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INTRODUCTION

Agricultural experiments carried out at Research

Stations are to formulate recommendations on farm practices

for a population quite extensive in space or time or both.

Therefore it becomes necessary to ensure that the results

obtained from such experiments are valid for several seasons

and over a reasonably heterogeneous space. A single experiment

furnishes information about the tract where it is conducted.

Hence it is a common practice to repeat an experiment at

different places or over a number of occasions or both to

provide valid recommendations.

Observations are recorded repeatedly at selected

intervals of time, in experiments on animals, human beings and

perennial crops. The analysis of data so generated are

complicated by the need to consider two sources of variation,

viz., the usual 'among subject' variation and the 'within-

subject' variation. The presence of serial correlation among

the error terms violates the assumption of independence of

error terms for the analysis of variance. Another difficulty

is that simple analysis of variance involving years are useful

only if we can assume that there are no residual effects of

crops or treatments as the case may be.



Statistical methods for comparing means using the t

and F distributions are valid only if the error terms are

independently as well as normally distributed. Standard

analytical procedures can be justified in the sense that they

yield valid sampling distribution, if proper randomiz^ation is

done while conducting the experiment. But in experiments with

repeated measurements randomization remains unchanged, with

regard to successive observations on the same individual or

experimental unit and hence the error terms can no longer be

considered independent.

In recent years there have been increasing activity in

the development of procedures in this problem. The present

practice is to analyse the data in a split-plot set up. But

the presence of serial correlation among the error terms

violates the assumption of constant correlation between time

points within a unit. Sukumaran (1991) proposed a model for

situations where repeated observations are taken on the same
set of experimental units, taking the dependence of error

terms into consideration. But the estimation of parameters
could not be developed satisfactorily. Hence the present
investigation was taken up to make suitable modification in
the model proposed by Sukumaran (1991) and to develop
procedure of estimation of parameters and comparison of
treatment means.
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REVIEW OF LITERATURE

In experiments with repeated measurements, the

measurements have a temporal sequence with the consequence

that measurements on the same subject separated in small time

intervals will in general be highly correlated. various

procedures that have been suggested or used by different

workers for the analysis of groups of experiments with special

reference to data on repeated measurements have been reviewed.

They are presented briefly in this chapter in various sections

viz., general, split-plot analysis, ARMA model, analysis of

differences and linear model.

Yates and Cochran (1938) proposed the analysis of data

from a set of experiments involving same or similar treatments

carried out at a number of places or in a number of years or

both. They pointed out that the ordinary analysis of variance

procedure suitable for dealing with the results of a single

experiment may require modification, owing to lack of equality

in the errors of the different experiments and owing to non-

homogeneity in the components of the interaction of treatments

with places or times or both.

Wallenstein (1982) criticised the use of standard

analysis of - variance for experiments with repeated



observations and observed that the analysis of Aitken (1981)

was based on assumptions that could not hold under such

situations.

Rowell and Walters (1976) criticised the split- plot

analysis of experimental data where several successive

observations of the same variable have been recorded on each

experimental unit on the ground that requirements for such

analysis received scant attention and it was often unlikely

that these assumptions would be satisfied in experimental

situations. They presented five sets of results to support

this proposition. They also proposed an alternative

analytical approach in which contrasts over time are analysed.

Multivariate analysis

Cole and (1965) proposed multivariate analysis
of variance thereby eliminating the problems of univariate

analysxs variance model. According to them this procedure

provides as unified approach to the analysis of such data with
all the power, scope and flexibility of the univariate
analysis variance.

Yates (1954) investigated the problems arising in the
analysis of experiments containing different crop rotations.
He proposed analysis of data by fitting constants to overcome
certain difficulties in such solutions.



Khoslaei^(1979) investigated the behaviour of

experimental errors and presence of treatments x years

interactions in the case of 199 groups of experiments

conducted at different research stations in the state of

Gujarat during different years of the period 1960-65.

Hearne1^(1983) reported that a popular design in

biostatistics and psychometrics is the time factor experiment

involving one grouping factor and one repeated-measures

factor. If the F-tests involving the repeated measures factor

are to be valid, univariate analytic procedures require

special assumptions for covariances.

Raz (1989) reported that the mixed model analysis of

variance, that is commonly applied to repeated measurements

taken over time, depends on specialized assumptions about the

error distribution and fails to exploit information contained

in the ordering of the data points over time. He developed a

procedure that overcomes these disadvantages while preserving

familiar features of the mixed model ANOVA. Group profiles

are estimated by non-parametric smoothing of observed mean

profiles. Group and time main effects, and the group by time

interaction effect, are tested using randomization tests. He

proposed a new.approximate F-test for time effect.



Gaylor (1978) demonstrated the effects from

unrecognized correlations or due to ignoring correlations

among errors upon the analysis of variance. He concluded

that the assumption of uncorrelated errors is not always

fulfilled for an analysis of variance and this would negate

the exactness of F-tests.

Jennrich and Schluchter (1986) conducted analysis of

incomplete repeated-measures data by maximum likelihood method

using a general linear model for expected responses and

arbitrary structural models for the within subject

covariances.

Split-plot analysis

Patternson (1939) considered the problem of field

experimentation with perennial crops and suggested that

certain modifications have to be effected in statistical

analysis of long term data on perennial crops. He recommended

the use of split plot design for the analysis of long term

experiments with years assigned to subplots and treatments

assigned to main plots.

(I960) supported the split-plot design approach

for analysis of experiments in which repeated observations are

made.



Yates (1982) opinioned that the split-plot analysis

suggested by Aitkin (1981) for an experiment in which rectal

temperature were measured was incorrect. He found that the

six values for any one subject exposed to a particular ambient

temperature can be fitted exactly by a fifth degree

polynomial. He observed that the analysis using orthogonal

polynomials was conceptually and computationally simple though

it may not provide the best approach in specific problems.

Aitkin (1981) found that regression models could be

used for response on subjects measured repeatedly under

different experimental conditions and he called such designs

as split—plot designs. He observed that depending on the way

the treatment design is set up, some effects might be tested

against within subject variation and others against among

subject variations. He illustrated the procedure using data

generated from an experiment on animals. He suggested maximum

likelihood procedure in presence of serial correlation.

Kenward (1984) proposed ANOVA for repeated

measurements in which the errors have autoregressive

covariance structure. By simulation he demonstrated that the

distribution of the resulting trace statistic is well

approximated by F distribution.



Gill (1986) reported that animal scientists who

conducted experiments involving repeated measurements of

animals often are frustrated by low statistical power of tests

for comparisons of treatment means. In many cases, low power

of the traditional tests simply is the consequence of low

replication (fev; animals per treatment) that v/as forced by

cost or complexity of experimental technique. A method is

proposed for comparing treatments in a way that permits

sensitive tests when the number of animals per treatment is

not more than five or six.

Dempster (1963) extended the stepwise testing of

multivariate analysis of variance to linear combination of

variables resulting from a principal component analysis.

Danford ^ a^. (1960) opinioned that the assumptions

and techniques of the usual univariate analysis of variance

procedure for data involving repeated measurements on the same

individuals over time are not necessary and proposed

multivariate procedures.

Steel (1955) proposed a bivariate analysis of variance

for perennial crop data. He made a test of hypotheses about

varietal effects and compared the bivariate analysis and a

univariate analysis.



Smith ^ (1962) illustrated, using data taken from

a study made by Brown and Beerstecher (1951), some methods

of analysis and interpretation under the model I of MANOVA.

Three criteria for the tests of significance were illustrated.

They gave a rather informal way of approaching the multiple

comparisons problem.

Evans and Roberts (1979) proposed fitting polynomial

equations to the sequences and analysing their coefficients by

MANOVA as they are correlated between experimental units.

Finney (1956) severely criticised the use of

multivariate analysis of variance, construction of cannonical

variates for the analysis for interpretation of agricultural

experiments repeated over years. He observed that the method

described by Steel (1955) to be tedious and pointed out that

Steel (1955) did not make the aim of experiment clear and that

the manner in which his analysis enabled the agricultural

scientists to reach conclusion relevant to the problem could

have better been obtained by simple alternatives.

ARMA models

Bjornson (1978) proposed an autoregressive moving

average model ARMA (p,q) for the error terms in perennial crop

experiments, which are autocorrelated. The problem of

identifying and estimating the ARMA (p,q) error models for
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experimental error differs in some aspects from the common

time series applications, "and an error component independent

of time differences/ plot error may also be present. The

errors in a group of experiments were identified as second

order autoregressive AR(2). A transformation was suggested

for the data with AR(2) residuals prior to the regression

analysis of the vectors of annual treatment responses.

Yand and Randy (1983) conducted an experiment in which

successive observations over time made on individual subjects

were classified into different groups. They observed that

successive observations on each individual follow a simple

ARMA model and concluded that in many practical situations the

usual analysis of variance F test, performed on averages of

the observations over time provides an efficient test.

Laing and Panhuber (1988) observed that in a tv;o-way

analysis of variance, one factor may have a spatial or

temporal structure, in which case correlation may be expected

between the errors for the different levels of the factor.

They developed a procedure for checking this using correlation

coefficients.

Analysis of increments

Box (1950) concluded that the effects can often be

simply interpreted by differencing the original data, in the
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analysis of growth and wear curves. These differences

correspond to the average growth rates during successive

periods. Successive periods are treated as the levels of a

further factor-periods, the effect of treatments on mean rate

is measured by the variation in the period averages and on the

shape of the rate curve by the interaction of these treatments

with periods. The taking of differences sometimes results in

a very simple covariances pattern for the errors, and the

analysis can be made by the technique of analysis of variance.

A test is given which makes it possible to decide whether this

simple set up is contradicted by the data. If it is not

appropriate, a multivariate extension of the analysis of

variance is suggested to make the tests. Certain simple

properties of the criterion are discussed which facilitate the

analysis and the elimination of variables such as initial

weight. Finally an important assumption is made that the

variables are multinormally distributed about their mean

values with constant variance and covariance matrix in the

multivariate analysis.

Gill (1988) proposed that reduction of inter-period

correlation by using first differences does not necessarily
eliminate problems with heterogeneity of the variance matrix
over time. But adhoc claims (Box, 1950) that analysis of

increments of response was superior to trend analysis of the
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original data with a split-plot model as spurious. For

"homogeneous condition the expected variance of a simple trend

contrast between two treatments for adjacent periods is shown

to be the same for either analyses, but the analysis of

increments incurs a loss of degrees of freedom that can be

critical in studies with few experimental units per

treatments.

Linear models

Sukumaran (1991) proposed a model for the analysis of

repeated measurements from the same experimental unit and is

given as

^ijk = r + Pk +
' n=2 /n-1

e. . T + e.
ijn-l ijk

where ^ is the overall effect, t^, the effect of the i^^

treatment, b., the effect of the replication, p, , the
'theffect of the k year, the interaction effect of the i^^

"thtreatment and k year, b. , the interaction effect of j^^
jk

th kreplication and k year, g the- partial regression
n-1

coefficient of (Y. - m - t - b - n - -h k ^13k r ^i Pk ^jk-i
®ijk attached to the observation Y. which

ijk
are assumed independent among themselves and with other terms

in the model, and normally distributed with mean zero and
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2
constant variance say e . The dependence of the error terms

of successive observations was incorporated in the proposed

model. The error mean square using the model was derived

using the principle of least squares. The proposed

methodology was also illustrated.

Geary (1989) proposed a procedure for sequential

testing in the context of repeated significance tests in

clinical traits, in which repeated measurements of the same

variable are made on a fixed number of subjects over a period

of time.

Pantula and Pollock (1985) proposed an auto regressive

time series model for a randomized experimental design with

several successive time measurements on each experimental

unit. The linear model for individuals selected at random

and measurements taken at t^^ consecutive time points on the
.th . _, .1 individual was given by

fk ^ij

where Y.. denotes the value of the measurement for the i^^

individual, r denote the levels of the r
control variables at which the observations is obtained,

denotes the unknown parameters to be estimated and the
random error associated with v

ij'
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Mansour^1985) proposed linear models used for the

estimation of variance components formulated under the

assumption of independent errors. The model was given by

y..=M+a.+T.+e..
13 / 1 D ID

where y^^^ is the score recorded for the i^^ subject at the
time, p the overall fixed mean, a^ the random effect of i^^

2 -f-hsubject and a^^r^ N (O, a ), T^ the fixed effect of j time
and e^j the random error term. It is a two way mixed model

with errors assumed to follow a first order, non-stationary

autoregressive process. Maximum likelihood techniques were

recommended to estimate the variance components and parameters

for the autoregression.

Diggle (1988) proposed a linear model for repeated

measurements in which correlation structure within each time

sequence of measurements included parameters for measurement

error, variation between experimental units, and serial

correlation within units. He developed an approach to data

analysis which involved preliminary analysis by ordinary least

squares, use of empirical semivariogram or residuals to

suggest a suitable correlation structure and formal inference

using likelihood based methods.

and McGilchrist (1990) developed stochastic

differential equation of Sandland and McGilchrist (1979) and
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presented a growth model from designed repeated measurements.

Residual maximum likelihood (REML) method was used to estimate

the parameters in the model. The model was also extended to

incomplete data to overcome some of the practical difficulties

encountered with the profile model.





METHODOLOGY

Pooled analysis of data generated from multi-

locational trials have been developed and is in wide use

satisfactorily. But the available procedure can't be used

directly when the error terms in the analysis of variance

model are not independent. The error terms in the analysis of

variance model of experiments generating information by

repeated measurements on the same experimental unit are

dependent.

We consider a comprehensive model incorporating • the

possible relationship of the residual terms. Without loss of

generality, let us consider an experiment involving 't'

treatments, replicated 'r' times, laid out in RBD and

observations taken on q years (occasions) on the same

experimental units.

Let the observation from the experimental unit in the

replication receiving i^^ treatment at the year , be

Yijk" model proposed by Sukumaran (1991) is

ijk + b. + + £ S
n=2

1 e. . T + e. .,
n_l iDn-1 ijk

(1)



where ja is the overall effect

t^ - the effect of the i^^ treatment
"thbj - the effect of j replication

Pj^ - the effect of the year

^ik " interaction effect of the i^^ treatment and k^^ year

jk
b. - the interaction effect of replication and

, th
k year,

17

gn-1 - the partial regression coefficient of

'̂ ijk T"^i " '̂ j - Pk " ^ik - •'jk' ^ijk
error term attached to the observation y.. which are assumed

1JK

independent among themselves and with other terms in the

model, normally distributed with mean zero and constant
2

variance say o e .

Estimation of parameters and various sum of squares in

this model is very complicated. Hence modification on this

model is proposed here in to simplify the whole approach. The

error term attached to the observation on an experimental unit

of any year is assumed to depend only on that of the

immediately preceding year. Thus the model can be written as,

^ijk ^jk - 5^k .
(2)
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VJhere is the regression coefficient of on ~ ~ ^i

- ''j - Pk - ^ik - '^jk' ^ijk-i

The parameters in the model can be estimated by the method of

least squares.

The error sum of square is given by

^ = ijk '^ijk - r - ^ - Pk - ^ik -•'̂ jk - k
(3)

The summation being taken over all values of i, j and k.

Estimates of the parameters ^ , t^, b^, b^^^ and ^^ '̂s
are obtained by solving the set of normal equations derived by

setting the first differential of R with respect to each of

these parameters to zero. Thus differentiating R with respect

to r^/u./x — n=i-y ^ ^ P#
k

^ , t^, i = 1, 2, t, bj, j = 1, 2

^ ^ik' "^jk ^nd jDj^ and equating to zero, we get a
set of normal equations. But the number of independent normal

equations obtained is less than the number of parameters to be

estimated. Therefore we impose the following restrictions as

usual.

k" " • il/>= •il'ik •i'lK -i-jk • =°
(4)

As a consequence ^ =0, k=l, 2, q
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= ° i = 1, 2

j = 1/ r,

K =1, 2, g (5)

Now,

Differentiating R' with respect.to ^ , and equating to zero
and imposing restriction like (4) we get-

-2 ^ (y. - p - t - b. - p, - t., -
ijk ' 1 D ik

'̂ jk - k ^ijk-l) =°
A

his yields —: *l^ where a dot replacing a subscript
qrt ^

indicates summation v/ith respect to that subscript.

Differentiating R' with respect to t^, and equating to zero
and imposing restriction like (4) we get.

• i - r - '1 - -j - Pj - 'ik -
- h 'Uk-l' - "

Z
I.e.

jk

A

t.
1

- t
jk Dk i

^i.. y
• • •

qr qrt

Differentiating R- with respect to b^, and equating to zero
and imposing restriction like (4) we get.



1..., " i
'••U ~ 4\. ®"*T, l) ~ 0jk /k ijk-1

- ^ - ^-t b =0
ik -^ijk ik ik j

y ^ y
Therefore b. = ' -*' - _111 # j = 1/

^ qt qrt

20

Differentiating R with respect to Pj^/ and equating to zero

and imposing restriction like (4) we get.

-2 (y. - M - t. - b. - p, - t.,^ -^ijk f 1 j ^k ik
b., -01 e.., t)=0

jk /k ijk-1'

I.e. t/ y. - f-:* - f-:' p, =0
ij ^ijk 13 1] ^k

A y T, y
Therefore Pj^ = ,k = l,2, q

rt qrt

Differentiating R with respect to t^^^ , and equating to

zero and imposing restriction like (4) we get

^ y. .-4r- =0: ijk j ' j 2. j ^k j ^ik ^

^ ^ ^i.k A A
~ — " r " ~ Pk

i.k ^i.. y..k y...
+ / 1 = 1,2 .... t.

qr rk qrt

k 1/2 ....q
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Differentiating R* with respect to and equating to zero

and imposing restriction like (4) we get.

-2 <yijk v " - ^ik -
^ik " ^k ®iik-l^ " ^

i.e. ^ y• ^t). - ^ Pv ~^i ^ijk i "j i' -^k i *'jkb., = 0

Therefore b..
. jk _ • j • _ •

t qt

j = 1,2 ...

rt qrt

r, k = 1,2 .

Differentiating R' with respect to and equating to zero

and imposing restriction like (4) we get

I.e.

-2 £
ij

^ ^ijk ®ijk-lJ J

^ijk ~ /" -i "j ''k "ik- t, - b, - - t,

jk^k - k ^iik-i>
= 0

r ^ ®ijk-l " ^ ®ijk-l ~ ®ijk-l

^ Pk ^ijk-1 "^ ®ijk-l "^ ^jk ®ijk-l

^'iik-l = 0' k = 2,3
13



i.e. v. e. T - t. e. , , - b. e 1, i -
^ -'ijk ijk-1 . 1 i.k-1 ^ j . -'k-l
ID

^ ®,.k-l " ^^ik ®i.k-l " ^ ^jk ®,jk-l
ID 1 D

^ A '̂ijk-1 =°

^ ^ijk ®ijk-l - /k :£ e2 =0, k=2,3,.., q
ID ID

Therefore y^k = (6)
e. .

4 2
® ijk-1

ID

22

^k's depend on the observations on the k^^ year and the error

terms of the previous year, ^k's are to be estimated for the

values of k ranging from 2 to q. p2 can be estimated using
(6) from the observations of the year 2 and the residual term

of the first year (e^^^ '̂s).

Once the estimate of ^ 2 is thus obtained, the
residual term (error term) of the second year, can be

obtained. From these residual terms of the second year and

the observed values of the third year, ^ 3 can very well be

estimated using (6). Proceeding like this all ^ k values and

thus all parameters of the model (2) can be estimated.
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To find error sum of squares

Substituting the estimators of parameters in eq. (3)

we get

^ " r" ^ - Pk -^ik - ^jk" ^k ^ijk-i '̂

^ijk ^^ijk r ^k ^ik ^jk ^ijk-1^
Ok

^ - f ^...-f ^i.. -f y.j. y..k 4

^ ^ik ^i.k ^ "^jk jk ~ fk ®ijk-l ^ijk

= £ y'ijk - ^ ^ ^ -
Ijk -' k r jk t k rt

^ ^ijk ®ijk-l
K. IJ

In order to derive the expression for the sum of squares due

to the effect of each factor in equation (2) a hypothesis of

null differences among the different levels of each factor

which amounts to zero effect for each level of each factor due

to the restriction of the zero total effect is made. The

resultant residual sum of squares say R', contains the sum of

squares due to the effect of that factor on which the
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hypothesis is made. Therefore R' - R will provide the sum of

squares due to that factor. In a similar manner S.S. due to

every factor can be derived.

To estimate treatment sum of square and testing its

significance

"o = = ^2 = =

In order to test this hypothesis a model which does not

have the treatment x season interaction may be considered i.e.

we consider model

+ + b.+p, + b., + e'.., , + e'.., (8)
13k / 1 j jk / k ijk-1 i;]k

The various effects from this model can be estimated using

least square technique.

The residual sum of squares under model (8) is given by

R (y-'i-M-t. - b.-p, - b. ~ <})' e'.
i^ r ^ 3 ^jk r k ^ ijk-1^

(9)

Differentiating R' with respect to ^ , and equating to zero
and imposing restriction like (4) we get.

"" li""" T""" "1 - "k - -



A
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A y

Therefore M = _U_1 ; since it can very well be shown that
' qrt

estimates of e' is zero, for every k.

Differentiating with respect to t^ and equating to zero we

get

-2^ CY..,-M-t. - b.-p, - b., - e'.., .)=0jj^ iDk I 1 j jk T k i^k-l'

i'= 1,2, t.

i.e., £ y. . = £ ^ e'
jk jk ' jk jk / K 13k 1

Therefore t^ = ~ ^ ^ij^-l
^ rq rqt jk ' ^ rq

rq rqt k ' rq

.(1)

k

Differentiating R with respect to b^ and equting to zero, we
get

£-2 Z (Yijk "T " " Pk" V "fk '̂ijk-i^ =ik

i.e.,
ik̂

Yi-ij, - £ r - ^ h - £ <i' ^=
ik ik' ik ^ ik T k ijk-l

^ y A yTherefore b = - ••• since e ., = 0
j 4-^ Tirrr- ok-1tq rqt
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Differentiating with respect to Pj^ and equating to zero we

get

-2 ^
•j
f: (^ijk - - Pk - '̂ jk - fk '̂ijk-l' =

i.e., ^ y..,^ - - 4:,
• • ij/ ijIJ

Pk = 0

.kTherefore p^^ =
rt rtq

Differentiating with respect to and equating to zero,

we get

' ) = 0-2 f (^ijk - - Pk - •^jk - f k '̂ijk-:

i.e., ^y..^ - -^b. .j.p^ -^b.^ '̂ijk-1 =

y -ik ^ ^ k y nTherefore = -3^ +
^ t qrt rt tq

£ I, ®'.jk-i _ i ® .jk-i

•jk _ ^.j. _ ^..ky

tq rt qrt

k r k —— Tk —^®'.jk-i =°



i.e

I.e.,

= 0

ijk p "i "j "jk

^ k ^ ijk-1^ ^ ijk-1

-2 ZL (y. - M - t, - b. - p, - b., -
ij

§"l)K ^ r®'ijk-l ^ ®'ijk-l
ID ' ID

^^j '̂ijk-1 ^b., e^_,

4^k-''ijk-i =°i: ' •'

k ijk-1 ^ jk ijk-1
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i.e., ^ Y. . ^ ^ ^ / ®'i k-1
. . ijk ijk-1 ij —XT' k / k ijk-1ID -' -• rq rqt rq

ij

y ^ y
• j • _

tq rtq
' ®'ijk-l

£ , y.jk _ y..k
+

1]

- ^
ij

rt

di', e'^. = 0
k iDk-1

rt

• J • \ I

tq ijk-1

if ''ijk ®'ijk-l - fr '̂ijk-l +̂^ ^ '̂ijk-l



+

ij k

® iak-1
iik-1 ® iik-1ijk-1 f-7 —T— ijk-

rq •* 1] tq
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+ ^ e'.. , - g., + ^ e'.., ,
. . —T— ink-1 . . —T— ink-l .. —iik-1
13 rtq 13 t ij rt

+

ij tq
e' . .

ijk-1

4-. i
ij

, e'^. , = 0
k ijk-1

i j rt
® ijk-1

l'ijk-1 " y... —®'i.h-l '

- t'k I •»

i '13K f ^f /•. ••l.K-1 I
® i-k-l

2.J
ijk-1

(10)

It may be noted that the estimates of e' . is not zero even
• 3 •

if we are imposing the restriction like (5).

It is also found that the estimates of t^ contains the term
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^ 1 k-1 / 1Y*' and estimate of O'j^ is a function of
]r(5

So for the estimation of we propose a method of iteration.

For the estimation of values, values are needed.

On substitution of the estimates of the parameters

except in the model (8) we get

yiik • ♦rq t rqt ' ^ rq

P ' 4- fa '
k ijk-1 .ijk

y• y V
Let Z. = y. - _ ok _j_ ...

Ilk -^nk —
rq t rqt

Therefore Z. = a', e' - ^ i.k-1 ,i:k yk ^ ijk-1 + e .

We know that, for the first year the regression coefficient is

zero and thus and are same

For K = 2 to q, eV^^'s can be expressed as

'̂ijk - ^ijk - #k < '̂ijk-i
k

k

® i.k-1

rq

Now the iterative procedure for evaluation of j'^ s described
below
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1. Initial solution of say be taken as

the values of ^j^s obtained for model (2)

2. Solution of at the first iteration say

be obtained by substituting (10).
/ ^

3. Solution of ^j '̂s at the second iteration say can be
obtained by substituting "the RHS of (10) and

s t J {r"f*l)the solution of (r+1) iteration, say (p^ are

obtained by substituting the RHS of (10).

4. The iteration may be continued until two successive

iterations coincide upto some prespecified accuracy.

To find error sxira of square

Substituting the estimates of parameters in eq (9) we

get

''''' ^ - r~ "i"'d - Pk - V -

= 4 - r - ^ -j'k I "i "j " ^jk r k ®'ijk-l^

= ^ ^ ^ ^ ^ ^ ••• +
ijk i rq jk t rtq

y e'.

rq ijk

(11)

^... ^ i.k 1 ^ A,
k 'i iu ' x:k-l
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Treatment x season sum of square is obtained by subtracting

(7) from (11).

Under the model (8) reduces to

Yaat. = H + b. + p. + b., + (I", e". T + e". (12)ijk I j 3k / k i^k-l 13k ^ '

The various effects from this model can be estimated using

principle of least squares. By minimising

^ (y.., - M-b.-p, - b. - fl$" e"'^i3k f 3 ^k "^jk r k ® ijk-1^

The estimates are

A y

P = _J_11 ; since e , = zero, for every k.
qrt

= 0

i.e., -2 ^
ik

«^i3k - ^ - b. - p^ - b.^ - e". =0

^ ri

i.e., y_._ - tq - tqb. - £ = 0
IK

y . y j 0 _
Therefore b. = - •• - ^ d" .jk-l

^ tq k ^



3 K
(2)

gives

jk

= 0

A

Pi

= 0

V ^• • JV • • I

rt rtq
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I.e. ^ (^ijk -r - ^ - Pk - - " e" ) - C\k ® ijk-1^ ^

I.e., - t (r^ijk
V . e"

-111 -£ j\ )
k tqrq tq rtq

t (1:^ - L:i) -1 h., I"
rt rqt - '

—T ©" = njk 7 k ®ijk-1 ^

Therefore b
Jk

?r(2)
—_ " 0
Jf\

13

4 ^ijk ®"ijk-i

•jk _ ^.j k y
+ "\ +

tq rt rtq

^ I". . jk-1 . jk-1

r- - Pk - ^jk - f"k -"ijk-i) -"ijk-1 =

^Me".., T -^b.e"ij ^ j .jk-1



k 4 ijk-i
1.1 3

e-^. .. - = 0
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/ y* 11 I ^-j • - ^••• - ^ i)" •j'^ 1 )^ ^ijk ^-ijk-1 .jk-1 -7^ k' ^ tq

/gii (^-jk _ ^-j- _ + ^- •• + ^ <1" ^ -
. .jk-1 —£ j-t rtq k tq

11 ^ .jk-1 j _ ^1, ^ 1,2 =. 0
k 1 ' ' ij

^ ^ijk ®"ijk-l ^ —I— ®".jk-l ^ ^ ^ ^^k-l
y e"^

j t

^ ^ijk ®"ijk-l " 4* ^.jk ®".jk-l
ID -• 3 __L

Therefore (i)'' = t
^ —(13)

^ e"^ -^e"^^ ® ijk-1 ^ .jk-1
ID D

In order to get the (1", values e" . ., ^ values are needed. On
^ / k ijk-l

substitution of the estimates of parameters except in the

model (12), we get



y e

•j^ - fJ)" ^ + (D", e" . n + e" . .Yijk = - f k ; - r k'= ijk-1 iDk

Let Z.. = y.,, -13k •'l^k —r

II ^ U0 ' ^

Therefore Z. = f>^ " i^k ^ •*• ^"ijk
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Since the regression coefficient is zero for the first year,

Z. 's and e" . 's are the same for the first year,
ijk i]k

For K = 2 to q

e

e" = Z - d" e" + d" 'jk-l
ijk ijk f k ijk-l / k

Estimates of most of the parameters involve and that

themselves involve s. Therefore may be estimated by

the method of iteration as was done for model 10. Values of

estimated for the model (8) can be used as the initial

solution in this case. Once the estimate of are obtained

iteratively, those of other parameters can be obtained

directly.

-

^ ^ - Pk - "^-jk - f\ -"ijk-i'

= ^ ( Yi^,. - + 4",. ^ - 6", e"... ,
ijk t ^ ^ 1 ^ ^



^ V.., ( V. ^ e".., , )
. -^iik •'ilk —r— f k 7 / k iik-1
13k t t ,
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^ v^.., - ^ijk ^.jk ^ ^ ^ ®.jk-1
ijk ijk 1 xjk " T-

yijk -"ijk-i

•^, ^ ^ (I" ^ V . e" .
ijk jk t k ' ^ j -jk-l

f f\ ^ ^ijk -"ijk-i (")

/ (2)
p"y^ 's are obtained iteratively, can be evaluated without

much difficulty. Then the treatment sum of squares can be

obtained by subracting from The various factors

are tested against the pooled error mean square derived from

the model (2).

The F ratio for testing the treatment differences is therefore

given by

(r'^' - )/(t-l)

R/(q(r-l) (t-1) -(q-D)
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with degrees of freedom (t-1), and (q (r-1) (t-1) - (q-1)) and

the F ratio for the treatment x season interaction is

(RfliR)/(q-l) (t-1)
/ with degrees of freedom

R/ q(r-l) (t-1) - (q-1)

(q-1) (t-1), q(r-l) (t-1) - (q-1)



yoijv7,}9n]](^



ILLUSTRATION

The methodology developed v^as illustrated using two

sets of data. One set of data is generated from an experiment

conducted to compare the yield at different levels of pruning

in cocoa laid out in RBD in four replications. Observations

on yield in four consecutive years/ viz. 1989, 1990, 1991,

1992 have been obtained from The Cadbury KAU Co-operative

Cocoa Research Project, College of Horticulture, Kerala

Agricultural University. The other set of data is obtained by

an experiment conducted to compare three varieties of alfalfa

laid out in RBD in six replications. Observations on yield in

tonnes per acre from cuttings in four consecutive seasons have

been taken from Snedecor and Cochran (19 67). Both data are

given in Appendix-I and II respectively.

A computer programme in Quick Basic was developed to

do the analysis described in chapter III and is given in the

Appendix

The conventional analysis in the split-plot set up was

carried out for two sets of data and are given in Table 1

and 2 respectively.
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Table 1. Analysis of variance for data set I

Source df SS MSS F value

Split-plot experiment

Replication 3 195792,46 65264 .15 1,79

Factor A

(Treatment)
6 268031,86 44671 .98 1,2

Error (a) 18 657662,86 36536 .83

Factor B

(years)
3 386394,74 128798 ,25 22.17

Interaction
(AB)

18 53961,57 2997

oo

0.5161

Error (b) 63 365976.94 5809 .16

Total 111 1927820.42

New procedure

Treatment 6 1383081,00 39718 ,02 3.63

Treatment x

season

18 115723.7 6429 ,09

Error 71 111899 10956,,32
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Table 2. Analysis of variance for data set II

Source df ss MSS F value

Split-plot experiment

Main plots

Varieties 2 0.1781 0.0890 0. 6534

Blocks 5 4.1499 0.8300 6..0939

Main plots
error (a)

10 1.3622 0.1362

Sub plots

Date of cutting 3 1.9625 0.6542 23. 3642

Intex variety 6 0.2105 0.0351 1. 2535

Sub plot
errn-r (}-i\

45 1.2586 0,0280

New procedure

Treatment 2 0.3516 0.1758 3.8052

Treatment x

season

6 0.231 0.385

Error 39

00

0.046
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It may be noted that the treatment differences are

tested against an error (a) mean square in split-plot analysis

having just 18 degrees of freedom in contrast to the error

mean square in the new procedure having 71 degrees of freedom.

Also the error mean square (a) in the split plot set up is

much higher than that in the new methodology. The new

procedure is found more sensitive owing to lower mean square

error and higher degrees of freedom.

Here also we note that the treatment differences are

tested against an error (a) mean square having just 10 degrees

of freedom in the split-plot analysis in contrast to the error

mean square in the new procedure having 39 degrees of freedom.

The error mean square (a) (0.1362) in the split-plot set up is

much higher than that in the new methodology (0.0362).

As in the case of data on cocoa, here also the new

procedure is found more sensitive owing to lower mean square

error and higher degrees of freedom compared to split- plot

analysis.

Prom both the examples, the new procedure is more

sensitive than split-plot analysis owing to lower mean square

error and higher degrees of freedom.
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In case of first example, F-ratio for testing

treatment differences in split plot an analysis and in new

procedure are 1.2 and 3.63 respectively.

In case of second example, F-ratio for testing

treatment differences in split-plot analysis and in a new

procedure are 0.6534 and 3.8052 respectively.

In both the examples, it may be noted that F-ratio in

the new procedure is significant and F-ratio in the split-plot

analysis is non-significant.
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DISCUSSION

Analysis of data generated from experiments in which

observations are taken repeatedly on the same experimental

units differs from the usual analysis of data in groups of

experiments, so far as the error terms attached to

observations on the same experimental unit can't be considered
/

independent. Hence this problem attracted many workers and

approximate methodologies have been suggested. All these

methods that are in use for this type of analysis attracted

criticism. Nevertheless analysis in the split-plot set up is

the one widely used due to its low intensity of drawbacks/

defects.

Rowell and Walters (1976) criticised the split— plot

analysis of experimental data where several successive

observations of the same variable have been recorded on each

experimental unit on the ground that requirements for such

analysis received scant attention and it was often unlikely

that these assumptions would be satisfied in experimental

situations.

^ Yates (1982) pointed out that subplot treatments have

to be assigned randomly with in each whole plot in split-plot

experiments. Since the observations on the same experimental
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unit at different of time intervals have a temporal sequence,

the randomisation for sub-plots cannot be possible. The

random assignment of treatments is not carried out have and

hence the split- plot set up is incorrect in dealing with

repeated measurements.

Gill (1988) concluded that the split-plot analysis for

repeated measurements experiments is valid if the error terms

attached to the observations on the same experimental units,

taken at different points of time have a constant correlation

coefficient. But the repeated measurements with a small

interval of time age in general highly correlated than those

widely separated (Yates, 1982).

The procedure developed here may be viewed in this

contejtt. A model which takes the dependence of repeated

observations on the same experimental unit into consideration

is proposed. The estimation of parameters is tedious in the

sense that a closed form solution is not possible. Perhaps,

this could have been the reason for suggesting many procedures

which are theoretically not very sound. The difficulty in

getting straight forward estimation of parameters have been

overcome by arriving at numerical solutions by iterative

procedures. The tediousness in calculation involved in

iterative procedure should not at all be a criteria now

because of the availability of computer. In short a procedure
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of analysis is arrived at which takes the ground reality of

the special situation of such experiments into consideration.

^ In this sense the new procedure out shadows all other

available competing procedures.

The treatment comparison in split-plot setup is made

against error (a) mean square which is in general much higher

than the error (b) mean square or to the error variance in a

comparable randomised block design. Consequently the

precision for comparison of treatments in the split-plot set

up is much less compared to the new procedure when the error

variance is estimated after eliminating the contribution due

to the dependence of error terms. This argument of higher

precision is also true with respect to the degrees of freedom

by which the error variance is estimated.

It may be noted in the illustrations that the error

degrees of freedom in split-plot set up is much lower compared

to that in new methodology in both sets of data. Also the

error mean square used for testing treatment differences in

the split-plot set up is much higher than those in the new

methodology in both sets of data. In short, the claim that

the new methodology is much more sensitive to distinguish

between treatments in comparison with the split-plot analysis

is very much evident from the illustrations.
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SUMMARY

The usual method of analysis of data in groups of

experiments fails, in situations where observations are taken

repeatedly on the same set of experimental units. Such

situations arise more often in the case of experiments with

perennial crops and animals where the error terms attached to

repeated observations on the experimental units can't be

assumed independent. Consequently many approximate procedures

have been suggested for the purpose, among which, the split-

plot approach is the most convincing one and hence the widely

used one. But there are many drawbacks for this and hence

there are severe criticism against this approach as well.

In order to evolve a procedure that is satisfactory to

deal with such situations, a new model which takes the

dependence of error terms into account is proposed here. The

model can be represented as

~ + t. + b.+p 4-t., + b., +(i, e.. ^+eI 1 j k ik jk /k ijk-1 ijk

where is the overall effect

t^, the effect of the i^^ treatment
+-1^b^, the effect of the j replication

Pj^, the effect of the k^^ year

tik, the interaction effect of the i"*"^ treatment and k^^ year



•4

46

b., / the interaction effect of the replication and
^ year

is the partial regression coefficient of

(^ijk - r - - ^ik - ^jk' ®ijk-i ^ijk
error term attached to the observation Y. which are assumed

13k

independent among themselves and with other terms in the model

and normally distributed with mean zero and constant variance

O- 2say

The parameters of this model are estimated by the

method of least squares. For the estimation of treatment sum

of squares, a reduced model in which treatment x year

interaction is absent was considered for convenience and the

principle of least squares applied. In all these cases,

application of the principle of least squares did not lead to

closed form solutions to the normal equations owing to their

complicated nature. Therefore numerical solutions employing

on iterative procedure was resorted to obtain the estimates of

parameters as well as the various sum of squares required in

the analysis of variance.

The method developed is superior to the widely used

split-plot approach in two ways. First, the new methodology

considers the ground reality of dependence of error terms into

considerations and hence free from most of the criticism
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against the split-plot and others approaches. Second, it is

more sensitive in the sense of having more capability of

distinguishing between treatments owing to the lower

experimental error compared to the split-plot approach.

The new methodology as well as the split-plot approach

were illustrated using two different sets of data and the

superiority of the former demonstrated.
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Appendix I

Yield data pruning trial in cocoa

Years ^1 ^^2 ^3 ^4 ^5 ^6 ^7

^1 327 583 241 306 642 312 416

I
^2 198 146 247 322 333 218 477

^3 44 190 253 461 228 268 551

^4 297 45 270 158 383 135 127

^1 225 409 270 276 201 303 349

II
^2 175 187 94 380 382 294 187

R3 139 54 314 457 402 306 547

^4 212 183 169 103 312 105 169

^1 90 258 94 214 134 162 202

III
^2 72 96 89- 181 134 68 153

^3 85 26 134 296 239 192 244

^4 216 90 69 86 213 36 82

^1 168 440 162 287 344 193 456

IV
R2 121 162 148 305 215 199 268

^3 106 60 240 287 235 289 485

^4 430" 220 109 70 292 79 158



Appendix II

Date Variety/
replication

1 2 3 4 5 6

Ladack 2.17 1.88 1.62 2,34 1.58 1,66 11 .25

A Cossack 2,33 2.01 1,70 1.78 1.42 1,35 10 .59

Ranger 1,75 1,95 2.13 1,78 1,31 1,30 10 .22

6,25 5.84 5.45 5.90 4.31 4.31 32.06

Ladack 1.58 1.26 1.22 1.59 1.25 0,94 7.84

B Cossack 1,38 1.30 1.85 1.09 1,13 1,06 7.81

Ranger 1.52 1.47 1.80 1.37 1,01 1,31 8.48

4,48 4.03 4.87 4.05 3,39 3,31 S4.13

Ladack 2,29 1.60 1.67 1.91 1.39 1,12 9.98

C ~ Cossack 1,86 1.70 1.71 1.54 1,67 0,88 9.46

Ranger 1.5 1.61 1.82 1.56 1,23 1,13 8,90

5.70 4.91 5.30 5.01 4.29 3,13 28.34

Ladack 2.23 2.01 1.82 2,10 1.66 1,10 10.92

D Cossack 2.27 1.81 2.01 1.40 1.31 1.06 9.86

Ranger 1.56 1.72 1.99 1.55 1.51 1.38 9.66

6.06 5.54 5.82 5.05 4.48 3.49 30.44



ITERATIVE PROCEDURE

10 REM TO FIND THE VALUE OF AN EQUATION

20 DIM X(10,10,10), Z(10,10,10), E(10,10,10), AB(10,10),

AC(10,10), BC(10,10), EEldO)

30 DIM EB(10,10) , E(10,10), A{10), B(10), C{10), EEJC10,10)-,

EEI(10,10), Bl(lO), B2(10)

40 DIM SSI (10)

50 REM INPUT "NUMBER OF TREATMENTS (1)", NT

60 REM INPUT "NUMBER OF REPLICATIONS (J)", NR

70 REM INPUT "NUMBER OF YEARS (K)", NY

80 REM INPUT "INPUT DATA FILE NAME", N$

81 NT=3; NR=6; NY=4; N$="PR"

82 OPEN"0", #2, "POUT"

90 OPEN "i",#l,N$

10 0 Y1=0

110 FOR K=1 TO NY

120 CCK)=0; next K

130 FOR K=1 TO NY

14 0 FOR I =1 TO NT

150 AC(I,K)=0; NEXT IiNEXT K

160 FOR J=1 TO NR

170 FOR K=1 TO NY

180 BC(J,K)=0: EA(J,K)=0

190 NEXT K:NEXT J

20 0 FOR 1=1 TO NT

210 A{I)=0; NEXT I

220 FOR 1=1 TO NT

230 FOR J=1 TO NR

240 AB(I,J)=0; NEXT J:NEXT I

250 FOR K=1 TO NY:FOR 1=1 TO NT:FOR J=1 TO NR

260 INPUT #1,X{I,J,K)

270 Y1=Y1+X(I,J,K):AB(I,J)=AB(I,J)+X{I,J,K)



280 BC(J,K)=BC (J/K) + X (I,J,K):AC(I,K)=AC(I,K)+X(I,J,K)

290 A{I)=A(I) + X(I,J,K):C(K)=C(K)+X(I,J,K)

300 NEXT J:NEXT I:NEXT K

310 FOR K=1 TO NY:FOR 1=1 TO NT;FOR J=1 TO NR

320 Z(I,J,K)=X(I,J,K)-C(I,K)/NR-BC(J,K)/NT+(C(K)/(NI*NR)

330 NEXT J:NEXT I:NEXT K

340 RS1=0

350 FOR K=2 TO NY

360 S1=0:SS1=0:S12=0

370 FOR 1=1 TO NT : FOR J=1 TO NR

380 SS1=SS1+Z(I,J,K-1)*Z(I,J,K-1)

390 S12=S12+X{I,J,K)*Z(I,J,K-1)

40 0 NEXT JiNEXT I

410 B(K)=S12/SS1

42 0 FOR 1=1 TO NT

430 FOR J=1 TO NR

^ 440 Z(I,J,K)=Z(I,J,K)-B(K)* Z(I,J,K-1)
450 NEXT JiNEXT I

460 PRINT #2,"PHI(":K,")=",BCK)

470 NEXT K

480 FOR K=1 TO NY:FOR 1=1 TO NT:FOR J=1 TO NR

490 EA(J,k)=EA(J,K)+Z(l,J,K)

500 RS1=RS1+Z(I,J,K)*Z(I,J,K)

510 NEXT J:NEXT I:NEXT K

520 PRINT #2,"RESIDUAL SS=",RS1

530 REM ESTIMATAION OF TREATMENT MEANS

540 FOR 1=1 TO NT

5 50 TA=A(I)/(NR*NY) -Yl/(NR*NY*NT)

560 PRINT #2, "T(",I,")=",tA
-A

570 NEXT I

580 FOR K = 1 TO NY

590 FOR I = 1 TO NT

600 FOR J = 1 TO NR



610 Z(I,J,K) = X{I,J,K) -(ACI)/(NY*NR))
-(BC(J,K)/NT)+(Y1/(NY*NR*NT))

620 EEJ (I,K) = EEJCI,K)+Z(I,J,K)

630 EEI {J,K)=EEI(J,K)+Z(I,J,K)

640 IF K>1 THEN 660

650 E(I,J,K) = Z(I,J,K)

6 60 NEXT J:

670 NEXT I:NEXT K

680 KV=0

690 FOR 1=1 TO NT

700 EE1(I)=0

710 FOR K=1 TO NY

720 EB(I,K)=0 : SSI{K)=0

730 IF K=1 THEN EB(I,K)=EEJ(I,K)

74 0 NEXT K:NEXT I

750 FOR 1=1 TO NT

760 FOR K=2 TO NY

770 EEI (I) = EEI (I) +B(K)*EEJ(I,K-1)

780 NEXT K:NEXT I

790 SI = 0

80 0 FOR J=1 TO NR

810 FOR K=1 TO NY

82 0 IF K>1 THEN 84 0

830 EA(J,K)=EEI(J,K)

840 EA(J,K)=0:NEXT K:NEXT J

850 FOR K = 1 TO NY

860 FOR I = 1 TO NT

870 FOR J = 1 TO NR

880 E(I,J,K) = Z(I,J,K)-B(K)*E(I,J,K-1)+EE1(I)/(NR*NY)

890 EB(I,K) = EB(I,K) + E(I,J,K)

900 EA(J,K) = EA(J,K) + E(I,J,K)

910 NEXT J

911 S11=0:FOR KM=2 TO NY

920 S11=S11+EB(I,KM-1)*B{KM) :NEXT KM



9 21 S1=S1+S11*EB{I,K-1)

930 NEXT I:NEXT K:

9m0 FOR K=1 TO NY

950 FOR J=1 TO NR

960 SSI(K) = SSI(K)+EA(J,K)*EA(J,K)

970 NEXT J: NEXT K:

980 FOR K=2 TO NY

990 PHI = 0: PH2 = 0: SSE=0

100 0 FOR I = 1 TO NT

1001 PH2=PH2+ (A(I)*EB(I,K-1))/{NR*NY)

1010 FOR J = 1 TO NR

1020 PHI = PH1+X(I,J,K)*E(I,J,K-1)

1050 SSE=SSE+E(I,J,K-1)*E(I,J,K-1)

1060 NEXT J:NEXT I

1070 B1(K) = (PHI - PH2+S1/(NR*NY))/SSE

1080 PRINT #2, B1(K):NEXT K

1090 KV=KV+1

1100 PRINT #2,"CALCULATION FOR ITERATION", KV, "OVER"

1110 FOR K = 2 TO NY

1120 IF ABS(Bl(K)-B(K)) >.001 THEN 1150

1130 NEXT K

1140 GOTO 1210

1150 FOR K=2 TO NY

1160 B(K) = Bl (K)

117 0 NEXT K

1180 FOR 1=1 TO NT:FOR K=1 TO NY

1190 EEJ(I,K)=EB(I,K):NEXT K:NEXT I

1200 GOTO 690

1210 SSZ=0

1220 FOR K=1 TO NY:FOR 1=1 TO NT:FOR J=1 TO NR

1230 SSZ=SSZ+E(I,J,K)*E(I,J,K):EA(J,K)=0 :SSI(K)=0

1240 NEXT J:NEXT I:NEXT K

1250 REM CALCULATION FOR REDUCED MODEL OVER

1260 PRINT #2. "SSZ=",SSZ



>•

J

1270 SSEl=0:FOR K=1 TO NYrSSl(K)=0:FOR J=1 TO NR

EEI(J,K)=0:NEXT J:NEXT K

1280 FOR K=1 TO NY:FOR 1=1 TO NT:FOR J=1 TO NR

1290 Z(I,J,K)=X{I,J,K)+(BC{J,K)/NT)

130 0 EEI(J,K)+EEI{J,K)+Z(I,J,K)

1310 IF K>1 THEN 1360

1320 E(I,J,K)=Z{I,J,K)

1330 SSE1=SSE1+E(I,J,K)*E(I,J,K)

134 0 SSICK)=SSI(K)+E(I,J,K)*E{I,J,K)

1360 NEXT J

1370 NEXT IiNEXT K

1380 KV=0

1390 FOR J=1 TO NR

1400 EE1(J)=0

1410 FOR K=1 TO NY:EA(J,K)=0

1420 IF K=1 THEN EA(J,K)=EEI(J,K)

1430 NEXT K:NEXT J

1440 SSE=SSE1

1450 FOR J=1 TO NR:FOR K=2 TO NY

1460 EE1(J)=EE1(J)+B1(K)*EEI(J,K-1)

1470 NEXT K:NEXT J

1480 S1=0

1490 FOR K=2 TO NY:FOR J=1 TO NR:FOR 1=1 TO NT

1500 E(I,J,K)=Z(I,J,K)-B1(K)*E(I,J,K-1)

1510 EA{J,K)=EA (J,K) + ECI,J,K)

152 0 SSE=SSE+E(I,J,K)*E(I,J,K)

• 1530 SS1(K)=SSI(K)+E(I,J,K)*E(I,J,K)

154 0 NEXT I

1550 S1=S1+EACJ,K-1)*EA(J,K-1)*B1(K)

15 60 NEXT J:NEXT K

1570 FOR K=2 TO NY

1580 PH1=0:PH2=0

1590 FOR J=1 TO NRiFOR 1=1 TO NT

1600 PH1=PH1+X(I,J,K)*E(I,J,K-1):NEXT I



1610 NEXT J

1620 B2(K)=(PHl-PH2+(SI/NT))/SSI(K-l)

1630 PRINT #2CK):NEXT K

1640 KV=KV+1

1650 PRINT "CALCULATION FOR ITERATION",KV,"OVER"

16 60 FOR K=2 TO NY

1670 IF ABS (B2(K)=B1(K))>.001 THEN 1700

1680 NEXT K

1690 GOTO 1770

170 0 FOR K=2 TO NY

1710 B1CK)=B2(K)

1720 NEXT K

1730 FOR J=1 TO NR :FOR K=1 TO NY

1740 EEI(J,K)=EA(J,K):NEXT K:NEXT J

1750 GOTO 1390

1770 PRINT #2,"SSE =",SSE

1780 PRINT #2."TREATMENT SS=",SSE-SSZ

1781 CLOSE

1790 END



ABSTRACT

Analysis of variance model for the groups of

experiments needs modification, when observations are taken

repeatedly on the same experimental units owing to the

autocorrelated nature of error terms,. A model which takes the

dependence of error terms into consideration was evolved for

dealing such situations. But estimation of parameters using

least square principle and their tests of significance not

straight forward. Therefore numerical solutions using

iterative technique was employed for estimation of parameters

of the model.

The newly developed procedure was compared to the

widely used analysis of the split-plot setup and the

comparative advantage of the new method was established.

The new methodology along with the widely used

analysis of the split-plot set up were illustrated using tv70

different sets of data. The superiority of the new method

over the split-plot analysis was demonstrated in both sets of

data.
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