PROPERTIES OF THE SAMPLE VARIANCE IN SAMPLES FROM A GENERALISED AUTOREGRESSIVE SCHEME

E. J. THOMAS

College of Agriculture, Vellayani, Kerala

The distribution of sample variance $s^2 = 2 (x_i - \bar{x})^2 / (n-1)$, where the x.'s are randomly and independently drawn from a normal population with mean a and variance S^2 , is,

$$P(s^{2}) = \begin{cases} \left(\frac{n-1}{2S^{2}}\right)^{2} & \frac{n-1}{2} & -(n-1)s^{2} & n-1 \\ 2s^{2} & 2s^{2} & 2 \end{cases} - 1 \\ \frac{n-1}{2} & .e & .(s^{2}) \end{cases}$$

(Rietz, 1937J. The moments of $s^{\scriptscriptstyle 2}$ are as follows. Mean $(M_{_{\rm I}}{}')=S^{\scriptscriptstyle 2}$, variance

$$(M_2) = (\frac{2}{n-1})$$
. S⁴, $M_3 = \frac{8}{(n-1)^2}$. S⁶, $M_4 = \frac{12 (n+3)}{(n-1)^3}$. S⁸. Thus $\beta_1 = 8/(n-1)$ and $\beta_2 = 3 + \frac{12}{n-1}$. ('Student', 1908)

In this paper, x.'s are assumed to follow a generalised autoregressive scheme,

$$X_t + B_1 \cdot X_{t-1} + B_2 \cdot X_{t-2} + \dots + B_p \cdot X_{t-p} = e_t + C_1 \cdot e_{t-1} + C_2 \cdot e_{t-2} + \dots + C_n \cdot e_{t-n}$$
, where the e_t 's follow a normal distribution with mean 0 and variance S^2 .

Further, e_t 's are assumed to be independent. Under this scheme, the properties of s^2 are investigated. The algebra involved in the computation of the third and fourth moments tend to be laborious. The methods are utilised to find the first four moments and also β_1 and β_2 , for the simpler model, $x_t = e_t + a$. e_{t-1} .

Materials and Methods

The variable x_t follows the generalised autoregressive scheme, $x_t + B_1.X_{t-1} + B_2.X_{t-2} + \dots + B_p.X_{t-p} = e_t + C_1.e_{t-1} + C_2.e_{t-2} + \dots + C_n.e_{t-n}$. This can be written in the form, $x_t = e_t + a_1.e_{t-1} + a_2.e_{t-2} + \dots$ where, $\frac{1 + C_1.u + C_2.u^2 + \dots + C_n.u^n}{1 + B_1.u + B_2.u^2 + \dots + B_p.u^p} = 1 + a_1.u + a_2.u^2 + \dots$

Since the e, 's are assumed to be normally and independently disiributed with mean 0 and variance S^2 , it follows that, $E(x_*) = O$.

E (
$$x_t^2$$
) = (1 + a_1^2 + a_2^2 + ...). $S^2 = A_0$. S^2 (say) and E ($x_t \cdot x_{t+k}$) = (a_k + $a_1 \cdot a_{k+1}$ + $a_2 \cdot a_{k+2}$ + ...) $S^2 = A_k \cdot S^2$, where $A_k = a_k$ + $a_1 \cdot a_{k+1}$ + $a_2 \cdot a_{k+2}$ + ...

To obtain the four moments of s^2 , the usual procedure of finding expectations of the first four powers of s^2 is adopted. This involves expansions of expressions of the from $(\Sigma x_t^2)^p$. $C\Sigma x_t^2$, where p and q are zero or positive integers such that p < 4, q < 4, and p + q = 4.

$$(\sum x_{t}^{2})^{2} = \sum x_{t}^{4} + 2 \prod_{t=1}^{n-1} \sum_{t=1}^{n-r} x_{t}^{2} \cdot x_{t+r}^{2}$$

$$r = 1 \quad t = 1$$

$$(Ix_{t}^{2})^{3} = \underbrace{\mathbb{E}} x_{t}^{6} + 3 \sum_{t=1}^{n-1} \sum_{t=1}^{n-r} \sum_{t=1}^{n-r} x_{t}^{4} \cdot x_{t+r}^{2} + 6 \sum_{t=1}^{n-r-1} \sum_{t=1}^{n-r-1} x_{t+r+s}^{2}$$

$$r = 1 \quad t = 1 \quad 42$$

$$r = 1 \quad s = 1$$

$$r = 1 \quad s = 1$$

$$where \underbrace{\mathbb{E}}_{42} x_{t+r}^{4} x_{t+r}^{4} - x_{t}^{4} x_{t+r}^{4} + x_{t+r+r}^{4} x_{t+r+r}^{4}$$

The other expressions, being still more lengthy, are not listed here,

If. $X_{1,\ldots,5}$ w+v, u, where k_2 , k_3 , k_7 can take values from 0 to 7 and k_1 takes values from 0 to 4, such that $2.k_1 + k_2 + k_3 + k_4 + k_5 + k_6 + k_7 < 8$, are required for the first four moments of s^2 . The following results are easily derived.

$$\begin{split} &\mathsf{E}\left(\mathsf{X}_{t}^{2}\right) = \mathsf{0}\,,\;\; \mathsf{E}\left(\mathsf{X}_{t}^{2}\right) = \mathsf{A}_{o}.\mathsf{S}^{2}\,,\;\; \mathsf{E}\left(\mathsf{X}_{t}\,\mathsf{X}_{t+r}^{2}\right) = \mathsf{A}_{r}.\mathsf{S}^{2}\,,\;\; \mathsf{E}\left(\mathsf{X}_{t}^{4}\right) = 3.\mathsf{A}_{o}^{2}.\mathsf{S}^{4} \\ &\mathsf{E}\left(\mathsf{X}_{t}^{2}.\mathsf{X}_{t+r}^{2}\right) = \left(\mathsf{A}_{o}^{2} + 2\mathsf{A}_{r}^{2}\right)\mathsf{S}^{4}\,,\;\; \frac{\mathsf{\Sigma}}{\mathsf{31}}\,\;\; \mathsf{E}\left(\mathsf{X}_{t}^{8}\,,\;\;\mathsf{X}_{t+t}^{2}\right) = 6.\mathsf{A}_{o}.\mathsf{A}_{r}.\mathsf{S}^{4} \\ &\mathsf{E}\left(\mathsf{X}_{t}.\mathsf{X}_{t+r}^{2}.\mathsf{X}_{t+r+s}.\mathsf{X}_{t+r+s+w}^{2}\right) = \mathsf{E}\left(\mathsf{A}_{r}.\mathsf{A}_{w} + \mathsf{A}_{s}.\mathsf{A}_{r+s+w}^{2} + \mathsf{A}_{r+s}.\mathsf{A}_{s+w}^{2}\right).\;\; \mathsf{S}^{4} \\ &\mathsf{E}\left(\mathsf{X}_{t}^{6}\right) = \mathsf{E}\left(\mathsf{15}.\mathsf{A}_{o}^{3}.\mathsf{S}^{6}\,,\;\;\; \mathsf{51}\,\;\;\; \mathsf{E}\left(\mathsf{X}_{t}^{5}.\mathsf{X}_{t+r}^{2}\right) = \mathsf{30}.\mathsf{A}_{o}^{2}.\mathsf{A}.\mathsf{S}^{6} \\ &\mathsf{51}\,\;\;\; \mathsf{E}\left(\mathsf{X}_{t}^{4}.\mathsf{X}_{t+r}^{2}\right) = (6.\mathsf{A}_{o}^{3} + 24.\mathsf{A}_{o}.\mathsf{A}_{r}^{2})\;\; \mathsf{S}^{6}\,,\;\;\;\; \mathsf{E}\left(\mathsf{X}_{t}^{3}.\mathsf{X}_{t+r}^{8}\right) = (9.\mathsf{A}_{o}^{2}.\mathsf{A}_{t}^{2} + 6.\mathsf{A}_{r}^{8}).\mathsf{S}^{6} \end{split}$$

Expections of other expressions are still more lengthy and hence are not reproduned here.

Results and discussion

Using the methods described, it is possible to derive the moments of s^2 , where $s^2 == \sum (x_i - \overline{\chi})^2/(n-1) = (\sum x_i^2)/(n-1) - (\sum x_i)^2/n$ (n-1)

Thus,
$$M_1' = \frac{2}{(A_0 - n(n-1))} \sum_{r=1}^{n-1} (n-r) A S^2$$

$$M_2 = n^2 (n-1)^2 \left[2n^2 (n-1) \cdot A_0^2 + 4n (n-2) \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4) \right]$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) \cdot A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) A_r^2 + 4n (n-4)$$

$$n-1 \sum_{r=1}^{n-1} (n-r) A_0 A_r + 8 \sum_{r=1}^{n-1} (n-r) A_0 A_r + A_r A$$

Expressions for M_3 and M_4 in the general case happen to be very lengthy and hence are not given in this paper.

For a simple particular case it is easy to work out the moments. Hence the model, $X_t = e_t + a$. e_{t-1} is taken to illustrate the method. In this case, $A_0 = 1 + a^2$, $A_1 = a$ and $A_p = 0$ for p greater than 1. This leads to the following results.

$$M_{1}' = S^{2} [1 - (2a/n) + a^{2}]$$

$$M_{2} = \frac{S^{4} - \Gamma}{n^{2}(n-1)^{2} - 2n^{2}(n-1) - 8n(n-1) \cdot a + 8(n^{3} - 2n^{2} + n + 1) \cdot a^{2}}$$

$$-8n(n-1) \cdot a^{3} + 2n^{2}(n-1) \cdot a^{6}]$$

$$S^{6} - \frac{\Gamma}{8} 8n^{3}(n-1) - 48n^{2}(n-1) \cdot a + 24n(3n^{3} - 7n^{3} - 4n) \cdot a^{2}$$

M,
$$\frac{S^{6}}{n^{8}(n-1)^{8}} \left[8n^{8}(n-1) - 48n^{2}(n-1) .a + 24n(3n^{8} - 7n^{5} + 4n + 4) .a^{2} - 32(5n^{8} - 6n^{2} - 3n - 2) .a^{3} + 24n(3n^{3} - 7n^{2} + 4n + 4) .a^{4} - 48n^{2}(n-1) .a^{5} + 8n^{3}(n-1) .a^{6} \right]$$

$$M_4 = \frac{1}{n^4(n-1)^4} I \cdot 12n^4(n-1)(n+3) - 16n^2(n-1)(6n^2+18n-3681) \cdot a \\ + 96n(n^5+2n^4+3n^3-40n^2+106n-90) \cdot a^2 \\ + 48n(8n^4-58n^3-3457n^2+3329n+320) \cdot a^3 \\ + 24(9n^6+14n^5+n^4-252n^3+684n^2-280n+40) \cdot a^4 \\ + 48n(8n^4-58n^3-3457n^2+3329n+320) \cdot a^5 \\ + 96n(n^5+2n^4+3n^3-40n^2+106n-90) \cdot a^6 \\ - 8n^2(n-1)(12n^2+36n-7362) \cdot a^7 \\ + 12n^4(n-1)(n+3) \cdot a^8 \cdot 1$$

When a = 0, these reduce to
$$M_1' = S^2$$
, $M_2 = \left(\frac{2}{r^2-1}\right)$ S^4 ,
$$M_8 = \frac{8}{(n-1)^2}$$
 S^6

 $M_4 = \frac{12 \cdot (p_t^{-1} \cdot x^2)}{(11-1)^3} S^8$, agreeing with the results for the case where x_t 's, are randomly and indepently distributed.

When $a\!\neq\!0$ also, it can be seen that β_1 tends to 0 and β_2 tends to 3 as n tends to infinity. It is difficult to get the exact distribution of s^2 in this case. But the distribution can be approximated by a normal distribution with mean $(1+a^2)$. S^2 and variance (2/a). $(a^4+8n^2+2).S^4$. It is obvious that s^2 is a biased estimate of s^2 for $a\neq 0$

Summary

An attempt is made to study the properties of the sample variance in samples from a generalised autoregressive scheme, by computing the moments. Eventhough the expressions are lengthy, the moments can be derived. For the simple particular case $\mathbf{x}_t = \mathbf{e}_t + \mathbf{a}.\mathbf{e}_t$, the moments have been worked out. The exact distribution has not been derived, but the large sample approximation is found to be normal with mean S^2 (1 + a^2) and variance (2/n) ($a^4 + 8a^2 + 2$). S^4 When $a \neq 0$, s^2 is a biased of S^2 .

സംഗ്രഹം

സാമാന്യ വൻകൃത സ്വയംസമാശ്രയണ പദ്ധതിയിൽ നീന്നുള്ള സാമ്പിരം വ്യതിയായത്തിൻറെ ഗുണ്യർമ്മങ്ങളെപ്പററി പഠിക്കവാൻ ഇതിൻറെ ആഘുന്നുള്ളടെ പരികലനം വഴി ഒരു ശ്രമം നടത്തിയിരിക്കുന്നു. വ്യാജകങ്ങരം വളരെ ദൈർഘ്യമുള്ളവയാണെന്നു വരികിലും ആഘൂർണങ്ങളെ വ്യൽപാദിപ്പിക്കവാൻ സാദ്ധ്യമാണും. $x_t = e_t + a$. e_{t-1} എന്ന ലഘ വിശേഷ സ്ഥതിയിൽ ആഘൂർണങ്ങളെ പരികലനം ചെയ്തിട്ടുണ്ടും. കൃത്യമായ വിതരണ ഫലനങ്ങരം വ്യൽപാദിപ്പിക്കപ്പെട്ടിട്ടില്ലെങ്കിലും വിതരണത്തിൻറെ ബുഹതം സാമ്പിരം ഏകദേശനം, S^2 (1 $+a^2$) $fflocu^{o}$ jo $\frac{2}{11}$ ($a^4 + 8a^2 + 2$) S^4 വ്യതയാനവുമായുള്ള നോർമൽ വിതരണമാണെന്നു കാണുന്നു. $a \neq 0$ ആയിരിക്കുമ്പോരം S^2 എന്നതും S^2 ഒൻറ അഭിനതിയുള്ള ആകലനം ആകന്നു.

REFERENCES

Rietz. H. L. 1937. some topics in sampling theory. *Bull. Amer. Math. Soc. April.* 1937. 'Student'. 1908. Probable error of the mean. Biometrika. 6.

(M. S. Received 27-4-1977)