and $I=0.453 * *$ for $W_{3}$ ).
4.3.7.3. Vellayand

The same trend as in the case of Pattom location was noticed at this site also, with the comrelation confficient value of $x=0.424$ for $W_{3}$ of bottom region. pooled analysis of all the data relating to the three whorls in the three regions of the plant fielded posin tiveiy significant correlation coefficients ( $x=0.422 * *$. $0.422 * *$ and $0.498 * *$ for $W_{1}, W_{2}$ and $W_{3}$ respectively).

TABLE 44. Comrelation coefflcient (r) between soil DTPA Mn and leaf Mn

| Location | Top region |  |  | Midal |  |  | Bottom |  |  | Reglons pooled |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $W_{1}$ | $W_{2}$ | $W_{3}$ | $W_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{W}_{2}$ | $W_{3}$ | $\mathrm{W}_{1}$ | $\mathrm{H}_{2}$ | $\mathrm{V}_{3}$ |
| Vithura | 0.123 | 0.079 | 0.041 | -0.069 | 0.003 | 0.073 | 0.202 | 0.146 | 0.092 | 0.088 | 0.088 | 0.055 |
| Pattom | 0.358 | 0.410 | 0.288 | 0.177 | 0.323 | 0.413 | 0.363 | 0.437 | 0,493 | $0.38{ }^{\text {\% }}$ | 0.39 ${ }^{\text {* }}$ | 0.46 ${ }^{\text {* }}$ |
| Vellayand | 0.204 | 0.351 | 0.045 | 0.234 | 0.129 | 0.030 | 0.431 | 0.384 | 0.423 | $0.42{ }^{\text {* }}$ | $0.422^{*}$ | $0.498^{*}$ |
| Kulasekhasam | -0.187 | -0,222 | -0,213 | 0.313 | 0.325 | 0.325 | 0.111 | 0.235 | 0.55\% ${ }^{\text {® }}$ | -0.177 | 0.177 | $0.373^{*}$ |
| Locations pooled | 0.142 | 0.124 | 0.041 | 20.033 | 0.133 | 0.012 | 0.274 | 0.213 | $0.320{ }^{*}$ |  |  |  |

* significant at 0.05 Ievel
** signizicant at 0.01 level


### 4.3.7.4. Kulasokharm

At this location, the corrolation betwaen soil extractable Mn and leaf in content vas found to be negative in the case of all the three whorls for-tien of top ragion. In the case of middie and bottom region of the plants, the corrolation coofficient values were positive but atatisticaliy aignificant only in the case of $W_{3}$ of bottom region ( $x=0.557 *$ ). The pooled analyaia ravealed that a positively algnificant correlationship existed only between the soil extractable Mn and leat Mn content in whorl 3.

The pooled analysis of the data from all the whorls of the three regions of the plante from the four locallties, showed that $\mathrm{H}_{1}$ and $\mathrm{W}_{3}$ of bottom region alone had positive and signicicant correlation values.
4.3.8. Correlation between DTPN extractable soll in and leaf zn content (Table 45)
4.3.8.1. Vithura

The correlation coefficient values betreen the soil extractable $\mathrm{Zn}_{\mathrm{n}}$ and the leaf $\mathrm{Zn}_{\mathrm{n}}$ content vere positive except in $\mathrm{H}_{2}$ of the botton region of the plant. The correlation coefficient value was statisticalily superior only in the case of $\mathrm{H}_{3}$ of the bottom region ( $\mathrm{x}=0.586 * *$ ).

TABLE 45. Correlation coefflcient (r) between soil DTPA in and 1eat Zn

| Location* | rop region |  |  | Middle |  |  | Bottom |  |  | Regions pooled |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{1}$ | $\mathrm{W}_{2}$ | $\mathrm{W}_{3}$ | $W_{1}$ | $\mathrm{H}_{2}$ | ${ }_{3}$ | $W_{1}$ | $W_{2}$ | $\mathrm{H}_{3}$ | $W_{1} \quad W_{2}$ | $W_{3}$ |
| Yithura | 0.106 | 0.437 | 0.153 | 0.381 | 0.385 | 0.201 | 0.317 | -0.177 | $0.586^{* *}$ | $0.36{ }^{\text {** }} 0.249$ | $0.79{ }^{\text {* }}$ |
| Fittom | -0.356 | -0.001 | 0.116 | 0.415 | 0.051 | 0.329 | -0.388 | -0.321 | 0.396 | $0.413^{* *}-0.285$ | 0.227 |
| Vexhayant | -0.430 | $=0.43$ | 0.075 | -0.369 | -0.111 | 0.066. | 0.291 | 0.348 | 0.44爯 | $-0.340-0.304$ | $0.57{ }^{*}$ |
| Kulasokhaxam | -0.333 | -0.419 | 0.194 | -0.436 | -0.173 | 0.213 | -0.431 | 0.145 | 0.529 | -0.475-0.244 | $0.343^{\text {a }}$ |
| Location pooled | 0.025 | 0.181 | 0.298 | 0.164 | 0.116 | -0.074 | $0.32{ }^{\text {® }}$ | $-0.075$ | 0.481* |  |  |

* significant at 0.05 Ievel
** Significant at 0.01 Leval


#### Abstract

A pooled analysis showed that leaves of whorls $W_{1}$ and $W_{3}$ were superior and significants as compared to $\mathrm{W}_{2}$ ( $x=0.365 * *$ for $H_{1}$ and $I=0.791 * *$ for $W_{3}$ ). 4.3.8.2. Pattom


At this location the correlation coefficients betreen DIPA extractable $\mathrm{Zn}_{\mathrm{n}}$ and leaf Zn was found to be negative in tho case of $W_{1}$ and $H_{2}$ of the top and bottom regions. The value for all other whorlg of the three regions were positive, but not significant. The pooied mnalysis revealed that the $H_{1}$ leaves were the most indicetive of the influence soil extractable $\mathrm{Zn}_{\mathrm{n}}$ to leaf $\mathrm{Zn}_{\mathrm{n}}$.

### 4.3.8.3. Vellayand

The correlation coefficient values at thiz at te presented a different picture. The values were negative for $W_{1}$ and $W_{2}$ of top region and the midale region only. All the other values were positive but of which the value of $W_{3}$ of the botton region proved to be positive and statistically algnificant ( $x=0.445 *$ ). A pooled analyala has revealed that the extractable DIRA. In was positively and significantly correlated with the leaf $Z_{n}$ content in $\omega_{3}(x=0.572 * t)$.
4.3.8.4. Kulabekharan

The correlation coefficients were almost sinilar to Vellayani in trend in the case of Kulasekharam, the
excoption being a negative correlation coefficient value for $W_{1}$ leaves of the bottom region. oniy the $N_{3}$ leaves of the botton region gave a positively significant value of correlation coefilcient ( $x=0.529 *$ ) . The pooled analysis also was exactly similar to that of Vollayand location. only whorl 3 showed statistical superiority over the other two whorls ( $x=0.343 * *$ ).

A pooled analysis of date from all the location also showed that the sine content of the $W_{3}$ whorls of the bottom region had a highly significant positive correlation with DPPA extractable soil zinc ( $x=0.481 * *$ ).
4.4. YIELD DATA OF DRIED FLOWER BUDS (Table 46)

The mean value of pield of arica slower buds for 2 years in $k g$ per tree per year are presented hereunder (Table 46). The mean yield data at Vithura ranged from 1.2 to 4.450 kg per piant wh th mean of 3.153 kg per tree per year. At Pattom the mean value of yield ranged from 1.15 to 4.6 with a mean of 2.593 kg par tree per year. At Vellayani it ranged from 0.6 to 1.6 (mean value 0.82 kg per tree per yoar). At Kulasekharan, the yield data varied from 10.75 to 14.5 kg per tree per year with a mean value of 12.439 kg per tree per year.

## TABLE 46. Yield date of dried flower buds

(Mean values kg/tree/year)

| Trae <br> No. | Locations |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | V1 thuia | Pattam | Vellayani | Kulasekharam |
| 1. | 3.000 | 1.400 | 0.600 | 11.750 |
| 2. | 1.750 | 1.400 | 1.600 | 12.250 |
| 3. | 1.200 | 2.300 | 0.800 | 13.625 |
| 4. | 3.750 | 2.400 | 0.400 | 13.500 |
| 5. | 3.985 | 2.125 | 0.600 | 13.650 |
| 6. | 2.600 | 1.150 | 1.050 | 11.750 |
| 7. | 3.375 | 2.400 | 1.150 | 10.125 |
| 8. | 3.375 | 3.800 | 0.800 | 12.750 |
| 9. | 1.500 | 2.200 | 0.600 | 11.750 |
| 10. | 2.300 | 3.125 | 0,600 | 11.000 |
| 11. | 3.400 | 2.150 | - | 12.150 |
| 12. | 3.000 | 2.400 | $\cdots$ | 13.225 |
| 13. | 3.750 | 1.700 | - | 11.750 |
| 14. | 3.500 | 3.900 | $\cdots$ | 12.225 |
| 15. | 3.375 | 4.600 | - | 14.500 |
| 16. | 4.000 | 2.600 | - | 12.750 |
| 17. | 4.375 | 2.395 | $\cdots$ | 12.250 |
| 18. | 3.125 | 2.325 | - | 13.250 |
| 19. | 3.250 | 2.625 | - | 12.575 |
| 20. | 4.450 | 4.375 | - | 11.570 |
| Grand total | 63.050 | 52.870 | 8.206 | 248.775 |
| Mean | 3.153 | 2.593 | 0.820 | 12.439 |

4.4.1. Correlation studies with Field (Table 47iond Fig. 1 ti 5)

In order to make an attempt to standardise the index leaves for various nutrients, the valuea of leaf concentrations of nutrients having significant correlation with the soil nutrients were correlated with the gield data obtained from the reapective trees. The corrclation coefficients and the regression equations arrived from these studies are presented in Table 47.
$\cdots$ The leaf nftrogen concentrations of the $W_{1}$ leaves of the top region at all the four location had positive significant relationship with yield and the correlation coefificients were $x=0.873 * \dot{x}, r=0.627 * *$. $x=0.455^{*}$ and $x=0.533 *$ for Vithura, Pattom, Vellayani and rylasekheram respectively. The regression equations were also worked out for this variable as given in Table 47.

The leaf $P$ concentration of $W_{1}$ samples of botton region of Vithurs, pattom, Vellayani and Kulasekharam had also well correlated with the respective yields ( $x=0.465 *$, 0.465*, 0.542* and 0.592* respectively).

The leaf $K$ concentration of $W_{1}$ leaf samples of the top region at Kulasekharam only had significant poaitive relationship with the respective yield ( $x=0.540$ ).

TABLE 47. Correlation confticiente between leaf nutrient concentrations and the yleld

| 51 | Rolationghip between |  | Corralation | Regrassion equation | N0.OE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | X | $\bar{Y}$ | coufficient | $y \times a \pm b x$ |  |
| 1. | Leaf in of top ( $W_{2}$ ) at Vithura | Yield | 0.783** | $y=-5.94+{ }^{-5.97}+4.32 x$ | 20 |
| 2. | Leal N of top ( $\mathrm{w}_{1}$ ) at Pattom | Yield | 0.627** | $y=12.54771+6.344 x$ | 20 |
| 3. | Leaf N of top ( $W_{2}$ ) at Vellayani | yield | 0.455* | $y=-2.51+1.55 x$ | 10 |
| 4. | Leaf N of top ( $\mathrm{W}_{1}$ ) at Kulasekharam | yleld | 0.533* | $y=0.563+5.23 x$ | 20 |
| 5. | Leaf $P$ of bottom ( $W_{1}$ ) of Vithura | yiela | 0.465* | $y=0.75+10.75 x$ | 20 |
| 6. | Leaf $P$ of bottom ( $W_{1}$ ) of Pattom | yield | 0.490* | $y=-0.47+12.02 x$ | 20 |
| 7. | Leaf $P$ of botton ( $W_{1}$ ) of Vellayand | $\mathrm{Y}_{1}$ ela | 0.542* | $y=0.277+3.505 x$ | 10 |
| 8. | Leaf $p$ of bottom $\left(W_{1}\right)$ of Kulasekharam | yield | 0.592* | $Y=10.04+26.71 x$ | 20 |
| 9. | Leat $k$ of top ( $W_{1}$ ) at Kulasokharam | Yiold | 0.540* | $Y=6.67+2.43 x$ | 20 |
| 10 | Leat ca of bottom ( $W_{3}$ ) at Vithura | Yield | 0.455* | $y=1.44+5.68 x$ | 20 |
| 11. | Leat vis of top $\left(W_{3}\right)$ at Kulasekharam | Yield | 0.462* | $y=9.21+11.12 x$ | 20 |

TABLE 47. (Conted.)


Fig. 1. RELATIONSHIP BETWEEN LEAF N CONTENI OF TOP (W1) AND THE YIELD AT VITHURA


Fig.2. RELATIONSHIP BETWEEN LEAF P CONTENT OF EOTTOM (W1) AND THE YIELD AT KULASEKHARAM

$$
\begin{aligned}
& \mathrm{r}=0.592 * \\
& \mathrm{y}=10.04+16.71 x \\
& \mathrm{n}=20
\end{aligned}
$$



Fig.3. RELATIONSHIP BETWEEN LEAF K CONTENI OF TOP (W1) AND THE YIELD AT KULASEKHARAM
$r=0.540^{*}$
$y=6.67+2.43 x$
$\mathrm{n}=20$


Fig.4. RELATIONSHIP BETWEEN LEAF Ca CONTENT OF BOTTOM (W3) AND THE YIELD AT VITHURA


Fig. 5. RELATIONSHIP BETWEEN LEAF Mg CONTENT OF TOP (W3) AND THE YIELD AT KULASEKHARAM

$\square$.
The leaf Ca concentration of $\mathrm{H}_{3}$ leaves of botton region at Vithura correlated well with the respective yield. ( $\mathbf{r}=0.455 *$ ). In the case of magnesium the $W_{3}$ leaves of top region at Kulasekharam corrciated well with the respective yield ( $x=0.462 *$ ). The leaf copper and manganese concentration of $W_{3}$ Leaves of bottom region of the trees at Vellayani had positive gignificanc relationship with their sespective yield $(x=0.512 \pi$ and 0.503* respectively) The leaf manganece concentration of $\mathrm{W}_{3}$ of bottom region at Kulasehharem also indicated significant positive relation with the yield ( $x$ 0.465*) . In the case of zinc the leaf concentration of $W_{3}$ leaf smples of bottom region at Kulasekharam had comelated significantly uith the yield ( $x=0.484$ ) 。

Ragression equations were also worked out for the above sigaificant correlation coefficient values for the prediction of response as furnished in Table 47.

## 5. DISCUSSION

The result data presented in the previous chapter pertained to the physicomenemical properties of the experimental soils, the available nutrient status of the soils in which the experimental trees are located; the leaf . concentrations of the nutrients under study; the correlation coefficients between soil nutrients and leaf concentrations: yield data and the correlation studies are discussed below :
5.1. PHYSICO-CHEMICAL PROPERTIES OF SOIL

The soil type of Vithura, Pattom, Vellayani and Kulasekharam was found to be forest soil (sandy clay): laterite soil (sandy clay loam)s red soil (sandy clay loam) and forest soil (clay loam) respectively, all acidic in reaction and in low in electrical conductivity. The organic carbon content was found to be highest in Kulasekharam followed by Vithura, Pattom and Vellayani. The total nitrogen percentage was found to have the same trend in relation to the organic carbon content. The cation exchange capacity and the exchangeable cations were also found to be highest in Kulasekharam semple and lowest in Vellayani soils. Vithura soils registered highest value for total phosphorus ( 0.06 per cent) followed by Vellayani, Pattom
and Kulasekharam. The total $\mathrm{Cu}, \mathrm{Mn}$ and Zn status of the soil were highest in Kulasekharam followed by Pattom, Vithura and Vellayani an given in Table 1.

Clove grows satisfactorily on laterites clay
loam and rich bladk soils having good drainage (Clove, 1979) and in Indid it is grown successfully in loamy soils rich In humus (Shanmugavelu and Madhawa Rao. 1977). Since the experimental sites of the present study are also located in places there forest soils, laterite soils and red soils occur, it 1 evident that the selection of sites for this present study are in concurrence with the above ilterature.

It was observed that Kulasekharam soil is best suited for clove cultivation among the four soils, as the same soil was found to have highest amount of organic carbon and other essential elements besides being good in their physical make up. Vellayani soils were considered not ideally suitable for profitable clove cultivation, as the physico-chemical properties were found to be very poor. From the yield data of this location also it is safe to presume that this soil need to be improved in its physical properties for bringing it up for profitable clove cultivation.

The Vithura and Pattom solls were also found to have the required fertility for clove cultivation (Table 1) and the yield data from this location vouches for their suitability for clove cultivation.
5.2. VARIATION IN aVAILABLE SOIL NUTRIENTS AS INFLUENGED by the location and the distances from the main TRUNK OF THE TREE

The mean values of soil available nutrients such as $N, P_{0}, K, C a, M g, C u, M n$ and $\mathrm{Zn}_{n}$ recorded from different radial distances from the boll of the plant are presented in Table 2 and the datal are discussed below.

### 5.2.1. $\mathrm{N}_{1}$ trogen

The mean values of available N status of soil for different radial distances from the main trunk of the tree located in Vithura were $0.023,0.018$ and 0.01 per cent for half metre, one metre and one and half metre respectively (Table 2). At Pattom, the mean values were 0.027, 0.01 and 0.015 per cent respectively (Table 3). At Vellayani. the mean values of N status were $0.014,0.013,0.011$ for the above distances. Mean values of $0.016,0.014$ and 0.014 were recorded in Kulasekharam soils. From these data, it is found that the soil available nitrogen status varies from place to place and for different radial distances from the
main trunk of the tree. These observations are in accordance with the findings of Annie (1982) who reported that specific variations were observed in the major and sub-mejor nutrient contents of the soils of the tree tract in a study in Trivandrum district of Kerala on cocoa plants.

It was also interesting to note that the highest available nitrogen content was recorded at the half metre distance from the main trunk of the tree invariably in all the locations. This might be due to the presence of highest amount of microorganisms associated with high organic matter in this place which might have been responsible for the mineralisation of nitrogen.
5.2.2. Phosphorus

The soil avallable phosphorus content at Vithura recorded mean values of $0.0011,0.0010$ and 0.0010 per cent for the radial distances of half metre, one metre and one and a half metre from the main trunk of the tree respectively. At Pattom the mean values were $0.0012,0.0012$ and 0.0011 per cent and at Vellayani the mean values were $0.0012,0.0012$ and 0.0012 per cent and at Kulasekharam the mean values were 0.0007 , 0.0007 and 0.0007 per cent half metre, one metre and one and a half metre of radial distances from the tree of the said locations respectively.

It was seen from the data that the available phosphorus content of soll varied from place to place as already reported by Annie (1982). But the phosphorus availability at different radial distances from the tree trunk was more or less same in all the locations.

### 5.2.3. Potassium

-.... The mean avoilable potassium content at the radial distances of half metre, one metre and 142 metre from the tree base, at Vithura were $0.03,0.024$ and 0.016 per cent, at Pattom 0.03, 0.024 and 0.03 per cent at Vellayani $0.018,0.015$ and 0.015 per cent and at Kulaser kharam $0.025,0.026$ and 0.025 per cent.

It was observed that at vithura, Pattom and Vellayani the soil available potassium content was highest at half metre distance from the main trunk and the values decreased at one metre distance from the main trunk and further decreased at one and half metre distance. The decrease in available potassium content with distance was only minimal in the case of Kulasekharam. This may be due to the good management practices followed there and the uniformity in fertility status irrespective of distance from the tree trinks.

At Vellayani the conteri of available potassium the
was comparatively lower than other locations indicating the poor fertility status of the soil as already discussed.
5.2.4. Calcium

The exchangeable calcium at Vithura had mean values of $0.019,0.012$ and 0.009 per cent for half metre, one metre and one and a half metre respectively. At Pattom the values were 0.101 .0 .090 and 0.082 per cents at Vellayani the values were $0.019,0.014$ and 0.011 per cent and at Kulasekharan the values were $0.081,0.070$ and 0.085 per cent for half metre, one metre and one and a half metre reapectively (Table $2,3,4$ and 5) .

It is to be noted from the data that the exchangeable cafcium content of soil varied from place to plece. Pattom and Kulasekharam soils contained much more exchangeable calcium when compared to other 2 sites. This fact may be linked to better management practices followed at these places and also to regional variation. The exchangeable calcium content had the similar pattern of soil nitrogen indicating the highest values recorded at half metre distance from the main trunforf the tree and the loweat values decreasing progressively from one metre distance of the tree onwards.
5.2.5. Magnesium

The exchangeable magnesium content of soil at Vithura yielded mean values of $0.017,0.015$ and 0.015 per cent for half metre, one metre and one and a half metre distance from the main trunk of the tree respectively. At Pattom also the same mean values were recorded. At Vellayani the mean values were uniformily 0.011 per cent in the soils from the three distances. At Kulasekharam, the mean values were $0.02,0.019$ and 0.018 per cent for Solls from the three distances respectively (Table 2,3, 4 and 5). The place to place and the distance to distance differences in exchangeable magnesium is not much. However the amount of exchangeable calcium recorded at Vellayani were lowest as in the case of other nutrients. The highest values in all the locations were recorded at half metre distance from the main trunk of the tree, which diminished with an increase in distance.
5.2.6. Copper, manganese and zinc

The DTPA extractable copper content of soil at Vithura registered mean values of $16.736,10.821$ and 12.26 ppm for half metre, one metre and one and a half metre distance from the main trunk of the tree respectively. The mean values were $9.674,5.723,10.987 \mathrm{ppm}$ at Pattomg
0.648, 0.685 and 0.742 ppra at Vellayani and 2.47. 2.97 and 3.52 ppm in Kulasekharam, at half, one and one and a half metre distances from the main trunk of the tree.

The mean values of DTPA extractable manganese content of soil were $6.194,6.341$ and 5.83 ppm at Vithura, 62.98, 64.29 and 73.75 ppm at Pattom, 18.3, 17.38 and 19.28 ppm at Vellayand and $35.1,69.63$ and 66.47 ppm at Kulasekharam at half, one and one and a half metre distance respectively (Table 2, 3, 4 and 5).

The DIPA extractable zinc had the mean values of 3.498, 2.656 and 2.27 ppm in Vithura soils, 2.539. 2.105 and 2.022 ppm in Pattom soils, $1.64,1.391$ and 1.71 ppm in Vellayani soils and 4.81, 4.8 and 5.31 ppm in Kulesekharam soils, at half,one and one and ahalf metre distances respectively.

The DTPA extractable $M n, C u$ and $2 n$ content in soils from the distances of half, one and one and half metre distances from the four locations did not show any consistent trend. Copper showed an increasing trend with increasing distance from the tree at Vellayani and Kulasekharam sites. But at Vithura copper content was h1ghest at 142 metre followed by $1 / 2$ metre and then 1 metre. The same trend was observed in Pattom soils also.

In the case of manganese, the Vithura and pattom soils showed an increasing content with increasing distance from the plants. Entirely different trend was observed in the other two locations. The manganese content was maximum at a distance of $11 / 2$ metre, followed by $1 / 2$ metre and one metre at Vellayani. In Kulasekharam soils the decreasing trend was in the order of 1 metre, $11 / 2$ metre and $1 / 2$ metre with reference to this element.

The DTPA extractable zinc showed a decreasing trend with distance from the tree in solls from Vithura and Pattom. In Vellayani and Kulasekharam soils the maximum zinc content was noticed at $11 / 2$ metre, followed by $1 / 2$ metre and one metre.

While analysing the soil available nutrients as influenced by locations and by the distances from the main trunk of the tree it is inferred that the quantity of all the available nutrients contents varied from locations to locations. This is in conformity with the findings of Annif (1982) who observed similar trend in cocoa plants. It was also noted that within each location, the soll available $\mathrm{N}_{\mathrm{E}} \mathrm{P}, \mathrm{K}, \mathrm{Ca}$ and Mg contents were found to be the highest at half metre distance of the main trunk of the tree and afterwards the mean values were found to decrease and the lowest values were recorded at one and half matre distance in most of the cases.

In the absence of available ilterature it is difficult to explain the covalic occurrence and quantity of micronutrients, $\mathrm{zn}, \mathrm{Cu}$ and Mn with reference to distances from the tree base. The availability of these elements is dependent on the organic matter content, natural abundance, presence of microflora and moisture regimes.
5.3. VARIATIONS IN THE LEAF NUTRIENT CONCENTRATIONS AS influenced by the locations and the sampling positions

The leaf nutrient concentrations were found to be influenced more by the sampling positions, than by the locations.
5.3.1. Nitrogen (Tables 6, 7, 8 and 9)

The mean value of nitrogen concentration in leaf at Vithura ranged from 1.714 to 2.133 per cent. The highest concentrations was recorded by $w_{1}$ of the top region of the tree. Similar trend was also observed in other regions. The lowest value was recorded invariably in $W_{3}$ leaves of all the three regions. The coefficient of variation was also lowest (7.757) in the $n_{1}$ of the top region as given in Table 6.

At Pattom, the mean nitrogen concentration varied from 1.946 to 2.385 per cent, the highest being the $N_{1}$ leaves of top region, which gave the lowest coefficient of veriations as in the previous case (Table 7). At Vellayani, the
mean values ranged from 1.883 to 2.145 per cent. The highest values registered in $H_{1}$ leaves of top region, with a coefficient of variations of 2.457 (Table 8).

At Kulasekharam, the mean values varied from 1.819 to 2.755 per cent. Here also the $W_{1}$ leaves of the top region of the tree registered the highest value and al so yielded the lowest comefficient of variation among all the leaf positions (Table 9).

It was observed from the above data that the leaf nitrogen concentrations were in the nomal range as reported by Loue (1962). The nitrogen concentration varied from region to region of the tree and also from wholr to whorl within each region. This finding is in conformity with the findings of Burridge et al. (1964); Murray and Maliphant (1965) and Annie (1982). It was clearly indicated that the $H_{1}$ of the top region of the tree had the highest nitrogen concentration coupled with the lowest coefficient of variations irrespective of the location and region of the tree. This might be due to ther mobilization of nitwogen to the active growing region.
5.3.2. Phosphorus (Table 10. 11, 12 and 13)

At Vithura the phosphorus concentration in the leaf had mean values from 0.160 to 0.382 per cent. The
highest concentration was registered in the $W_{1}$ leaves of the bottom region of the tree, which had also indicated the lowest coefficient of variation of 15.389 (Table 10). At Pattom, the mean values ranged from 0.170 to 0.258 per cent. The higheat value was registered in $W_{1}$ leaves of bottom region of the tree es in the previous case. The co-efficient of variations was also the lowest (6.859) in this position (Table 11). At Vellayani the mean phosphorus concentration ranged from 0.084 to 0.165 per cent. The highest value was registered in the $W_{1}$ leaves of bottom region with lowest coefficient of variation of 12.267 (Table 12). At Kulasekaran, the mean values ranged from 0.105 to 0.140 per cent. The highest value was observed in $i_{1}$ leaves of bottom region with the lowest coefficient of variations of 14.26 per cent (Table 13).

The leaf phosphorus someentrations in all the locations were within the normal range. Within the location, the sampling regions differed in phosphorus concentrations as already observed by Murray and Maliphant (1965) and Annie (1982) as in the case of nitrogen. Within the region the $W_{1}$ leaves had highest phosphorus content followed by $W_{2}$ leaves and the least in iv ${ }_{3}$ leaves. Among all the region, irrespective of the location the $W_{1}$ leaves of the bottom region of the tree had the highest concentration of phosphorus
with the lowest coefficient of variation, indicating significant presence of phosphorus at this part.
5.3.3. Potassium (Tables 14, 15, 16 and 17)

The mean potassium concentration in leaf at Vithura, ranged from 1.985 to 2.262 per cent. The highest amount of potassium was registered in the $W_{1}$ leaves of the top region of the tree. There was a tendency for the element to decline towards $W_{3}$ leaves in all the regions. Among all $H_{1}$ leaves of top region had the highest concentrations. with the lowest cv. of 5.582 (Table 14). At Pattom, the mean values ranged from 1.997 to 2.486 per cent. Here also the same trend was noticed. The higheat value was recorded in $W_{1}$ leaves of the top segion with the lowest cv of 6.650 (Table 15). At Vellayand, the mean values ranged from 1.673 to 2.227 per cent. The highest amount was registered in $H_{1}$ leaves of top region with the lowest cv of 4.613 (Tabie 16). At Kulasekharam also, the seme trend as In the previous cases was exhibited. The mean values ranged from 1.90 to 2.412 per cent. The highest amount was recorded in $H_{1}$ leaves of top region with a cr of 4.846 (Table 17).

It was observed from the above data that the potassium concentration in leaf had a variation from 1.673 to 2.486 per cent as influenced by the location and the sampling position. This is in accordance with the finding
of Annie (1982). It was interesting to note that eventhough the potassium concentration was influenced by the above factors, the $W_{1}$ leaves of the top region of the tree invariably in all the locations had the highest potassium concentration with the lowest percentage of coefficient of variation. Hence, $N_{1}$ leaves of top region may be considered as an index of the potassium status of the plant.
5.3.4. Calcium (Tables 18, 19, 20 and 21)

The mean values of calcium concentration in leaf at Vithura, varied from 0.271 to 0.307 per cent. There was an increasing trend from $W_{1}$ to $\dot{M}_{3}$ of each region of the canopy. Among all the 3 regions $W_{3}$ leaves of bottom region recorded the highest mount of calcium ( $\dot{c v}=12.573$ ). At Pattom, the mean velues ranged from 0.221 to 0.309 per cent. The highest amount was registered by $W_{3}$ of bottom region as in the previous case. The lowest $\mathrm{cv}(\mathrm{cv} .017 .439)$ was also noticed in this group (Table 19). At Vellayani, the mean values ranged from 0.189 to 0.234 per cent. Here also, the $\omega_{3}$ leaves of the bottom region registered the highest calcium concentration ( $c v=11.172$ ). At Kulasekharam, the mean values varied from 0.322 to 0.360 per cent. In this case also $W_{3}$ leaves of the bottom region registered the highest concentration of $\mathrm{Ca}(\mathrm{cv}=11.578)$.

It was observed that $W_{3}$ leaves of the bottom region registered the highest amount of ca concentration uniformly in all the locations. Annie (1982) also found similar trend in cocoa. Calcium being an imnobile elenent usually accumulates in the older region and older leaves of any plants. This is probably the reason for the highest concentration of calcium in the 3ra whorl of the bottom region of the above plant.
5.3.5. Magnesium (Table 22, 23, 24 and 25)

The magnesium concentration in leaf at Vithura, ranged from region to region and had a mean value between 0.205 and 0.251 per cent. $I_{n}$ the $w_{3}$ leaves of top region had the highest concentration of Mg with a lowest of of 14.625 (Table 22). At $P_{a} t t o m, ~ t h e ~ m e a n ~ v a l u a s ~ r a n g e d ~ f r o m ~$ 0.212 to 0.275 per cent. Here also the $W_{3}$ leaves of the top region recorded the highest value with the lowest percentage of cv viz.. 12.177 (Table 23). At Vellayant, the mean values ranged from 0.171 to 0.247 per cent. As in the previous cascs, $W_{3}$ leaves of the top region regiatered the highest concentration of Mg with the lowest percentage of ov ( 9.577) as given in Table 24. At Kulasekharam, the mean values varied from 0.227 to 0.278 per cent. The $W_{3}$ leaves of the top rogion recorded the highest concentration
of leaf Mg. The lowest coefficient of varlation of 10.397, was registered in this case.

It was observed that the Mg concentration in the leaf was influenced by the sampling positions and the mean Mg concentrations ranged from 0.171 to 0.275 per cent. This was in conformity with the findings of Annie (1982). The $W_{3}$ leaves of bottom region in all the locations had invariably shown the highest concentration of Mg with lowest percentages of coefficient of variation. This might be due to higher photosynthetic activity due to the abundance of profuse sunlight at the top region of the plant canopy.
5.3.6. Copper, Manganese and zinc

The copper concentration in leaf varied from region to region and the mean values ranged from 5.06 to 5.92 ppm at Vithura, from 2.79 to 9.26 ppm at $\mathrm{P}_{\text {合ttom, }}$ from from 4.63 to 5.47 ppm at Vellayand and from 4.12 to 14.71 pprn at Kulasekharam. The highest concentration of copper was recorded in $W_{3}$ of the bottom region invariably in all the locations. The percentages of coefficient of variations were also the lowest in the above sampling position (Table 25, 27, 28 and 29).

The manganese concentration in leaf also showed marked variation between the locations and within the
locations between regions. The mean values of manganese concentration ranged from 217 to 269 ppm at Vithura, 267 to 370 ppm at Pattom, 345.6 to 379.6 ppm at Vellayand and 274 to 503 ppm at Kulasekharam. In all these locations, the manganese concentration was the highest in $\omega_{2}$ leaves of bottom region as in the case of copper. There was an increasing trend from $W_{1}$ to $:_{3}$ more or less in all the regions. The $W_{3}$ of the bottom region had also invariably the lowest coefficient of variations (Table $30,31,32$ and 33).

The mean values of zinc concentrations in leaf ranged from 14.86 to 53.61 ppm at Vithura, 11.05 to 23.05 ppm at Pattom, 12.82 to 15.58 ppm at Vellayani and 6.73 to 44.34 ppm at Kulasekharam. The highest concentration of manganese was notieded in the $W_{3}$ leaves of the bottom region of the tree in all the four locations, with lowest value of coefficient of variations as given in Table 34,35,36 and 37.

From the above data it was observed that eventhough high variations were exhibited in the concentrations of copper, manganese and zinc as influenced by the location and the sampling position, the highest concentration of the above said trace elements were found to be at the $W_{3}$ leaves of the bottom region irrespective of other factors. The above position could also be confirmed with the lowest values of coefficient of variation.
5.4. RELATIONSHIPS BETVEEN SOIL AMD PLANT NUTRIENTS 5.4.1. Nitrogen (Table 38)

Positive correlation between soil available nitrogen and $H_{1}$ leaves of top region leaf nitrogen was established at Vithura ( $r=0.453^{*}$ ). The same trend was also observed at $\mathrm{P}_{\mathrm{a}}$ ttom and Vellayani. At Kulasekharam the relationship was positive but not significant.

Pooled analysis for all the locations and different regions of the plant in individual locations gave positive correlations between $W_{1}$ leaves and available soil nitrogen ( $x=0.511^{* *}$ for locations and $r=0.448 *$ for regions).

Wessel (1970) reported that the nitrogen content of soil was an indication to the nitrogen availability to cocoa plant. The positive relationship between soil test values nitrogen and leaf nutrient concentrations were also reported by Annie (1982). Hence the above finding of the present study are in conformity with studies of the above workers.
5.4.2. Phosphorus (Table 39)

Positive correlations were observed between soil available phosphorus and leaf phosphorus more or less in all the correlation studies as given in Table 39. Significant
positive relationship was observed between soil available nitrogen and $W_{1}$ leaf nitrogen of bottom $r$ egion at Vithura ( $\mathrm{I}=0.477$ *) and at Kulasekharam ( $\mathrm{E}=0.513^{*}$ ) . Similar highly significant positive correlation ( $x=0.750 * *$ ) was also observed at Vellayoni. At $P_{a} t t a m$ location alone eventhough the correlation was positive it was not significant with reference to any leaf position. When the regions were pooled positive significant relationship was observed both at $P_{a}$ ttom and Kulasekharam between $W_{1}$ leaves of bottom region and soil available phosphorus. The pooled analysis of data from the different locations also had highly significant positive correlation ( $r=0.474 * *$ ) betweon $W_{1}$ leaf samples of bottom region and soll available phosphorus.

The positive relationship brought out between soil and leaf phosphorus in the present study is in conformity with the findings of Verliere (1965), Wessel (1970) and Annie (1982). Significant positive relationships were existed in the $H_{1}$ of the bottom region in all the locations except Pattom where also positive relation existed though not significant.
5.4.3. Potassium (Table 40)

The correlation coefficients between soil available $K$ and leaf $K$ yielded significant positive rel ationship
between $W_{1}$ leaves of the top region and soll available potassium both at Pattom ( $r=0.485 *$ ) and Kulasekharam ( $\mathrm{r}=0.510 *$ ). At the other two locations the seme group of leaves gave positive relationship though not significant. Analysis of pooled data from all the 3 regions of the plant also indicated positive significant relationship as given In Table 40. When data from the locations were pooled and analysed, it also yielded a significant positive relationship with reference to the $H_{1}$ leaves of the top region.

Positive relationships between soil available $K$ and leaf $K$ of the $W_{1}$ leaves of the top region of the plant were observed more or less in all the correlation studies which corroborates the finding of Acquaye et al. (1965) and Annie (1982).
5.4.4. Calcium (Table 41)

The correlation coefficient studies between soil available calcium and leaf calcium indicated that there was positive relationship between these variables uniformly in all the locations. significant positive relationships between these variables were observed in the $W_{3}$ leaves of bottom region both at Pattom ( $\Sigma=0.559 *$ ) and at Kulasekharam ( $x=0.477$ ). The other locations also showed positive relationship in the same leaf group of bottom region. When
region were pooled highly significant positive relationship was obtained in the same sampling position at Pattom and Vithura also. This was confirmed with the location pooled analysis which also indicated highly significant positive correlation ( $r=0.329 * *$ ) in the same sampling region (Table 41). Significant positive relationship between the soil calcium and leaf calcium were already observed by Acquaye et al. (1965) and Annie (1982)
5.4.5. Magnestum (Table 42)

The correlation studies between soll magnesium and leaf magnesium showed that positive relationship existed invariably in all the locations and sampling positions, significant positive relations were observed in the $W_{3}$ leaves of top region at Pattom ( $\mathrm{r}=0,480 *$ ). Vithura ( $r=0.580 * *$ ) and Kulasekharam ( $x=0.471^{*} \neq$. Pooled analysi. for the region gave the same trend. The correlation coefficient values for pooled analysis of data from all the locations also showed that highly significant relationship existed between the $w_{3}$ leaves of top region, and the soil available Ng (Table 42).

The findings are corroborated by the resuits obtained by Annie (1982) who observed positive correlations between soll test values and leaf nutrient concentration
in the order of magnesium followed by calclum. Among all the sampling position $N_{3}$ leaves of top region recorded significant positive correlation irrespective of the locations which might be due to the high magnesium concentration in the same sampling position as already discussed.
5.4.6. Copper, Manganese and Zinc (Table 43,44 and 45)

The correlation studies between soil DTPA extractable copper, manganese and zinc with that of leaf copper, manganese and zinc showed that in most cases a positive relationship was present between the above variables invariably in all the locations. significant positive relationships for these nutrients were observed in the $W_{3}$ leaves of the bottom region of the plant in Tables 43,44 and 45. It was observed that the same sampling position was found to have significant positive relationship when data both from the regions and locations were pooled for the above nutrients separately.

It was interesting to note from the above data that all the three micronutrients under study had shown the same trend i.e.. these correlation between $W_{3}$ leaves and soil available $C u$, kin and Zinc were significantly positive invariably in all the locations.
5.5. YIELD (Table 46)

The yield data of dried flower buds of clove was found to be highly influenced by the locations under study. The mean yield ranged from 0.820 to 12.439 kg tree ${ }^{-1}$ year ${ }^{-1}$. The highest yield was recorded at Kulasekharam followed by Vithura ( 3.153 kg ), $\mathrm{Pa}_{\mathrm{a}}$ ttom ( 2.593 kg ) and the lowest by Vellayani.

The high variation in the mean yield between locations might be due to the variations in the inherent soil fertility status and other environmental factors such as climate etc. The Kulasekharam soil was found to be the best for the clove cultivation than the other locations studied. Vellayani was found to be the least suited location for profitable clove cultivation in the existing conditions.
5.6. RELATIONSHIP BETWEEN LEAF NUTRIENT CONCENTRATION AND YIELD (Table 47)

Correlation comefficient studies between leaf nutrient concentration and yield showed that significant positive relationships existed between leaf nitrogen of $W_{1}$ leaves of top region and the yield invariably in all the locations as given in Table 47. Similarly significant positive relationships with the yleld by the leaf phosphorus concentration of $w_{1}$ leaves of bottom region of all the
locations were also observed. In the case of leaf potassium $W_{1}$ of top region at Kulasekhoram had shown significant positive relationship with the gield. In the case of calcium. $W_{3}$ of bottom region at Vithura, had shown a significant relationship with the yield. In the case of magnesium $W_{3}$ of top region at Kulasekharam expressed significant relationship with the yleld. In the case of leaf copper, manganese and zinc $H_{3}$ of bottom region at Vellayant and Kulasekharam showed significant positive relationship with yield.

The leaf nutrient concentrations in the above discussed sampling positions were having highest concentration of the respective nutrients. When the soil nutrient status was correlated with the respective leaf nutrient concentration the above said sampling positions were observed to have significant positive relationship with the respective element. To confin the above said findings leaf nutrient concentrations were again correlated with the yield obtained from each location. It is interesting to note from these correlation studies that the same sampling positions registered significant positive relationships with the yield (Table 47).

A close relationship between leaf composition and yield was already noticed by Hardy et al. (1935). Eevthene (5) and Wessel (1965).

Hence it can be safely inferred that the nutrients concentration in the index leaves now located for different nutrients could be used as a guide for a rationalised fertilizer recomendation. But before doing so an elaborate study involving more locations and more number of plants visa vis leaf samples should be undertaken to give credibility to the results of the present investigation.

## 6. SUMMARY

The present study was an attenpt ix standardising the index leaf/leaves for assessing the nutritional status of clove in relation to soil fertility. Four clove growing locations, representing different soil types were selected (Vithura, Pattom, Vellayani and Kulasekharam). Clove plantations of 10 years of old at the above locations were selected for the studies. Soli samples from three different radii from the main trunk of each experimental tree and the leaf samples from three regions (viz..top, middle and bottom) and three positions (whorl I, II and III) from each region were collected, during the flushing period invariably from all the locations. The soil samples were analysed for their important physicoEhemical properties and available : nutrient status of NoP,K,Ca, Mg,Cu, Mn and Zn . Leaf samples were alsa analysed for the above said nutrient concentrations. The nutrient content of soil were correlated with the respecm tive leaf nutrient concentrations to fina out ithestir degree of dependence. Those leaf nutrient concentrations which had positive relationship were again correlated with the respective yield obtained at different locations. The salient findings observed in the present study are sumarised hereunder.

1. Among the different type of soils studied, forest soils with high organic matter and cation exchange capacity with clay loam texture was found comparatively better suited for clove cultivation than laterite andor red soil.
2. The physico-chemical properties of the soils studied were found to be varied from locations to location and the available nutrients in the soil were highly influenced by the locations.
3. The radial distance from the main trunk of the experimental tree had significant influence on the soll available nutrients invariably in all the locations. It was found that (1) the soil available $\mathrm{N}, \mathrm{p}, \mathrm{K}, \mathrm{Ca}$ and Mg were highest at half meter distance and lowest at one and half meter from the main trunk of the tree. (ii) The DTPA, $\mathrm{Cu}, \mathrm{Mn}$ and Zn content of soils at different distances from the tree base did not show any consistency. But identical trends were not seen at different locations.
4. The leaf nitrogen concentration was highest in leaves of whorl-I ( $H_{1}$ ) of top region coupled with lowest coefficient of variations irrespective of the location.
5. The leaf phosphorus concentration was highest in whorl-I ( $W_{1}$ ) of bottom region of the cree invariably in
all the locations. The coefficients of variations were found to be lowest at this sampling position.
6. The leaf potassium concentration was found to be highest in the whorl-I ( $W_{1}$ ) of top region with the lowest comefficient of variations for all the four locations.
7. The calcium concentration of leaves was observed to be highest in the whorl-III ( $W_{3}$ ) of bottom region of the tree with the lowest coefficients of variation irrespective of the location.
8. The magnesium concentration of leaf registered inghest value in the whorl-III ( $\mathrm{H}_{3}$ ) of top. region of the tree for all the locations, which had the lowest co-efficients of variation.
9. The copper, manganese and zinc concentration of leaf recorded the highest value in whorl-III ( $\mathrm{H}_{3}$ ) of bottom region of the tree irrespective of the locations.
10. The correlation studies between soil nitrogen and leaf nitrogen had shown significant positive relations in the whorl-I $\left(W_{1}\right)$ of top region of the tree.
11. The soll available phosphorus and leaf phosphorus concentration expressed significant positive relationship in the $w_{1}$ leaves of bottom region of the tree.
12. Significant positive relationships were exhibited between the soil available potassium and leaf potassium in the whorl-I ( $\mathrm{H}_{1}$ ) of top region.
13. The soil exchangeable calcium and leaf calcium concentration had significant positive relationship In the $N_{3}$ leafe of bottom region of the tree irrespective of the locations.


#### Abstract

14. There existed significant positive relationbetwan Mg content ship in the whorl-III ( $\mathrm{H}_{3}$ ) leaves of top region of the tree and the soil exchangeable magnesium.


15. The whorl-III ( $W_{3}$ ) of bottom region of the tree gave significant positive relationships for all the locations when the soll DTPA copper, manganese and zinc were correlated with their respective leaf concentrations.
16. The highest yiela of dried flower buds of clove was registered at Kulasekaram and the lowest yield was recorded at Vellayani, presumably due to the bigh variations in soil fertility status and agrocilmatic conditions existing in these locations.
17. The correlation studies between the leaf nutrient concentration and the yield recorded significant positive relationships in the following cases.

Leaf semples

1) Leaf nitrogen - whorl I $\left(W_{1}\right)$ of top region of all
localities
ii) Leaf phosphorus - whorl $I\left(W_{1}\right)$ of bottom region of all localities

1ii) Leaf potassium - whorl $I\left(W_{1}\right)$ of top region only at Kulasekharam

1v) Leaf calcium - whorl III $\left(W_{3}\right)$ of bottom region of Vithura only
v) Leaf magnesium - whorl III ( $\%_{3}$ ) of top region of Kulasekharam only
vi) Leaf copper, - whorl III ( $\mathrm{W}_{3}$ ) of bottom region of Vellayani and Kulasekharam only

From the observations recorded in the present study it can be concluded that the following leaf samples of clove can be taken as the index leaf/leaves for assessing the nutritional status of clove irrespective of the locations.

Index Ieaf

## Nutrients

1. Top region-Whorl I - Nitrogen and potassium
2. Top region-Whorl III - Magnesium
3. Bottom region-ihhorl I - Phosphorus
4. Bottom region-Whorl III- Calcium, copper, manganese and alnc

Though the present study gives encouraging results, for effective implementation of rationalised fertilizer recommendation, further indepth studies on the upper and lower critical limits of eacin nutrient for clove are needed. An extensive investigation involving large number of trees from several location or Erom a single location is necessary to confirm the results obtained in this preliminary study.

## References

Acquaye, $D_{0} K_{.}$(1964). Foliar analysis as a diagnostic technique in cocoa nutrition. I. Sampling procedure and analytical methods. J. Sci. Ed. Agric. 15 : 855-863.

Acquaye, D. K., Smith.R.W. and Lockard, R.G. (1965). Potassium deficiency in unshaded Amazon cocoa (Theobroma cocoa L.) in Ghana. J. Hort. Sci. $40(2): 100-108$.

Agricultural Statistics of Kanyakumari District, 1979. Published by the Joint Director of Agriculture, Nagercoil, Kanyakumari District.

Annie Koruth (1982). The relationship between soil nutrient status and foliar analysis of cocoa of different age groups in the various soll types of Kerala. M.Sc.(Ag.) Thesis, College of Agri. Vellayani. Trivandrum.

Anonymous. 1979. 'Clove', published by the Directorate of Cocoa. Calicut, 1979.

* Bould, C. (1961). Plant analysis and fertilizer problems. (Washington, D.C. : Amer. Inst. of Biol. Sci.) Quoted by Acquaye,D.K. (1964). Foliar analysis as a diagnostic technigue in cocoa nutrition $I$. Sampiling procedure and analytical methods. I. Sci. FC. Agric. $\frac{1}{x}$ : 855-862.
* Boynton, D. and Compton,O.C. (1945). Soil Sci. 59: 339. Quoted by Acquaye,D.K. (1964). Foliar analysis as a diagnostic technique in coco nutrition. I- Sampling procedure and analytical methods. J. Sci. Ed. Agric. 15: 855-863.

Bray,R.H. and L.T.Kurtz. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59 : 39-45.

```
Burridge,J.C., Lockard,R.G. and Acquaye,D.K. (1964). The levels of Nitrogen, Phosphorus, Potassium, Calcium and Magnesium in the leaves of Cacso (Theobroma cacao \(L_{\text {. }}\) ) as affected by shade, Fertilizer. Irrigation and season. Ann. Bot. ( \(\mathrm{H}, \mathrm{S}\) ) 28 (111) : 401-417.
Chapman, H.D. (1950). Foliar analysis as a diagnostic technique in Cocoa nutrition. I-Sempling procedure and analytical methods. I. Sci- Ed. Agric. 15 : 855-863.
Dufournet and Rodriguez (1972). In : Spices and plantetion Grops. Popular Book Depot, Madras.
```

> Droupathi Devi, G. (1963). Interrelationships between physical and chemical properties of Kerala State Soils In relation to pedogenic factors. In : Relationohips among constituents and properties of South Indian Solis. Agricultural College and Research Institute, Colmbatore-3

* Francois (1936) In : Spices and Condiments. Sri Iaac Pltman and Sons Ltd., Madras.

> Goodall, D.W. and Gregory.F.G. (1947). Chemical composition of plants as an Index of this Nutritional status. Tech. Cpmun. Aberystryth Imp. Bur. hort. Plantation Crops 77 luoted by Acquqye, D.K. (1964). Foliar Analysín as e diagnostic technigue in cocoa nutrition.

Hand book of Natural Rubber Production in India, 1980.
Rubber Research Institute of India, Kottayam.

Hardy, FeMc. Donald, J.A. and Rodriguez, G. (1935). Leaf analysis as a means of diagnosing nutrient requirements of tropical orchard crops. J. Aoric. Sci. 25 (4) : 610-627.

Holmes,R.Se(1945), Estimation of total $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Co}$ and Pb
in soils and soil Eolution. Soll $\mathrm{Sci} .59: 77-84$. In soils and soil solution. Soil Sci. 59: 77-84.

Humphries, E.C. (1956). Mineral components and ash analysis. Modern methods of plant analysis. Springer-Verlag. Eerlin 1 : 468-508.

Jackson.M.L. (1973). Soil chemical analysis. Prentice Hall of India pvt. Ltd.. New Delhi 2nd Edition pp.1-498.

Joseph.S. (1981). Effect of graded dose of N, P and $K$ on the growth and leaf nutrient status in cocoa (Theobroma cacao $L_{0}$ ) M.Sc.(Ag。) Thesis, Kerala Agricultural University.
> * Kowal. J.M.L. (1959). The effect of spacing on cocoa in Nigeria. Part II. Empire I.Exp. Arric. 27. Quoted by Smyth, A.J. (196б). How useful is sofichemical analysis. Cocoa Growers Bull. $6: 7-11$.

* Lagatu, H. and Maume, $1 .(1926)$. Diagnostic de alineatation
dun vege tal par le valuation eh in gue at une
fewille convenablement choisic. C. R. Acad. Sci.
paris. $182: 653-655$.

Leela.K. (1967). Fomm, distribution and availability of sulphur in representative profiles of kerala state. In : Relationships among constituents and properties of South Indian soils. Agricultural College and Research Institute, Colmbatore.

* Lindsay, W.L. and W.A. Norvell (1969). Development of a DTPA micromutrient soil test. Agron. Absts. p. 84

Lone, A. (1961-62). Nutrient Deprivation and Deficiencies in the Cocoa free. II. Nutrient Deficiencies in the Cocoa Trees in the plantations of the Ivory Coast. Fertilite 14 : 42-52.

Malstre. (1964). In : SPICES. Edited by Purseglove et al. 1982. Vol. I Longman, London \& New York.

MeDonald, J.A. (1934). A study of the relationship between Nutrient Supply and the Chemical composition of the Cocoa Tree. Paft III. Tird. Annu. Rep. On Cocoa Research for 1933. Imp. Coli. Trop. Agric., Trinidad. 55-62.

Murray,D.B. (1952). Rep. Cocoa Res. Imp. Coll. Trop. Agric.. Trinidad : II Quoted by Acquaya, D.K. (1964). Follax analysis as a diagnostic technique in cocoa nutrition. I. sampling procedure and enalytical methods. J. Sci. Fd. Agric. 15 : 855-863.

Murray,D.B. and Maliphant, G. K. (1965). Problems in the use of leaf and tissue analysis in cocoa. Conf. Int. Research Agron. Caceo yeris. Abidijan. $1965: 36-38$. (Abstr. Cocoa Growers' BuII. 11 : 30).

Panse, V.G. and P.V.Sukhatme. (1967) Statistical methods for agricultural workers, ICAR publication, New Deini.

Pemberton, H. 1945. Estimation of total phosphorus. I. Amer. Chem. Soc. 15 : 382-395.

Piper,C.S. (1966). Soil and Plant Analvsis. Hans Publishers. Bombay.

* Pursiglov,J.W.. E.G.Brown, C.L.Green and S.R.J.Robbins. Abstracted in SPICES. Vol. 1 pp.23s-241.

Pushpadas, M.V. and M.Ahamed (1980). Nutritional requirements and manurial recommendations. In : Hand Book of natural rubber production in India. RRID. Kottayam.

Ramig.R.E. and Vandecaveye, S.C. (1950). A stuay of certain nutrient levels for raspberries grown in water cultures. plant physiol. $25: 617-629$.

Redgrow,H.S. Spices and Condiments. Sir Isaac Pitman and Sons Ltd. London. (1933).

Ridley, H.N. (1912). Spices. Macmillan and Co.. London.

* Saleh. M. (1973). The relationship between age and the
mineral content of cocoa leaves. Menara perkebunan
$41(5): 219-222$.
(Hort. Abstr. $44(8): 545)$.

Santana,M.E.M. and Igue.K. (1979). The mineral camposition of cocoa leaves as a variation of season and leaf age (in Portugese). Revista Theobrome 9(2): 43-45.

Schroo. H . (1960). A presentation of leaf analytical data prom on cocoa, obtained from a fertilizer trial in Netherlands. New Guinea. Neth. J. Agrica Sci. 8 : 93-97.

Shanmugavelu, K. G. and V. N. Madhava Rao. (1977). Spices and plantation crops. Popular Rook Depot, Madras.

Smith.P.F. (1962). Mineral Analysis of Plant Tissue. AnnRev. Plant physiol. 13 : 81-108.

Smyth. A.J. (1966). How useful is soil chemical analysis. Cocoa Grower's Bull.6:7-11.

Snedecor, G.W. and W.C.Cochrian (1967). Statistical methods ( 6 th Edn.) . Oxford and IBH Publishing House, calcutta. 539 。

Solls of Kerala, Soil Survey Branch, Department of Agriculture, Kerala, 1978).

Stanford, S. and L, English (1949). Uge of Flame photometer in rapid soil test of $K$ and Ca. Agson. J. 41 : 446-447.

Subilah, E.V. and Asija,G.L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 29: 259-260.

```
Sushama.P.K.,A.J.Jose and V.Sukumarapillai. (1984). Standardisation of period of sampling for foliar diagnosis in pepper in relation to \(N\), \(p\) and \(k\). Agri. Res. Journal of Rerala, \(22: 16-21\).
* Thomas,W. (1945). Soil Sai. 59:353. Quoted by Acquaye, D.K. (1964). Foliar analysis as a diagnostic technique in cocoa nutrition. I. Sampling procedure and analytical methods. I. Sci. Fd. Agcic. 15 : 855-863.
Tidourg. 1963. In: Spices and condiments. Sir Isaac Pitman and Sons Ltd. London. (1949).
Unnikrishnan Nair,Cok. (1963). Studies on anion exchange and available phosphoms in laterite soils of Kerala. In : Relationships among constituents and properties of South Indian soils. Agri. College \& Res. Institute, CDEM3.
> * Verilere, G. (1965). Fertilizer trial on cocoa in the Ivory Coast. Yield increases due to fertilizers and to economic aspect. proc. Conf. Int. Rech. agron. cona. 1965 : 74-81.
Vijayachandran, P.K. (1966). Studies on soil phosphorus. In : Relationships among constituents and properties of South Indian soils. Agril. Coll. and Res. Institute. Coimbatore
```

> Walkley,A.J. and I.A.Black. (1934). An examination of Degtgaraff methods for determining soll organic matter and a proposed modification of chromic acid titraction method. Soil Sci. 37: 29-38.

* Wessel.M. (1965) Effect of fertilizer, spacing and Yield on mineral composition of cocoa leates. Proc. Conf. Int. Regh. tron. Cocoa, 1965 ; 64-66.
* Weasel.M. (1970). Intake and export of nutrients in cocon leaves. frog. Agr.o Trinidad 47(2) $2167-170$. (Abstr. Coopa Growers Buin. 16 : 35\%.
* Fiessal.M. (1971) e Rertilizer requireants of cocolin South Western Nigeria. Dept. of Agric. Res. Royal Trop. Insto. Ansterdan. Comunication 612 104p. In : Cocod growers Eull 32 : 11-24.


# Śtandardisation of index leaf/leaves for assessing tíne NUŢRITIONAL STATUS OF CLOVE IN RELATION TO SOIL FERTILITY 

By<br>D. GNANADAS, B.Sc. (Hort.)

## THESIS

Submitted in partial fulfilment of the requirement for the degree
Master of Science in Agriculture
Faculty of Agriculture
Kerala Agricultural University

DEPARTMENT OF SOIL SCIENCE AND AGRICULTURAL CHEMISTRY COLLEGE OF AGRICULTURE

Vellayani - Trivandrum
1989
clove being an elite apice of immense economic and gastronoraic fruportance, it was felt necessary to undertake an investigation into the fertility status of the major clove growing soils of Southern Peninsula with apealal reference to Trivandrum diberict of Kerala and Kanyekumari district of Trail Nadu and also the mineral nutrition of the crop in relation to the fertility of the soils in which they flourish. The investigation was also aimed at estam blishing the inder leaf/leaves for the formulation of a more pragmatic and scientitic fertilizer recomendation.

With a vien to achieve this aim. four major clove growing regions viz., Vithure, Pattom, Vellayani of mrivandrum Histrict and Kulasekharam of Kanyakumari district of trantl Nadu sfere chosen for the study. The soil types encountered at Kulasekharam and Vithura vere forest soils, whereas laterite soil was encountered at patton and red soil at Vellayani. Soils from three different radil ( $0.5,1.0$ and 1.5 m ) fron the base of the plant were collected, composited, saropled and analysed. trac

Leaves from clove plants were collected inmeidately after the completion of flushing. The tree canopy was divided equaliy into three regions viz.. top, middle and
fonmulation of a more pragnatic and sensible fertilizer recomendation for the crop. Moreover, an extonive investigation on the ilnes of present investigation involving large number of clove piants from severai location or from a single location is necessary to confirm the present finding obtained from this basic study.
botton. Three samples each Erom tbse regions were dran by collecting the first, second and ehird whorls from the apex of the branchlets oriented towards the east, meat, couth and north. Leaves from the first whorl, second whorl and third whorl Exom each direction vere pooled, sampled and analysed.

The coil available and plant $N, P_{0} K_{,} C e_{s} M g, C u$, kn and zn were correlated to find out their relationshipa. Yield data for two year fron all the four locations were also comrelated with the significant correlation values obeained from the correlation atudios between soil avallable nutrients and their respective deaf nutrient concentration.

As a result of the study, it was brought out that forest soils of kulasekheram with high organic matter and CEC and having a clay loam texture were found to be better suited foz clove cultration as compared to the other solis studied. The highest yield was also obtained frem kulamecharm, waile lowest yleld was noticed at Vellayani.

The leak nitrogen concentration vas found to be the highest in whorl I of the top ragion of the plant canopy. In the case of phosphosias, the whorl I leaves of bottom segion were proved to be the richest. Tha leat potassium was found to be the highest in whorl I of the top region of the plant.

Colcium concentration in the leaves was found to be the highest in whorl III of bottom region, while magneaium concentration was the highest in whorl III of the top region.
nowne Copper, manganesa and zine in the leaf were found to be the highest in the whorl III of the botton region.

Based on the correlation between soil avallable nutrients and the respective leaf nutrient concentration and also the coxrelation between leaf nutrient and yield. the following index leaves ware identified in relation to
 differënt nutrients.

1. Nitrogen - leaves of whorl I of top region
2. Phosphorus - Leaves of whorl I of bottom region
3. Potassium - leaves of thorl I of top region
4. Colcium - leaves of whorl III of bottom region
5. Magnestum - leavos of whorl III of top fegion
6. Copper, - leaves of whorl III of bottom region manganese and zinc

Though the present study has yielded several valuable Eindings, further indepth studies are necessary to fix the critucal limits of each nutrient through field trials involving graded anse of $^{\text {fertilizers for the }}$


[^0]:    * The mean annual rainfall of Trivandrun district ranges from 2000-3300 ma. June and July are the wettegt month. January and February are normally dry months. The mean minimum and maximum temperature of this district ranges from 21.7-33. $0^{\circ} \mathrm{C}$ (Soils of Kerala, 1978, Hand Eook of Natural Rubber Production in India, 1980).
    ** The mean annual rainfall of Kanyakumari district is 2000 mm . Both south mest and north east monsoons are equally important for thie region. The mean minimum and maximum temperature are $22.0-34.2^{\circ} \mathrm{C}$. The elevation of this tract is 700-900 meters from sea level (Agricultural statistics of Kanyakumari District. 1979).

[^1]:    * Significant at 0.05 leval
    ** Significant ot 0.01 level

[^2]:    * Signielcant at 0.05 Level
    ** significant at 0.01 level

