ESTIMATION OF PARAMETERS UNDER RANDOM DETERMINATIONS

 ON EACH UNIT OF A RANDOM SAMPLEA, INDIRADEVI and P, U, SURENDRAN

College of Veterinary and Animal Science, Mannuthy, Kerala.

When several determinations could be made on unit of a sample, es in most of the agricultural sample surveys, Singh and Gupta (1978) have described a sampling procedure and recommended methods of obtaining an unbiased estimate of the population mean and an estimate of its variance. In establishing these results the authors have assumed that the determinations obey normal probability law and have made use of generating functions. In the present article assuming the same sampling procedure as recommended by Singh and Gupta we have obtained estimates of mean and its variance under more general conditions. The procedure suggested is also simple.

Materials and Methods

The sampling procedure described by Singh and Gupta is as follows. Consider a population of N units out of which a random sample is selected for experimentation. Let y be the character under study. On every unit selected j ($\mathrm{j} \leq \mathrm{s}$) determinations of y are made. Assuming that j is a random variable
we wish to obtain an unbiased estimate of the population mean and an estimate of the variance of this estimate. For example, estimating the total production of crops when harvesting is spread over a long period of about 2-3 months and involves a number of random pickings, estimating the mean effect of a treatment on diseased animals as measured by observations on certain characteristic the observations being taken till the first sign of recovery, estimating the true mean performance of students with the help of a random number of tests on each etc.

Let $\mathrm{Y}_{\mathrm{k}}{ }_{\mathrm{k}}$ be the k^{1} h observation made on the $\mathrm{i}^{\text {th }}$ unit selected $\mathrm{i}=-1$, $2, \ldots n$ and $k-1,2, \ldots . j_{i}$ where j_{i} is the number of observations on the $i^{\text {th }}$ unit selected and is a random value of j .

If we treat the number of determinations on a unit as possibly infinite, we may take the model $Y_{i k}=Y .+\left(-_{i k}\right.$ Where Y, is the true and unknown measurement of the $i^{\text {th }}$ unit and ($-\mathrm{ik}^{\text {'s }}$ s are random errors, following independent distributions with mean O and variance $\sigma\left(-^{2}\right.$ When Y . $==\mu$ and (-ik 's are normal we obtain the sampling situation described by Singh Gupta.

Consider the estimator $\overline{=}$ the mean of the sample means \bar{Y}_{i}^{\prime} 's given by $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} \bar{Y}_{i}-\frac{1}{n} \sum_{i=1}^{n} \frac{1}{j_{i}} \sum_{R=1}^{j_{i}} Y_{i k}$

Theorem

The expected value and variance of the estimator $\overline{\bar{Y}}$ are given by

$$
E(Y)=\mu \text { and } V(Y) \quad \frac{1}{n} \frac{E(1)}{j} \sigma
$$

Proof

$$
E(Y)=\frac{1}{n} E j-\bar{E}-Y\left\{\sum_{i=1}^{n} \sum_{k=1}^{j_{i}} \frac{y_{i k}}{j_{i}}\right\}=\frac{1}{n} E_{j}\left(\sum_{i=1}^{n}{ }^{n}\right)=\mu
$$

$\operatorname{Var}(\overline{\bar{Y}})$

To get an estimate of $\sigma\left(-\frac{2}{}\right.$, if $Q=0_{n}^{n} \sum_{i=1}^{n} \sum_{k=1}^{\mathrm{j}_{i}}$

$$
\frac{\left(Y_{i k}-Y_{i}\right)^{2}}{j_{i}-1}
$$

$E(Q)=\sigma(-$
$\because \quad$ Est $\operatorname{Var}(\mathrm{Y})=-\bar{n} \quad \mathrm{E}\left\{\left.\frac{1}{\}}\right|_{f} Q\right.$
These results hold in the general case when j follows any probability distribution. However when j follows some of the known probability distributions $E(1 / j)$ may be actually evaluated and substituted, in the above expressions to get the estimates. Thus tables of $E(1 / j)$ have been worked out for the following distributions.

1. When j is distributed equally integers $<\mathrm{S}$ such that

$$
P(j=x)=-\frac{1}{0} \quad ; x=1 / 2 \ldots S
$$

Table $1 E(1 / \mathrm{j})$ for the truncated uniform type discrete distribution

$$
P\left(j-n^{2}\right)^{\prime}=\frac{1}{S} ; x=1,2 \ldots \ldots S
$$

S	$E(1 / j)$						
1	1	7	$0.37,04 i$	13	$0.24,463$	19	$0.18,651$
2	$0.75,000$	8	$0.33,973$	14	$0.23,226$	20	$0.17,968$
3	$0.61,111$	9	$0.31,433$	15	$0.22,094$	21	$0.17,339$
4	$0.52,083$	10	$0.29,293$	16	$0.21,104$	22	$0.16,758$
5	$0.45,667$	11	$0.27,454$	17	$0.20,208$	23	$0.16,218$
						24	$0.15,716$
6	$0.40,833$	12	$0.25,860$	18	0.19 .393	25	$0.15,247$

Table 1 gives $E(1 / \mathrm{j})$ for S from 1 to 25
2. When j has the truncated binomial distribution
$P(j=x)=\frac{1}{1-\frac{1}{d}\binom{s}{x} p^{x} q^{s-x} ; x=1,2: s}$
Table 2 gives $E(1 / \mathrm{j})$ for S from 1 to 15
3. When j has the truncated geometric distribution

$$
P(j=x)=\frac{1}{1}-_{q}^{s} q^{x-1} p ; x=1,2 \cdot S
$$

Table 3 gives $E(\mathbf{1} / \mathrm{j})$ for S from 1 to 15
4. When j has the truncated Poisson distribution

$$
P\left(j=x=\frac{1}{\sum_{x=1}^{s} \frac{m^{x}}{x!}} \times \frac{m^{x}}{x!} ; x=1,2 \ldots S\right.
$$

Table 4 gives E (1/j) for S from 1 to 10
The truncation was done at 0 to avoid non-observation of selected units.

A
For the estimator ${ }_{\mu}$ of Singh and Gupta given by A

$\operatorname{Var}(\hat{\mu})=\overline{n m^{2}}\left[\begin{array}{r}f(m) \\ t(m)\end{array}\right]^{2} E(j) \sim L^{2}$
Hence $\overline{\bar{Y}}$ is superior to ${ }_{\mu}$ if

$$
\left.\frac{1}{m^{2}}\left[\frac{f(m)}{f^{\prime}(m)}\right]^{2} E(j)>E^{(} \frac{\mathbf{1}}{j}\right)
$$

Results and Discussion

From the tables it may be seen that the estimator $\overline{\bar{Y}}$ is superior to ${ }_{F}^{A}$ of Singh and Gupta for small values of m (less than 2). Also, the estimator $\overline{\bar{Y}}$ and its variance are derived for general situations as $\left(-{ }_{i k}\right.$'s are not restricted to be normal.

These results may be extended to the cases where we wish to estimate the true mean of a finite population of N units. For example if $\mathrm{Y}_{\mathrm{ik}} \mathrm{re}$ presents the score of the $i^{\text {th }}$ individual in the $k^{\text {th }}$ test and if y, represents his true score we might wish to estimate the true mean score of N individuals of whom n are sampled, the decision being made on random number of tests on each. Another example is when the data of crop for n selected fields out of N might be available for different randomly selected seasons and we wish to estimate the true mean or total yield of the population of N fields. Here $\overline{\bar{Y}}$ is an unbiased estimator for the parameter μ where

$$
\begin{aligned}
& \mu=\frac{1}{N}(y 1+Y 2+\ldots \ldots+y N) \\
& \text { Also if } \sigma^{2}=\frac{1}{\operatorname{iN}-1} \sum_{i=1}^{N}(y-\mu)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } Q \quad=\frac{1}{n} \sum_{k=1}^{n} \sum_{k=1}^{j_{i}} \frac{\left(y_{i k}-y_{i}\right)^{2}}{j_{j}-1} \\
& R \quad=\frac{1}{n-1} \sum_{i=1}^{n}\left(\overline{y_{i}}-\bar{y}\right)^{2} \\
& \text { Est } \operatorname{Var}(\overline{\bar{y}})=\frac{N-n}{N-n} \quad R+\frac{Q}{n} E(1 / j)
\end{aligned}
$$

S/P	0.1	0,2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	1	1	1	1	1	1	1	1	1
2	$0.97 \quad 368$	0.04,444	$0.91,176$	0.87 .500	0.83,333	0.78,571	0.73 .071	0.66,667	0.59,091
3	$0.94,760$	0,89,071	0.82,880	0.76,190	0,69,048	0.61,538	0.53,837	$0.51,075$	0.39,189
4	$0.92,216$	083,898	0.75 .158	0.66,176	0.57,222	0,43,645	$0.40,843$	$0.34,188$	$0.28,915$
5	0.89,646	0.78,768	0.68,056	0.57,474	0.47,688	0.39,156	0,32,183	0.26,829	$0.22,891$
6	0.87,220	$0.7+, 023$	$0.61,583$	0.50,026	0.43,132	0.32,233	0.27,314	0.22,030	0.18,956
7	0.84,788	0.69,523	0.55,734	0.43,693	0.34,194	0.27,147	$0.22,173$	0.18,691	0.16,181
8	0.82,401	0.65,274	$0.50,491$	$0.38,436$	0.29,530	0,23,348	$0.19,151$	$0.16,238$	0.14 .801
9	0.80,005	0.61,238	$0.46,811$	$0.34,021$	$0.25,847$	0.20,447	0.16,856	0.14,359	0.12,038
10	0.77,768	0.57,506	0.41,673	0,30,327	0.22,911	$0.18,177$	0.15,057	$0.12,872$	$0.11,252$
1 !	$0.75,525$	0.5 X 916	0,38,010	0.27,243	$0.20,541$	$0.16,381$	0,13,608	$0.11,665$	$0.10,216$
12	0.73,334	0.50,591	0.34,780	024,655	0.18,601	0.14 .891	$0.12,416$	0,10,666	0.09,355
13	0.71 .194	0.47,705	0.31,939	0.29,122	0.16,992	0,13,643	$0.11,452$	0.09,825	0.08,628
14	0,69,105	0.44,872	0.29,460	0.20,619	0.15,638	0.12,600	0.10,568	0.90,108	0.08,006
15	0.67,436	0.42,415	0.27,245	0,19,036	$0.14,486$	0.11,212	0.09,837	0,08,488	0.07,467

Table $3 E(1 / j$ for the truncated geometric distribution $P \quad x)\left(j=\quad q \frac{1}{1-q^{s}} p^{x-1}, x \quad 2=1, \quad . s\right.$

S	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	1	1	1	1	1	1	1	1	1
2	$0.76,316$	$0.77,778$	$0.79,412$	$0.81,250$	$0.83,333$	$0.85,714$	$0.88,462$	$0.91,667$	$0.95,465$
3	$0.63,469$	$0.66,120$	$0.69,100$	$0.72,449$	$0.76,190$	$0.80,342$	$0.84,892$	0.89 .516	$0.94,895$
4	$0.55,314$	$0.58,988$	$0.63,130$	$0.67,739$	$0.72,778$	$0.78,161$	$0.83,751$	$0,89,369$	$0.94,832$
5	049,656	$0.54,238$	$0.59,396$	$0.65,056$	$0.71,075$	$0.77,258$	$0.83,389$	$0.89,281$	$0.94,825$
6	$0.45,499$	$0.50,900$	$0.56,955$	$0.63,477$	$0.70,212$	$0.76,885$	$0.83,275$	$0.89,263$	$0,94,825$
7	$0.42,319$	$0.48,472$	$0,55,313$	$0.62,549$	$0.69,771$	$0.76,731$	$0.83,240$	$0.89,259$	$0.94,825$
8	$0.39,815$	$0,46,659$	$0.54,185$	$0.61,962$	$0.69,551$	$0.76,667$	$0.83,229$	$0.89,258$	$0,94,825$
9	$0.37,798$	$0.45,281$	$0.53,414$	$0.61,617$	$0.69,432$	$0.76,641$	$0,83,225$	$0.89,258$	$0.94,825$
10	$0.36,144$	$0.44,220$	$0.52,873$	$0.61,408$	$0.69,374$	$0.76,631$	$0.83,225$	$0.89,258$	$0,94,825$
11	$0.34,769$	$0.43,395$	$0.52,495$	$0.61,281$	$0.69,345$	$0.76,627$	$0.83,225$	$0.89,258$	$0.94,825$
12	$0.33,849$	$0.42,748$	$0.52,229$	$0.61,204$	$0.69,330$	$0.76,625$	083,225	$0.89,258$	$0.94,825$
13	$0.32,632$	$0.42,233$	$0.52,042$	$0.61,157$	$0.69,322$	$0.76,624$	$0.83,225$	$0.89,258$	$0.94,825$
14	$0.31,792$	$0.41,835$	$0.51,911$	$0.61,129$	$0.69,319$	$0.76,624$	$0,83,225$	$0.89,258$	$0.94,825$
15	$0.31,068$	041,514	$0.51,818$	$0.61,112$	$0.69,317$	076,624	$0.83,224$	$0,89,258$	$0.94,825$

Table $4 \mathrm{E}(1 / \mathrm{j})$ for the truncated Poisson distribution $\mathbf{P}(\mathbf{j}=\mathrm{x})$ $=\frac{m^{*}}{x!f_{s}}(m)$ ana $r_{s}(m)=\underset{x=1}{S} \frac{m^{x}}{x!}=1,2, \ldots \ldots \mathrm{~S}$

Sometimes the number of possible obsetvations per unit may be limited. Without assumptions of any particular model for $y_{i k}$ here we have an crdinary
two-stage sampling procedure. If $M_{i}:=M$ for all $i, \overline{\bar{y}}$ is unbiased for ${ }_{\mu}=$
$\frac{1}{N M} \sum_{i=1}^{N}{\underset{k}{2}=1}_{M}^{S} \quad y_{i k}$ and

Est $\operatorname{Var}(y)=\begin{aligned} & N-n \\ & N n\end{aligned} R_{+}+\frac{1}{N}\{1 E(1 / j)-1\}$
If Mi 's are different y is no longer an unbiased estimate of the population mean. However, it may be made unbiased by selecting the sampling units with probability propcrtional to their sizes Mj . We may also adopt sampling with replacement in the second stage of selection and thereby the number of possible observations may be treated as infinite.

Summary

When there are several determinations per unit of a sample and j , the number of determinations is a random variable, the mean of the means per unit can be taken to be an unbiased estimate of the population mean. The variance of the estimate and the estimate of this variance is derived under general conditions. Since the expressions involve $\mathbf{E}(1 / \mathrm{j})$ in particular situations where $E(1 / \mathrm{j})$ may be calculated and tabled, they may be evaluated with the help of the tables given. These results may also be extended to other situations suitably.

๙ぃய

Acknowledgement

The authors are greatful to Dr. P. G. Nair, Dean, College of Veterinary and Animal Sciences, Mannuthy, Trichur for his kind interest in this work, The authors greatefully acknowledge the help rendered by Smty. T. K. Indira Bai, Technical Assistant, Departmept of Statistics in the preparation of the tables.

REFERENCE

Singh M and Gupta, V. K. 1978. 'On the Estimation of mean parameters with random number of obbservation on unit', /, A. S. R. /, Tech, Rep. No, 7/78.
(M. S. Received: 24-11-1978)

