Agric. Res. J. Kerala, 1987, 25 (1) 45-51

COMPARATIVE CHEMICAL COMPOSITION OF SOIL AND GRAVEL IN SOME OXISOLS

Stella Jacob and V. K. Venugopal

College of Horticulture, Trichur 680.654, India

The coarse fragments (>2 mm) form a predominant part of the laterite soils and are of importance in water relations especially available water capacity, permeability etc. It is also a deciding factor on the extent of root volume exposed to the soil which is important as far as nutrition of the crop is concerned. The coarse fragments according to Mohr and Van Baren (1954) have been considered to be disintegration products of fossilised laterite. Accumulation of chemical constituents in these gravel has been reported by early workers. The present investigation was taken up with a view to compare the chemical composition of soil, and gravel and relative accumulation of the different constituents in these fractions.

Materials and Methods

Six laterite soil series of Kerala were identified for the study from soil maps on the basis of the parent rock. The particulars of the soil samples collected are presented in Table 1.

The air dried 2mm sieved soil samples and the powdered gravel were used for total elemental analysis. Total SiO_{2} , $Al_{2}O_{3}$, $Fe_{2}O_{3}$. TiO_{2} , MnO_{2} , $P_{2}O_{5}$, $K_{2}O$, CaO and MgO were determined in perchloric-nitric acid (1:2) extracts. Silica was determined gravimetrically. Iron and aluminium were estimated by o-phenanthroline and xylenol orange methods respectively, while CaO and MgO were estimated by EDTA method as outlined by Hesse (1971). The content of $P_{2}O_{5}$ was estimated by vanadophosphoric yellow colour method, potassium by flame photometry and MnO_{2} by atomic absorption spectrophotometry (Jackson, 1958).

Results and Discussion

The total elemental composition of soils is given in Table 2. The SiO_a content of all the soils recorded high values ranging from 39.30 per cent of Kootala and Kanjikulam series to 89.40 per cent of Thonnackal series. The particle size analysis of soils showed a predominance of sand in all the soils investigated. The Thonnackal series which is having the highest mean content of sand showed the highest content of silica. Close relationship between silica content and sand fraction of soils was observed by Agarwal *et al.* (1957) on catenary soils of Indian plateau. Quartz being the predominant mineral of the fine sand fraction of red and laterite soils of Kerala, the higher values of silica observed in the present investigation are expected.

The Al₂O₈ content varied from 2.94 per cent in Thonnackal series to 30.10 per cent in Mannur series. A steady increase in the content of Fe₂O₃ with depth was noted in Thonnackal, Kootala, Kanjikulam and Anjur series while other soils showed no definite pattern of variation in. the profile. In the case of Fe₂O₈ the range observed was from 1.60 per cent in Thonnackal series to 11.46 per cent in Kanjikulam series. Increase in the content of iron with depth was observed in Nenmanda soil, while others showed irregular distribution with depth. There was a significant positive correlation for clay content with total Al O₃ (r=0.469*) and total Fe₂O₈ (r = 0.527**).

The content of AI_2O_3 in all the soils dominated over Fe_2O_3 except in the case of Anjur and Kanjikulam series. The distribution of Fe_2O_3 and AI_2O_3 closely followed the variation in the clay content. Positive and significant correlation was obtained between clay and these constituents. The above pattern of variation observed is suggestive of the capacity of clay to retain these oxides. The laterite soils being rich in kaolinite and hydrous oxides account for the high content of sesquioxides in the soils.

The total reserves of P_aO_6 , CaO, MgO, K_aO and Na_2O were very low in all the soils investigated. This was in accordance with the findings of Venugopal (1980) in laterite soils of Kerala and Bastin (1985) in red soils of Kerala. The total reserve

. .

	Table 1		
	Details of soil sam	ples collected	
Profi Nc		Soil series	Location
I	*Tertiary sediments of Warkalli formation	Thonnackal	Trivandrum (Pallipuram)
Ш	Hornblende-biotite-diopside granulite	Kootala	Trichur (Alur)
Ш	Intermediate charnockite	Anjur	Trichur (Vellattanjur)
IV	Biotite gneiss	Kanjikulam	Palghat (Mundur)
V	Diopside granulite	Mannur	Palghat (Mannur)
VI	Hornblende-biotite gneiss	Nenmanda	Calicut (Iringal)

* Tha Warkalli formation refers to the geological formation described by King (1882) in the type locality in Varkala in Trivandrum district. Varkala was spelt as 'Warkalli' in the original paper.

		Table	_2 G	ravel cont	ent and to	otal chem	ical anal	unin of so	ile		-	
Soil series		Gravel content and total chemical analysis of soils Chemical analysis of soil										
sample No.	Gravel	SiO,	Al ₂ O ₃	Fe ₂ O ₃	MnO ₂	MgO	CaO	Na ₂ O	K ₂ O			
and depth (cm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	P ₂ O ₅ (%)	TiO ₂ (ppm)	
Thonnackal								(707	1701	1/0/	(ppin)	
1 0- 14	7.97	89.40	2.94	1.66	0.008	0.05	0.11	0.20	0.24	0 0 4 9	3.79	
2 14- 30	20.64	62.40	5.80	1.60	0.006	0.05	0.12	0.20	0.24	0.025	4.64	
3 30— 57	59.10	62.40	12.14	1.86	0.006	0.14	0.10	0.10	0.96	0.037	7.88	
4 57— 90	47.22	63.00	15.43	3.97	0.010	0.23	0.16	0.30	0.60	0.049	13.67	
	42.98	52.70	17.81	2.94	0.016	0.16	0.13	0.20	0.36	0.025	7.28	
Kootala	00.74	44.00	10.11	0.00	4 0 4 0	0.44	0.40					
6 0-13	62.71	44.20	19.44	8 06	4.046	0.44	0.13	0.30	0.36	0.634	21.53	
7 13— 53	54.97	53.00	20.92	10.88	0.068	0.42	0.13	0.20	0.72	0.831	22.14	
8 53-110	58.30	45.00	27.42	9.98	0.044	0.37	0.18	0.25	0.24	0.698	24.17	
9 110—180+ <i>Anjur</i>	43.03	39.30	28.40	9.40	0.038	0.28	0.13	0.15	1.38	0.682	25.83	
10 0- 13	24.92	71.50	8.76	5.44	0.070	0.28	0.14	0 20	0.54	0.087	11.00	
11 13-40	29.39	68.50	19.68	6.72	0.125	0.51	0.12	0.15	0.72		11.02	
12 40- 90	39.97	56.50	19.74	6.46	0.092	0.26	0.10	0.10	0.72	0.087 0.099	13.33	
13 90-160+		53.40	23.65	5.95	0.60	0.26	0.13	0.10	0.48		9.12	
Kanjikulam	00.01	00110					0.10	0.10	0.40	0.099	13.67	
14 0-10	45.90	44.90	13.18	5.82	0.047	0.21	0.12	0.10	0.36	0.074	9.43	
15 10- 48	54.09	55.00	18.54	6.46	0.002	0.12	0.11	0.10	0.54	0.074	10.38	
16 48— 96	63.88	58.30	23.20	6.40	0.076	0.19	0.12	0.30	0.72	0.074	8.50	
17 96-145+	49.06	39.30	29 34	11.46	0.022	0.21	0.09	0.10	0.60	0.099	14.36	
Mannur	50.00	50.50	20.40	7.30	0.000	0.00	0.40				11.00	
18 0- 10	50.00	59.50	30.10	6.34	0.060	0.28	0.13	0.10	0.48	0.061	21.34	
19 10- 21	52.40	40.60	18.06		0.063	0.23	0.12	0.30	0.48	0.049	1367	
20 21 - 50	48.78	43.90	24.20	6.40	0.044	0.23	0.15	0.10	0.15	0.074	9.43	
21 50-110	58.19	47.00	26.85	5.95	0.028	0.19	0.13	010	0.48	0.074	12.66	
22 110—180 + Nenmanda	61.14	40.00	23.81	6.59	0.019	0.09	0.13	0.20	0.84	0.061	11.68	
23 0- 14	58.46	60.00	18.46	3.94	0.024	0.14	0.14	0.20	0.40	0.001	C 40	
24 14— 36	69.68	49.40	25.75	5.25	0.024	0.14	0.14	0.20	0.48	0.061	6.40	
25 36— 98	75.51	40.00	26.91	5.89	0.033	0.14	0.13	0.30 0.15	0.20	0.074	8.02	
26 98-150+		40.00	25.18	6.02	0.019	0.21			1.80	0.061	8.82	
20 00 1001	10.04	+0.00	20.10	0.02	0.017	0.12	0.11	0.25	0.60	0.99	9.76	

47

Soil series sample No.	Percent									TiO,	
and depth (cm)	SiO ₂	Al ₂ O ₃	Fe ₂ O ₈	MnO ₂	CaO	MgO	K ₂ O	Na ₂ O	P205	ppm	
Thonnackal											
1 0- 14	48.8	24.00	9.60	0.017	0.12	0.28	0.20	0.14	0.062	17.56	
2 14— 30	48.5	28.84	8.96	0.016	0.13	0.14	0.11	067	0.085	23.75	
3 30— 57	48.5	22.04	8.96	0.021	0.18	0.21	0.14	0.34	0.101	9.43	
4 57— 90	64.6	5.68	24.32	0.013	0.14	0.19	0.45	0.47	0.62	8.02	
5 90— 180+	57.0	21.00	9.60	0.022	0.16	0.14	0.80	0.18	0.051	8.19	
Kootala											
6 0-13	34.6	28.42	19.58	0.016	0.12	0.12	0.30	0.14	1.329	16.47	
7 13- 53	38.5	21.96	23.04	0.016	0.13	0.21	0.20	0.40	1.391	16.47	
8 53- 110	26.7	36.80	16.00	0.024	0.10	0.14	0.20	0.14	1.088	21.34	
9 110180+	33.3	24.46	23.04	0.036	0.11	0.16	0.30	0.54	0 370	17.19	
Anjur									×		
10 0— 13	53.5	11.44	12.16	0.033	0.12	035	0.50	0.14	0 230	14.71	
11 13— 40 ,	30.8	1256	23.04	0.033	0.10	0.20	0.20	0.14	0.191	11.02	
12 40-90	46.5	17.12	17.28	0.117	0.15	0.50	0.75	0.14	0.219	13.00	
13 90-160+	40.0	8.72	20.48	0 047	0.14	0.50	0.20	014	0.179	21.34	
Kanjikulam											
14 0— 10	38.5	17.84	21.76	0.030	0.10	0.25	0.15	0.14	0.651	21.34	
15 10— 48	38.5	17.84	21.54	0.030	0.05	0.45	0.50	0.14	0.483	21.34	
16 48— 96	31.9	21.24	21.76	0.040	0.05	0.45	0.75	0.18	0.191	20 94	
17 96—145+	48.5	11.20	12.40	0.014	0.16	0.35	0.30	0.18	0.074	17.18	
Mannur											
18 0- 10	37.0	20.80	22 40	0.092	0.10	0.35	0.25	0.14	0.315	19.00	
19 10- 21	32.7	19.00	19.20	0.106	012	0.30	0.30	0.20	0.285	15.05	
20 21- 50	38.5	25.16	16.64	0.057	0.14	0.25	0.30	0.40	0.279	18.29	
21 50-110	33.9	25.00	16.00	0.019	0.13	0.40	0.30	0.67	0.179	18.65	
22 110-180+	35.6	25.04	18.56	0.016	0.12	0.33	0.20	0.14	0.258	13.49	
Venmanda											
23 0-14	38.5	26.20	19.20	0.016	0.15	0.02	0.20	0.14	0.191	14.39	
24 14— 36	22.3	35.56	23.04	0.016	0.13	0.23	0,20	0.14	0.191	19 00	
25 36-98	32.3	27.52	26.88	0022	0.10	0.16	0.10	0.14	0.151	4.36	
26 98-150+	27.2	39.60	69.20	0.016	0.16	0.26	0.20	0.14	0.123	297	

Table 3 Total chemical analysis of coarse fragment (gravel)

48

Table	4 Relativ	e accum	ulation of	constitu	ents in g	gravel an	d fine ea	rth		
Soil series sample No.		Ratio of	element		l/elemen	t in fine	earth			
and depth (cm)	SiO ₂	AI_2O_3	Fe ₂ O ₈	MnO ₂	MgO	CaO	Na ₂ O	K ₂ O	P205	TiO ₂
Thonnackal										
1 0- 14	0.546	8.16	5.78	2.13	5.60	1.06	0.70	0.83	1.27	4.63
2 14— 30	0.777	4.97	5.60	2.67	2.80	1.09	3.35	0.46	3.45	5.12
3 30- 57	0.777	1.82	4.82	3.50	1.50	1.79	3.40	0.15	2.70	1.20
4 57— 90	1.025	0.37	6.12	1.30	083	0.84	1.57	0.75	1.27	0.59
5 90—180 +	1.082	1.18	3.27	1.38	0.88	1.31	0.90	2.22	2.04	1.13
Kootala										
6 0— 13	0.783	1.46	2.43	0.35	0.27	0.92	0.47	0.83	2.08	0.76
7 13— 53	0.726	1.05	2.12	0.24	0.50	0.93	2.00	0.28	1.67	0.74
8 53-110	0.568	1.34	1.60	0.55	0.38	0.56	0.56	0.83	1.56	0.88
9 110-180+	0.847	0.86	2.45	0.95	0.57	0.86	0.60	0.22	0.54	0.66
Anjur										4 .0.0
10 0— 13	0.748	1.31	2.24	0.47	1.25	0.82	0.70	0.93	2.53	1.33
11 13—40	0.450	0.64	3.43	0.26	0.39	0.79	0.93	0.28	2.17	0.83
12 40— 90	0.823	0.87	2.67	1.27	1.92	1.57	1.40	1.56	2.22	1.43
13 90-160+	0.749	0.37	3.44	0.78	1.92	1.15	1.40	0.42	1.82	1.55
Kanjikulam						0.04				0.00
14 0— 10	0.857	1.35	3.74	0.64	1.19	0.81	1.40	0.42	9.09	2.26
15 10— 48	0.700	0.96	3.33	0.57	3.75	0.50	1.40	1.39	6.67	2.05
16 48— 96	0.547	0.92	3.40	0.53	2.37	0.47	0.60	1.04	2.56	2.46
17 96—145+	1.234	0.38	1.08	0.64	1.67	1.85	1.80	0.50	0.75	1.20
Mannur							·		=	
18 0— 10	0.622	0.69	3.06	1.53	1.25	0.70	1.40	0.52	5.26	0.89
19 10— 21	0.805	1.05	3.03	1.68	1.30	0.98	0.67	0.63	5.88	1.10
20 21 — 50	0.877	1.04	2 60	1.30	1.09	0.94	400	2.00	294	1.94
21 50—11 0	0.721	1.20	2.69	0.68	2.11	1.05	6.70	063	2.44	1.47
22 110-180+	0.890	1.05	2.82	0.84	3.67	0.88	0.70	0.24	4.17	1.15
Nenmanda								0.40	040	0.04
23 0— 14	0.642	1.42	4.87	0.67	0.14	1.01	0.70	0.42	313	2.24
24 14— 36	0.451	1.38	4.39	0.48	1.64	0.95	0.47	1.00	2.56	2.37
25 36— 98	0.808	1.02	4.56	1.16	0.76	0.97	0.93	0.06	2.50	0.49
26 98-150+	0.680	1.57	3.19	0.94	0.13	1.45	0.56	0.33	1.25	0.30

of plant nutrients is mainly a function of the sand fraction (Hughes, 1981). The fine sand fractions of red and laterite soils in the present study showed quartz as the dominant mineral with few weatherable minerals. The soils of Kerala are derived mainly from acid crystalline rocks which are again poor in bases. Thus low reserves of major nutrients in the soil are the reflection of parent geology of the soils as revealed by the present study.

The chemical composition of gravel and gravel/soil ratios of constituents are presented in Table 3 and 4. The chemical composition of gravel showed a depletion of SiO₂ and accumulation of constituents especially Fe₂O₂ and Al₂O₂. Between the sesquioxides, accumulation of Fe₂O₂ appeared to be more compared to Al₂O₄. The mean values for the profile showed the highest accumulation of Fe₂O₃ in Thonnackal series followed by Nenmanda Anjur, Kanjikulam, Mannur and Kootala. The coarse fragments observed in most of the soils included pisolithic laterite and guartz gravel. The ferrugenous laterite gravels clearly show accumulation of most of the constituents as compared to soils. High gravel/fine earth ratios of the constituents have been observed for Fe₃O₃, Al₂O₈, MgO, P₂O₅ and Na₂O. Accumulation of Fe, Mo, Ga, V and P₂O₅ in gravel relative to fine earth was reported by Turton et al. (1962) in gravelly laterites of Australia. Thonnackal series showed the highest order of accumulation among the various soils investigated for Al₂O_e, Fe₂O₂, MnO₂, MgO, CaO and TiO₂. Enrichment of constituents in the gravel from different depth did not show any pattern, but gravel from the upper layers of the soil profile, appeared to accumulate the elements to a greater extent. This can be attributed to the alternate wet and dry conditons and consequent well oxidised nature of upper layers of the soil profile. The concentration of iron and other elements in the form of concentric skins making them more harder and rounded is the result of the above processes.

Summary

A study was made on the comparative chemical composition of soil and coarse fragment gravel in some Oxisol series identified in different regions in Kerala. The chemical composition of gravel showed a depletion of SiO₂ and accumulation of constituents especially Fe_2O_3 and AI_2O_3 . Between sesquioxides, accumulation of Fe_2O_3 appeared to be more compared to AI_2O_3 . The mean values for the profiles showed the highest accumulation of Fe_2O_3 in Thonnackal series followed by Anjur, Kanjikulam, Mannur and Kootala. High gravel/fine earth ratios of the constituents have been observed for Fe_2O_3 . AI_2O_3 , MgO, P_2O_5 and Na_2O_3 . The gravel from the upper layers of the profile showed accumulation of constituents to a greater extent than the lower layers.

Acknowledgements

This paper forms a part of M. Sc. (Ag.) thesis of the senior author submitted to the Kerala Agricultural University in 1987. The authors are

Chemical composition of soil and gravel

grateful to Dr. P. K. **Gopalakrishnan**, Associate Dean and Dr. A. I. Jose, Professor and Head, Department of Soil Science and Agricultural Chemistry, College of Horticulture, Vellanikkara, Trichur for providing facilities for the work. The senior author acknowledges with thanks the award of Junior Fellowship by the ICAR during the course of this investigation.

References

- Agarwal, R. R., Mehrotra, C. L. and Gupta, R. N. 1957. Development and morphology of Vindhyan soils. I. Catenary relationship existing among the soils of the upper Vindhyan plateau in Uttar Pradesh Indian J. agric, Sci. 27: 395–411
- Bastin, B. 1985. Physico-chemical characterisation of red soils in different regions of Kerala. M. Sc. (Ag) thesis, Kerala Agricultural University, Trichur.
- Hesse, P. R. 1971. A Text Book of Soil Chemical Analysis. John Murray Publishers Ltd., London. pp. 520
- Hugles, J. C. 1981. Mineralogy. In *Characteristation of Soils in Relation to their Classification and Management for Crop Production*. (ed) Greenland, D. J., Clarendon Press, Oxford, p, 30-50
- Jackson, M. L. 1958. So/7 Chemical Analysis. Prentice Hall Inc. USA pp. 498
- King, W. 1882. General sketch of the geology of Travancore State. The Warkalli beds and associated deposits at Quilon in Travancore. *Rec.geol. Surv. India* V. XV. Part 2: 93-102
- Turton, A. G., Marsh, N. L., Mae Kenzie, R. M. and Mulcahy, M. J. 1962. The Chemistry and Mineralogy of Lateritic Soils in the South-West of Western Australia. Soil Publication No. 20 CSIRO, Australia
- Mohr, E. C. J. and Van Baren, F. A. 1959. *Tropical Soils*. Interscience Publishers Inc., New York.
- Venugopal, V. K. 1980. Pedologic studies on lateritic catenary sequence occurring in Kerala. Ph. D. thesis, Kerala Agricultural University, Trichur