EFFECT OF SEASON AND POSITION OF BUD IN BUDDING OF ROSE

BY
ANITHA, I

THESIS
submitted in partial fulfilment of the requirement for the degree
MASTER OF SCIENCE IN HORTICULTURE Faculty of Agriculture
Kerala Agricultural University

DEPARTMENT OF HORTICULTURE COLLEGE OF AGRICULTURE
VELLAYANI, TRIVANDRUM

DECLARATION

I hereby declare that this thesis entitled EEffect of season and position of bud in budding of rose" is a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship, or other similar title, of any other University or Society.

CEMTIEICATE

Cortified that this thesis: ontitled Effect of season and position of bud in budding of rose is a record of research vork done indopondently by Kum. ANTIHA, I under my guidance and suparvision and that it has not previously formed the basis for the award of any degree. fellowghtp or assoctateship to her.

College of Agricultures Vellayant. 12.12 .1989

APPROVED BY:

CHAIRMAN:
Dr. S. Ramachandran Nair, Professor and Head.
Department of Horticulture, College of Agriculture, Vellayans.

MEMBERS:
Dr. N. Mohanakumaran, Associate Director, NARP (Southern Region),
Kerala Agricultural University. College of Agriculture, Vollayani.

Dr. N. Krishnan Nair, Professor and Head,

- Department of Agricultural Botany, College of Agriculture, Vellayani.

Dr. (Mrs.) D. Saraswathi,
Associate Professor.
Department of Agricultural Statistics, College of Agriculture, Vellayani.
external examiner formigef . 28104190
(J.V.NARAYANA GOLDA

I wish to expross my heartfelt gratitude and indebtness to :-

- De. S. Mamachandran Nair. Professor and Head. Department of Horticulture and the Chaiman of my Advisory Committee for suggesting the topic, valuable guidance and constant encouragement during the course of investigations as wall as during the proparation of the thesis.
- Dr. N. Hohanakumaran. Associato Director: NARP (SR), for his healthy criticism and constructive suggestions in improving the quality of this thesis work.
- Dr. N. Krishnan Nair, Professor and Head, Department of Agricultural Botany, Dr. (Mrs.) P. Saraswathy, Associate Professor. Dopartment of Agricultural Statistics, for their valuable guidance and encouragement at all stages of this study and in the preparation of the thesis.
- Dr. K, Vasanthakumar, Associate Professor, Department of Horticulture, Sri. R. Balakrishnan Asan, Assistant Professor (Stat.), NARP (SR) for their sincere help in the preparation of the thesis.
- All the staff members. Department of Horticulture, for their valuable comoporation and encouragement during the course of research work.
- Sri. P. Rajendran, Assistant Professor, Department of Soil Science and Agricultural Chemistry for his advice and help during the chemical assay.
- Sri. C.E. Ajithkumar, Junior Programmer, for his help in the statistical analysis of the data.
- Labourers in the field for their manual efforts.
- Friends for their understanding, love, help and encouragement showered on me.
- My parents, brothers and sister Usha, for their valuablo help during the course of this study.

Korala Agricultural University for the fellowship made available to me.

- Sri. S. Raghavan who showed much pationce and interest in typing this manuscript correctly and finally,

Sri. C. Madhusoodanan Nair. Duplicator Operator for his sincere assistance.

CONIENTS

Pages

I INTRODUCTION $1-3$
II REVIEH OF LITERATURE 4-26
III MAIERIALS AND METHODS $27-40$
IV RESURTS 41- - 117
v DISCUSSION $118-146$
VI SUMMARY $147-152$
REFEREMCES
APPENDICES
ABSTRACT

LIST OF TABLES

Tablo Title Page
1 Success in budding in different months during 1987 42
2 Effoct of weather parameters on bud take percentage 45
3 Regression of bud take percentage on weather parameters 47
4 Direct and indirect effects of weather parameters on bud take porcentage (lag +1) 48
5 Direct and indirect effects of weather parameters on bud take percentage (lag 0) 50
6 Direct and indirect effects of weather parameters on bud take percentage (lag -1) 52
7 Direct and indirect effects of weathor parameters on bud take percentage (lag -2) 55
8 Effect of period of budding on vegotative characters before the appearance of first flower 57
9 Effect of period of budding on first flower characters 60
10 Effect of period of budding on subsequent growth and flowering characters 62
11 Effact of variety on vegetative characters before the appearance of first flower 65
12 Effect of variety on first flower characters 66
Table Title Page
13 Effect of variety on subsequent growth and flowering characters (2nd crop) 67
14 Effect of bud position on vegetative characters before the appearance of first flower bud 71
"15 Effect of bud position on inst flower characters 72
16 Effect of bud position on subsequent growth and flowaring characters 73
17 Interaction effect of period of budding x variaties on vegetative characters before the appearance of first flower 78
18 Interaction offoct of poriod of budaing x variaty on first flower charactors 79
19 Intoraction effect of period of buddingx varlety on fubsequent grouth andflowering ($2^{\text {na }}$ crop)80
20 Interaction effect of variety x position on vegetative charactors before the appearance of first flower bud 86
21 Interaction effect of varioty x bud posi- tion on first flower characters 87
22 Interaction effect of variety x bud posi- tion on subsequent growth and flowering (2nd crop) 88
23 Interaction effect of period of budding x bud position on vegetative charactors before the appearance of first flower bud 92
24 Interaction offect of period of budding x bud position on first flower charactors 93
Table Title Page
25 Interaction effect of period of budding x bud position gn subsequent growth and flowering ($2^{\text {nd }}$ crop) 94
26 Correlation coefficients botween the thirteen blometric characters 98
27 Seasonal and varietal distribution of C / N ratio 104
28 Correlation of C/N ratio and bud take 107
29 Effect of season on C / N ratio, N $\%$ and CHO\% 108
30 Effect of varlety on C/N ratio, N\% and CHO\% 108
31 Effect of position on C/N ratio, $N \%$ and С $\mathbf{H} 0 \%$ 111
32 Intoraction effect of season x variety on C/N ratio, N\% and CHO\% 113
33 Interaction affect of variety x position of bud on C/N ratio, N\% and CHO\% 115
34 Interaction effect of season x position of bud on C / N ratio, $\mathrm{N} \%$ and CHO 116

LIST OF FIGURES

Eicure Descriotion Between
1 Success in budding in different months during 1987 $43-44$
2 Bud take percentage and weather parameters during 1937 $46-47$
3 Path diagram showing the direct effects and inter-relationships of bud take percentage with four meteorological parameters $55-56$
4 Correlation diagram $99-100$
5 Seasonal and varietal distribution ofCHO N and C / N ratio105-106

LIST OF APPENDICES

S1.No.

I Weather parameters for 1997
II Average number of days for fall of petiole
III Average number of days for bud emergence
IV Average number of days for first leaf emergence
V Average number of leaves till first flower bud
VI Average height of scion till first flower bud
VII Average number of days for first flower bud production
VIII Avarage size of first flower
IX Average number of petals in first flower
X Average number of subsequent shoots
XI Average number of second crop flowar buds
XII Average number of days taken for second crop flower
bud production
XIII Average number of petals in second crop flowers
XIV Average plant height after secord crop flowering
XV Seasonal and variotal distribution of CHO, N and C/N ratio

INTRODUCTION

INTRODLCTION

Rose, the 'Queen of flowers' is probably the most important flowar crop in tho world. Inspite of this, the research on roses lags behind that on other major flower crops such as chrysanthemum and carnations, probably becauss of the experimental difficultias encounterod.

Down through the centuries long ago, the written word, the rose of legend has cast its spell, influeneing man and history. Because, it was known to man from his first days, the rose quite naturally became a part of ceren monial life. No other flower has appeared more frequently in literature and feis subjects have recelvod as much attention.

The hybrid tea roses, especially the bicolour and those bearing bloom of orange and apricot shades may take considerably longer time to root from cuttings and are best budded on to rootstocks. Budding is more certain of suecess, though the use of modern hormone preparations now makes it oasy to root cutilings (Genders, 1965). One great advantage of budding is that a strong flowering plant could be established in a poriod slichtly oxceeding a year, which is about half the period taken when propagatod from cuttings.

Generally 'T' budding or shield budeding is the method adoptod for roses.

Although some research works have been conducted on propagation aspects of rose in Indla, the best season for propagation by budsing, particularly the seasons specific to different locations have not boen worked out. In comercial practice eventhough rose budding is done throughout the year by nursery men and others, there are coxtain specific periods of the year during wich maximum percentage of success could be obtained. The success varies from locality to locality. The sultable season for budding should, therefore, be sorted out for each region. The time and the season are not the only factors controlling the success of budding. The position of bud has profound influence on the bud take. For the selection of the best bud, nursery men have their own choice. Although several studies were conducted on the "position offect" of buds in pruning. anatomical works and in vitro culture (ziesiln et al., 1976 and Zamski ot a1., 1985), the studies conducted on budding and successive growth characters of scion are rather meagre In spite of the importance, which are otherwise important as far as commercial multiplication of roso is concorned.

The correct stage of bud coupled with optimum environmental conditions and nutrient status of the plants will being about higher percentage of success in budding.

The present study, undertaken to achiove these objoctives, was conducted at the Department of Horticulture, Colloge of Agriculturo, Vollayani during 1987. Unlike in the case of fruit erees, very ifthlo is known about the specific boneficial offects of rose scotstocks. Research conducted till date has focused on the practical evaluation of varlous rootstocks. The rootstock rocommended for South Indian conditions 'Briar' (Bosa multiflora), has boon selected for the study. Three scion varieties and five bud positions of scion were salectod for throwing light on position effect of variaties. Eventhough past work on the effact of nutrient status, or carbohydrate and nitrogen content of the scion buds and rootstocks on the success of budding has beon Ilmited an attempt has been made to unravel tho information.

REVIEWV OF LITERATURE

REVIEM OF LITERATURE

Rose is an important flower crop which is grown comnercially in several parts of the Country. tanuch work has been done on improvement, propagation and management of the crop. But very little work has been done on this crop with regard to the suitability of season for budding in the different localities and on the position effect of the buds on the success. The available literature on prom pagation aspects of rose and allied crops rolated to this study, has been reviowod here.

Rootstocks
The choice of rootstock is an important aspect in the propagation of roses. Swarup (1967) reported that in South and East India, Rose multiflora is generally used as the rootstock for budding of rose varieties.

Singh (1972) found that, bud take was better on Rosa bourboniana and Ross multiflors than on Rosa moschata. Bud mortality and bud break were both affected by rootstock, scion, time of budding and their interactions. Lurdstad (1974) also raported similar rosults. The cultivars he oxperimented, flowered prolifically on Rosa multiflosa cv Japonice rootstocks.

Pandey and Sherme (1976) found Roga multiflosa Thunb (a form of 'briar ${ }^{\text {' }}$) to be superior in respect of bud take, bud sprout, plant vigour and flower bud production to R. bourboniena Desp. (Edward, non flowering typo) and R. Indica Lour. var. Odorata Audr. sootstocks.

Mukhopadhyay and Banicar (1932) revealed that roses budded on R. multiflora rootstocks gave slightly botter results than those on Rosa qudica with regard to shoot length, flower number, plant spread and export quality flowers for June and November prunsd plants. Lal and Sath (1984) confirmed that Rosa multiflora, is a good rootstock for budding, which recorded 96 per cent bud take, for cv . Superstar. On other spocies, the cultivar recorded 76 to 92 por cent take.

Studies on propagation
Methods
Generally, roses are propagated by 'T' budding or shiold budding as establishod by Wolls (1955), Mahlstede (1957), M\&11er and Synge (1971). Nanjan 这 ah., (1971) and Pal (1972). wild roses can be propagated by planting the cuttings. Rojas in 1972 racommended that for rapid propagation of rose bushes, easily rooting cuttings of Rosa multiflora j aponica were I budded or shield budded with
various rose cultivars and rooted in polythene bags oither outside or Inside the greenhouse. Moss and Dalgleish (1982) recommended propagation of Rose multifiora rootstock cuttings in a modium consisting of 50:50 pat sand or perlitepeat moss mixture uniox mist. Rooted cuttings were potted individually, Tobudded and grown in the greonhouse for producing saleable bushes within a poriod of five months.

Early and continuous removal of rootstock growth after budding (snagging) stimulated early scion growth in autumn and the following spring whareas later snagging induced more growth in early summer. Reduction of rootsteck length produced good seion growth; but not so much as with its complete removal (Estcout, 1974). Fann 䢂 al.: (1983) found that the rootstock above the graft must be pruned to overcome the inhibition of scion apices. The axillary buds In the rootstocks are necessary for establishment of adequate Initial root system; but they should be removed early in the growth cycle to maximise scion development and to reduce the time for production.

Effect of time on propagation
The success of bud take and sprouting of the bud are largely governed by the thmo of budding. Genders (1965)
reported that the budding on the rootstocks commence by the middle of July and may contimue almost till the ond of September. The correct time of budding uill depend moetly upon the weather conditions. If a period of dry weather is experienced, successful buiding is difficult. Pal (1972) reported that the bost time for budding in and around Dolhi is from the ond of October to carly March. In places with a mild climate as in Bangalore, year-round budding can be practiced. In other areas it is better to follow the local oractice.

Maiti (1974) reported 80 to 93 per cent success when budiling was done at weokly intervals, during DecemberJanuary. However, the percentage of success with floribunds scions decreased with later planting dates. An increase was noted with hybrid tea roses.

Nanjon and Kumar (1933) conductod a two-year trial at monthly intervals with 16 cultivars budded by two mathods (T-budding and chip budding) between January and December at Yercaud. The mean percentage bud take was over 30 from January to June. Thereafter, the success declined to 52 to 55 per cent in August and Septenber and then, the take rose again;

Soveral such studies havo beon repoxted in related crops.

Based on his studies with stone frust trees (cherry, almond, cherry plum, apricot and peach) and pore fruit trees (apple), Syrbu (1975) recomended the optimal time for budde ing to bo not later than oarly August and not later than midmAugust, respectivoly. Galkina (1979) observed that in apples, bench grafting in November gave 51.6 per cent good quality graits, but grafting in January and March gave only 41 and 21 per cent, respectivaly. For November grafts, the buds wore in a dormant state which took longer tim to unito (2l-25 days).

Ugolik (1981) found that in sour cherry the success of budding was greatest (81.4 por cent) for plants budded on $11^{\text {th }}$ July and it decreased to 65.5 and 41.2 per cent for trees budded on $29^{\text {th }}$ July and $a^{\text {th }}$ August respectively. Aswathi st Alo: (1982) reported highestisuccess (65.6 to 83.3 per cent) for walnut on first June, the plant survival being 93 to 100 per cent. For peach, kudaing from late June to early August gave 69 to 82 per cent success whereas budding after August $10^{\text {th }}$ gave only 48 to 53 per cent Shehorbakova and Maslova, 19327. The best results in pecan nuts
wore obtained (90 per cent), followed by side grafting (80 per cent) in August (Misra 1985).

The ideal months for veneer grafting of mango in Taral was foum to be June to August by Ram and B1st (1982) during which period 100 per cent take was observed. The highest mean success in soft wood grafting of cashew was obtained in August (83.66%) and April (93%) and the lowest (22.33\%). in December (Sawke at alo, 1995). Invorted T-budding of Kinnow mandarin on Citrus jambhiri seediing rootstocks during May gave the highest success of 90 per cent (Joolka, 1985).

Effect of enviromental factors
Shippy (1930) conducted detalled studies on the influence of environment on callusing of apple cuttings and grafts. The complete range of temperature permitting the formation of callus from apple cuttings and grafts was found to lie between 0° and $40^{\circ} \mathrm{C}$. At $3-5^{\circ} \mathrm{C}$ only a small amount of callus developed during a period of several months. Between $5^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$. the rate of callus formation increased and the time elapsing before attalmment of final volume decreased with rise in temperature. At temperatures above $32^{\circ} \mathrm{C}$. injury usually resulted and at $40^{\circ} \mathrm{C}$ death of the
tissues, accompanied by mould fomation, always occurred within the first few days. Callusing was accelerated or retarded according to the degree and duration of the temperature. Air moisture below saturation was genarally found to be inhibiting in their effect on callus formation, since below this point desiccation of the tissuee occurred. A film of water enclosing the cutting, appeared to provide the most favourable conditions for bringing about unifors callusing. Desiccation of callus tissue was accolerated by increase in temporature and decrease in humidity. Proper aeration was found to be important for callusing. Ho found that these are true for Rose spp. also.

Lundstad (1972) studied the effect of different climatic conditions (in the open, in a Phytotron of in a growth room) on the budding of roses on Rosa multiflora and Hosa ganina var. Schmids Ideal. He found that the use of plastic tumels over the plants in the open for a weok beo fore and four weeks after the budiding significantly increased the number of budded plants. In Phytotron, eltorations In the temperature after budding resultad in reduced growth and bud take on both the rootstocks compared with the controls at a constant temperature. Tvo levels of relative humidity.

40 and 70 por cont, did not show any difference in plant helght, neck diameter or shoot length; but bud take was less with Ross multiflora at the lower relstivo humidity. In a growing soom with additional illunination, growth was slight and almost no buds united at $6^{\circ} \mathrm{C}$, whereas at $18^{\circ} \mathrm{C}$, the percentage take was excellent.

Moe (1972) studied the interrelated effects of temper rature day length and light intensity on the growth and flowering in roses, and found that incraasing the day length inhibited bud break while high temperature hestened it. Ahigar (1973) pointed out that for apple highest number of one year old trees was obtained with early budding (ond of July, August) when the sum of active temperatures (above $10^{\circ} \mathrm{C}$) curing the $22-30$ days after buddeng was $590-738^{\circ}$.

Korobov (1976) budded roses from $10^{\text {th }}$ July to $3^{\text {rd }}$ September at 10 days interval and the material was anatomically examanad at interval during the autumn. He observed thet temperature between $16^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ was optimurn for union in garden roses.

Buds of the rose cv. Sugandha were budded on Rosa indica rootstocks in Jamary and the plants were kept under redlight, clear white light, diffused sunlight or direct
sunlight. The guickest take (3.3 days) and the highsst. take (100\%) wers obtained under direct sunlight. Bud losses under diffused sunlight, redilght and white light were 25, 50 and 70 per cent, sespectively (Maharana and Singh, 1978).

Singh at al. (1979) reported significant positivo correlation of methods, especially budding and inarching. with minimum temperature and rainfall and found that the success was retarded where there was departure of any of the four meteorological indices (maximum temperature, ninimum temperature, relative humidity, rainfall) from the ideal combination. Savin (1990) conducted experiments in apple and sour cherries and showed that in apples, the union between the graft components took place both at low ($5^{\circ} \mathrm{C}$) and high ($30^{\circ} \mathrm{C}$) temporatures; but the best results were obtained by stratifying the grafts at $25^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ during the first 4-5 days followed by -10 days at 5° to $10^{\circ} \mathrm{C}$. In sour cherries, union was best at $25^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ and no union occurred at temperatures lower than $20^{\circ} \mathrm{C}$.

Khosh-Khui and Sink (1992) conducted micropropagation studies on the leaf and ster explants of Rosa manetti
and Rosa hybridg cv. Tropicana on different medias like Murashige and Skoog (MS), Schenk and Hildebrandt (SH) or Gamberg and wetter ($1-\mathrm{B}_{5} \mathrm{C}$). The explants ware then cultured in darkness or light at $26^{\circ} \mathrm{C}$. Friable fast growing callus was evident after three waeks for both species. Callus initiation occurred fastor in darkness than in light, but deteriorated when continuously subcultured in the dark.

Effoct of position of bud
Genders (1965) found that the bast buds wore those at the middle of the stem, baing in just the right comition. Those at the top of the stom were too advanced while those at the base were not sufficiently mature. Lundstad (1965) also reported, after studying the offect of source of budwood in roses, that mature berds appeared to give better success. Statens (1969) observad that the use of buds of different degrees of ripeness had no clear effect on the percentage of successful unions: but mature buds appeared to give the begt results. Rupperecht (1971) reported that a careful selection of scion wood from mature vigorous mother plants and of buds themselves ensured better success in budding of roses.

Ziesiln and Comorkers in 1976 studied the components of axillary bud inhibition in rose plants through a series of four different experiments. In the first experiment Zieslin and Halevy (1976), varlous lavels of pruning were applied to the rose ev . Baccara under glass and removal of uppermost bud was found to enhance sprouting of the buds immodiately below.

In a socond oxperiment (Ziesin at al. 1976) the effect of bud position on the degree of inhibition was studied. They found that the latoral buds at difforent positions along the shoots (2nd, 3rd, 4th, 6th or ath bud from the bottom up) differed in their ability to sprout, those lowest on the branch being the most inhibited. The degree of inhibition differed between the three cultivars investigatod (Baccara, Sonia and Bolinda which produced long, medium-iong and short flowaring shoots, respoctively.) The response was similar in the cultivars.

> In the third experiment, Zieslin and Halevy (1978) studied the offect of stes orientation and bud position on the stom on the success rate, by budding in glasshouse rose cv. Baccara. Laying the stems horizontally resulted in the sprouting along the stem of all the upward oriented buds
and inhibition of the downward oriented buds. Shoot growth was intermittent, a long shoot was succeoded by a short shoot. Upper buds (which wore uninhibited in situ) wore inhibited when budded on the basal part of the stem. On the other hand, besal buds retained part of their inhibition when they were budded on the upper part of the stem.

In the fourth experiment, Zieslin et aj. (197e) studied the inhibitory activity of plant extracts. The stem extracts of the rose, cv. Baccara inhibited sprouting when applied to the uppormost buds of rose shoots and also prevented slongation of wheat coleoptiles in bioassay. The inhibitory activity was proportional to the amount of extracted tissue. The level of endogenous abscissic acid (ABA) was found to be higher in the basal than in the upper part of the rose sten.

VanStaden in 1932 studied the transport of zeatin from the mature leaves, aftor shoot decapltation. He found that after shoot decapitation, the cytokinins wore transported from the subtending leaves towards their axillary buds in the upper part of the shoots. According to him, this transport augnented the cytokinins already present in the
buds and apparently accolerated their growth.

Zamski at al. (1985) conducted detailod studies on the comparative morphology and anatomy of axillary buds on a rose shoot. The lateral buds of rose plants (of the greenhouse cv. Baccara) were separated into three groups according to thair position in the axils of different leaves along the shoot. The first group of buds, in the axils of the uppermost leaves with one or three leaflets beneath the terminal flowor, were sylleptic ie, they grew continuously from their initiation without periods of inhibition. The second group of buds in the axils of the lower leaves were proleptic in that they underwent a period of inhibition at a very early stage, thus developing fewer and smaller amounts of parenchyma cells in the pith. The buds located between groups, 1 and 2 in tho axils of seven leaflat leaves and upper five leaflets wero also proleptic; but leaf primordia continued to form during inhibition. Buds in the axils of the upper and the lowar five-leafiet leaves had the same growth potential. Howovor, there was one week growth dalay of the lower buds, indicating a stronger inhibition state of the bud. The leaves of the lowor half of the shoot were present as primordia in the mother bud which produced the
shoot. This section comtainod the inhibltod proleptic buds, suggesting that the lower axillary buds were influene ced, on formation, by the physiological conditions prevailing in the leaf primordia axils before the bud sprouted.

In the in vitro propagation studies of "Golden Times" roses, Medoros and Rodriguez (1987) found that nodes taken from the middle of a shoot gave better results than nodes from the apical or basal parts of the shoot.

In an allied crop apple, Dayton (1976) observed the importance of scion selection for grafting. According to him, the new growth from the uppormost bud on each of the distal graft sticks did not start growth until 13 days aftor grafting. Savin (1976) found that in the red leaved rootstock cv. Paradise and the hybrids 57 to 490 and 57 to 146 , take was always better when the grafting material was from the basal part of the shoot. The success was poor when the grafting material was obtained from the shoot tips and this was attributed to their lowor starch and higher suger and wator content.

Biometrical characters of roses
Haenchen (1967) observad that the growth of the budded
scions was affected by the variety, rootstock, the skill of the budder etc. fith Ross multiflora rootstocks, there was a correlation betwaen the losses occurring during the period between budding and lifting of the bushos for sale and the root collar dianster of the rootstocks at planting. Pal (1972) pointed out that if the leatstalk or petiole drops off cleanly next to the bud, this is a good indication that bud has united, ospocially if the bark pieca retains its green colour and the bud stays plump. Rojas (1972) studied the propagation of bush roses by budding several eultivars on gosa muttiflos rootstock. He found that the first flower could be expected within eigit. weeks of budding.

Raiti (1974) observed that the plant helght and branch number increased with lator budding dates when budding was carried out on briar rootstocks at weekly intarvals during December and January.

Ecchor and Mignand (1975) conducted a statistical study of various paranoters measured on 320 plants cvs. Carla and Baccara. The studies showed that the cross sectional area of the main branches, 2.0 cm from the point of in sertion, was dirgctly correlated with the number of leaves
and the total length of the main branches. According to them, this provided a good index of the vegetative develop mont of the plant.

The relationship betweon growth and juvenil period (number of days from seed geraination to appearance of a floweribud) was studied by de Vries(1976) for three years in several seedlings bred for glasshouse cut flowers. The average length of the juvenile period ranged from 32.9 to 24.8 days aithough some of the seodings did not produce flower buds until 54 days after sowing. Compared to the plants with a long juvenile period, those with a short Juvenile pericd had shorter shoots (both when the apical flower burl first appoared and at flowering) wore earlier in flowering, taller at a given date and yieldod about three times more cut flowers in six months than the former.

Cockshull and Horridge (1977) found that although a requirement for a minimum number of leaves with leaflet is needed before flowering total number of leaf primordia formod differed, and is simply the passage of time, while some motabolic changs occurs within the shoot. de Vries and Smoets (1973) found that with increasing irradiance the

Juvenile period of the seedings shortenad, the plants were taller at bud formation, first flowering and flower bud abortion, and the leafarea and the number of petals greater. deVries et al., (1980) reported that significant differences occurred among 30 hybrid tea populations only in the number of days to first flower or shoot length at first flowor. The two characteristics wore not influenced by genotype temperature interactions. Several populations combinod short number of days to first flowar with long shoot.

Heonchon (1981) tabulated the average plant height and diameter of 53 hybrid tea rose cultivars. At the first flowaring in June, the height of the hybrid tea roses ranged from 42 cm to 98 cm . Growth botween the two floworing peaks ranged from 5 to 43 cm for hybrid tea plants the average being 19.2 cm. Flant diameter rangod between 30 and 63 cm . The height diameter ratio was $1.0: 0.5$ to 1.0:1.1.
de"Vries and Dubois (1983) conducted studies in three successive years by bench grafting different batches of hybrid tea rose seedlings selected for cut rose purposes onto Hose canina in greonhouse. The early sprouting clones produced both earlior and more basal bottom breaks (shoots
emerging from the base of the main shoot than the late sprouting clonas. Since lateral ghoots from botton breaks are marketable, this rasulted in a higher number of shoots harvested in the early varieties. Basal bottom breaks emerged ovar a 22oweek period, starting approximately 14 weeks after sprouting of the scion. The possible use of the time of sprouting of the scion es a parametor for assess. ing rootstock vigour has been advocated.
de-Vries and Dubois (1983) in another study found that the number of bottom breaks was more in grafted seedlings than in ownrooted seedilings. In those studies, they confirmed the significant positive correlation between the time of sprouting of the scion in the nursery, the time of bottom break formation, the number of bottom breaks and the number of harvested ahoots of clones.
de:Vries and Dubois (1984) found that a highly significamt correlation existed between the girth at the graft union and the root weight or the number of bottom breaks. Plant vigour in clones was mainly determined by the scion. Rootstock-scion relations in rose were similar to those in apples and cherries. From the studies, they pointed out
the importance of equilibxlum botween aerlal and underground parts in composite plants, and recomended breeding of rose rootstocks that promote scion vigour under various glasshouse conditions.

Haonchen (1935) in a comparative study on the flowering behaviour of outdoos rose cultivare propagated by cuttings and grafting, found that graftod plants started to flowor 0.48 days oarlier. plants from cuttings has a 1.91. week shorter flowering period and the flowar production was only 74.05 por cont of that of the grafted plants.

Dayton (1976), who conducted scion selection studies in apple. He found that the subsequent growth of the buds on the distal graft sticks wore more vigorous and by the end of the season their average length was 34 cm compared with 37 cm for those on proxiral graft sticks.

Nutrient status with reference to carbohydrate and nitrogen
Tukey and Green (1935) studied the gradient composition of rose shoots from tip to base. They observed that shoots of Rosa multifloxg thurnb, 100 cm in langth, wion cut into 10 cm sections, showed a grodient of increasing
moisture, ash and total nitrogen content from base to tip, and a gradient of decreasing starch content. Sections of rose stem ware reported with as much as 12.36 per cent starch and only 0.407 per cent nitrogen on the dxybasis; on fresh weight basis, with 35 much as 2.4 per cent total nitrogon and only 4.71 per cent starch.

Bik (1970) seported that leaf aralysis gave a better indication of the flowar yield. The optimu: leaf content of nitrogen appeared to be 3.9 per cent for good growth of roses.

In Edward rose, Akbar (1979) observed hichest leat nitrogen in April-May (1.36-3.36 per cent). The leaf nitrogen content started decreasing from June, with an increase from September. He racorded a carbohydrats content ranging from 6.68 to 8.17 per cent which showed the gradual increase from April-May (7.55\%) to June-July (8.17\%). In Augustoseptember the carbohydrate content dropped to 7.66 per eent. A $\mathbf{I 1} 1 \mathrm{se}$ to 7.75 per cont was observed in Cctober. The lowest value (6.68%) was recorded in Februazy-March. From these, he ostimated the leaf C / N ratio which ranged from 3.03 to 3.86 per cent (February-Mareh). The C/N ratio
during Februarymarch was superior to that during the other months. During Aprilway, there was a sudden declino of leaf C/N ratio (2.82) which bogan to increaso in Junaouly (3.74.) le. at peak flowering period.

Johansson (1979) studied the effect of season on leaf composition of the flowaring shoots in different greenhouse rose cultivars. For nitrogen, the guantity was lower In the middle of sumer and higher in the spring and autum.

Mor and Halevy (1979) examined the movement of ${ }^{14} \mathrm{C}$ assimilates from young and mature leaves to young rose shoots (Rosa hybricla cv. Marimba). After bud break the young shoot, especially its tip was found to dopend for its supply of assimilates mainly on the mature foliage. At this stage, the young leaves wore powerful sinks and ratained 97 per cent of thair own photosynthates.

Jacobs at al. (1980) conducted studies on the factors affecting ${ }^{14} \mathrm{C}$ sucrose uptake by single node explants of rose flowor stems. They found that initially the uppermost buds contained significantly more ${ }^{14} \mathrm{C}$ per unit weight than the lower ones (this disappeared after 72 h); but in stems, ${ }^{14} \mathrm{C}$ concentration was higher in the lower region. Accumulation
of ${ }^{14} \mathrm{C}$ metabolitos was found to be directily related to the deviation from the diroction of gravity. Three per cont of the assimilates was found to move mainly to roots. At a later stage, Just aftor the appearance of the floweri bud, most of the leaves on the shoot became a source. The upper leaves were found to supply assimllates to the flower :bud and to the upper part of the stea. The ${ }^{14} \mathrm{C}$ assimilates from the lower leaves moved in two directions, the larger part being directed downwards.

In other crops several studies have been conducted on the nutrient content of the leaves. In guava, Chacha at af. (1973) reported that the leaf nitrogen contont in the non fruiting shoots was more than in the fruiting shoots. Significant differences were observed between the loaf position with respect to nitrogen content which was influonced both by season and by fruitfulness. Pathak and Pandoy (1978) showod that leaf nitrogen increased from the base to the tip of the shoots in mango ev. Dashehari.

Button (1978) in a study on citrus ovular callus, found that sucrose promoted callus growth to the greatest extent followad by glucose, fructose, lactose, galactose,
starch, maltose and sorbose in the order. The callus showed a definite preferance for sucrose over its constituent monow seccharides. Kaplankiran ot al. (1985) found that in citrus. reducing sugar, sucrose and total sugar content in the seion and rootstock trunk cortices were higher in winter (Jamuary) than in summer (Jung).

Khera at al. (1991) analysed tho basal, central and apical leaves from the current season non-bearing shoots of the poach cu. Sharbati at fortnightly intervols botweon early April and late Septembar. The least variations in nutrient levols wore observed in the central leaves, between early June and late August. Sandhu and Singh (1983) analysed the seasonal changes in the levels of metabolites during dormancy In sub-tropical peach cv. Sharkati. Total carbohydrates, total nitrogen and the CiN ratio were determined in the shoots during three dormancy phases.

MATERIALS AND METHODS

MATERIALS AND METHODS

The present investigation was carried out to study the effect of season and position of bud on the bud take in budaing of rose. Three varicties, viz., Ambassador, Pink Panther and Princess were used as scion and briar rose (Ross nultiflora), as the rootstock. The experiment was conducted in the Department of Horticulture, College of Agriculture, Vellayani during 1997.

Pot mixture
A standard pot mixture consisting of 1:1:1 parts by volume of riversand, redloan and dried powderad farm yard manure was used for growing the plants.

Planting
Cuttings of Rogs multiflors, 15 cm long, of uniform ago and thickness wore planted in 20 cm earthern pots. Plants were irrigated daily. Three grams of urea was also applied at weekly intervels to make the plants grow vigorous.

Mother plants of the three scion varleties wore main tained by regular watering, manuring, pesticido application, pruning etc. to obtain the required number of buds.

Experimental design
The experiment was laid out as a factorial experimont In Completely Randomised Design, wth three varleties and five positions of bud (position of the bud starting frow the flower downwards in oach seion shoot). Thus there were a total of fifteon treatments, replicated thrice. The number of plants per plot per replication was one.

Treatments

1. Rootstock budded with first bud (B_{1})
below a flowar from Ambassador (V_{1})
2. . . \because. $"$ second bud $\left(p_{2}\right)$
below a flower from Ambassador $\left(V_{1}\right)$
3. . \quad. $\quad . \quad$ third bud $\left(P_{3}\right)$
bolow a flowar from Ambassador (V_{1})
4. $\quad . \quad \because \quad \cdots$ fourth bud (P_{4})
below a flowir from Anbassador (V_{2})
5. i, i: on fifth bud (P_{5})
below a flowar from Anbassador (V_{1})
6. Rootstock buddod with first bud (P_{1})
below a flowar from Pink Panther (V_{2})
7. . $\quad \because \quad . \quad$ second bud (P_{2})
below a flower from Pink Panthar (V_{2})
8. Rootstoek budded with third bud $\left(p_{3}\right)$
below a flower from Pink Panther $\left(V_{2}\right)$

9. Rootstock budded with first bud (P_{l})
below a flower from Princess (V_{3})
whth second bua (P_{2})
below a flower from Princess $\left(V_{3}\right)$
10. $\because \quad, \quad$ with thired bud $\left(p_{3}\right)$
below a flower from princess $\left(V_{3}\right)$
$\begin{aligned} & \text { 14. } \because \quad . \quad \text { with fourth bud }\left(P_{4}\right) \\ & \text { below a flowor from princess }\left(V_{3}\right)\end{aligned}$
11. .". ." with fifth bui (P_{5})
bolow a elower from Prencess (V_{3})
Budding
T-budding was done at fortnightly intervals over a period of one year starting from first January 1997 to $15^{\text {th }}$ December 1987. Each time, 45 buddings ware done and the budding operation was completed before forenoon of the first day of the fortnight, 2e. every $1^{\text {st }}$ and $15^{\text {th }}$ of each month.

The combinations in which the buds were healthy, green and plump after two weeks of budding were reckoned as successful.

Aftercare

Suckers sprouting fron the stock were romoved regum larly. The polythene strips covering the buds were removed threa waeks after budding. The stock shoot above the bud union was removed leaving 2 cm above the union, after three weoks of budding.

Meteorological parameters
The data on meteorological parameters were collected daily from the meteorological observatory in the campus. From the daily mean data tabulated, fortnightly averages were computed for the paramoters, viz., maximum temperature, minimun temperature (both day tomperatures), rainfall, relative humidity and sunshine hours. These parameters ware examined for their possible rolo in the success of budding. The data are given in Appendix I.

Obsorvations
Morphological characters
Observations on the morphological characters ware recorded from the date of budding till the sacond crop of flowering.

1. Vogetative characters before the appearance of first flowor a) Fall of petiolo

Number of days taken for the fall of the petiole. starting from the day of budding was counted.
b) Bud emergence

Number of days from budding to bud burst was rocorded.
c) Appearance of first leaf

Number of days taken for the appearance of the first leaf in each budded plant was counted.
d) Leaves till the appearance of first flower bud

The number of leaves produced till the appearance of the first flower bud was noted.
a) Height of the scion

The height of the seion from the bud union to the first flower bud was recorded.
2. First flower characters
a) Firgt flower bud

Number of days taken for the appearance of the first flower bud in each budded plant was recorded.
b) Size of the first flower

The diameter of the first flower across the middle was taken to indicate the size.
c) Petals in the first flowor

The number of petals in the first flower of each budded plant was counted.
3. Subsequent growth and flowering characters
a) Subsequent shoots

The number of shoots produced after the first flowering was recorded.
b) Second crop flower bud production

The number of second crop of flower buds on the subsequent shoots was recorded.
c) Appearance of second crop flower buds

The number of days taken for the production of the second erop of flower buds from the date of budding was counted.
d) Petals in subsequent flowers

The number of petals in each flower of the sccond crop was counted and averaged.
e) Total hoight of the plant

The hesght of the plant from the soll level to the tip of the longest shoot after the second crop flowering was secorded.

Biochemical aspects

The study was also almed at estimating the C/N ratio and its effect on the budtake. Leaf samples ware analysed at the time of budiing. From each variety, five leaf samples wore collected at time (1.e., for each position of bud). The leaf samples were also collected from the rootstock at the time of budding. They were analysed for N and CrO content and the C / N zatio computed.

1. Total nitzogen content

The method by Jackson (1973) was adopted. The plant samples were drled, powdered, 0.5 g quantities placed in a 100 ml conical flaskg. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{ml}$) was added to each sample and digested. Heating was continued till the whole samplo was digested and the contont in each flask turned clear. After cooling, tho digest was made upto 100 ml . 10 ml of this solution was then distilled, collecting the
distillate in a conical flask containing 10 ml of 4 per cont borlc acid. The boric acid was then back titrated with a standard 0.02. At $N \mathrm{MCl}$ the ond point, the green colour changed to blue.

2. Total carbohydrate

The mathod doscribed by Somogus (1953) was adopted. The dried and powdered sacterial (100 mg) was hydrolysed with one ml of 2.5 N analar hydrechloric acid for two hours. The material was filtered, the filtrate neutrilised with a pinch of sodium carbonate and clarifted with one ml of cadmium sulphate solution (26.2 g of cadmium sulphate in 132 ml of N sulphuric acid made up to 1000 ml) and one ml of 0.55 N godium hydroxide solution. The volume was then made up to 100 ml and the same allquot was used for estimation of total carbohydrate.

The neutralized and clarified digest (1.0 ml) was added to an equal volume of coppar reagent and heated in a boiling waternath for 10 minutes. After cooling the mixture one ml of Nelson's arsenompolybdate reagent was added to dissolve completely the cuprous oxide formed. The solution was then made upto 50 ml and the intensity of the blue to
bluish green colour was measured in Klett Sumerson's photoelectric colorimeter using green filter No. 54 against a suitable blank. The data were arrived at by comparing with a standard curve drawn from various concentrations of glucose solution and expressed as percentage of carbohydrates. Reagents

1. Copper reagents
(a) Sodium potassiun tartarato (12.0 g) and anhydrous sodium carbonate (24.0 g) ware dissolved in 250 mL of water
solution (A)
(b) Copper sulphato (4.0 g) was dissolved in 40 ml of water

Solution (B)
(c) Solution (B) was added to solution (A). To this mixture, 16 g of sodium bicarbonate was added

Solution (C)
(d) Anhydrous sodium sulphate (180.0 g) was dissolved in 500 ml of hot water and boiled to expel the air

Solution (D)
(ब) Solution (C) was added to solution (D) and made upto 1000 ml of stock solution
2. Nelson's arsenomolybdate reagent

Ammonium molybdate (25.0 g) was dissolved in 450 ml of distilled water followed by the addition of 21 ml of analar sulphuric acid. A solution of 3.0 g of sodium arsenate in 25 ml of water was added to this mixture and the reagent thus prepared was incubated at $37^{\circ} \mathrm{C}$ for 48 hours.

The C/N ratio was computed and the values are given in Appendix XV.

Statistical analysis
The data collected were subjected to analysis of variance for the particular design adopted (Panse and Sukhatme 1967).
I. Success in budding in difforent nonths

The data on budtake percontage with reference to the three varieties during the different fortnights of the year 1987 were analysed as follows.

> Anolysis of variation

Source of variation	df
Between varieties	2
Between fortnights	23
Fortnights x varieties	46
Total	71

The interaction of fortnights (period of budding) x varietios, was used as the experimental error for testing the effect of varieties and fortnights on budtake percentage.
II. Effect of enviromental parameters on percantage budtake

The weather parameters wore correlated with the mean budtake percentage of the three varleties from January $19 B 7$ to Decenber 1987. The weather parameters in a fortnight were correlated with the data on mean bud take percentage during that fortnight (simultaneous or lag 0). In addition, the parameters during the succeeding fortnight (1ag +1) and the preceding fortnight (lag -1) were correlated with the data on mean bud take percontage during a particular fortnight. Similarly, the factors during two fortnight before the budding and the data on mean bud take percentage during a particular fortnight were also correlated (lag-2).

Regression of bud tako percontage on weather parameters was fitted to find out the dependence of the factors on bud take.

Path analysis (Wright, 1921) was also done with lag +1 , lag $0, \operatorname{lag}-1$ and $\operatorname{lag}-2$, to study the cause and offect rela-
tionship among a system of variables which will help to measure the direct influence along each separato path in such a system and to find the degree to which the variation of a given effact is determined by each particular cause.
III. Analysis of blometrical observations

The data collected for the whole period could not be analysod since some of the buds failed to take.

The complete data available for the fortnighes start1ng from Septenber lat to Octobar 15ih were analysed in factorial CRD to find out the effect of period of budding varioties and positions of buds and their interactions on biometrical characters.

Analysis of variance

Source	of
Betwoen varietios	2
Between positions	4
Betweon fortilghts	2
Variety \times position	8
Variety \times fortnights	4
Position \times fortnights	16
Variety \times position x fortnights	16

The second order interaction was used as the experimental orror.

Correlations were also worked out to find the mutual relationship between the thirtean characters under study.

IV. C/N ratio

The estimated data on C / N ratio with reference to the three varieties during the different fortnights of the year 1997 were analysed as follows. The rootstock was common and had only one value for C / N ratio, as against five values for each scion, with respect to the bud positions. Hence, for easy comperison, the rootstock was considered as a varlety and the C / N ratio of each scion variety taken as an average of the values for the five bud positions.

> Analysis of variance

Source of variation	df
Between varieties	3
Between fortnlghts	23
Fortnights x varieties	69
Total	95

The affect of varietios and fortnights on C/N ratio was tested against their interaction.

To determine the offect of C / \mathbb{N} ratio on bud take percentage, correlations were worked out between the C / N ratio of rootstock, C/N ratio of the theee scion varieties and the bud take percentage of the threa scion varieties.

The data on C / N ratio, percentage N and porcentage CHO of the five bud positions, of the three scion varieties for the period September $1^{\text {st }}$ to October $15^{\text {th }}$ were analysed in factorial CRD to detemine the effect of season, varieties, bud position and their intoractions on C/A ratio. N porcentage and CHO porcentage.

> Analysis of variance

Source	df
Betweon vorieties	2
Between positions	4
Betweon fortnights	2
Variety \times position	0
Variety \times fortnights	4
Position \times fortnights	8
Variety \times position \times fortnights	16
Total	44

RESULTS

RESULTS

The data on the success of budding of threa scion varieties under study, namely. Ambassador $\left(V_{1}\right)$. Pink Panther $\left(V_{2}\right)$ and Princess (V_{3}) during different periods of budding starting from first fortnight of January to second forte night of December 1987 were analysed statistically to IInd out the ideal season for budding.

4.1 Varietal influence on the success of budiding

There was no significant difforence among the three varletios V_{1}, V_{2} and V_{3} in respect of success in budding in the twentyfour fortnights of the year 1987 (Table 1).
4.2 Effect of time on the success of budding

The time of budding gignificantly influencod the percentage success in bud take. Maximum bud take percentage (97.67 per cent) was recorded when budding was dono during September first fortnight, which was on par with the bud take during September second, October Eirst, August second, December second and July first fortnights. The porcentage bud take was minimun (26.43 per cent) wen the plants were budded during February first fortnight, which was on par with that during August first, February gecond, March first

Table 1. Success in budding in different months during 1987

and March second fortnights. April first, January second, January first and April socond fortnights also were found to bo unsuitable for budding. In general the period from January to Aprll second fortnight was found to be the most unsuitable period for budding (Fig. 1).

A clear picture of the results obtained, could be obtalnod from the classification given below.

The periods of budding with their degree of success were observed to be as follows
Bud take Periods

Above 75\% June second, July first, August second, September first, September second, October first and Docember second fortnights

50 - 73\% January first, January second, April second, May first, May second, June first, July second, October secend, Noverber first, November second and December first fortnights

Below 50\% February first, February second, March first, march second and August first fortnights

FIG.1. SUCCESS IN BUDDING IN DIFFERENT MONTHS DURING 1987.

4.3 Influence of enviromental parameters on bud take (Flg.2)

Abstract

4.3.1 Correlation betwoen enviromental factors and percentage bud take

The maximum temperature during the succeeding fortnight of budding (lag +1) showed significant negative correlation with the bud take percentage (rable 2). IInimum temperature, rainfall, relative humidity and sunshine hours had no significant effect on bud take.

The maximum tomperature during the fortnight of budd(lag 0) ing/showed significant negative correlation with the bud take percentage. Minimum temperature had no significant effect on bud take. The rainfall and relative humidity showed significant positive correlation with the bud take percentage, the rainfall exhibiting maximum influence. Sunshine hours showed significant negative correlation with the bud take percentage of the varieties.

The weather parameters during the fortnight prior to the fortnight of budding (lag -1) exhibited results more or loss similar to those of the current fortnight (lag 0). Maximum tomperature showed significant nogative correlation with bud take while minimum temperature exhibited no signi-

FIG.2. BUD TAKE PERCENTAGE AND WEATHER PARAMETERS DURING 1987.

Table 2. Effect of weathor paranetors on bur take percentage

Factors	Corrolation coofficiants			
	Succeeding fortnight $(\operatorname{lag}+1)$	Current fortnicit (lag 0)	previous fortnight ($\operatorname{lag}-1$)	$\begin{gathered} 2 \text { fortnights } \\ \text { prior } \\ (\operatorname{lag}-2) \end{gathered}$
Maximum Temperature	-0.4392^{*}	-0.4513*	-0.4823**	-0.2095
Minimum Temperature	0.1733	0.0632	0.0358	0.1683
Rainfall	0.3246	$0.7400^{* *}$	$0.8298 * *$	0.5206^{*}
Relative fumidity	0.3866	0.6407 \#*	$0.6341^{* *}$	0.3710
Sunshine Hours	-0.3133	-0.5126*	-0.6930"\#	-0.4307

- Significant at 3% level
** Significant at 1% level
ficant effect. Rainfall and relative huidity showed significant positive effect on bud take percentage.

Among the weather parameters during the two fortnights prior to budding ($\operatorname{lag}-2$), only rainfall showed significant positive correlation with the bud take percentage.
4.3.2 Regression of bud take on weathar parameters

The regression analysis of bud take percentage on the weather paramoters, indicated that rainfall was the major factor influencing the bud take, among the five weather pars. meters studied (Iable 3).

4.3.3 Path analysis (Fig. 3)

4.3.3.1 Path analysis of lag +1

The correlation beiween bud take and maximum temperature was negative and significant $\left(x=-0.4392^{*}\right)$. Its direct effect was also negative. Indirect effect through other factors such as rainfall: Felative humidity and sunshine hours was negligible. The direct effect accounted for about 79.02 per cent of the total correlation (Table 4).

The correlation between bud take and onvironmental parameters like rainfall, rolative humidity and sunshine

Table 3. Regression of bud take porcentage on weather pazmeters

Table 4. Direct and indirect effects of weather parameters on bud take percentage (1ag +1)

	Haximum Tomperature X_{1}	$\underset{\mathrm{X}_{2}}{\text { Rainfall }}$	Relative Humidity X_{3}	Sunshine Hours X_{4}	Total correlation
maximura Temperature $\left(X_{1}\right)$	-0.3479	0.0089	0.1272	0.0269	-0.4392 ${ }^{\text {" }}$
Rainfall (X_{2})	0.2058	-0.0.0152	0.1683	-0.0346	0.3246
$\begin{aligned} & \text { Relative } \\ & \text { humidity }\left(x_{3}\right) \end{aligned}$	0.1821	-0.0105	0.2432	-0.0281	0.3865
$\begin{aligned} & \text { Sunshine } \\ & \text { Hours }\left(\mathrm{X}_{4}\right) \end{aligned}$	-0.2137	0.0119	-0. 0.1555	2.0439	-0.3133
		nesidue rect offect Significan	0.7718 are unde at 5% lev	ined	

hours was not significant and their direct effects wore also negligible.

4.3.3.2 Path analysis of lag 0

The correlation between bud take and maximum temperature was negative and significant ($\mathrm{r}=\boldsymbol{\infty} \mathbf{0 . 4 5 1 3 ^ { * } \text {). But }}$ the direct offect was negligible. The maximum indirect effect was via rainfall (-0.4339). This indirect effect via rainfall of the current fortnight accounted for about 96.14 per cent of the correlation. The indirect effect via relative humidity was -0.1517 and via sunshine hours, $r=0.1674$. The negative correlation was mainly due to negative indirect influence via rainfall (Table 5). Correlation between bud take and rainfall was positive and significant ($x=0.7400^{* *}$) and the direct effect also was positive and high (0.7335). This correlation was mainly the resultant of the direct effoct of current rainfall. 99.12 per cent of this correlation is accounted for rainfall. The maximum indiroct effect was via sunshine hours (-0.2145). The indirect effects via maximum temperature was 0.0195 and via relative humidity, 0.2145.

Correlation between bud take and relative humidity was positive and significant ($x=0.6407^{* *}$) and its diroct

Table 5. Direct and indirect effects of wather paraneters on bud take parcentage (lag 0)

	$\begin{gathered} \text { Maximum } \\ \text { Teraporature } \\ X_{1} \end{gathered}$	$\begin{gathered} \text { Rainfall } \\ \mathrm{X}_{2} \end{gathered}$	nelative Humidity x_{3}	$\begin{aligned} & \text { Sunshine } \\ & \text { Hours } \\ & X_{4} \end{aligned}$	Total corrolation
$\underset{\text { Temporature }}{\text { Maximun }}\left(x_{1}\right)$	-0.0330	-0.4339	-0.1517	0.1674	-0.4513**
Rainfall (X_{2})	0.0193	0.7335	0.2014	-0.2145	$0.7430{ }^{* *}$
$\begin{aligned} & \text { Gelative } \\ & \text { humidity }\left(x_{3}\right) \end{aligned}$	0.0174	0.5123	0.2884	-0.1773	$0.6407^{* *}$
$\begin{aligned} & \text { Sunshine } \\ & \text { Hours }\left(x_{4}\right) \end{aligned}$	-0.0203	-0.3772	-0.1876	0.2725	-0.5126^{*}

Residue $=0.6303$
Direct effects aro underlined

* Significant at 5% level
** Significant at $1 ; \%$ level
effect was also positive (0.2334). However only 45 per cent of this correlation was attributed by the direct effect. The maximum indirect effect was via rainfall (0.5123) wish contributed to 79.96 per cent of the correlation. The indirect effect via maximum temperature was 0.0174 and via sunshine hours, 0.1773 .

Correlation between bud take and sunshine hours was negative and significant ($x=-0.5126^{*}$) whereas the direct effect was positive (0.2725). The maximum indirect effect was via rainfall (-0.5772) which was higher than the corselotion. The indirect effect via maximum temperature was (-0.0203) and via relative humidity, -0.1876 . The negative correlation may be attributed through the indirect effect through rainfall.

The weather parameters accounted about 37 per cont of the variation on bud take.

4.3.3.3 Path analysis of lag -1

The correlation between bud take and maximum temperature was negative and significant ($r=-0.4823^{* *}$). On the contrary the direct effect was positive and negligible. The maximum indirect effect was through rainfall (-0.4259). This

Table 6. Direct and incirect effects of weather parameters on bud take percentage (lag -1)

indirect effect via rainfall of the provious fortnight of budding accounted for about 88.26 per cent of the correlation. The indirect offect via relative humidity was -0.0318 and via sunshine hours, $\mathbf{- 0 . 0 5 7 6}$. The negative correlation may be mainly due to the negative indirect influence via rainfall (Table 6).

Correlation between bud take and rainfall was positive and significant ($r=0.8298^{* *}$) and the direct offect was also positive and high (0.7190). This correlation was mainiy the resultant of the direct effect of previous rainfall. 86.65 per cent of this correlation is accounted for rainfall. The maximum indrect effect was through maximum temperature -0.0312 and via relativo humidity, 0.0691.

Correlation betweon bud take and relative humidity was positive and significant ($x=0.6341^{* *}$) and the diract offect was also positive but not significant. The maximum indirect effect was via rainfall (0.5022) which attributed to 79.2 per cent of the correlation. The indirect effect via maximum tomperature was $\mathbf{- 0 . 0 2 7 6}$ and via sunshine hours, 0.0607.

Correlation between bud take and sunshine hours was negative and significant ($x=-0.6930^{* *}$) and the indirect
effect was also negative and non significant. The maximum indirect offect was via rainfall (-0.5687). The indirect offect of rainfall attributed to 82.06 por cent of the correlation. The indirect offect via maximum temperature was 0.0329 and via relative humidity, $\mathbf{- 0 . 0 6 5 1}$.

The factors contributed about 45 per cent of the variation in the bud take.
4.3.3.4 Path analysis of lag -2

In this case (Table 7), only the correlation between bud take and rainfall was positive and significant ($x=0.5205^{* * *}$) and the direct offect was also positive and high (0.4924). The direct effect of rainfall contributed to 94.53 per cent of this correlation. The maximum indiract offect was attributed by maximura temperature, (-0.1026). The indirect effect via relative humidity was 0.0315 and via sunshine hours, 0.0993.
4.4 Blometric characters

The data on biometrical characters obtained in the experiment on the effect of season and position of bud in budiding of rose could not be statistically analysed for the whole period as per the design, eince some of the buds failed

Fig. 3 Path diagram showing the direct effects and intor-relationships of bud take percentage with four meteorological parameters
Y - Bud take percentage
X_{1} - Maximum Temperature
x_{2} - Rainfall
X_{3} - Relative Humidity
X_{4} - Sunshine hours

FIG.3. PATH DIAGRAM SHOWING THE DIRECTEFFECTS AND INTERRELATIONSHIPS OF BUDTAKE PERCENTAGE WITH FOUR METEOROLOGICAL PARAMETERS.

RESIDUAL
EFFECT $=0.7718$

RESIDUAL
EFFECT $=0.6303$

RESIDUAL
EFFECT $=0.5497$

RESIDUAL
EFFECT $=0.8417$
to take. Hence the mean values for each character wore worked out and are presented in Appendices II to XIV. In general, the first bud of all the three varieties failed to take in almost all periods of budding. The second bud also showed a trend almost similar to the first bud.

The complete data with respect to the varieties V_{1} V_{2} and V_{3} were available only for the fortnights starting from first September to fifteonth October. The data were analysed separately splitting the sources of variation and the results are presented in tables 3 to 25.
4.4.1 Influence of period of budding

4.4.1.1 Vegetative characters before the appearance of first flower

Days taken for fall of petiole
Significant variation was observed in the number of days taken for the fall of petiole durlng the different forinights (Table 8). Septoriber first fortnight was found to induce oarly fall of petiole (8.18 days). September second fortnight was found to delay the fall of petiole (19.38 days).

Table 8. Effect of period of budding on vegetative charactors before the appearance of first flower

Period of Budding	Days taken for fall of petiale	Days taken for bud emergence	Days taken for first leas emergence	Leaves till first flower berd	Hoight of scion till first flower bud (cm)
September $1^{\text {st }}$ fortnight	3.139	15.1322	25.039	10.011	18.068
September $2^{\text {nd }}$ fortnight	19.389	34.533	47.078	12.167	18.689
$\begin{aligned} & \text { October } 1^{\text {st }} \\ & \text { fortnight } \end{aligned}$	15.711	26.678	42.299	9.267	15.776
F	140.83**.	$53.25{ }^{7 / 4}$	$40.80^{\text {\#/4. }}$	20.39**	$6.99^{* * *}$
C.D. (5\%)	1.442	3.360	5.428	0.999	1.739

** Significant at l\% lovel

Days taken for bud emergence

The number of days taken for bud burst was found to be influenced significantly by the period of budding (Table B). The plants budded during September first fortnight took the minimum period for bud burst (15.82 days) which was significantly less than that of October first fortnight when the number of days was maximum (34.53 days).

Days taken for first leaf emergence
The period of budding significantly influenced the time taken for first leaf emergence (Table 8). Plants budded during Septembor first fortnight took the minimum mamber of days for flrst leaf emergence (25.09 days) as compared to the plants budded during October first and September second fortnights which were on par 42.28 and 47.07 days respoctively.

Leaves produced till the appearance of the first
flower bud
The plants budded during October first fortnight had the minimum numbar of leaves (9.26) till the appearance of flower bud, which was on par with those of the plants bulded during September first fortnight. The plants budded during September second fortnight recorded the maximum (12.16) number
of leaves till the appearance of the first flower bud (Tablo 8).

Height of scion upto the first flower bud
The period of budding was found to influence the haight of scion upto the first flower bud (Table 8). The plants budded during Soptember first and socond fortnights recorded significantly more plant height $(18.68 \mathrm{~cm})$ than that during October first fortnight (15.77 cm).
4.4.1.2 First flower characters

Days taken for first flower bud production
Period of budding significantly influenced the number of days taken for first flower bud production (Table 9). The plants budded during September first fortnight produced first flower bud significantly earlier (35.46 days) than those budded during September second fortnight, which took the maximum number of days (65.47 days).

Size of first ilower
The period of budding significantly influenced the size of the first flower (Table 9). The plants budded during September secend fortnight produced the biggest flower (7.02 cm)

Table 9. Effect of period of budding on first floweri characters

Period of Budding	Days takon for produc. tion of first Elowor:	Size of first flown (cm)	$\begin{aligned} & \text { Petals in } \\ & \text { first } \\ & \text { flower } \end{aligned}$
$\begin{aligned} & \text { Soptomber } 1^{\text {st }} \\ & \text { fortnight } \end{aligned}$	55.467	6.113	23.433
September $2^{\text {nd }}$ fortnight	72.256	7.024	24.1.78
October $1^{3 t}$ fortnight	65.478	6.468	34.645
F	$23.32^{\text {\# \% }}$	11.90 **	$33.79{ }^{\text {\% }}$
C.D. (5\%)	4.759	0.399	3.234

**' Significant at is'level
than the flowers produced by the plants budded during September first and October first fortnights (6.11 cm).

Patals in first flower
Pericd of budding significantly influenced the number of potals in the first flower (Table 9). The plants budded during October first fortnight possessed maximum number of petals in the first flower (34.64) which was. significantly more than that of September first fortnight (23.43) and September second fortnight (24.17).
4.4.1.3 Subsequent growth and flowering characters Subsequent shoots

Period of budding gignificantly influenced the number of subsequent shoots produced after first flowering (Table 10). The plants budded during September first and second fortnights (3.76 and 3.8) produced significantly more number of subse quent shoots than that of the plants budded during October first fortnight (3.17).

Second crop flower buds
Significant influence on the production of second crop flower buds mas exerted by the period of budding (Table 10). The plants budded during September first and second fortnights

Table 10. Effect of period of budding on subsequent growth and flowaring characters

Period of Budding	Subsequent shoots	$\begin{gathered} 2_{\substack{\text { nd } \\ \text { flowor } \\ \text { buds }}} \end{gathered}$	Days taken for production of $2^{\text {nd }}$ crop	Petals in subsequent flowers	Total helght of the plant after $2^{\text {nd }}$ crep (cm)
September $1^{\text {st }}$ fortnight	3.767	2.178	93.344	22.211	23.236
$\text { Septomber } 2^{\text {nd }}$ fortnight	3.800	2.489	95.633	22.667	22.553
October $1^{\text {st }}$ fortnight	3.179	1.822	97.235	27.533	20.352
- F	$4.07{ }^{\text {\% }}$	$9.83^{* *}$	$0.53{ }^{\text {NS }}$	12.64 **	$6.04{ }^{*}$
C.D. (5\%)	0.520	0.318	\cdots	2.483	1.702

* Significant at 5 per cent level
* Significant at per cent leval

NS Not significant
produced significantly nore number of second crop flower buds (2.17 to 2.48) than those budded during October first fortnight (1.82).

Days taken for production of second crop flower buds

Period of budding exhibited no significant offect on the number of days taken for the production of second crop flower buds (Table 10).

Potals in subsequent flowers
Significant varlation was caused in the number of petals present in the subsequent flowers (second crop of flowers) by the period of budding (Table 10). The plants budded during Octobar first fortnight possessed maximuia number of potals (27.53) than that of the flowers produced by the plants budded during September first and second forte nights (22.21 and 22.66 respectively).

Total height of the plant after the second crop of flowering

The plants budded during Soptember first and second fortnights recorded significantly more total height (23.23 and 22.55 cm) than the plants budded during October first fortnight (20.55 cm) (Table 10).
4.4.2 Influence of varieties

Varietal influence on various charactors under study are given in tables 11 to 13.
4.4.2.1 Vegetative characters before the appoarance of first flower

Days taken for fall of patiole
The varieties had no influence on the number of days taken for the fall of petiole.

Days taken for bud emergence
Varietal influence on the number of days taken for bud burst was not significant.

Days takon for first leaf emergence
The number of days taken for first leaf emergence was not found to be influenced by the variety.

Leaves till the appearance of first flower bud
The veriety V_{3} possessed significantly more number of leaves (11.18) than $V_{2}(9.95)$ which possessed the minimum.

Helght of scion till first flower bud
Varietai influence on height of scion till first flowerbud was not significant.

Table 11. Effect of variety on vegotative characters bofore the appearance of first flower

Varieties	Days taken for fall of petiole	Days taken for bud emergence	Days takon for first leaf esergence.	Leavas till first flowerbud	Hoight of scion till $1^{\text {st }}$ flower bud (cm)
Ambassador	13.722	25.322	36.211	10.300	17.922
Pink Panther	14:667	26.333	39.511	9.956	18.172
Princess	14.900	25.378	39.733	11.189	16.438
F	1.63^{13}	$0.195^{\text {NS }}$	$0.976{ }^{\text {NS }}$	3.64*	$2.61{ }^{\text {NS }}$
C.D. (5\%)	-	-	-	0.399	-

* Significant at 5\% level

Ns fot significant

Tablo 12. Effoct of variety on first flower characters

Variaty	Days taken for first flowar production	Size of first flowar	$\begin{aligned} & \text { Potals in } \\ & \text { first } \\ & \text { flowar } \end{aligned}$
Ambassador	63.739	6.915	25.389
Pink Panther	64.600	6.217	27.011
Princess	64.811	6.475	29.656
F	0.116^{NS}	$7.02{ }^{\text {m* }}$	$3.66{ }^{\text {\# }}$
C.D. (5\%)	-	0.399	3.234

** Significant at 3% level
NS Not significant

Table 13. Effect of variety on subsequent growth and flowering characters ($2^{\text {nd }}$ crop)

Variety	Subsequent shoots	$2^{\text {nd }}$ crop flowerbuds	Days taken for production of $2^{\text {nd }}$ crop	Petals in subsequent flowers	Total helght of the plant after $2^{\text {nd }}$ crop (cm)
Arbassador	4.078	2.233	93.356	23.589	22.352
Pink Panthar	3.611	2.233	98.500	23.855	21.973
Princess	3.056	1.922	94.179	24.967	22.021
F	$8.69^{\text {t7* }}$	$4.08{ }^{\text {\#* }}$	$1.113^{\text {NS }}$	$0.776{ }^{\text {NS }}$	$0.133^{\text {NS }}$
C.D. (5\%)	0.520	0.318	-	-	-

** Significant at li\% level
NS Not significant

4.4.2.2 First flower characters

Days taken for the first flower bud production
The number of days taken for the first flower bud production was not significant among the different varieties.

Slze of the first flower

Significant varietal offect was seen on first flower size. Variety V_{1} had maximum flower diameter (6.91 cm) than V_{2} and V_{3} which possessed the minimum (6.21 and 6.47 respectively).

Petals In the first flower
The varietal influence on deciding the number of petals was significant. V_{3} possossod maximum number of potals. (29.65) which was significantly more than $V_{1}(25.53)$ which prom duced the minimum petals.
4.4.2.3 Subsequent growth and flowering characters

Subsequent shoots
The variety V_{2} and V_{1} produced significantly more number of subsequent shoots aftor first floworing (3.61 and 4.07) than V_{3} which possessed the minimum (3.05).

Second crop flower buds
V_{1} and V_{2} produced significantly more number of flower buds in second arop (2.23) than $V_{3}(1.92)$.

Days taken for second crop flower bud production
Varietal influence on this character was not significant.

Petals in subsequent flowers
Varietal influence was not significant on the number of potals in subsequent flowers.

Total height of the plant after second crop of flowers
The varieties had no significant effect on total height of the plant after second crop of flowering.
4.4.3 Influence of bud position

Effoct of bud position was examined and the results are given in tables 14 to 16.
4.4.3.1 Vegetative characters before the appearance of first flowor bud

Days taken for fall of petiole
First bud (p_{1}) induced early fall of petiole (11. 83 days) which was significantly less than that of P_{5} which took maximum number of days for fall of petiole (17.77 days) and significantly suporior to P_{2}, P_{3} and P_{4}.

Days takon for bud ewergence
The number of days taken for bud burst was found to be Influenced significantly by the bud positions. Second bud took minimum number of days for burst (21.31 days) which was on par with P_{1}, P_{3} and P_{4} but significantly less than P_{5} which was found to delay the bud burst (31.81 days).

Days taken for first leaf emergence
Second bud (P_{2}) produced the first leas early (32.77 days) which was on par with P_{3}, P_{4} and P_{1} but significantly less than $P_{5}(46.81$ days).

Leaves produced till the appearance of the first
flower bud
The fifth bud $\left(P_{5}\right)$ possessed maximum number of leaves (12.44) which was significantly more than $P_{1}(0.7)$ which possessed the minimum.

Height of scion upto the first flower bud
First bud possessed lowest hoight $(15.72 \mathrm{~cm})$ which was significantly lower than that obtained for fourth bud $\left(P_{4}\right)(18.95 \mathrm{~cm})$ which recorded the maximum. P_{1} was on par with P_{5} but showed significantly lower height than P_{2} and P_{4}.

Table 14. Effect of bud position on vegetative characters before the appeorance of first flowerbud

Position	Days taken for fall of petiole	Days taken for bud Gnergence	$\begin{gathered} \text { Days taken } \\ \text { for first } \\ \text { leaf } \\ \text { emergence } \end{gathered}$	Leaves till first floworbud	Helght of scion till first flowerbud (Cm)
First bud	11.833	23.556	37.352.	3.704	15.724
Second bud	12.833	21.815	32.778	9.408	18.300
Third bud	14. 315	25.389	36.629	10.667	17.626
Fourth bud	14.899	25.815	37.185	11.185	18.952
Fifth bud	17.778	31.815	46.815	12.445	16.452
F	$13.52^{* * *}$.	5.17*	4.94 ${ }^{\#}$	11.73 **	3.59 *
C.D. (5,3)	1.352	4.984	7.007	1.291	2.245

* Slgnificant at 5\% level
** Significant at 1\% Level

Table 15. Effact of bud position on flast flower characters

Positions	Days telken for the production of first flower. bud	$\begin{aligned} & \text { Size of } \\ & \text { first } \\ & \text { flowar } \\ & \text { (cm) } \end{aligned}$	$\begin{aligned} & \text { Petals in } n \\ & \text { first } \\ & \text { flower } \end{aligned}$
First bud	39,635	6.385	32.463
Second bud	54.611	6.367	26.315
Third bud	63.185	6.335	26.759
Fourth bud	65.037	6.722	23.889
Fifth bud	80.481	6.967	22.667
F	23.16**	1.9985	$6.68 * *$
C.D. (5\%)	6.143	-	4.174

\#\# Significant at 1\% level
NS Not significant

Table 16. Effect of bud position on subsequent growth and flowering characters

Positions	Subsequent shoots	```2nd}\mathrm{ crop flower buds```	Days takon for produc. tion of $2^{\text {nd }}$ crop	Petals in subseqsent flowers	Total height of the plant after $2^{\text {nd }}$ crop (cm)
Fizst bud	5.204	2.185	88.982	19.611	21. 102
Second bud	4.397	2.537	93.944	20.389	22.754
Therd bud	3.611	2.129	92.241	23.399	22.522
Fourth bud	2.519	2.037	109.839	27.000	23.059
Fifth bud	2.185	1.925	105.000	30.296	21.141
F	31.69 ${ }^{* 3}$	$2.34{ }^{\mathrm{NS}}$	$4.68{ }^{4}$	$17.69^{\text {者永 }}$	$1.60^{1 / 5}$
C.D. (5\%)	0.672	-	9.832	3.211	-

* Significant at 5,b level
** Significant at 2% level
NS Not significant

4.4.3.2 First flower characters

Days taken for the production of first flower bud
P_{2} showed early production of flower buds (54.61 days) which was significantly less than P_{4} and $P_{5} P_{5}$ took the maximum number of days for first flowor bud production (80.48 days).

Size of first flower
Effect of position of buds in the scion was not significant for this character.

Petals in first flower
P_{1} (first bud) possessed maximum number of petals In the first ilower (32.46). P_{5} and P_{2} possessed more petals then P_{4} and P_{1} Fifth bud produced flowers with lowast number of petals (22.66).
4.4.3.3 Subsequent growth and flowering characters

Subsequent shoots
Significant variation was observed for difforent positions on the production of subsequent shoots. P_{1} prow duced the highest number of subsequent shoots $(5.2) . P_{5}$ produces the least number of subsequent shoots (2.18) which was on par with P_{4} but significantly lower than P_{3}, P_{2} and P_{1}.

Sacond crop flower buds
The position of buds oxhibited no significant influence on the number of second crop flower buds produced.

Days taken for the production of second crop

flower buds

P_{1} produced second crop of flower budsearly but, on par with $\mathrm{P}_{2^{\circ}}$ (88.98 days) and significantly less than P_{4} and P_{5} which were on par. P_{5} took longer period for the production of second crop flower buds (105 days).

Petals in subsequent flowers
P_{5} possessed the maximum number of petals (30.29). P_{1} possossed least number of petals in second crop of flowers (19.61) which was on par with P_{2} but significantly lower than that of P_{3}, P_{4} and P_{5};

Total height of the plant after second crop flowaring
The position of buds did not influenced the total height of the plane significantly.
4.4.4 Interaction effect of period of budding x varieties
4.4.4.1 Vegetative characters before the appearance of firat flower

Tho interaction of varleties and poriod of budding on various characters were oxamined and the results are given in tables 17 to 19.

Days taken for fall of petiole
The interaction effect of period of budding and varioty was not significant for this character.

Days taken for bud emorgence
The interaction offect was not significant.

Days taken for first leaf emorgence
The number of days taken for firgt leaf omergence was not signsficantly infiuenced by the interaction of period of budding and varioties.

Leaves till the appearance of first flower bud
The interaction of the period of budding and variety possessed significant iniluence in deciding the numbor of leaves till the appearance of flowar bud. For V_{1} and V_{2} alnost same number of leaves appeared on plants budded during Soptember first and Dctober first fortnights (8.36 to 10.23).

For V_{3},there was no difference during the three fortnights. For V_{1} maximum nuber of leaves wore prosent on planes budded during September first fortnight (12.3) and minimum during October first fortnight (0.6) and for V_{2} maximum leaves were present in plants budded during September second fortnight (12.53) than that of during September first fortnight (8.36).

Height of scion till first flower bud
The interaction botween the period of budding and varioty significantly influenced the height of scion till fixst flower bud. The plants busded during September first and second fortnights recorded more or less equal height (18.5 to 20.34 cra) $2 n V_{1}$ but significently more than that of October first fortnight buaded plants. The plants budded during Soptember first and October first fortnights recorded same height (15.72 cm) but significantly less than September second fortnight budded plants (23.03 cm) in V_{2}. The plants budded dusing September second fortnight recorded minimum holght (14.53 cm) which was on par with plants budded during October first fortnight which in turn on par with that of Saptamber first fortnight but recorded the maximum (18.10 cm). 4.4.4.2 First flower characters

Table 17. Interaction effect of period of budding and varleties on vegetative characters before the appearance of first flower

Treatmonts	Days taken for fall of petiole	Days taken for bud emergence	Days taken for first leaf eanergence	Leaves thll flowerbud	Helght of scion till first flower (cm)
$F_{1} V_{1}$	7.467	13.933	24. 857	10.000	20.340
$\mathrm{F}_{1} \mathrm{~V}_{2}$	8.167	16.200	25.800	8.367	15.757
$F_{1} V_{3}$	8.933	17.333	24.600	11.667	18. 107
$\mathrm{F}_{2} \mathrm{~V}_{2}$	19.433	37.100	47.767	12.300	18.500
$\mathrm{F}_{2} \mathrm{~V}_{2}$	18.600	33.433	42.933	12.533	23.033
$\mathrm{F}_{2} \mathrm{~V}_{3}$	20.133	33.057	50.533	11.667	14.533
$\mathrm{F}_{3} \mathrm{~V}_{1}$	14.267	24.933	36.000	8.600	14.927
$\mathrm{F}_{3} \mathrm{~V}_{2}$	17.233	29.367	46. 800	3. 967	25. 727
$\mathrm{F}_{3} \mathrm{~V}_{3}$	15.633	25.733	44.067	10.233	16.673
F	$1.56{ }^{\text {NS }}$	$1.27{ }^{\text {NS }}$	$1.89{ }^{\text {NS }}$	3.66*	10.63**
C.D.	-	-	-	1.732	3.012

* Significant at 5\% levei
** Significant at IK level
NS Not significant

Table 18. Interaction effect of pariod of budding and variety on $1^{\text {st }}$ flower characters

Treatmonts	Days talsen for the production of $1^{5 t}$ ilower. bud	Size of Elxst Elower (cm)	$\begin{aligned} & \text { Petals } \ln \text { ins: } \\ & \text { flower } \\ & \text { flost } \end{aligned}$
$\mathrm{F}_{1} \mathrm{~V}_{1}$	57.000	6.467	30.393
$\mathrm{F}_{1} \mathrm{~V}_{2}$	57.533	5.613	19.750
$\mathrm{F}_{2} \mathrm{~V}_{3}$	51.867	6.260	20.267
$F_{2} V_{1}$	69.633	7.377	20.167
$\mathrm{F}_{2} \mathrm{~V}_{2}$	71.533	6.643	22.100
$\mathrm{F}_{2} \mathrm{~V}_{3}$	75.600	7.053	30.267
$\mathrm{F}_{3} \mathrm{~V}_{1}$	64.733	6.900	26.267
$\mathrm{F}_{3} \mathrm{~V}_{2}$	64.733	6.393	39.233
$\mathrm{F}_{3} \mathrm{~V}_{3}$	65.967	6.110	38.433
F	$1.33^{\text {NS }}$	$1.13{ }^{\text {NS }}$	14.98**
C.D. (5\%)	-	-	5.061

** Significant at 1\% level
NS Not significant

Table 19. Interaction effect of period of budding and variety on subsequent growth and flowering ($2^{\text {nd }}$ crop)

Treatments	Subsequent shoots		Days taken for production of $2^{\text {nd }}$ crop	Potals in subsequent flowers	Total hoight of the plant after $2^{n d}$ crop (cm)
$F_{1} V_{1}$	4.267	2.267	94.300	26.667	25.333
$\mathrm{F}_{1} \mathrm{~V}_{2}$	3.167	2.067	97.167	19.700	19.193
$\mathrm{F}_{1} \mathrm{~V}_{3}$	3.857	2.200	39.057	20.267	25.190
$\mathrm{F}_{2} \mathrm{~V}_{1}$	4.300	2.367	88.667	21.100	21.383
$\mathrm{F}_{2} \mathrm{~V}_{2}$	3.957	2.833	101.367	19.967	26.640
$\mathrm{F}_{2} \mathrm{~V}_{3}$	2.933	2.067	96.867	26.933	19.653
$\mathrm{F}_{3} \mathrm{~V}_{1}$	3.467	1.857	97.200	23.000	20.340
$\mathrm{F}_{3} \mathrm{~V}_{2}$	3.700	2.100	96.967	31.900	20.087
$\mathrm{F}_{3} \mathrm{~V}_{3}$	2.367	1.500	97.600	27.700	21.230
F	$3.68{ }^{*}$	$1.71{ }^{\text {NS }}$	$1.08{ }^{\text {NS }}$	11.42***	$13.31^{* *}$
C.D. (5\%)	0.901	-	-	4.309	2.948
* Significant at 5% level ** Significant at 1 后 level NS Not significant					

Days taken for the first flowor bud production.
No significant interaction of period of budding x varieties was seen this character.

Size of the first flower
There was no interaction effoct due to size of the flower.

Potals in the first flower.
The number of petals in first flower was influenced significantly by the interaction of period of budding and varieties. For V_{1}, the plants budded during September first fortnight produced flowers with significantly more number of petals (30.33) than that of September second fortnight budded plants (20.61). For V_{2}, the number of petals were almost same in flowers produced by the plants budded during Septombor first and second fortnight but significantly less than that of October first fortnight (39.23) which was the maximum. Maximum number of petals were present in flowers, when plants were budded during Cctober first fortnight (38.43) than that of plants budded during September first fortnight (20.26).
4.4.4.3 Subsequent growth and floworing.

Subsequent shoots
The interaction of period of budding and variety had profound influence on the production of subsequent shoots. For V_{10} more or less equal nusber of subsequent shoots were produced in plants budded during September first and second fortnight (4.26 and 4.5) but, significantly higher than October first fortnight budded plants (3.46). Almost equal number of subsequent shoots wore produced when budding was done during all the three fortnights for V_{2}. Significantly more number of subseguent shoots wore produced in plants budded during September first fortnight (3.37) than plants budded during September second and October first fortnights.

Second crop flower buds
The interaction of period of budding and variety was not significant.

Days taken for the production of second crop flower buds

The interaction was not significant for this character.

Potals in subsequent flowors

The interaction of period of budding and variety had significant influence on deciding the number of petals in
subsequent flowors. For V_{1}, maximum number of potals wore present in flowers when plants were budded during September first fortnight (26.66). Maximum petals were produced in flowers of plants budded during October first fortnight (31.9) than plants budded during September first and second fortnights which were on par for V_{2}. For V_{3}, minlmum number of petals were present in flowers of plants budded during September first fortnight (20.26) which was significantly less than that of plants budded during September second and October first fortnights (26.93 and 27.7).

Total height of the plant after second crop flowars The interaction of period of budding and varlety influenced the total hoight significantly. Maximum height was recorded when plants were budded during September first fortnight buddod plants (25 cm) which was significantly higher than that of Septomber second and October first fortnight budded plants for V_{1} and V_{3}. For V_{2}, almost same height was recorded in plants budded during September first and October first fortnights but significantly lower than that of plants budded during September second fortnight which recorded the maximum (27 cm).
4.4.5 Interaction effect of varieties \times position of bud

The Interaction effect of varieties and position of bud were studied and the results are given in tables 20 to 22.
4.4.5.1 Vegotative characters before the appearance of first flower bud

Days taken for fall of petiols
The variety and position of bud did not interast significantly on the number of days taken for fall of petiole.

Days taken for bud emergonce
No significant interaction effect was found between the varfety and the position of bud in the number of days taken for bud burst.

Days taken for first leaf omergence
The interaction offeett of variety and position of bud was not significant with respect to the number of days taken for first leaf emergence.

Leaves till the appearance of flower bud
Interaction was not significant for this character.
Height of scion till first flower bud
Intoraction effect was not significant for this character.
4.4.5.2 First flower characters

Days taken for first flower bud production
The days taken for first flower bud production was found to have no slgnificant interaction offect of variety and position of bud.

Size of the first flower
Interaction effect was not significant.

Potals in first flower
Interaction of variety and position of bud was not significant for this character.
4.4.5.3 Subsequent growth and flowering

Subsequent shoots
Interaction offect was not significant for this character.

Second crop flower buds
Thore was no significant interaction between varieties and bud position on the production of second crop flower buds.

Table 20. Interaction effect of variety and position on vegetative characters before the appearance of first flowerbud

Treatments	Days taken for fall of petiole	Days taken for but emergance	Days taken for the prow dumetion of $1^{3 t}$ leaf	Leaves till $1^{\text {st }}$ flower. bud	Height of scion till $1^{\text {st }}$ flowerbud (cm)
$V_{1} \mathrm{P}_{1}$	11.833	26.277	34.722	7.267	16.378
$\mathrm{V}_{1} \mathrm{P}_{2}$	12.111	23.444	34.333	8.778	19.722
$V_{1} P_{3}$	14.222	23.333	31.111	11.000	18.767
$V_{1} \mathrm{P}_{4}$	14.222	23.111	35.657	12.667	19.033
$V_{1} P_{5}$	16.222	30.444	45.222	11. 889	15.211
$V_{2} \mathrm{P}_{1}$	12.333	21.833	35.667	8.500	15.650
$\mathrm{V}_{2} \mathrm{P}_{2}$	12.444	21.111	30.667	9.167	17.322
$\mathrm{V}_{2} \mathrm{P}_{3}$	15.000	29.056	39.444	10.111	19.335
$\mathrm{V}_{2} \mathrm{P}_{4}$	14.899	27.222	38.222	9.778	21.067
$V_{2} P_{5}$	18.667	33.444	48.556	12.222	17.467
$V_{3}{ }^{p}$	11.333	22.556	41.667	10.444	14.644
$\mathrm{V}_{3} \mathrm{P}_{2}$	13.944	20.839	33.333	10.278	19.356
$V_{3}{ }^{p}$	15.222	24.778	39.333	10.369	14.755
$V_{3}{ }^{2}$	15.556	27.111	37.667	11.111	16.755
$\mathrm{V}_{3} \mathrm{P}_{5}$	18.444	31.555	46.667	- 13.222	16.679
F	0.39^{NS}	$0.59{ }^{\text {NS }}$	$0.45{ }^{\text {NS }}$	$1.33^{\text {MS }}$	$1.59{ }^{\text {MS }}$

NS Not significant

Table 21. Interection effect of variety and bud position on first flower characters

	Days taken for the production of $1^{\text {st }}$ flowar. bud	$\begin{aligned} & \text { Slze of } \\ & \text { first } \\ & \text { flower } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Petals in } \\ & \text { first } \\ & \text { flower } \end{aligned}$
$V_{1} P_{1}$	53.944	6.150	25.944
$V_{1} P_{2}$	57.000	6.644	25.667
$V_{1} P_{3}$	57.889	6.744	25.222
$V_{1}{ }^{2} 4$	66.111	7.367	30.444
$V_{1} P_{5}$	84.000	7.657	20.657
$V_{2} P_{1}$	54.667	6.517	34.333
$V_{2} P_{2}$	51.839	6.417	26.556
$\mathrm{V}_{2} \mathrm{P}_{3}$	67.222	6.017	27.167
$\mathrm{V}_{2} \mathrm{~V}_{4}$	67.333	6.033	24.000
$\mathrm{V}_{2} \mathrm{P}$	81.899	6.100	23.000
$V_{3}{ }_{1}$	67.444	6.489	37.111
$V_{3} P_{2}$	54.944.	6.039	26.722
$V_{3} P_{3}$	64.444	6.244	27. 839
$V_{3} P_{4}$	61.667	6.767	32.222
$V_{3} P_{5}$	75.555	6.893	24.333
F	2.26 NS	$2.01{ }^{\text {NS }}$	$1.59{ }^{\text {NS }}$

NS Not significant

Table 22. Interaction effect of variety and bud position on subsequent growth and flowering ($2^{\text {nd }}$ crop)

Treatments	subsequent shoots	$\begin{gathered} 2_{\substack{\text { nd } \\ \text { flower } \\ \text { buds }}} .{ }^{\text {crop }} \end{gathered}$	Days taken for production of $2^{\text {nd }}$ crop flowen	Patals in subsequent flowers	Total helght of the plant after $2^{\text {nd }}$ crop
$v_{1} P_{1}$	5.611	1.944	81.556	19.944	21.094
$V_{1} P_{2}$	5.333	3.111	85.333	21.111	23.839
$V_{3} P_{3}$	4.444	2.112	- 95.556	22.839	23.322
$V_{1} P_{4}$	2.657	2.000	95.778	25.111	22.144
$V_{1} P_{5}$	2.333	2.000	109.556	28.839	21.311
$V_{2} P_{1}$	5.000	2.500	96.833	22.000	20.900
$\mathrm{V}_{2} \mathrm{P} 2$	4.330	2.444	92.167	19.222	20.733
$\mathrm{V}_{2} \mathrm{P}_{3}$	3.611	. 2.500	93.833	22.389	21.733
$V_{2} P_{4}$	2.778	2.222	105.111	26.778	25.357
$\mathrm{V}_{2} \mathrm{P}_{5}$	2.333	2.000	104.556	29.839	21.133
$V_{3} P_{1}$	5.000	2.111	88.555	16.839	21.311
$V_{3} P_{2}$	3.300	2.056	92.333	21. 833	23.6359
$V_{3}{ }^{2}$	2.778	1.773	87.333	24.839	22.511
$V_{3} P_{4}$	2.111	1.889	101.773	29.111	21.667
$V_{3} P_{5}$	1.839	1.778	100.889	32.111	20.973
F	$0.91{ }^{145}$	$1.39^{\text {NS }}$	$0.75{ }^{\text {NS }}$	1.17^{145}	$1.18{ }^{\text {NS }}$

Days taken for the production of second crop flower buds

In the, number of days takon for the production of second crop flowor buds, there was no significant interaction effect of variety and position of bud.

Petals in subsequent flowers
Interaction was not significant for this character.

Total helght of the plant after second crop of flowering

Interaction was not significant.
4.4.6 Interaction offect of poriod of budding x bud position

The results are presented in tables 23 to 25.
4.4.6.1 Vegetative charactors before the appoarance of first flower bud

Days taken for fall of petiole
The period of budding and the position of buds interacted significantly for this character. Plants budded during September first fortnight took minimum number of days for the fall of petiole irrespective of the position of buds (7.22 to
9.77 days). The plants budded during September second fortnight and October first fortnight took more or less same number of days for petiole fall for third, fourth and ifth bud positions which was significantly more than September first fortnight budded plants. Maximum number of days were taken for P_{5} (22.55 days) when budded during F_{3} (Octobar first fortnight). For eirst bud (P_{1}), when budding was done during September first and October first fortnight took more or less same number of days for petiole fall but significantly loss than that of Soptember second fortnight (18.83 days). For P_{2}, the time taken was significantly different when budde ing was done during the three fortnights in which maximum was taken during Soptember second fortnight (18 days).

Days taken for bud emergence
Period of budding and position of buds were found to be jointly influencing the number of days taken for bud emergence. Early bud burst was found in plants budded during Saptember first fortnight irrespactive of the bud positions (14.11 to 18.44 days). For P_{3}, P_{4} and p_{5} it took more or less same number of days when budded during September second and October first fortnight which was significantly more than September first fortnight budded plants. For P_{1} and P_{2} when
plants werc budded during September first and October first fortnight, took more or less same time for bud burst but signifieantly less than thet for September second fortnight budded plants (36.83 days).

Days taken for first leaf emergence
The period of budding and different positions of buds interactod significantly in the number of days taken for first leaf omergence. Irrospective of the position. September first fortnight budded plants took minimum number of days (21.77 to 32 days). For the first and second bud more or less same number of days were taken when budding was dom during Septembor first and October first fortnight, which was significantly less than that of September second fortnight. September second and Octobor first fortnight budded plants took more or less same time which was significantly mere for P_{3} and P_{4} than, when the budding was done during the September first fortnight. For P_{5} (Sth bud) maximum number of days were taken when budded during October first fortnight (60.83 days).

Leaves till the appearance of first flower bud
No significant intoraction was found botween the period of budding ans the position of bud on this character.

Table 23. Interaction effoct of period of budding and bul position on vegetative characters before the appearance of first flowerbud

Treatments	$\begin{aligned} & \text { Days taken } \\ & \text { for fall of } \\ & \text { petiole } \end{aligned}$	Days taken for bud emergence	Days taken for the prom duction of $1^{\text {st }}$ leaf	$\begin{aligned} & \text { beaves till } \\ & \text { st flower } \\ & \text { bud } \end{aligned}$	Feight of scion till $2^{\text {st }}$ flower bud (cm)
$\mathrm{F}_{1} \mathrm{P}_{1}$	8.500	16.667	24.556	8.611	27.706
$\mathrm{F}_{1} \mathrm{P}_{2}$	7.444	15.222	24.778	9.667	13.378
$\mathrm{F}_{2} \mathrm{P}_{3}$	7.222	14.111	21.778	10.222	16.679
$\mathrm{F}_{2} \mathrm{P}_{4}$	8.000	14.657	22.333	9.339	20.978
$\mathrm{F}_{1} \mathrm{P}_{5}$	9.778	18.484	32.000	12.667	16.700
$\mathrm{F}_{2} \mathrm{P}_{1}$	18.833	36.833	55.167	10.167	16.530
$\mathrm{F}_{2} \mathrm{P}_{2}$	18.000	31.333	43.444	9.657	18.633
$\mathrm{F}_{2} \mathrm{P}_{3}$	19.667	36.722	46.333	13.111	19.744
$\mathrm{F}_{2} \mathrm{P}_{4}$	19.444	32.444	41.389	13.667	17.644
$\mathrm{F}_{2} \mathrm{~S}_{5}$	21.000	35.333	47.555	14.222	20.922
$\mathrm{F}_{3} \mathrm{P}_{1}$	8.167	17.167	31.333	7.333	12.967
$\mathrm{F}_{3} \mathrm{P}_{2}$	13.055	18.889	30.111	9.389	19.399
$\mathrm{F}_{3} \mathrm{P}_{3}$	17.535	25.333	41.778	1.657	16.456
$\mathrm{F}_{3} \mathrm{P}_{4}$	17.222	30.333	47.333	10.000	18.333
$\mathrm{F}_{3} \mathrm{P}_{5}$	22.555	41.667	60.339	10.444	11.733
F	$6.80{ }^{\text {\#\#\# }}$	$3.87{ }^{\text {\% }}$	$3.87{ }^{7}$	$1.98^{\text {VS }}$	$3.27{ }^{7}$
c.b. (5\%)	3.225	8.632	12.136	-	3.839

* Significant at 5\% lavel
* Significant at 156 lovel

NS Rot significam

Table 24. Interaction effect of period of budding and bud position on $1^{\text {st }}$ flower charactors

Treatments	Days taken for the production of $1^{\text {st }}$ flower	Size of first flower (cm)	Potals in $1^{\text {st }}$ flower
$F_{1} P_{1}$	48.889	5.469	26.056
$\mathrm{F}_{1} \mathrm{P}_{2}$	46.778	5.911	23.000
$\mathrm{F}_{1} \mathrm{P}_{3}$	53.889	6.367	23.667
$\mathrm{F}_{1} \mathrm{P}_{4}$	35.111	6.411	25.111
$F_{1} P_{5}$	72.667	6.389	19.333
$\mathrm{F}_{2} \mathrm{P}_{1}$	71. 833	6.783	25.300
$\mathrm{F}_{2} \mathrm{P}_{2}$	64.000	6.873	24.556
$\mathrm{F}_{2} \mathrm{P}_{3}$	68.839	6.783	24.389
$\mathrm{F}_{2} \mathrm{P}_{4}$	74.111	7.167	26.444
$\mathrm{F}_{2} \mathrm{P}_{5}$	52.484	7.511	20.000
$\mathrm{F}_{3} \mathrm{P}_{1}$	55.333	6.883	45.833
$\mathrm{F}_{3} \mathrm{P}_{2}$	53.056	6.311	31.389
$\mathrm{F}_{3} \mathrm{P}_{3}$	66.779	5.856	32.222
$\mathrm{F}_{3} \mathrm{P}_{4}$	65. 389	6.569	35.111
$\mathrm{F}_{3} \mathrm{P}_{5}$	86.333	6.700	25.667
F	1.302^{NS}	$1.39{ }^{\text {NS }}$	$1.58{ }^{\text {NS }}$

NS Not significant

Table 25. Interaction effect of period of budding and bud position on subsequent growth and flowering ($2^{\text {Fid }}$ crop)

Ireatments	Subsequent shoots	$\begin{aligned} & 2^{\text {nd }} \text { erop } \\ & \text { flower } \\ & \text { buds } \end{aligned}$	Days taken for the production of $2^{\text {nd }}$ crop	Petals.in subsecquent flowers	Total height of the plant after $2^{\text {nd }}$ esop (cm)
$\mathrm{F}_{1} \mathrm{P}_{1}$	5.279	2.222	87.278	19.167	23.289
$\mathrm{F}_{1} \mathrm{P}_{2}$	5.333	2.389	90.445	19.899	24.478
$\mathrm{F}_{1} \mathrm{P}_{3}$	3.556	2.000	91.000	21.778	22.811
$\mathrm{F}_{1} \mathrm{P}_{4}$	2.444	1.839	96.667	25.839	24.200
$\mathrm{F}_{1} \mathrm{P}_{5}$	2.222	1.339	101.333	25.393	21.400
$F_{2} P_{1}$	5.500	2.500	92.667	18.167	20.850
$\mathrm{F}_{2} \mathrm{P}_{2}$	4.333	2.657	93.111	19.333	21.133
$\mathrm{F}_{2}{ }^{3}$	3.944	2.500	87.167	20.944	23.811
$\mathrm{F}_{2} \mathrm{P}_{4}$	2.889	2.444	105.111	23.778	22.711
$\mathrm{F}_{2} \mathrm{P}_{3}$	2.333	2.333	100.111	31.111	24.299
$F_{3} P_{1}$	4.833	1.833	87.000	21.500	19.167
$\mathrm{F}_{3} \mathrm{P} 2$	3.590	2.056	86.278	22.944	22.650
$\mathrm{F}_{3} \mathrm{P}_{3}$	3.333	1.939	98.556	27.444	20.944
$\mathrm{F}_{3} \mathrm{P}_{4}$	2.222	1.773	100.899	31.333	22.267
$\mathrm{F}_{3} \mathrm{P}_{3}$	2.000	1.556	113.556	34.444	17.733
F	$0.97{ }^{\text {NS }}$	$0.57{ }^{\text {NS }}$	$0.34^{\text {MS }}$	$0.97{ }^{\text {NS }}$	$1.75{ }^{\text {NS }}$

NS Not significant

Height of scion till fisst flowor bud
The interaction of period of budding and position exerted significant influence on the height of scion till first flower bud. First, second, third and fourth bud reo cordod more or less same helght when budding was done during all the three fortnights. But fifth bud recorced minimum height when budded during Oatober first fortnight (11.73 cm) and maximum during Soptembar second fortnight (20.92 cm).

4.4.6.2 First flower characters

Days taken for the production of first flower bud
The period of budding and position of bud did not jointly influence the time taken for first flower bud prow duction.

Sizo of the first flower
The interaction effect of period of budding and position of buds was found to have no significant influence on the size of the first flower.

Petals in the first flower
Interaction of period of budding and position of buds was not significant for this character.
4.4.6.3 Subsequent growth and flowering

Subsequent shoots
There was no interaction effect between period of budding and position of buds in the production of subsequent shoots.

Sacond crop flower buds
There was no significant interaction offect betweon period of budding and position of buds in the number of oscond crop of flower buds produced.

Days taken for the production of second crop of flower buds

No significant interaction was found betwoen period of budding and position of buds in the time taken for second crop of flower bud production.

Petals in subsequent flowers
No significant interaction was found between period of budding and position of buds in the number of petals prem sont in subsequent flowers.

Total height of the plant after second crop flowering
There was no significant interaction betwoen the
period of budding and position of buds on total height of the plant after second erop of flowering.

4.5 Correlation studies

Corrolations were workod out among the thirteen characters under study and the results are presented in Table 26 and Fig. 4.
4.5.1 Days taken for fall of petiolo

This character showed significant positive correlation with days taken for bud emergence, days taken for firgt leaf energence, number of leaves till first flower bud, days taken for first flowor bud production size of first flower, days taken for the production of second crop flower buds, and petal number in subsequent flowers.

A negative correlation with height of scion till first flower bud, number of petals in first ilower, number of subsequent shoots and total height of the plant after second crop flowers were also observar.

The character also showed a positive non significant correlation with number of socom crop flower buds.

Table 26. Gorrelation coefficients between the thirteen biometric characters

* Slgnificant at 5 por cent Lnvel
** Signifleant at 1 per cont tevel
4.5.2 Days taken for bud emergence

This character showed significant positive corrolation with days talson for first leaf emergence, numbor of Leaves till first flower bud, days taken for first flower bud, size of first flower and days taken for the production of second crop flower buds.

A positive non significant correlation, with number of subsequent shoots produced after first flower, numbor of second crop flowor buds and number of potals in subsequent flowers, was also observed.

This character showed negative correlation with height of seion till first flower bud, number of petals in first flower and total height of the plant after second crop flowaring.
4.5.3 Days taken for first leaf emgrgence

This charactor showed positive significant correlation with days taken for first flowor bud, size of first flower, days taken for the production of second crop flower buds and number of petals in subsequent flowers.

A non significant positive corrolation with number of leaves till first flower bud and number of petals in first flower was also observed.

FIG. 4. Correlation diagram
X_{1} - Number of days for fall of petiole

$X_{3}-$ Number of days for first leaf emergence
X_{4} - Number of leaves till first flower bud
$X_{5}-H e l g h t$ of scion till first flower bud
x_{6} - Number of days for first flower bud
$X_{7}-$ Size of first flower
$X_{6}-N u m b e r$ of petals in first flower
X_{9} - Number of subsequent shoots
X_{10} - Number of second crop flower buds
X_{11} - Number of days for second crop flower buds
X_{12} - Number of petals in subsequent flowers
X - Total hoight of the plant after second crop flowering

FIG.4.CORRELATION DIAGRAM.

Days taken for first leaf emergence showed negative corrolation with haight of scion till first flowor bud. number of subsequent shoots, number of second crop flower buds and total height of the plant after second crop flowering.
4.5.4 Leaves produced till first flower bud

Leaves produced till first flower bud showed significant positive corrolation with height of scion till first flowar bud, days taken for first flower bud and size of first flower.

A positive non significant correlation with numbar of second erop flower buds, days taken for the production of secord czop flower buds, number of petals in subsequent flowers and total height of the plant after the second crop flowers, was also observed.

This character showed significant negative correlation with number of subsequent shoots produced after first flower and negative non significant corrolation sith number of petals in first flower.
4.5.5 Height of scion till first flower bud

Height showed significant positive correlation with
number of second crop flower buds and total plant height after the production of second crop flowers and showed non significant positive correlation with number of subsequent shoots.

This character showed negative correlation with number of days taken for first flower bud production, size of first flower, number of petals in first flower, days taken for the production of second crop flowers and number of petals in subsequent flowers.
4.5.6 Days taken for first $£$ low or bud production

This character showed significant positive correlate Lion with size of first flower, days taken for the production of second crop flower buds and number of petals in subsequent flowers.

A significant negative correlation with number of subsequent shoots and non significant negative correlation with number of petals in first flower, number of second crop flower buds and total height of the plant after second crop flower bud production was also observed.
4.5.7 Size of first flower

This character showed non significant positive
correlation with number of patals in first flower, number of second crop flower buds, days taken for the production of second crop flowor buds ard number of potals in subser quent flowers.

Size of first flower also showed a negative correlation with number of subsequent shoots and total hoight of the plant after second crop flower buds.
4.5. 3 Number of petals in first flower

This character showed significant positive corrolation whth number of petals in subsequent flowers and non significant positive correlation with number of subseguent shoots.

Number of petals in first flower showed negative cosrelation with number of second crop flower buds, days taken for production of second crop flower buds ard total helght of the plant after second erop flowers.
4.5.9 Number of subsequent shoots

Number of subsequent shoots showed significant positive correlation with number of second crop flowor buds and non significant positive correlation with total helght of the plant after second crop flowering.

A significant negative correlation with days taken for the production of socond crop ilowers and number of petals in second crop flower buds was also observed. 4.5.10 Number of second crop flower buds

This charactor showod significant positive corrola tion with total height of the plant after second crop flowerm ing.

Number of second crop flower buds also showed significant negative correlation with number of petals in subsequent flowers and non signsficant negative correlation with days taken for the production of second crop flowers.
4.5.11 Days taken for the production of second crop flower bud

A gignificant positive correlation with number of petals in subsequent flowers was obsorved. This character also showed a negative correlation with total height of the plant after gecond crop flowering.
4.6 Nutriont status or earbohydrate - nitrogen ratio

The C / \mathbb{N} is the ratio of estimated values of carbohydrate content and nitrogen content of buds. lifith the help

Table 27. Seasonal ani varietal distribution of C/N ratio

of the data presented in Appendix XV and Fig. 5, the seasonal changes of carbohydrate content, nitrogen content and their ratio (C / N) have been examined.

The data on C/N ratio for rootstock and three scion varleties (Ambassador, Pink Panther and Princess) for the poriod from January first, 1997 to December $15^{\text {th }}, 1997$ at fortnightly intervals were analysed is randomised block design.

The Table 27 and Fig. 5 indicatol that the three scion varleties V_{1}, V_{2} and V_{3} were on par with each othor in carbohydrate content, nitrogen content and C/N ratio; bett their C / N ratio was found to be significantly higher in comparison with that of the rootstock.

The carbohydrate level was maximum during June July and minimun during Februarymarch. Carbohydrate contont showed a gradual increase from April-May to Junemuly, a sudden drop in AugustmSeptember and an increase till October. The highest nitrogen content was registered during AprilMay and the Lowest during February-March (Table 27). Nitrogen content started decreasing from June. An increase was noted from September upto January. The C/N ratio was maximum (4.007) for the treatment T_{14} ($15^{\text {th }}$ July) and minimurn (1.78)

FIG.5. SEASONAL AND. VARIETAL DISTRIBUTION OF CHO, N AND C/N RATIO.

for T_{2} ($15^{\text {th }}$ Jan.). Junemuly period racorded the maximum C / N ratio. From Februarywhech, gradual inerease was noted followod by a sudden decline in April-May and then a 218 se to a maximum in Junomuly.
4.6.1 Effect of C/N ratio on percentage of bud take

To determine the incluerse of C / N ratio on bud take. correlations mere worked out between the C / N ratio of the rootstock on the one hand and the position-wise bud take percentage of V_{1}, V_{2} and V_{3} individually and combined on the other. Similar correlations were worked out betweon the C / N ratios of the three scions $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} individually and combined, with the position-wise bud take percentage.

The rootstock C / N did not significantly influonce the bud take on each varlety individually ami the three varieties together. Tho $\mathrm{C} N$ ratio or V_{1} did not significantly influence the bud take porcentage of V_{1}, For V_{2} and V_{3}, the C / N ratio significantly influenced the bud take percentage ($x=0.3336^{* *}$ and $x=0.4446^{* *}$, respectively). When the combined corrolations were worked out, the C/N ratio of the scion varieties V_{1}, V_{2} and V_{3} as a whole significantly influenced the bud take porcentage ($x=0.3229^{* *}$).

Table 23. Correlation of C / N ratio and bud take

	V_{1}	V_{2}	V_{3}	All varieties
Reotstock	0.0744	0.0596	0.1474	0.0429
Scion	0.1725	$0.3556^{* * *}$	$0.4446^{* *}$	$0.3229^{* *}$

\% Significant at 1% level
4.6.2 Effect of season, varieties and bud position on nutrient status

The data on C/N ratio, N percentage and CHO percentage during the season of best bud take only were analysed in CRD factorial design and the results are as follows.
4.6.2.1 Effect of season

The results are prosented in Table 29.

C/N ratio

Significant variation was observed in the three fortnights which were analysed. October first fortnight recorded significantly least. C/N ratio (2.923). September second fortnight recorded maximum (3.293).

Table 29. Effect of season on CA ratio, N\% and CHO\%

Season	C/N ratio	N\%	CHO\%
Sep. $1^{\text {st }}$ fort.	3.082	2.600	7. 934
Sop. $2^{\text {nd }}$ fort.	3.293	2.419	7.935
Oct. $1^{\text {st }}$ fort.	2.923	2.803	8,090
F	32.16**	$3018.40^{\text {\% }}$	$9.256^{* *}$
C.D.	0.098	0.033	0.147

Table 30. Effect of variety on C/N ratio, N

Variety	C/N ratio	N\%	CHOX
Ambassador	3.098	2.547	7.739
Pink Panther	3.274	2.515	8.095
Princess	2.926	2.761	7.926
F	$28.18^{13 *}$	$149.84^{* *}$	$13.33^{\text {\%** }}$
C.D.	0.098	0.033	0.147

Percentage of N
N content in the three fortnights showed significant variation. September second fortnight recorded minimum (2.419) and Octobar first fortnight recorded maximum (2.803).

Percentage of carbohydrate
Carbohydrate percentago showed significant vasiation In the three fortnights. September first fortnight recorded minimum (7.834) and October first fortnight recorded maximum (8.090).
4.6.2.2 Effect of. varieties

Varigtal effect on C/N ratio, N\% and CHO\% are given in Table 30.

C / N ratio

Significant variation was observed in C/N ratio between the three varleties. V_{3} recorded minimum C / A ratio (2.93) which was significantly less than V_{2} and V_{1}. V_{2} recorded maximum of 3.27.

Percentage of N
V_{2} recorded minimum N percentage of 2.52 which was on par with V_{1}, V_{3} recorded maximum of 2.76 which was signifieantly more than V_{1} and V_{2}.

Carbohydrate percentage

V_{1} had significantly less CHO percentage (7.74) than V_{2} and $V_{3} \cdot V_{2}$ recorded a maximum of 8.09 por cent.
4.6.2.3 Effect of position

The results are presented in Table 31.

C/N ratio
Significant variation was obsorved on the C/N ratio betwoon the five bud positions of scion. Second bud recorded lowest C/N ratio of 2.58 which was on par with first bud, but significantly less than third bud (3.04), fourth bud (3.45) and $f i f$ th bud (3.75) which recorded maximum.

Percentage of N
Nitrogen content varied signsficantly in the five bud positions of the scion. Fifth bud recorded the lowest (2.32) which was significantly less than fourth (2.44), third (2.59). first (2.74) and second bud (2.93) which recorded the maximum.

Carbohydrate content
CtD varied significantly in the five bud positions of the seion. First bud recorded the lowest (7.32) which

Table 31. Effect of position on C/N ratio. N\% and CHOK

Position	C/N ratio	N\%	CI\%\%
1st bud	2.682	2.745	7.318
$2^{\text {nd }}$ bud	2.592	2.931	7.529
$3^{\text {rd }}$ bud	3.038	2.594	7.352
$4^{\text {th }}$ busd	3.449	2.443	8.332
$5^{\text {th }}$ bud	3.743	2.326	7.313
F	$137.41^{* *}$	283.44**	69.82**
C.D.	0.127	0.042	0.189

was significantly less than socond (7.53), third (7.85). fourth (8.33) and fifth bud (3.57) which recorded the maximum.
4.6.2.4 Interaction effect of season \times varlety The results are given in Table 32.

C/N Eatio
For V_{1}, the $C /$ ratio variod significantly in the three fortnights analysed. October first fortnight recorded minimum of 2.79 and Soptembar second fortnight recorded naximum of 3.31. For V_{2} and V_{3}, the C / N ratio recorded in the Septomber first and October first fortnight were on par but significantly less than that of Soptamber socond fortnight.

Nitrogen content
For V_{1} and V_{3}, N per cent varied significantly in the three fortnights analysed. September second fortnight recorded lowest and October efrst fortnight recorded maximum (2.85 to 2.94). For V_{2}, the N por cent recorded on Septombor first and Octobor first fortnight were on par but significantly less than that recorded in September second fortnight (2.32).

Table 32. Interaction offoct of season and varlaty on C/N, N\% and CHOK zatio

Treatments	C/N ratio	N\%	Crrox
$F_{1} V_{1}$	3.199	2.434	7.732
$F_{1} V_{2}$	3.165	2.606	3.052
$F_{2} V_{3}$	2.890	2.762	7.718
$\mathrm{F}_{2} \mathrm{~V}_{1}$	3.306	2.354	7.628
$\mathrm{F}_{2} \mathrm{~V}_{2}$	3.475	2.322	7.966
$\mathrm{F}_{2} \mathrm{~V}_{3}$	3.098	2.582	7.912
$F_{3} V_{1}$	2.787	2.352	7.856
$\mathrm{F}_{3} \mathrm{~V}_{2}$	3.182	2.613	3.268
$\mathrm{F}_{3} \mathrm{~V}_{3}$	2.799	2.940	B. 148
F	4.019^{*}	$29.152^{* *}$	$1.259{ }^{\text {NS }}$
C. D.	0.170	0.057	-

> * Significant at 5% lovel
> * Sigmificant at 1% loval
> NS Not significant

Carbohydrate content
The interaction of season and variety on Carbohydrato content was not significant.
4.6.2.5 Interaction effect of varisty x position

The Table 33 gives the result of variety x position interaction.

CA ratio

The Enteraction effect of variety and bud positions on C / A ratio was not significant.

Nitrogen content
Nitrogen percontage was not influenced significantly by the intoraction of varieties and position of buds.

Carbohydrate content
For firgt and third bud, the carbohydrate content recorded for the three scion varieties diffored significantly. But for second, fourth and fifth buds, the earbohydrate content recorded wore on par fox V_{1} and V_{3}. For second bud this was significantly less than V_{2}. For fourth and fifth bud V_{1} and V_{2} were also on pars, but V_{2} recorded elgnificantly Lower cariohydrate content than V_{3}.

Table 33. Interaction effect of variety and position on C / N ratio. $\mathrm{N} \%$ and $\mathrm{CHO} \mathrm{\%}$

Treatments	C/N ratio	N\%	CHO\%
$V_{1}{ }_{1}$	2.658	2.673	7.073
$V_{1} p_{2}$	2.494	2.920	7.243
$\mathrm{V}_{1} \mathrm{P}_{3}$	2.967	2.523	7.467
$\mathrm{V}_{1} \mathrm{P}_{4}$	3.512	2.367	8.317
$\mathrm{V}_{1} \mathrm{P}_{5}$	3.856	2.250	8.593
$\mathrm{V}_{2} \mathrm{P}_{1}$	2.950	2.660	7.917
$\mathrm{V}_{2} \mathrm{P}_{2}$	2.853	2.813	8.020
$V_{2} P_{3}$	3.236	2.507	8.093
$\mathrm{V}_{2} \mathrm{P}_{4}$	3.498	2.343	3.150
$\mathrm{V}_{2} \mathrm{P}_{5}$	3.803	2.253	8.297
$V_{3} P_{1}$	2.407	2.900	6.963
$\mathrm{V}_{3} \mathrm{P}_{2}$	2.398	3.060	7.323
$V_{3} P_{3}$	2.911	2.753	7.997
$V_{3}{ }^{P} 4$	3.337	2.520	8.530
$\mathrm{V}_{3} \mathrm{P}_{5}$	3.576	2.473	3.817
F	$2.33{ }^{\text {NS }}$	$1.16{ }^{\text {NS }}$	10.76 **
C.D.	\cdots	-	0.329

** Significant at 1% leval
NS Not significant

Table 34. Interaction effoct of season and position on C / N. NS and CHO\% ratio

Ireatments	C/N ratio	N\%	CHO\%
$F_{1} P_{1}$	2.658	2.733	7.153
$\mathrm{F}_{1} \mathrm{P}_{2}$	2.494	2.835	7.307
$\mathrm{F}_{2} \mathrm{P}_{3}$	2.967	2.533	7.690
$\mathrm{F}_{2} \mathrm{P}_{4}$	3.512	2.440	8.380
$F_{1} P_{5}$	3.356	2.360	8.640
$\mathrm{F}_{2} \mathrm{P}_{1}$	2.950	2.580	7.333
$\mathrm{F}_{2} \mathrm{P}_{2}$	2.853	2.760	7.510
$\mathrm{F}_{2} \mathrm{P}_{3}$	3.236	2.420	7.707
$\mathrm{F}_{2} \mathrm{P}_{4}$	3.498	2.223	8.170
$\mathrm{F}_{2} \mathrm{P}_{5}$	3.303.	2.113	8.457
$\mathrm{F}_{3} \mathrm{P}_{1}$	2.407	2.920	7.457
$\mathrm{F}_{3} \mathrm{P}_{2}$	2.398	3.147	7.770
$\mathrm{F}_{3} \mathrm{P}_{3}$	2.911	2.780	8.160
$\mathrm{F}_{3} \mathrm{P}_{4}$	3.337	2.667	8.447
$\mathrm{F}_{3} \mathrm{P}_{5}$	3.576	2.503	8.610
E	$1.438{ }^{\text {NS }}$	$1.628^{\text {NS }}$	$1.490{ }^{\text {NS }}$
C.D.	-	-	-

NS Not significant
4.6.2.6 Interaction offect of season x bud positions

The rosults are givon in Table 34.

C/N ratio
The interaction of season and position on C/N ratio was not significant.

Nitrogen content
Nitrogon content was not influenced significantly by the intoraction of season and bud positions.

Carbohydrate content
The interaction of season and bud positions had no significant influence on carbohydrate content.

DISCUSSION

DISCUSSICN

The season plays an important role in the propagation of plants, especially under outdoor conditions. It is, therefore, essential to find out the most favourable season for propagation of the selocted crop in different localities. The present investigations were carried out to Eind out the effect of the season and position of bud on the success of budding and further development of the scion. The results obtained from tho studies are discussed in this chapter.
5.1 Varietal influence on the success of budding.

Since no significant difforence was found among the three varieties, it may be presumed that season is move of concorn for propagation i.e., for any variety of rose, budde ing can be performed in the suitable season.
5.2 Enviromental paramoters on the bud take

There was a marked difference in the percentage success in budding, during the different months. Botter success (82 to 98 per cent) was recorded during the rainy season, from August second fortnight to October first fortnight. This result is in agreement with the reports made by Cenders,(1955).

Rao (1967) found that, the sultable conditions in South India for propagation in mango prevails during Augus.t-September. Mukherjee (1964) as well as Singh and Srivastava (1962) found that in Lucknow, July was the best month for budding in mango.

During the present investigation, February first fortnight to March second fortnight was found to be the least favourable season for budding, having recorded only 25 to 44 per cont take. Ahmed (1960) also found this period to be unfavourable. SIngh and Jawanda (1962) found that during the hot dry sumor, the mango trees do not show much sap flow and hence the percentage of success was greatly reduced. Jauhari and Singh (1970) obtained increased success for mango budding in July than in Merch, due to increased relative huaidity in July (93 per cent RH in July as against 60 por cent in March).

The coofficients of correlation indicate the intensity and direction of character associations. From the correlation of bud take with different meteorological observations, it can be seen that the maximum temporature of succeoding current and previous fortnights affected the bud take. However,
the maximum tomperature beyond two fortnights prior to budding did not exhibitsignificant association. The minimum day tomperature was found to have no significant influence on the bud take. Rainfall and relative humidity of the current and previous two fortnights, proved highly favourable for good success in budding. The sunshine hours of the eurrent and just provious fortnight showed significant negative correlation with the bud take.

When a number of characters are included in the correlation study, the direct association between the characters becones more complex. In such a situation, the path analysis devised by pright (1921) provides an effective measure to find out the direct and indirect effects, permitting a critical examination of the specific factors that prom duce a given correlation. It is an effielent tool throwing light on the contribution (direct effect of a character to the main character) and also its influence (indirect offect) through the other characters.

Frow the path analysis of weather parameters on the bud take, it was found that in the fortnight succeeding the fortnight of budding, the direct contribution of maximum
temperature on the bud take was negative and high. The indirect offects were negligible. The other parameters were not influential. Hartmann and Kester (1986) had observed that at higher temperature, callus production is rotarded, with cell injury becoming more apparent until death of the cells occurs. It is Iikely that in the present case also, this happens. This shows the mportance of the maximum temperature on the success of budding.

In the current fortnight the direct contribution of maximum temperature on the bud take was negative; but negligible. Its positive indirect influence was through sunshine hours. The dirget contribution of rainfall was positive, and maximun, tho next being that of relative humidity followed by sunshine hours. The maximum direct contribution of rafre fall was due to the high positive and significant correlation of rainfall and relative humdity. Though the correlation of sunshine hours with the bud take was negative and significant, it exhibited positive direct contribution. The negative value was due to the high negative indfrect influence through raire fall. Eventhough maximum temperature had no direct contribution on the bud take, it indirectly influeneed the bud take through the sunshine hours.

Rainfall and relative humidity have been found to have the two frportant factors for batter success. Eventhough sunshine hours exhibited some beneficial effects on the success of budding, to better success, it was found that, in general, as the sunshine hours increased bud take was affected. As rainfall increases, relotivo humidity also increases while maximum temperature and sunshine hours decreas9. Kuster (1903) and Ricker and Keit (1926) pointed out the influence of temperature and even more particularly, of moisture to be of great importance in determining the extent of callus development in the case of apple root grafts. They found that within certain limits, callus development increased with higher temperature and molsture and decreased with lower temperature and molsture. The results of the present studies are also in agreement with those of Shippy (1930) and Lundstad (1972) who found that alterations in temperature after budding resulted in reduced growth as well as bud take and bud take was less with Rosa mulitiflora at lower relative humidity. Korobov (1976) observed that for union of garden roses, optimum temperature should be between $16^{\circ} \mathrm{C}=25^{\circ} \mathrm{C}$. Highly turgid cells were found to give onhanced proliferam tion of callus than those in a wilted condition. Doley and Leyton (1970) also proved this by observing callus development
of ash (Exaxinus pxcelstior) that callus production was markedly reduced as the water potential decreased. The results are also in accordance with those of Singh it al. (1979).

According to Hartmann and Kester (1986), temperature plays an important role in high cell activity. In the spring and monsoon, the plant tissues ospecially the cambium, are in naturally active state. The new callus arising from the camblal region will be composed of thin walled turgid cells which can easily become desiccated and die. It is important for the production of these parenchyma calls that the humidity in the vicinity of the cambial region of the graft union be kept at a high level. Regarding the sunshine hours, Burbidge (1977) found that dull moist weathor is preforable for budding, Maharana and Singh (1978) also pointed out that the quickest and the highest take was obtained under direct sunlight and the losses were only minimum at diffused sunlight than in white light. Caponetti at al. (1971) and KhoshmKhui and Sink (1982) also obsorved that callus initiation and development occurred faster in darkness than in light. The opinad that continuous darkness is dotrimental to callus development. The adverse offect of sunshine hours
on bud take obtained in the present studies may be due to the fact that as sunshine hours in a day increased, the tomperature also increased. The high temperature was detrimental to callus fomation. For initiation of callus, the sunshine hours in a day should decrease and, that is offocted through rainfall and thus suitable dull moist weather for better take was maintained. This condition was only needed In the current fortnight of budding. It is important, too, that the region of the graft union bo kept as free as possible from pathogenic orgenisms. The thin walled parenchymatous cells, under comparativoly high relative humidity and tempem rature conditions provide a favourable medium for growth of fungi and bacteria, which are exceedingly detrimental to the successful healing of the union (Hartman and Koster, 1985).

Similar trend of influence was observed from the path analysis of mateorological parametors of the previous and two fortnights before budding. But in the previous fortnight of budding, only rainfall exhibited high positive direct contribution to bud take, and maximum temperature and relative humidity having positive contribution. Among the climatic factors during two fortnights bofore budding, only rainfall possessed high positive diroct contribution on budding. From
these, the importance of rainfall and relative humidity on budding has boen clearly brought out.

The climatic factors of the succeoding fortnight and current fortnight directly contributed to and indirectly influenced the bud take by 23 per cent and 37 per cent respectively. Those of the previous fortnight and two fortnights before budding exhibited 45 per cent and 15.83 per cont influence respoctively. This may be explained on the basis of one of the important internal factors influencing the formation of graft union, that is, the growth activity of the scion and rootstock at the time of budding Bose at al. (1936). For T-budding, it is essential that the bark of the rootstock and scion should slip freely so that the bark can easily be separated from the wood. At this stage, the cells of the cambium divide freely and union takes place readily (Hartmann and Kester, 1986). The rainfall during the previous fortnight and two fortnights bofore budding causes vigorous active growth of the rootstock and scion, thereby making the budding operation easy and budding success more.

Perusal of the meteorological data in relation to the percentage of success obtained in budding during the different
months indicates that high atmospheric humidity consequent on high rainfall, neither too high nor too low maximum but high minimum tomperatures and sunshine hours in a day wore very congenial for the union of the rootstock and scion. The success was retarded when there was departure of any of the five meteorological paramoters from the above combinam tion. The aforesaid favourable conditfons coupled oven distribution of rainfall prevailed during August second fortnight to Octobor middle, causing officient flow of cell sap and thus enabling maximum success in budding. A gradual increase in bud take was observed upto August first fortnight and a sudden decline in tako was obtained during Augugt first fortnight accordingly with a deciline in rainfall. The decrease in bud take might have been due to the wilting or reduced sap flow of the plants which were otherwise succulent by the recoipt of increasing rainfall till then. It was also understood that as far as rose budding is concerned climate during the preceding, current and succeeding fortnights are critical for successful bud union.

Shippy (1930) confirmed that air moisture level bolow the starvation point inhibited callus formation. The rates of desiccation of the cell increased as the humidity dropped.

Abstract

Parenchymatous cells making up the important callus tissue are thin -walled and tender with no provision for resisting desiccation. It is obvious that if they are exposed to dry air very long, they will be killed. The failure observed in the drier months might have been due to the above fact. The climatic factors, thus play an important role in budding of rose and this is the reason why the preferred time of budding differs at different places.

5.3 Biometric characters

The results of the effects of season, varieties, postcion of buds and their interaction on different biometric characters are discussed in the following section.
5.3.1 Period of budding or season

Nukherjee (1964) obsorved that scion growth differs between grafts prepared and different months in the case of mango. The vegetative characters before the appearance of the first flower bud like petiole fall, bud emergence, first leaf emergence, number of leaves till first flower bud and height of the scion till first flower bud appearance are seen influenced by the period of budding. Singh (1980) had
pointed out that the time of budding had great influence on bud break. Plants budded during September first fortnight showed earliness in petiole fall (8.18 days) as well took minimum days for bud burst (15.82 days) and first leaf emergence (25.09 days). On the other hand the plants budded during September first and Odtober first fortnights produm ced minimum number of leavos (9.26) and recorded significantly lower height (15.77 cm) before the first flower appearance. Haximum leaves (12.16) and plant height (18.63) was observed in plants budded during September second fortm night (Tablo 8).

Period of budding influenced the first flowor characters like days taken for flower bud production, flower size and petals in the flower. Plants budded duzing September first fortnight produced the first flowor bud early (55.46 days) than those budded during September second fortnight. However, the flower size was small (6.11 cm) and the number of potals was minimum (23.43) In the formor, de Vries (1976) found that plants with shorter shoots produced the first flower bud early because of their shorter juvenile period. Similer results were also obtained from this study. The plants budded during September first fortnight produced
shorter stem and flowered early within eight weeks oif budding. Rojas (1972) also found that the first flower could be oxpected within eight wooks of budding.

Maiti (1974) observed the plant height and branch number to vary with the budding dates. In the present studies also, the period of budding exhibited profound influence on subsequent grovith and flowering of rose plants. Plants budded during September first and second fortnights produced nore subsequent shoots (3.76 ard 3.3) and flower buds (2.17 and 2.45); but the petals were significantly less. Maximum total height also was attained by the plants budded during this period. The number of flowers produced by long cane was considerably greater than that by short canep as has been reported previousiy (Hughes and Cockshull 1970). The benefits of longer stems in flower production varied with season (zieslin, 1981). In the present studies also, plants budded during the first fortnight of Soptember possessed maximun plant height and produced more number of flowers as second crop.

5.3.2 Variety

During the prosent investigations it has been found that varietal influence was evident only in certain charactors
of growth after budding. Variety had no influence on petiole fall, bud emergence, first leaf emergence and plant height. The number of leaves produced before the first flower appearance was found to be a variety dependent character. Haenchen (1967) observed the growth of the budded scions was dependent on the variety. Pink Panther produced the lowest number of leaves (9.95) and Princess the highest (11.18). Cockshull and Horridge (1977) pointed out that a minimum number of leaves is required to be produced before flower initiation takes place. In their studies, the cultivar Sweet Promise produced flowers only after the production of the minimum number of leaves. They could observe seasonal differences in this minimum requirement. In the present studies, varietal differences in this minimum requirement have been observed.

- The time taken for the first flower bud production was not a variety-dependent character. Among the three varieties, flowersize was maximum (6.91 cm) for Ambassador and minimum $(6.21 \mathrm{~cm})$ for Pink Panthor. However they possessed more or less equal number of petals (25.53), which was significantly lower than that of princess (29.65).

Considering the growth and flowering after first flower production, days taken for the appearance of second crop flower buds, petal number and total hoicht were not influenced by variety. The number of subsequent shoots produced was inEluenced by the varisty. Ambassador and Pink Panther produced the maximum number of subsequent shoots (3.61 and 4.07) and flowors (2.23). Princess produced minimum shoots and flowers. This may be due to the difference in the genetic characters of the different varieties and their growth pattern.
3.3.3 Bud position

The existence of a growth potential gradient along the axis of a shoot has been known for a long time. Various hypotheses have been suggested to explain the mechanism of apical inhibition of lateral buds (Phillips, 1975). Differences in the ability of buds to sprout and grow as related to the distance of the bud from the apex was termed the "distance effoct' by Snow (1925). Gregory and Veal (1957) noted a similar phonomenon in flax and pea plants which they called "the gradient of growth potential in the stem". Powell (1973) made similar observations in apple. This difference in growth ability of different buds is found both in the intact plants and in the excised nodes.

In the present investigations, buds at different positions from the flower were detached and budded. The growth parameters upto the second crop of flowers were studied. Regarding the vegetative characters before the appearance of the first flowers, first bud (from the top) showed earliness in petiole fall. bud omergence and first leaf production; but recorded minimum number of leaves and lowest height. The time taken for these characters from the first bud to the fourth bud was wore or less same, being statistically not significant. Fifth bud took maximum number of days for petiole fall, bud emergence, first leaf production and also recorded the maximum leaf number. The fourth bud recorded the maximum hoight. Ziesiln et al. (1976) and Zansici gt al., (1985) also have shown that there is a "gradient of readiness to sprout along the stem, upper buds being less inhibited. The observed differences in sprouting ability may have been due to the difference in the age of the buds (buds which are situated lowar on the branch are "older"). These differences botween the buds from different locations on the stera may bo a result of developmental differences related to the location of the bud on the stem (Ziesifn 晾 2l., 1976) and may also be due to the accumulation of an inhsbitory factor being higher In the extracts of the lower stem part (Ziesin et al., 1978).

The first, second and third buds produced the flowerbuds early (54.61 days); but the fourth and fifth buds took more days (00.4 days). The flower size and petal number were not found to be a position dopendent character.

Number of flower buds and total plant height ware seen not influenced by the position. The first, secord and third buds produced more subsequent shoots and showed earliness in flowerbud production. However the patals were few. The fourth and fifth buds produced fewer shoots and delayed the flower appearance. The number of petals was, however, more.

From these results, it is seen that the upper buds on the shoots were at a similar stage of development (age), although they were of different positions on the branch as described earlior by Ziesiin et al. (1976). The greater inhibition of lower buds may be due to anatomical differences in the vascular system at the time of bud differentiation or as a result of bed aging at later stages. According to Phillips, (1975) somo irregularity in the vascular system may be the reason for differences in the degree of bud inhibition. Eventhough this point was not examined in the present
investigations, the gradient observed in the buds of similar age (Table 14 to 16) seem to indicate that the opinion expressed does not hold good here. This gradient in characters may be due to the gradient inhibition present in the intact mothor plant eventhough the upper buds were at a similar stage of development.

The diffarences found in the sprouting ability of difforent buds and of the buds of similar age situated at different positions on the branch, were similar to the gradients Eound in the flowering ability (Rylaki and Halovy, 1972) and other morphogenetic cheracters of buds along the plant axis (Nozeran et al., 1971). This may indicate that these differences are developmental rather than correlative. The control for this phenomenon would, then, lie within the differentiating apex.

The initial effect on sprouting may be different from the subsequent effoct on the growth of the sprouted shoot. Zqeslin and Halovy (1976), Gonder (1965); Pal (1972) and Fairbrother (1970) explained that the bost buds are those near the middle of the stem. According to them, those at the top just below the flower, are often too advanced and
those near the base less sadvanced. Pal (1987) was also of the opinion that the buds selected should not yot have started to elongate. From the analysed data of the most favourable season for budding, it was seen that the upper budswere faster in growth than the lower ones. The year round studies made on the biometrical characters (AppendicesII to XIV); indicate that the first bud of V_{3} failed to produce subsequent shoots (Appendix X). Appondix XI indicates that almost all the first buds of V_{1}, V_{2} and V_{3} failed to produce second crop of flower buds in the subsequent vegetative shoots. The fourth and fifth buds of V_{1}, V_{2} and V_{3} produced the second set flower buds in most subsequent shoots, eventhough the number of subsequent shoots produced was less than that of the first and second buds. But the first, second and third buds, produced secord crop of flower buds, only in some of the subsequent shoots. Most of the plants produced from the first and second buds of V_{1}, V_{2} and V_{3} wore comparatively weak and died after the first flowering was over. However, some of them died after production of subsequent shoots. The plants producod from the third, foum and fifth buds, lasted long in a better condition and showed good flowering. The earliness in growth of the first. second and third buds in the favourable season may be due to the anatomical differences.

According to Tomlinson, (1978) and Zamski gt al. (1985), the upper buds are sylleptic i.e., their growth continues without interruption inmediately on formation, and the lower buds are proleptic, i.e., they undergo a period of inhibition prior to sprouting. The vigour of the plants developed from the upper buds was reduced after their early growth. But with reference to the lower buds, eventhough the early growth was very slow, the vigour of the plants wore maintained. Aecording to de Vries and Smeets (1979), growth control in roses should mean the highest possible vigour. the ability to stand continuous harvesting (pruning) of the scion and the ability to perform well under different environmental conditions. In the present investigetions, among the five buds, the fourth and the fifth were found to be better for budding, when plant vigour was considered.

5.3.4 Interactions

Period of budding x varicty interaction did not inEluence some of the vegetative characters before first flower appearance like potiole fall, bud emergence and first leaf production eventhough period of budding alone greatly influw enced them. However, with respect to the number of leaves and hoight of the scion, the interaction exhibited profound

Influencas. Ambassador and Pink Panther produced minimum leaves when budded during September first and October first fortnights; Princess was found to produce significantly more number of leaves on all the three fortnights. For Anbassador and Pink Panther, budding during September second fortnight was favourable for greater plant height. For Princess, September second and October first fortnights were favourable for greater plant height.

Days taken for first flower bud production and flower size wore not influenced by the Interaction. Petal number was influenced. Princess and Pink Panther recording minimum petals when budded during September first fortnight and maximum when budded during October first fortnight. Ambassador produced flowers with significantly more potals when buddod during September first fortnight than during September second fortnight.

The interaction did not influence the time taken for production of second crop flower bud and their number. But significantly more number of shoots and maximum total height were recorded for Anbassador and Princess when budded during September first fortnight. Pink Panther showed lesser
helght and less number of shoots than the other two varleties during ${ }^{\text {ll }}$ the three fortnights. Ambassador produced more petals when budded during September first fortnight. For Pink Panthor and Princess, more potals were found when budded during Octobar first fortnight. The influence of the period of budding x varlety interaction rovealed that, these characters exhibit fluctuation for different varieties budded during different periods or seasons.

The growth characters, the characters of the first flower and the characters of the second erop flowers were not seen influenced by the variety x position interaction.

From the data on period of budding x bud position interaction it was found that irrespective of the bud position, budding during September first fortnight was favourable for early petiole fall, bud energence and first leaf emergence. In this period itself, the first and second buds showod earliness than the third, fourth and fifth buds. For first leaf production, fifth bud took more days when budded during October first fortnight. In the case of plant height, the first, second, third and fourth buds recorded more or less the same height in all the three fortnights:
but the fifth bud showed maximum height when budded during October first fortnight. Considering the first flower characters and growth characters after the first crop of flower buds, period of budding x position interaction was not influential, eventhough period of budding alone influenced all of them, and position of buds, some of them.

5.4 Correlations of biometric characters

Strong positive inter correlation was seen between fall of potiole, bud omergonce, first leaf production, numbor of leaves till first flower bud, time takon for first flower bud production, first flower size and timo taken for the prow duction of second crop flower buds. When petiole fall occurred early, bud emergence, first leaf production, production of first crop of flower buds and production of second crop of flower buds occurred early, the characters being significantly and positively correlated, On the otherhand, with early fall of petiole there were lesser number of leaves till the production of first flower bud, besides the flowers of the first crop being small.

Another strong positive correlation axists between fall of petiole, first leaf production, days taken for first
flower bud production, days taken for second crop flower bud production and petals in second crop of flowers. Early the petiole fall, first leaf production, first flower bud production second crop flower bud production, all occurred early and the flowers of the second crop being with less number of potals. Petals present in first flower also found to have positive significant correlation with petals in second crop flowors. This means if the petals were more in first flower, second crop of flowers also possessed more.

Leaves present upto the formation of first flower showed positive significant correlation with plant height till first flower bud which in turn showed significant corrolation with number of second crop flower buds produced and total height of plant after the production of second crop flowers. This may be explained as, if the leaves were more the plant possessed more height till the production of first flower bud and if the height was more second crop of flower buds produced and total height of plant aiter second crop of flowers were more. Hughes and Cockshull, (1970) also reported similar results.

The number of vegetative shoots produced after first flower showed positive significant correlation with number

Abstract

of second crop flower buds 1.e., if the axillary shoots produced after first flower were nore, more the number of second crop of flower buds.

It was found that leaves till first bud was negatively correlated with number of subsequent shoots i. θ_{0}. if the leaves were more till first bud subsequent shoots prom duced will be few. This may be due to the inhibition gradient existing in every shoot of a plant from top downards. The bottom buds were more Inhibited that they do not show bud outgrowth.

It was also seen that the time taken for the production of first flower bud and the number of subsequent shoots produced were negatively correlated i.e., if more days were taken for the production of first flower bud, the less the subsequent shoots produced. Another negative significant correlation was observed between the number of subsequent shoots produced and the time taken for second crop flower bud production and petals present in second crop of flowers i.e., if the subsequent shoots were more, early the production of second crop buds and the flowers in the second crop with less number of petals.

The number of second crop flower buds and petals presont in flowers of second crop wore negatively correlated. i.e., the nore the flower buds the less the petals.
5.5. Nutrient status or carbohydrate - nitrogen ratio

In February-March, carbohydrate and nitrogen content was low; but nitrogen content gradually increased from Februarymarch upto Aprillay. During the period carbohydrate content was low, indicating the production of more vegetative growth leading to lowaring of C/N ratio. Akbar, (1979) in his studies found that the carbohydrate and nitrogen content varied with season and the growth pattern of the plant, the Edward rose. Subsequent reduction in nitrogen content indicated the termination of vegetative phase and comencement of flowaring. Fron April-Way, carbohydrate content showed gradual increase upto JunewJuly during which the nitrogen content was decreasing. Carbohydrate started aecumulating in the later months, probably because it was not utilized aither for vegetative growth or for the production of flowers, as the flower production was low in April. C / \mathbb{N} ratio was high in June-July due to accumulation of carbohydrate. From August, carbohydrate content synchronised with the drop in the rate of flower yiold. Eventhough the

C/N ratio of three scion varietios wore similar, it was highly fluctuating compared to rootstock C / \mathbb{N}. The C / N ratio of rootstock was more or less constant during the experimental period because briar the rootstock was not allowed to putforth vegetative growth beyond the required level.

5.5.1 C/N ratio on bud take

According to Hartmann and Koster (1985), in the case of the healing process in T-budding of rose, about three days after budding, the terminal cells of the broken xylem rays and adjacent camblal derivatives on the exposed surface of the stock bogin to enlarge and divide, leading to the production of callus strands. Simultaneously callus strands develop from terminal cells of broken phloom rays and adjacent young secondary phloem cells on the cut surface of the innerm side of the bud piece. In the present investigations, it was found that, the scion C / N ratio significantly influenced the bud take while the rootstock C / N did not significantly Influence the take. The carbohydrate reserves (nutrient status) of the scion may have accelerated the formation of callus tissue from the bud piece thus, enabling the healing process to be completed earlier. From Fig. 5, it can be soen that in August to October, during which, maximum bud
take was obtained, carbohydrate and nitrogen content was comparatively at a steady level than during the other seasons, when the fluctuation was more.
5.5.2 Season, varieties and bud position on nutrient status

From the analysis of the data of the carbohydrate, nitrogen and C / N ratio of each bud positions of the three scion varieties, in the three fortnights during which maximum bud take was obtained, it was understood that season plays an important role in the fluctuation of carbohydrate percentage, nitrogen percentage and C / N ratio.

In this precised analysis, the varioties significantly influenced the carbohydrate, nitrogen and $C \mathbb{N}$ ratio since the varietal characters and growth habit differs in oach variety. But when all the year round data were analysed varietal effect was not significant.

Influence of, bud position from the flower downards in the scion, on carbohydrate, nitrogen and C/N ratio is an important factor to be considered since sach bud showed different stages of anatomical development and difforent bud take. The nitrogen percentage was lowest in the buds in the order of fourth, third, first etc. However second
bud possessed highest nitrogen content. This was in confirmity with the results of Chadha et ah. (1973). Pathak and Pandoy, (1978) and Singh and Rajput, (1973). First bud recorded lowest carbohydirate content and it increased in the order of second, third, fourth and fifth, of which. the fifth bud recorded the highest. Tucky and Green, (1935) also proved that starch content decreased as a gradient from base to tip and nitrogen content increased from base to tip as a gradient. As fas as the C/N ratio was considered, second bud possessed lowest C/N ratio since second bud had highest nitrogen content which was on par with the first bud. From sacond bud onwards upto fifth bud, gradual increase was noted. Fifth bud recorded maximum C / \mathbb{N} ratio. The increasing carbohydrato content from tip to base revealed that the reserve foods were more in lower buds and the reverse condition of nitrogen, that growth starts, early in upperbuds, as obtained from present investigations also.
5.5.3 Interactions

Season x variety interaction alone influenced the nitrogen content and C/N ratio since season and variety possessed individual significant influence on C/N ratio

N content. i.e., the C / N ratio and N content vary with each Veriety in different seasons. But when carbohydrate content was considered only variety x position interaction was influential. The three varieties differed significantly for each position because of developmental variations and varlotal characters.

SUMMARY

An Investigation was carried out at the Department of Horticulture, College of Agriculture, Vellayani during a period of one year starting from January 1987 to December 1987 to find out the effect of season and position of bud on the success of budding in rose plants. The experiment was laid out in factorial Completely Randomised Design with three replications. The treatments consisted of combinations of three varietios 'Ambassador', 'Pink Panther' and 'Princess' with five scion bud positions, starting imediately below the flower. Budding was done at fortnightly intervals and each time, 45 buddings were done. The daily meteorological data collected were examined for their possible role in the success of budding. Thirteen growth characters were also recorded and analysed. The nutrient status of the scions and rootstock were estimated to determine their role in the succoss of budding. The results of the study are summarised below:

1. There was no significant difference among the three varieties 'Ambassador', 'Pink Panther' and Princess' in respect of success in budding. It was thus revealed that as far as propagation is concerned variety is of not much concern; but the season is the most important factor.
2. The time of budding significantly influenced the success in bud take. Botter success ($820-93 \%$) was recorded during the rainy season, August second fortnight to Octobor first fortnight, during which period, the environmental factors were balanced and quite favourable for bud take. February first fortnight to March second fortnight was found to be the least favourable season for budding (with only 26 to 44 per cent take) presumably due to the desiccation of the new parenchymatous cells in the callus, due to the high temperatures that prevalled.
3. Maximum temperature in the succoeding, current and previous fortnights of budding showed significant negative correlation with the percentage bud take. Desiccation of parenchymatous cells would have caused the fallure of bud union.
4. Minimum day temperature exhibited no significant effect on bud take in the succeeding ($\operatorname{lag}+1$), current (lag 0), previous (lag-1) and two fortnights before (lag -2) budding.
5. Rainfall showed significant positive correlation with bud take in lag 0,1 lag -1 and lag $\mathbf{- 2}$ periods and among the five weather parameters studied, rainfall was found to be the major factor influencing the bud take.
6. Relative humidity exhibited significant positive correlation, and the sunshine hours, negative correlation with bud take during lag 0 and lag ol periods.
7. Path analysis revealed that the direct effect of maximum temperature was negative during the lag +1 period.

During lag 0 period, maximum direct effect on success in budding was exerted through rainfall. Relative humidity and sunshine hours also had positive direct effect. But the maximur temperature showed negative direct effect.

During lag -1 and lag -2 periods, the maximum direct effect on budding was shown by rainfall. Relative humidity and maximum tomperature also showed positive direct effect. Sunshine hours possessed negative direct effect on budding.

Path analysis thus indicated that high atmospheric hunidity caused by high rainfall, modium level of temperature and medium level of sunshine hours in a day are very congenial to the union of rootstock and seion.
8. The climatic factors during the fortnight succeeding budding directly contributed and indirectly influenced the bud take by 23 per cont and those of the current and previous fortnights and two fortnights before, 37 per cent, 45 per cent and 15. 83 per cent, respectively. The preceding, current and
succeoding fortnights were found to be critical, as far as success in rose budding was concerned.
9. The period of budding significantly influenced the vegetative and the flower charactors except the number of days taken for the production of gecond crop flower buds.
10. Number of leaves produced before the first flower appearance, first flower size and petals in first flower, number of subsequent shoots produced and number of second crop of flower buds were found to be varlety-dependent characters.
11. All the vegetative characters before the appearance of the first flower, the first flower characters (like days taken for the production of first flower bud, number of petals in first flowers) as well as subsequont growth and flowering characters (like number of subsequent shoots, days taken for the production of second crop of flower buds, potals in subsequent flowors) were influenced by the scion bud position.
12. Period of budding x variety interaction significantly Influenced the number of leaves produced, helight of scion till first flower, petals in first flower, number of subsequent shoots produced, petals in subsequent flowers and total height of the plant after second crop flowering.
13. The period of budding x bud position interaction significantly influenced the fall of petiole, bud emorgence, First leaf production and helght of scion till first flower bud.
14. The first band second buds were early to sprout and flower till the production of first flower bud, but the olants were comparatively weak. In the present investigations, the fourth and the fifth buds were found to be better for budding as far as plant vigour was considered.
15. A strong' positive intor correlation was found to exist between fall of petiolo, bui enargence, first leaí production, leaves till first flower bin, time taken for first flower bud production, first flower size and time taken for secont crop flower bud production.
16. SIgnificant nagative corrolation was observed between leaves produced till first flower bud and number of subsequent shoots produced after first flower; days taken for first flower bud production and number of subsequent shoots produced. Subm sequent shoot number was inturn negatively correlated with days taken for second crop flower bud production and petals present in subsequent flowors. Number of second crop flower buds and petals in subsequent flowors were negatively correlated.
17. The carbohydrate and nitrogen content of the scion varied significantly throughout the year, according to the flowering phase and vegetative phase of the plant.
18. In the present investigations, it was found that, the scion C/N ratio significantly influenced the bud take while the rootstock C / N did not significantly influence the take. The carbohydrate reserves of the scion may have accelerated the formation of callus tissue from the bud piece thus, onabling the healing process to be completed earlier.
19. The carbohydrate and nitrogen content varied significantly with scion bud position and with variety.

REFERENCE

REFERENCES

*Ahijer, M.A. (1973). The effect of the mean diurnal temperature after budding on the production of apple planting material. Azorbaifan. No.5: 16-19.

Ahmed, S. (1960). Propagation of mangoes. Puniab Fruit J., 23: 49-53.

Akbar, S.M. (1979). Studies on the effect of nutrients and their mode of application of Edward rose. (hosa bourboniana Desp.) M.Sc. Thesis. Faculty of Hort. T.N.A.U., Colmbatore.

Aswathi, D.N., Singh, M. PR., Srivastava, R.P. and Misra, R.S. (1932). Evaluation of epicotyl grafting in walnut in relation to success and survival. Prog. Hortic. $14(2 / 3)$: 178-179.
*Bik, R.A. (1970). Manuring trials with Baccara roses. Vakbl. Bloerist. 25: 4730479.

Bose, T.K., Mitra, S.K. and Sadhu, M.K. (1985). Promaation of Troptcal and subtronical Horticultural crops. Naya Prakash, Calcutta, India.

Burbidge, F.W. (1977). Cultivated olants their oropagation and improvement, Prakash publishers, Jaipur.
*Button, J. (1978). The effects of some carbohydrates on the growth and organization of Citrus ovular callus. Zoitschrift fuer Pflanzenphystoloale. 89 (1): 61-6B.

Caponetti, J.D., G.C. Hall, and R.E. Farmar, Ir. (1971). Invitro growth of black cherry callus. Effects of medium, environment, and Clone. Bot. Gaz. 132 (4): 313-18.

Chadha, K.L., Arora, J.S., Ravel, P. and Shikhamany, S.D. (1973). Variation in the minoral composition of the leaves of guava. (Bsidium guajava, b) as affected by leaf position, season and sample size. Indqan I. AgEig. Sci.: 43 (6): 555-561.

Cockshull, K.E. and J.S. Horridge. (1977). Apical dominance and flower initiation in the rose. J. Hort. Sci. 52: 421-427.

Dayton, D.F. (1976). Scion selection for greenwood grafting in applo. Exuit. VaI. I. 30 (2): 69-70.
de Vries, D.P. (1976). Juvenility in hybrid tea roses. Euphytica. 25 (2): 321-329.
de Vries, D.P. and Smeets, L. (1978). Hybrid tea roses under controlled light conditions. 1. The offect of the level of irradiance on the growth and development of seedlings. Neth. I. AOPAC. Sci. 26 (1): 119-127.
de Vries, D.P. and Dubois, L.A.A. (1993). Relations between time of sprouting of the scion in the nursery, the time of formation and number of basal bottombreaks and the number of harvested shoots of glasshouse rosemclones on \underline{R}. canina Inermis., Sci. Hortic. 21 (4): 375-379.
de Vries, D.P. and Dubois, L.A.M. (1993). Relations between basal bottombreaks and harvested shoots in own rooted hybrid tea rose seedlings and their clomes. Institute for Horticultural Plant Breodinge Hageningen. Notherlands.
de Vries, D.P. and Dubois, L.A.M. (1984). Scion-rootstock relationships in hybrid tea cut roses on Rosa canina 'Inermis'. Neth. J. Aaric. Sci.: 32 (1): 3-7.
de Vriss, D.P., Smeets, L., and Dubois, L.A.M. (1980). Genetic variation for the time of first flower and shoot length in hybrid tea rose seodling populations under a range of temperatures. Sci. Hortic. 13 (1): 61-66.

Doley, D. and Leyton, L. (1970). Effects of growth regulating substances and water potential on the developeent of wound callus in Fraxinus. New Phytol. 69: 87-102.
\#Eccher, J. and Mignani, I. (1975). Biometrical observations on characteristics of the vegetative development of roses. Rivista della Ortoflorofrutticoltura Italiana 39 (1): 41-47.

> Estcout. (1974). Ann. I. Roy. Now Zoaland Inst. Hort. No. 2: 12-15.

Fairbrother, F. (1970). Roses, Penguin books Ltd. England.

Fann, Y., Davies, F.T., JR and Paterson, D.R. (1983). The influence of rootstock lateral buds in bench chip. budded 'Mirandy' fisld roses. Sci. Hortic., 20 (1): 101-106.
*Galkina, I.F. (1979). Factors determining the oxtent of take in bench grafting of apples. Sadovodstvo, Vinooradarstvo Vinodelis Moldavis. No. 11: 59-60.

Genders, R. (1965). The Rose. The Bobb Merrit Company, Inc. Indianapolis, Kansas City, New York.

Gregory, F.G. and Veal, J.A. (1957). A reasscssment of the problem of apical dominance. Sym. Soc. Exp. Biol. 11: 1020.
*Haenchen, E. (1967). The effect of several factors on the succoss of raising bush roses. Arch. Gartenb., 15: 453-75.
*Haenchon, E. (1981). Investigations into rose varieties grown in the GDR. 5. Plant height and diameter of hybrid tea and floribunda rosos. Archiv Fur Gartenbay. 29 (6): 293-306.
*Haenchen, E. (1985). Results of 3 year comparative studies on the flowering behaviour of outdoor rose cultivars propagated by cutiings and grafting. Archiv Fur Gartenbau. 33 (5): 259-273.

Hartmann, T.H. and Kester, E.D. (1986). Plant propagation princtoles and practices, 4th Ed. Prentice - Hall of India. Put. Led. New Delhi.

Hughes, A.P. and Cockshull, R.E. (1970). Commercial bloom production in the greenhouse rose, Pink Sensation. Exp. Hortic. 20 : 1-9.

Jackson, M.L. (1973). Soil Chemical Analysis. Prentice Hall of India (p) Ltd. New Delhi.

Jacobs, G., Zieslin, N. and Halevy, A.H. (1980). Factors affecting ${ }^{14} \mathrm{C}$ - sucrose uptake by single node explants of rose flower stems. Physiol. Plant. 50 (3): 251-254.

Jauhari, O.S. and R.D. Singh. (1970). Effect of bud activation lopping and wrapping material of budding in mango (Mandfora indica L) var. Langra, Puniab Hort. J. 10: 198-202.
*Johansson, J. (1979). Leaf composition of flowering shoots from different greenhouse cose cultivars as influenced by rootstock and season. Acta. Agric. Scad.,
29 (1): 85-92.

Joolka, N.K. (1936). A note on the effect of method and time of budding on budtake in kinnow mandarin. Haryana J. Hort. Sci. 15 (1/2): 54-56.
"Kaplankiran, M; Ozsan, M. and Tuzcu, O. (1985). Effects of the relationship between the rootstock and the scion on the content of carbohydrates in various citrus rootstocks. Doga Bilim Dergisi, Dz (Tarim ve Ormanililik) 9 (3): 261-268.

Khera, A.P., Makhija, M., Chitkara, S.D. and Chauhan, K.S. (1931). Development of leaf nutrient concentration standards for subutropical peach (pzumus porsica). Haryana Aaric. Univ. I. Res. : 11 (2): 131-184.

Khosh-Khui, M. and Sink, K.C., (1982). Callus induction and culture of Rosa. Sci. Hortic. 17 (4): 361-370.
*Korobov, V.I. (1976). Certiain characteristics of rootstock/ scion union in garden roses budded at differont times. In Okharana Sredy i Ratstonalin Ispoliz. Rastitalin. Resursov. Nauka: 243-245.
*Kuster, E. (1903). Pathologische pilanzonanatomic. First ed. (Transl. by Frances Dorrance, 1913).

Lal, S.D. and Seth, J.N. (1984). Rose multiflora - a good rootstock for rose budding. Srog. Hortic. 16(1/2): 153.
*Lundstad (1965). Meld Norg - Landbettoask; 44: 1-7.
"Lundstad, A. (1972) 。 The effect of climate on the budding of roses. Meldenger fry Norges handnukshogskola. 51 (29): 16.
*Lundstad. A. (1974). Plant losses, plant size and flowering in garden roses on different rootstocks. Meld. Nor. kandbrukshogsk., 53 (16): 34.

Maharana, To and Singh, S.B. (1978). Effect of different light conditions on the bud union and subsequent growth of roso. Onissa J. Hortic: $6(1 / 2): 74-76$.

Mahlstede John, P. (1957). Dlant propagation. John Wiley and sons. Inc.

Maiti, R.G. (1974). Effect of time and mothoc on budding tea and floribunda roses. South Indlan Hort. : 22 (3/4): 125-126.

Medoros, S. and Rodriguez Enriquez, M.J. (1987). In vitro propagation of "Golden Times" roses. Factors affocting shoot tips and axillary bud growth and morphogenesis. Acta. Hortic. . IE (212): 6190624.

Millar Gault, S. and Synge (1971). The Dictionacy of roses. Rain bird Reference Book Limited, London.

Misra, R.S. (1985). A note on soft wood grafting in pacan nut. Prog. Hortic., 17 (1): 83-82.

Moe, R. (1972). Effect of day length, light intensity and temperaturee on growth and flowering in roses. I. Ame. Soc. Hort. Sci. 97 (6): 796-800.

Mor. Y. and Halevy, A.H. (1979). Translocation of ${ }^{14}$ C assimilates in roses. 1. The effect of the age of the shoot and location of the source leaf. Physiol. Plant 45: 177-182.

Moss, G.I. and Dalgleish, R. (1982). Containor-grown roses, five months from cutting to flowering. Combined Proceodings, International Plant Pronacator's Society. 32: 155-162.

Mukherjee, S.K. and P.K. Majumder. (1964). Effect of diffem rent factors on the success of venieer grafting. Indian J. Howt. 21: 46-50.

Mukhopadhyay, A., Banicar, G.J. (1932). A preliminary report on rootstock trial in roses. South Indian Horticulture. 30 (1): 61-63.

Nanjan, K. and Kumar, S. (1983). Comparative efficasy of patch budding versus shield budding in rose. South Indian Hort. 31 (2/3): $125-126$.

Nanjan, K., Hiriyan, M.A. and Ravindran, R. (1971). A new technique in propagation of roses. Madras Aaxic. I. 59: 526-28.

Nozeran, R., Bancilhon, L. and Novillo, P. (1971). Interm vention of internal corralation in the morphogenesis of higher plants. Advance. Morphogenesis 9 1-66.

Pal, B.P. (1972). The Rose in India. 2nd Ed. I.C.A.R.: Now Dolht.

Pal, B.P. (1987). ALl about soses. Tarang paperbacks Vikas Publishing House pvt. Ltd. Now Delhi. . 10th Edn.

Pandey, D.S. and Sharma, R.K. (1976). Studies on the performance of rose varieties on different rootstocks in Allahabad. plant Sci. E: 88-92.

Panse, B.G. and Sukhatme, P.V. (1967). Statistical mothods for agricultural vorkers. Indian Council of Agricultural Research. Now Delhi.

Pathak, R.A. and Pandey, R. $\mathrm{H}_{\text {. (1978) . Studies on the chemical }}$ composition of leaves as associated with position on the shoot in mango (Magnifora indica. L.) cv. Dashohari. prog. Hortic. . $9(4): 17-23$.

Phillips, I.D.J. (1975). Npical dominance, Anny. Rou. Rlant Phystol. 26: 341-367.

Powell, b.E. (1973). Naturally occurring plant growth regulators and their physiological roles in fruit trees. Acta Hort. 34: 33-40.

Ram, S. and Bist, L.D. (1982). Studies on veneer grafting of Mango in Tarai. Punjab Hort. J.. 22 (1/2): 64-71.

Rao, V.N.M. (1967). Propagation practices. The mango handbook, ICAR. 32-69.
niker, A.J. and G.W. Keitt. (1926). Studies of crowngall and mould overgrowth on apple nursery. stock. Phytooathol. 16: 765-808.
*Rojas, M. (1972). A. now mathod of grafting for the rapid propagation of rose bushes (Rosa multifiora Japonica). Revista ICA. 7 (2): 111-119.
*Rupperecht (1971); D1sche Gartenb. 19: 160-161.

Rylski, I. and Halevy, A.H. (1972). Factors controlling the readiness to flower of buds along the main axis of pepper (Cansicum annum. L.) J. Amar. Soc. Hort. Sci. 97: 309-312.

Sandhu, A.S. and Zora Singh. (1983). Seasonal chenges in the levels of motabolites during domancy in subutropical Peach (Prunus persica Batsch) cv. Sharbati. Indian J. Plant. Phusiol. 26 (1): 39-14.
*Savin. E.Z. (1976). Take and growth of apple bench grafts in relation to the position of the grafting material on the shoot. Sadovodstvg. Vinogradarstvo i Vinodelie Moldauli No. 11.
*Savin, E.Z. (1980). Temperature regime during the stratification of benchografted apples and sour cherries. In Selektstya 1 Agrotekhn. Vyrashchivanlya Plodoy 1 Yagodn. Kul'tue y Sredn Povolzh'a Kugbyshov. USSR: 67*75.

Sawke, D.P., Salvi, M.J. and Patil, M.M. (1985). Prospects of clonal propagation in Cashewnut by softwood grafting. Indian Cashow Journal. 17 (4): 15-17.
*Shcherbakova, S.P. and Maslova, A.E. (1982). Optimal dates for peach budding in the Crimean Stoppe zone. Byulletin Gosudarstionnogo. . Nikitskogo Botanicheskogo Sada No. 49: 63-67.

Shippy, W.B. (1930). Influence of onviroment on the callusing of apple cuttings and grafts. Amor. Jous. Bot. 17: 290-327.

Singh. J.R. and R.P. Srivastava (1962). Studies in Mango. C Indian J. Hort. . 19: 130-34.

Singh, K.K. and J.S. Jawanda. (1962). Some promising seedling mango trees of Punjab. Puniab Hort. J. 1 : 2 133m3.

Singh, S.N. (1972). Studies on rootstocks and budding in rose. Hort Adv. 9 . 9 -

Singh. N.P. and Rajput, C.B.S. (1978). Effect of leaf age and position and fruiting status on guava leaf mineral composition. J. Hortic. Sci., 53 (1): 73-74.

Singh, N.P., Srivastava, R.P.. Singh, H. and Rajput, M.S. (1979). Seasonal effect on success in different methods of mango propagation. Ind. J. Hort. 36 (2): 134-139.

Snow, R. (1925). The correlative inhibition of the growth of axillary buds. Ann. Bot. 39: 84l-859.

Somogui, M. (1952). Notes on sugar determination. I. Biol. Chem. : 200: 145-54.

*Statens Forsogsvirksomhed. (1969). Cultural trials with roses. Gartner Tidende. 85: 369m7.

Swarup, V. (1957). Garden flowers. National Book Trust I. Now Delhi.
*Syrbu, I.G. (1975). Time of budding in rolation to the growth characteristics of the graft components. Sadavodstvo, Vinogradarstvo, Vinodelic Moldavif No. 11: 31-35.

Tomlinson, P.B. (1978). Tronical trees as ifving systems., Branching and axis differentiation. Cambridgo University Press. Cambridge. 187-207.

Tukey, H.B. and Green, E.L. (1935). Gradient composition of rose shoots from tip to base. plant. Physiol. . 9: 157-163.
*Ugolik, M. (1991). Effect of budding date and the type of tie used on budding success in the sour cherry cultio var, Lutowka. Akadamia, Rolnicza: 16-17.

Van Stader, J. (1982). Transport of ($8^{14} \mathrm{C}$) - Zeatin from mature rose leaves after shoot decapitation. Bot. Gaz. 143 (2): 201-205.

Fells James, S. (1955). Plant propagation practices. The Macmillan Company. 153.

Wright. S. (1921). Correlation and causâion. I. Acri. Res. 20: 557~587.

Zamski, E; Oshri, S. and Zieslin, N. (1985). Comparative morphology and anatomy of axillary buds along a rose shoot. Bot. Gaz. 146 (2): 203-212.

Zieslin, N. and Halevy, A.H. (1976). Components of axillary bud inhibition in rose plants. 1. The effect of different plant parts (correlative inhibition). Bot. Gaz. 137(4): 291-296.

Zieslin, N., Haaze, H. and Halovy, A.H. (1976). Components of axillary bud inhibition in rose plants. 11. The effect of bud position on degres of inhibition. Bot. Gaz., 137 (4): 297-300.

Ziesilin, N. and Halovy, A.H. (1978). Components of axillary bud inhibition in rose plants. 111. Effect of stem orientation and changes of bud position on the stem by budding. Bot. Gaz. 139 (1) : 60-63.

Zieslin, N., Spegelstein, H. and Halevy, A.if. (1978). Come ponents of axillary bud inhibition in roso plants. iv. Inhibitory activity of plant extracts. Bot. Gaz. 139 (1): 64-63.

Zieslin, N. and Byrne, T. (1981). Plant management of greenhouse rosess flower cutting proceedure. Sci. Hortic. 15: 172-186.

[^0]
APPENDICES

Appendix I Weather parameters for 1987

		$\left.\underset{\text { Temperature }}{\text { Maximum }}{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Mirimum } \\ \text { Temperature }\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\underset{(\mathrm{man})}{\operatorname{Rainfall}}$	Relative Humidity (\%)	Sunshine Hours
Jan.	1-14	31.49	19.65	0	75.46	8.87
	15-31	32.09	20.01	0	70.38	10.46
Feb.	1-14	31.27	21.20	0	64.39	10.25
	15-28	32.10	21.50	0	69.25	10.22
Mar.	1-14	33.81	22.91	0	71.60	10.52
	15-31	32.09	23.68	- 4.00	72.52	10.50
April	1-14	34.20	26.23	0	77.07	9.97
	15-30	33.11	25.44	48.00	79.91	8.66°
May	1-14	32.51	25.71	5.80	71.28	10.68
	15-31	33.20	24.70	77.20	70.05	8.74
June	1~14	31.49	22.95	117.70	70.71	5.68
	15-30	30.54	24.27	105.40	78.40	6.48
July	1-14	30.60	23.90	20.00	78.14	9.58
	15-31	31.80	24.80	0.40	74.05	9.28
Aug.	1-14	31.60	23.80	35.20	77.36	8.82
	15-31	29.80	24.20	238.20	84.94	3.73
Sep.	1-14	31.00	24.40	180.00	81.10	9.94
	15-30	31.00	23.00	126.00	76. 84	5.10
Oct.	1-14	30.87	23.83	160.00	80.71	7.20
	15-31	30.37	30.11	136.90	84.00	5.02
Nov.	1-14	29.52	23.78	128.00	81.39	7.36
	15-30	30.66	23.96	55.00	$81.59{ }^{\text {- }}$	6.76
Dec.	1-14	30.69	23.81	156.00	82.71	5.61
	15-31	31.03 .	22.66	77.70	77.88	8.94

Appendix II Average No, of daya for fall of petiolu

[^1]Appendix III Average No. of days for bud enargence

Treatmonte	$F_{1}^{\text {Jan. }}$	F_{2}	$\begin{aligned} & \text { Feb. } \\ & F_{1} \end{aligned}$	F_{2}	$\begin{aligned} & \text { March } \\ & \text { F }_{1} \end{aligned}$	F_{2}	$\begin{aligned} & \text { Aprill } \\ & \mathbf{F}_{1} \end{aligned}$	F_{2}	$F_{1}{ }^{\text {May }}$	\dot{F}_{2}	$\begin{aligned} & \text { June } \\ & F_{1} \end{aligned}$	F_{2}	$\begin{aligned} & \text { July } \\ & F_{1} \end{aligned}$	F_{2}	Auquat F_{1}	P_{2}	$F_{1}^{\text {Sopt }}$	F_{2}	$F_{1}^{\text {oct. }}$	F_{2}	F_{1}	F_{2}	$\begin{aligned} & \text { Dec. } \\ & F_{\perp} \end{aligned}$	P_{2}
$v_{1} P_{1}$	30.00	xxx	$\times \times \mathbf{x}$	22.00	xxx	XXX	39,50	36.67	17.50	18.00	xx]	XxX	20.00	17.00	xxx	x \times x	18.33	48,50	12.00	27.00	5kx	26.00	xxx	28.00
$V_{1} P_{2}$	30.00	32.00	xxX	xxx	xax	xxx	27.50	24.00	19.00	24.00	37.50	23.30	14.50	18800	17.00	23.50	18.67	33.00	18,67	29.33	21.00	34.00	14.00	32.50
$V_{1} P_{3}$	35.00	29.30	xxz	22.67	16.67	1300	21.00	30.00	18.50	34.50	30.00	27.30	14.33	xxx	9.00	18.00	11.67	36.67	21.67	24.33	18.50	34,50	15.00	32.33
$\mathbf{v}_{1} \mathrm{P}_{4}$	30.00	37,50	36.00	xMx	17.00	16.00	11.00	44.00	23.00	13.67	36.67	33.67	15.33	xxx	x ${ }^{\text {x }}$	19.50	11.00	32.00	26.33	30,33	33.67	37.00	16.30	35.00
$V_{2} P_{5}$	26.00	39,50	19,50	2800	19.67	12.00	21.00	25.33	22.00	28.00	25.33	23.67	29.67	1500	23.00	22.33	10.00	35.33	46.00	51.00	36.67	43.00	20.67	41.67
$\mathbf{V}_{2} \mathrm{P}_{1}$	34.00	17.00	xxx	xxx	xxx	18.00	49.00	45.00	xxx	xxx	xxx	xxy	19.00	17.33	x×x	16,33	16.00	28.00	21.50	39.00	xKK	XXK	xKK	30,30
$\mathrm{V}_{2} \mathrm{P}_{2}$	35.00	16.00	x×x	17.00	21.00	17.00	32.00	19.00	25.00	21.00	32.00	15,30	21.15	16.00	xxx	24.67	14.00	32.33	17.00	xxx	28.30	31.00	21.50	35.00
$\mathrm{V}_{2} \mathrm{P}_{3}$	39.50	24.00	31.00	10.50	21.00	17.00	35.00	21.00	27.50	27.30	28.30	29,30	30.00	17.33	21.00	14.00	16.00	40,50	27.67	42.00	31.00	29.50	19,50	36.67
$\mathrm{V}_{2} \mathrm{P}_{4}$	XXX	41.00	29,50	. 22.00	24.00	18.50	37.50	16.00	32.00	27.30	28.00	19.67	18.00	16.67	20,30	23.30	13.33	32.00	36.33	37.50	41.00	26.50	24,33	32.00,
$\mathrm{V}_{2} \mathrm{P}_{5}$	40.66	24,60	26,50	23.50	27.50	22.00	49.00	35.50	31.50	34.30	25.00	21.00	31.00	16.00	28.50	31.33	21.67	34.33	44.33	49.00	43.67	36.67	25.33	43,33
$\mathrm{V}_{3} \mathrm{P}_{1}$	18.00	xxz	xxK	16.00	xxx	xrx	XXK	32.00	30.00 .	16.00	28.00	xxx	mxx	19.00	xxx	32.50	15.67	34.00	18.00	32.00	21.00	25.00	28.00	33.00
$V_{3} P_{2}$	22.00	26.00	37.00	21.00	XXX	xXX	37.00	XXK	41.00	19.00	31.30	16.67	20.00	20.00	14.00	30.00	13.00	28.67	21.00	19.50	31.00	26,50	29.00	30.00
$\mathrm{V}_{3} \mathrm{P}_{3}$	30.00	22.00	29.00	17.00	19.50	18.50	XKK	28.00	28.00	19.00	46.00	17.67	26,33	18.50	25.00	20.67	14.67	33.00	26.67	28.00	31.00	22.50	28.00	35.67
$V_{3} P_{4}$	45.00	29.00	25.00	xxx	16.33	19.67	31.00	37.50.	30.00	17.00	34.67	27.00	20.00	12.67	10.50	30,33	19.67	33.33	28.33	32.67	35.67	31.50	21.00	33.00
$v_{3}{ }^{\prime}{ }_{5}$	xxx	30.50	21.00	26.67	18.00	21.67	35.5	40.00	29.50	25.33	39.00	27.67	28.33	20.00	31.67	31.33	23.67	36.33	34.67	30.33	41.67	38.67	27.67	44.67
		-			-	-				$\begin{array}{ll} x \times x & B u \\ F_{1} & F_{1} \\ F_{2} & S_{e} \end{array}$	ud take lrst for ocond for	tnight rtnight	all repl	lication										

Appendix IV Average no, of days for first, leaf emergence

reatments	Jan		Feb		March		April		May		June		July		Aug.		Sap.		Oct.		Nov.		Dac.	
	F_{1}	F_{2}	F_{1}	F_{2}	$\cdot{ }_{1}$	F_{2}	F_{1}	F_{2}	${ }_{1}$	F_{2}														
$\mathbf{v}_{1} \mathbf{P}_{1}$	41.00	XxK	xax	32.00	*KR	XKK	33.50	53.30	37.00	38.00	K×K	xxK	29.30	26.00	xXK	YxX	27.67	53.30	23.00	39.00	x \times K	39.00	xxx	46.00
$\mathbf{v}_{1} \mathbf{P}_{2}$	40.00	40.00	Exx	xxx	XXX	x*x	39.00	33.00	28.00	41.00	58,50	34.67	25.50	31.00	32.00	39.50	34.33	43.33	25,33	36.67	36.00	48.00	21,50	43.50
$\mathrm{V}_{1} \mathrm{P}_{3}$	45.33	40.50	1x:	33.00	26.67	22.00	32.50	40.00	42.50	50.00	38.30	34.33	27.33	x \times x	18.00	29.00	19.33	44.67	29.33	44.33	33.50	40.00	27.50	44.00
$V_{1} p_{4}$	38.30	30.30	51.00	x×x	36.00	25.00	19.00	54.00	43.50	38.67	47.00	44.67	22.33	\%x\%	xKX	30.50	21.00	45.67	40.33	48.67	48.67	48.33	20.50	42.00
$V_{1} P_{5}$	45.00	54.00	29.50	53.00	43-00	24.50	32.50	36.00	40,33	37.33	32.67	33.33	37.33	27.50	40.00	40.00	22.00	51.67	62.00	68.33	52.00	51.67	36.33	\$3.00
$v_{2} P_{1}$	45.00	28.00	xxx	xxX	xxx	31.00	69.00	53.00	xxx	XXX	xxx	Exx	29.00	23.67	xxx	33.00	24.00	44.00	39.00	50.50	XXX	xxx	x×X	47.00
$\mathrm{v}_{2} \mathrm{P}_{2}$	53.00	29.00	\%xx	24.00	39.00	31.00	68.00	39.00	53.50	28.00	41.00	32.50	35.00	21.50	xxx	28.67	22.33	39.67	30.00	xxx	45.30	39.00	30.00	32,50
$\mathrm{V}_{2} \mathrm{P}_{3}$	56.00	33.00	38.00	26.50	38.00	27.00	69.30	44.00	52.30	31.50	35.30	28.50	37.00	28.33	28.00	27.00	23.00	50.00	45.33	52.00	54.00	39.00	28,50	49.33
$V_{2} P_{4}$	x \times x	57.00	37.50	31.00	44.00	31.00	75.50	38.00	59.00	37.50	37.67	34.33	28.00	25.00	32.00	36.67	21.00	36.33	57.33	50.00	36.33	38.50	36.33	48.50
$v_{2} p_{3}$	59.66	39.67	36.00	36.00	55.50	39.00	87.50	51.50	57.50	44.50	35,33	36.67	39.50	27.67	39.50	41.00	38.67	47.33	62.33	59.33	59.00	49.67	47.00	58.00
$V_{3} P_{1}$	29.00	xxx	x×x	21.00	xxx	xxx	xxx	43.00	68.00	28.00	32.00	xxx	E5x	25.00	xxx	37.00	22.00	71.00	32.00	41.00	40.00	40.00	31.00	51.00
$V_{3} P_{2}$	27.50	31.00	44.00	26.00	x \times x	xxx	62.50	xxx	32.00	33.00	40.67	23,33	29.50	28:00	26.00	38.33	17.67	47.33	35.00	36.50	41.00	40.30	46:00	41.33
$\mathrm{V}_{3} \mathrm{P}_{3}$	41.00	31.00	38.00	30.00	25.50	26.50	xxx	41.00	32.00	35.00	35.00	23.67	34.67	24.00	38.00	31.67	23.00	44.33	50.67	51.00	38.00	39.50	48.50	48.67
$v_{3} \mathrm{P}_{4}$	99.00	38.00	39.00	xxX	27.00	28.00	58.00	53.50	58.50	33.50	40.67	31.33	36.33	28.33	37.E0	38.33	25.00	43.67	44.33	49.00	45.33	42.50	44.50	51.67
$V_{3} \mathrm{P}_{5}$	xxx	43.50	35.00	34.33	29.50	31.33	53.50	55.50	31.40	41.00	63.00	35.67	44.00	29.00	45.67	41.00	35.33	46.33	58.33	52.67	56.67	50.00	57.30	38.33

[^2]Appendix V Average no, of leavas elll first flower.bud

Treatmente	Jan		Fab		March		April		May		June		July		Aug		Sop		Oct		Nov		Dec	
	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}														
$v_{1} p_{1}$	7.00	xxx	xxx	9.30	mx	mxx	11.00	9.33	6.50	7.00	xax	xxx	13.00	6.00	xxx	xxx	7.00	9.30	5.00	6.00	xxx	8.00	xxx	7.00
$V_{1} P_{2}$	6.00	5.00	xxx	xxx	xxx	mx	8.00	10.00	10.00	9.00	11.90	9.33	10,50	9.00	6.00	5.00	9.00	9.67	7.67	6.67	7.00	9.00	12.00	8.50
$V_{1} P_{3}$	7.66	9.00	x ${ }^{\text {x }}$	9.33	7.00	9.00	8.00	7.50	7.00	0.50	9.00	8.33	12.00	XXX	4.00	5.00	9.67	14.00	9.33	8,67	9.00	9.50	13.00	10.00
$V_{1} P_{4}$	6.50	7.30	14.00	xxx	5.00	8.50	7.00	9.90	7.50	13.00	14.00	9.33	12.67	xxx	x $\times \mathbf{x}$	7.00	11.67	14.33	12.00	9.00	9.67	11.00	13.00	10.33
$v_{1} P_{5}$	9.00	12.00	15.50	13.00	11.00	10.50	10.50	10.00	11.00	12.00	12.67	10.67	15.00	9.30	4.00	7.00	12.67	14.00	9.00	12.67	11.00	12.67	11.00	11.67
$V_{2} P_{1}$	11.00	12.00	xxx	mxx	xxx	4.00	12.00	0,50	xxx	x××	K×X	x×x	9.67	6.33	xxx	7.67	8.50	9.00	8.00	6.00	xxx	xXX	xxx	11.00
$V_{2} P_{2}$	9.33	16.00	xxx	7.00	8.00	6.00	11.00	12.00	7.50	8.00	8.00	8.50	12.00	B.50	mxx	7.33	7.00	10.00	10.30	xxx	7.50	4.00	9.00	8.30
$\mathrm{V}_{2} \mathrm{P}_{3}$	14.50	13.50	8.00	7.50	7.00	6.00	9.50	8.00	6.50	6.50	7.50	9.50	10.30	7.67	6.00	7.00	9.00	13.00	8.33	8.50	7.30	7.00	10.00	10.00
$\mathrm{V}_{2} \mathrm{P}_{4}$	xxx	15.50	8.50	12.00	9.00	8,50	7.50	9.00	8.50	12.00	10.00	13.67	8. 50	0.33	5.00	11.00	7.00	15.00	7.33	10.30	10.00	8.50	13.50	12.90
$V_{2} P_{5}$	17.67	15.00°	11.50	12.50	8.50	9.:0	9.50	8.50	11.00	11.50	10.33	11.33	9.50	7.67	7.00	12.67	10.33	15.67	10.67	12.67	9.33	10.67	12.30	13.00
$V_{3} P_{1}$	4.00	xxx	xxX	12.00	xxx	xxk	xxX	6.00	6.00	6.00	6.00	xxx	xxx	5.00	xxx	6.50	10.33	12.00	9.00	8.00	8.00	0.00	8.00	4.00
$v_{3}{ }^{2}$	4.50	5.50	8.00	10.00	mx ${ }^{\text {c }}$	xXx	5.50	xxx	8.00	0.00	7.67	9.67	7.00	6.00	5.00	9.33	10.00	9.33	11.50	8.00	11.00	8.00	7.00	5.67
$V_{3} P_{3}$	6.00	7.00	8.00	8.90	4.50	5.00	xxx	6.00	8.00	10.50	10.00	6.33	6.33	7.30	6.00	6.67	12.00	12.33	8.33	8.50	10.00	9.00	7.50	6,33
$v_{3} P_{4}$	0.00	8.00	8.00	xxX	6.67	5.33	6.00	8.50	9.00	7.50	10.33	13.67	9.67	6.67	3.50	10.33	11.00	11.67	10.67	7.67	9.00	7.50	10.00	0.00
$V_{3} P_{5}$	xEx	9.00	11.00	8.33	7.50	7.33.	7.50	7.50	11.50	10.67	10.30	11.33	10.00	6.67	5.00	21.00	15.00	13.00	11.67	8.00	9.33	7.67	9.67	0.67

[^3]Appendix VI Averagi helght of scion till first tlower bud

Trastenta	Jan		Feb		March		Apris		May		June		July		Aug		Sop.		Oct.		Nov.		Dec.	
	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{2}	F_{2}										
$\mathrm{V}_{1} \mathrm{P}_{1}$	8.00	xxZ	x×x	12.90	xxx	xxx	17.50	11.13	11.85	12.80	xxx	x×X	14.40	8.10	xxx	x*x	20.33	18,50	11.80	10.80	xxx	11.20	xxx	14.00
$V_{1} P_{2}$	10.00	12.90	xxx	X×X	xxx	xxx	12.60	14.70	8.00	11.80	18.55	22.13	15.98	10.30	12.30	8.20	22.33	16.67	21.70	10.07	8.30	10.30	18.75	15.00
$V_{1} P_{3}$	15.00	18.50	xxx	13.00	6.10	8.00	12.75	10.00	13.20	19.10	19.10	19.43	17.37	xxx	15.70	6.40	21.37	20.33	14.60	14.10	0.85	10.30	22.65	14.87
$V_{1} P_{4}$	14.30	19.55	34.00	xxx	4.80	10.85	12.00	9.00	15.15	21.03	21.63	23.67	27.57	x××	xxx	11.73	21.33	26.67	19. 10	13.60	12.17	15.10	21.35	18.13
$V_{1} P_{5}$	16.75	22.60	33.00	17.00	11.10	11.65	15.65	14.13	16.73	14.03	15.93	22.67	29.17	13.35	6.00	9.40	16,33	20.33	8.97	21.57	14.53	15.13	18.67	21.77
$\mathbf{V}_{2} \mathrm{P}_{1}$	21.00	23.00	xxx	$\mathbf{x} \times \times$	xxx	2.80	10.30	14.60	xxx	xxx	xxx	xxx	22.20	13.27	xxx	8.17	13.65	18.00	13.30	13.90	xxx	xxX	xxx	18.65
$V_{2} P_{2}$	21.33	30.00	xxX	11.80	14.00	6.90	10.80	21.00	8.55	10.10	10.20	0.70	22.15	15.00	xxx	9.43	13.80	21.77	16.40	xxx	7.03	8,50	14.25	15.00
$V_{2}{ }^{\text {P }}$	28.00	27.50	12.00	13.00	13.00	10.00	11.65	14.00	6.85	17.20	22.80	12.60	21.20	15.17	12.10	14.00	14.00	24.70	19.37	17.10	10.03	10.90	14.40°	15.77
$\mathrm{V}_{2} \mathrm{P}_{4}$	xXX	23.50	13.50	15.20	12.85	9.50	13.70	13.10	14.20	23.25	16.20	19.33	17.40	22.00	10.65	16.73	21.27	23.03	16.90	20.15	12.93	10.25	17.33	19.40
$V_{2} P_{5}$	40.67	33.00	15.73	16.30	10.70	9.50	15.35	8.90	14.15	19.10	14.67	21.77	17.75	17.37	7.45	13.93	16.07	25.67	10.67	19.03	13.27	12.40	17.83	18.77
$V_{3}{ }^{1}$	8.00	xXX	$\mathbf{x x x}$	22.00	xx	$\times \times \mathrm{M}$	x	5.00	8.80	6.80	10.40	XXX	XXX	14.30	${ }_{\text {xXX }}{ }^{\text {a }}$	14.50	19.13	13.00	11.80	13.40	11.30	16.00	11.30	10.00
$V_{3}{ }^{\text {P }}$	11.10	7.93	12.10	20.80	xxx	XXK	9.50	xxx	9.10	10.20	21.00	11.73	11.80	18.00	10.30	20.33	19.00	17.47	21.60	17.15	13.00	14.60	12.00	12.30
$\mathrm{V}_{3} \mathrm{P}_{3}$	20.00	8.00	12.80	13.90	B. 40	4.20	xXK	8.00	10.85	13.20	22.00	10.80	11.00	18.30	8.80	13.77	14.67	14.20	15.40	16.10	15.00	12.10	13.80	14.03
$\mathrm{V}_{3} \mathrm{P}_{4}$	21.50	11.00	14.00	ExX	9.53	7.06	11.80	13.40	13.50	13.80	16.00	16.33	14,33	18.97	10.30	18.73	20.03	11.23	19.00	18.10	15.00	10,85	14.15	16.80
$v_{3}{ }^{\prime} 5$	xxx	12.25	18.00	13.53	12.00	9.20	12.63	11.15	14.50	12.33	18.70	14.10	16.00	14.00	10.07	12.90	17.70	16.77	25.57	22.33	18.80	15.83	16.87.	20.83

xxx	Budtake nil in all replications
F_{1}	First fortnight
F_{2}	Second fortnight

hppendix VII Averige number of days for fir'st flower buad prodiction

Treatmonts	Jan		Fab		Karch		April		May		Juse		July		Aug		Sap		Oet		Nov		Dec	
	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{\perp}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}
$\mathrm{V}_{1} \mathrm{P}_{1}$	51.00	xxx	xxK	62.30	Kxx	xx	90.00	67.33	53.50	63.00	xxz	KKK	54.50	51.00	xXX	KXK	47.33	65.30	49.00	48.00	xxy	38.00	$x \times$	61.00
$V_{1} P_{2}$	54.00	54,50	x×x	xxx	xux	xXX	86.30	60.00	39.00	94.00	80.00	34.67	53.00	58.00	34.00	46.50	34.33	63.00	23.67	49.33	54.00	71.00	30.00	53.50
$V_{1} P_{3}$	62.00	37.30	xxx	67.66	57.33	42.00	64.50	99.50	46.50	61.30	65.50	50.33	60.67	xxx	44.00	47.00	48.33	62.00	63,33	58,67	48.50	71.50	59.50	65.33
$V_{1} \mathrm{P}_{4}$	54.00	63.50	53.00	xxx	64.00	57.50	56.00	.74.50	55.00	62.00	71.33	60.67	53.67	xKx	xxx	39.50	62.33	75.00	61.00	68.67	57.33	71.67	62.50	69.33
$V_{1} P_{5}$	56.50	70.00	55.00	77.00	72.33	60.50	64.50	62.33	54.67	67.67	62.33	66.67	68.33	64.50	67.00	58.67	72.67	92,67	96.67	84.00	69.33	78.33	71.00	83.00
$\mathrm{V}_{2} \mathrm{P}_{1}$	79.00	75.00	${ }_{\text {xxx }}$	5xx	x×x	76.00	81.00	85.00	xxx	xxx	X××	Xxx	53.67	66.67	$\mathbf{x x x}$	35.67	48.00	62.00	54.00	64.50	xKx	5Mx	xxx	68.50
$V_{2}{ }^{\text {P }}$	75.33	70.00	xxx	38.00	67.00	68.00	88.00	76.00	71.00	44.00	81.00	43.00	50.50	73.00	$\mathbf{x M x}$	61.00	48.67	61.00	46.00	xxx	65.50	61.00	53.50	70.50
$V_{2} P_{3}$	79.30	68.00	71.00	62.00	63.00	68.00	80.00	02.00	69.50	44.50	65.00	42.50	33.00	62.67	41.00	50.00	62.00	76.00	63.67	67.50	62.50	61.50	50.00	67.67
$V_{2} P_{4}$	xxx	96.30	70.00	71.00	69.50	69.50	86.50	78.00	75.00	52.00	'64.67	36.00	57.00	57.67	47.50	69.00	51.33	76.67	74.00	67.30	69.33	73.00	59.00	68.00
$V_{2} P_{5}$	85.33	80.33	62.50	76,50	75.00	74.30	99.50	89.00	76.50	70.50	57.67	65.00	63.50	61.33	54.50	79.30	77.67	82.00	86.00	71.00	75.33	76-00	71.67	82,33
$v_{3} P_{1}$	40.00	xax	xxx	67.00	$\mathbf{x x x}$	xxx	xxx	56.00	79:00	56.00	67.00	XXX	xxx	41.00	ExX	46.50	51.33	88.00	63.00	64.00	38.00	62.00	71.00	73.00
$V_{3} P_{2}$	44.00	47.00	81.00	71.00	x\#x	mxx	81.50	xsx	71.00	62.00	61.33	38.33	39.50	51.00	71.00	50.00	37.33	68.00	39.30	61.30	60.00	62.50	39.00	62.67
$V_{3} P_{3}$	52.00	51.00	02.00	81.00	42.00	51.00	x×x	58.00	67.00	65.30	70.00	38.00	55.33	50.50	64.00	49.33	51.33	68.67	73.33	71.00	59.00	62.00	70.00	68.33
$V_{3} \mathrm{P}_{4}$	71.00	54.00	78.00	xxk	49.33	58.67	69.00	67.50	69.00	64.30	62.00	49.00	53.00	50.67	53.50	49.00	51.67	70.67	62.67	65.67	65.33	61.00	64.50	73.67
$\mathrm{V}_{3} \mathrm{P}_{5}$	AXX	66.50	65.00	81.33	53.00	59.67	71.00	73.50	66.00	71.67	70.00.	48.33	59.67	62.67	74.67	60.33	67.67	82.67	76.33	74.33	73.67	76.00	79.33	82.33

[^4]Appendilx viri Average size of fir't flow.r

Treatments	Jan		Feb		March		April		May		June		July		Aug		Sop		Oct		Nov		Dec	
	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	ε_{2}	F_{2}	F_{1}	F_{2}										
$V_{1} P_{2}$	5.00	xxx	mxx	6.35	mxx	XxX	6.55	6.63	6.50	8.00	x×x	mxk	7.70	7.10	x×K	x×x	5.60	6.35	6.50	7.30	xxx	5.80	xxx	5.30
$\mathrm{V}_{1} \mathrm{P}_{2}$	6.10	6.10	xxx	mxx	xxx	xxx	6:40	5.60	5.60	7.90	6.45	8.23	0.35	6.80	5.80	3.45	3.80	7.40	6.73	6.70	7.30	6.70	7.05	6.35
$V_{1} P_{3}$	6.46	6.20	x×x	6.33	5.33	6.20	6.65	6.35	6.20	7.40	6.35	7.20	7.97	xxx	6.70	6.10	7.07	7.07	6.10	6.70	6.80	7.00	5.95	6.56
$V_{1} P_{4}$	6.93	6.70	7.00	xxx	4.30	6.00	3.80	6.00	5.40	7.23	7.23	7.90	0.70	xxx	Exs	5.95	7.07	7.77	7.27	7,63	2.97	7.90	8.15	7.27
$V_{1} P_{5}$	9.00	6.93	7.30	6.30	4.87	5.90	6.35	7.04	5.60	8.30	7.50	7.23	8.87	7.95	7.20	5.43	6.80	8.30	7.70	8.23	7.67	7.80	7.63	8.27
$v_{2} p_{1}$	6.00	6.00	x×x	xxx	xkx	4.80	6.10	6.00	xix	xKx	xax	*xx	7.23	6.03	*XX	5.63	5.30	7.20	7.05	6.20	xXX	xxx	xxx	6.35
$V_{2} P_{2}$	6.20°	6.50	xx	6.30	6.20	5.00	6.20	7.80	5.35	6.20	7.10	4.95	8.05	5.25	MxX	5.60	6.50	6.07	6.65	xXx	5.20	6.70	6.35	6.50
$V_{2} P_{3}$	7.25	5.90	6.10	6.10	6,50	5.60	6.00	6.80	6.45	6.30	5.35	5.90	7.95	6.57	7.10	4.83	3.40	6.95	5.70	7.05	5.35	7.20	5.93	6.57
$\mathrm{V}_{2} \mathrm{P}_{4}$	x×x	5.35	5.95	6.00	6.00	5.25	3.75	6.20	8.05	6.50	5,80	6.43	8.15	6.03	7.00	7.03	5.27	6.37	6.47	6.90	5.25	7.05	6.17	7.15
$\mathrm{V}_{2} \mathrm{P}_{5}$	7.97	5.77	5.95	3.95	5.70	5.05	6.00	5.45	8.15	6.60	3.80	5.87	8.40	6.47	5.90	6.37	5.57	6.63	6.10	7.20	5.20	7.40	5.70	6.67
$v_{3} \mathrm{P}_{1}$	4.80	xxk	xxx	6.80	xxk	xxx	xxx	6.30	6.30	5.10	5.80	xxx	xKx	5.30	xMx	6.70	3.57	6.80	7.10	5.90	4.80	5.20	4.20	6.80
$V_{3} \mathrm{P}_{2}$	6.25	4.95	5.60	6.30	x×x	\% \times K	3.45	x \times K	6.10	5.80	6.87	5.40	7.00	6.30	5.10	6.43	3.40	7.17	5.55	7.05	3,40	3.35	6.10	5.10
$V_{3} P_{3}$	6,00	5.70	5.80	6.15	5.20	5.80	xxx	6.40	6.40	5.25	7.10	5.70	6.17	6.15	4.80	6.20	6.63	6.33	5.77	5.10	6.10	5.73	5.53	4.97
$\mathrm{V}_{3} \mathrm{P}_{4}$	0.10	6.40	6.20	xxx	5.43	5.63	5.90	3.95	5.10	5.35	6.03	6.30	6.47	5.93	4.60	6.43	6.90	7.37	6.03	6.93	6.73	5.25	5.95	6.03
$\mathrm{V}_{3} \mathrm{P}_{5}$	xxx	6.40	6.80	5.13	4.95	5.60	6.20	5.65	6.90	5.47	6.03	6.23	7.03	4.93	4.47	7.43	6.80	7.60	6.10	6.17	5.77	5.40	6.10	6.33

[^5]Appandix IX Average no. of pet its in first flower

Treatments	Jan		Fab		March		April		May		June		July		Aug		Sop							
	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	- F_{2}	$\mathrm{P}_{1}{ }^{\text {De }}$	F_{2}								
$V_{1} \mathrm{P}_{1}$	11.00	xxx	xxx	22.50	xxx	xxx	24.50	22.00	24.50	22.00	xxx	xxix	21.00	15.00	xxx	xxx	27.33	18.30	32.00	23.00	xxx	1900	xxx	18.00
$V_{1} P_{2}$	12.00	17.50	xxx	xxx	xxx	xxx	20.30	15.00	26.00	18.00	21.00	33.67	27.00	18.00	26.00	26.50	32.67	$21: 67$	22.67	25.33	24.00	22.00	15.50	20.00
$V_{2} P_{3}$	14.00	24.00	xxx	37.33	17.00	17.00	24.00	22.00	18.50	22.50	16.30	28.00	28.00	xxx	37.00	19.00	32.67	18.00	25.00	28.00	22.00	18.30	22.50	20.00 25.67
$V_{1} P_{4}$	21.50	$34 \cdot 00$	26.00	xxx	21.00	20.00	22.00	20.50	19.00	29.67	30.67	21.67	32.00	xxx	xxx	22.50	35.67	24.00	31.67	31.00	30.67	22.00	30.00	22.67
$V_{1} P_{5}$	24.00	24.50	25.50	41.00	22.67	23.00	23.50	15.33	17.33	38,33	22.00	17.33	34.00	14.50	24.00	21.00	23.33	18.67	20.00	22.00	27.33	15.67	2300	20.67
$V_{2} \mathrm{P}_{1}$	26.00	18.00	xxx	$\mathbf{x x x}$	xxx	21.00	31.00	43.50	xxx	xxx	xxx	xxx	33,33	28.33	xxx	20.67	24.50	29.00	49.50	26.50	xxx	xKx	xxx	22.50
$V_{2} \mathrm{P}_{2}$	32.00	14.00	xxx	21.00	31.00	23.00	23.00	34.00	37.30	31,00	16.00	22.50	37.50	31.00	xxx	20.67	20.33	20.33	39.00	xxx	17.50	14.00	17.50	20.30
$V_{2} \mathrm{P}_{3}$	37.00	19.50	18.00	22.00	28.00	20.00	23.00	31.00	23.50	30.00	18.00	20.50	19.50	28,33	20.00	18.67	28.00	23.50	40.00	22.00	22.00	18.00	24.00	28,33
$V_{2}{ }^{\text {P }}$	mxx	23.00	23.50	25.00	24.50	18.50	27.00	26.00	26.50	31.00	20.00	' 25.33	17.00	39.00	22,50	24.67	21.00	17.00	34.00	27.00	18.67	18.50	17.67	23.90
$\mathrm{V}_{2} \mathrm{P}_{3}$	38.00	32.33	27.50	29.30	22.30	15.00	19.50	22.00	26.50	32,50	17.00	23.00	18.50	39.33	15.00	25,33	14.67	20.67	33.67	21.33	17.33	13,33	20.33	20.00°
$V_{3} P_{1}$	24.00	xxx	xxx	18.00	xxx	xxx	xxx	22.00	16.00	18.00	34.00	xxx	5xx	48.00	x \times x	21.50	26.33	29.00	36.00	31.00	36.00	34.00	36.00	32.00
$V_{3} P_{2}$	31.00	24.00	26.00	19.00	xxx	x \times K	42.00	xxx	13.00	21.00	38.33	18.00	15.30	36.00	29.00	20.33	16.00	31.67	32.50	44.00	41.00	27,00	21.00	28.33
$V_{3} P_{3}$	46.00	27.00	24.00	21.00	27.50	34.30	xxx	17.00	13.00	29.50	36.00	29.67	21.67	44.50	22.00	16.00	20.33	31.67	31.67	46.50	40.00	34.50	34.50	39.67
$V_{3} P_{4}$	52.00	31.00	36:00	xxx	30.67	37.33	48.00	17.00	15.50	34.50	50.33	49.33	19.00	33.00	27.00	24.33	18.67	38.33	39.67	39.00	32.67	37.30	24.00	29.33
$V_{3} P_{5}$	xxx	37.00	29.00	22.00	39.50	29.67	46.00	17.50	15,50	40.33	41.00	39.00	16.33	21.67	18.67	24.00	20.00	20.67	32.33	31.67	26.33	31.67	27.67	25.67

xxx	Bud take nil in all repllcations
F_{1}	First fortnight
$\mathrm{F}_{\mathbf{2}}$	Second fortnight

Appeadix x Average number of subsequent shoots

Tresto monts	Jan		Pab		March		Aprl1		May		June		July		Aug		Sep		Oct		Nov		Dec	
	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}
$V_{1} P_{1}$	1.00	xxx	xxx	3.00	x*x	xxx	6.50	4.00	3.50	3.00	xxx	xxx	300	4.00	xxx	x \times X	6.33	6.50	4.00	4.00	x < \times	4.00	xxx	5.00
$\mathrm{V}_{1} \mathrm{P}_{2}$	1.00	1.00	xxx	xxx	xxx	x××	3.50	4.00	4.00	3.00	1.50	4.67	2.50	3.00	3.00	4.50	6.00	6.00	4.00	2.00	5.00	5.00	4.00	4.00
$V_{1} P_{3}$	2.33	1.00	xxx	5.00	2.67	4.00	4.50	3.00	2.50	4.50	4.00	4.00	4.33	Exx	$2 ; 00$	3.00	4.33	4.67	4.33	2.00	4.00	3.50	3.50	3.33
$V_{1} P_{4}$	5.50	2.50	6.00	xxx	2.00	3.00	3.00	4.00	2.00	7.00	3.00	2.33	2.33	xax	xXX	2.00	2.67	3.00	2.33	2.33	3.00	2.67	2.50	2.67
$V_{1} P_{5}$	5.00	2.00	6.00	2.00	4.67	3.50	7.00	2.00	1.67	6.67	3.00	200	2.33	2.00	2.00	1.67	2.00	2.33	2.67	2.00	2.00	2.33	3.00	2.00
$V_{2} \mathrm{P}_{1}$	8.00	5.00	xxx	x×x	xxx	1.00	4.00	2.00	xxx	xxx	x×x	mxx	4.00	5.00	x×x	4.00	4.50	3.00	5.50	4.00	xxx	xxx	XIX	4.00
$\mathrm{V}_{2} \mathrm{P}_{2}$	7.33	4.00°	xxx	2.00	4.00	1.00	5.00	3.00	2.5	6.00	4.00	5.00	3.00	3,30	x \times x	4.67	4.30	4.67	4.00	x××	3.50	$3: 00$	3.00	2.50
$V_{2} \mathrm{P}_{3}$	4.00	3.50	1.00	2.00	3.00	2.00	2.50	6.00	3.30	4.50	3.50	3.50	2.50	3.67	3.00	2.67	2.67	4.50	3.67	4.00	3.00	1.50	3.50	2.33
$\mathrm{V}_{2} \mathrm{P}_{4}$	xxx	6.50	3.50	4.00	2.00	1.00	3.50	3.00	3.00	4.00	2.67	3.00	2.00	2.33	2.00	2.67	2.00	3.33	3.00	2.50	2.67	2.50	2.33	2.35
$\mathrm{V}_{2} \mathrm{P}_{5}$	5.33	5.67	3.00	2.50	3.00	1.50	2,50	2.50	2.50	2.30	2.33	2.00	2.50	2.00	2.00	2.67	2.33	2,33	2.33	2.00	1.67	2.33	2.67	1.67
$V_{3}{ }^{1} 1$	1.00	xxx	XxK	7.00	xxx	x*x	xx4	3.00	2.00	2.00	3.00	x_x	xxx	3.00	x×x	4.30	$5.00{ }^{\circ}$	3.00	-	4.00	4.00	4.00	3.00	3.00
$\mathrm{V}_{3} \mathrm{P}_{2}$	2.00	1.00	2.00	4.00	x×x	xxx	2.50	x*x	3.00	5.00	3.00	4.67.	3.00	3.00	$3-00$	4.67	3.67	2,33	2.50	4.00	3.00	3.00	2.00	1.67
$V_{3} P_{3}$	1.00	1.00	3.00	2.50	2.00	1.30	xxx	2.00	4.00	4.50	3.00	3.67	3.33	1.50	2.00	3.67	4.33.	2.67	2.00	3.00	3.00	2.00	2.50	2.00
$V_{3} P_{4}$	2.00	1.00	1.00	xxx	1.67	3.00	4.00	1.50	4.00	2.50	2.00	2.00	2.33	2.33	100	2.67	2.67	2.33	1.33	2.00	2.33	2.50	2.00	2.00
$V_{3} \mathrm{P}_{5}$	*xx	3.50	1.00	6,50	3.50	2.33	5.50	1.50	2.00	2.33	2.67	2.33	2.00	1.67	1.33	1.67	2.33	2.33	1.00	1.00	2.33	2.00	1.67	2.00

[^6]
Appendix XI Avarage number of secom crop flowar buds

Appendix XI Avarage number of secom crop flowar buds																									
Trestsents	- Jan		Feb		March		April		May		Juna		July		Aug		Sep		Oct		Nov		Dec		
	F_{1}	F	F	F_{2}																					
		2	1	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F^{1}	F_{2}	.${ }^{F_{1}}$	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{2}	$\mathrm{F}_{\mathbf{2}}{ }^{\text {- }}$	
$V_{1} p_{1}$	0	xxx	xnx	1.00	xxx	xxx	2.00	2.00	1.50	2.00	xxx	x×x	1.00	1.00											
																	2.33	2.50	1.00	0	x*x	0	xxx	0	
1	1.00	1.00	xxx	xxx	x*x	xxx	1.50	3.00	1.00	2.00	. 1.00	1.33	1.30	2.00	1.00	1.00	3.33	3.33	2.67						
$V_{2} P_{3}$	1.66	1.50	x×x	1.30	1.67	1.00	1.50	3.50	1.50	1.50	1.30	1.67	2.00				3.33	3.33	2.67	1.33		300	1.50	2.00	
$V_{1} P_{4}$	2.50	1.50	3.00	x×x	1.00						1.50	1.67	2.00	xXK	2.00	2.00	1.67	2.33	2.33	1.67	2.50	2.50	2.50	2,67	
				$x \times x$	1.00	1.5	3.00	2,50	2.00	2.33	1.67	2.00	1.67	xxx	x \times x	1.30	2.00	2.33	2.67	2.00	2.00	2.33	2.00	2.00	
$V_{2} P_{5}$	4.50	1.50	2.00	2.00	2.67	1.50	2.00	2.00	1.67	2.67	2.33	2.00	2.33	2.00	2.00	1.67	2.00	2.33							
$V_{2}{ }_{1}$	0	3.00	xxx	xxx	xxx	0	2.00	1.50	xxx	xKx	xxx	xxx	0	1.00	xxx	1.67	2.00	2.33	1.67	2.00	2.00	2.33	2.33	2.00	
$\mathrm{V}_{2} \mathrm{P}_{2}$	0	1.00	xxx	0	1.00	0	1.00	2.00	1.00									3.00	2.00	2.00	xXI	x×x	xxx	1.00	
							2.00	2.00	1.00	2.00	1.00	1.00	1.50	1.50	x¢x	2.00	2.67	2.67	2.00	xxx	1.50	1.00	1.50	1.50	
$V_{2} P_{3}$	1,50	1.50	0	1.00	2.00	1.00	1.50	3.00	1.50	2.00	1.50	1.50	1.30	1.67	1.00	1.67	2,33	3,50	1.67	2.50	2,50	1.50	2.00	2.00	
$\mathrm{V}_{2} \mathrm{P}_{4}$	XxK	2.50	1.50	1.00	1.50	1.00	1.50	3.00	2.00	3.00	1.67	1.67	1.50	1.33 .	: 2.00	1.67	1.67	2.67	2.33	2.00	2.00	2.00	$2: 00$	2.00	
$\mathrm{V}_{2} \mathrm{P}_{5}$	1.33	2.60	1.50	1.50	1,50	1.00	2.00	1.50	2,50	2.50															
									2.30	2.50	2.33	2.00	2.50	2.00	2.00	1.67	1.67	2,33	2.00	2.00	1.67	2.33	2.33	1,67	
$V_{3} P_{1}$	0	x××	xxx	3.00	ExK	xxx	xxx	2.00	1.00	1.00	2.00	XXX	xxx	1.00	*xx	1.50	2.33	2.00	0°	0	0	0	0	0	
$V_{3} \mathrm{P}_{2}$	1.50	1.00	0	2.00	xxx.	xxx	1.30	x×X	2.00	3.00	1,33	1.33	1.00	1.00	1.00										
												2.33	2.00	2.00	1.00	1.33	2.67	2.00	1.50	1.50	2.00	2.50	1.00	1.33	
$3_{3}{ }^{\text {P }}$	1.00	0	1.00	2.00	1.00	1.00	xXX	1.00	1.00	2.50	2.00	1.67	1.67	1.00	1.00	1.67	2.00	1.67	1.67	1.50	2.00	1.50	2.00	1.67	
$V_{3} \mathrm{P}_{4} \quad 2$	2.00	1.00	1.00	HEx	1.33	2.33	2.00	1.00	2.50	1.30	1.83	1.83													*
													1.67	1.67	1.00	2,33	2.00	2.33	1.33	1.33	2.00	2.00	1.50	1.67	
$V_{3} P_{5} \quad x$	xKx	2.50	1.00	1.30	1.50	2.33	2.50	1.30	2.00	2.33	1.67	2.33	1.33	1.33	1.33	1.67	2.00								
															1.33	2.67	2.00	2.33	1.00	1.00	2,33	1.67	1.67	1.67	

xxx Bud tako nll in all roplications
F_{1} First fortinight
F_{2} Second fortnight

Appondix XII Average no. of days taken for second crop flower bud production

' - ' Plants lost after first flowering
xxx Bud take nil in all roplications
F_{1} First fortnight
F_{2} Second fortnight
Appendix XIII Average number of petals in second crop flowers

Treatments	Jan		Feb		March		April		May		June		July		Aug		Sep		Oct					
	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	${ }^{\prime}{ }_{2}$	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}
$v_{1} P_{1}$	-	xxx	xxx	21.00	xxx	xxx	29.30	26.00	14.50	24.00	xxx	xxx	16.00	14.00	xxx	xxx	22.33	18.50	19.00	-	xxx	-	xxx	-
$V_{1} P_{2}$	8.00	12.00	xxx	x×x	xxx	xxx	22.50	19.00	2200	22.00	19.30	21.67	15.00	19.00	$16-00$	16.50	23.67	18,33	21.33	18.00	21.00	16.00	16.00	18.00
$\mathrm{V}_{1} \mathrm{P}_{3}$	15.30	17.50	xxx	28.00	29.67	21.00	29.00	17.00	18.00	19.00	17.50	19.00	21.67	xxx	28.00	15.00	26.00	19.67	23.00	25.33	19.30	16.00	20.30	20.00
$\mathrm{V}_{1} \mathrm{P}_{4}$	16.00	16,30	34.00	xxx	19.00	23.50	41.00	21.00	21.00	27.67	23.33	15.33	19.67	xxx	xxx	21:50	30.67	19.33	25.33	21.33	20.33	18.67	26.30	23.67
$\mathrm{V}_{1} \mathrm{P}_{5}$	21.50	18.00	38.50	44.00	24.33	29.50	28.50	27.67	26.00	36.67	29.33	24.00	27.33	24,00	38.00	23.33	27.33	29.67	26.33	25.67	28.00	19.33	26.00	25.33
$\mathrm{V}_{2}{ }^{1} 1$	-	20.00	x×x	x \times x	xxx	-	18.00	19.50	xxx	xxx	*xx	x×x	-	17.00	xxx	14.67	20.50	18.00	27.50	12.00	xxx	xxx	xxx	16.00
$\mathrm{V}_{2} \mathrm{P}_{2}$	-	28.00	xxx	-	18.00	-	21.00	38.00	29.50	28.00	18.00	17.00	27.30	21.00	xxx	20.33	15.00	18.67	21.00	xxx	16.00	16.00	14.50	21.00
$V_{2} \mathrm{P}_{3}$	24.00	28.50	-	18.00	21.00	16.00	24.50	26.00	21.00	26.00	17.00	16.30	17.00	19.33	18.00	15.33	15.67	18.30	33.00	20.00	19.50	19.00	18.00	24.00
$V_{2} P_{4}$	xxx	23.30	17.50	21.00	23.50	22.50	28.50	24.00	18.50	30.50	19.67	16.00	21.00	33.00	22.00	24.33	24.67	19.67	36.00	19.50	21.67	19.00	22.67	18.00
$V_{2} P_{5}$	26.33	36.33	22.00	27.50	28.00	23.00	31.30	27.00	29.00	$30.50{ }^{\circ}$	26.33	18.33	34.00	37.33	23.30	29.67	22.67	25.00	42.00	25.00	23.00	20.33	28.67	25.33
$V_{3} \mathrm{P}_{1}$	-	xxx	xxx	21.00	xxx	xxx	x×x	16.00	18.00	23.00	31.00	xxx	xxx	24.00	xxx	18.50	14.67	18.00	-	\bullet	-	-	-	-
$\mathrm{V}_{3} \mathrm{P}_{2}$	42.50	25.00	-	22.00	xxx	x××	29.50	x \times x	13.00	17.00	23.67	15.33	14.00°	16.00	18.00	23.00	18.00	21.00	26.50	26.00	28.00	19.30	24.00	21.00
$V_{3} P_{3}$	49.00	-	21.00	19.50	21:00	16.50	xxx	16.00	13.00	24.50	26.00	22,33	20.33	20.50	21.00	18.00	23.67	24.67	26.33	26.50	34.00	28.50	23.00	28.33
$V_{3} P_{4}$	47.00	36.00	21.00	xxx	28.00	27.00	32.00	15.00	19.50	27.00	41.33	31.33	21.67	29.33	21.50	20.00	22.33	32.33	32.67	23.67	31.33	32.00	24.50	17.33
$V_{3} P_{5}$	xxx	41.50	31.00	28.00	37.50	38.33	43.50	24.50	21.00	36.33	41.33	34.67	32.00	35.33	24.00	26.00	22.67	38.67	35.00	40.33	37.67	39.00	33.67	35.67

'-' Plants lost after first flowering	
xxx	Bud take nil in all replications
F_{1}	First fortnight
F_{2}	Socond fortnight

Appendix XIV Average plant heinht after secont cron flowering

Treatmonta	Jan		Fab		March		April		May		June		July		Aug		Sop		Oct		Nov		DeC	
	${ }^{\text {F }}$ 1	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}	F_{1}	F_{2}								
$V_{1} P_{1}$	-	xxx	x XX	18.30	xxx	xXX	23.00	21.80	25.30	22:20	xxx	xxx	17.00	10.30	x \times x	x×x	26.43	19.85	17.00	-	XXX	-	xxx	-
$V_{1} P_{2}$	18.00	19.30	xxx	xxx	xxx	xXX	16.25	18.80	12.00	17.10	22.00	24.50	13.70	15.80	16.40	12.10	29.00	13.67	24.00	13.87	9.80	13.00	21.60	20.00
$V_{1} P_{3}$	26.66	23.00	xxx	27.30	12.03	51.00	19.67	18.75	23.30	20.50	24.70	22.80	24.20	xxx	22.00	8,50	25.67	23,63	20.57	17. 57	11.90	13.65	23.70	18, 20
$\mathbf{V}_{1} \mathbf{P}_{4}$	32.00	26.70	48.00	x0x	16.30	42.00	18.00	11.80	22.75	23.53	27.23	25.80	29,13	xIX	xxx	14.35	24.73	19.90	21.00	19.67	19.33	19.37	23.60	23.57
$V_{1} P_{3}$	39.50	28.30	48.50	22.00	19.70	32.00	21.40	20.67	21.43	22.33	28.73	34.60°	31.03	18.45	11.80	14.80	20.23	24.87	18.23	24.73	20.73	17.43	20.43	23.40
$V_{2}{ }^{1}$	-	42.00	x×x	x×x	x×x	-	15.10	18.85	x xx	x \times x	xxx	xxx .	-	18.00	xxx	19.67	35.00	23.70	21.50	12.40	xxx	xxx	x×x	21.00
$V_{2} P_{2}$	-	53.00	xxx	-	19.00	-	13.00	23.00	32.45	21.20	13.40	16.70	26.15	17.00	x×x	17.67	18.67	24.73	13.30	xxx	9.85	9.70	16.05	17.00
$V_{2} \mathrm{P}_{3}$	26.50	40.30	-	10.80	18.00	21.00	15.00	25.10	16.40	20.35	17.05	23.25	25.53	19.67	16.00	20.07	16.43	27.10	21.67	21.35	14.40	13.90	17.00	18.60
$V_{2} P_{4}$	*xx	32.00	17.50	16.80	18.65	19.20	16.05	3.1 .00	29.00	26.80	21.00	29.03	23.05	24.83	17.00	30.33	23.10	30.67	22.33	24,40	22,27	14.50	21.67	23.75
$V_{2}{ }^{\text {P }}$	28.00	39.00	19.50	18.55	15.25	18.70	20.10	18.30	30.25	24.55	22.23	27,23	20.15	19.50	11.65	21.80	20.27	27.00	16.13	22.50	21.50	14.43	20.43	21.30
$V_{3} P_{1}$	-	x \times	$\mathbf{x x x}$	28.00	xxx	xxx	xxx	10.80	17.90	17.10	16.10	xxx	xxx	19.00	$\mathbf{x x x}$	16.30	25.93	19.00	-	-	-	-	-	-
$V_{3} P_{2}$	25.90	13.05	-	27.90	x xx	xxx	18.95	xxx	19.20	18.40	23.33	19.00	16.60	21.00	18.30	23.70	25.77	20.00	25.15	21.45	16.30	18.50	16.00	15.27
$\mathrm{V}_{3} \mathrm{P}_{3}$	29.00	9.00	27.00	25.40	10.50	11.35	xxx	19,80	14.93	27.85	28.00	18.97	14.33	21.00	21.00	17.53	26.33	20.70	20,50	13.70	16.10	20.80	18.30	19.63
$V_{3} P_{4}$	32.00	21.00	29.10	x \times x	14.10	17.27	17.10	19.15	20.25	31.90	21.93	23.13	16.23	20.93	16.60	21.43	24.77	17.57	22.57	27.20	20.47	26.20	20.30	22.57
$V_{3} P_{5}$	xxx	26.55	26.00	23.00	20.30	21.40	16.85	17.15	16.50	24.97	23.27	29.53	19.17	18.10	15.77	17.33	23.07	21.00	10.33	25.07	22.07	23.37	20.57	23.77

[^7]Appendix XV. Seasunal and varietal diatribution wi CHO, Ne and C/wratio

Treatments	Ambassador			Pink Panther			Princess		
	CHO\%	N\%	C/N ratio	CHO\%	N:\%	C/N ratio	CHO\%	N\%	CN N ratio
1st. January	6.78	3.36	2.09	7.38	3.50	2.06	7.30	3.24	2.26
15th January	7.35	3.81	1.74	7.32	4.08	1.30	7.49	4.28	1.76
1st February	6.66	2.24	3.01	7.59	2.34	3.29	6.70	2.42	2.79
1.5th February	7.29	2.33	3.16	7.07	2.24	3.18	6.59	2.31	3.16
1st March	6.72	2.29	2.98	7.19	2.19	3.32	7.17	2.30	3.15
15th March	6.63	2.22	3.02	7.22	2.20	3.29	6.49	2.28	2.36
1st April	5.58	2.16	3.12	7.59	2.92	2.64	7.12	2.41	2.95
15th April	7.18	3.48	2.09	8.13	3.36	2.46	7، 81	3.69	2.13
Lst May	7.55	3.59	2.11	3.28	3.67	2.27	7.78	3.98	1.97
15th May	7.75	3.32	2.06	8.35	3.75	2.13	3.16	4.19	1.96
1st June	7.78	2.42	3.3:3	9.02	2.35	3.37	7.24	2.35	3.97
15 th June	3.19	2.46	3.41	9.22	2.72	3.43	9.34	2.58	3.66
$15 t$ July	8.65	2.41	3.67	9.16	2.51	3.59	9.49	2.46	3.94
15th July	9.04	2.07	4.47	9.22	2.22	4.18 .	9.61	2.12	4.57
1st August	7.73	2.41	3.27	8.03	2.76	2.92	7.92	2.71	2.96
15th August	7.71	2.46	3.21	7.94	2.74	2.72	7.96	2.34	2.34
lst September	7.73	2.45	3.19	8.05	2.57	- 3.17	7.96	2.76	2.38
15̄th September	7.53	2.33	3.31	7.77	. 2.32	3.48	7.91	2.58	3.09
1 st October	7.35	2.135	2.79	8.27	2.52	3.19	8.15	2.94	2.79
15th October	7,91	2.76	2.71	8.42	2.57	3.30	8.56	2.76	3.13
lst November	3.02	2.32	$2.39{ }^{\circ}$	8.33	2.47	3.44	8.16	2.31	2.95
15th November	8.12	2.86	2.87	3.22	2.57	3.23	8.05	2.84	2.87
lst December	7.12	2.91	2.43	7.92	2.92	. 2.73	. 7.57	2.98	2.56
15th December	7.04	2.31	2.32	7.82	3.41	2.31	7.50.	3.02	2.55

EFFECT OF SEASON AND POSITION OF BUD IN BUDDING OF ROSE

BY
ANITHA, I

ABSTRACT OF THE THESIS
submitted in partial fulfilment of the requirement
for the degree
MASTER OF SCIENCE IN HORTICULTURE
Faculty of Agriculture
Kerala Agricultural University

ABSTRACT

A research programe was carried out for a period of one year from January 1987 to December 1987, to study the offoct of season and position of bud in budding of rose. The experimont was laid out in factorial CRD with throe roplicam tions. The treatments consisted of combinations of three Varieties, 'Ambassador', Pink Panther' and 'Princess', with scion buds from five positions, starting immediatoly bolow the flower: Budding was done at fortnightly intervals.

The effect of environmental parameters on success of budding; influence of period of budding, varieties and scion bud position on further vegetative growth and flower: influence of C/N ratio on bud take have been provad by the results of the present study. There was no significant difference among the three varieties, 'Ambassador', 'Pink Panther' and 'Princess' in respect of success in budding. A high rate of 82098 per cent success was recorded during the rainy season of second fortnight of August to first fortnight of October. The period from first fortnight of Fobruary to second fortnight of March was the least favourable season. Higher temperature was found to be detrimental for the success in budding. Rainfall and relative humidity favoured the bud take. More sunshine hours
was detrimental. The preceding, current and succeeding forto nights of budding, were found to be critical, as far as success in rose budding is concerned.

The period of budding significantly influenced the blometric characters under study. The variety and bud position was found to exert significant influence on some of the biometric characters. The first and second buds were early to sprout and flower till the production of first flowor bud, but the plants were comparatively weak. The fourth and the fifth buds were found to be better for budding when plant vigour was considered. Correlations were worked out between the thirtoen biometric characters under study. The scion C / N ratio significantly influenced the bud take while the rootstock C / N did not significantly influence the take. The carbohydrate and nitrogen content varied significantly throughout the year and with scion bud position and variety.

[^0]: *Originals not seen

[^1]: xxx Bud take nil in all replications
 F_{1} First fortnight
 F_{2} Second fortnigh

[^2]: xxx = lud take nil in all replications
 $F_{1}=$ First fortnight
 $F_{2}=$ Second fortnight

[^3]: xxx = Budititake nil in all replication
 F_{1} - First tortnight
 $F_{2}=$ Sacond forensght

[^4]: xxx Buat take nil in all replications
 F_{2} Firat fortnight
 F_{2} Second fortnight

[^5]: xxx. Bud take nil.in all replications
 F_{1} First iortnight
 F_{2} Second f ortnight

[^6]: xxx Bud take nil in all replications
 F_{1} First fortnight
 F_{2} Sacond fortnight

[^7]: '-' Planks lost after first flowering
 $x \times x$ Alst take nil in all replications
 F_{1} First fortalght
 F_{2} Second fortnight

