SEASONAL EVALUATION OF CAPSICUM SPECIES AND CULTIVARS FOR OLEO-RESIN RECOVERY

C. Mini, M. Abdul Vahab and P. Indira

College of Horticulture, Vellanikkara, Trichur, India

Abstract : Evaluation of nine chilli genotypes for oleoresin recovery under three different seasons identified Arka Lohit as the highest yielder of oleoresin. Genotypes were higher in oleoresin content during winter. Considering the fruit yield and oleoresin recovery together, summer was the best season for oleoresin yield.

Key words: Capsicum, oleoresin, seasonal evaluation, yield

INTRODUCTION

There exists considerable variability in chilli cultivars in respect of vield and quality of oleoresin (Mathew et al., 1971; Lewis, 1972; Pradeepkumar, 1990). In addition, the oleoresin recovery was influenced by the geographical origin of the sample, climatic condition, harvest maturity, post-harvest operations etc.(Menon, 1995). Generating information about the oleoresin yield of various chilli species and cultivars and finding out the best season of cultivation for maximum oleoresin recovery would be helpful for farmers to fetch more income. The present study was undertaken to evaluate different capsicum species and cultivars for oleoresin recovery with respect to different seasons.

MATERIALS AND METHODS

The influence of season on oleoresin yield was studied in the nine chilli genotypes presented in Table 1. The genotypes were evaluated in three seasons viz., summer (S1, Jan-March), rainy (S₂, May-July) and winter (S₃, Sept-Nov). The experiment was laid out in RBD with 27 treatments and three replications at the Department of Olericulture, College of Horticulture, Vellanikkara, Trichur during the period from 1993-1996. The plot size was 3.6 x 2.7 m² with 48 plants, spaced at 45 x 45 cm. All operations were carried out as per package of practice recommendations of the Kerala Agricultural University (KAU, 1993). Observations were recorded on days to flower, days to fruit set, days to harvest, number of fruits per plant, fruit yield per plant and oleoresin yield.

RESULTS AND DISCUSSIONS

Pooled analysis of variance over seasons showed that the season x cultivar interaction was significant for all the characters. Mean performance of cultivars for the characters over seasons is presented in Tables 2, 3 and 4.

Days to flower, fruit-set and harvest

Ujwala, a variety released from the Kerala Agricultural University, was the earliest to flower (75,78 days) and CA 645 lagged behind all other cultivars (118.33 days). The genotypes were late in winter (104.26 days). No significant difference was noticed for the days taken to first flowering between summer and rainy seasons. Ujwala was the earliest genotype (91.11 days) to set fruits and CA 645 was the late (132.11 days). With regard to season, genotypes took more days to fruit set in winter (118,2 days) than in rainy (112.48 days) and summer (109.6 days). CA 653 took maximum (171,11) and KTPL-19 minimum days (130.78) to harvest irrespective of season. With regard to season, the genotypes took more days to harvest during winter (158.51) than in summer (151.18 days) and rainy (146.17) seasons. The varieties were generally late in winter. Though winter in Kerala is not as distinct as in other temperate regions, the days are comparatively longer and warmer during summer months. The carbohydrate accumulation will be generally more during longer day of the summer and less amount will be utilized in respiration during short nights.

OLEORESEN RECOVERY FROM CAPSICOO

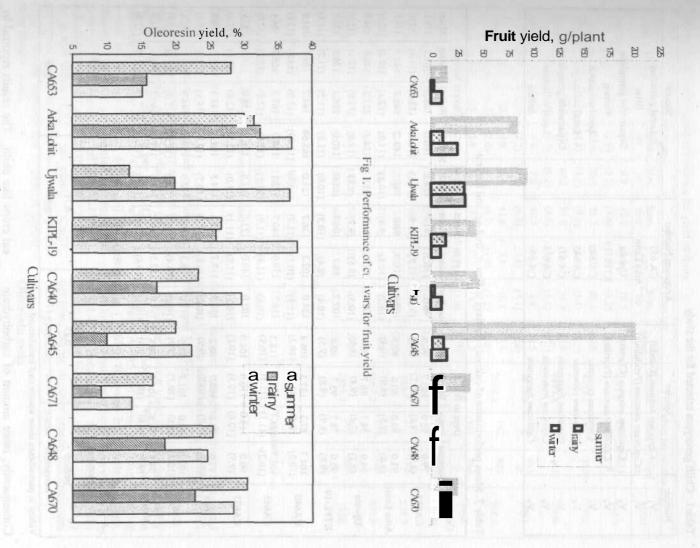


Fig 2. Performance of cultivars for oleoresin recovery

23

JOURNAL OF TROPICAL AGRICULTURE

Number	Species	Accession Number	Sources
V,	Capsicum annuum (Gundu)	CA 653	Local collection
V ₂	Capsicum annuum (Pendulous)	Arka Lohit	IIHR
V3	Capsicum annuum (Cluster)	Ujwala	Department germplasm
V_4	Capsicumannuum (Paprika)	KTPL-19	Katrain
V,	Capsicum chinense	CA 640	Local collection
V,	Capsicum chinense	CA 645	Local collection
V,	Capsicum fru tescens	CA 671	Department germplasm
V ₈	Capsicum fru tescens	CA 648	Local collection
V ₉	Capsicum baccatum	CA 670	Jammu

Table I. Chilli genotypes selected for the study

Table 2, Mean performance of cultivars for days to flower, fruit-set and harvest

Conotina	A street	Days to	flower			Days 10	fruit-set		Days to harvest			
Genotype	Summer	Rainy	Winter	Mean	Summer	Rainy	Winter	Mean	Summer	Rainy	Winter	Mean
04050	79,0	93 0	103.7	91.9	96,0	136.7	141,7	124.8	140,0	168.0	205.3	171.1
CA653	(8,9)	(9.6)	(10.2)	(9.6)	(9.8)	(1.7)	(11.9)	(11.1)	(11.8)	(12.9)	(14.3)	(13.0)
Arka Lohit	93,0	90.0	80.0	87.7	103,0	110.0	98.0	103.7	140.7	145.7	147.7	144.7
AlkaLollin	(9,6)	(9,5)	(8.9)	(9.4)	(10.2)	(10.5)	(9.9)	(10.2)	(11.9)	(12.1)	(12.2)	(12.0)
Ujwala	84.0		88.7	75.8	107.0	71.7	94.7	91.1	134.7	121.3	146.0	134.0
Ojwala	(9.2)		(9.4)	(8.6)	(10.3)	(8.5)	(9.7)	(9,5)	(11.6)	(11.0)	(12.1)	(11.6)
KTPL-19	95.0	78.7	95.7	89.8	107.7	88.7	106.7	101.0	140.0	126.3	126.0	130.8
KITE-IJ	(9.8)	(8.9)	(9.8)	(95)	(10.4)	(9.4)	(10.3)	(10.0)	(11.8)	(11.2)	(11.2)	(11.4)
CA640	104.7	87.3	127.3	106.4	124,0	102.3	136.7	121.0	168.69	144.7	169.7	161.0
CHOID	(10.2)	(9.4)	(11.3)	(10.3)	(11.1)	(10.1)	(11.7)	(10.9)	(12.99)	(12.0)	(13,0)	(12.7)
CA645	103.7				116.7	139.0	140.7	132.1	158.0	167.3	168.0	164,4
CITOTO	(10.2)	(11.1)	(11.3)	(10.9)	(10.8)	(11.8)	(11.9)	(11.5)	(12.6)	(12.9)	(12.3)	(12.6)
CA671	90.0	113.0	110.0	104.0	102.0	140.0	123.7	121.9	156.7	158.0	159.0	157.9
	(9.5)	(10.6)	(10.5)	(10.2)	(10.1)	(11.8)	(11.1)	(11.0)	(12.5)	(12.6)	(12,6)	(12.6)
CA648	97.0	94.0	103,7		115.3	115.7	113.3	114.8	161.0	142.3	165.3	156.9
1	(9.9)	(9.7)	(10,2)	(9.9)	(10.7)	(10.8)	(10.6)	(10.7)	(12.8)	(11.9)	(12.9)	(12.5)
CA670	103.0	92.0	101.7	98:9	117.0	108.3	110,7	112.0	159.0	144.3	162.0	155.1
	(10.2)	(9.6)	(10.1)	(9.9)	(10,8)	(10.4)	(10.7)	(10.6)	(12.6)	(12.0)	(12.7)	(12:5)
Mean	94.4	91.8	104.3	96.8	109.6	112.5	118.2	113.4	151.2	146.2	158.5	151.9
	(9.7)	(9.6)	(10.2)	(9.8)	(10.5)	(10.6)	(10.9)	(10.7)	(12.3)	(12.2)	(12.6)	(12.3)
					С	D (0.005)					
Genotypes 0.60				1.23					1.53			
	Season •			0,35	0.71						0.31	
Int	teraction		12	0.50		19 19	0	.28	194		0.31	

Values in parentheses show square root transformed values

Consequently, more amount of carbohydrate will be available for growth and development under the warm humid conditions of Kerala, favouring the flowering and fruit-set of tropical crops like chilli. The results reported by Balbaa *el al.* (1968) and Rylski (1972) provide evidence for the faster rate of growth in summer plants than in winter plants.

OLEORESIN RECOVERY FROM CAPSICUM

0		Fruits p	er plant		Fi	ruit yield	per plant ((g)	Fruit	yield pe	er hectare (kg)*		
Geno- type	Sum mer	Rain y	j Wint er	Mea n	Sum- mer	Rainy	Win- ter	Mean	Summe r	Rain V	Wint er	Mean	
CA652	5.0	3.0	6,7	4.9	12.7	3.3	10.9	9.0	(07.0	164.	164. 535. 4 8	142.5	
CA653	(2.2)	(1.7)	(2.6)	(2.2)	(3.6)	(1.8)	(3.2)	(2.9)	627.2	4		442.5	
Arka	Arka 51.7	11.9	23.4	29.0	81.7	12.0	26.4	40.0	4033.1	4022.1	591.	1305	1976
Lohit (7.2)	(7.2)	(3.5)	(4.8)	(5.2)	(9.0)	(3.5)	(5,1)	(5.9)	4055.1	6		19/6	
Ujwala	68.7	29.7	22.3	40.2	91.0	33.4	34.0	52.8	4493.8	1649	1677	2606	
UJwala	(8.3)	(5.5)	(4.7)	(6.2)	(9.5)	(5.8)	(5.8)	(7.1)	4495.0	.4 -	10//	2000	
KTPL-	11.3	4.9	4.8	7.0	40.9	14.2	9.4	21.5	2019,8	702.	463.	1061	
19	(3.4)	(2,2)	(2.2)	(2.6)	(6.4)	(3.8)	(3,1)	(4.4)	2019,0	7	2	1001	
CA640 8.3	8.3	3.0	4.0	5.1	41.8	3.3	10.1	14.6	2064.2	162.	499.	908,6	
CA040	(2.9)	(1.7)	(2.0)	(2.2)	(6.5)	(1-8)	(3.2)	(3.8)	2004.2	5	3		
CA645	53.0	5.3	5.6	21.3	197.8	10.8	15.5	74.7	9769.9	531.			
CA04J	(7.3)	(2.3)	(2.4)	(4.0)	(14.1)	(3.3)	(3.9)	(7.1)	9709.9	4	0	5000	
CA671	30.0	5.1	5.0	13.4	34.8	2.4	4.3	13.8	1718.5	117.	213.		
CAUTI	(5.5)	(23)	(2.2)	(3.3)	(5.9)	(1.5)	(2.1)	(3.2)	1710.5	0	8		
CA648	5.6	4.2	4.0	4,6	5.3	4.4	3.8	4.5	263.7	215,	185.	221.7	
011040	(2.4)	(2.1)	(2.0)	(2.1)	(2.3)	(2-1)	(1.9)	(2.1)	200.1	8	7	221.7	
CA670	2.8	1.4	1.3	1.8	21.6	5.1	7.7	12.8	1067.2	250.	380.	631.6	
CHOIO	(1-7)	(1.2)	(1.1)	(1.3)	(4.7)	(3.0)	(2,7)	(3.5)	1007.2	4	2	051.0	
Mean	26.3	7.6	8.6	14.2	58.6	10.3	13.6	27.5	2895.3	509.	669.	1358	
mean	(4.5)	(2.5)	(2.7)	(3.8)	(6.9)	(2.9)	(3.5)	(5.2)	2055.5	1	1	1550	
						CD (0.0	05)						
Genotypes 1,80			1,80			3.04		1 0 M 1 1 0 0 1 1 1					
5	Season	10 - N		1.02		1.80			*Calculated values			s	
Int	eraction			0,33			0.40		10.19.11				

Table 3. Mean performance of cultivars for yield of fruits

Values in parentheses show square root transformed values

Fruits per plant

Ujwala had maximum number of fruits per plant during summer and rainy seasons (68.67 and 29,67). During winter, Arka Lohit produced more number of fruits per plant (23.43) followed by Ujwala (22.33). CA 670 was the lowest in fruits per plant during all these seasons. In general, Ujwala was the best genotype for production of fruits (40,22) followed by Arka Lohit (29,0). CA 670 had the lowest fruits (1.83) per plant. Chilli genotypes produced maximum fruits per plant (26.27) during summer and minimum during rainy season (7.63).

Fruit yield per plant

Fruit yield per plant was maximum (197,84g) for CA 648 and minimum for CA 648 (5.34g)

during summer season. During rainy and winter, Ujwala had maximum yield per plant (33.4 and 33.97g).

CA 671 had lowest yield (2.37g) during rainy season and CA648 (3.76g) during winter. In general, CA 645 had maximum fruit yield per plant (74.69g) followed by Ujwala (52.79g). The lowest fruit yield was observed in CA 648(4.49g) irrespective of season. Chilli genotypes produced maximum yield (58.63g) per plant during summer season and minimum (10.31g) during rainy season.

Oleoresin yield

Significant difference was noticed among genotypes and seasons for oleoresin yield. CA 670 gave maximum percentage of oleoresin (30.4%) during summer and Ujwala,

the minimum (13.33%). During rainy season, maximum percentage of oleoresin was produced by Arka Lohit (32.43) followed by KTPL-19 (25.87). KTPL-19 had the highest oleoresin percentage (37.83) during winter. followed by Arka Lohit (37.0). CA 671 was poor in oleoresin during rainy and winter seasons (9.2 and 13.63%). In general, Arka

Genotype		Yield of ol	coresin (%)		Yie	Yield of oleoresin per hectare (kg)*				
Genotype	Summer	Rainy	Winter	Mean	Summer	Rainy	Winter	Mean		
CLUD	28.1	15.8	15.2	16.9		FC	47.0	15.9		
CA653	(5.3)	(4.0)	(3.8)	(4.3)	37:0	5.0	17.3			
Arka Lohit	30.0	32.4	37.0	33.1	272.2	12 6	100.1	147.6		
Alka Lonit	(5.4)	(5.7)	(6.1)	(5.7)	212.2	43.0		147.0		
Ulivala	13.3	19.9	36.7	23. X	121.6	67.8		126.6		
Ujwala	(3.6)	(4.5)	(6.0)	(4.7)	121.0	07.0	125.5	120.0		
KTPL-19	26.7	25,9	37.8	30.1	107.7	Rainy Win 5.6 17. 43.6 10% 67.8 125 38.2 35. 5.9 30. 11.2 35. 2.4 (>. 9.1 14 10.9 20. 19.fi 3X.	25.0	64.9		
KIPL-19	(5.0)	(5.1)	(6.1)	(5.4)	107.7	30.2	Winter 17.3 109.1 125.5 35.8 30.0 35.0 (>.4 14.0 20.5 3X.7	04.9		
CA640	2.13	17.3	29.6	23,4	96.8 5.9	20.0	42.9			
CA040	(4.8)	(4.2)	(5.4)	(4.8)	90.8	5.5	.50.0	42.5		
CA645	20.0	to.0	22.3	17.4	202.7	41.2	17.3 11 109.1 14 125.5 12 35.8 64 30.0 42 35.0 12 (>4 14 14.0 11 20.5 24 3X.7 65	129.8		
CA045	(4.4)	(3.2)	(4.7)	(4.1)	392.1	11.2		. 127.0		
CA671	16.7	9.2	13.6	13.2	62.0	19461. 129		19.8		
CAOT	(4.0)	(3.0)	(3.7)	(3.6)	03.0	2.4	(>.4	17.0		
CA648	25.4	18.4	24.6	22.9	14.7	01	14.0	12.6		
CA040	(5.0	(4.3)	(4.9)	(4.8)	14.7	2.1	14.0	12.0		
CA670	30.4	22. 8	28.4	27.2	107.7 38.2 96.8 5.9 392.7 11.2 63.0 2.4 14.7 9.1 61.3 10.9	20.5	29,1			
CAUTO	(5.5)	(4,8)	(5.3)	(5.2)	01.5	10.7	20.5	27.1		
Mean	23.8	19.1	27.2	234	141.8	10.6		65.6		
wican	(4.9)	(4.4)	(5.2)	(4.9)	141.0	13.11	37.1	05.0		
CD (0.05)										
Genotypes		1000	0.56		Inela (mai					
Season		1021103.95	0.32		1451 115	*Calculated values				
Interaction		STOR OTHER	1.85		PHE-HIGH					

Table 4,	Mean	performance	ofcultivors	oleoresin yic	ble
----------	------	-------------	-------------	---------------	-----

Values in parail heses show square root transformed values

Lohit and KTPL-19 were on par (33.14 and 30.12%) in oleorcsin content. Considering the yield and oleoresin content together, Arka Lohit, a pendulous *Capsicum annuum* variety could be ranked first for oleoresin yield per unit area. The total oleoresin yield in Ujwala was third in ranking considering three seasons which is next to Arka Lohit and CA 645. Excluding summer, Ujwala was exceedingly superior in fruit and total oleoresin yield per plant. CA 671 was the poorest oleorcsin yiclder (13.17%) irrespective of season. With regard to seasons, the genotypes grown during winter had maximum oleorcsin (27.24%) followed by summer (23.75%) and rainy

season (19.13%). But with respect to yield per plant, genotypes were generally superior in summer. Considering the fruit yield and oleoresin content together, summer was the best season lor total oleoresin yield per unit area. The poor olcoresin content in summer was compensated by the higher yield.. This is in accordance with Waller and Nowacki (197S) who found that the increased alkaloid content was seen under climatic conditions of water stress.

ACKNOWLEDGEMENT

This paper forms a part of the Ph.D thesis of

Agricultural University.

REFERENCES

- Balbaa, S.L., Karawya, M.S. and Girgis, A.N. 1968. The capsicin content of capsicum fruits at different stages of maturity. Llovdia 31:272
- KAU. 1993. Package of Practices Recommendations Crops. Directorate of Extension, Kerala Agricultural University, Mannuthy, Thrissur
- Lewis, Y.S. 1972. The importance of selecting the proper variety of a spice for oil and oleoresin extraction. Proc.Int.Conf. Spices, Trop. Inst. London. 183

- the senior author submitted to the Kerala Mathew, A.G., Lewis. Y.S., Jagdishan, R., Nambudiri, E.S. and Krishnamurthy, N. 1971. Oleoresin Capsicum. Flavour India. 2:23-26
 - Menon, K.R.K., 1995. Colour in chillies. Spice India, Dec 11-13
 - Pradcepkumar, T.1990. Interspecific hybridisation in capsicum. M. Sc, (Hort.) thesis, Kerala Agricultural University ., Trichur
 - Rylski,I.1972. Effect of early environment on flowering in pepper (C.annuum). J. .Am Soc. hort. Sci. 97:648-651
 - Waller, G.R. and Nowacki, E.K. 1979. Alkaloid Biology and Metabolism in Plants. Plenum Publishers, New York and London, 85-96

and a stand of the surgers of the