Agri. Res. J. Kerala, 197816 (1) 33-38

# OPTIMUM PLOT SIZE FOR FIELD TRIALS WITH BANANA 

PRABHAKARAN, P. V., BALAKRISHNAN, S. and MARY GEORGE

College of Horticulture, Vellay̌ani, Kerala

For successful experimentation it is necessary to have some idea about the variability of the experimental material. The generally accepted technique of estimating the variability in the experimental material is by conducting a uniformity trial. The results obtained fiom such trials can also be used to determine the suitable size and shape of plots and blocks in conducting field experiments. Numerous uniformity trials with vatious crops have been reported in India. Hutchinson and Parse (1935) oonducted a uniformity trial to obtain the optimum plot size for field trials in cotton. Kulkarni et al. (1936), Narasinga Rao (1937), Sardana and Sreeneth (1967), Agarwal et al. (1968), Abraham et al. (1969), Menon and Tyagi (1971), Prabhakaran and Thomas (1974), Bhargava and Sardana (1975) obtained the best size and shape of plots and blocks for jowar, rice, potato, arecanut, pepper, orange, tapioca and apple respectively. No such information is available with regard to banana, an important fruit crop of Kerala. Field experiments on banana have been conducted on plots with size and shape determined largely on the basis of practical considerations or on the results of research carried out in other places or on other similar crops. The present study was therefore undertaken to obtain the optimum plot size for field experiments on banana. As the shape of the pilot does not seem to have any significant effect on variability (Smith H. F. 1938) that aspect of the problem has not been included in this investigation.

A uniformity trial on banana was concucted at the Banana and Pineapple Research Station, Kannara using Monsmarie variety during 1976. A spaoing of $2.4 \mathrm{~m} \times 2.4 \mathrm{~m}$ was adopted for the trial. As some of the border plants had been affected by the bunchy top disease, the final observations were confined to the middle 6 rows each of 24 plants. Thus altogether there were 144 plants in a $24 \times 6$ arrangement in the experimental area. Plots of different sizes were formed by combining adjacent plants, a plant representing the basic unit. The plots were arranged in blocks of different sizes in the rowwise direction. The bunch weight was recorded from each plant separately which formed the basis of the study of variations due to varying plot sizes for the crop.

Several methods have been suggested from time to time for obtaining the optimum plot size. Among them the well-known emperical relationship between plot size and variance of mean per plot developed by Smith (1938) is considered to be the best. Smith's equation is of the form $V x=V_{1} / x^{b}$ where $V_{x}$ is the variance of yield per unit area among plots of size $x$ units $V_{1}$ is the variance
of yield of plots of size unity and b is a measure of correlation among contiguous units. The limiting values of $b$ are zero and one unless inter experimental competition is present (Federer, 1955). As the equation is logarithmically linear the best estimates of $V_{1}$ and $b$ can be obtained by the principle of least squares. The fitted regression eqation provides the expected values of $V x$ for different values of $>$ '.

Fairfield smith has als considered the cost function $C=c_{0}+c_{1} x$ where $C_{0}$ is the cost which is independent of plot size and $C_{1}$ is the contribution to the cost by a unit increase in plot size. Optimum plot size is the one which minimises the cost per unit of information, namely $\left(c_{0}+c, x\right) V_{1}$ $x^{b}$. However for a crop like banana a plant is the ultimate unit and therefore the entire cost is proportional to the number of plants per plot. Thus it is more logical to define the optimum plot size as the one giving maximum information from the data per unit plant. The optimum plot size was estimated with this objective in view.

## Results and Discussion

The variability of plots of different sizes was estimated by calculating the co-efficient of variation and is given in Table 1. It can be seen that both with and without blocking arrangements the C. V. decreases as the plot size increases. The observed variances of plot means for plots of differenr sizes are presented in Table 2. The results indicate that an increase in plot size is followed by a decrease in variance of plot means both in the case of with and without blocking arrangements.

## Table 1

Co-efficient of variation with plots and blocks of different sizes

| Plot size (No. of <br> plants) | Without <br> blocking | Number of plots per block |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $22.5!$ | 20.30 | 21.72 | 21.75 | 21.80 |  |
| 2 | 17.54 | 16.89 | 17.08 | 17.60 | 16.20 |  |
| 3 | 13.95 | 12.77 | $\ldots$ | 11.87 | $\ldots$ |  |
| 4 | 12.60 | 12.90 | 10.20 | $\ldots$ | 10.60 |  |
| 6 | 10.60 | 6.90 | $\cdots$ | 12.50 | $\ldots$ |  |

Table 2
Observed variance of plot means based on plots of different sizes

| Plot size (No. of plants) | Without blocking | Number of plots per block |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 | 6 |
| 1 | 7.38 | 6.03 | 6.85 | 6.87 | 6.90 |
| 2 | 4.46 | 4.14 | 4.23 | 4.80 | 3.81 |
| 3 | 2.82 | 2.37 | . | 2.05 | - |
| 4 | 2.30 | 2.42 | 1.51 | . | 2.30 |
| 6 | 1.65 | 0.70 | $\cdots$ | 1.68 | . |

Table 3
Estimates of constants in fair Smith Law

| Constants | Without <br> blocking |  | Number of plots per block |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7.796 |  | 2 | 3 | 4 | 6 |  |
| $\mathrm{~V}_{1}$ | 0.904 |  | 5.444 | 6.495 | 7.063 | 6.797 |  |
| b | 0.724 | 0.787 | 0.849 | 0.793 |  |  |  |

Fair Field Smith equation was fitted on the basis of the observed variance of plot means and the constants $V_{1}$ and $b$ were estimated by the principle of least squares. The best estimates of V , and b are given in Table 3. The estimates of $b$ are seen to be fairly close to 1 . This indicates that the $x$ units making up the post are not strongly correlated. Genetic variation is more important than positional variation. The expected variance of the plot means corresponding to plots of different sizes in cases of blocking and not blocking were computed from the regression equation. These are presented in Table 4.

The relative percentage information per plant for plots of different sizes is given in Table 5. It is calculated by first finding the information per plant from plots of size $x$ units and thereafter expressing it as a percentage of the information obtained from single plant plots. As the efficiency of a plot size can be defined in terms of the relative percentage information per plant, the optimum

## Table 4

Expected variance of plot means computed from fair field Simth Law

| Plot size | Without <br> blocking | Number of plots per block |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{2}$ | 3 | 4 | 6 |  |  |
| $\mathbf{1}$ | $\mathbf{7 . 8 0}$ | 5.44 | $\mathbf{6 . 5 0}$ | 7.06 | $\mathbf{6 . 7 0}$ |  |
| $\mathbf{2}$ | $\mathbf{4 . 1 6}$ | 3.30 | 3.74 | 3.90 | 3.92 |  |
| $\mathbf{3}$ | $\mathbf{2 . 8 8}$ | $\mathbf{2 . 4 6}$ | $\ldots$ | $\mathbf{2 . 7 5}$ | $\ldots$ |  |
| $\mathbf{4}$ | $\mathbf{2 . 2 3}$ | 1.99 | $\mathbf{2 . 1 8}$ | $\ldots$ | $\mathbf{2 . 2 6}$ |  |
| $\mathbf{6}$ | $\mathbf{1 . 5 5}$ | 1.49 |  | 1.52 | $\cdots$ |  |

Table 5
Relative percentage information per plant for plots and blocks of different sizes

| Plot size | Without <br> blocking | No. of plots per block |  |  |  |
| :---: | ---: | ---: | :---: | :---: | :---: |
|  | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| 1 | 93.75 | 82.42 | 86.90 | 90.51 | 85.46 |
| 2 | 90.28 | 73.71 | $\ldots$ | 85.58 | $\ldots$ |
| 3 | 87.44 | 68.34 | 74.54 | $\ldots$ | 74.12 |
| 4 | 83.87 | 60.85 | $\ldots$ | 77.41 | $\ldots$ |

Table 6
Number of replications required for providiog with $5 \%$ standard error

| Plot size | Without <br> blocking | No. of plots per block |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 21 | 16 | 19 | 19 | 19 |
| 1 | 12 | 11 | 12 | 12 | 11 |
| 2 | 8 | 7 | $\cdots$ | 6 | $\ldots$ |
| 3 | 6 | 7 | 5 | $\ldots$ | 5 |
| 4 | 5 | 2 | $\cdots$ | 5 | $\cdots$ |

plot size is the one providing maximum amount of relative percentage information. It can be seen that the relative percentage information is maximum for single plant plots both in the case of arrangements in blocks and without blocking. Thus single plant plots are the most efficient in conducting field trials on banana. It may be noted that these findings are similar to some other earlier results obtained (Agerwal et al., 1968; Menon et al. 1971, Bhargava and Sardana, (1973) in respect of certain other horticultural crops cultivated in India.

The number of replications required for estimating the mean yield with $5 \%$ standard error has been worked out. It is given by the relation $n=(c . v) / p^{2}$ where n is the expected number of replications p is the percentage standard error and $c . v$ is the co-efficient of variation. It can be observed in all cases that the number of replications required decreases with an increase In plot size. Despite this phenomena, the population of experimental plants declines with enlarged plots. Thus single plant plots provide maximum information with a fewer number of plants. Thus it can be safely concluded that for all practical purposes single plant plots should be recommended for conducting field experiments on banana. As banana plants are liable for disease incidence, as a safety measure, three plant plots would however be advisable.

## Summary

The data from a uniformity triai on banana was analysed for finding the optimum plot size for conducting field experiments. The results showed that single plant plots were most efficient. The co-efficient of variation of yield decreased steadily with increasing plot size. The empirical law suggested by Fairfield Smith gave a satisfactory fit to the data. The number of replications required for providing estimates with $5 \%$ standard error decreased with increased plot size, but the total experimental material required was minimum when single plant plots were used. However, as banana plants are liable for disease incidence, three plant plots are suggested for experiments.

## 














## REFERENCES

Abraham, T. P., Khosla, R. K. and Agerwal, K. N. 1969. Uniformity trials on black pepper. Indian J. Agric. Sci. 34, 152-65.

Agarwal, K. N., Bavappa, K. V. A. and Khosla, R. K. 1968. A study of size and shape of plots and blocks and optimum number of pre experimental periods on arecanut Indian. J. Agric. Sci. 38, 444-60.

Bhargava, P. N. and Sardana, M. G. 1975. Size and shape of plots in field trials with apple. Indian. J. Hort. 32, 50-57.

Federor, W. 1967. Experimental design. Oxford \& IBH Publishing Co.. Calcutta.
Hutchinson, J. B. and Pamse, V. G. 1935. Studies in the technique of field experiments I. Size, shape and arrangement of plots in cotten trials. Indian. J. Agric. Sci. 5, 523-38.

Kulkarni Boss, R. K. and Mahalanobis, P. C. 1936. On the influence of shape and size of plot on effective precision of field experiments with Jowar. Indian. J. Agric. Sci. 6, 640-673.
Menon, T. C. M. and Tyagi, B. N. 1971. Optimum size and shape of plots in experiments with mandarin orange. Indian J. Agric. Sci. 41, 857-61.

Narasingha Rao, M. B. V. 1937. A note on a few experimental observation in the Rice Research Station, Borhampur. Indian J. Agric. Sci. 7, 733-45.

Prabhakaran, P. V. and Thomas, E. J. 1974. Optimum Plot size for field experiments with tapicoa. Agri. Res. J. Kerala 12 (1) 19-23.

Sardana, M. G., Sreenath, P. R. and Malhotra, V. P. 1967. Size and shape of plots and blocks in field trials with potato. Indian J. Agric. Sci. 37, 338-356.

Smith, H. F. 1938. An empirical law describing hotrogeniety in the yields of Agricultural crops. J. Agric. Sci. 28, 1-23.

