Agric. Res. J. Kerala 1988, 26 (2) 210-214

OPTIMISING THE IBBIGATION WATER BEQUIREMENT OF CASSAVA Jose Mathew, Kuruvilla Varughese, G. R. Pillai and G. Santhakumari Agronomic Research Station, Chalakudy 680 307, India

Cultivation of cassava (Man/hot esculenta) under irrigation is widespread especially in the command areas of the state, the planting of which is done in November-December after the withdrawal of north east monsoon. Earlier studies conducted at Chalakudy revealed that supplemental irrigation for this crop had to be scheduled at 0.50 IW/CPE ratio (50 mm depth) during summer season for higher tuber yield (Sushama et al., 1982). In the present study, it is attempted to formulate an irrigation schedule which will further reduce the irrigation water requirement of the crop since water is a scarce input during snmmer season and the need for its optimisation is ever increasing.

Materials and Methods

The experiment was taken up for two consecutive years (1982-'83) and (1983-"84) during November-December to May-June in the sandy loam soil (coarse sand 60.9%, fine sand 22.1, silt 5.5% and clay 9.5%) of Agronomic Research Station, Chalakudy. A fertility evaluation of the soil of the experimental field indicated that it contained 0.51 per cent organic carbon, 12.5 kg P_2O_5/ha and 56.2 kg K₂O/ha. The pH of the soil was 5.8. The field capacity and permanent wilting point of the soil were 14.8 and 6.7 per cent, respectively. The depth of water table ranged from 30-120 cm. The weather data during the crop season are furnished in Table 1.

Weather data during the experimental period								
Month	1982-'83				1\$83-'84			
	Maxi- mum temper- ature (°C)	Mini- mum temper- ature (°C)	Rain- fall (mm)	Pan eva- poration (mm/ day)	Maxi- mum temper- ature (°C)	Mini- mum temper- ature (°C)	Rain- fail (mm)	Pan eva- poration (mm/ day)
November	32.6	23.5	164.4	2.81	31.5	25.4	98.5	2.78
December	32.9	20.4	8.6	3.11	30.0	22.5	20.8	3.64
January	35.0	19.5	_	3.93	32.2	21.8	115.1	3.23
February	35.5	22.4		4.30	33.8	22.8	—	3.55
March	36.7	24.2	10-10-10 m	5.01	34.2	23.9	62.6	4,00
April	37.2	25.6	10.5	5.49	33.6	25.1	119.6	3.99
May	35.7	26.5	32.2	4.67	34.3	25.3	53.8	4.13

Table 1

The experiment was laid out in randomised block design with three replications and the following 12 treatments

T₁ All furrow irrigation with 50 mm water at 100 mm CPE

T₂ All furrow irrigation with 3/4 of 50 mm water at 100 mm CPE

T_a All furrow irrigation with 3/4 of 50 mm water at 75 mm CPE

T, All furrow irrigation with 1/2 of 50 mm water at 100 mm CPE

 T_5 All furrow irrigation with 1/2 of 50 mm water at 75 mm CPE

T₆ Alternate furrow irrigation alternatively with 25 mm water at 100 mm CPE

T, Alternate furrow irrigation alternatively with 25 mm water at 75 mm CPE

 T_8 Alternate furrow irrigation alternatively with 3/4 of 25 mm water at 100 mm CPE T_9 Alternate furrow irrigation alternatively with 3/4 of 25 mm water at 75 mm CPE T_{10} Alternate furrow irrigation alternatively with 1/2 of 25 mm water at 100 mm CPE

 T_{11} Alternate furrow irrigation alternatively with 1/2 of 25 mm water at 75 mm CPE T_{12} No irrigation control

T, is the present recommended irrigation schedule for cassava and the depth of irrigation to other treatments was fixed in relation to this.

The stakes of cassava cv. M4 were planted on ridges at a spacing of 120 x 80 cm in plots of 7.2 m x 6.0 m size. There were six rows per plot. A uniform fertilizer dose of 50:50:50 kg/ha of NPK was given to all the treatments. All the plots received uniform cultural and plant protection operations as per the package of practices recommendations of Kerala Agricultural University (Anon., 1982). For scheduling irrigation, evaporation readings were recorded daily using a USWB class A pan evaporimeter and whenever the desired cumulative pan evaporation (CPE) values were attained, differential irrigations were administered with varying depths of water, as per the treatments, through furrows. Measurement of irrigation water was done with a circular orifice. The details of irrigation are furnished in Table 2.

Results and Discussion

Tuber yield (Table 3)

A statistical analysis of the data for the individual 'years and pooled analysis revealed the significant influence of irrigation on tuber yield of cassava.

Among the treatments, the highest tuber yield was recorded by T_1 during both the years of study. It was followed by T_s , T_s , T_5 , T_4 , and T_7 in the descending order and all these treatments were comparable with T_1 during both the years and in pooled analysis. However, during the second year, T_6 also recorded comparable yield with T_1 . As compared to the unirrigated control, yield increases to the tune of 13072, 12811, 12629, 11611, 10661 and 10541 kg/ha were recorded by T_1 , T_3 , T_2 , T_5 , T_4 and T_7 respectively. The corresponding increases in percentage were 100, 98, 97, 89, 82 and 81. It can further be seen that all tha irrigated treatments recorded significantly higher yield than the unirrigated control during both the years of the study and in pooled analysis. However the unirrigated control registered comparable yields with T_{10} and T_{11} during the second year of study. Moisture stress due to inadequate amount of irrigation water was responsible for very low yields in T_8 to

	* No. of	Interval		Total		Total	
Treatment	irriga- tions given	between irrigations (days)	Depth of irrigation (mm)	irrigation water applied (mm)	Effective rain fall (mm)	water require- ment (mm)	
T ₁	7	27	50.00	350	211	561	
Τ _g	7	. 27	37.50	253	211	474	
Т	9	20	37.50	338	211	549	
T4	7	27	25.00	175	211	386	
T ₅	9	20	25.00	225	211	436	
T ₆	7	27	25.00	175	211	386	
T_{γ}	9	20	25.00	225	211	436	
T.	7	27	18.75	131	211	342	
T_9	9	20	18.75	169	211	380	
T ₁₀	7	27	12.50	88	211	299	
T ₁₁	9	20	12.50	113	211	324	

Table 2 Details of irrigation

Inclusive of one common irrigation

Table 3

Tuber yield and WUE of cassava as influenced by irrigation

Treatment		WUE			
Treatment	1982—'83	1983—'84	Pooledmean	(kg/hamm)	
T ₁	22076	30208	26142	46.6	
T ₂	21883	29514	25699	54.2	
Т,	22073	29688	25881	47.1	
T,	19188	28274	23731	61.5	
T ₅	20048	29313	24681	56.6	
' T ₆	17320	26313	21817	56.5	
T ₇	19097	28125	23611	54.2	
T _e	15311	24264	19788	57.9	
Тд	18229	25136	21683	57.1	
T ₁₀	12980	23438	18209	60.9	
T ₁₁	18089	24479	21284	65.7	
T ₁₉	5828	20312	13070	61.9	
CD (0.05)	3572	4528	3249		

 T_{1g} . The study conclusively proved the profound influence of supplemental irrigation in boosting tuber yield of cassava.

In terms of water use efficiency (WUE), the low yielding treatments (T_8 to T_{1*}) with their low water requirement recorded higher values than the high yielding treatments (T_1 to T_7). However, among the high yielding treatments T_4 recorded the highest WUE, lowest being by T_1 .

Among the six treatments which recorded consistently higher tuber yield during both the years of study and in pooled analysis, T_1 required the highest amount of irrigation water (350 mm) followed by T_a (338 mm). T, (263 mm), T_7/T_6 (225 mm), and T₄(175 mm) (Table 2). The yield being comparable with T₁, the present recommended schedule, it can be inferred that T_4 followed by T, and T_5 are the superior treatments in view of their reduced irrigation water requirement. T_4 and T_5 are similar treatments which received 1/2 water (25 mm depth) through all furrow irrigation except that T_5 received irrigation at 75 mm CPE whereas T_4 received irrigation at 100 mm CPE. Hence between the treatments, T_4 is better than T_5 since it requires only less number of irrigations and amount of water, the depth and method being the same. Though both T_{τ} and T_{τ} required the same quantity of irrigation water, T_{τ} can be considered as a better treatment since it needs only half the number of furrows to be irrigated at a time which definitely lowers the labour requirement. The IW/CPE ratios for T_4 and T_7 were worked out to 0 25 and 0.33 respectively, indicating considerable improvement over 0.50 ratio reported by Sushama et al., (1982). Accordingly, the following two treatments ensuring efficient water consumption and higher tuber production were identified from the study: i) All furrow irrigation with 25 mm water at 100 mm CPE and ii) Alternate furrow irrigation alternatively with 25 mm water at 75 mm CPE. The first schedule requires seven irrigations at an interval of about 27 days, whereas the second schedule requires nine irrigations at an interval of 20 days.

Biometric and yield characters (Table 4)

The irrigation treatments significantly influenced all the three biometric characters studied viz., height of plant and number of total and functional leaves per plant. The unirrigated treatment invariably recorded significantly lower values as compared to the irrigated ones. However, the irrigated treatments were comparable among themselves except in the case of number of total leaves per plant wherein T₆, T₁₀ and T₁₁ recorded significantly lower values. The higher number of leaves per plant provided more photosynthetic surface for assimilation of food thereby increasing the tuber yield in irrigated treatments.

While the number of tubers per plant and weight per tuber were significantly influenced by irrigation its effect was non-significant on the length and girth of tuber. However, the lowest values were invariably recorded by the unirrigated control. The number of tubers per plant and weight per tuber were found to b3 comparatively higher in those treatments which ranked high in their tuber yields.

		NI.		NL	144 - 14	L ava attla	Ointh
Treat- ments	Height of	No.of total	No. of funct-	No. of tubers	Weight	Length of	Girth of
mento	plant	leaves	ional	per	Tuber	tuber	tuber
	(cm)	per	leaves	plant	(g)	(cm)	(cm)
	(0)	plant	per	prairie	(9)	(0)	(0)
		plant	plant				
T ₁	174.7	180.9	75.2	8.9	240	24.5	12.8
T ₂	173.9	176.6	81.8	7.9	229	22.7	12.4
Т,	174.1	175.4	82.0	8.8	231	22.2	12.5
T.	150.5	170.3	79.1	7.7	227	25.1	12.0
15	152.9	172.1	.79.3	7.8	252	23.4	12.6
Te	151.0	149.8	77.3	6.0	202	22.7	11.1
îr,	156.1	(68.9	83.1	7.6	214	22.2	12.0
Ts	172.8	164.0	84.7	6.5	196	21.0	12.0
T 9	175.2	166.4	86.5	6.0	205	21.9	12.1
T ₁₀	174.7	139.3	76.8	5.3	203	20.9	12.0
T ₁₁	174.3	140.3	79.4	6.0	206	20.4	12.3
T ₁₂	114.7	99.2	50.7	4.9	104	15.9	8.6
CD (0.()5) 27.5	26.8	15.1	1.4	62	NS	NS

Table 4

Biometric and yield characters of cassava as influenced by irrigation

Summary

A two year study was undertaken at the Agronomic Research Station, Chalakudy during 1982-'83 and 1983-'84 to formulate a suitable water management schedule which optimises the irrigation water requirement of cassava planted during November-December months. The trial consisted of 12 irrigation treatments (unirrigated and irrigated at 75 mm and 100mm CPE, through all furrows and alternate furrows and with varying quantities of irrigation water (Recommended (50 mm) and its 3/4 and 1/2 depths) in different combinations. Two treatments having the added advantages of economy in water and labour viz., (i) All furrow irrigation with 1/2 water (25 mm) at 100 mm CPE and (ii) Alternate furrow irrigation alternatively with 25 mm water at 75 mm CPE were identified. the first schedule approximately requires seven irrigations at an interval of 27 days whereas the second schedule requires nine irrigations at an interval of 20 days,

References

Anonymous, 1982. Package of Practices Recommendations. Kerala Agricultural University, Trichur, pp. 88-93.

Sushama, P. K., Pillai, G. R., George, T. P. and Jose Mathew. 1982. Response of cassava to different irrigation schedules. J. Root Crops 8 (1 & 2): 71-73.