INFLUENCE OF CLAY, ORGANIC MATTER AND SOME OF THE INDUSTRIAL WASTES IN REDUCING THE WATER AND NUTRIENT LOSSES IN THE LEACHATE OF A HIGHLY PERMEABLE SOIL

R. PALANISWAMY* and K. K. KRISHNAMOORTHY**

Tamil Nadu Agricultural University, Coimbatore

The ability of the soil to produce crops depends not only on the proper supply of nutrients, but also upon soil air-water regimes which govern the maximum utilization of available nutrients. The water and nutrients applied are carried down to deeper layers and are not available to plant growth. It has been calculated that in a period of about $2\frac{1}{3}$ years, the nutrient leached in an arable sandy soil amounts to 60 kg. N, 65 kg. K, 200 kg. Ca, and 16 kg. Mg. per hectare (Weise 1970).

Sandy soils are encountered in above 2 lakhs hectares in Tamil Nadu comprising costal areas of South Arcot, Tanjore, Chinglepet, Ramnad and Thirunelveli districts. The loss of applied water and nutrients is a major problem in the management of this type of soils. Hence a study was undertaken to find out the effect of clay, organic matter and some of the industrial wastes on the water and nutrient losses in the highly permeable sandy soils.

Materials and Methods

The influence of clay, organic matter and some of the industrial wastes on nutrient losses in the leachate were studied in a pot-culture experiment with CO-10 Finger millet as the crop in a completely Randomised Block Design with three replications. The soil used for the study was red sandy loam con" taining 0.018 per cent total nitrogen, 0.071 per cent total P_2O_3 , 0.51 per cent total K_2O , 0.31 per cent total calcium and 0.18 per cent total magnesium. The pH of the soil was 7.2 and the electrical conductivity was 0.2 m. mhos/cm.

The treatments consisted three levels each of clay (as black soil), organic matter (as F Y M) and industrial wastes (Fly, ash, Flue dust and Cement dust) along with clay and organic matter applied in combination and the performance of these were compared with that of the control (Table 1).

^{*} Present address. Research Assistant, Rubber Research Institute of India, Kottayam-686009.

^{**} Professor and Head of the Department of Soil Science & Agricultural Chemistry, Tamil Nadu University, Coimbatore - 641003.

The leachate was collected by fixing a tube at the bottom of the pot, at three stages of the crop growth and analysed for N, P, K, Ca and Mg contents. Nitrogen was estimated by adding 2-3 g. of Devardas alloy and 10-15 ml. of 30 per cent NaOH to a known volume of aliquot and the contents were distilled. The evolving ammonia was collected in 2 per cent boric acid using Methyl red-Bromocresol greeen double indicator. The phosphorus content was estimated by Olsen's method (Olsen, *et ai* 1954). Calcium and magnesium were estimated by Versente titration method (Jackson, 1967). The potassium content in the leachate was estimated by directly feeding the leachate to the 'EEL' Flame Photometer.

Results and Discussion

I. Water loss:

It is seen that the quantity of leachate was less in organic matter applied treatments (Table 1), which could be attributed to the improvement in the water holding capacity. The results of the work carried out on similar soils by Werke (1968), Balev *et al* (1969) and Morizet and Millet (1972) also confirm these findings.

II. Nutrient loss:

Nitrogen: The loss of nitrogen was more in initial stages and thereafter it decreased (Table 2), understandably, because of the removal of nitrogen by crop. Loss of nitrogen was less in organic matter applied pots and was more in all the pots treated with industrial wastes. This is in agreement with the findings of Broadbent and Ott (1957) and Vyas and Motiramani (1971). More loss was recorded in the treatments containing industrial wastes.

Phosphorus: The phosphorus content was more or less constant in all the three stages (Table 2). All the industrial waste applied pots registered less loss of phosphorus in the leachate the maximum being in fly ash applied ones. More phosphorus loss was noticed in organic matter applied pots.

Potassium: The loss of potassium content was in decreasing order as the crop growth advanced (Table 2). Less loss of potassium was registered in the flue dust applied treatments. More loss was noticed in clay plus organic matter applied treatments.

Calcium: Not much variation was observed in the calcium content in all the three stages (Table 3). The loss of calcium was minimum under organic matter applied treatments. In the case of industrial wastes, the cement dust applied treatments recorded lower amount of calcium loss. As in the case

Table 1

Influence of the treatments on leachate collection

	1.10		
CC	15	minu	tes

Treatments	Leachate I	Leachate H	Leachate III	Mean
Control	331	253	360	314
C.	233	278	246	252
C_{2}	333	318	326	325
C _s	295	283	267	281
0 ₁	231	237	243	237
O _{ge}	257	258	266	260
O ₃	381	171	234	202
C_1O_8	249	238	338	275
$\mathbb{C}_{_{2}}\mathrm{O}_{_{2}}$	267	239	276	260
C_3O_k	294	171	351	280
FA ₁	289	352	292	308
FA ₂	281	265	277	274
FAs	330	307	3!3	316
FD _g	325	250	346	307
FD ₂	323	247	293	287
FD ₈	323	277	292	326
CD1	267	223	383	291
CD ₂	280	237	338	285
$\mathbb{CD}_{\mathfrak{g}}$	329	269	345	314

 $C = Clay \text{ as black soil @ 60, 120 & 180 tons/ha} \qquad FA = Fly \text{ ash @ 7, 12 & 19 tons/ha}.$ $FD = Flue \text{ dust @ 7, 12 & 19 tons/ha}. \qquad CD = Cement \text{ dust @ 7, 12 & 19 tons/ha}.$

O = Organic matter as FYM @ 12, 24 & 36 tons/ha.

Table 2

Influence of the treatments on the Nitrogen, Phosphorus and Potassium content in the leachate

				(m pp	111)					
		Nitrogen			Phosphorus			Potassium		
Treatments	Stage	Stage 11	Stage III	Stage 1	Stage 11	Stage III	Stage I	S'age 11	Stage 111	
Control	44	44	13	3.3	22	1.5	26.3	14.8	14.5	
C,	98	16	12	1.2	2.5	1.8	26-7	8.2	12 3	
С,	188	18	10	1.0	13	1.3	30.7	13.0	14 3	
C _a	205	14	10	1.3	1.3	1.3	26.7	12.2	16.7	
0,	83	18	12	10.0	10.2	8.3	51.0	28.0	27.5	
0 ₂	113	[2	12	24.1	26.7	16.4	55.7	40.7	42.5	
O ₈	48	13	12	29.8	37.2	26.0	50.7	56.2	46.2	
C ₁ O ₃	132	12	13	23.8	26.3	22.3	81.3	66.8	61.8	
$C_{2}O_{2}$	109	9	17	12.0	19.0	11.4	65.0	30 5	27.2	
C_8O_1	145	11	10	2.3	5.5	3.3	48.3	24.7	26.2	
FA,	171	11	11	0.5	1.7	1.5	39.3	13.8	14.8	
FA ₂	203	10	10	0.5	1.7	1.1	28.0	13.7	12.8	
FA,	179	JO	10	0.5	0.6	2.5	30.7	14.0	11.3	
FD,	90	10	1!	1.5	2.7	1.7	26.7	10.5	14.3	
FD ₂	174	If)	1	1.8	1.5	2.4	32.0	9.2	9.7	
FD ₃	146	8	10	1.7	1.6	1.8	39.0	12.2	12.8	
CD,	86	10	11	.1.9	2.5	3.1	32.3	110	14.7	
CD ₂	199	9	10	1.6	3.0	1.6	32.0	8.0	12.7	
CD ₃	196	9	11	3.1	2.9	2.0	28.7	14.2	14.3	
SED	8.515	NS	NS	1.843	0.826	0.814	3.372	2.602	0.793	
CD	17.21			3.74	1.67	1.65	6.82	5.26	1.60	

(in ppm)

 $SE_D = Standard$ error of mean difference.

CD = Critical difference at P - 0.05.

NS <u>-</u> Not significant.

Table 3

Influence of the treatments on the Calcium and Magnesium contents in the leachate (in ppm)

Treatments	Calcium			Magnesium			
	Stage I	Stage II	Stage III	Stage I	Stage II	Stage 1	
Control	263	236	130	184	371	70	
C,	379	347	160	154	422	86	
C ₂	777	347	137	219	745	64	
C,	887	485	309	231	872	142	
0 ₁	417	283	207	175	623	77	
0,	431	263	189	212	203	135	
О,	383	282	122	158	520	77	
C ₁ O ₈	702	512	197	257	497	198	
C ₂ O ₂	727	284	151	248	613	109	
C ₃ O ₁	847	283	145	242	519	85	
FA	714	443	161	223	586	78	
FA ₂	465	341	152	241	228	84	
FA _s	893	440	292	187	371	132	
FD,	485	332	177	160	588	132	
FD,	620	401	144	204	235	66	
FD ₈	593	289	183	181	561	83	
CD,	385	309	198	153	621	134	
CD ₂	692	359	315	178	836	172	
CD	387	235	161	147	732	63	
SED	35.643	25.806	15.668	9.816	18.28	3.55	
CD	72.03	52.15	31.67	19.84	36.96		

SED

= Standard error of mean difference

CD

of nitrogen, phosphorus, potassium, etc. the loss of calcium decreased from the initial stage to the later stages. This can be explained as due to crop removal as it advanced in growth.

Magnesium: The loss of Magnesium in the leachate water was singificantly influenced by the treatments. In general, the industrial wastes applied treatments recorded less loss of magnesium. More loss was registered under clay plus organic matter applied treatments.

Summary

A pot culture experiment with CO-10 Finger millet *Eleusine coracana*. (Gaertn) was conducted to study the influence of clay, organic matter and some of the industrial wastes on the water and nutrient losses in a highly permeable soil (sandy loam) with a view to increasing the fertilizer use efficiency. It was found out that the water and nitrogen losses were reduced by the application of organic matter. In general, the industrial wastes reduced the loss of phosphorus, nitrogen, potassium, calcium and magnesium in the leachate water.

Acknowledgement

The authors express their sincere gratitude to the Tamil Nadu Agricultural University for permitting the publication.

mo Waro

പരുക്കൻ മണൽ കൂടിയ മണ്ണിനങ്ങളിൽ വളപ്രയോഗത്തിൻെറ പ്രവർത്തനക്ഷമത വർ ദ്ധിപ്പിക്കുന്നതിന് ചെളി, ജൈവപദാർത്ഥങ്ങാം, വ്യാവസായികാവശിഷ്ടങ്ങാം എന്നിവ ഉപയോ ഗിച്ച് നടത്തിയ ഒരു പരീക്ഷണത്തിൽ നിന്നം, ജൈവപദാർത്ഥങ്ങാം ചേർക്കുന്നത് വഴി മണ്ണി ല്ലോകന്ന ജലാംശത്തിൻെറുയം, നൈടജൻെറയം നഷ്ടം കാര്യമായി കറയ്കാമെന്ന് തെളിഞ്ഞു. വ്യാവസായികാവശിഷ്ടങ്ങാം ചേർക്കുന്നത് മൂലം ഫോസ്ഫറസ്സ്, നൈടജൻ, പൊട്ടാഷ്യം, കാൽഷ്യം, മഗ്നീഷ്യം എന്നിവയുടെ rarogaj് നിർഗ്ഗമന ജലത്തിൽ കാര്യമായി കറയ്കയ്ക്കായി.

REFERENCES

Balev, P. M., Tikavy, V. A., Rassadin and A. Ya, 1969. Intensive improvement of light soils by management. Soils and Fert. 33, 1316

Broadbent, F. E. and Ott, J. B. 1957. Soil organic matter - metal complexes - Factors affecting the retention of various cations. *Soil Sci.* 83, 419 427.

Jackson, M. L. 1967. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi.

- Morizet, J. and Millet, R. 1972. The mobility of non-saturating water in soil columns under evaporative conditions. Effect of texture and organic matter content. Soils and Fert. 35, 241
- Olsen, S. R., Cole, C. L., Watonabe, F. S. and Dean, D. A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. L) S. D A. Circ. 939.
- Vyas, M. K. and Motiramani, D. P. 1971. Effect of organic matter, silicates and moisture levels on the availability of PO₄. J. Indian Soc. Soil. Sci. 19, 39-43.
- Weise, K. 1970. Effect of ameliorative ploughing and sprinkling irrigation on moisture economy, nutrient leaching and yields in arable sandy soils. Soils and Fert. 34, 553
- Werke, T. 1968. Effect of ameliorative ploughing, high rates of fertilizers and overhead irrigation and yields of potato and carrot in sandy soils. *Soils and Fert*. 33, 1317

(M. S. received: 21-7-1976)