Agri. Res. J. Kerala, 1979, 17 (2) 173-178

INTERRELATION OF M, CHLOROPHYLL DEFICIENT SECTORS AND M, CHLOROPHYLL MUTATIONS IN RICE

V. GOPINATHAN NAIR

College of Agriculture, Veltavani, Kerala 695 522

Chlorophyll deficient sectors on M_1 plants were reported by several investigators in a number of crop species. Chemical mutagens are known to be more effective than radiations in inducing sectors. It is probable that sector formation is correlated to gene mutations. The value of sectors or leaf spots in studies of mutagenic action has increased since the relationship between leaf spots in the M, and chlorophyll mutations in the M_2 was demonstrated by Blixt and Gelin 1965 in peas. The present study was undertaken to ascertain the possibility of using sector frequency as a reliable estimate of mutagenic effects and to correlate the M_1 sectors with M_2 mutations in rice.

Materials and Methods

Seeds of the rice variety Co.29 were treated with fast neutrons, ethyl methane sulphonate (EMS) and nitroso methyl urea (NMH) over a wide range of doses. The M_1 plants at various stages of growth were examined to spot out chlorophyll deficient sectors. The type, intensity and persistance of sectors were studied in the chlorophyll deficient chimeras. The tillers on chimeric plants were marked separately. Panicles on chimeric and normal tillers were labelled. Ears were harvested and sown separately. Chlorophyll mutations in the M_2 germination were scored on M_1 ear progeny basis. Seedlings from striped spikelets were separately scored.

Results and Discussion

The frequencies of plants with chlorophyll deficient sectors presented in Table 1 indicate that chemical mutagens induce more sectors than fast neutrons. The frequencies were generally higher in treatment with NMH than with EMS, indicating that NMH was more effective than EMS in this respect. An increased effectiveness of NMH over EMS in inducing chlorophyll deficient sectors was reported by swaminathan *et al.* (1968) in barley and Prasad (1968) in wheat. The sector frequency increased progressively with increasing doses of chemical mutagens.

The M₁ chimeras showed wide variation with respect to the distribution of chlorophyll deficient sectors. One or more tillers of a plant possessed deficient sectors. The sectors were always longitudinal having white, yellow, yellow green or light green colours. They were more prominant on the leaf blade than on the leaf sheath and culm. The number and width of sectors differed from tiller to tiller on a plant and also from leaf to leaf on a tiller. There were several narrow sectors or a few broad ones on each leaf. They appeared in the seedling stage or later. The sectors either faded off or increased in size in later leaves. In fast neutron treatment, the sectors were restricted to the first few leaves represented by leaf meristems in the embryo. In those induced by NMH and EMS, the sectors in most cases persisted to the last leaf. The intensity of striping in certain chimeras was very high such that the boot leaves were highly deficient in chlorophyll. In a few cases, the sectors extended into the panicles.

Mutagen and dose	Number of M ₁ plants scored	No. of ch- lorophyll deficient chimeras	% of chime- ras	Mutagen and dose	Number of M1 plants scored	No. of ch- lorophyll deficient chimeras	% Or chime- ras
1) Fsst nuet	rons			n denerate n			
Control	291	0	0	154 m M	305	8	2.62 1.63 2.63
705 tad	290	0	0	192 m M	306	5	
968 rad	281	2	0.71	240 m M	304	8	
1170 rad	282	1	0.35	288 m M	298	6	2.01
1408 rad	285	2	0.70	336 m M	291	8	2.73
1570 rad	279	0	0	384 m M	287	10	3.48
1710 rad	280	2	0.71				
1880 rad	282	2	0.71	3) NMH			
2100 rad	277	2	0.72	Control	350	0	0
2) <i>EMS</i>				0.97 m M	343	5	1.46
				1.94 m M	259	11	4.25
Control	355	0	0	2,91 m M	169	6	3.55
19 m M	347	0	0	3.88 m M	157	10	6.37
38 m M	319	0	0	4.85 m M	138	13	9.42
58 m M	319	1	0.31	5,82 m M	114	7	6.14
77 m M	320	2	0.63	7.76 m M	69	7	10.15
96 <i>m</i> M	317	2	0.63	9.70 m M	35	7	20.00
115 m M	307	6	1.95	and the second			

Table 1 Frequency of chlorophyll deficient chimeras in the **M**₁ generation

The inheritance of M_1 chlorophyll deficiency was studied in the M_2 generation. Results are presented in Table 2. Sections 1 and 2 of the table indicate that chlorophyll mutation frequency of chimeric tillers is 2 to 3 times that

Particulars	Fastneu- trons	EMS	NMH	Total					
1. Ear progenies of normal tillers from chimeric plants									
i. Number scored	20.0	56.0	120.0	196.0					
ii. Number segregating	2.0	5.0	18.0	25.0					
iii. % Segregating	10.0	9.1	15.0	12.8					
2. Ear progenies of chimeric tillers from chimeric plants									
i No. scored	9.0	52.0	81.0	142.0					
ii. No. Segregating	2.0	14.0	25.0	41.0					
iii. % Segregating	22.2	26.9	30.9	28.9					
3. Chimeric tillers and striped panicles.									
i. No. of chimeric tillers	9.0	52.0	83.0	142.0					
ii. No, of chimeric tillers producing striped panicles	3.0	5.0	15.0	23.0					
iii. % of chimeric tillers producing striped panicles	33.3	9.6	18.5	16.2					
4. Progenies of normal panicles on chimeric tillers.									
i. No. scored	6.0	47.0	66,0	119.0					
ii. No. segregating	2.0	13.0	12.0	27.0					
iii. % segregating	33.3	27.7	18.2	22.T					
5. Progenies of striped panicles on chimeric tillers.		1.00							
i. No. scored	М	5.0	15.0	23.0					
ii. No. segregating	0.0	1.0	13.0	14.0					
iii. % segregating	0.0	20.0	86.7	60.9					
6. Seedlings of normal spikelets on striped panicles.	Ento anti i								
i. No. scored	3.0	5.0	3.0	11.0					
ii. No. of mutants	0.0	1.0	2.0	3.0					
iii. % of mutants	0.0	20.0	66.7	27.3					
7. Seedlings of striped spikelets on striped panicles.									
i. No. scored	3.0	5.0	15.0	23.0					
ii. No- of mutants	0.0	0.0	13.0	13.0					
iii. % of mutants	0.0	0.0	86.7	56.5					

Table 2 M, chlorophyll deficient chimeras and M, chlorophyll mutations

of normal **tillers** on chimeric plants. This reveals a positive association between M_1 chlorophyll deficient **sectors** and M_2 chlorophyll mutations. However, only 28.9% of ears from chimeric tillers segregated for **mutations** indicating that **the association** was not complete. The chimeric tillers produced striped panicles only in a few cases (Table 2). There were also instance of striped borne

on **normal tillers.** These results indicate that **chlorophyll** deficient **sectors** on vegetative plant parts such as culm and leaves and oh reproductive parts such as panicles and spikelets **originate** quite independently.

Sections 4 and 5 of the Table 2 further indicate that the striped panicles on chimeric tillers yielded more mutations than normal panicles on chimeric tillers. Therefore, when the panicles were striped the possibility for them to contain mutations was high. The striped panicles invariably possessed sectors for striped and normal spikelets. The M₂ seedlings from striped spikelets yielded chlorophyll mutants more frequently than those from the normal spikelets (Tables 2-6 and 7).

Two distinctly different patterns of striping were observed on the spikelets. (1) The ridges of lemma and **palea** were green whereas the sides of the glumes were white. This was the pattern of striping in striped spikelets on chimeric tillers. (2) The ridges of lemma and **palea** were white whereas the sides of the glumes were green. This was the pattern of striping in striped spikelets on normal tillers. Such spikelets were highly sterile.

The pattern of striping on the spikelets and mutations in the progeny appear to be strongly associated. Striped **spikelets** of the first type (white on sides) segregated for **chlorophyll** mutants whereas those of the second type (green on sides) always gave albino seedlings. These results **therefore** reveal That the "green on sides" type of striping on the spikelets is an indication of albinism in the embryos of seeds,

Goud (1965), Varughese and Swaminathan (1968) and Rao and Washington (1970) reported that chlorophyll chimeras never bread true. According to D'Amato et al. (1962) the sectors on leaves orginate through somatic mutations as periclinal chimeras, probably in the outer LI layer and since the germinal tissue develops from the inner LII layer, the mutations might not pass on to the progeny. Siddig (1967) found the induced chlorophyll deformation in rice to be nonheritable and indicated the possibility of their being either periclinal chimeras or arising from a physiological disorder. In the present investigation, the chimeric tillers yielded mutations in their progeny more frequently than non-chi-It was also observed that chlorophyll deficient sectors on leaves meric tillers. and panicles originate independently. Striped panicles yield mutants more frequently than normal panicles on chimeric tillers. Thus it is evident that sectors on the panicles and spikelets give a surer indication of mutations in the Ma than the sectors on leaves. It may therefore be possible to use sector frequency particularly on the panicle as a reliable estimate of imutagenic effects and to realise a high frequency of chlorophyll mutations in the M₂ generation by selecting M₁ panicles with chlorophyll deficient sectors.

Summary

Studies were undertaken to correlate the M_1 chlorophyll deficient sectors with M_2 chlorophyll mutations in rice. Chemical mutagens induced more sectors than fast neutrons. NMH was more effective than EMS in this respect. The sectors exhibited wide variation in type, intensity and persistance. They originate in leaves and panicles quite independantly. Chimeric tillers yielded more chlorophyll mutations than non-chimeric tillers. Striped panicles produced more mutants than normal panicles. Thus, sectors on panicles and spikelets give a surer indication of mutations in the M_2 than sectors on leaves. The sector frequency on panicles can therefore be used as a reliable estimate of mutagenic effects. Selection of M_1 panicles with sectors can enhance the rate of chlorophyll mutations in the M_2 generation.

No Oano

M, നെൽ ചെടികളിൽ raocrugo\$n_iiVlajriraRHd3b6ijoooപാതവായം, NMH പ്രത്യേക മായം കൂടിയ അളവിൽ പർണ്ണഹരിത ന്രേന്യമോലകരം സ്വഷ്ടിക്കുന്നതായി കണ്ടു. ഇലകളിലും കതിരുകളിലും മേഖലകരം സ്വതന്ത്രമായി ആവിർവോക്കുന്നു. ഇത്തരം ചിനപ്പുകരം മാറുള്ളഖ യേക്കാരം കൂടിയ അളവിൽ ഉൽപരിവർതിതങ്ങളെ പ്രദാനം ചെയ്യുന്നു. ക roil raits! പർണ്ണരഹി തന്ത്രന്യമേഖലകരം കടന്ന കൂടുമ്പോരം വളരെ കൂടിയ അളവിൽ ഉൽപരിവർതിതങ്ങരം ആവിർ വേക്കുന്നു. rawroilcncrai കതിരിലും നെന്മണിയിലും പ്രത്യക്ഷപ്പെടുന്ന വരകരം പർണ്ണരഹിത നൂന്യ ഉൽപരിവർതി രണ്ടളുടെ മന്നോടിയാണെന്നു് അന്മാനിക്കേയും വരകളുടെ ആവൃത്തി ഉൽ പരിവർത്ത പ്രവർത്തനത്തിനെ വിശ്വാസയോഗ്യമായ മാനദണ്ഡമായി സ്വീകരിക്കുകയും ചെ യുറം. M₁ ൽ ഇത്തരം ചെടികളെ തിരഞ്ഞെടുക്കുന്നതാണ്.

REFERENCES

Bllxt, S. and Gelin, 0. 1965. The ralationship between leaf spotting and mutation rate in Pisum. The use of induced mutations in plant breeding. Pergamon Press, 251-262.

D' Amato, F., Scarascia Mugnozza, G. T., Monti, L. M. and Bozzini, A. 1962. Types and frequencies of chlorophyll mutations in durum wheat induced by radiations and chemicals, *fiadiat. Bot.* 2. 217–239.

Goud, J. V. 1965. Studies on the frequency and spectrum of visible and micromutations induced by some physical and chemical mutagens in varieties of bread wheat. Ph. D. thesis, IARI, New Delhi.

Prasad, M. V. R, 1968. Studies on induced mutants in Triticumspecies. Ph. D. thesis, IARI, New Delhi.

flao, M. V. P. and Washington, W. J. 1970. EMS induced chlorophyll defective sectors in hexaploid wheat. Radiations and radiomimetic substances in mutation breeding. Dept. of Atomic energy, Bombay 228-233.

- Siddiq, £, A. 1967. Induced mutations in relation to the breeding and phylogenetic differentiation of Oryza sativa. Ph. D. thesis, IARI, New Delhi,
- Swaminathan, M. S., Siddiq, E. A., Savin, V. N. and Varughese, G. 1968. Studies on the enhancement of mutation frequency and identification of mutations of plant breeding and phylogenetic significance in some cereals. *Mutations in Plant breeding* II. IAEA, Vienna, 233-248.
- Varughese, G. and Sawminathan, M. S, 1968, A comparison of the frequency and spectrum of mutations induced by gamma rays and EMS in wheat. Indian J. Genet. Pl. Breed. 28, 158-165.

(M. S. Received: 16-6-1978)