EVALUATION OF LOWCOST AGRONOMIC TECHNIQUES FOR SUSTAINED RICE PRODUCTION

ACC. NO. 171042

SRE/EV

630

By

SREEDEVÍ, P.

THESIS

submitted in partial fulfilment of the requirements for the degree

Doctor of Philosophy in Agriculture

Faculty of Agriculture Kerala Agricultural University

Department of Agronomy COLLEGE OF HORTICULTURE Vellanikkara - Trichur Kerala - India

DECLARATION

I hereby declare that this thesis entitled "EVALUATION OF LOW COST AGROMOMIC TECHNIQUES FOR SUSTAINED RICE PRODUCTION" is a bonafide record of research work done by me during the course of the research and that the thesis has not previously formed the basis for the award to me any degree, diploma, essociateship, fellowship or other similar title of any other University or Society.

John

Vellanikkara, 28--12--1985.

P.SREEDEVI (Ad.No. 80-21-02)

CERTIFICATE

Certified that this thesis entitled "EVALUATION OF LOW COST AGRONOMIC TECHNIQUES FOR SUSTAINED RICE PRODUCTION" is a record of research work done independently by Smt.P.Sreedevi under my guidance end supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

(Dr.C.SREEDHARAN) Chairman, Advisory Committee, Professor and Head, Department of Agroncey, College of Horticulture, Vellenikkare.

Vellanikkara, 28--12-1985.

CERTIFICATE

We, the undersigned members of the Advisory Committee of Smt. P.Sreedevi (80-21-02) a candidate for the degree of Doctor of Philosophy in Agronomy, agree that the thesis entitled "Evaluation of low cost agronomic techniques for sustained rice production" may be submitted in partial fulfilment of the requirement for the degree.

Dr.C.Sreedharan Chairman

]. _____

Dr.K.Karunekaren, Professor of Botany, R.A.R.S., Pattanbi.

Send and

Dr.N.Sedenandan, Director of P.G.Studies, K.A.U., Vellanikkara.

Dr.A.I.Jose, Professor & Head, Dept. of Soil Science & Agrl. Chemistry, College of Horticulture, Vellanikkara.

1 had

Dr.R.Vikramen Nair, Professor of Agronomy, College of Horticulture, Vellanikkara.

ACKNOWLEDGEMENTS

I express my deep sense of gratitude and indebtedness to Dr.C.Sreedharan, Professor and Head, Department of Agronomy, College of Horticulture and Chairman of the Advisory Committee for his valueble advice and critical suggestions in the course of this investigation.

I am grateful to Sri.N.Rajappan Nair, Associate Director, Regional Agricultural Research Station, Pattambi for providing the land and labour facilities needed for the conduct of the field experiments.

I am indebted to Dr.K.Karunakaran, Professor of Botany, Regional Agricultural Research Station, Pattembi for his sincere help and encouragement at various stages of this investigation.

I place on record my gratefulness to Dr.N.Sadanandan, Dr.R.S.Aiyer and Dr.R.Vikraman Nair for their valuable advice and suggestions as members of the Advisory Committee.

I wish to thank Dr. (Mrs.) P.Padmaja, Co-ordinator (Soils and Agronomy), Dr. (Mrs.) N.P.Chinnamma and Sri.V.K.Gopinathan Unnithan, Associate Professors for offering their generous help during the course of my work.

I am thankful to Mrs.Soudamini P., Assistant Professor, Department of Agricultural Statistics, College of Horticulture for the help in data processing. The help and co-operation rendered by my friends Smt.Savithri K.S. and Smt.Sushama P.K., Assistant Professors are gratefully acknowledged.

My thanks are also due to Sri.D.Alexander, Associate Professor, Regional Agricultural Research Station, Pattembi; Sri.Ashokan P.K., Sri.Krishnakumar, V., Dre.Sudhakara, K., Balachandran P.V., Mohankumar B., Abraham C.T., Smt. E.K. Lalitha Bai and Kum.Mercy George for their help and co-operation at various stages.

I am thankful to all my friends and family members who have given encouragement for the completion of this venture.

I am also thankful to Sri.Asokan V.P., for neat typing of this manuscript.

I gratefully acknowledge the Kerala Agricultural University for granting me study leave for undergoing this study.

Above all, I thank 'The Almighty' for his abiding presence and blessings without which this work would not have been possible.

Ammp ..

SREEDEVI, P.

CONTENTS

			Page
1.	INTRODUCTION	• •	1
2.	REVIEW OF LITERATURE	••	5
з.	MATERIALS AND METHODS	••	42
4.	RESULTS AND DISCUSSION	••	59
5.	Summary	••	246
	REFERENCES	- 	1 - r#1 00
	Appendix		

ABSTRACT

LIST OF TABLES

	110
Table.	NO.

1		Chemical properties of so	11	••	44
2		Duration of the crop in d	lifferent sea	sons	52
3	(a)	Height of plants at panic as influenced by fertiliz	le initiatio er and spaci Virippu	n stage ng le vels. 1982	60
	(b)	62	virippu	1983	60
	(c)	a	Mundakan	1982	61
	(d)	es.	Mundakan	1983	61
4	(a)	Height of plants at harve fertilizer and spacing le		nced by	
			Virippu	1982	62
	(b)	\$ \$	Virippu	1983	62
	(c)	24	Mundakan	1982	63
	(a) [`]	9	Mundekan	1983	63
5	(a)	Number of tillers m ⁻² at stage as influenced by fe levels.	panicle init rtilizer and	iation spacing	
		16AG12.	Virippu	1962	66
	(b)	63	Virippu	1983	66
	(c)	43	Mundakan	1982	67
	(đ)	ti	Mundeken	1983	67
6	(a)	Number of tillers m ⁻² at by fortilizer and spacing	levels.		
	(b)	.4	Virippu	19 82	68
	(c)		Virippu	1983	68
			Mundakan	1982	69
	(a)	43	Mundekan	1983	69

7 (a)	Leaf area index (LAI) at panic stage as influenced by fertiliz levels.	e initiat er and sp	ion acing	
		Virippu	1982	72
(b)	ta	Mirippu	1983	72
(c)		Mundakan	1982	73
(a)	17	Mundakan	19 83	73
8 (a)	DMP at harvest (kg ha ⁻¹) as inf fertilizar and spacing levels.		-	
		varappu		76
(ь)	tr tr	Virippu	1983	76
(c)	\$4	Mundeken	1982	77
(a)	A	Mundakan	1983	77
9 (a)	Number of panicles m ⁻² as influ fortilizer and spacing levels.	-		
(ь)	ti	ATTTDDA		80
		Virippu		80
(c)	eb.	Mundeken	1982	81
(d)	*1	Mundakan	1983	81
10 (a)	Number of filled grains panicle by fertilizer and spacing level	-1 as infi s.	luenced	
/+ 1	-	Virippu	1982	84
(ь)	#	Virippu	1983	84
(c)	B	Mundakan	1982	85
(a)		Mundakan	1983	85
11(a)	Thousand grain weight (g) as in fertilizer and spacing levels.	fluenced h	Ŷ	
4 - 4		Virippu	, 1 982	88
(Ъ)	ti .	Virippu	1983	88
(c)	•	Mundakan	1982	89
(d)	F #	Mundakan	1983	89

12	(a)	Sterility percentage as influ	enced by		
		fertilizer and spacing levels	Virippu	1982	92
	(b)	44	Virippu	1983	92
	(c)	` sa	Mundakan	1982	93
	(ð)	47	Mund ak an	1983	93
13	(a)	Grain yield (kg ha ⁻¹) as infl fertilizer and spacing levels	· -		
	A . A		Virippu	1982	96
	(b)	\$	Mirippu	19 83	96
	(c)	15	Mundakan	1982	97
	(a)	×	Mundekan	1983	97
14	(a)	Correlation coefficients betw and yield attributes	een grain y.	ield	103
	(ъ)	Correlation coefficients betw population yield attributes a		elđ	105
	(c)	Direct and indirect effects o factors on grain yield	f causative		106
.15	Ec	onomics of specing trial (Trie	11)	••	109
16	(a)	Straw yield (kg ha ⁻¹) as infl fertilizer and spacing levels			
			Virippu	1982	110
	(b)	C)	Virippu	1983	110
	(c)	C	Mundekan	1982	111
	(d)	6 3	Mundekan	1983	111
	(a)	Correlation coefficients betw growth attributes and DMP	een straw y	ield	113
17	<u>(a)</u>	Hervest Index (HI) as influen	ced by fert	ilizer	
	-	and spacing levela.	Virippu	1982	116
	(ъ)	2	Virippu	1983	116
	(c)	N N	Mundekan	1982	117
	(d)	es.	Mundakan	1983	117

٠

18	(a)	Protein content of grain (%) by fertilizer and spacing le (Pooled data for virippu 198	evels.		118
		Protein content of grein (%) by fertilizer and spacing le data for Mundaken 1982 and 1	vels (Pool 1983)	nced ed ••	118
19	(a)	N uptake (kg ha ⁻¹) as influe fertilizer and spacing level	nced by		
	<i>.</i>		Virippu	1982	121
	(b)	t 3	Virippu	1983	121
	(c)	89	Mundekan	1982	122
	(a)	f ł	Mundakan	1983	122
20	(a)	P uptake (kg ha ⁻¹) as influe fertilizer and spacing level	nced by		
	4 . 5	_	Virippu	1982	123
	(b)	ii ji	Virippu	1983	123
	(c)	f1	Mundakan	1982	124
	(a)	₿.	Mundakan	19 83	124
21	(a)	K uptake (kg ha ⁻¹) as influen fertilizer and spacing levels	nced by		
			Virippu	1982	125
	(b)	13	Virippu	19 83	125
	(c)	P1	Mundakan	1982	126
	(ð)	R .	Mundakan	1983	126
22	1	Residuel organic carbon conte soil as influenced by fertili levels.	zer and sp	scing	
	(ъ)	to .	Virippu	1982	128
	(c)		Virippu	1983	128
	(đ)	***	Mundakan	1982	129
I	\ u /	22	Mundakan	1983	129

23	(=)	Residual P content of soil (kg ha ⁻¹) as	s _	
		influenced by fertilizer and	Spacing le Virippu	1982	130
	(b)	ħ	Virippu		130
	(c)	\$ 3	Mundakan	•	131
	(a)	The second se	Mundakan		131
24	(a)	Residual K content of soil ()	kg ha ⁻¹) as	5	
		influenced by fertilizer and			_
	<i>(</i>).)	U	Virippu		132
	(b)	ŧ	Virippu		132
	(c)	н 1	Mundakan		133
	(d)	81	Mundakan	1983	133
25	(a)	Height of plants (cm) at pan:	cle initia	tion	
		stage as influenced by fertil	lizer level	5,	
		age and number of seadlings h	·		ç
	<i>.</i>	_	Virippu	1982	136
	(b)	4	Virippu	1983	136
	(c)	f1	Mundakan	1982	137
	(a)	44	Mundakan	1983	137
A 47	- \				
26	(8)	Height of plants (cm) at harv influenced by fertilizer leve	7est 43	A	
		number of seedlings hill 1		<i>u</i>	
			Virippu	1982	138
	(b)		Virippu	1983	138
	(c)	\$3	Mundekan	1982	139
	(a)	63	Mundakan	1983	139
27	(a)	Number of tillers m-2 at pani		+1 ~~	
		stage as influenced by fertil	izer level:	5, 5,	
		age and number of sealings h		-	
	(b)		Virippu	1982	141
	-	-	Virippu	1983	141
	(c)	-		1982	142
	(a)	-	Mundekon	1983	142

28	(a)	Number of tillers m ⁻² at have influenced by fertilizer leve number of seedlings hill ⁻¹		ad .	
			Virippu	1982	143
	(ь)		Virippu 1	1983	143
	`(c)		Mundakan	1982	144
	(a)	11	Mundakan	1983	144
29	(a)	Leaf area index (LAI) at pani stage as influenced by fertil age and number of seedlings h	lizer level	tion .5,	
			Virippu	1982	147
	(ь)	8 0	Virippu	1983	147
	(c)	82	Mundakan	1982	148
	(a)	47	Mundakan	1983	148
30	(#)	Dry matter production rice (k harvest, as influenced by fer age and number of seedlings h	tilizer le	vels	
	<i>/</i> - \		Virippu	1982	150
	(b)	t 7	Virippu	1983	150
	(c)	6	Mundakan	1982	151
	(a)	£7	Mundakan	198 3	151
31	(a)	Number of panicles m^{-2} as inf fertilizer levels, age and nu seedlings hill ⁻¹ .	luenced by mber of		
	•	· ·	Virippu	1982	153
	(b)	ŧ	Virippu	1983	153
	(c)	13	Mundəkan	1982	154
	(a)	¥ J	Mundakan	1983	154
32	(a)	Number of filled grains panic influenced by fertilizer level number of seedlings hill-1	le ⁻¹ as 15, age and	3	
			Virippu	1982	158
	(b)	ff .	Virippu	1983	158
	(c)	¥	Mundakan	1982	159
	(d)	t?	Mundakan	19 83	159

33	(a)	Thousand grain weight (g) as fortilizer levels, age and nu seedlings hill-1	influenced mber of	by	
		UUULANYU HAAA	Virippu	1982	162
	(ь)	n	Virippu	1983	162
	(c)	**	Mundakan	1982	163
	(đ)	64 <u>.</u>	Mundakan	1983	163
34	(a)	Grain yield (kg he ⁻¹) as infl fortilizer levels, age and nu seedlings hill-1	mber of		
			Virippu	1982	165
	(b)	Ħ	Virippu	1983	165
	(c)	67	Mundakan	1982	166
	(d)	63	Mundakan	1983	166
35	(a)	Straw yield (kg ha ⁻¹) as infl fertilizer levels, age and nu seedlings hill ⁻¹ .	uanced by mbar of Virippu	1982	17 0
	(ь)	69	Virippu	1983	170
	(c)	77	Mundakan	1982	171
	(a)	43	Mundakan	1983	171
3 6	(a)	Hervest index (HI) as influen fertilizer levels, age and nu seedlings hill-1			
		-	Virippu	19 82	174
	(ъ)	M	Virippu	1983	174
	(c)	ai d	Mundakan	1982	175
	(đ)	67	Nundakan	1983	175
37	(a)	Protein content of grain (%) by fortilizer levels, age and seedlings hill ⁻¹	l number of		100
	(ъ)	'ee	Virippu Virippu	1982	177
	(c)		Virippu	1983	177
	•		Mundakan Mundakan	1982	178
	(đ)		Mundakan	1983	178

38	(a)	N uptake (kg ha ⁻¹) fertilizer levels, seedlings hill-1	as influenced by age and number of		
			Virippu	1982	180
	(ь)	6	Virippu	1983	180
	(c)	13	Mundokan	1982	181
	(a)	t)	Mundekon	1983	181
39	(a)	P uptake (kg ha ⁻¹) fortilizer levels, seedlings hill ⁻¹	age and number of		
	<i>4</i> -	53	Virippu	1982	184
	(b)	- 8	Virippu	1983	184
	(c)	ц 14	Mundakan	1982	185
	(ð)	14	Mundekan	1983	185
40	(a)	K upteke (kg ha ⁻¹) fertilizer levels, seedlings hill ⁻¹	as influenced by age and number of Virippu	1982	187
	(b)	83	Virippu	1983	187
	(c)	43	Mundakan	1982	188
	(đ)	D	Mundakan	1983	188
41	(ę)	Residual organic ca soil as influenced age and number of a	arbon content (%) of by fertilizer levels seedlings hill-1	•	
			Virippu	1982	190
	(Ъ)	¢9	Virippu	1983	190
	(c)	t)	Mundakan	1982	191
	(d)	69	Mündakan	1983	191
42	(a)	Residual P content influenced by ferti number of seedlings	of soil (kg ha ⁻¹) as llizer levels, age an s hill-1 Virippu	d 1982	102
	(ъ)	ŧ#	Virippu Virippu		192
	(c)	57	Virippu Mundakan	1983	192
·	(a)	13	-	1982	193
	,		Mundakan	1983	193

43	(a)	influenced D	ontent of soil (y fertilizer leve edlings hill-1	kg ha ⁻¹) as ls, age and	1 1	
		number of se	curriyo natt	Virippu	1982	194
	(b)	43		Virippu	1983	194
	(c)	¢5		Mundakan	1982	195
	(5)	##		Mundakan	1983	195
44	(a)	stage as inf	ants (cm) at pani luenced by fertil	cle initiat izer end a	tion zolla	
		levels.		Mundakan	1982	197
	(b)	83		Mundakan	1984	197
45	(a)	Height of pl by fertilize	lants (cm) at harv ar and azolla lave	2134		100
		-			1982	198
	(ь)	a		Mundakan	1984	198
4 6	(a)	Number of ti stage as inf levels.	illers m ⁻² as panifiuenced by fertil	lizer and a	20119	202
				Mundakan	1982	202
	(b)	Į.		Mundakan	1984	202
47	(a)	Number of tiby fertilize	illers m ⁻² at harve er and azolla leve	est as infl sls.	uenced	
		-		Mundakan	1982	203
	(b)	f2		Mundakan	1984	203
48	l (a)	stage as int	ndex (LAI) at pan fluenced by ferti	icle initia lizer and a	tion 2011a	
		levels.		Mundaken	1982	205
	(ь)	**		Mundakan	1984	205
49) (a)	Dry matter i influenced l	production of ric by fertilizer and	e (kg ha ⁻¹) azolla lev	els.	
				Mundekan		208
	(ь)	4 9		Mundakan	1984	208

50	(a)	Number of panicles m ⁻² as influenced by fertilizer and azolla levels.			
			Mundakan	1982	211
	(ъ)	1	Mundeken	1984	211
51	(a)	Number of filled grains panicl by fertilizer and azolla level	.e ⁻¹ as in: .s.	fluenced	
			Mundekan	1982	214
	(ъ)	· tt	Mundekan	1984	214
52	(a)	Thousend grain weight (g) as i fortilizer and azolla levels.		by	
			Mundakan	1982	216
	(b)	19	Mundeken	1984	216
53	(#)	Sterility parcentage as influe fertilizer and czolla levels.	nced by		
			Mundakan	1982	218
	(b)	et	Mundekan	1984	218
54	·	Grain yield (kg ha ⁻¹) as influ fertilizer and azolla levels (for Mundakan 1982 and 1984)	enced by Pooled det	:= • •	21,9
55		Economics of ezolla trial (Tri	el III)	••	226
56		Straw yield (kg ha ⁻¹) as influ fertilizer and azolla levels () for Mundakan 1982 and 1984)	enced by Pooled dat	 	228
57	(a)	Hervest index (HI) as influence fertilizer and szolla levels	eđ by		
		I	Mundekan	19 82	230
	(b)	•••	Mundakan	1984	230
58		Protein content of grain (%) as by fertilizer and azolla lovels for Mundakan 1982 and 1984)	s influenc (Popled	ed data ••	232

59	59 (a) N uptake (kg ha) as influenced by fertilizer and azolla levels.				
			Mundakan	1982	234
	(ъ)	£3	Nundakan	1984	234
60	(a)	P uptake (kg ha ⁻¹) as influenced by fertilizer and azolla levels.			
			Mundekan	1982	236
	(ь)	ŧ.	Mundakan	1984	236
61	(a) K uptake (kg ha ⁻¹) as influenced by fertilizer and azolla levels. Mundakan 1962 2				
	(ъ)				237
			Mundekan	1984	237
62	(a) Residual organic carbon content (%) of soil as influenced by fertilizer and asolla levels.				
			Mundekan	1982	240
	(b)	\$ 3	Mundakan	1984	240
63	a) Residual P content of soil (kg ha ⁻¹) as influenced by fertilizer and azolla levels Mundakan 1982				
	(ь)	a .	Mundakan	1984	242
64	(a)	Residual K content of soil (kg ha ⁻¹) as influenced by fertilizer and azolla levels. Mundakan 1982 244			
	(Ь)	4	Mundakan	1984	244

-

LIST OF FIGURES

- 1 a. Leyout plan of Trial No.I.
- 1 b. Layout plan of Trial No. II.
- 1 c. Layout plan of Trial No. III.
- 2. Dry matter production and nutrient uptake at harvest as influenced by fertilizer and spacing levels.
- Yield attributes as influenced by fertilizer and spacing levels in <u>virippu</u> and <u>mundakan</u> seasons (1982 & 1983).
- 4. Yield of grain, straw and protein content as influenced by fertilizer and spacing levels in <u>virippu</u> and <u>mundakan</u> seasons (1982 & 1983).
- 5. Relationship between fertilizer levels and grain yield during virippu season and mundakan season. (Trial No.I).
- 6.a Response surface showing dependence of grain yield on fertilizer and plant population (Trial No.I).
- 6 b. Path diagram Direct and indirect effects of causative factors on grain yield.
- 7. Yield of grain, straw and yield attributes as influenced by fertilizer levels, ege and number of seedlings hill-1 in <u>virippu</u> season (1982 & 1983).
- Yield of grain, straw and yield attributes as influenced by fertilizer levels, age and number of seedlings hill⁻¹ in <u>mundakan</u> season (1982 & 1983).

Introduction

INTRODUCTION

Population growth and food deficit would still be the greatest challenges for humanity in the decades to come. Even today more than half a billion people suffer chronic malnutrition and hunger for shortage of food. By the turn of this century, it is projected that the world population will be around six billion and for more than half of them, rice forms the staple food.

Rice production will have to be doubled to keep pace with the increasing population in Asia by 2000 A.D. It is estimated that an annual increase of 1.3 million tons of rice is necessary to meet the needs of the teeming rice eating millions. The sky rocketing prices of fossil fuel dependent inputs is the major constraint to increased rice production. Therefore it is urgent to explore possibilities of employing various technological alternatives to substitute the expensive energy intensive food production technologies. Development of agronomic techniques to help economize the use of chemical fertilizers - the most expensive energy input in food production especially in developing countries, is highly welcome.

The selection of proper variety suited to a particular situation is of prime importance. Most of the modern variaties give high yields only when they are grown under ideal conditions of soil, water supply and nutrients and wall protected from their natural enemies. These varieties also possess the advantage of high fertilizer responsiveness. But the farmers often cannot afford the amount of fertilizers required by the modern varieties to express their full yield potential. They need a variety that will give a fairly good yield with a moderate amount of fertilizer application, which can exploit and utilize both soil and fertilizer nutrients efficiently. IR 42 is such a variety which combines high yield potential with the capacity to yield well at low nutrient levels (IRRI, 1978). It has good agronomic characteristics as well as moderath drought and submargence tolerance and resistance to major pests and diseases.

The important low cost factor next to varietal selection is plant population. With the same level of

nutrition end water higher plant population gives higher yield in many crops. The modern variaties of rice with dwarf stature are more responsive to high plant population per unit area. However, overcrowding of plants is also not desirable as it invites tremendous competition emong the crop plants and incidence of pests and diseases. This inturn necessitates, the maintenance of an increased optimum plant population to utilize the high cost inputs efficiently.

Seedling age and number of seedlings per hill are two other important non-monetary/lowcost inputs in transplanted rice crop. Seedlings of proper age must be planted in right number to utilize the expensive energy inputs with utmost efficiency.

Nitrogen though most abundant in the atmosphere is the king pin in fertilization limiting the yield of wat lend rice. Nitrogen fertilizer being a high fossil fuel dependent input, the use of any supplemental organic source will cut down the cultivation expenses of the farmer. Recently great attention is being given to the Azolla-anabaena essociations as a potential nitrogen source in rice culture. The incorporation of azolla has reported to increase rice yields from 13~54%. Compared to other organic manures, this biofertilizer minaralises more

repidly and nitrogen made available to plants early.

Three separate field experiments were conducted with low fertilizer dose, in combination with organic matter application through azolla and with high density of plant population. The approach made is to optimise the yield with minimal costly inputs and increasing non-monetary and low cost inputs.

In a developing country LINE ours the agricultural scientists are thus facing a tremendous challenge to devise most appropriate and economically feasible rice production techniques to achieve sustained high yields. Hence the present investigation was underteken with the following objectives.

1. To assess the performance of IR 42 - a low fertilizer responsive variety, under different fertilizer management situations.

2. To evaluate the effect of age of seedlings and plant population through spacing and number of seedlings and, to arrive at an optimum combination of both in the above variety.

3. To estimate the extent of economy of fertilisation by the integrated use of Azolla.

Review of Literature

REVIEW OF LITERATURE

With the advent of the modern era of high yielding rice varieties there was a spurt in nutritional studies on rice in 1960's, most of them being oriented towards the response of these varieties to higher levels of N. P and K. Such trials have been confined to the short and medium duration variaties. In recent years, however, the escalating prices of fertilizers and a fear of shortage of fossil fuel dependent inputs have made many to take up work on the possibility of reducing the use of fertiliser inputs. There is also a need to make the technology more suitable for the small and marginal farmers. Hence it was proposed to investigate the possibilities of economising the fertilizer dose in a low fertilizer responsive modern variety by using suitable non-monetary and low cost inputs. The review pertaining to the different aspects of the investigations are given below.

1. IR-42 - A low fertilizer responsive variety

Cultivation of the right type of variety is essentially a non monetary input and it is the first step in production technology (Pillai and Katyal, 1977). Each

variety of a crop represents different genetic constitution of a varying potentialities of yield and other economic characters. Under the present day situation of continued price rise of fossil fuel dependent inputs, IR 42 appears to be a good choice of modern rice variety for small farmers to date because it has the capacity to extract and utilise both soil and fertilizer nitrogen efficiently. The consistency of IR 42's relatively high vield without nitrogen fertilizer makes it a suitable variety for low fertility conditions (IRRI, 1978). It greatly outyielded two earlier modern variaties, IRS and IR 26, at 0 and 60 kg N/ha-1 in the dry and wet seesons of 1977 st IRRI. It also gave high yields in farmers fields at 0 and 16 kg N/ha-1. The average yields of IR 42 without nitrogen fertilizer at three sites in Laguna Province in 1978 were 5.1 t ha⁻¹ in the dry season and 5.8 t/ha⁻¹ in the wet season compared with IR-8's 4.7 t/ha-1 and 4.8 t/ha-1 (IRRI 1978, Knush et al., 1979).

In a trial with five verieties of Meshas clay with no N, P, K fertilizers IR 42 gave the highest yield of 4.6 t/ha^{-1} (Ponnemperuma, 1979).

Thus nitrogan use efficiency of IR 42 will be a great boon to the small farmers of South and South cast Asia

where most rice lends are nitrogen deficient and rice producers cannot afford large amounts of fertilizers. Hence rice types such as IR 42 will enable small farmérs to obtain stable yields in unfavourable environments elso (Mahadevappa ét el., 1979).

2. Rice nutrition

Among the various nutritional elements needed by rice nitrogen is the most important one limiting the yield of wet land crop. Most rice lands in South and South East Asia except those of Malay size are deficient in nitrogen (Kawaguchi end Kyume, 1977).

Considering the cost of manufacture, production of one kg of urea requires 14,300 K cal (including mining and transport). Thus nitrogen fertilizer applied as urea at the rate of 120 kg ha⁻¹ consumes an energy of 1.7 million K cal ha⁻¹ the equivalent of 160 litres or ten barrels of petroleum ha⁻¹ (FFTC, 1984). Hence any amount of saving in terms of nitrogen fertilizer alone will definitely cut down the cost of cultivation.

2.1 Nitrogen fertilization in rice

Universal response for nitrogen is observed in wet land rice culture.

The favourable response to nitrogen is achieved through its influence on growth and development of morphological characters, yield components and the metabolic functions in rice plant (Murata, 1969).

2.1.a. Effect on growth characters

A linear increase in plant height was observed by several investigators due to the application of graded levels of nitrogen (Balasubremanian, 1980; Sathesivan, 1980 and Padalia, 1981). But Sunus and Sadeque (1974) reported that plant height was unaffected by applied nitrogen.

Kumura (1956) observed a positive correlation between the number of tillers and the nitrogen content during the tillering stage. An increase in the number of tillers with increase in the amount of applied N was reported by Oshima (1962). Kalyanikutty at al. (1968) found a positive correlation between the number of tillers and N levels. Chandler (1969) is also of the opinion that tillering in rice is highly influenced by the nitrogen level in the soil. However, Rao (1963) and Nair (1968) could not obtain a significant increase in tiller number with increasing rates of nitrogen application.

Murate (1969) observed higher loof area index (LAI) with increase in nitrogen levels especially before panicle initiation. According to Fagede end De Datta (1971) and Tanaka (1972) higher LAI values can be obtained by increasing the nitrogen application and plant density. The LAI of rice plants was more at higher levels of nitrogen (Tanaka, 1972 Vogesware Reo et al., 1972; Remaswamy, 1975; Raju, 1979; and Sathasivan, 1980).

2.1.b Effect on yield and yield attributes

Remanujam and Sekherem Rao (1971) concluded that number of panicles per hill was increased by higher levels of nitrogen. Eunus and Sadeque (1974) and Greekumaran (1981) could also observe a similar trend.

Kumura (1956) observed a close correlation between the number of spikelets panicle⁻¹ and average N content of leaf blades one to four weeks before heading. Shimized (1967) found a close relationship between number of spikelets per unit area and the amount of N upteke by the plant upto heading. Dayanand at al. (1972) and Vorme and Srivestava (1972) reported that the number of grains per panicle increased with increase in nitrogon level. Balasubremanian (1980) also obtained similar results. According to Sumus and Scdeque (1974) number of filled grains

per panicle was unaffected by nitrogen levels. Remaswamy (1975), Seshadri et al. (1976), Natarajan and Arunachalam (1979) and Sathasivan (1980) also could observe similar trend.

Thousand grain weight was more at higher levels . of nitrogen (Ahmed and Faiz, 1969 and Lenka, 1969). On the other hend, Eunus and Sadeque (1974) concluded that thousand grain weight was unaffected by nitrogen levels.

Kalyanikutty et al. (1968) reported an increase in the sterility percentage with higher doses of nitrogen. Similar results were also reported by Mukherji et al.(1968), Nair (1968), Muthuswamy et al. (1972), Eunus and Sadeque (1974).

2. Yield

According to Yamada (1959) the tell hybrid culture H₄ responded poorly to low levels of soil fertility, but expressed high yield potential at higher levels of fertilization. Potty (1964) obtained significant increase in grain yield with increase in dose of nitrogen. Subramaniam (1965) recorded yield response to nitrogen upto 27 kg ha⁻¹ in a tall long duration variety. Lenka and Behera (1967) observed significant increase in yield upto 120 kg nitrogen ha⁻¹ in dwarf types and upto 80 kg ha⁻¹ in local varieties. Sood and Singh (1972) recorded higher grain yield in tall indica rice with an increase in the level of N from 0 to 90 kg ha⁻¹.

Tanaka (1958) could not observe any apparent increase in grain yield with higher levels of applied nitrogen in both indica and jepanica varieties. Similar results were reported by Nair (1968).

Straw yield was found to be increased by higher rates of nitrogen application (Potty, 1964, Sahu and Lanka, 1967, Lanka and Bahara, 1967). Nair (1968) and Place et al. (1970) also observed similar results. But Gopalakrishnan et al. (1970) and Daniel (1971) could not notice any significant effect of nitrogen levels on the yield of straw.

Thus from the above review it is seen that N fertilization had a positive influence on growth characters, yield attributes such as number of panicles m^{-2} , thousand if grain weight and yield of grain and straw whereas number of filled grains panicle⁻¹ was not much influenced. Higher sterility percentage was also associated with higher N levels.

2.2 Phosphorus fertilization in rice

Phosphorus has a key role in rice nutrition. Rice plant needs a continuous supply of phosphorus throughout the growth period, especially before end during tillering and before formation of the flower primordia. An adequate supply of phosphorus at the beginning of growth promotes root development end thus tolerance 60 possible dry spalls. Apart from this, it encourages active tillering, early flowering and ripening with higher thousand grain weight (Atanasia) end Samy, 1983). By increasing the phosphorus content of grains through phosphorus application the quality of grain will be improved.

2.2.a. Effect on growth and growth characters

Tanaka et al. (1960) observed taller plants with increasing levels of phosphorus upto ten ppm. According to Potty (1964) application of phosphorus influenced the height of plants only in the vegetative stage. Place et al. (1970) and Requestal. (1974) also obtained similar results.

Envi (1964) reported an increase in the number of tillers with higher levels of phosphorus application. According to Potty (1964) increase in tiller production with increasing levels of phosphorus was observed only in the

vegetative stege. Lusanandana and Suwanawaong (1967) also noticed higher tiller number with higher doses of phosphorus application.

2.2.b. Effect on yield and yield attributes (i) Yield attributes

Sreenivasulu and Pawar (1965) could not observe any significant effect of levels of applied phosphorus on panicle production. Place et al. (1970) also observed similar results.

A marked increase in the number of grains per panicle due to phosphorus application up to 14 kg ha⁻¹ was recorded by Potty (1964). On the other hand, Cately (1968) and Rec et al. (1974) could not observe any influence of phosphorus application on the number of filled grains.

Thousand grain weight was seen to be unaffected by applied phosphorus (Potty, 1964 and Reo et al., 1974). But, Place et al. (1970) registered a decrease in thousand grain weight with increase in levels of phosphorus.

According to Potty (1964) varying levels of phosphorus had no influence on sterility percentage.

(2) Yield

Increased grain yields with increasing levels of phosphorus was reported by Enyi (1964). Subremanian (1965) recorded response to phosphorus application upto 20 kg (ha⁻¹⁻⁾ in long duration varieties. Sahu (1965) also observed increased grain yields with higher levels of phosphorus application upto 45 kg ha¹. On the other hand Vijayan and Menon (1965) did not notice any significant effect of phosphorus on grain yield in two tall varieties.

Straw yield was found to be increased with the application of phosphorus upto 20 kg has¹¹ (Krishna tao et al., 1962). Sahu (1965) concluded that application of higher rates of phosphorus had little influence on straw yield. From the above review, it is seen that phosphorus fertilization had a favourable effect on the growth attributes and yield of grain and straw while little effect was noticed on the yield attributes.

2.3 Potessium fertilization in rice

Potassium plays an important role in the nutrition of rice. It has a positive influence on tillering and on the size and weight of grains. It is associated with the synthesis and translocation of carbohydrates and grain

development. Further, it renders resistance to pests, diseases and to adverse climatic conditions by strengthening and stiffening of plant cells.

2.3.a. Effect on growth and growth characters

According to Bavappa and Rao (1956) plant height was increased with increase in potassium application. Similar results were reported by Mukherji'et al. (1968). But Potty (1964) could not notice any influence of potassium levels on the height of plants while Sahu and Manoranjan Ray (1976) recorded a reduction in plant height with potassium application.

Increase in tiller number with increase in levels of potassium was observed by Bavappa and Rao (1956) whereas Potty (1964) and Mukherji et el. (1968) could not obtain eny favourable effect of potassium on tillering.

2.3.b. Effect on yield and yield attributes

1. Yield attributes

Panicle number was found to be increased with potessium application (Bavappa and Rao, 1956). Sehu and Manoranjan Ray (1976) also reported similar results.

According to Bavappa and Reo (1956) potessium application increased the number of filled grains penicle⁻¹ and thousand grain weight. Sreekumaran (1981) recorded more number of filled grains panicle⁻¹ at the highest dose of potassium tried (90 kg/ha). He observed maximum thousand grain weight at 70 kg ha⁻¹ of potassium. But Potty (1964) did not find any positive influence of potassium on the above characters.

(2) Yield

In pot culture trials, Tanaka (1966) recorded increase in yield with potassium levels upto 200 ppm in the tall indice variety Pete. Kanwar and Grewal (1966) and Sahu and Roy (1976) also obtained similar results. Mahapatra and Presed (1970) recorded an average response of 472 to 1353 kg grain ha⁻¹ with potassium application in modern varieties. Sreekumaran (1981) obtained highest grain yield at 45 kg potassium he⁻¹ whereas Guar and Singh (1982) noticed a reduction in grain yield with higher levels of potassium tried.

Esskimuthu et al. (1975) observed an increase in straw yield with increase in levels of applied potassium. According to Sreekumaran (1981) highest straw yield was at 60 kg potassium ha⁻¹. But, Potty (1964) could not get any response in straw yield due to the application of higher doses of potassium. Potassium fertilization also possesses a favourable effect on the growth, yield attributes and yield of rice.

3. Rice nutrition in relation with cultural and management practices

3.1 Spacing

According to Yamada (1961) higher planting density within limits produced more total biomass and grain per unit area when rice was grown on less fertilized soil, Under fully fertilized condition, the growth of plant was accelerated, the space was covered with leaves, and the total biomass production per unit area at harvest became constant regardless of its density (Kira et al., 1959).

3.1.a. Effect on growth and growth characters

Increased plant height was observed with wider spacing (Ramich, 1937; Vachhani et al., 1961; Mishra, 1976; Ibrahim et al., 1980). Lei and Xi (1967) reported). Igher plant height with closer spacings. Taller plants were observed under dense stands in the initial stages whereas the same was observed under low density at maturity (Nishiyama, 1977). Chang and Su (1977) obtained increase in plant height with decrease in spacing in the semidwarf indica rice cv. Cauvery and the tall local indica cv. Heaur

in Saudi Arabia. But Subremenian (1965) and Shahi et al. (1976) concluded that plant height was unaffected by plant population.

Ehaktal (1960) observed increased tiller number m^{-2} with wider spacing. Similar results were reported by Vechhani et al. (1961) also. But Mishra (1976) obtained increased tiller number m^{-2} with narrow spacings of 20 x 5 and 10 x 5 cm.

Murata et al. (1957) found that narrower the spacing, greater the photosynthetic ability at early to middle stage of growth. However, the relationship was reverse in the later stages. Mehrothra et al. (1975) reported an increase in LAI with a spacing of 10 \times 10 cm and a decrease in LAI with wider spacing. Mishra (1976) observed an increase in LAI with narrow spacings of 20 \times 5 and 10 \times 5 cm. Several investigators like Chang and Su (1907), Palanichamy (1978) and Ghosh et al. (1979) also found an increase in LAI with closer spacings.

3.1.b. Effect on yield and yield attributes

(1) Yield attributes

Vachhani et al. (1961) obtained higher number of panicles m⁻² under wider spacing whereas Mahapatre (1969) and

Mahapatra et al. (1971) recorded more number of panicles with closer spacing. Kurup and Sreedharan (1971) reported an increase in the panicle number m^{-2} with a spacing of 15 x 10 cm at 120 kg N ha⁻¹ in the variaties Karuna and Annapoorna. Nair and George (1973) also found an increase in the number of panicles m^{-2} with a spacing of 10 x 10 cm at 120 kg N ha⁻¹.

A reduction in the number of filled grains penicle⁻¹ was reported by Neir and George (1973) in culture 12035 with a closer spacing of 10 x 10 cm at 120 kg N ha⁻¹. Raj et al. (1974) observed higher number of filled grains per panicle in IR 20 with a spacing of 15 x 5 cm at 200 kg N ha⁻¹. Mishra (1976) reported that the number of filled grains per panicle was reduced by closer spacings of 20 x 5 and 10 x 5 cm. Palanichamy (1978) found more number of filled grains panicle⁻¹ with wider spacing at 140 kg N ha⁻¹.

Sewaram et al. (1973) observed an increase in thousand grain weight with closer spacing at 200 kg N ha⁻¹ whereas Nair and George (1973) found a decrease in thousand grain weight with a closer spacing of 10 x 10 cm at 120 kg N ha⁻¹. Mishra (1976) recorded a decrease in thousand grain weight under nitrogen constraint with closer

spacings of 20 x 5 and 10 x 5 cm. According to Falanichamy (1978) closer spacing recorded more thousand grain weight. Higher thousand grain weight was observed in wider spacings at 140 kg N ha⁻¹ and in closer spacings at 100 kg N ha⁻¹.

(2) Yield

Under low fertility status highest grain yields were obtained with closer spacings of 10 x 10 cm in and varieties Padma, Jaya, BC 6. At 100 kg N ha-1 Padma gave the highest yield at a specing of 15 x 10 cm while Jaya and BC 6 gave the same at a closer spacing of 10 x 10 cm at IARI (IARI, 1969), Mishra (1976) observed higher paddy yields at spacings of 20 x 5 and 10 \times 5 cm than at wider spacings under nitrogen constraint. Perashar (1976) found that highest paddy yields of 6.46 t ha-1 was obtained at 7.5 x 7.5 cm and the lowest yields of 3.8 t ha⁻¹ at 30 x 15 cm in the variety IR 8. Highest yields were reported at 15 x 15 cm and 22.5 x 15 cm compared to seven other specings tried in the variety SR 26 B (Bhattachery a, 1977). Chang and Su (1977) reported increased grain yield with wider spacing in varieties, Cauvery and Hasawi. Ghosh et al. (1979) observed highest yield at a spacing of 15 x 15 cm with 50 kg N ha⁻¹ and at a specing of 20 x 20 cm with 100 kg N ha⁻¹ in the variety Pankaj. Chandraker and

Khan (1981) found that optimum grain yields of medium and late maturing varieties were obtained at a spacing of 15 x 10 cm or 20 x 10 cm and early varieties at 10 x 10 cm. In Manipur, highest grain yield was obtained at 15 x 15 cm spacing compared to 20 x 20 and 30 x 30 cm (Singh et al., 1982). In Kharuhan rice, yields increased with increase in N rates and crops grown at a spacing of 10 x 10 cm gave highest yield than those grown at wider Singh (1982) recorded highest spacings (Singh et al., 1982). yields in nerrow spacing of 10 x 10 cm compared to 15 x 15 and 20 x 20 cm. Thangamuthu and Subramaniam (1983) reported that a specing of 20 x 15 cm (33 plants m^{-2}) gave significant increase in grain yield in wet and dry seasons. Theothereppen (1984) and Palaniappen concluded that a spacing of 20 x 10 cm was best regardless of seedling (Page in the short duration variety Rasi. According to Majid et al. (1976) rice yield decreased with increased spacing. But this effect was found to be reduced under higher fertility levels and the highest mean yield was obtained at a spacing of 15 x 15 cm. Shahi et al. (1976) observed no significant difference in grain yields at various spacings tried in the variety Jays. Singh at al. (1982) concluded that for early transplanting, spacing did not affect grain yield in the rice variety Ngoba in Meghalaya, Singh (1982) could not observe any

significant effect of spacing on yield in well reclaimed soil. Raju and Rao (1983) also observed no significant difference in grain yield due to various spacings.

Schu et al. (1980) reported that hervest index was reduced significantly under high Nitrogen rates and high plant density with a spacing of 20 x 20 cm compared to 60×60 cm.

Subremenian et al. (1974) found that the protein content of rice was unaffected by levels of nitrogen or spacing. However Mishra (1976) reported that closer specings decreased the nitrogen content of grain and straw.

From the above review it is evident that the effect of spacing on growth, yield attributes and yield of rice depend mainly on the duration of the variety. In general, short duration varieties require closer spacings while medium and late duration varieties prefer wider spacings for optimum performance.

3.2 Age of seedlings

Age of seedling is one of the important non-monetary input which can influence the production considerably. As the purchasing power of inputs of farmers is low, there is need to make up this deficiency of inputs by emphasising the

adoption of non-monetary inputs (Chhillar et al., 1984).

Seedling age and number of seedlings hill⁻¹ to be transplanted at each hill are two non-monetary/low cost inputs in transplanted rice. The age and number of seedlings should be optimum to derive the maximum benefit from the high cost inputs. The optimum age of seedlings used for transplanting in rice also varies with the duration of varieties, season and management practices (Mahapatra and Leelavathy, 1971).

The age of seedlings used for transplanting varies with countries. Trijillo (1961) reported that transplanting is done at 40 to 60 days after sowing in Korea. In the lower plains of Indonesia 35 to 55 days old meedlings are planted while 70 to 100 days old meedlings are planted in the mountainous regions (VandeGoor, 1953). According to Brown (1958) rice is transplanted 45 to 65 days after sowing in Malayesia, whereas Cada and Taleon (1963) reported the use of 25 to 45 days old meedlings in Philippines. Under 'Peru' condition, even 75 days old meedlings of the locel variety 'Minebir' can be planted (Senchez and Larrea, 1972) whereas in Kerala 18 days old meedlings of short duration varieties and 20-25 days old meedlings of medium duration varieties are recommended. Under ill drained conditions, the long duration varieties like Pankaj, Jaganath, and IR 5

are to be planted 30 days after sowing. However, during <u>virippu</u> season, ege of seedlings can go upto 35 days in the case of madium duration varieties and 25 days for short duration varieties ((KAU 1981)).

Barthakur end Gogei (1974) found that 30 days old seedlings are good for transplanting in Jaya and IR 8. According to Balasubramonian et al. (1977) for late planting older seedlings of 35-45 days may be used for the varieties IR 8 and IR 20.

It is seen from the above review that the optimum seedling age in transplanted rice appears to depend upon the variety, season and management practices followed.

3.2.a. Effect on growth and growth characters

With different ages of seedlings, increase in N application was seen to increase the height of plants. According to Palanichamy (1978) at higher levels of N application younger seedlings were found to record more plant height. Similarly, Vankataraman (1981) reported a

reduction in plant height with aged seedlings. On the other hand Sundararajan (1978) concluded that the plant height was unaltered by N at any of the age levels tried.

Singh and Bhattachery a (1975) observed a reduction in tiller production with aged seedlings. On the contrary, Sundararajan (1978) concluded that increased N levels increased the tiller number even in 40 days old seedlings. But Saerai (1972) could not notice any significant effect of age on tillering.

In medium duration variaties the leaf area index increases with the use of older seedlings. Sundararejan (1978) recorded higher leaf area index values in 30 days old seedlings followed by 40, 50 and 20 days old seedlings. Murty and Sahu (1979) could observe a reduction in leaf area index at flowering by nine per cent when 60 days old seedlings were transplanted in the short duration variety Rasi. They also reported that significant reduction in leaf area index at flowering was not evident in medium and late maturing varieties. Theetheroppen (1983) observed that leaf area index was not adversely affected upto 40 days in the early maturing variety. Rasi and 45 days in the late maturing variety Co-40.

3.2.b Effect on yield and yield attributes

(1) Yield attributes

According to Sanchez and Larrea (1972) delay in transplanting from 30 to 60 days was associated with a decrease in the panicle number hill⁻¹. Singh and Bhattacharyya (1975) also recorded a reduction in the number of panicles with increase in age of seedlings. Sundararajan (1978) observed highest number of panicles hill⁻¹ with 39 days old seedlings. But (Seeral (1972) could not get any significant influence of ege on panicle number. Thestharappan (1983) concluded that the number of panicles hill⁻¹ was not adversely affected upto 40 days in the early maturing veriety Rasi and 45 days in the late maturing variety Co-40.

Less number of grains was associated with older seedlings (Senchez and Larrea, 1972). Reduction in the number of filled grains per panicle was observed in the case

of overaged as well as very young seedlings (Sundararajan, 1978) whereas Murty and Sahu (1979) obtained 15-20 per cent increase in filled grains with aged seedlings.

Sanchez and Larrea (1972) observed slight decrease in thousand grain weight with aged seedlings when planted in the second crop season. Decrease in thousand grain weight with older seedlings in the second crop season was reported by Seshadri et al.(1976) and Anon (1981) under Kerala conditions. However, Sunderarajan (1978) and Manoharan (1981) could not observe any significant effect of age on thousand grain weight. Thus the results do not reveal a constant trend and is found to vary according to the situation.

(2) Yield

Narayanaswamy and Negerathinam (1966) recorded highest grain yields in variaties ASD 5 and ASD 11 with 35 days than with 25 and 45 days old seedlings. Seerai (1972) obtained highest grain yield with 40 days old seedlings in the variety Pets. According to Sanchez and Larrea (1972) yield reduction due to planting of aged seedlings is more pronounced in early maturing than in late maturing variatios. Annappan et al.(1973) observed that 25, 30, 35 and 50 days old seedlings were comparable with regard to grain yield

in the variety "Ponni". An increase in the grain yield of rice variety IR 8 was observed with 36 days old seedlings (Dargan and Gaul, 1974). Shahi and Gill (1978) reported that seedling age showed positive correlation with paddy yield and yield components in varioty Palman 579 and Jays. Singh and Tarat (1978) reported that 34 days for early maturing and 40 days for late maturing varieties are good. Sharma et al. (1979) observed consistency in yield reduction due to plenting of aged seedlings regardless of seedling number in rice variety Pusa 2-21, whereas in the medium duration variety Jaya, the magnitude of yield reduction due to overaged seedlings was low. In the case of rice veriety Rasi, grain yield was higher in 40 and 60 days when compared with 20 days old seedlings (Murty and Sahu, 1979). Singh et el. (1980) reported that Ratna end Sona gave the highest grain yield with 35 days old seedlings in saline alkali soils. Natarajan at al. (1980(a)observed that et Tirur, the best age of TKM 9 and ADT 31 was 40 days to produce significantly higher yields than 25 and 30 days old seedlings. Khan and Swarnkar (1980) found that seven week old seedlings were superior to six week old seedlings in respect of yield under Madhya Pradesh condition. Navakodi et sl. (1981) reported that for both short and medium duration variaties upto 40 days old seedlings can be planted without significant yield reduction in sandy loam

soils in valley land under mid altitude condition of Meghalaya. Penda and Das (1978) could not observe any yield reduction by planting 50 days old seadlings in four high yielding variaties under Sambalpur condition. Pyarelal et al. (1981) also noticed a similar trend. Ghosh (1982) observed that paddy yield decreased with increase in seedling age from 40 to 50 and 60 days on late planting in kharif and with older seedlings yields were significantly higher at closer spacings. Islam and Ahmad (1983) reported an yield increase upto 50 days beyond which the yield decreased. Murthyst el. (1983) observed significant increase in paddy yield when older seedlings (45 and 60 days old seadlings) were planted in the variety IET 7251 and had the lowest spikelet sterility. Patel et al. (1983) obtained higher paddy yields by planting 24 days old seedlings to a depth of 3-4 cm in puddled soil. Patel and Patel (1983) recorded maximum grain and straw yield in the variety Ratna with 35 days old seedlings while Raju and Rao (1983) observed highest grain yield in Jays with 25 days old saedlings. Chandrasekheran et al. (1984) could not notice any reduction in yield due to plenting of older seedlings. Chiller et al. (1984) observed higher yields in 36 days old seedlings than in younger seedlings. According to Reddy and Mitra (1984) highest grain yields were recorded

with 55 days in the variety CR-1016. According to Ramaswamy et al. (1985) under low nitrogen levels, 40 days old seedlings yielded better than other age levels tried. Singh et al. (1982b)observed no significant effect of age of seedling on late planted rice yield. Shahani et al.(1984) concluded that grain yield was unaffected by seedling age at transplanting but increased with increasing fertilizer levels.

Palanichamy (1978) observed a significant increase in protein content of rice and N content of straw with increase in the age of seedlings. Theetherappan (1983) reported that NPK uptake of rice plants was not considerably reduced upto 45 days. Manoharan (1981) found that there was significant influence of age of seedling on the N uptake. The uptake by the crop was higher in 25 and 35 than with 45 days old seedlings. He also observed that P uptake was higher in younger seedlings than older seedlings whereas K uptake was unaffected by age. Sundararajan (1978) also reported similar results.

The above review reveals that short duration varieties require younger seedlings while medium and long duration varieties require older seedlings for their optimum performance with regard to growth, yield attributes and yield of rice.

3.3 Number of seedlings hill-1

Higher N rates are needed to obtain an yield response of low tillering variaties to increased seedling number (IARI, 1971). At 100 kg N, the grain yield of the variety IR 127-80-1 increased from 2.5 to $4 \cdot 4 tha^{-1}$ when the number of seedlings was increased from one to six.

3.3.a. Effect on growth and growth characters

Rumiati and Oldeman (1974) reported a decrease in the tiller number hill^{-1} with increase in plant population. Pothiraj et al. (1977) observed that maximum leaf area index at flowering was obtained by planting one seedling per hill and 100 hills m_{P}^{-2} . Reduction in the hill number m^{-2} reduced leaf area index at all steges.

3.3.b. Effect on yield and yield attributes

(1) Yield attributes

Rumiati and Oldeman (1974) recorded a decrease in the number of panicles hill⁻¹ and number of filled grains panicle⁻¹ while an increase was noticed in the thousand grain weight. With variety Pelita I/1 a grain yield of 660 gm m⁻² was obtained at the highest density compared to 502 gm m⁻² at the lowest density. Natarajan (1982) observed an increase in panicle number hill⁻¹ by 15.5 per cent in Ponni and 11.6 per cent in ASD 15 by increasing the number of seadlings hill⁻¹ from two to six. He also reported that all other panicle characters were reduced by increasing the seedling number hill⁻¹.

(2) Yield

Kang and Choi (1976) reported that increasing the number of seedlings per hill increased grain yields in the rice variety Tongil especially for late season planting. Sharms et al. (1979) found an increase in yield when the number of seedlings from the same age group rose from two to six hill⁻¹. According to Nair et al. (1981) doubling plant density and shallow planting (3 cm) at the same N level resulted in only moderate yield increases in the early maturing variety Jyothi. Gautam and Sharma (1982) reported increased grain yields due to high planting density (400 hills m⁻² against 25 hills m⁻²) by 10 per cent in Ratna 14 per cent in Rasi and 24 per cent in Cauvery. Lal et al. (1982) found that increasing plant density increased the yield of the fertilized crop. The response to higher plant density was greater with 50 kg N ha⁻¹ than with 100 kg N ha⁻¹ indicating that the higher N rate compansated for low plant population. Gautam and Sharma (1983) reported that early maturing Verieties like Ratna, Rosi and Cauvery almost equalled Jaya in yield at high plant density provided the

environmental conditions were the same for all varieties during the reproductive and ripening period. Ngnu end Alluri (1983) observed an increase in grain yields in varieties FARO 27, ITA 117, ITA 235 as the plant density was increased from 28 x 10^3 to 217 x 10^3 hills ha⁻¹ in upland rice. Wasano (1983) also found significant increase in yield as the plant density was increased from two to three seedlings hill⁻¹ in low land rice. Shahi st al.(1976) could not notice any significant difference in grain yield when the seedling number was increased from one to four hill⁻¹. Singh (1982) also observed no significant effect of plant population on yield in well reclaimed soil.

It is evident from the above review that increasing the plant density by increasing the seedling number from two to six hill⁻¹ was found to be beneficial to obtain higher yields. The tiller number and LAI ware also influenced favourably by higher plant densities especially in the vegetative growth stage.

3.4 Azolla - a low cost biofertilizer for rice

Recently more and more attention is being given to the Azolla - Anabaena associations as a potential nutrient source in rice culture. The symbiosis between Azolla and Anabaena is most efficient in nitrogen fixation.

Various reports revealed that under favourable conditions upto 900 kg N ha-1 year -1 could be fixed by azolla (Singh 1977 a, b and c and Singh et al., 1982 a). On dry weight basis it contains 3 to 6 per cent N, 0.5 to 0.9 per cent P, 2 to 4 per cent K, 0.8 to 1 per cent Ce and traces of other micronutrients. It can fix as much as 1.5 kg N ha-1 day⁻¹ or 500 kg N ha⁻¹ year⁻¹ (Watenabe et al., 1980). Incorporation of one layer of azolla into soil before transplanting rice seedlings increased growth and paddy yields by 12 to 30 per cent depending on the cultiver and season (Singh, 1977 a). Besides substituting the chemical nutrient requirement, azolla has the effect of green manuring also, Azolla was used as green menure in Japan as carly as in 1947 (fujiwara et al., 1947). Moore (1969), Thuyet and Tuan (1973) reported the value of azolla as a potential N supplying green manure.

3.4.a. Effect of azolle on growth and growth characters

Singh (1977 b, d) reported an increase in plant height and tiller number with the incorporation of Azolla @ 10 t ha⁻¹. Similar results have been obtained by Subudhi and Singh (1980), Jaikumaran (1981) and Mathewkutty (1982). Seventy five per cent N with Azolla produced the same LAI as that of 100 per cent N applied either alone or with

Azolla or farm yard manure (Jaikumaran, 1981). Mathewkutty (1982) concluded that utilization of azolla in combination with 30 kg fertilizer N at active tillering stage gave higher LAL.

3.4.b. Effect on yield and yield attributes

(1) Yield attributes

An increase in filled grains penicle⁻¹ was observed with azolla application along with urea than with urea alone (Kulasoorya and Desilva, 1977 2). According to Singh (1977 c) azolla incorporation at the rate of 10 t ha^{-1} increased the number of panicles m^{-2} in varieties IR-8 and Supriya. Maximum number of panicles, filled grains and percentage of filling was observed with incorporation of azolla at the rate of 5 t ha-1 with 75 per cent of the recommended dose of N (Jaikumaran, 1981). He also reported that the test weight of grains with 75 per cent N along with Azolla was comparable with 100 per cent N application alone. Mathewkutty (1982) also could register higher panicle number, number of filled grains penicle _____ thousand grain weight with the application of azolla along with fertilizer N. The above review reveals the favourable effect of Asolla application on the yield attributes.

(2) Yield

Studies at CRRI, Cutteck revealed that azolla incorporation at the rate 10 to 12 t ha-1 gave significant increase in rice yields (Singh 1977 b, d and e). Azolla incorporation resulted in increased grain yields of 12 to 25 per cent in rice varieties IR-8 Supriya, Vani and CR 1005 in <u>kherif</u> and an increase of 38 to 41 per cent in rabi (Singh, 1977 b). He found that combined application of azolla at the rate of 10 t ha^{-1} with 30 or 50 kg fertilizer N ha-1 gave yields equivalent to that produced by 60 or 80 kg N applied alone. Srinivasan (1977) reported an increase of about 19 per cant and Wathaba (1977), 13 per cent increase in grain yield through Azolla incorporation whereas Singh (1979 b) obtained 54 per cent increase over control. Sundaram et al. (1979) reported that ezolla incorporation at the time of transplanting or first weeding along with 75 per cent of the recommended dose of N recorded higher grain yield than application of full recommended dose of N. Arunachalam (1980) obtained increased grain and straw yield with azolla application. Natarajan et al. (1980b).also reported similar results in all seasons. Sreenivasan (1980) concluded that yield increases in the short duration variety ADT 31 were significant for azolla

application up to 60 t ha⁻¹ at the paddy experiment station, Aduthurai, According to Jaikumaran (1981) azolla incorporation along with 75 per cent of the recommanded dose of N gave rice yields equivalent to that obtained with full recommended dose of N alone or in combination with farm yard manure or azolla. Kaushik and Venkataraman (1981) found that in pot trials with "Besmathi", grain yields increased from 3.58 in control to 5.6 g pot⁻¹ with azolla application alone. Mathur et al. (1981) observed an increase in grain yield of rabi rice by 4.4 per cent with ezolla alone, 17.8 per cent with 100 kg N ha-1 and by 22.2 per cent with a combination of azolla and N. Kannaiyan et al. (1983) found that plots treated with 30 kg N ha⁻¹ as fertilizer and 30 kg N as azolla at 40 x 10 cm spacing gave the highest yield. Krishnarajan and Balasubramanian (1983) reported that grain yield increased from 5.2 t ha⁻¹ in control to 6.2 t ha⁻¹ with incorporation of szolla @ 6 t ha-1. Mathewkutty and Sreedharan (1983) recorded highest grain and straw yields in treatments having basal incorporation of azolla combined with inoculation. Sreenivasen (1983) observed increase in grein yields with all levels of N and azolla application in 'ADT 31' under Aduthural condition. Tshmide and Abdul Kader (1983) concluded that azolla incorporation alone or in combination

with upsa stimulated rice growth and increased both grain and straw yield. Kannaiyan et al. (1984) reported that highest grain yield of 5.08 t ha⁻¹ was obtained with 60 kg N ha⁻¹ plus azolla compared with 4.33 t ha⁻¹ with 60 kg N alone while straw yields were highest with 90 kg N plus azolla in IR-20 during the <u>samba</u> season. Thus it is evident that the extent of increase in grain and straw yield varies with the varieties, method of application of ezolla plus the soil and climatic condition of each place. 3.4.c. Effect on fartilizer substitution

Several workers have reported about the N economy through the incorporation of azolla (Singh, 1977 b,c,d,e; Singh, 1978; Watenabe, 1978; Arunachalem, 1980; Subudhi and Singh, 1980 and Subharao, 1981). Singh (1977 a) estimated that a layer of azolla covering one ha of rice field produces 10 t of green matter containing about 30 kg N ha⁻¹. According to Sawatdee et al. (1978) and Sawatdae and Sectanum (1979), azolle incorporation registered rice yields equivalent to that obtained through the application of 37.5 kg inorganic N ha⁻¹. Studies by Govindarajan et al. (1980) revealed that plots treated with 75: 50: 50 kg NPK plus azolla yielded as good as those with 100: 50: 50 kg

Azolla along with 50 kg N ha-1 gave yields equal to those with 75 kg N ha⁻¹ alone at Ambasamudram. Nataraian at el. (1980b) also obtained about 25 per cent saving in inorgenic nitrogen when ezolla was applied along with graded levels of N. Azolla incorporation @ 6 t ha-1 at transplanting was found to be comparable with 35 and 17 kg he⁻¹ of uree in kharif end rabi seasons, respectively. According to Swatdee et al. (1980) one azolla layer, whether incorporated into soil or not increased rice yield to the same level as would 30 kg N ha-1. Under Kerels conditions, Jaikumaran (1981) observed a saving of 28 and 44 kg N ha⁻¹ in the virippu and mundakan sessons, respectively, with azolla incorporation at the rate of 5 t he⁻¹. Guar and Singh (1982) reported a saving of 25 to 30 kg N ha-1 through azolla incorporation. Kannaiyan and Govindarajan (1982) Mathewkutty (1982) and Mandel and Bharathi (1983) also observed similar results. (Hag et al.) (1984) obtained yield with azolla culture similar to that with 60 kg applied N. The yield response to exolla application @ 6 t ha⁻¹ was found to be equivalent to 36 kg N and the response to one t Azolla inoculated, grown insitu and incorporated was equivalent to 24 kg N ha⁻¹ in 'Sita' (Roy, 1984). Kikuchi et el. (1984) concluded that under favourable conditions, a layer of azolla covering one ha of rice field releases 20-30 kg

organic N which can increase rice yield by 0.4 to $1.5 \pm ha^{-1}$.

From the above review it is seen that the quantity of N substitution with azolla application varied with soil types and an average quantity of 25-30 kg fertilizer N could be substituted with the application of azolla $@ 5 t ha^{-1}$.

3.4.d. Effect on uptake and soil status of nutrients

Rice showed a linear increase in N upteke with increase in azolla application from 5 to 20 t ha⁻¹. The effect of N upteke was more pronounced in the dry season (Subudhi and Singh 1980; Singh, 1979 a). Jaikumaren (1981) recorded maximum upteke of N, P and K when szolla was incorporated with 100 per cent N in <u>virippu</u> and 75 per cent N in <u>mundakan</u> season. Mathewkutty (1982) also obtained maximum uptake of N and P with incorporation and dual culturing of azolla followed by in situ incorporation of azolla with 30 kg N application at panicle initiation stage. Thus from the above review the NFK upteke of rice is enhanced by the combined application of fartilizer and Azolla.

Reports from China revealed that azolla incorporation in rice fields improved the organic matter content end soil aggregation (Anon, 1975277). Analysis of soils after harvest of the crop indicated that in Azolla treated plots there was a gradual increase in organic carbon, total nitrogen and available phosphorus (Singh, 1979 a and Arunachalam, 1980). According to Subudhi and Singh (1980) only marginal increase in organic carbon content was recorded with Azolla application. Venkitaraman (1980) found an increase from 1.54 to 1.59 per cent in organic carbon content, a slight decrease in P content and no change in K content due to the incorporation of azolla. Subramanian (1981) found a build up in total N content with azolla application along with 30 kg fertilizer N. Lizhuo-xin (1982) also reported improvement in the chemical characteristics of the soil by the application of azolla.

Thus it is clear from the above review that the nutrient status of the soil will be improved by the application of azolla with or without fertilizer.

Materials and Methods

MATERIALS AND METHODS

A series of experiments to evaluate low cost egronomic techniques in rice production were conducted in Kerale, India during the period from 1982 to 1985. The project consisted of three separate field trials, viz.

- 1. Performance of IR 42 under different levels of fertilizer and specing.
- 2. Effect of age of seedling and planting density in rice variety IR 42.
- 3. Evaluation of Azolla as a low cost biofertilizer in rice variety IR 42.

The materials used and methods adopted in the course of these investigations are described below.

1. Location of the trial

The triels were conducted at the Regional Agricultural Research Station of the Kerala Agricultural University, Pattembi in Palghat district. The research station is situated at 10° 48' N latitude and 76° 12'E longitude and at an altitude of 25.359 meters above mean sea level.

1.1 Soil

The blocks in which the trials were conducted are A 12 a and b, B 1a and b, IV 1a, 3a, V 1a, 1g, h, 2 f, g, h V 5a and 6a. The physio-chemical characteristics of the soil of the experimental field are given below. Fooled samples from block A, B, IV and V were used for Rechanical analysis while soils of each block were used separately for chemical analysis.

A. Physical properties of the soil

Average machanical composition of the soil (International pipette method).

Sand	• •	52.55 per	cent
Silt	••	20.14 per	cent
Clay	••	25.00 per	cent
Loss on ignition	••	2.31 per	cent
Textural class -	Sandy	clay loam	l
Field capacity (0.)	3 bar)	= 22.11 p	er cent
(Pressure plata ep)	p ar atu	s, Richard	ls, 1948).

B. Chemical properties of the soil

The chamical properties of the soll are given in Table 1.

	Particulars	A (East)	B(West)	IV	v
1.	pH (1:2.5 soil : solution ratio Elico pH meter Piper, 1942)	5.5	5.6	5,5	5.4
2.	Organic carbon (%) (Walkley and Black method - Piper, 1942)	1.5	1.6	1.4	1.3
3.	Total nitrogen (%) (Microkjeldehl method Jackson, 1958)	0.16	0.18	0.15	0.15
4.	Available P ₂ 0 ₅ (kg ha ⁻¹) (Bray and Kurtz method, Jackson, 1958)	21.8	21.2	20 . 8	21.3
5.	Exchangeable K ₂ 0 (kg ha ⁻¹) (Neutral normal Asmonium acetate method - Jackson, 1958)	248.3	242.8	236.5	231.8
6.	C.E.C. (ms/100 g of soil)	14.2	14.2	13.5	14.1

Table 1 Chemical properties of soil

2. Cropping history of the experimental field

Every year a bulk crop of rice was raised before the conduct of the experiment.

3. Season

Trial I and II were conducted for two <u>virippu</u> and two <u>mundakan</u> seesons of 1982 and 1983 while trial III was conducted during two <u>mundakan</u> seasons of 1982 and 1984. <u>Virippu</u> season corresponds to first crop (April-May to September-October) and <u>mundakan</u> season corresponds to second crop (September-October to December-January) in Kerala.

4. Climate

The weekly averages of temparature, relative humidity, sunshine hours, evaporation and total rainfell during the cropping period wars collected from the mateorological observatory of the Research Station and are presented in Appendix-I. These data correspond to standard weeks starting from 14th July 1982 to first week of March, 1985, the period during which the trials were conducted.

In general the seasons were favourable for the setisfactory growth of the crop.

5. Materials

5.1 Variety

IR-42 - a medium duration (145 days). semi dwarf variety introduced by IRRI in 1981 was used for the investigation. It appears to be a good modern variety of rice for small farmers because of its capacity to extract and utilize both soil and fertilizer nutrients efficiently. The consistency of IR 42's relatively high yield without N fertilizer makes it a valuable variety under low fertility conditions (IRRE, 1978).

5.2 Manures and fertilizers

Ferm yard manure 2 5 t ha⁻¹ was incorporated in triels I & II.

Urea, superphosphate and muriate of potesh analysing 46 per cent N, 16 per cent P_2O_5 and 60 per cent K_2O , respectively were used for the trials.

With regard to the application of fertilizers the package of practices recommendations (KAU, 1981) were followed.

5.3 Azolla

Azolla pinnata was used for incorporation as per treatments in the Azolle trials. It contained 91.50 per cent moisture, 2.75 per cent total nitrogen, 0.24 per cent total phosphorus and 2.01 per cent total K on dry weight basis.

- 6. Methods
- 6.1 Trial I. Performance of IR 42 under different levels of fertilizer and spacing

The trial consisted of four levels of fertilizer as main plot and six spacing as sub plot treatments.

Main plot treatments - Fertilizer levels (Four)

1.	Fo	-	0 (Control)
2.	F ₁	8 0	50% of the recommended dose of 90: 45: 45 kg NPK [*] he ⁻¹
з.	F 2		75% of the recommended dose of 90: 45: 45 kg NPK ha ⁻¹
4.	F 3		100% of the recommanded dose of 90: 45: 45 kg NPK ha ⁻¹

Sub plot treatments - Spacing Levels (six)

6. 	. ⁸ 6		15 X	10	Cm.	(66	h ill #	m ⁻)
~	~			4.0		1	1. # 9 1	
5.	S _K		15 x	15	CIN	(44	hills	m ⁻²)
4.	54	-	20 x	5	CIA	(100	hills	m ⁻²)
3.	⁸ 3	-	20 x	10	C	(50	hills	m ⁻²)
2.	⁵ 2	-	20 x	15	cm	(33	hills	m ⁻²)
1.	^s 1	-	2 0 x	20	ca	(25	hills	m ⁻²)

*The notations N, P and K used in the text, represent N, P_2O_5 and K_2O , respectively.

Treatments	-	24
Replications	-	5
Design	-	Split plot
Gross plot size	-	6 x 3 m ²
Net plot size	-	Varied with spacing

Trial II. Effect of ege of seedling and planting density on rice variety IR 42

The trial consisted of three levels each of age and number of seadlings hill⁻¹ and two levels of fertilizer as given below.

λ.	Age groups	(three)	
	1. A ₁ = 2	15 days old seedlings	
	.	0 days old seedlings	
	3. A3 # 3	95 days old seedlings	
в.	Number of see	dlings hill ⁻¹ (three levels)	
	1. N ₁ =	2 seedlings hill ⁻¹	
	2. N ₂ =	4 seedlings hill ⁻¹	
	3. N ₃ -	6 seedlings hill ⁻¹	
c.	Fertilizer (3	'wo levels)	
	1. P ₁ - 50% of	the recommanded dose of 45 kg NPK he ⁻¹	
	901 45	51 45 kg NPK ha	For the first year of the
	.		experiment
	90: 45	i: 45 kg NPK ha ^{~1}	

 3. F₁ = 75% of the racon 901 450 45 kg NP. 4. F₂ = 100% of the recon 901 450 45 kg NP. 	K ha rd mmend	Yor the second year of the ed dose of experiment
Preatment combinations	-	18
Replications		. 3
Design	•	Factorial RBD
Spacing	Ĭ	20 x 15 cm for <u>virippu</u> 20 x 10 cm for <u>mundekan</u>
Gross plot size		5 x 4.05 M^2 for <u>virippu</u> 5 x 4 M^2 for <u>mundakan</u>
Nat plot size	Y NAME	3.8 x 3.45 m^2 for <u>virippu</u> 3.8 x 3.6 m^2 for <u>mundakan</u>

Triel III. Evaluation of Azolla as a low cost biofertilizer

The trial consisted of four levels each of fertiliser and azolla as given below.

1. Main plot treatments

Pertilizer levels (four)

1. F₀ - Control (without fertilizer)

2. $F_1 = 50\%$ of the recommended dose of 90: 45: 45 kg NPK ha⁻¹

 $F_2 = 75\%$ of the recommended dose of 3. 90: 45: 45 kg NPK ha-1 $F_3 = 100\%$ of the recommended dose of 4. 90: 45: 45 kg NPK ha-1 2. Sub plot treatments Azolla levels (four) 1. $A_1 - 5 t h a^{-1}$ 2. $A_2 = 10 \text{ t he}^{-1}$ 3. $A_3 = 15 \text{ t ha}^{-1}$ 4. $A_4 = 20 \text{ t ha}^{-1}$ - 16 Treatment combinations - 5 Replications - Split plot Design - 20 x 10 cm Spacing $-5 \times 4 m^2$ Gross plot size - 3.8 x 3.6 m² Not plot size

Azolla was incorporated in each plot as per treatments before transplanting the seedlings.

6.2 Field culture

The package of practices recommendations of Kerala Agricultural University for cultivation of medium duration rice variaties ((KAU 1981)) were followed during the cropping period.

The general performance of the crop was good and there was no severe attack of pests and diseases during the course of this study. The layout plans of the experiments are illustrated in Fig., a, b and c. The time of sowing and harvest of each experiment are given in Table 2.

RV

.

Rīv

R<u>∭</u>

Rî

RI

MAIN PLOT FERTILIZER TREAMENTS. LEVELS. FO - CONTROL (WITHOUT FERTILIZER) EV - 50% OF THE RECOMMENDED DO

F ₁ S ₂	F2 56	FoS3	F354
F ₁ S3	F2 S5	FoSI	F3 51
FISI	F2 S4	FoS4	F3 S6
FIS4	F2 52	FoS2	F3S5
F ₁ S5	F2S3	FoS6	F3 53
F _I S6	F_2S_1	FoS5	F3 S2 .
F2 55	F ₁ .S ₂	F3 S3	Fose
F2 S3	F1 S1	F3 S1	Fo S2
F2 54	F, S3	F ₃ S ₂	Fo S3
F2S1	F ₁ S ₄	F3 56	Fo SA
F2 52	F1 56	F3 S4	Fo 55
F2S6	F1S5	F3 S5	FoSt
Fo S1	F1 S2	F3 53	F2 S4
FoS5	FISI	F3 S2	F ₂ S ₁
FoSz	FIS3	F3 S4	F2 S2
FoS4	F ₁ S ₅	F ₃ S ₆	F ₂ S ₆
Fo S2	F, 56	F3 51	F2 S3
Fo ^S 6	F ₁ S ₄	F3 85	F ₂ S5
F3 S2	F2 S3	Fo Si	F ₁ S ₂
F3 51	F282	Fo S2	F1 54
F3 \$5	F2 \$6	FoSG	Fisz
F3 53	F2 S1	Fo SA	F _I S ₆
F 356	F2 54	FoS5	F ₁ S ₁
F3 S4	F2 S5	F0 53	F ₁ S5
FIS3	Fo S4	F2SG	FzSi
F154	Fo S2	F ₂ S1	Fas4
F1 56	Fo S6	F2 S4	F3 52
FISI	F0 55	F2 55	F3 55
F _I S ₅	Fosz	F2 S5	F3 53
F1S2	Fost	F2S3	F3 56

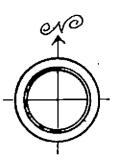


FIG. LAY OUT PLAN OF TRIAL NO.I.

SUB PLOT

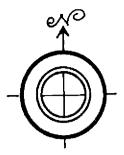
TREATMENTS

SPACING

51 - 20× 20 cm (25 HILLS m2)

 $S_2 - 20 \times 15 \text{ Cm}^{-1}(33 \text{ HILLS m}^{-2})$ $S_3 - 20 \times 10 \text{ Cm}^{-1}(50 \text{ HILLS m}^{-2})$ $S_4 - 20 \times 5 \text{ Cm}^{-1}(100 \text{ HILLS m}^{-2})$

 $S_{6} = 15 \times 15 \text{ Cm}^{2} (44 \text{ HILLS m}^{2})$ $S_{6} = 15 \times 10 \text{ Cm}^{2} (66 \text{ HILLS m}^{2})$


	F1A2N3	F ₂ A ₂ N ₁	F ₁ A3 N1	F ₁ A3N2	F ₁ A2N1	F2AINI	eno
RI	F2A3N2	F ₁ A3N3	F2A3N3	F ₁ A ₁ N _Z	' F ₂ Α ₁ Ν ₂	F2A2N3	
	F2A3N1	FjAiN3	FiA2N2	F ₂ A ₁ N ₃	F2A2N2	ابر ^ا لا ^ا لا	
	F ₂ A ₁ N ₃	F _I A ₂ N _I	F ₂ A ₁ N ₁	Fia2N3	F ₂ A ₂ N ₂	F2A3N3	
ਸ਼ੀ	FzA2N3	F2A2NI	F ₁ A3N1	F ₂ A ₁ N ₂	FjA₃N₃	F _I A _I N ₃	
	F1A2N2	FLA ₁ N ₂	F _I AINI	FIA3N2	F2A3N2	F2A3NI	
	FLAIN3	F2A2N1	F _I A ₁ N ₂	F2A2N3	F ₁ A3N2	F _Z A _I N ₁	
RI	F2A2N2	F ₁ A3N3	F _i A2N1	F2A3N2	F ₂ A ₂ N ₁	F _I A ₃ N ₃	
	FiAjNi	F2A2N2	F2A3N3	F _I AINI	F ₁ A ₃ N ₂	F2A1N3	
	ENTS LIZER LEVE F1 - 50% OF DC			SEE	E OF DLINGS 25 DAYS AF	SEE	SER OF -1 ILINGS HILL SEEDLINGS

 $\begin{bmatrix} F_2 - 75\% & -D0 \\ SECOND \\ YEAR \\ F_1 - 75\% & -D0 \\ F_2 - 100\% &$

FIG.I.b.LAY OUT PLAN OF TRIAL NO.I. DESIGN - FACTORIAL RBD.

	•		
FoA2	F2A1	F ₁ A ₄	F3A3
FoAi	F ₂ A ₄	F1A2	F3AI
FoA4	F ₂ A ₂	FIA3	F3A2
FoAg	Fz Az	F, A,	F3A4
FiAi	F3A4	FoA4	F2Aj
FiA3	F3AI	FoAi	F ₂ A3
F ₁ A ₂	F3A3	F _O A ₂	F2A4
F,A4	F3A2	FoA3	F ₂ A ₂
F ₂ A ₁	FoA4	FIA3	F3A1
F2A3	FoAl	F ₁ A ₂	F3A4
F2A2	Fo Az	F ₁ A ₄	FzAz
F2A4	FoA3	۴۱۹۱	F3A3
F3A2	F2A1	FoA4	Fi A3
F3A4	F ₂ A ₃	FoAL	FIA4
F3A1	F2A4	FoA3	F _I A _I
F3A3	F ₂ A2	FoA2	F ₁ A ₂
F _i A ₄	F _O A3	F ₃ A _l	F2A4
F _I A ₂	FoAi	F3A4	F ₂ A ₃
FIA3	₽ ₀ А4	F3A2	F ₂ A ₁
F _I A1	F _o A ₂	F3A3	F ₂ A ₂

•

RI

яŻ

RÌV

RI

RI

.

.

MAIN PLOT	FERTILIZER	SUB PLOT		AZOLLA LEVELS
Fo - CONTROL	WITHOUT FERTILIZER)	Aí	-	5 tha^{1}
-	IE RECOMMENDED DOSE 10:45:45 kg NPK ha-1	A2		10 thai
OF 9	10:45:45 kg NPK ha	A3	-	15 tha-1
F2 - 75%	- 00 -	A_	_	20 tha-1
F3 - 100%	- D0-	~4	-	

FIG.I.C.LAY OUT PLAN OF TRIAL NO. T. DESIGN - SPLIT PLOT.

Year	Trial No.	e e	IRIPPU SEASCN	Ì	MUNDA	<u>Kan</u> Season	
		Date of sowing	Date of hervest	Duration (days)	Date of sowing	Date of harvest	Duration
	Ĩ	19.6.1982	14.11.1982	145	20.10.1982	2.3.1983	132
I year	II	9.6.1982 14.6.1982 19.6.1982	11.11.1982	152 147 142	22.9.1982 27.9.1982 2.10.1982	2.2.1983	129 124 119
	IIJ	-90 1 12-1-1111-1111-111-111-1111-1111-111	ng .		7.11.1982	9.3.1983	122
	I	29.6.1983	24.11.1983	145	8.10.1983	16.2.1984	128
ll Yeer	II	25.6.1983 30.6.1983 5.7.1983	17.11.1983	142 137 132	9.9. 1983 14.9.1983 19.9.1983	19,1.198 4	130 125 120
	III	-	-	-	15.10.1984	4.3.1985	139

Table 2. Duration of the crop in different seasons

`.

6.3 Observations

Sampling unit

A sampling unit consisting of ten plants was selected randomly in each plot and was demarcated for taking pre harvest and post harvest observations.

6.3.1 Preharvest observations

(a) Height of plants

The height of plents was recorded at active tillering, panicle initiation, flowering and at harvest. However, the data on the height of plents at panicle initiation and at harvest are given. Height was measured from the bottom of the culm to the tip of the longest leaf or earhead which ever was taller.

(b) Number of tillers m^2

Total number of tillers of the plants in the sampling unit was counted and recorded per m^2 in all the above four stages, though only the data at panicle initiation and harvest stage are given.

Hills were selected at rendom, from the row meant for destructive sampling after making sure that the hills

were surrounded by living hills at each stage of observation. The number of tillers was counted from each selected hill. The length and maximum width of each of the leaves on the middle tiller was measured and the leaf area was computed using the length width method. Leaf area = K x length x width where K is the adjustment factor. The value used for K wes 0.75 during all stages except harvest where the value was 0.67 (IRRI, 1972). The LAI was then derived by dividing leaf area by the corresponding land area.

(d) Dry matter production (DNP) at hervest

Dry weight of all the plant parts except roots from the sample hills used for LAI measurement was taken and expressed as kg ha⁻¹.

(e) Number of panicles m^{-2}

Number of panicles from each sampling unit was counted and the values m^{-2} were computed.

6.3.2 Post hervest observations (a) Number of filled grains panicle⁻¹

Number of fully filled grains in each panicle was counted and recorded.

(b) Sterility percentage

Number of filled grains and chaff of each panicle was counted separately and recorded and sterility percentage worked out.

(c) Thousand grain weight

Thousand filled grains of the panicles from the sampling unit were collected, counted separately and their weight recorded.

(d) Grain yield

Plot wise final grain yield was taken after cleaning and drying in the sun for 3 to 4 days. The yield data were computed at 14 per cent moisture and expressed as kg ha⁻¹.

(@) straw yield

The straw weight was recorded after complete drying. It was dried till two consecutive weights agreed. The yield of straw was expressed as kg ha⁻¹.

(f) Harvest index

This is the percentege of grain weight to total plant weight (Donald, 1962). This was calculated from the grain and straw weight as indicated below.

6.3.3 Chemical analysis

1. Soil analysis

Composite soil samples collected from each block prior to the commencement of the experiment were analysed for organic carbon content, total N, available $P_2 0_5$ and exchangeable $K_2 0$. The pH and cation exchange capacity of the soils of the respective blocks were found out. The physical properties of the soil were also determined. After the harvest of the crop, soil samples from individual plots were collected and analysed for residual organic carbon content, available $P_2 0_5$ and exchangeable $K_2 0$.

2. Plant enalysis.

NPK content of rice plants at harvest were estimated and the uptakes were calculated by multiplying the same with DMP at harvest and expressed as kg ha⁻¹.

3. Protein content of grains.

The nitrogen content of whole grains was estimated by the Microkjeldehl digestion method and the protein content was computed by multiplying the nitrogen content by a factor 6.25 (Simpson et al., 1965).

4. Fertilizer response and per cent recovery of applied fertilizer

The fertilizer response and per cent recovery of applied fertilizer were calculated in trial [] I using the following formula.

					(yt - y	yo)		
	Fert	ilize	r respo)nse =	At			
	Yt	-	Yield	of treatme	ent			
	Yo	-	Yield	of control	1			
	At	•	Fertil	lizer appli	ied in tre	eatmon	it	
			(Petna	sik et al.,	, 1971).			
% Nutrie	nt re	COVER	y =_		t uptake rtilizer nt		Nutrient uptake from control x	100
				12				

Nutrient applied

(Bartholomew and Clerk, 1965).

The fertilizer response and response per 100 kg of ezolla applied were calculated in trial III.

6.3.4 Statistical analysis

The data relating to experimants were analysed by applying the analysis of variance technique as suggested by Panse and Sukhatma (1978) for split plot design and factorial RBD. Correlation coefficients between plant growth,

yield attributes, grain and straw yields were worked out and presented for the first trial. The path analysis was also carried out to study the direct and indirect effects of different factors on grain yield in trial I.

Economics

Gross and net income par ha, benefit-cost ratio, and rupse invested per kg of nutrient applied were calculated based on the cost of cultivation, cost of input and produce for three spacings and their combination with fertilizer levels in first trial and for all combinations in third trial.

Results and Discussion

RESULTS AND DISCUSSION

Rice culture in Kerela is a low profit egri business. Continued efforts are made to cultivate rice more out of the gratification and cultural satisfaction than out of profits. But tailoring the variety with low cost inputs like Azolla with minimal fertilizer inputs and high plant population is likely to optimize the yields as egainst a minimal inputs. This was attempted in a series of experiments where each aspect was tested out. Results of such a series of trials are presented in this chapter.

The main effects of the treatments alone are discussed wherever there is no significent and consistent interactions.

Trial I. <u>Performance of IR-42 under different levels of</u> <u>fertilizer and spacing</u>

1. Growth and growth characters

1.1 Plent height

During both the years in <u>virippu</u> season tallest plants were produced with full dose of fertilizer (Table 3 a, b, c & d and 4 a, b, c & d). It was similar to 75 per cent of the recommended dose of fertilizer from panicle initiation

		lizer			Spacing !	levels ((cm)			
lov (% rec dos	of com	sended	^S 1 (20x20)	⁵ 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	\$ ₅ (15x15)	^S 6 (15x10)	Hean	
Po		0	67.1	59.3	58.9	57.3	59.0	57.9	59.9	C.D.(0.05) for F 4.29 (1.96)
1	-	50	68.0	66.8	65.7	63.2	67.4	64.4	65.9	C.D.(0.05) for S 2.45 (1.23)
2	-	75	70.9	68.4	66.0	64.2	67 .7	65.0	67.1	C.D. (0.05) for S I NS (2.46)
2 ⁷ 3	•	100	73.5	69.8	72.7	70.9	70.9	69.4	71.2	ATCUTH SHIEL & TOAGTRY
lea	n		69.9	66.1	65.8	63.9	66.2	64.4	-	C.D.(0.05) for S I NS (3.21) between F levels I NS (3.21)

Table 3 a. Height of plants (cm) at panicle initiation stage as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

Table 3 b. Virippu 1983

	til: cls	izer			Spacing	g levels	(cm)		**			
		ended	^S 1 (20x20)	. S ₂ (20x15)	S ₃ (20x10)	^S 4 (20x5)	5 (15x15)	^S 6 (15x10)	- Mean			
°0	➡.	0	73.4	76.5	75.3	71.3	77.6	75.2	74.9	C.D.(0.05) for F	1.32	(0.60)
1		50	81.8	81.7	7 9.9	75.5	78.9	78.8	79.4	C.D. (0.05) for S	1.75	(0.87)
2	-	7 5	82.1	81.9	82.6	78.3	83.8	0. EB	81.9	C.D. (0.05) for S		(1.75)
,	-	100	83.1	. 82.2	84.6	82.8	83.5	84.8	83.1	within same F levels]		110/0/
iea:	n		80.1	80.6	80.6	7 7. 0	81.0	80.4		C.D.(0.05) for S between F levels	l NS	(2.03)
	<u></u>				* 90:	45: 45	kg NPK 1	-1				

-

Values in naronthaele arn S Fm 4/-

ertil Levels		er .		<u> </u>	Spacin	g levels	5 (CM)					
(% of recom iose*)	ren:	ided	^S 1 (20x20)	³ 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^{'S} 6 (15x10)	Mean			
r _o		0	42.1	41.9	41.0	39.4	41.5	38.4	40.7	C.D.(0.05) for F.	2.39	(1.09)
°1 -		50	46.9	48.3	46 .6	43.7 [,]	43.4	44.2	45-5	C.D. (0.05) for S	1.71	(0.85)
⁷ 2 ~	ini-	7 5	50.7	49.7	46.6	45.5	47.2	47.9	47.9	C.D. (0.05) for S I		• •
F3 -	-	100	50 .9 j	48.6	48.8	46.3	47.4	47.3	48.2	within the same FI levels I	ns	(1.36)
iean			47.7	47.1	45.8	43.7	44.9	44.4		C.D. (0.05) for 5 1	ns	(1.56)
		 Te	able 3 d.	Mundal	<u>kan</u> 198	3			ter - an an an a n an	batween Flevels I		
Fertil levels			able 3 d.	Munda		3 levels	(cm)		Mean	batween F levels 1	9,	
	s Ren(er			Spacing S ₃		• 35 5	^S 6 (15x10)	Mean	batween Flevels 1		
levels (% of recome dose*) 	s Ren(er			Spacing S ₃	levels	- S		Mean 52.2	C.D.(0.05) for F	2.23	(1.028
levels (% of recome dose*) 	nen() 	ær Ided	^S 1 (20x20)	\$ ₂ (20x15)	Spacing S ₃ (20x10)	1evels S ₄ (20x5)	• 3 ₅ (15x15)	(15x10)				
levels (% of recommendate dose*) 	• •	ided 0	^S 1 (20x20) 54.4	\$2 (20x15) 53.3	Specing S ₃ (20x10) 52.6	levels S ₄ (20x5) 49.3	• 3 ₅ (15x15) 52.8	(15x10) 50.7	52.2	C.D.(0.05) for F C.D.(0.05) for S C.D.(0.05) for S	2.12	(1.066
levels (% of recommendates)		ided 0 50	^S 1 (20x20) 54.4 60.6	\$2 (20x15) 53.3 58.0	Spacing S ₃ (20x10) 52.6 55.6	levels S4 (20x5) 49.3 55.4	³ 5 (15x15) 52.8 58.7	(15x10) 50.7 56.6	52.2 57.5	C.D.(0.05) for F C.D.(0.05) for S	2.12	(1.028 (1.066 (2.133

Table 3 c. Height of plants (cm) at panicle initiation stages as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

* 90: 45: 45 kg. NPK ha⁻¹ Values in parenthesis are S.Em +/-

Fart lev e		lzer			Spacing	levels	(ca)		Mean	
(% ¢)£ MTC:	ended	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	⁵ 4 (20x5)	⁸ 5 (15x15)	^S 6 (15x10)		
Fo		0	83.0	78.4	78.0	75.0	80,2	77.4	78.7	C.D. (0.05) for F 2.06 (0.94)
Fo F,	-	50	88.8	84.2	84.8	80.8	85.6	83.0	84.5	G.D. (0.05) for S 1.99 (1.00)
F 2	-	75	90. 8	88.8	82.2	82.8	83.8	84.2	85.4	C.D. (0.05) for S I NS (2.00)
F,	-	100	91.0	88.4	88.2	85.6	86.4	84.6	87.4	Artuin Seme & TeAster Y
Mean	1		88.4	85.0	83.3	81.1	84.0	82.3	•	C.D.(0.05) for S I NS (2.38) between F levels I NS (2.38)

Table 4 a. Height of plants (cm) at harvest as influenced by fertilizer and spacing levels. Virippu 1982

Table 4 b. Virippu 1983

Fert leve		lzer			Spacing	levels	(ca)			
(% 0	E Anne	ended	⁸ 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	³ 4 (20x5)	85 (15x15)	^S 6- (15x10)	Mean	· ·
F	-	0	95.0	94.2	95.0	92.8	97. 0	94.2	94.7	C.D.(0.05) for F 3.02 (1.39)
F	-	50	100.8	100.8	. 97.6	9 6 . 8	96.8	98.0	98.1	C.D.(0.05) for S 2.02 (1.01)
F 2	-	7 5	102.4	101.2	100.4	94.6	102.6	99.4	100.1	C.D. (0.05) for S
F	-	100	105.2	100.8	101.6	95.8	103.2	102.2	101.5	within same F levels 1 NS (2.03)
Mean			1 00 .9	9 9.3	98.7	95.0	9 9.9	98.0	•	C.D.(0.05) for S I between Flevels I NS (2.44)

* 90: 45: 45 kg NFK ha-1

Values in parenthesis are S.Em +/-

.

ertiliz	zer	• •		Spacing	levels	Wcm)				
evels % of ecommen ose*)	nđeđ	^S 1 (20x20)	^S 2 (20x15)	⁵ 3 (20×10)	⁸ 4 (20x5)	^S 5 (15x15)	⁹ 6 (15x10)	Məan		
0 -	0	62.8	61.4	58.4	56.8	57.6	56.0	58.8	C.D.(0.05) for F 2.0	2 (0.92)
	50	65.8	65.4	65.4	60.8	62.0	62.0	63.6	C.D.(0.05) for S 1.3	6 (0.69)
2 -	75	68.4	68.0	65.2	62.6	65.6	64.2	65 .7	C.D. (0.05) for S I NS within same Flevels I	(1.07)
- 1 an	100	69 . 8 66 .7	68.8 65.9	67.2 64 . 1	63.8 61.0	65.6 62.7	64.0 61.6	66.5	C.D. (0.05) for S I NS	(1.35)
	T	able 4 d.	• <u>Munda</u>]	<u>ken</u> 1983		<u> </u>				-
		able 4 đ	. <u>Munde</u> l	ken 1983 Spacing	·····	(ලූූ)				-
evels % of ecommen	zer _	able 4 d. S ₁ (20x20)	 S_2	Spacing S ₃	·····	s ₅	^{.9} 6 (15z10)	Mean		-
evels % of ecommen ose*)	zer _	s ₁	 S_2	Spacing S ₃	levels (s ₅	W	Mean 62.5	C.D.(0.05) for F 2.5	7 (1.18)
evels % of ecommen ose*) 0	zer	^S 1 (20x20)	S ₂ (20x15)	Spacing S ₃ (20x10)	levels S ₄ (20x5)	^S 5 (15x15)	(15710)	- - 		
evels % of scommen ose*) 0 - 1 - S	zer nded 0	^S 1 (20x20) 66.0	5 ₂ (20x15) 64.6	Spacing S ₃ (20x10) 61.8	levels (S ₄ (20x5) 58.4	^S 5 (15x15) 62.8	(15 2 10) 61.2	62.5	C.D.(0.05) for S 2.1 C.D.(0.05) for S I	5 (1.08)
0 1 - 5	zer nded 0 50 75	^S 1 (20x20) 66.0 73.4	S ₂ (20x15) 64.6 75.0	Spacing S ₃ (20x10) 61.8 66.8	1evels 54 (20x5) 58.4 64.0	^S 5 (15x15) 62.8 67.0	(15 2 10) 61.2 65.0	62.5 68.5	C.D.(0.05) for S 2.1	7 (1.18) 5 (1.08) (2.17)

Table 4 c. Height of plants (cm) at harvest as influenced by fortilizer and spacing levels. <u>Mundakan</u> 1982

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are 5.Em +/-

မာ အ

. .

•

to harvest. The same trend was observed in the <u>mundaken</u> season as well. Full dose and 75 per cent of the recommended dose of fertilizer were comparable in most of the stages.

Irrespective of year and season, the widest spacing (20 x 20 cm) with a plant population of 25 hills m^{-2} has produced the tallest plants while the closest spacing (20 x 5 cm) with a plant population of 100 hills m^{-2} recorded the shortest plants in most of the stages. Combination effect was not significant at all stages of growth.

Inspite of the fact that the variety (IR 42) tried is a dwarf indice, the tremendous impact of N in increasing the plant height is quite evident from the results. The physiological role of N in increasing the height is well known. Several investigators have reported increased plant height with higher levels of fertilizer N (Balasubremenian, 1980; Sathasivan, 1980; Padalia, 1981).

The widest spacing with the lowest plant population of 25 hills m^{-2} produced the tallest plants. Lack of competition for the nutrients, space and light in this treatmen may be attributed as the reasons for the increase in the height of plants. In contrast the shortest plants are obtained in the closest spacing (20 x 5 cm) with the highest plant population of 100 hills m^{-2} throughout the crop growth stages in both the years. This is in conformity with the findings of Ramich (1973); Vachani et al. (1961), Mishra (1976) and Ibrahim et al.(1980).

1.2 <u>Tiller number m</u>-2

Full dose of fertilizer has resulted in the highest number of tillers followed by 75 and 50 per cent of the recommended dose in both seasons of two years (Table 5 a, b, c & d and 6 a, b, c & d).

At penicle initiation and at harvest stegss, the spacing, 20 x 5 cm with a plant population of 100 hills m⁻² has recorded the maximum tiller number in <u>virippu</u> and <u>mundakan</u> seasons of both years. The lowest number of tillers was observed in the spacing 20 x 20 cm with a plant population of 25 hills m⁻², in three out of four seasons at the same stage. The spacing 20 x 15 cm with a plant population of 33 hills m⁻² was recording invariably the next higher number than the former spacing m⁻².

Full dose of fertilizer in combination with a specing of 20 x 5 cm having a plant population of 100 hills m^{-2} recorded significantly more number of tillers than many other combinations throughout the growth stages in both years.

Table 5 a. Number of tillers m⁻² at panicle initiation stage as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

ertilizer e vels		•	S	pa cing l	evels (නා)			
% of ecommen lose*)	ided	^S 1 (20x20)	⁵ 2 (20x15)	^S 3 (20x10)	S4 (20x5)	⁸ 5 (15x15)	⁵ 6) (15x10)	Mean	
°0 -	0	313	314	343	474	352	413	368	C.D.(0.05) for F 19.5 (8.9)
	50	381	410	399	548	446	449	439	C.D.(0.05) for S 18.2 (9.1)
2 -	7 5	425	458	449	592	466	459	475	. C.D.(0.05) for S I
	L00	461	478	473	624	55 7	60 6	533	within same F levels X 36.5 (18.3)
ean		395	415	416	56 0	455	482		C.D.(0.05) for S X between F levels X 44.5 (21.9)
		Table	5 b. <u>Vi</u>	rippu 1	.983				
ertiliz	3e r	Table		<u>rippu</u> 1 Spacing		(CB)		••••••••••••••••••••••••••••••••••••••	
evels % of ecommen	-	Table S1 (20x20)			levels ^S 4	s _s	\$6 (15x10)	Mean	
evels % of ecounen lose*)	-			Spacing Satisfield	levels ^S 4	s _s	-	Mean 413	C.D.(0.05) for F 18.7 (8.6)
evels % of ecommen (ose*) 0	ndeđ	^S 1 (20x20)	^Б 2 (20я15)	Spacing S ₃ (20x10)	levels S ₄ (20x5)	^S 5 (15x15)	(15x10)		, •
evels % of ecommen (ose*) 0 1	ndeđ O	^S 1 (20x20) 343	⁸ 2 (20x15) 345	Spacing ^S 3 (20x10) 423	levels S4 (20x5) 550	^S 5 (15x15) 373	(15x10) 442	413	C.D.(0.05) for S 22.4 (11.2) C.D.(0.05) for S X
evels % of ecommen (ose*) 0 1	ndeđ 0 50 75	^S 1 (20x20) 343 436	^S 2 (20x15) 345 449	Spacing S3 (20x10) 423 441	levels S4 (20x5) 550 632	^S 5 (15x15) 373 440	(15x10) 442 485	413 481	C.D.(0.05) for S 22.4 (11.2)

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

Table 5 c.	Number of tillers m ⁻² at panicle initiation stage as influenced
	by fertilizer and spacing levels. Mundakan 1982

Pertiližer				Spacing	levels	(cm)			
levels (% of recomme dose*)	nded	^S 1 (20x20)	⁵ 2 (20x15)	^S 3 (20x10)	⁸ 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
¥ ₀ -	0	530	563	580	760	524	538	584	C.D.(0.05) for F 23.3 (10.6)
F ₁ -	50	595	5 77	568	720	652	697	635	C.D. (0.05) for S 26.1 (13.1)
F ₂ -	75	642 656	611	677 × 713	684 864	721 722	702 747	673 729	C.D. (0.05) for S within same F levels [52.1 (26.1)
r ₃ - Nean	100	656 608	671 605	635	757	655	671	, 127	C.D.(0.05) for S I batween F levels I 62.1 (30.7)
Fertili	zer		·	Spacing	levels	(ca)	-		
levels (% of recomma dose*)	nded	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	5 <mark>4</mark> (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
لمتحاد فنجر التركي المتعادي والم	~~~~	427	432	407	650	465	529	498	C.D.(0.05) for P 22.9 (10.5)
£° →	0								
-0	0 50	496	500	628	752	548	583	585	C.D. (0.05) for S 25.2 (12.6)
-			500 551 597	628 643 686	752 774 868	548 619 628	583 687 670	585 635 666	C.D.(0.05) for S 25.2 (12.6) C.D.(0.05) for S X within same F levels X ES (25.3)

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

•

•

.

Table	ба.							a 3	influenced	by	fertilizer	and
		spacing	10	vels.	Virij	opu	1982					

.

	Vertilizer evels (% of ecommended lose*)				Spacing	levels	(ca)						
(% c racc			§1 ^S 2 (20x20) (20x15)		^S 3 (20x10)	^S 4 (20x5)	⁸ 5 (15x15)	^S 6 (15x10)	Mean				
F	-	- 0	271 30	300	300	300	300	289	390	. 307	322	313	C.D. (0.05) for F 17.5 (8.0)
F F	-	59	340	271	340	444	354	382	355	C.D. (0.05) for S 16.4 (8.2)			
F2	-	7 5	3 39	356	332	436	347	379	365	C.D. (0.05) for 5 1			
P			318	369	405	524	361	369	391	within same F levels [32.9 (16.5)			
3 Mear	•		317	324	342	449	342	363	-	C.D.(0.05) for S I between F levels I 40.1 (20.2)			

Table 6'b. Virippu 1983

.

.

	ertilizer evels - (% of recommended lose*)				Spacing	levels	(ca)	_		
(%) rec			³ 1 (20x20)	^S 2 (20x15)	S ₃ (20x10)	8 ₄ (20x5)	^S 5 (15x15)	8 ₆ (15x10)	Mean	
Fo		0	237	280	370	480	330	389	348	C.D.(0.05) for F 16.5 (7.6)
F ₀ F	-	50 ·	265	312	385	60 0	352	435	392	C.D.(0.05) for S 28.3 (14.2)
F2	-	75	310	347	405	620	369	469	420	C.D.(0.05) for S I
F.	-	100	325	351	420	830	382	495	467	within same F lovels 1 56.6 (28.5)
Mea	n		284	323	395	633	358	447	•	C.D.(0.05) for S I between F levels I 65.2 (32.5)

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/- -

•

.

. — .	ertilizer evels % of recommended lose*)			· · · · · · · · · · · · · · · · · · ·	Spacing	levels	(cm)			
(% o reco			3 ₁ (20x20)	^S 2 (20x15)	^S 3 (20x10)	S ₄ (20x5)		^S 6 (15x10)	Mean	
P 0	-	0	390	· 422	4 50 ⁻	540	405	475	447	C.D.(0.05) for F 33.6 (15.4)
F ,	•	50	455	455	470	620	475	534	502	C.D. (0.05) for S 37.5 (18.8)
F 1 F2		75	460	508	540	620	519	581	538	C.D.(0.05) for S I
F 3	-	100	485	528	590	66 0	554	581	566	within some F levels I NS (37.7)
3 Mean		-	448	479	513	610	498	543		C.D.(0.05) for S I between Flevels I NS (44.2)

Table 6 c. Number of tillers m⁻² at harvest as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

.

Table 6 d. Mundakan 1983

۰.

	Fertilizer levels (% of recommended dose*)				Spacing	levels	(ca)			
(% 560			5 ₁ (20x20)	⁵ 2 (20x15)	⁸ 3 (20x10)	5 <mark>4</mark> (20x5)	^S 5 (15x15)	^S 6 (15×10)	Meen	
F	-	0	355 *	39 3	410	560	374	482	429	C.D.(0.05) for F 29.5 (13.4)
1,	-	50	380	403	522	640	462	516	487	C.D. (0.05) for 8 22.4 (11.2)
F _	-	75	430	430	5 30 '	670	492	521	512	C.D.(0.05) for S
F.	-	100	460	475	545	740	473	514	535	within same F levels \$44.8 (22.5)
Mea	\$		406	425	502	653	450	508		C.D.(0.05) for S I between F levels I 56.8 (27.7)

* 90: 45: 45 kg NFK ha⁻¹ Values in parenthesis are S.Em +/-

Irrespective of the number of plants per unit erea, the highest dose of fertilizer has resulted in highest tiller production. The influence of N in increasing the vegetative tiller production is well known. The increased tiller number observed at panicle initiation stage was maintained upto the harvest stage though there was a reduction in the number of tiller at harvest. Many of the previous workers on rice crop like Kumura (1956), and Kalyanikutty et al. (1969) have stressed the importance of N in increasing the tiller production.

The spacing likewise had a drastic impact on the tiller production. The closer spacings with more plant population recorded the maximum tiller number while the wider two spacings (20 x 20 and 20 x 15 cm) with a plant population of 25 and 33 hills m^{-2} produced the minimum number of tillars. Mishra (1976) could also observe the same trend. Many of the tillers associated with closer spacing and higher plant population did not contribute to the yield and is made clear from the yield date recorded elsewhere. Eventhough a plant facing least competition for light, nutrient and space produces lesser number of tillers m^{-2} under wider spacing compared to closer spacings, the contribution towards yield will be much more under former situations. IR 42 being a

high tillering variety, increasing the plant population per unit area by closer spacing beyond a particular level is detrimental inspite of the fact that higher number of vegetative tillers can be produced.

1.3 Leaf area index (LAI)

LAI is found to be significantly influenced by the fertilizer application (Table 7 a, b, c & d). The highest LAI was observed in treatments which received full dose of fertilizer and the lowest in zero level. It could also be observed that the full dose of fertilizer recorded maximum LAI in most of the stages and seasons and at certain stages it was similar with 75 per cent of the recommended fertilizer dose especially at harvest. The LAI was highest with the spacing, 20 x 5 cm in most of the stages particularly at harvest. It was lowest during penicle initiation end hervest stages in the widest specing 20 x 20 cm in all the seasons. No definite trend could be observed in the behaviour of other spacings. The combination effect was not significent at most of the stages.

The above results reveal that the fertilizer dose has influenced the LAI tremendously. The treatments receiving the maximum fertilizer has obviously recorded higher LAI at all steges. The lowest LAI was noticed at zero level.

	fertilizer Levels				Spacing	levels	(ca)			
(% of recommended dose*)		ended	³ 1 (20x20)	⁵ 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	\$5 (15 x 15)	^S 6 (15x10)	Mean	
7 ₀	-	0	4.27	4.62	4.63	5.30	4.24	4.36	4.57	C.D.(0.05) for F 0.83 (0.38)
71	-	50	5.30	5.12	5.22	4.67	5.68	5.12	5.18	C.D. (0.05) for S HS (0.34)
2	-	75	5.06	5.33	5.37	5.39	- 5.43	4.64	5.20	C.D. (0.05) for 5 X
3	-	100	7.21	7.41	5.47	7.17	6.91	6.35	6.92	within same F levels I NS (0.69)
lean	1		5.46	5.62	5.42	5.63	5 .57	5.12		C.D. (0.05) for 8 1 NS (0.76) between F levels

Table 7 a. Leaf area index (LAI) at panicle initiation stages as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

Table 7 b. <u>Virippu</u> 1983

-

	Fertilizer levels (% of recommended dose*)				Spacin	g levels	(ca)			
(X Iec			^S 1 (20x20)	^S 2 (20x15)	⁹ 3 (20x10)	⁸ 4 (20x5)	- ^S 5 (15x15)	^S 6 (15x10)		
FO		0	4.80	5.20	4.55	6.20	4.61	5.05	5.07	C.D.(0.05) for F 0.615 (0.282)
F	-	50	5.16	5.19	5.36	6.62	4.94	6.50	5.63	C.D.(0.05) for S 0.697 (0.351)
F_2^1	-	75	4.70	5.86	6.08	6.40	5.23	6.10	5.73	C.D. (0.05) for S X NS (0.701)
F ₃	-	100	6.37	5.92	6.23	7.38	6.30	6.05	6.37	within same Flevels NS (0.701)
Hea	n		5.26	5.54	Ś.55	6.65	5.27	5.93	•	C.D. (0.05) for S I NS (0.698) between Flevels I NS (0.698)

* 80: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

Table 7 c.	Leaf area index (LAI) at panicle initia	ation stage as influenced by
	fertilizer and specing levels. Mundak	an 1982

	Fertilizer Levels ~ (% of recommended dose*)				Spacing 1	evels (d	310)			
.(X o reco			^S 1 (20x20)	^S 2 (20x15)	⁸ 3 (20x10)	5 ₄ (20x5)	⁸ 5 (15x15)	^S 6 (15x10)	Mean	·
Fo	1 48	0	. 3.24	4.24	3.90	3.66	3.72,	4.33	3.85	C.D.(0.05) for F 1.M4 (0.525)
F		50	4.37	5.80	5.75	6.20	5.27	5.99	5.56	C.D.(0.05) for S 0.978(0.492)
P2.	-	75	5.77	6.13	6.87	- 7.90	7,17	7.35	6.86	C.D. (0.05) for S I NS (0.984)
F	-	100	5.59	6.77	6.38	7.75	7.89	6.46	6.81	Arturu some a teasta Y
Mean	1		4.74	5.73	5.73	× 6 . 38	6.01	6.03		C.D. (0.05) for S between F levels 183 (1.067)

Table 7 d. Mundakan 1983

.

		izer			Spacing	levels ((cn)			
(%	ORI	ended	^S 1 (20x20)	⁸ 2 (20 x 15)	^S 3 (20x10)	S4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
Fo	-	0	3.51	4.72	4.40	3.57	3.87	3 .9 9	4.01	C.D. (0.05) for P 0.387 (0.177)
F,	-	50	4.84	6.16	5.92	4.75	5.68	5.17	5.42	C.D. (0.05) for S 0.426 (0.214)
F2	-	7 5	5.54	6.00	6.24	6.47	6.10	5.89	6.04	C.D. (0.05) for S I NS (0.428)
F3		100	5.61	6.41	6.05	6.29	6.43	6.13	6.15	ATCHTH GOUR & TOAGTP Y
Kea	n		4.88	5.82	5.65	5.27	5.52	5.30		C.D.(0.05) for S I NS (0.430) between Flevels I NS (0.430)

.

* 90: 45: 45 kg NPK ha-1 Values in parenthesis are S.Sm +/-

,

.

Full dose of fertilizer supplies 90: 45: 45 kg NPK ha⁻¹ to the plant, the major contribution being from N. The influence of this nutrient in increasing the vegetative growth is well known. Leaf area is determined by the height of the plants and the number of tillers (Yoshida, 1981). It may be seen from the data on these two characters (Table 3 a, b, c & d, 4 a, b, c & d, 5 a, b, c & d and 6 a, b, c & d) that the full dose of fertilizer has given the highest values for both characters.

The spacing did influence LAI. The closer spacing recorded higher LAI values. Lower LAI was observed in the wider spacing. To what extent the low LAI is responsible in effecting the grain production will be discussed separately. The number of tillers was more in the closer spacings (20 x 5 cm) while plants were taller in wider spacings (20 x 20 cm). This shows that among the two characters influencing LAI, tiller number is having much greater influence rather than height. Being a spacing experiment the number of plants per unit area is altered drastically with the result that there was much variation in tiller production per unit area. Probably this has masked the influence of height in recording more LAI in treatments which has more tiller production. Murata et al.(1957

and Mehrothra et al. (1975), Mishra (1976) also recorded higher LAI values with closer spacing.

1.4 Dry matter production at harvest (DMP)

Full dose of fertilizer has given highest TMP followed by 75 and 50 per cent of the fertilizer in all the four secsons (Table 8 c, b, c 6 d).

The spacing, 20 x 15 cm recorded the highest DMP in three out of four seasons and in the remaining season it was comparable with the spacing 15 x 15 cm. The widest spacing (20 x 20 cm) was occupying the second position. The lowest DMP was noticed in the closest spacing (20 x 5 cm). (Fig.2).

Full dose of fertilizer in combination with the spacing (20 x 15 cm) having a plant population of 33 hills m^{-2} recorded the highest DMP in three out of four seasons.

The above results reveal that fortilizer treatments have influenced steadily the DMP. Maximum impact was by the highest amount of the fertilizers given. It may be recalled that in the case of tiller production also, full dose of fertilizer registered the highest tiller number at penicle initiation stage as well as at hervest.

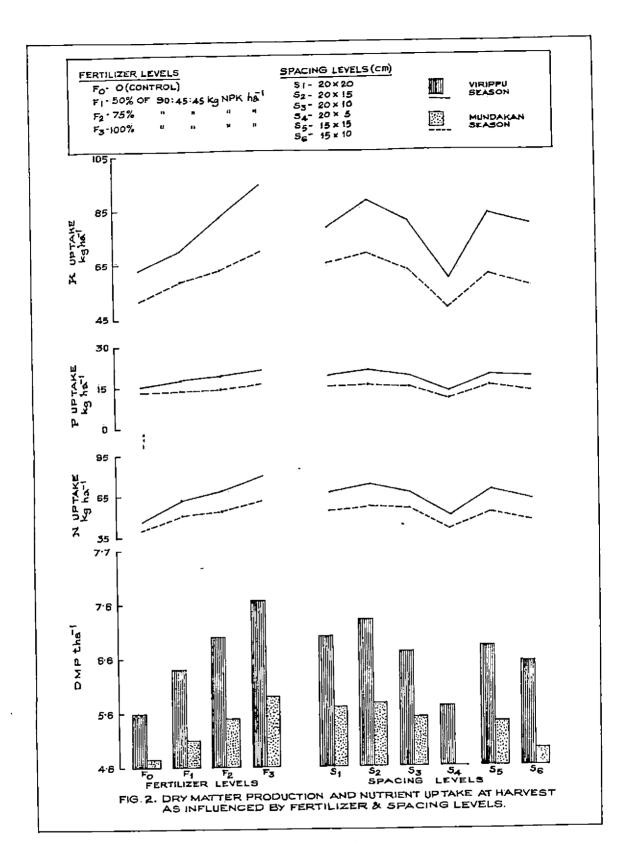


Table 8 a. Dry matter production of rice (kg ha⁻¹) at hervest as influenced by fertilizer and spacing levels. <u>Viriopu</u> 1982

fert	111	lzer			Spacing	levels	(cn)			
eve % 0 ecc	e E	ended	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	⁸ 5 (15x15)	^S 6 (15x10)	Mean	
o		ΰ	5947	6147	5495	4655	5786	5302	5555	C.D.(0.05) for F 226.3 (73.4)
1	-	50	7043	7157	5999	48 76	6699	6056	6305	C.D.(0.05) for 8 222.4 (79.0)
2	-	75	7369	7373	6846	5186	7242	6808	6804	C.D.(0.05) for 5
3	-	100	7765	7925	7681	5640	7868	7642	7425	within same F 1444.8 (223.6) levels
lean	ł		7031	7151	6505	5 0 89	6899	64 60		C.D.(0.05) for S I between F levels I

Table 8 b. Virippu 1983

.

Fert leve	tilizer			Spacing	levels	(CE)			
(% c)f Mmended	^S 1 (20x20)	³ 2 (20x15)	^S 3 (20x10)	5 ₄ (20x5)	^S 5 (15x15)	^S 6 (15z10)	Meen	
Fo	- 0	5333	5708	6157	5633	5875	5389	5686	C.D.(0.05) for F 297.6 (96.5)
x	- 50	6493	7551	6642	6263	6295	6092	65 56	C.D. (0.05) for S 316.5 (112.5
F ¹ ₂	- 75	7677	77 82	73 38	6479	7117	6996	7232	C.D. (0.05) for S 1 632.9 (318.2
r,	-100	8377	9023	7545	6929	7873	7999	79 58	within same F levels (52.9 (516.2
Mear	1	6970	7516	6921	6331	6790	66 19		C.D. (0.05) for 5 I 652.3 (322.3 between F levels I 652.3 (322.3

.

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em 4/-

Table 8 c. Dry matter production of rice (kg ha⁻¹) at harvest as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

		izer			Spacing	levels	(cn)			
leva (% a reca dosa	de Service	ended	S ₁ (20x20)	. S ₂ (20x15)	⁵ 3 (20x10)	³ 4 (20x5)	^S 5 (15x15)	⁹ 6 (15x10)	Mean	
r 0		0	5275	51 7 2	5198	4183	5101	4513	4907	C.D.(0.05) for F 236.6 (76.7)
F	-	50	6032	5900	5 96 3	4753	52 5 2	4960	5477	C.D.(0.05) for S 168.5 (59.8)
F2	-	7 5	6315	6748	6210	4986	5413	4997	5 77 8	C.D. (0.05) for S 1 336.9(169.3)
F	-	100	6 72 8	7031	6804	5437	5991	5306	6216	MICHIB BENE P. TEAGIR ?
J Meri	n		6088	6213	6044	4840	5439	4944		C.D.(0.05) for S I 406.3(198.0) between F levels I 406.3(198.0)

Table 8 d. Mundakan 1983

.

		lizer			Spacing	lavels	(അ)			
lev (%) rec dos	of om	sended	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	5 (15x10)	Mean	
Э	40	0	4759	4509	4765	4075	4897	4598	4601	C.D.(0.05) for F 138.8(45.0)
F	-	50	525 9	5 23 3	4906	4240	50 74	4736	4908	C.D.(0.05) for S 210.3(74.7)
P ,		75	5609	5657	5102	4445	5529	49 90	5222	C.D. (0.05) for S 1 420.6(211.4)
F	-	100	5805	6069	5418	4856	6101	536 9	5603	MICUIH RHUG L TEAGTH T
Nea	D		5358	536 7	5048	4404	5401	4924		C.D.(0.05) for S between F levels 1399.6(199.1)

* 90: 45: 45 kg NPK he⁻¹

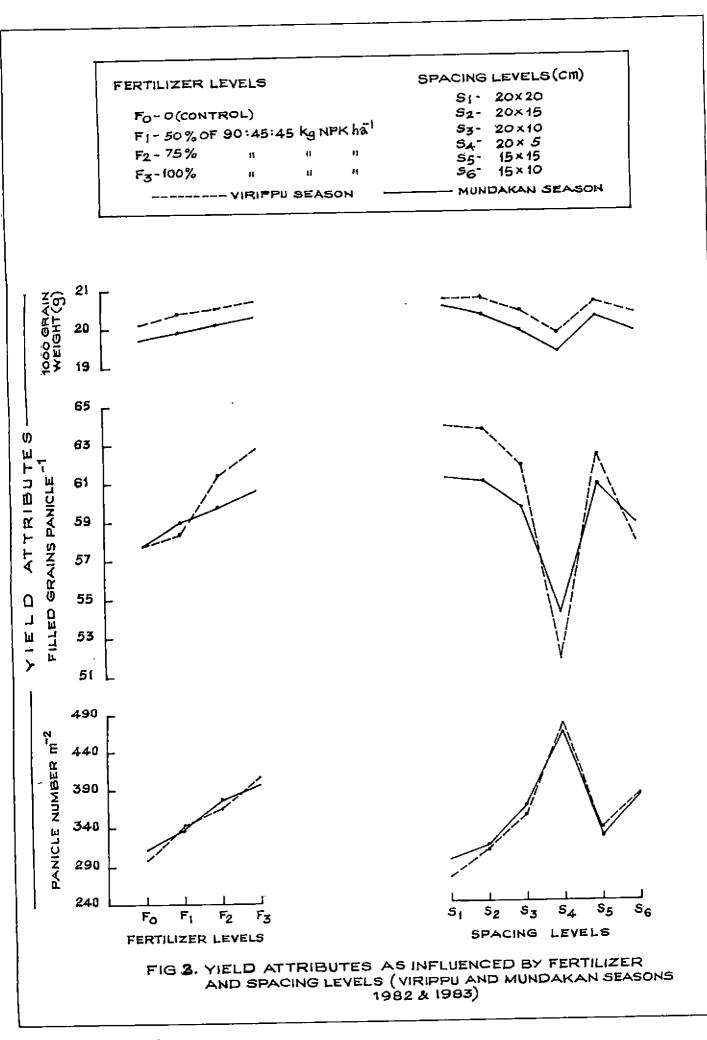
Values in paronthesis are S.Em +/-

Higher DMP was found to be associated with the wider spacings (20 x 15 and 20 x 20 cm). But these treatments were having lower number of tillers m^{-2} es against higher value in the closest spacing (20 x 5 cm). The pliability of the strew might have been increased as the number of tillers m^{-2} is increased. Cellulose conversion from starch or carbohydrates might not have been fully utilized since the competition between plants was much severe under very close spacing.

The yield attributes like number of filled grains per panicle and 1000 grain weight and grain and straw yields were also more under wider spacings (20 x 15 and 20 x 20 cm). But panicle number and sterility percentage were more in the closer spacings (20 x 5 and 15 x 10 cm). It is evident from the above results that grain yield is decided more by DMP and yield attributes like filled grains per panicle and 1000 grain weight.

It may be argued that inspite of the higher tiller production in the closer spacings of 20 x 5 and 15 x 10 cm at active tillering and panicle initiation stages (Table 5 a, b, c & d), these treatments have recorded a very low DMP. It is interesting to note that strew yield is also very low in these treatments. This is partly because of the fact that the excess tiller production has resulted in lesser accumulation of carbohydrate in each tiller thereby the carbohydrate available for synthesis of cellulose, hemicalluloses and lignin might be lesser in these treatments. It may be particularly mentioned in this connection that straw in these treatments are more pliable or less stiff probably because of the above factors.

The combination of full dose of fertilizer along with a spacing 20 x 15 cm is also significant probably because this combination has recorded highest values for grain yield as well as yield attributes.


2. Yield and yield attributes

2.1. Panicle number m⁻²

Full dose of fertilizer gave the highest number of panicles m^{-2} (Table 9 a, b, c & d and Fig.3).

More number of panicles were found to be associated with closer spacings (20 x 5 and 15 x 10 cm) having plant populations of 100 and 66 hills m^{-2} .

The combination of full dose of fertilizer with a spacing 20 x 5 cm having a plant population of 100 hills m^{-2}

Table 9 a.	Number of panicles m ⁻² as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982
------------	---

Fertilizer			Spacing	levels	(cm)			
levels (% of recommended dose*)	⁵ 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	³ 4 (20x5)	\$ ₅ (15x15)	⁵ 6 (15x10)	Kean	
F ₀ - 0	231	25 9	277	385	279	270	284	C.D.(0.05) for F 14.1 (6.4)
$F_1 - 50$	297	251	311	400	333	354	324	C.D. (0.05) for S 13.5 (6.8)
¥ ~ 75	294	330	318	416	330	354	340	C.D. (0.05) for 5 1 27.1 (13.6)
$F_3 - 100$	305	350	367	478	341	351	365	ATCUTU SCHA A TEASTSY
Mean	282	29 8	318	420	321	332		C.D.(D.05) for S X 32.9 (16.2) between F levels X 32.9 (16.2)
1	able 9 b.	Viripp	<u>u</u> (ca)				·	
T Fertiliger levels -	able 9 b.		u (cm) Spacing :	levels	(ඌ)			
Fertilizer levels - (% of recommended	Sable 9 b.		Spacing : Sa	S.	s _s	³ 6 (15x10)	Nean	
Fertilizer levels - (% of recommended dose*)		 ع	Spacing 2	S.	s _s	•	Mean 335	C.D. (0.05) for F 18.2 (8.3)
Fertiliger levals - (% of recommended dose*) F ₀ - 0	\$ (20720)	9 (20×15)	Spacing S S (20x10)	S4 (20×5)	⁵ 5 (15x15)	(15x10)		C.D. (0.05) for F 18.2 (8.3) C.D. (0.05) for S 24.1(12.1)
Fertiliger levels - (% of recommended dose*) F ₀ - 0 F ₁ - 50	\$ (20720) 234	9 (20×15) 273	Spacing : S (20x10) 360	S ₄ (2025) 460	⁵⁵ 5 (15x15) 317	(15x10) 363	335	C.D. (0.05) for S 24.1(12.1) C.D. (0.05) for S X
Fertiliger levels - (% of recommended dose*) F ₀ - 0 F ₁ - 50	\$ (20720) 234 235	9 ₂ (20×15) 273 316	Spacing : S3 (20x10) 360 380	S4 (20x5) 460 530	^S 5 (15x15) 317 326	(15x10) 363 416	335 367	C.D. (0.05) for S 24.1(12.1)

--- -

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

-

-2. --

- -

-

~

-

	commended se*) - 0		· .	Spacing 1	evels (::::)			
% of		^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	⁸ 5 (15x15)	⁹ 6 (15x10)	Məən	
°o -	0	250	263	310	380	256	318	296	C.D.(0.05) for F 16.2 (7.4)
1 -	50	268	276	316	390	309	338	316	C.D.(0.05) for 8 25.4(12.7)
¹ 2 -	75	303	349	366	40 0	327	398	35 7	C.D. (0.05) for S I NS (25.5)
°3 -	100	325	355	409	470	384	419	394	MTCUIN SCHE I TAAGINI
lean		287	311	350	410	319	368		C.D. (0.05) for S I
	Tab	le 9 d.	Mundaka	······································		J17 		- 	between Flevels I NS (29.3)
Pertili	izer		<u>Mundaka</u>	······································		-			
	izer _		<u>Mundaka</u>	n 1983		云?) 5 ₅		, Mean	
ertil: evels % of	izer _	le 9 d. 	<u>Mundaka</u> • S ₂	n 1983 Spacing 1 S ₃	evels (a	云?) 5 ₅		, Mean 329	
ertil: evels % of communet lose*)	izer ended	le 9 d. ³ 1 (20x20)	<u>Mundaka</u> S (20x15)	1983 Spacing 1 S ₃ (20x10)	evels (« S ₄ (20x5)	5 (15x15)	\$ (15x10)		C.D.(0.05) for F 18.2 (8.3)
ertil: evels % of ecomme lose*) 0 1 2	izer ended 0 50 75	le 9 d. ⁹ 1 (20x20) 250 280 320	<u>Mundaka</u> S ₂ (20x15) 298 299 326	n 1983 Spacing 1 S ₃ (20x10) 290 377 420	evels (4 S ₄ (20x5) 480 505 550	====) 55 (15x15) 293 326 353	5 ₆ (15x10) 339 399 416	329 364 398	C.D. (0.05) for F 18.2 (8.3) C.D. (0.05) for S 19.8 (9.9) C.D. (0.05) for S 1 20 6(10 0)
ertil: avels % of communication (one*) 0 - 1 -	izer ended 0 50	le 9 d. ³ 1 (20x20) 250 290	<u>Mundaka</u> s (20x15) 298 299	n 1983 Spacing 1 S ₃ (20x10) 290 377	evels (4 ^S 4 (20x5) 480 505	237) 55 (15x15) 293 326	\$6 (15x10) 339 399	329 364	C.D. (0.05) for F 18.2 (8.3) C.D. (0.05) for S 19.8 (9.9) C.D. (0.05) for S 19.8 (9.9)

Table 9 c. Number of panicles m⁻² as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

* 90: 45: 45 kg NPK ha-1

•

Values in parenthesis are S.Cm +/-

recorded more panicles m⁻² in both seasons of the first year.

Nutrients, being the most crucial factor in deciding panicle production, the highest level of fertilizer produced the maximum number of panicles m⁻² followed by the lower levels in the descending order. The role of individual nutrients such as N, P and K in determining the panicle production is very well established by many of the previous investigators (Yoshida, 1981).

The plant population through specing has definitely influenced the number of panicles m^{-2} . This is seen to be directly related to the number of tillers produced. The closer specings with plant populations of 100 and 66 hills m^{-2} recorded the highest value throughout the crop growth stage and naturally they have also produced more panicles m^{-2} . The lower number of panicles m^{-2} associated with the wider specings having a plant population of 33 and 25 hills m^{-2} might be due to the lower number of tillers m^{-2} . It is paradoxial to observe that the treatments which produced lower number of panicles - have recorded more grain yield as well as DMP.

The combination, full dose of fertilizer with spacing (20 x 5 cm) having a plant population of 100 hills m^{-2} produced more number of panicles in both seasons of the first year.

2.2 Number of filled grains per panicle

Full dose of fertilizer recorded the highest number of filled grains per panicle followed by the respective lower levels in the descending order (Table 10 s, b, c & d end Fig. 3).

The wider spacings of 20 x 15 and 20 x 20 cm produced more number of filled grains per penicle in most of the seasons. The lowest number was always associated with the closest spacing having a plant population of 100 hills m^{-2} . The combination effect was not significant.

Number of filled grains per penicle is an important yield attributing factor. The applied nutrients have gained to establish their role in influencing this yield attribute. Full dose of fertilizer produced the highest number of filled grains per penicle while the zero level resulted in the lowest number. The ratio between N, P and K being the same in all the doses, the highest level has given

Table 10 a.	Number of filled specing levels.	grains panicle ⁻¹ as <u>Virippu</u> 1982	influenced by	fertilizor and
-------------	-------------------------------------	--	---------------	----------------

.

	-			Spacing	levels	(aa)			
(% of recomme lose ^e)	ended	^S 1 (20x20)		\$ ₃ (20x10)	\$4 (20x5)	⁹ 5 (15x15)	^S 6 (15x10) -	Mean	
F ₀ -	0	61.2	60.9	60+0	51.7	61.0	59.9	59.2	C.D.(0.05) for F 0.86 (0.28)
F ₁ -	50	61.1	61.1	60.0	52-5	60.9	59.4	59.2	C.D. (0.05) for S 0.86 (0.31)
² 1 - ² 2 - ² 3 -	7 5 100	61.6 62.3	61. 6 61.8	60.0	51.8	60.8 61.4	60 .2 59.5	59.3 60.4	C.D. (0.05) for S I 1.73 (0.86) within some F levels I
'3 🗍	TOO	62.5 61.6	61.4	60 .4 60 .1	56 .8 53 . 2	61.0	59.8	00-4	C.D. (0.05) for S 11.81 (0.89) between F levels 11.81 (0.89)
,	Tab	le 10 b.	Virippu	<u>1</u> 1963	,				
Fertili	a the second	le 10 b.	Virippi	-	levels	(cm)			
Fertil: lavels (% of recomm	izer _	le 10 b. 	<u>Viripp</u> <u>S</u> (20x15)	- Spacing S ₃	1evels S4 (20x5)	s ₅	\$ ₆ (15x10)	Mean	
Fertil: Lavels (% of recomma lose*)	izer _	5 ₁	\$ ₂	- Spacing S ₃	s ₄	s ₅		Mean 56.4	C.D. (0.05) for F 4.11 (1.88)
Fertil: levels (% of recomma lose*)	izer _	^S 1 (20x20)	^S 2 (20x15)	Spacing S ₃ (20x10)	^S 4 (20x5)	^S 5 (15x15)	(15x10)		C.D. (0.05) for F 4.11 (1.88) C.D. (0.05) for S 6.87 (3.45)
Fertil: levels (% of recomme lose*) Fo - F1 -	izer_ ended 0	^S 1 (20x20) 58.9	^S 2 (20x15) 58.5	Spacing S ₃ (20x10) 57.4	^S 4 (20x5) 57.8	^S 5 (15x15) 61.2	(15x10) 54.8	56.4	C.D. (0.05) for S 6.87 (3.45) C.D. (0.05) for S 1 NS (6.01)
Fertil: levels (% of recomma dose*) F ₀ - F ₁ -	izer ended 0 50	^S 1 (20x20) 58.9 74.4	^S 2 (20x15) 58.5 55.5	Spacing S ₃ (20x10) 57.4 46.7	S4 (20x5) 57.8 44.8	S ₅ (15x15) 61.2 61.1	(15x10) 54.8 63.7	\$6.4 57.7	C.D. (0.05) for 8 6.87 (3.45)

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

Table	10	C.	Number	o£	filled	grains	panicle ⁻¹	89	influenced	by	fertilizer	and
			spacing	, le	evels.	Mundaka	<u>an</u> 1982			-		

Fert		izer			Spacing	levels	(cn)				
(% c	L	ended	^S 1 (20x20)	^S 2 (20x15)	⁸ 3 (20x10)	⁵ 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean		
Fo		0	60.5	5 9.7	59.8	49.5	60.7	59 .7	58.3	C.D.(0.05) for F	1.22 (0.39)
F0 F1	-	5Ò	60.9	61.0	60.1	52.6	60 .6	59.6	59.1	c.D.(0.05) for S	1.144(0.40)
¥2		75	61.5	61.4	59.8	53.9	61.4	59.7	59.6	C.D.(0.05) for S	2.288(1.15)
F		100	62.1	62.1	60.4	55.2	61 . 9	59.6	60.2	within same F levels	282WC (2820/
Mean	t		61.3	61.1	60:0	52.8	61.2	59.7	59.7	C.D.(0.05) for S between F levels	2,462(1,21)

Table 10 d. Mundakan 1983

		1zer	۵. مربع		Spacing 1	evels (an)			
(% rec	levels - (% of recommended lose*)		⁶ 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	⁸ 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mesn	
P ₀	n Che	O	59.8	59.9	58.3	5 1.8	58.8.	54.6	57.2	C.D. (0.05) for F 2.15 (0.69)
P ₁	-	50	60.7	60.6	58.8	54.6	60.2	59.0	58.9	C.D. (0.05) for S 1.40 (0.49)
F0 F1 F2		75	60.9	60.6	59.4	55.7	60 . 6	57.9	59.2	C.D. (0.05) for S I 2.80 (1.41)
83	anter	100	61.7	61.6	59.3	59 .3	60.9	58.8	60.3	within same F levels
Mea	211		60 .8	60 .7	58.9	55.3	60.1	57.6		C.D.(0.05) for 5 X 3.53 (1.71) between F levels

* 90: 45: 45 kg NPK ha-1

.

Values in parenthesis are S.Em +/-

.

the highest value. Hence it is also difficult to disentangle the effects of the individual nutrients.

The wider spacings of 20 x 15, 20 x 20 and 15 x 15 cm have given more number of filled grains per panicle. This is because of the fract that more nutrients are available for each plant when compared to the treatments having higher plant population. This is substantiated by the uptake data (Tables 19 a, b, c & d, 20 a, b, c & d and 21 a, b, c & d) which show more uptake of N, P and K in the wider spacings with lower plant population. The lowest number of filled grains associated with the closest spacing (20 x 5 cm) which accommodated 100 hills m^{-2} might be due to the severe competition for nutrients, light and space faced by each plant.

It may be further noted that penicle number was more in closer spacings with higher plant population even though the number of filled grains per penicle was lowest. The inputs available for each panicle will be lesser in the treatments with more number of panicles, as a result of severe compatition, thus reducing the number of filled grains per panicle. Incidently it may be seen that the uptake of N. P and K is lowest in the above treatment. So under situations of severe compatition it is the number of filled grains that matters rather than the number of panicles per unit area. This is in spite of the fact that the variety

being a panicle number type as in the case with all other dwarf indices, there is an optimum number of panicles beyond which the number of filled grains as well as yield decreases.

2. 3 Thousand grain weight

Fertilizer levels showed significant effect only in <u>virippu</u> seasons (Table 11 a, b, c & d). Full dose of fertilizer gave the highest and zero level - the lowest value of 1000 grain weight (Fig. 3). The zero level was significantly inferior to the higher levels. Same trend was observed in <u>mundekan</u> seasons also, though not significant.

The specing levels showed significance only in both seasons of the first year. Irrespective of the seasons, higher values of 1000 grain weight were associated with the wider spacings of 20 x 20 and 20 x 15 cm and the lowest values with the closest specing of 20 x 5 cm. The combination effect showed no significant effect on 1000 grain weight.

1000 grain weight is more or less a genetic character (Matsushima, 1970) fluctuating within certain limits as influenced by the environmental conditions. Here, two sets of environments have influenced. First one being fertilizer or nutrients and second one competition.

Pert		.zer			Spacing	levels	(cm)			
leve (% c reco dose)£ Mae	ended	⁵ 1 (20x20)	^S 2 [.] (20x15)	⁸ 3 (20x10)	S4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
F ₀		0	20.15	20.03	19.93	18,85	20.20	20.01	19.86	C.D.(0.05) for F 0.364 (0.118)
E,	-	50	20.38	21.05	20.11	19.30	20.38	19.85	20.18	C.D.(0.05) for 5 0.332 (0.118)
F ₂	.•	7 5	20.92	20.99	20.07	19.30	20.64		20-31	C.D.(0.05) for S I NS (0.334) within same F levels I NS (0.334)
¥2.	-	100	21.36	21.17	20.45	19.45	21.00	20.08	20.59	
He or	J .	•	20 .70	20.80	20.13	19.23	20.55	19.97		C.D. (0.05) for S I NS (0.355) between F levels I NS (0.355)

Table 11 a. Thousand grain weight (g) as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

Table 11 b. Virippu 1983

-

		iser			Spacing :	levels	(ca)			
leve (% c reco dose	of Officia	ended	^S 1 (20x20)	^S 2 (20x15)	⁸ 3 (20x10)	⁵ 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mgan	
 F		0	20.28	20.22	20.06	20.24	20.75	20.44	20.33	C.D.(0.05) for F NS (0.226)
U E	÷	50	21.06	20.24	21.22	20.50	20.42	20.18	20.60	C.D. (0.05) for S NS (0.249)
F 2	-	75	20.78	20.96	20.66	20.50	20.36	21.06	20.72	C.D. (0.05) for 5 [NS (0.499)
2	-	100	20 .7 8	21.32	20.66	20.52	21.16	20.88	20.89	AICUTE SENO & TEAST2 Y
3 Meði	8		29.73	20.66	•	20.44	20.67	20+64		C.D.(0.05) for S between F levels [NS (0.591)

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are 3.Em +/-

Table 11 c. Thousand grain weight (g) as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

Fert		285	*		Spacing	levels	(cm)				
lave (% c recc dose)£ Muae	nded	⁸ 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Meen		
Fo		0	19.54	19.7 0	19.34	19.22	20.10	19.18	.19.51	C.D.(0.05) for F	NS (0.267)
F,	-	50	20.36	19.14	.19.60	19.70	19.94	19.48	.19.70.	C.D.(0.05) for S	0.483(0.243)
F	-	75	20.80	19.90	20.30	19.60	19.88	19.84	19.89	C.D.(0.05) for S	I NS (0.486)
F	-	100	20 .30	20.44	.19.78	19.80	19,80	20.00	20.02	within same F levels	Y
Mean	1 -		20.25	19.80	19.76	19.58	19.6 8	19.63		C.D.(0.95) for S between F levels	1 HS (0.591) 1

Table 11 d. Mundakan 1983

	Fertilizer levels				Spacing	levels	(cm)	-		
(* ()f XMBe	nded	^S 1 (20520)	³ 2 (20x15)	⁵ 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
r	-	0	19.65	20.22	20.22	19.02	20.61	19 . 93	19.94	C.D.(0.05) for F 8.270 (0.087)
F ₁	' 🗕	50	20.89	20 .7 8	20.09	18.91	20 .7 8	19.67	20.19	C.D. (0.05) for 8 0.274 (0.097)
F	-	75	20.82	20.93	20.12	19.22	20 .7 9	20.30	20.36	C.D. (0.05) for S I
¥		100	21.28	21.32	20.14	19.52	20.93	20.14	20.56	within same F levels I ^{0.548} (0.275)
Mear	נ		20.66	20.81	20.14	19.16	20 .78	20.01		C.D. (0.05) for S I 0.573 (0.282) between F levels I 0.573 (0.282)

*90: 45: 45 kg NPK ha-1

Values in parenthesis are D.Em +/-

The increase in fertilizer levels showed a definite trend to increase the 1000 grain weight and vice versa.

At full dose of fertilizer, N, P and K contents of plants were higher. Higher photosynthetic activity due to the better supply of the above nutrients is evident from the result because these nutrients are involved in the photosynthesis and respiration directly or indirectly (Yoshida, 1981). N is a constituent of proteins which in turn are constituents of protoplasm chloroplasts and enzymes. P as inorganic phosphate, an energy rich phosphate compound and a coenzyme, is directly involved in photosynthesis. On the other hand, K is involved in the process of opening and closing of stomate that control CO₂ diffusion into green tissues and also activates the enzymes like starch synthetase (Fujino, 1967; Fisher and Histaco, 1968; Nitsos and Evens, 1969).

The wider spacings with lower plant population produced higher values of 1000 grain weight while closer spacings with the higher plant population recorded lower values. The wider spacing of 20 x 20 cm accommodated 25 hills m⁻² as egainst 100 hills m⁻² in the closest spacing of 20 x 5 cm i.e. about four times increase in the plant population than the former. Higher the plant population

per unit area, lower the quantity of nutrients available for each plant. Competition for light is another factor which would have affected 1000 grain weight. The severe overcrowding in the closest spacing with highest plant population would have led to maximum mutual shading with the result that there would have been lessor net photosynthesis with a consequent reduction in the translocation of the assimilates to the individual grain. The values ranged from 19.16 to 20.44 with the closest spacing having a plant population of 100 hills m⁻² whereas it varied from 19,80 to 20.81 g in the wider spacings with plant population of 25 and 33 hills m⁻². Even though the variation seems to be numerically lesser, spacing has a profound influence on the grain weight as a whole and this has probably contributed to higher grain yield in wider spacings with lower plant population as against lower grain yield in the closer spacings with higher plant population. Nair and George (1973) also recorded lower 1000 grain weight with closer spacings under Kerals conditions.

2.4. Sterility percentage

Fertilizer levels had no significant effect on the sterility percentage (Table 12 a, b, c & d) while spacing levels showed significant influence on the above character.

Table 12 c. Sterility percentage as influenced by fertilizer and spacing levels. Virippu 1982

• • • •			Spacing	levels	(යා)				
(% of (conner lose*)	nded	^S 1 (20x20)	⁸ 2 (20x15)	⁵ 3 (20x10)	S ₄ (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
°o -	0	19.8	18.8	19.0	27.8	17.9	19.7	20.5	C.D.(0.05) for F NS (1.19)
F1 -	50	18.7	17.5	19.1	24.3	19.9	19.0	19.8	. C.D. (0.05) for S_ 2.36(1.18)
² 2 -	75	17.3	19.0	19.2	28.0	19.0	19.4	20.3	G.D. (0.05) for S INS (2.37)
	100	16.6	17.0	19.6	31.1	19.3	19.3	20.5	ATCUTU RAUG : TEASTRY
lean		18.1	18.1	19.2	27.8	19.0	19.3		C.D. (0.05) for S between F levels INS (2.85)
	T	able 12	b. <u>Viri</u>	opu 1983	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,	
Pertili:		able 12 1	b. <u>Viri</u>	opu 1983 Spacing	an a	(ඌ)			
Pertili: levels (3 of recomment dose*)	2er	(20x20)	s ₂	Spacing S ₃	levols	(cn) ^S 5 (15x15)	s ₆ (15x15)	Mean	
Pertili: levels (3 of recomment lose*)	2er	s <u>1</u>	s ₂	Spacing S ₃	levols	\$ ₅	N	Mean 21.9	C.D.(0.05) for F NS (1.95)
Pertili: Lavels (3 of recomment lose*)	zer nded	^S 1 (20x20)	^S 2 (20x15)	Spacing S ₃ (20x10)	levels ^S 4 (20x5)	^S 5 (15x15)	(15x15)		
Pertili: Levels (3 of recomment lose*)	zer nded 0	^S 1 (20x20) 17.2	^S 2 (20x15) 16.9	Spacing S ₃ (20x10) 28,4	levels ^S 4 (20x5) 24.4	^S 5 (15x15) , 22.2	(15x15) 22.0	21.9	

* 90: 45: 45 kg NPK ha-1

23.1 21.3

Mean

19.5

19.5

20.9

Values in parenthesis are S.Em +/-

22.5

C.D. (0.05) for S

between F.levels

¥7.85 (3.83)

fertilizer Levels	ar .		Spacing	levels	(ca)				
(* of recommende lose*)	d ^S 1 (20x20	^S 2) (20x15)	^S 3 (20x10)	5 ₄ (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean		
r _o – o	18.9	19. 0	18.9	25.9	19.4	21.0		C.D.(0.05) for F	NS (1.16)
r 1 - 50	18.7	16.8	20.7	28.0	17.4	19.1		C.D.(0.05) for S	1.81(0.91)
P ₂ - 75	17.3	17.7	18.8	26.5	18.4	18.3		C.D. (0.05) for 5	NS (1.32)
$r_{3}^{2} - 100$	17.5	17.6	18,2	26.2	18.5	19.0		within same F levels	
iean -	18.1	17.8	19.2	26.7	18.4	19.4		C.D.(C.05) for S between F levels	NS (2.13)
Tab	le 12 d.	Mundeken	1983						
ertilizer evels			Spacing	levels	(cm)				
% of	S.	S.	S.	S.	S_	S,	Mean		

Table 12 c. Sterility percentage as influenced by fertilizer and spacing lavels. <u>Mundakan</u> 1982

1

.

- Fer lev		izer			Spacing	levels	(cm)			
(% rec	(% of recommended dose*)		^S 1 (20x20)	⁵ 2 (20x15)	^S 3 (20x10)	S ₄ (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	- -
r		. 0	16.9	15.3	15.5	24.3	15.2	17.2	17.4	C.D.(0.05) for F NS (0.38)
F,	-	50	13.7	16.0	16.9	24.4	15.6	16.0	17.1	C.D.(0.05) for S 2.12(1.06)
F,	-	. 75	17.6	17.2	16.1	22.2	13.3	16.1	17.1	C.D. (0.05) for S INS (2.73)
F ₂		100	15.1	16.1	17.8	22.3	15.1	18.4	17,5	within sene F levels 1
a Mez	n		15.8	16.2	16.6	23.3	14.8	16.9		C.D.(0.05) for S INS (2.50) between Flevels INS (2.50)

N

r

* 90: 45: 45 kg NPK ha-1 Values in parenthesis are S.Em +/-

.

,

The closest spacing (20 x 5 cm) with a plant population of 100 hills m^{-2} recorded the highest sterility in all the seasons. The combination of fertilizer with spacing did not show significant effect on the sterility percentage in most of the seasons.

In this experiment a very high fertilizer level was not tried so as to create a drastic change in the above proportion of sterility percentage. This might be the reason for the lack of significant difference in sterility percentage due to the fertilizer levels (Kalyanikutty et al., 1968; Eunus and Sadeque, 1974).

Higher sterility percentage associated with the highest plant population of 100 hills m^{-2} (Spacing 20 x 5 cm) is attributed to the severe compatition between the plants because of the overcrowding end mutual sheding. Higher the competition, higher will be the chaff. Water the range of the fartilizar applied the wider spacing (20 x 20 cm) which accommodated a plant population of 25 hills m^{-2} recorded the lowest sterility. If the population is further increased through closer spacings, competition sets in because nutrient availability is limited. This is applicable to every level of fertilizer

tried. Mutual shading consequent to close spacing is one of the reasons attributed to high spikelet sterility in the tropics (IRRI, 1965).

9. Grain yield

Grain yield was significantly influenced by fertilizer as well as spacing levels (Table 13 a, b, c 4 d). Full dose of fertilizer produced highest grain yield which was significantly superior to other fertilizer levels. The wider spacings 20 x 15 cm (33 hills m⁻²) and 20 x 20 cm (25 hills m⁻²) recorded higher grain yield while lower values were recorded by closer spacings 20 x 5 cm (100 hills m⁻²) and 15 x 10 cm (66 hills m⁻²).

Full dose of fertilizer combined with a spacing 20 x 15 cm produced the highest grain yield. As is evident from the figure (Fig.4) at other levels of fertilizer elso, a spacing 20 x 15 cm gave more grain yield.

From the results, a progressive increase in grain yield was observed with each higher level of fertilizer. During <u>wirippu</u> the increase in grain yield from zero level to full dose of fertilizer was higher than that in <u>mundaken</u> in both the years.

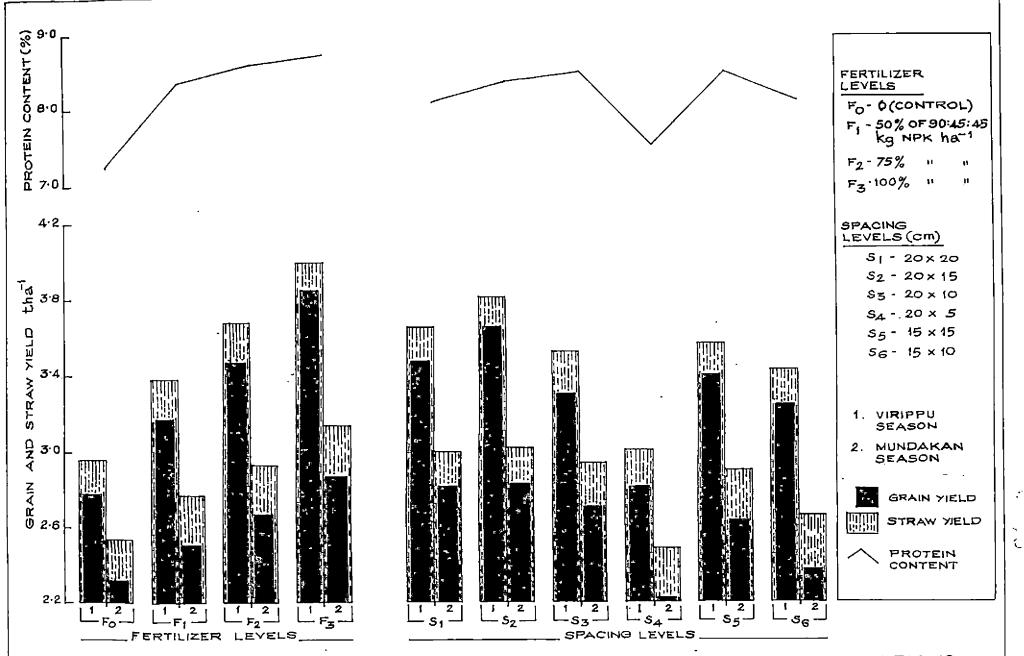


FIG. 4 YIELD OF GRAIN, STRAW AND PROTEN CONTENT AS INFLUENCED BY FERTILIZER AND SPACING LEVELS IN VIRIPPU AND MUNDAKAN SEASONS (1982 & 1983).

Table 13 a.	Grain yield (kg ha ⁻¹)	as influenced by fertilizer and spacing levels.	
	Virippu 1982	,	

Fertilizer levels			Spacing	levels.	(cm)			
(% of recommended dose*)	^S 1 (20x20)	⁸ 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
F ₀ - 0	2974	3054	2611	2186	2824	2548	2700	C.D. (0.05) for F 128.4 (58.9)
F ₁ - 50	343 3	3480	2942	2355	3320	2984	3086	C.D. (0.05) for S 125.9 (63.2)
F ₂ - 75	35 7 5 -	3626	3299	2489	3562	3361	3318	C.D. (0.05) for S I 251.7(126.5) within some F levels
F ₃ - 100 - Mesn	3907 3472	3970 3533	3812 3166	3693. 2431	3938 3411	3839 3183	3693 [.]	C.D. (0.05) for S I 305.0(150.3) between F levels
Fertiliser levels			Spacing	levels	(cn)			
levels (% of recommended dose*)	⁵ 1 (20x20)	S ₂ (20x15)	^S 3 (20x10)	ŝ4	^S 5 (15x15)	^S 6 (15x10)	Mean	
F ₀ - 0	2660	2864	3077	2843	. 2949	2708	2850	C.D. (0.05) for F 168.4 (77.3)
$F_{1} = 50$	3230	3773	3313	3081	3165	2998	326 0	C.D. (0.05) for S 166.2 (83.5)
¥₂ - 75	3884	3937	3680	325 7	3517	3519	3632	G.D.(0.05) for S I 332.4(167.1) within same F levels I
F ₃ - 100 Mean	4209 3495	4528 3776	3790 3465	3549 3183	3951 3396	4022 3312	4008	C.D. (0.05) for 5 I 402.5(198.4) between F levels I 402.5(198.4)

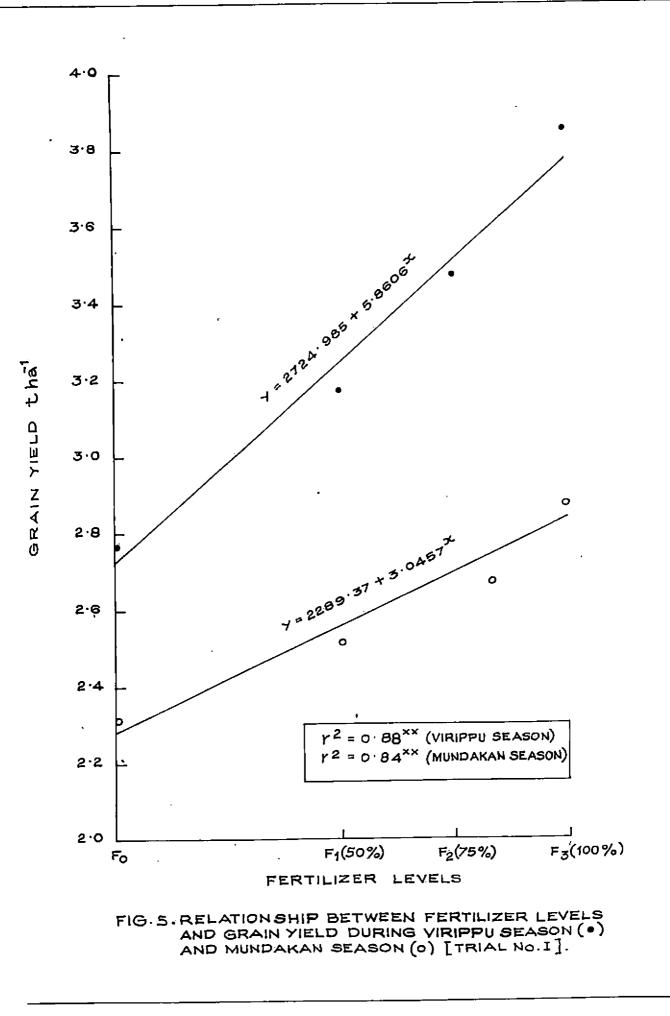

* 90: 45: 45 kg HPK ha⁻¹ Values in parenthesis are S.Em +/-

Table 13 c. Grain yield (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

Pertilizer			Spacing	levels	(@3)			
levels	^S 1 (20x20)	82 (20x15)	^S 3 (20x10)	^S 4 (20x5)	³ 5 (15x15)	^S 6 (15x10)	Mean	
² 0 - 0	2627	2534	2592	1956	2414	2095	2370	C.D. (0.05) for F 115.2 (52.8)
°1 − 50	2880	2833	2909	2170	2493	2316	2600	C.D. (0.05) for S 92.5 (46.4)
² - 75	3066	3248	296 7	2268	2598	2346	2749	C.D. (0.05) for S 1184.9 (92.9)
$r_{3} = 100$	3261	3426	3263	2602	2843	2486	2980	within same F levels 10409 (9209)
					0007	0044		C.D. (0.05) for 5 231.9(113.5)
viean Tai	2958 ble 13 d	3010 . <u>Munde</u> l	2933 <u>can</u> 1983	2249	2587	2311	<u>.</u>	botween Flevels I 251-54115-54
Ta	÷-			}	-	2311		botween F levels
Ta Vertilizer levels (% of recommended	÷-		<u>cən</u> 1983	levels S4	-	9 ₆	Mean	botween F levels
Ta Vertilizer levels (% of recommended lose*)	ble 13 d	Mundel	<u>can</u> 1983 Spacing ^S 3	levels S4	(cm) ^S 5	9 ₆	Mean 2266	between F levels 1 C.D. (0.05) for F 68.9 (31.6)
Tal Vertilizer Levels (% of recommended lose*)	ble 13 d ^S 1 (20x20)	<u>Munde</u> 9 ₂ (20 x 15)	<u>sen</u> 1983 Spacing ³ 3 (20x10)	levels S4 (20x5)	(cm) ^S 5 (15x15)	⁹ 6 (15x10)		porveen f levels X
Tal Vertilizer Levels (% of recommended lose*) For - 0 Fire - 50	ble 13 d ^S 1 (20x20) 2371	<u>Munde</u> S ₂ (20x15) 2194	<pre>(3) (20x10) (3) (20x10) (2329)</pre>	levels S4 (20x5) 2024	(cm) ^S 5 (15x15) 2403	⁹ 6 (15x10) 2275	2266	C.D. (0.05) for F 68.9 (31.6) C.D. (0.05) for S 111.3 (55.9) C.D. (0.05) for S 1 MS (111.9)
Tal Vertilizer Levels (% of recommended dose*) For - 0 F1 - 50	ble 13 d ^S 1 (20x20) 2371 2604	<u>Mundel</u> S ₂ (20x15) 2194 2621	<pre>(3) (20x10) (3) (20x10) (2329 (2439)</pre>	levels S ₄ (20x5) 2024 2107	(cm) S ₅ (15x15) 2403 2527	^S 6 (15x10) 2275 2332	2266 2438	C.D. (0.05) for F 68.9 (31.6) C.D. (0.05) for S 111.3 (55.9)

* 90: 45: 45 kg NFK ha⁻¹ Values in parenthesis are 3.Em +/-

But, the increase in yield from zero to 100 per cent of the fertilizer dose was only 35.3 and 24.3 per cent in <u>virippu</u> and <u>mundakan</u>, respectively. It is also interesting to note that the yield increase from zero to 50 per cent of the recommended dose of fertilizer was as low as 14.5 per cent in virippu and 8.5 per cent in mundekan. Further, the reasonably good yield at zero level of fertilization ranging from 2.78 to 2.85 t he⁻¹ in virippu versus 2.27 to 2.37 t he⁻¹ in mundaken, highlights the adaptability of the variety under low levels of fertility. This is very important from the farmer's point of view because they cannot afford higher doses of fertilizer application mostly due to economic constraints. Under such situations, a variety like IR 42 which can give reasonably good yield without fertilizer application is most welcome. Further, the linear response as observed from the response curve it is seen that this variety can respond to even higher fertilizer doses, beyond 90: 45: 45 kg NPK ha-1 which was tried in the present investigation (Fig.5). Thus it is evident that IR 42 has the built in ability to tolerate low fertility and at the same time respond to higher

doses of fertilization. Such varieties are always a boon for our poor farmers particularly under the present situation of severe energy crisis.

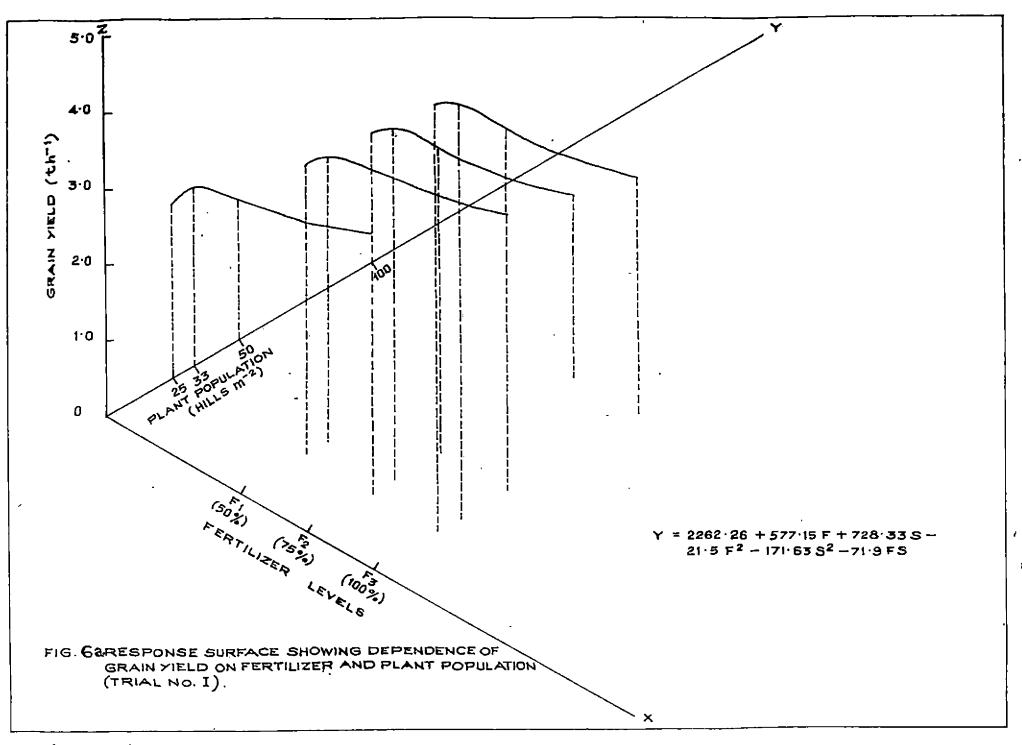
The data presented on nutrient uptake (Table 19 a, b, c, d; 20 a, b, c, d and 21 a, b, c and d and Fig.2) show that the uptake of nutrients was more during virippu compared. to mundskan and the same could be effectively utilized by the crop. As the growth duration was more in virippu, the better vegetative growth together with the well developed root system might have enabled the crop to absorb all nutrients more effectively. According to Yoshida (1981) growth of the root is closely related to the growth of thu whole plant. Further, the newer indica types with high tillering rates and good reproductive development can absorb and essimilate large amounts of N throughout the period of growth. Other major nutrients like P and K are also needed throughout the growth period (Atanasiu and Samy, 1983). Hence any reduction in growth duration as in mundakan will definitely reduce the uptake of nutrients and thereby yield. A perusal of the details regarding transplanting and harvest (Table 2) of the experiments in virippu and mundakan shows a difference in duration of about 13 days in the first year and 17 days in the second year between virippu and mundaken.

The fertilizer response as well as the percentage recovery of applied nutrients were also more in virippu compared to <u>mundakan</u> (Table 15). Burther, a higher fertilizer response and recovery percentage of applied fertilizer were observed at a lower lovel i.e., 50 per cent of the fertilizer dose in <u>virippu</u> while in <u>mundakan</u> fertilizer response was more with 75 per cent and recovery percentage of applied fertilizer was highest with 100 per cent of the recommended dose of fertilizar. This again is attributed to the difference in growth duration of the crop during virippu Probably and mundakan. With the help of the well developed root system and better vegetative growth, the crop was able to absorb more from the applied quantity of 50 per cant fertilizer dose in virippu whereas in mundakan due to the reduction in growth duration, the comparatively lesser vegetative growth and poor root system the plants were not able to utilize the applied nutrients efficiently. Hence a major part of the nutrients would have been wasted in mundakan. Therefore, more nutrients were needed to give higher values of fertilizer response and percentage recovery of applied fertilizer in mundekan.

Yield attributes such as penicle number m^{-2} , number of filled grains per panicle and 1000 grain weight were also more in the treatments receiving full dose and less with zero

1710421

101



level of fertilizer (Fig.3). These yield attributes might have influenced the grain yield.

The wider spacings with 25 and 33 hills m^{-2} were at an advantage with respect to grain yield. As the plant population was increased from 25 to 100 hills m^{-2} the yield was reduced from 3.5 to 2.8 t ha⁻¹ in <u>virippu</u> and from 2.8 to 2.2 t he⁻¹ in <u>mundakan</u>.

Prom the response surface (Fig.6 a) it is seen that when the plant population was increased from 25 to 100 hills m^{-2} , the grain yield tended to increase upto 33 hills m^{-2} and thereafter declined, at all the fertilizer levels. But at full dose of fertilizer, 25 hills m^{-2} gave yields comparable with that of 33 hills m^{-2} indicating that the former is sufficient at the highest level of fertility. Since the yield response was more with 33 hills m^{-2} , at lower fertilizer levels, it is advantageous to adopt the ebove plant population as fertilizer is costlier than seedlings.

The number of filled grains panicle⁻¹ and 1000 grain weight were highest and the sterility parcentage lowest in the wider spacings. However, the panicle number m^{-2} was lower in these treatments. Still higher grain yield was obtained because of the influence of the other yield attributes mentioned. Further, total DMP at harvast was also more in

the wider spacings (33 and 25 hills m^{-2}). The correlation coefficients between yield attributes and yield (Table 14 a) show that a positive correlation exists between filled grains per panicle and grain yield (r 0.76* in viripru and 0.85* in mundakan). Thousand grain weight also possesses a positive correlation with grain yield ($r = 0.91^{**}$ in virippu and 0.93** in mundakan); Whereas panicle number and sterility percentage had negative correlations with the grain yield. Thus it is clear that grain yield was influenced more by filled grains per panicle and thousand grain weight rather than by panicle number. This might be because of several reasons. The optimum LAI in wider spacings without any mutual shading resulted in more net assimilates in the plants. Further, more surface area was available for individual plant resulting in more uptake of nutrients which were better utilized for increasing the number of filled grains per panicle as well as thousand grain weight. It is further noted that a negative correlation exists between penicle number and grain number per panicle. The number of grains per sq.m. determines the yield capacity of a given variaty (Yoshida et al., 1972). Thus it is clear that by increasing penicle number alone by way of increasing plant population through specing cannot increase grain yield because of the negative correlation between panicle number and grains per panicle.

Factor	r Value				
	Virippu	Mundekan			
. Panicles m ⁻²	-0,217	-0.392			
. Filled grains panicle ⁻¹	0.761*	0.857**			
. Thousand grain weight	0.914**	0+931**			
. Sterility percentage	-0.309	-0.591			

Table 14a. Correlation coefficients between grain yield and yield attributes

* Significant at 5 per cent level
** Significant at 1 per cent level

The correlation coefficients between plant population with yield attributes and grain yield (Table 14 b) reveal a negative correlation with filled grains, thousand grain weight and grain yield while a positive correlation with panicle number and sterility percentage. DMP also showed a negative correlation with plant population. The influence of plant population, DHP and yield attributes on grain yield was also brought out by path analysis (Fig.6 b). From the data (Table 14 c) it is seen that thousand grain weight has got maximum positive direct effect followed by DMP on grain yield. Thousand grain weight has a negative indirect effect through number of panicles. Even though the direct effect of panicle number is positive, its indirect effect through thousand grain weight and DMP made the total effect negative. The direct effect of plant population is negative while its indirect effect through panicle number is positive. Thus, the thousand grain weight has got the maximum positive direct effect followed by DMP on grain yield as evidenced from the path analysis.

بدر رواید،		r v (elue
يريد مستقا	Factor	Virippu	Mundakan
1.	Panicles m ⁻²	0.884**	0.909**
2.	Filled grains panicle ⁻¹	-0.753**	-0+928**
) .	Thousand grain weight	-0,399	-0.412
-	Sterility percentage	0.630**	0.818**
5.	DMP	-0.857**	-0.827**
5.	Grain yield	-0.790**	-0.820**

Table 14 b. Correlation coefficients between plant population, yield attributes, and grain yield.

** Significant at 1 per cent level

1

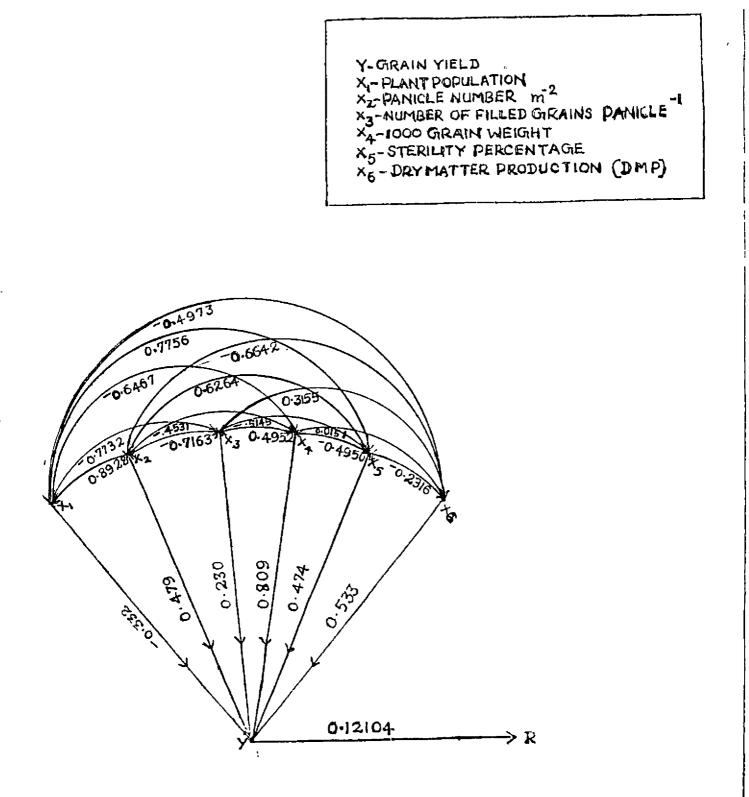


FIG. 6 b. PATH DIA GRAM _ DIRECT AND INDIRECT EFFECTS OF CAUSATIVE FACTORS ON GRAIN YIELD

X	1	2	3	4	5	6	Correlation with y
1	-0.332	0.427	-0.178	-0.523	0.367	-0.265	-0.504
2	-0.296	0-479	-0.165	-0.367	0,297	-0.354	-0.407
3	0.257	-0.343	0.230	0.401	-0.244	0.168	0.469
4	0.215	-0.217	0.114	0.809	-0.234	0.008	0.695
5	-0.259	0.300	-0.118	-0.401	0.474	-0.123	-0.127
6	0.165	-0.318	0.073	0.012	-0.110	0.533	0.356

Table 14 c. Direct and indirect effects of causative factors on grain yield

- Grain yield Plant population (hills m⁻²) Number of penicles m⁻² Filled grains papicle x1 x2
- x3

x4 x5 x6

.

- 1000 grain weight Sterility percentage
- Drymstter production (DHP)

The above results reveal that the plant population beyond 33 hills m^{-2} (spacing 20 x 15 cm) is not desirable in this variety. When the plant population was increased beyond that, the competition factor must have played a dominant role in influencing the yield. The wider spacings enjoy fairly satisfactory conditions of light and space for development and nutrient supply whereas in closer spacings, mutual shading on account of overcrowding occurs. Consequently the net photosynthesis will be reduced. Further, the nutrient supply will also be limited under closer spacings.

Thus it is evident that this variety, even though classified as a high tillering one, requires a comparatively wider spacing of 20 x 15 cm (33 hills m^{-2}) below which is not desirable for grain production. For such varieties closer spacing is definitely harmful because of the reasons already explained.

From the economics (Table 15) it could be seen that highest net return of M. 6913 and M. 3890 were obtained

Table 15. Economics of trial I (Spacing trial)

108

•

.

	<u>.</u>		Grain yield	Straw yield	Gross return	Cost of culti-	Net return	Benefit cost ratio	Ferti- lizer res-	% reco- very of applied	Return rupee-1 investee
	Treatmen	ts	kg ha ⁻¹	kg ha <mark>-1</mark>	g ha ⁻¹ Rs.ha ⁻¹		k.ha ⁻¹		ponse	ferti- lizer	on fer- tilizer
							2470	1.75		_	_
•	^F 0 ^S 1	v	2817	2939	8573	4903	3670 2726	1.75	-	-	_
		м	2499	,2631	7629		3858	1.36	-	_	_
•	F0 52	v	2959	.3090	9008	5150	3858 2121	1.41	-	-	_
		м	2354	2563	7271			1.41	-	-	-
•	Fo S3	v	2844	3102	8790	5273	3517				-
		м	2461	2631	7553		2280	1.43	-	-	-
. F.	F ₁ S ₁	/ v	3331	3575	10237	5301	4936	1.93	5.71	35.61	11.43
	1 1	м	2742	3019	8503	5501	3202	1.60	2.70	23.87	7.76
	F ₁ S ₂	v	3657	3848	11162	5598	5564	1.99	7.75	52.33	12.76
•	1 2	м	2727	2957	8411	2290	2813	1.50	4.14	29.55	6.95
	F ₁ S ₃	v	3128	3323	9579	5721	3858	1.67	3.15	22.54	7.16
•	-1 -3	м	2674	2872	8220	5721	2499	1.44	2.36	22.42	4.28
			2020	3947	11407		5857	2.06	. 6,76	38.02	9.71
•	F 2 S 1	v	3730 2925	3947	9009	5550	3459	1.62	3,15	22.39	6.15
		M	2925 3782	3952	9009 11516		5719	1.90	6.09	40.15	9,51
•	F ₂ S ₂	v	3782	3952	9369	5797	3572	1.62	5.07	33.44	6.32
		M		3749	10729		4809	1.81	4.79	32.04	6.17
•	F ₂ S ₃	V M	3490 2766	3749	8538	5920	2618	. 1.44	2.26	23.97	2.90
		М	2700	3000	0000						
0.	F ₃ S ₁ ·	v	4056	418 1	12293	5774	6519	2.13	6.88	42.39	8.48
	-31	м		3316	9474		3700	1.64	3.22	25.76	5.25
1.	F3 S2	v	4249	4396	12894	5981	6913	2.16	7.11	50.70	8.93
	3 - 2	м	3205	3461	9871	5501	38 9 0	1.65	4.72	36.57	5.46
2.	F ₃ S ₃	v	3801	3968	11570	6104	5466	1.90	5.32	34,89	5.28
	-3-3	м	2966	3271	9203	0104	3099	1.51	2.81	23.76	2,56

V - VIRIPPU M- MUNDARAN

Fertilizer levels

•

.

.

F	=	0
F	-	50% of 901 45: 45 kg NPK ha ⁻¹
F,	=	75% of 90: 45: 45 kg NPK ha^{-1}
F ₃	⊐q	100% of 90: 45: 45 kg NPK ha ⁻¹

Spacing levels

S,	=	20 x 20 cm
s ₂	=	20 x 15 cm
s	-	20 x 10 cm

•

Price of rice = R. : Price of straw = Rg. :

-

from the combination of full dose of fertilizer with a plant population of 33 hills m⁻² (spacing 20 x 15 cm) in virippu and mundakan, respectively. The benefit cost ratio was also high (2.15 in virippu and 1.65 in mundakan) in the above combination. The return per rupee invested on fertilizer was more (8. 12.76) at 50 per cent of the fertilizer dose with a plant population of 33 hills m^{-2} in virippu as against 25 hills m⁻² in <u>mundeken</u>. This might be bacause during virippu the higher plant population together with longer duration of the crop gave more grain and straw yields and thereby higher gross return eventually increasing the return per rupee in vested on fertilizer. But during mundakan the yield itself was low. Further the additional cost involved in planting @ 33 hills es against 25 hills m⁻² has resulted in reducing the return per rupes invested on fertilizer in the combination of 50 per cent of the fertilizer dose with 33 hills m^{-2} than with 25 hills m^{2} .

4. Straw yield

Full dose of fertilizer gave the highest straw yield in all the four seasons (Table 16 a, b, c & d). There wes propertienate increase in straw yield corresponding to an increase in fertilizer levels in all seasons except during

Table 16 c. Straw yield (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

Fertiliz	ter			Spacing	levels	(cm)			
levels (% of recommen dose*)	nd ed	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	³ 5 (15x15)	^S 6 (15x10)	Mean	
Po -	0	3095	3219	2997	2564	3080	2863	2970 -	C.D. (0.05) for F 111.2 (51.0
-	50	3755	3824	3180	2526	3516	3195	3349	C.D. (0.05) for 5 113.9 (57.2
- 2 -	75	3944	3899	36 89	2803	3828	3587	3625	C.D. (0.05) for S I 227.8(114.5
	10 0	4018	4113	4026	3062	4091	3990	3894	MICUIU 2008 1 TOAGTO
lean		3703	3764	3473	2 7 53	3629	3409		C.D.(0.05) for 8 I 274.4(135.5 between P levels I 274.4(135.5
	Tab	le 16 b.	Viripp	1983					
ertiliz evels		de 16 b.	Viripp	1983 Specing	levels	(<u>cs</u>)		<u></u>	
evels % of ecompen	295		<u>Viripp</u> S ₂ (30x15)	Specing S ₃	1evels S ₄ (20x5)	(cm) S ₅ (15x15)	^S 6 (15 x1 0)	Mean	
evels % of ecommon lose ⁴)	295	s ₁		Specing S ₃	s,	S ₅	•	Mean 2952	C.D.(0.05) for P 143.3(65.7
evels % of ecomment lose ⁴)	zer nded	S1 (20x20)	82 (30x15)	Specing S ₃ (20x10)	S ₄ (20x5)	^S 5 (15x15)	(15x10)		C.D.(0.05) for P 143.3(65.7 C.D.(0.05) for 8 156.8 (78.8
evels % of ecomment lose*) 0 -	zer nded 0	S1 (20x20) 2782	S ₂ (30x15) 2961	Specing ⁵ 3 (20x10) 3206	S4 (20x5) 2926	^S 5 (15x15) 3047	(15 x1 0) 2791	2952	C.D. (0.05) for 8 156.8 (78.8 C.D. (0.05) for 5 7050 7(457.8
evels % of ecomment lose*) 0 1 2	zer nded 0 50	S1 (20x20) 2782 3396	S2 (30x15) 2961 3873	Specing ^S 3 (20x10) 3206 3466	S4 (20x5) 2926 3208	^S 5 (15x15) 3047 3259	(15 x1 0) 2791 3219	2952 3404	C.D. (0.05) for 8 156.8 (78.8

* 90: 45: 45 kg NPK ha-1

Values in parenthesis are 0.2m 4/-

	Fertilizer levels -		•		Spacing	levels	(CB)		•		
(% 0	f mre	nded	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	³ 4 (20x5)	^S 5 (15x15)	⁵ 6 (15x10)	Mean		
P ₀		0	2756	2744	2713	2313	2792	2511	2638	C.D.(0.05) for F	159.1 (73.0)
¥,	-	50	32 7 5	3188	3176	2681	2866	2746	2989	C.D. (0.05) for S	108.2 (54.4)
F 2	-	7 5	3379	3638	3370	2820	2 9 27	2754	3148	C.D. (0.05) for S	(108.8)
F,	-	100	3605	3749	3681	2946	3271	2928	33 63	within some F levels	
-3 Mean	Ļ		3254	3330	3235	2690	2964	2735		C.D.(0.05) for S between F levels	I 281.8(137.1)

Table 16 c. Straw yield (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

.

.

 \vdash

Table 16 d. Mundakan 1983

.

Fertiliser		Spacing levels (cm)									
(% o reco	levels		^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10) ⁻	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean		
F	-	0	2507	2382	2548	2147	2594	2419	2433	C.D.(0.05) for F	83.6 (38.4)
F ₀ F1	-	50	2 7 62	2725	2567	2220	2651	2502	2571	C.D.(0.05) for 5	109.2 (54.8)
·	-	75 [.]	2939	2943	2642	2315	2911	2619	2 7 28	C.D.(0.05) for S	NB (109.8)
7	-	100	3027	31 7 3	2861	2539	3 198	198 2802 2933	within same F levels		
Kean	l	·	2809	2806	2655	2305	2839	2585		C.D.(0.05) for S between F levels	NG (127.2)

*90: 45: 45 kg NPK ha-1

Values in peronthesis are S.Em 4/-

the <u>mundakan</u> season of the first year wherein 75 and 50 per cent of the fertilizer levels were similar.

Wider spacings 20 x 15 and 20 x 20 cm produced more straw yield and were comparable in three seasons. The closer spacings 20 x 5 and 15 x 10 cm gave less straw yield in all the seasons.

The combination effect was significant in three seasons wherein full dose of fertilizer along with a plant population of 33 hills m^{-2} recorded the highest straw yield.

As the level of fertilizer increased, the major component being N, the straw production elso increased due to enhanced vegetative growth. The role of N in enhancing vegetative growth is well documented.

Higher straw production was always essociated with wider spacings (20 x 15 and 20 x 20 cm) at all the levels of fertilizer tried. A perusal of the data on growth parameters such as height, tiller number, LAI and DMP reveals that heightand DMP contributed more towards increased straw production. The correlation coefficients between the above characters and straw yield are given in Table 16 e. Height and DMP possess a positive correlation

		r va	lue
	Factor	Virippu	<u>Mundekan</u>
1.	Height	0.927**	0.809**
2.	Number of tillers m ⁻²	-0.157	-0,195
3.	Leaf area index (LAI)	0.475	0.487
4.	DMP	0.999**	0.998**

Table 16 c. Correlation coefficients between straw yield, growth attributes and DMP

** Significant at 1 per cent level

with strew yield (Height $r = 0.93^{**}$ in <u>virippu</u> and 0.89^{**} in <u>mundekan</u>; DMP $r = 0.99^{**}$ in both <u>virippu</u> end <u>mundekan</u>) while LAI and tiller number m⁻² have a negative correlation with the same.

It is further noted that at zero level of fertility, the average straw production was 2.9 t ha⁻¹ in <u>virippu</u> and 2.5 t ha⁻¹ in <u>mundakan</u>. This of course is a reasonably good yield especially without fertilizer epplication. It egain proves the ability of the variety to give better straw yields as well, with zero level of fertilizer. Nowadays the farmers are prefering varieties which can give reasonable straw production so an to mest the fodder requirement of their stock. The price of straw is increasing day by day because of the high demand on straw. Thus, this variety is a good choice for the Kerela farmers under the present situation where there is high demand for straw.

5. Harvest index (HI)

Fertilizer levels showed significant effect only in two seasons where the higher level of fertilizer gave

more HI (Table 17 a,b, c & d). Even in seasons where the differences were not significant full dose of

fertilizer recorded higher HI.

The application of more nutrients always results in better grain production upto a certain level. In most of the seasons, full dose of fertilizer has recorded the highest HI. However, there are ample references in the literature to show that beyond a certain level of fertilization the straw yield is more benefited rather than the grain yield (Lenka, 1971). Probably in this investigation such a high level of fertilization was not reached. Within the levels of fertilizer tried the response to grain yield was proportionately higher than that of straw yield leading to an increase in the enhancement of the HI upto the highest level of fertilization tried.

There was no definite trend with respect to spacing and in two seasons it was not significant also. Combinations also showed no significant effect on HI.

6. Chemical analy**sis** 6.1 Plant analysis 6.1.1. <u>Protein contant of grain</u>

Full dose of fertilizer recorded the highest protein content (Table 18 and Lawas $b \rightarrow 0$ and it was superior to other levels of fertilizer in all the seasons except

Table 17 e	. Har	vest	index	(HI)	88	influenced	by	fertilizer	and	spacing	levels.
	Vir	lppu	1982				_				

٠

Pertil				Spacing	levels	(ca)			
levels (% of recomm dose*)	bebne:	S ₁ (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	-
F _{0.} -	0	48.8	48.7	46.5	46.1	47.8	47.1	47.5	.C.D.(0.05) for F 0.53 (0.24)
2, -	50	47.8	47.6	48.1	47.3	48.6	48.2	47.9	C.D. (0.05) for S 0.64 (0.32)
$F_2 =$ $F_2 =$	75 100	47.5 49.3	48.2 49.1	47.2 48.6	67. 0 46.7	48 .2 49.0	48. 3 49.0	47.7 48.6	C.D.(0.05) for 3 A NS (0.65) within same F levels
"3 Mean	100	48.3	48.4	47.6	46.8	48.4	48.2	40.0	C.D. (0.05) for S X NS (0.75) between P levels X NS (0.75)

Table 17 b. Virippu 1993

-

		izer			Specing	levels (CI3)			
% ec	els of onn e*)	ended	^S 1 (20x20)	⁸ 2 (20x15)	S ₃ (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	,
, 0		0	46.9	49.2	49.0	49.2	49.2	49.2	49.1	C.D. (0.05) for F MS (0.16)
,	-	50	48.5	49. 8	48.8	49.7	49.3	48.1	· 59 0	C.D.(0.05) for 8 N9 (0.25
<u>ר</u>	-	75	49.5	49.6	49.1	49.2	48.8	49.3	49.2	C.D. (0.05) for 3 1 HS (0.51)
2	-	100	49.5	49.2	49.2	49.9	49.1	49.0	49.3	AIGUIU 2008 L TGAGIRY
3 188	n		49.1	49.4	49.0	49.5	49.1	48.9		C.D.(0.05) for S INS (0.59) between Flevels X (0.59)

* 90: 45: 45 kg NPK ha-1 Values in parenthesis are S.Em +/-

fert		zer		8	Spacing 1	evels (c	7 a)			
leve (% o reco dose	£ Enalei	nded	^S 1 (20x20)	^S 2 (20x15)	⁹ 3 (20x10)	^S 4 (20x5)	⁸ 5 (15x15)	^S 6 (15x10)	Mean	
 !		0	48.9	48.1	49.1	45.9	46+3	45.5	47.3	C.D.(0.05) for F NS (0.62)
U P.	-	50	46.8	47.0	47.8	44.7	46.5	45.8	46.4	C.D.(0.05) for S 0.99(0.50)
1		7 5	47.6	47.2	46.8	44.5	47.0	46.0	46.5	C.D. (0.05) for S I NS (\$.00)
2	-	100	47.5	47.8	47.0	46.8	46.5	45.9	46.9	Altuin Sems L Tevers 1
'3 Iean			47.7	47.5	47.7	45.5	46.6	45.8		C.D.(0.05) for S between F levels INS (1.25)

Table 17 c. Harvest index (BI) as influenced by fertilizer and spacing levels. <u>Mundaken</u>, 1982

Table 17 d. Mundakan 1983

Fert		2e r			Specing	levels	(cs)					
leve (X o reco dose)f Xine:	nd e đ	^S 1 (20x20)	^S 2 (20x15)	⁸ 3 (20x10)	5 4 (20x5)	^S 5 (15x15)	⁵ 6 (15x10)	Mean			
 F		. 0	48.8	47.2	47.9	48.5	48.1	48.5	48.2	C.D.(0.05) for F	0.46	(0.21)
U F	-	50	48.5	49.0	48.7	48.7	48.8	48.2	48.7	C.D.(0.05) for S	NS	(0.23)
-1 F.,	-	75	48.6	49.0	49.3	49.0	48.4	48.6	48.8	C.D.(0.05) for S	I NS	(0.45)
r	-	100	48.9	48.6	48.2	48.7	48.6	48.8	48.6	within same F levels	1	
3 Mean	נ		48.7	48.5	48.5	48.7	48.5	48.5		C.D.(0.05) for S batween F levels	¥a⊐	(0.54)

*90: 45: 45 kg NPK ha-1

Fertilizer levels		٤	Spacing 1	levels (a	cm)			
(% of recommended dose*)	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
$r_0 = 0$	7.09	7.52	` 7.7 B	6.27	7.82	6.99	7.24	C.D.(0.05) for F 0.103 (0.033)
F ₁ - 50	8.19	8.54	8.48	8.06	8.60	8.41	8.38	C.D. (0.05) for S 0.154 (0.050)
F ₂ - 75	8.31 9.06	9 .0 3 8 . 95	8.96 9.02	8.08 8.19	8 .9 9 8 .9 9	8 .77 8.90	8.67 8.85	C.D.(0.05) for S I 0.309 (0.155) within same F levels 1
F ₃ - 100 Hean	9.08 8.16	8.95	9.02	7.65	8.57	8.27	6.03	C.D.(0.05) for S 0.300 (0.151)
Fertilizer	le 16 b.	levels.	Poolecing 1	date f	or mundak	influenc an 1982 (ced by 1 and 1983	fertilizer and spacing 3)
levels (% of recommended dose*)	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	-	^S 5 (15x15)	^S 6 (15x10)	Meen	
$r_0 = 0$	6.94	7.14	7.81	6.23	7.54	6.86	7.09	C.D.(0.05) for F 0.196 (0.066)
$F_1 - 50$	8.17	8.41	8.48	8.11	8.60	8.40	8.36	C.D.(0.05) for S (0.165 (0.054)
$F_2 - 75$	8.25	8.84	8.88	7.83	1.58 .85	8 .57	8.54	C.D.(0.05) for S I 0.330 (0.165) within some F levels I
F ₃ - 100 Mean	8.85 8.05	8 .81 8 .30	8 .95 8 .53	7.92 7.52	8 .97 8 .4 9	8.61 8.11	8.68	C.D.(0.05) for S I 0.360 (0.181) between F levels I 0.360 (0.181)

Table 18 a. Protein content of grain (%) as influenced by fertilizer and spacing levels. (Pooled data for Virippu 1982 and 1983)

.

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

هيندل هيدل ا -00 the <u>mundakan</u> season of the first year where it was similar to 75 per cent of the recommended dose of fertilizer.

Spacing levels also showed significant effect on protein content of grain. The lowest protein content was recorded in the closer specings with a plant population of 100 and 66 hills m⁻². Plant population of 33, 44 and 50 hills m⁻² (spacing 20 x 15, 15 x 15 and 20 x 10 cm) recorded the highest values of protein content (Fig -4)

Combination offect was significant in all the seasons except the <u>mundekan</u> season of the first year. Full dose of fertilizer with a plant population of 33 hills m^{-2} and 75 per cent of the recommended dose of fertilizer along with a population of 50 hills m^{-2} were comparable in most of the seasons.

Higher values of protein content were found to be associated with higher levels of fertilizer application. The influence of higher dose of fertilization especially N, in increasing the protein content of grain is discussed elsewhere. A Breedharan (1975)4Singh end Modgal (1978) also recorded higher protein content with higher rates of N application. But this increase in protein content of full

dose of fertilizer level over the control was not much spectacular. The mean difference was only 1.61 and 1.59 per cent in the <u>virippu</u> and <u>mundakan</u> season, respectively. This again proves that protein content was also not much influenced by fertilization in this variety.

The decrease in protein content due to closer spacing was reported earlier by Beachellet al. (1972). Severe competition due to very close planting affects the nutrient absorption and nutrient content of the plant.

Thus it is seen that a wider spacing having a plant population of 33 hills m^{-2} is more beneficial with respect to grain yield as well as protein content.

6.1.2 Nutrient uptake of plants

The highest uptake of all the major nutrients such as N, P and K was noticed in full dose of fertilizer while the lowest value in zero level $(19 \pm b, c \pm d, 20 \pm b, c \pm d$ and 21 a, b, c & d).

N, P and K uptake were highest in treatments having a plant population of 33 hills m^{-2} (spacing 20 x 15 cm) in most of the seasons.

Full dose of fertilizer along with a plant population of 33 hills m^{2} (spacing 20 x 15 cm²) recorded more uptake

Vertilizer levels			Spacing]	Levels (c)					
(% of recommended dose*)	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	⁵ 4 (20x5)	⁸ 5 (15x15)	^S 6 (15x10)	Mean			
P ₀ - 0	51.5	52.00	47.21	34,28	50.19	41.30	46.01	C.D.(0.05) for P	2.137	(0.980)
F ₁ - 50	66.22	70.3 0	58.75	43.95	67.20	58.62	60.85	C.D.(0.05) for S	2.689	(1.352)
$r_2 - 75$ $r_3 - 100$	71.89 79.44	74.97 86.75	70.29 82.35	47 . 29 52 . 98	74.16 83.11	69.08 79.54	67.95 77.36	C.D.(0.05) for S within same F levels	X 5.379	(2.705)
iean 👘	67.15	71.01	64.65	44.63	68.67	62.14		C.D.(0.05) for S between P lev els	¥ 5.236	(2.632)
	Teble 19 1	o. <u>Viri</u> ş	<u>990</u> 1983	}						
Fertilizer	leble 19 1		opu 1983 Spacing 1		та)					
Fertilizer levels - (% of recommended	Teble 19 1 S ₁ (20x20)			levels (c	m) ^S 5 (15x15)	^S 6 (15x10)	Mean			
Fertilizer levels - (% of recommended lose*)	s ₁		Spacing 1 S ₃	levels (c		v	Mean 48,39	C.D.(0.05) for F	3, 529	(1.620)
Fertilizer Levels - (% of recommended Hose*) 0 - 0	^S 1 (20x20)	9 ₂ (20x15)	Spacing 1 S ₃ (20x10)	levels (c S ₄ (20x5)	⁵ 5 (15x15)	(15x10)		C.D. (0.05) for F C.D. (0.05) for S		(1.620)
Fertilizer levels (% of recommanded dose*) 0 - 0 1 50 f ₂ - 75	S ₁ (20x20) 44.27	50 .9 3	Spacing] S ₃ (20x10) 55.46	Levels (c S4 (20x5) 42.37	^{5.5} (15x15) 52.62	(15x10) 44.69	48,39	C.D.(0.05) for S	3,552	(1.785)
Fertilizer levels - (% of recommanded dose*) 0 - 0 F ₁ 50	S ₁ (20x20) 44.27 62.66	50.93 74.62	Spacing] S3 (20x19) 55.46 62.85	Levels (c S ₄ (20x5) 42.37 55.36	^S 5 (15x15) 52.62 60.44	(15x10) 44.69 \$7.76	48.39 62.28		3.552	

Table 19 a. N uptake (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

* 90: 45: 45 kg NFK ha-1

. . .

Table 19 c. N uptake (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

Fert		.zes			Spacing	levels	(cm)			
leva (% o reco dose	£ Maria	ended.	^S 1 (20x20)	⁵ 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
F ₀		0	42.86	42.65	46.39	30.86	44.37	-34.96	40.35	C.D. (0.05) for P 2.663(1.222)
Ê,		50	57.95	57.91	-57.40	42.38	52.77	48.56	52.83	C.D. (0.05) for S 2.697(1.356)
F ₂	439)	75	-61-03	-67.85		43.23			56 .74 63.66	C.D. (0.05) for S I 5.395(2.712) within same F levels I
^r 3 Mean		100	68.86 57.68	77.51 6 1.4 8	·71.84 ·59.86	50.74 41.80			03+00	C.D. (0.05) for 5 1 between F levels 1 5.540(2.785)

Table 19 d. Mundekan 1983

	lizer			Spacing	levels ((cni)			
level (% of recom dose	f mended	^S 1 (20x20)	⁵ 2 (20x15)	⁸ 3 (20x10)	⁵ 4 (20x5)	^{· S} 5 (15x15)	⁵ 6 (15x10)	Mean	
F.	- 0	39.17	37.16	41.94	29.72	41.71	36 .68	37.73	C.D. (0.05) for F 1.446(0.663
¥0 Р,	- 50	48.46	49.00	46.93	37.25	48.85	€4.25	45.79	C.D. (0.05) for S 2.410(1.215
F ₂	- 75	51.82			39 .9 8	54.65 63.79		50 . 82	C.D.(0.05) for S I MS (2.431 within some F levels I
^P 3 Mean	- 100	59.42 49.72			45 .9 8 38,23	52.25		57670	C.D.(0.05) for 9 NS (2.256 between Flevels 1 NS (2.256

* 90: 45: 45 kg NPK ha-1

Table 20 a. P uptake (kg ha⁻¹) as influenced by fertilizer and spacing lovels. <u>Virippu</u> 1982

Perti		ter			Spacing 1	levels (cm)			
level (% of recom lose*	Ka n t	nded	⁵ 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	⁸ 5 (15x15)	⁸ 6 (15x10)	Mean	
 0		0	15.82	17,54	14.91	11.50	15.64	14.15	14.93	C.D. (0.05) for F 1.113(0.511)
1	-	50	19.24	21.58	16 .91	12.37	18.39	16.80	17.55	C.B.(0.05) for S 0.901(0.453)
2	-	75 100	20.36 21.55	19 .43 22.45	18.50 22.25	12.36 14.43	20, 88 22,08	19 .74 21.90	18.54 20.78	C.D. (0.05) for S [1.802 (0.986 within same F levels]
З	-	100					19.25	18.15	20110	C.D. (0.05) for 9 1 1.996(1.003)
		T	19.24 able 20 k	20.25	18,14	12.67				between Flevels I 1.500(1.003.
erti.	.112	······································								between F levels X
lean	.5	······································	able 20 k		<u>pu</u> 1983				- Mean	Detween F levels A
erti.	.s : man	zer ,	able 20 k	5. <u>Viri</u> p	opu 1983 Spacing	levels S4	(cm)	5 ₆	Mean	Detween F levels A
erti evel X of cse*	.s : man	zer ,	able 20 k	5. <u>Viri</u> p	opu 1983 Spacing ^S 3	levels S4	(cm) S ₅	5 ₆	Mean 15.62	C.D. (0.05) for F 1.039(0.476)
erti evel X of cse*	.s : man	zer nded	able 20 k S1 (20x20)	5. <u>Virip</u> 5 ₂ (20x15)	9 <u>pu</u> 1983 Spacing ^S 3 (20x10)	levels S ₄ (20x5)	(cm) S ₅ (15x15)	\$6 (15x10)	<u></u>	Detween F tevels Y
erti evel X of com 0 1	.s : man	zer nded 0	able 20 k S1 (20x20) 14.62	5. <u>Virip</u> 52 (20x15) 16.04	200 1983 Spacing S3 (20x10) 17.48	levels S4 (20x5) 12.80	(cm) ^S 5 (15x15) 17.05	^S 6 (15x10) 17.53	15.62	C.D. (0.05) for F 1.039(0.476 C.D. (0.05) for S 1.036(0.521 C.D. (0.05) for S 1.036(0.521
erti evel X of ecom	.s : man	zer nded 0 50	able 20 k S ₁ (20x20) 14.62 17.64	5. <u>Virip</u> 52 (20x15) 16.04 21.77	2000 1983 Spacing S3 (20x10) 17.48 18.69	1@Vels S4 (20x5) 12.80 13.74	(cm) ^S 5 (15x15) 17.05 17.66	^S 6 (15x10) 17.53 17.14	15.62 17.77	C.D. (0.05) for F 1.039(0.476 C.D. (0.05) for S 1.036(0.521

* 90: 45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

.

Table 20 c. P uptake (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

.

Fertilizer		S	oacing le	vels (a	a)			
levels - (% of recommended dose*)	^S 1 (20x20)	⁵ 2 (20x15)	⁵ 3 (20x10)	⁵ 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Nean	
r ₀ - 0	12.89	_ 13.33	14.03	9.68 [.]	14.11	12.40	12.75	C.D.(0.05) for F 0.709(0.325)
$F_1 = 50$	15.54	15.42	15.57	9.97	13.69	12.68	13.81	C.D. (0.05) for S 0.678(0.341)
$F_2 - 75$ $F_3 - 100$	14.38 16.42	17.14 18.44	16.69 17.54	10 .71 12 .7 0	13.96 15.97	12.90 14.17	14.30 15.87	C.D.(0.05) for S X 1.356(0.682) within some F levels X 1.356(0.682)
Meen	14.81	16.08	15.96	10.76	14.43	13.06	23007	C.D. (0.05) for S I 1.417(0.712) between F levels I 1.417(0.712)
Tał	ble 20 đ.	Mundeka	<u>m 1983</u>					
Pertilizer	ble 20 đ.	Mundeka	<u>an</u> 1983 Specing	levels	(cm)			
	. S ₁	<u>Kundeka</u> S ₂ (20x15)	Spacing S ₃	54	(cm) ^S 5 (15x15)	S ₆ (15x10)	Nean	
Fertilizer levels (% of recommended dose*)	. S ₁	5 ₂	Spacing S ₃	54	^S 5	~	Nean 12.56	C.D.(0.05) for F 0.502(0.230)
Fertilizer levels - (% of recommended dose*) Fo - 0	^S 1 (20x20)	⁵ 2 (20x15)	Spacing S ₃ (20x10)	⁵ 4 (20x5)	^S 5 (15x15) 14.14	(15x10)	a natura nativ i	C.D. (0.05) for F 0.502(0.230) C.D. (0.05) for S 0.666(0.335)
Fertilizer levels - (% of recommended dose*) Fo - 0	\$ <u>1</u> (20x20) 12.97	⁵ 2 (20x15) 12.50	Spacing S ₃ (20x10) 13.69	5 ₄ (20x5) 8.69	^S 5 (15x15) 14.14 14.29 15.47	(15x10) 13.36	12.56	

* 90: 45: 45 kg NPK ha⁻¹ Velues in parenthesis are S.Em +/-

Table 21 c. K uptake (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

	lizer			Spacing	levels ((@3)			
level: (% of recom dose*	nended	^S 1 (20×20)	^S 2 (20x15)	5 ₃ (20x10)		⁸ 5 (15x15)	.8 ₆ (15x10)	Mean	
·····	0	67.17	73.72	67.84	49.32	59.50	63,25	65.13	C.D. (0.05) for F 4.916(2.256)
F ₀ -	50	76.90			53.33		77.05	75.64	C.D. (0.05) for 5 3.706(1.863)
~1 F, -	.	82.69			56.56	90.64	84.98	82.89	C.D. (0.05) for S 17.413(3.727)
-	100		103.38		62.50	99.70	98.62/	92.91	AICUID 2400 L TEASTR
F ₃ - Mean	100	80.61	- •	- —	55.42			•	C.D.(0.05) for S 18.452(4.249) between F levels 1

Table 21 b. Virippu 1983

....

		izer			Spacing	levels ((ඌ)					
lev (X) rec dos	of ong	rended	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10).	Mean			
Fo	-	0	55.89	58.73	66.70	59.05	65.46	59.05	60.81	C.D. (0.05) for P 5.1	38 (2.3	58)
		50 [′]	70.25					69.81	73.68	C.D. (0.05) for S 5.3	11 (2.6	<i>1</i> 0)
		7 5	83.39			67 .27	86.56	85.59	82.04	C.D. (0.05) for S 1 within same F levels10.6	22 (5.3	11)
¥.,	-	100	95.16	114.97	92.99	70.86	98.51	98.64	95.19			
Mea			76.17	87.03	80.01	64.85	81.25	78,27		C.D. (0.05) for S X12.7 between F levels X12.7	79 (6.3	L)

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are 5.Em +/-

12ப

Table 21 c. K uptake (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

	er	,		Spacing	levels	(
levels (% of recommen dose*)	deđ	⁸ 1 (20x20)	^S 2 (20x15)	^S 3 (20x10)	^S 4 (20x5)	s; (15x15)	⁸ 6 (15x10)	Mean	
r_o -	0	54.07	57.06	52.81	43.73	55.78	49.60	52.17	C.D. (0.05) for F 5.180 (2.3
•	50	66.05	68.12	68.52	49,21	58,21	56.63	61.12	C.D. (0.05) for S 2.996 (1.5
P	75 00	71.49 79.55	83 .8 8 89 .4 4	74.09 79.31	52.85 56.01	63.26 75.11	60.83 63.68	67.73 73.88	C.D. (0.05) for S I 5.993 (3.0 within same F levels I
3 Mean	UU	67 . 79	74.62	68.68	50.45 ⁻		57.73	/3.00	C.D.(0.05) for 3 1 7.777 (3.9 between F levels 1 7.777 (3.9
			Mundel	<u>kan</u> 1983			•		
Fertiliz	er				levels	(cm)		······································	
Fertiliz levels (% of recommen dose*)	•	⁸ 1 (20x20)	\$ ₂		levels ((cm) ^{Si} 5 (15x15)	S ₆ (15x10)	Mean	
levels (% of recommen dose*)	•		\$ ₂	Spacing S ₃	levels (^S 5	· · · · ·	Mean 50.62	C.D.(0.05) for F 3.880 (1.7
levels (% of recommen dose*) F0 ~	ded 0	(20x20)	^S 2 (20x15)	Spacing S ₃ (20x10)	levels S ₄ (20x5)	^S 5 (15x15)	(15x10)		C.D.(0.05) for F 3.880 (1.7 C.D.(0.05) for S 4.870 (2.4
levels (% of recommen dose*) F0 ~	යසය 0 5	(20x20) 56.41	^S 2 (20x15) 51.10	Spacing S ₃ (20x10) 49.26	levels S4 (20x5) 43.50	^S 5 (15x15) 53 . 49	(15x10) 49.94	50.62	

* 90: 45: 45 kg NPK he⁻¹ Values in parenthesis are S.Em +/-

of all the above nutrients in all the seasons except the <u>mundekan</u> season of the second year.

A perusal of the data on grain and strew yield (Table 13 a, b, c & d and 16 a, b, c & d) show that the above combination which recorded the highest values in the uptake of N, P and K was giving the highest grain and straw production.

6.2 Residual nutrient status of the soil after cropping

Treatments which received full dose of fertiliser recorded the highest value with respect to organic carbon available P and exchangeable K content (Table 22 a, b, c & d, 23 a, b, c & d and 24 a, b, c & d). The lowest values were associated with the zero level. Even if large quantities of fertilizers are added only a portion of them will be utilized by the crop. The rest of the portion will be edded to the soil reserve. This might be the reason for the significant difference between the fertilizer treatments with respect to residual nutrient status.

Residual nutrient content of the soil was lowest in the closer spacings (20 x 5 and 15 x 10 cm) which a plant population of 100 and 66 hills cm^{-2} while the highest

Fert Leve		zer			Spacing	levels	(cm)			
(% 0	£ Mune	ndeđ	^S 1 (20x20)	^S 2 (20x15)	^S 3 (20я1с)	^S 4 (20x5)	⁸ 5 (15x15)	⁵ 6 (15x10)	Mean	
F ₀	-	0	1.01	1.59	1.52	1.40	1.47	1.45	1.54	C.D.(0.08) for F 0.082 (0.037
F ₁	-	50	1.61	1.54	1.56	2.66	1.46	1.63	1.57	C.D.(0.05)for S 0.093 (0.046
F 1 P2 F3	-	75	1.82	1.60	1.56	1.52	1.54	1.70	1.63	C.D. (0.05) for S I 0.186 (0.093
F _	-	100	1.71	1.73	1.63	1.56	1.85	1.50	1.66	within same F levels 1 0.186 (0.093
Mean			1.74	1.62	1.57	1.54	1.58	1.57		C.D. (0.05) for S I 0.221 (0.109 batween F levels I 0.221 (0.109

Table 22 a.	Residual organic carbon content (%) of soil as influ	enced by
,	fertilizer and spacing levels. Virippu 1982	-

			zer _		S	p acin g le	vols (a	a) (a			
(7 . re	svei s of scor	E IICie	nded	^S 1 (20x20)	^S 2 (20x15)	⁹ 3 (20x10)	⁹ 4 (20x5)	⁸ 5 (15x15)	⁵ 6 (15x10)	Meen	、
F	3	426	0	1.56	1.51	1.49	1.38	1,39	1.51	1.47	C.D. (0.05) for F 0.038 (0.017)
F		-	50	1.62	1.60	1.58	1.36	1.59	1.56	1.55	C.D. (0.05) for S 0.040 (0.020)
F	2	-	7 5	1.63	1.59	1.56	1.37	1.58	1.55	1.55	C.D. (0.05) for S I 0.081 (0.041)
F.	3	-	100	1.69	1.68	1.63	1.54	1.63	1.59	1,62	MTCHTH SWER N. TEAGI2 Y
Me	au			1.63	1.59	1.56	1.4%	1.55	1.55		C.D.(0.05) for S I Detween P levels I 0.097 (0.047)

* 90: 45: 45 kg NPX ha⁻¹ Values in parenthesis are S.Em +/-

Table 22 c. Residual organic carbon content (%) of soil as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

<u>۱</u>

1

-

ertilizer	- <u> </u>		Spacing	levels	(ca)				
(% of recommended lose*)	\$ <u>1</u> (20x20)	^S 2 (20z15)	⁵ 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	⁸ 6 (15z10)	Mean		
F ₀ - 0	1.47	1.47	1.49	1.31	1.47	1.44	1.44	C.D. (0.05) for F	0.016 (0.00
r ₁ - 50	1.58	1.56	1.54	1.41	1.55	1.52	1.53	C.D. (0.05) for S	0.022 (0.01
r ₂ - 75	1.61	1.58	1.54	1.44	1.56	1.53	1.55	C.D. (0.05) for S	¥ NS (0.03
$F_3 = 100$	1.64	1.60	1.54	1.45	1.58	1.54	1.56	within seme F levels	L ·
7					<u> </u>	4 64		C.D.(0.05) for S	I NS (0.03
, 	1.58 le 22 d.	1.55 <u>Mundaka</u>		1.40	1.54	1.52		between F levels	X 43 (0.03
Tab Fertilizer			<u>en</u> 1983	1.40 g levals					X 193 (0.03
Tab Fertilizer levels (% of recommended			an 1983 Spacing S ₃	g levals S ₄	(cm) ^S 5	1.57 ³ 6 (15x10)	Mean		X 13 (0.03
Tab Fertilizer levels (% of recommended dose*)	le 22 d. ^S 1	<u>Kundeka</u> S ₂	an 1983 Specing S ₃	g levals S ₄	(cm) ^S 5	з ₆	Mean 1.49		X NS (0.03 0.022(0.009
Tab Fertilizer levels (% of recommended dose*) F ₀ - 0	le 22 d. ^S 1 (20x20)	<u>Bundaka</u> S ₂ (20x15)	<u>en</u> 1983 Specing S ₃ (20x10)	g levals S ₄ (20x5)	(cm) S5 (15x15)	^S 6 (15x10)	• • •	between F levels	A
Tab Fertilizer levels (% of recommended dose*) F ₀ - 0 F ₁ - 50	le 22 d. ^S 1 (20x20) 1.56	<u>S</u> 2 (20x15) 1.53	<u>en</u> 1983 Spacing S ₃ (20x10) 1.51	g levala S ₄ (20x5) 1.39	(cm) S5 (15×15) 1.49	³ 6 (15x10) 1.49	1.49	between F levels C.D.(0.05) for F C.D.(0.05) for S C.D.(0.05) for S	0.022(0.009 0.023(0.011
Tab Fertilizer levels (% of reconcended dose*) F ₀ - 0 F ₁ - 50	Le 22 d. ^S 1 (20x20) 1.56 1.59	<u>S</u> 2 (20x15) 1.53 1.57	<u>en</u> 1983 Spacing ^S 3 (20x10) 1.51 1.53	g levals S ₄ (20x5) 1.39 1.44	(cm) S5 (15x15) 1.49 1.56	³ 6 (15x10) 1.49 1.54	1.49 1.55	between F levels C.D.(0.05) for F C.D.(0.05) for S	0.022(0.009

* 90: 45: 45 kg NFK ha⁻¹ Values in parenthesis are S.Em +/-

Table 23 a. Residual P content of soil (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

Ferti	-	er			Spacing	levels	(cm)					
level (% of recom dose*	reel	nded	⁵ 1 (20x20)	⁵² (20x15)	^S 3 (20x10)	⁸ 4 (20x5)	³ 5 (15x15)	⁸ 6 (15x10)	Mean			
Fo	-	C	17.06	16.42	16.29	11.80	19.38	15.87	16.14	C.D. (0.05) for F	1.819	(0.834)
P,	-	50	22.06	22.05	21.46	17.35	22.28	21.38	21.10	C.D. (0.05) for 5	1.807	(0.908)
F2	-	7 5	25.01	23.19	23.81	16.92	22.64	21.35	22.15	c.D. (0.05) for S	ļ _N s	(1.817)
F	-	100	28.46	29.19	24.43	18.50	26.26	22.92	24.94	within same F levels	, T	•-•
3 Mean			23.15	22.71	21.50	16.14	22.64	20.35		C.D.(0.05) for S between F levels	I NS	(2.156)

Table 23 b. Virippu 1983

Portili	.zer		5	Spacing 1	levals (c īn)					
levels (% of recomme lose*)	- Inded	⁶ 1 (20x20)	⁵ 2 (20x15)	⁵ 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	⁵ 6 (15x10)	Mean	-		
Po -	0	17.01	17.28	16.97	13.99	17.60	15.42	16.51	C.D.(0.05) for F	1.445	(0.663)
?, -	50	23.00	22.15	21.12	17.14	19.85	20.03	20.55	C.D.(0.05) for S	1.610	(0.809)
² 1 - ² 2 -	-	23.62	22.46	22.94	16.16	23.36	21.37	21.65		I NS	(1.619)
	100	28.04	26.36	22.64	16.41	23.71	21.55	23.45	within same F levels	1	
'3 iean	200	23.12	22,06	20.92	16.43	21,13	19.59		C.D.(0.05) for S between F levels	I no	(1.899)

Table 23 c. Residual P content of soil (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

	ilizer		-	Spacing 3	levels	(ca)			
level (% of recor dose	e mended	S 1 (20x20)	^S 2 (20x15)	⁸ 3 (20x10)	^S 4 (20x5)	³ 5 (15x15)	⁵ 6 (15×10)	Mean	
æ.	- 0	18.05	14.49	15.73	12.78	15.34	15.90	15.38	C.D.(0.05) for F 2.993 (1.346)
F ₀ F ₁	- 50	20.09		16.75	14.34	18.29	18.70	17.32	C.D. (0.05) for 5 2.235 (1.124)
-1 F2	- 75	18.73	19.87	18.16	13.02	20.09	21.59	18.57	C.D. (0.05) for S X 4.471 (2.248)
	-100	24.03		23.37	14.49	20.59	14.51	20.28	Within Sene r levelsi
"3 Mean		20.22		18.50	13.66			•	C.D. (0.05) for S I 5.074 (2.551) between F levels I 5.074 (2.551)

Table 23 d. Mundaken 1983

.

Fortilizer			Specing	levels	(෩)			-	
levels - (% of recommended dose*)	^S 1 (28x20)	^S 2 (20x15)	⁵ 3 (20x10)	S4 (20x5)	^S 5 (15x15)	⁹ 6 (15x10)	Mean		G-Mainlet
$z_0 - 0$	18.04	15.83	15,54	15.24	16.41	17.17	16.37	C.D. (0.05) for P 2.387 (1.)	09 5)
F, - 50	20.17		20.88	16.39	21.83	20.81	20.30	C.D. (0.05) for S 1.599 (0.1	804)
$E_{2} = 75$	22.97		23.49	16.90	22.20	22.55	21 .91	C.D. (0.05) for S X NS (1.	608)
$F_{3} = 100$	25,87	25.65	23.31	18,29	25.42	22.67	23.54	within same F levols I	
Mean	21.76	21.64	20.80	16.71	21.46	20.80	•	C.D. (0.05) for S I NS (2. between F levels I	033)

-

.

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em 4/-

Table 24 a. Residual K content of soil (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Virippu</u> 1982

fertilizer Levels —			Spacing	levels	(CB)			
(% of recommended iose*)	^S 1 (20x20)	^S 2 (20x15)	⁸ 3 (20x10)	^S 4 (20x5)	^S 5 (15x15)	^S 6 (15x10)	Mean	
-6 F ₀ - 0	140	129	130	120	133	129	130	C,D.(0.05) for F 4.7 (2.2)
P ₁ - 50	148	142	139	123	146	141	140	C.D. (0.05) for S 8.0 (4.0)
² 2 - 75	.156 159	152 152	153, 157	147 146	149 162	142 155	150 155	C.D. (0.05) for S I NS (8.1) within some F levels I NS (8.1)
r ₃ –100						•	200	C.D. (0.05) for S I N5 (7.5)
Mean Teble	151 2 24 b.	144 <u>Virippu</u>	145 1983	134	147	142		between Flevels I as trus.
						142		between Flevels I do (7.5.
Teble Fertilizer levels - (% of recommended			1983 Specing S ₃		(cm) ^S 5	142 	Mean	between Flevels I do (7.5)
Teble Fertilizer levels (% of recommended dose*)	e 24 b. s ₁	Virippu S ₂	1983 Specing S ₃	levels S4	(cm) ^S 5	s ₆	Mean 131	between F levels I do (7.3) C.D. (0.05) for F 7.2 (3.3)
Teble Fertilizer levels - (% of recommended dose*) F ₀ - 0	s 24 b. S ₁ (20x20)	<u>Virippu</u> S ₂ (20x15)	1983 Specing S ₃ (20x10)	10 V01\$ S4 (20x5)	(cm) ^S 5 (15x15)	⁵ 6 (16x10)	λ 	Detwoen , Teners Y
Teble Fertilizer levels - (% of recommended dose*) F ₀ - 0	s 24 b. ^S 1 (20x20) 137	<u>Virippu</u> S ₂ (20x15) 128	1983 Specing S ₃ (20x10) 130	1evels S4 (20x5)	(cm) ^S 5 (15x15) 131	^S 6 (16×10) 133	131	C.D. (0.05) for F 7.2 (3.3)

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

7.9.7

ertilizer			Spacing 1	levels	(cm)				
(% of scommended lose*)	^S 1 (20x20)	^{\$} 2 (20x15)	^{\$} 3) (20x10)	5 ₆ (20x5)	³ 5 (15x15)	^S 6 (15x10)	Mean		
°0 - 0	136	131	126	124	129	134	130	C.D.(0.05) for P	5.0 (2.3)
- 50 1 - 50	154	153	151	138	152	153	150	C.D. (0.05) for S	6.6 (3.4)
2 - 75	155	152	157	137	153	156	152	C.D. (0.05) for S	INS (6.7)
3 - 100	165	162	157	141	1 5 6	157	156	within same F levels	Å.
	400	440			4.40			C.D. (0.05) for S	, NS (6.6)
ieen 	152 Fable 24	149 d. <u>Mund</u>	148 lakan 19	' 135 83	148	150		between F Zevels	L
: Fertilizer			ىرىن دەرىيە مەرىيە تەرىپىيە ت تەرىپىيە تەرىپىيە تەرى	83		150		between F Levels	
		d. <u>Mund</u>	l <u>akan</u> 19	83 levels ^S 4		s ₆	Mean	between F Levels	Ţ unu
ertilizer evels	Sable 24	d. <u>Mund</u>	lakan 19 Spacing ^S 3	83 levels ^S 4	(යා) ^ප 5	s ₆	Mean 130	between F Levels C.D.(0.05) for F	Ţ.6 (3.5)
ertilizer evels % of ecommended lose*) 0 - 9	Sable 24 S1 (20x20)	d. <u>Mund</u> , S ₂ (20x15)	lakan 19 Spacing S ₃ (20x10)	83 levels S ₄ (20x5)	(cm) ^S 5 (15x15)	^S 6 (15x10)			A,
ertilizer evels % of ecommended lose*) 0 - 0 1 - 50	S ₁ (20x20) 134	d. <u>Mund</u> S ₂ (20x15) 127	lakan 19 Spacing ^S 3 (20x10) 130	83 levels S4 (20x5) 126	(cm) ^S 5 (15x15) 131	\$6 (15x10) 132	130	C.D.(0.05) for P C.D.(0.05) for S C.D.(0.05) for S	4, 7.6 (3.5) 6,1 (3.1)
fertilizer levels (% of recommended lose*) fo = 0 fo = 50	S ₁ (20x20) 134 154	d. <u>Mund</u> 52 (20x15) 127 151	lakan 19 Spacing S ₃ (20x10) 130 145	83 levels S4 (20x5) 126 125	(cm) ^S 5 (15x15) 131 150	\$6 (15x10) 132 149	130 146	C.D.(8.05) for P C.D.(0.05) for S	4, 7.6 (3.5) 6,1 (3.1)

Table 24 c. Residual K content of soil (kg ha⁻¹) as influenced by fertilizer and spacing levels. <u>Mundakan</u> 1982

* 90: 45: 45 kg NPK ha-1

Velues in parenthesis are S.Em +/-

values were associated with the wider spacings (20 x 20 and 20 x 15 cm) having a plant population of 25 and 33 hills m^{-2} . The lower values of residual nutrient content of soil associated with higher plant population might be due to the severe competition resulting in thorough exhaustion of nutrients from the soil.

Combination effect was not significant in all the seasons.

Trial II. Effect of eqs of seading and planting density on rice variety IR 42

1. Growth and growth characters

1.1 Height of plants

In both the years and at all stages fertilizer levels did not influence plant height during <u>virippu</u> and <u>mundakan</u> seasons (Table 25 a, b, c & d and 26 c, b, c & d). The narrow difference in the fertilizer levels tried is attributed as the reason for the same.

At hervest, age of seedling had no effect on plant height during <u>virippu</u> in both years whereas in <u>mundakan</u>, 25 days old seedlings recorded more plant height than 35 days old seedlings. Howevever, the plant height of 25 days old seedlings was similar with that of 30 days old seedlings. This is because the older seedlings take more time to get established in the main field and naturally planting younger seedlings are to be preferred for the production of taller plants.

Fertilizer (% of recommended dose*)		Age (Days)			Number (- Mean		
		⁴ 1 25	^A 2 30	A ₃ 35	N ₁ 2	N2 4	^N 3 6	
F,	(50)	72.9	69.5	69.8	71.3	71.5	69,3	70.7
F ₁ F ₂	(75)	73.0	71.4	71.3	72.7	71.5	71.5	71.9
Mean		73.0	70.4	70.5	72.0	71.5.	70.4	

Table 25 a. Height of plants (cm) at panicle initiation stage as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

Age			Number o	of seedlings	5 hill ⁻¹	Mean		
Age (Days)			~				C.D.(0.05) for F	NS (0.0
			^N 1	^N 2	^N з		$C_D_{(0.05)}$ for A	1,56 (0,
-							C.D.(0.05) for N	NS (0.
A ₁	25		73.6	73.4	71.9	73.0	C_{P} (0.05) for FA	NS (1.
А ₂ А2	30		70.4	70.7	70.2	70.4	C.D. (0.05) for FN	NS (1.)
A	35	,	72.1	70.4	69.1	70.5	C.D.(0.05) for AN	NS (1.3
Mean			72 .0	71.5	70.4			

Table 25 b. Virippu 1983

Fertilizer	Age (Days)			<u>N</u>	. Mean		
(% of recommended dose*)	A ₁ 25	^A 2 30	а <mark>А</mark> 35	^N 1 2	^N 2 4	^N Э 6	
F ₁ (75)	80.7	80.8	80.5	81.1	80.2	80.6	80.7
F [±] (100) Mean	81.1 80.9	81.6 81.2	82.2 81.3	82.2 81.7	81.8 81.0	80.7 80.7	81.6

b		Number o	f seedlings	hill ⁻¹	Mean			
Age (Day:	s)	N,	N2	^ї N ₃		C.D.(0.05) for F C.D.(0.05) for A	ns Ns	(0.616) (0.754)
		2	4	6	<u>_</u> _	C.D. (0.05) for N	NS NS	(0.754)
л	25	80.8	86.2	80.7	80.0	C.D.(0.05) for FA	NS	(1.067)
A 1				-	80.9	C.D.(0.05) for FN	NS	(1,067)
A_2	30	83,1	80.5	80.0	81.2	C.D.(0.05) for AN	NS	(1.306)
^А з	35	81.7	81.0	80.7	81-3			

* 90: 45: 45 kg NPK ha⁻¹

Table 25 c. Height of plants (cm) at panicle initiation stage as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

Fertilizer	Age (Days)			Number of seedlings hill-1			Mean
(% of recommended dose*)	л ₁ 25	A2 30	А _. 35		-		
F ₁ (50) F ₂ (75) Mean	57.7 59.8 58.7	60.1 62.1 61.1	58.2 58.8 58.5	58.2 60.3 59.3	59.3 59.9 59.6	58.5 60.4 59.5	58.7 60.2

·	Number (of seedling	s hill ⁻¹	Mean			
Age (Days)	N1 2	^N 2 4	N3 6		C.D.(0.05) for F C.D.(0.05) for A C.D.(0.05) for N	NS 2.19 NS	(0.881) (1.078) (1.078)
A ₁ 25 A ₂ 30 A ₃ 35 Mean	60.1 60.6 57.1 59.3	58.6 61.8 58.5 59.6	57.6 61.0 59.9 59.5	58.7 61.1 58.5	C.D.(0.05) for FA C.D.(0.05) for FN C.D.(0.05) for FN C.D.(0.05) for AN	ns NS NS	(1.525) (1.525) (1.868)

Table 25 d. Mundakan 1983

.

.

Fertilizer	Age (Days)			Number (Number of seedlings hill ⁻¹			
(% of recommended dose*)	A ₁ 25	A2 30	^А з 35	N ₁ 2	^N 2 4	^N 3 6		
	80.7	80.8	80.5	81.7	79.7	80.6	80.7	
-1	81.1	81.6	82.2	82.2	81.8	80.7	81.6	
F ₂ (100) Mean	80.9	81.2	81.3	81.9	80.8	80.7		

<u> </u>	Number o	Mean			
Age (Days)	N ₁ 2	^N 2 4	N ₃ 6		
	80.8	81.2	80.7	80.9	
1 '	83.1	80.5	80.0	81.2	
A ₂ 30 A ₃ 35	82.0	80.6	81.4	81.3	
'3 lean	81.9	80.8	80.7		

c.p.(0.05)	for	F	NS	(0.624)
C.D.(0.05)	for	A	NS	(0.764)
C.D.(0.05)	for	N	NS	(0.764)
C.D.(0.05)	for	FA	NS	(1.080)
C.D.(0.05)	for	FN	NS	(1.080)
C.D. (0.05)	for	AN	NS	(1.322)

* 90: 45: 45 kg NPK ha^{-1}

moble 25 a.	Height of plants (cm) at harvest as influenced by fertilizer levels,
TADIC 10 C.	age and number of seedlings hill ⁻¹ . <u>Virippu</u> 1982

	Age (Days)			Number of seedlings hill ⁻¹			Mean	
ertilizer _ % of ecommended lose*) ,	A ₁ 25'	A2 30	А ₃ 35	^N 1 2	N ₂ N ₃ 4 6			
(50)	88.1	89.0	87.4	88.4	87.7	88.4	88.2	
(50) (75)	88.9	87.8	88.7	89.8	88.8	86.8	88.4	
r (75) 2 Mean	88.5	88.4	88.1	89.1	88.2	87,6		

	Number (of seedling	s hill ⁻¹	Mean			
ge — Jays)			N2	-	C.D.(0.05) C.D.(0.05)		ns Ns
-1-,	^N 1 2	^N 2 4	* 3 .6		$_$ C.D. (0.05)		NS
					C.D.(0.05)		NS
25	8920	87.7	88.8	88.5	C.D.(0.05)		NS
	88.7	89.0	87.5	88.4	C.D.(0.05)	for AN	NS
30 35	89.7	88.0	86.5	88.1			
an san	89.1	88.2	87.6				

Table 25 b. Virippu 1983

Fertilizer	Age (Days)			Number	. Mean		
(% of recommended dose*)	A1 25	A2 30	^А з 35	N ₁ 2	N2 4	^N 3 6	,
 F. (75)	99.8	101.7	101.9	102.4	100,2	100.7	101.1
1	104.4	102.3	102.9	105 .9	102.6	101.3	103.2
F ₂ (100) Mean	102.1	102.0	102.4	104.1	101-4	101.0	

		*				_		
		Number of seedlings hill ⁻¹			Mean			
Age (Day		N	N2	N3.		C.D.(0.05) for F	NS	(1.220)
		2	4 '	6		C.D.(0.05) for A	NS	(1.495)
						C.D.(0.05) for N	NS	(1.495)
Α.	25	102.2	101.8	102.3	102.1	C.D.(0.05) for FA	NS	(2.114)
A2	30 [,]	105.3	100.7	100.0	102.0	C.D.(0.05) for FN	NS	(2.114)
2 A ₂	35	104.8	101.7	100.7	102.4	C.D.(0.05) for AN	NS	(2.589)
Mean	נ	104.1	101.4	101.0				

* 90: 45: 45 kg NPK ha⁻¹

•••

Fertilizer		Age (Days)			Number	of seedlings	<u>hill⁻¹</u>	
(% 0	f mended	A ₁ 25	А ₂ 30	^А з 35	^N 1 2	^N 2 4	N3 6	Mean
F,	(50)	69.3	72.3	68.4	70.9	70.0	69.2	70.0
F2	(75)	70.3	71.1	69.2	70.4	70.7	69.6	70.2
2 Mean		69.8	71.7	68.8	70.7	70.3	69.4	

Table 25 c. Height of plants (cm) at harvest as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

Age		Number of seedlings hill ⁻¹					
(Day:	5)	^N 1 2	N 2 4	^N 3 6	Mean		NS (0.795)
Α.	25	71.7	70.0	67.8	69.8	C.D.(0.05) for N	NS (0.974)
A2	30	71.2	72.0	72.0	71.7	C.D.(0.05) for FA C.D.(0.05) for FN	N5 (1.378) NS (1.378)
^A 3 Mean	35	69.2 70.7	69.0 70.3	68.3 69.4	68.8	C.D.(0.05) for AN	NS (1.688)

Table 25 d. Mundakan 1983

Fertilizer		Age (Days)			Number (Number of seedlings $hill^{-1}$		
(% of recon dose	mended	A ₁ A ₂ 25 30		А ₃ 35	N ₁ 2	^N 2 4	^N 3 6	- Mean
F,	(75)	87.8	85.9	86,7	87.2	87.3	85.8	86.8
F ₂	(100)	89.0	88.2	84.5	88.O	87.0	86.7	87.2
2 Mean		88.4	87.0	85.6	87.6	87.2	86.2	

Age		Number	of seedling	s hill ⁻¹	Mean				
(Day		N ₁	N2	N _З	-	C.D.(0.05) C.D.(0.05)		ุพร 1.75	(0.702 (0.861
		2	4	6		- C.D.(0.05)			(0.861
Υ.	25	89.0	89.7	86.5	88.4	C.D.(0.05)	for FA	2.47	(1.215
1 12	30	88.4	86.3	86.5	87.0	C.D.(0.05)	for FN	NS	(1.215
×3	35	85.4	85.5	85.8	85.6	C.D.(0.05)	for AN	NS	(1.488
з 1ean	ı	87.6	87.2	86,2					

* 90: 45:45 kg NPK ha⁻¹

The number of seedlings per hill showed no significant difference between stages irrespective of the seasons and years.

1.2 <u>Number of tillers m⁻²</u>

During <u>virippu</u> and <u>mundakan</u> seasons of both the years, fertilizer levels showed significant effect on tiller production (Table 27 a, b, c & d and 28 a, b, c and d). Higher level of fertilizer was found to be superior to lower level at all stages. Tiller production, being a vegetative character, has been influenced significantly by higher level of fertilizer particularly N.

During <u>virippu</u> seasons of both the years 30 days old seedlings were found to be better upto panicle initiation stage. But by the time of hervest no significant difference was noted among the age levels indicating that seedlings upto 35 days old can be used for planting. But during the <u>mundekan</u> seasons number of tillers produced upto panicle initiation stage was highest with 30 days old seedlings and was comparable with that of 25 days old Seedlings at hervest. IR 42, being a late maturing variety having a duration of 140/145 days, 25 days old seedlings

 Fertilizer		Age (Days)		Number	Mean			
(% c	of mmended	A ₁ 25	A ₂ 30	A ₃ 35	N ₁ 2	^N 2 4	^N 3 6	/
	(50)	441	440	428	380	444	485	436
1 F	(75)	504	481	467	433	485	534	484
²2 Mear		473	461	448	407	465	518	

Table 27.4.7 Number of tillers m⁻² at panicle initiation stage as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

_	Number of seedlings hill-1			- Mean		
Age -					C.D.(0.05) for F	13.6 (6.72)
(Days)	· м ₁	N 2	N ₃		C.D.(0.05) for A	16.7 (8.24)
	2	4	6			16.7 (8.24)
A. 25	388	508	522	473	C.D.(0.05) for FA	NS (11.64)
1	426	455	501	461	C.D.(0.05) for FN	NS (11.64)
A ₂ 30 A ₃ 35	406	432	506	448	C.D.(0.05) for AN	29.0(14.26)
Mean	407	465	510		•	

Table 27.6; <u>Virippu</u> 1983

Fertilizer		Age (Days)			Number	- Mean		
(% of recomm dose*)	- nended	А ₁ 25	A2 30	A ₃ 35	N 2	N2 4	^N 3 6	
 F.	(75)	542	576	576	541	544	608	565
T	(100)	578	625	602	544	621	639	602
F ₂ Mean		560	601	589	542	583	624	

Age (Days)		Number	Number of seedlings hill ⁻¹					
(Day	s)	N ₁ 2	^N 2 4	^и з 6				
A.	25	511	582	588	560			
A_	30	566	595	641	601			
A_	35	550	572	645	589			
A ₁ A ₂ A ₃ Mean		542	5 83	624				

C.D.(0.05)	for	F	11.8	(5.80)
C.D.(0.05)	for	А	14.5	(7.11)
C.D.(0.05)	for	N	14.5	(7.11)
C.D.(0.05)	for	FA	20.4	(10.05)
C.D.(0.05)	for	FN	20.4	(10.05)
C.D.(0.05)	for	AN	25.0	(12.31)

* 90: 45: 45 kg NPK h

Values in parenthesis ---- +/-

Table Table Number of tillers m^{-2} at panicle initiation stage as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

Fertilize:	c	A	ge (Days)	<u> </u>	Number	of seedling	s hill ⁻¹	_ Mean
(% of recommende dose*)	ed	A ₁ 25	A ₂ 30	^A 3 35	^N 1 2	^N 2 4	^N 3 6	
F ₁ (50)	599	572	616	556	608	622	595
P_ (75)	609	637	627	567	. 627	6 78	624
Mean		604	604	621	562	618	650	

Age		Number	of seedling	gs hill ⁻¹	. Mean			
(Days	;)	N,	N ₂	N.		C.D.(0.05) for H	F 14.1	(6.91)
		2	4	6		C.D.(0.05) for A	a ns	(8.46)
						C.D.(0.05) for 1	N 17.2	(8.46)
A.,	25	577	608	628	<u>6</u> 04	C.D.(0.05) for I	A 24.3	(11.96)
A_	30	532	623	658	604	C.D.(0.05) for H	FN 24.3	(11.96)
A_	35	577	622	666	621	C.D.(0.05) for A		(14.65)
Mean		562	618	650		x <u>y</u>		

Table 272d. Mundakan 1983

L

Ferti	lizers	A	ge (Days)		Number	of seedling	s hill ⁻¹	
(% of	nended	. ^A 1 25	A2 30	^А з 35	^N 1 2	^N 2 4	^N 3 6	Mean
F,	(75)	533	555	564	515	568	56 9	551
F,	(100)	581	594	540	481	638	597	57 2
Mean		558	574	553	498	603	583	

_		Number	of seedlin	gs hill ⁻¹	. Meañ		
Age (Day		N ₁	N ₂	N ₃		C.D.(0.05) for F	12.5 (5.90)
		2	4	6		C.D.(0.05) for A	14.1 (6.90)
						C.D.(0.05) for N	14.1 (6.90)
⁴ 1	25	475	618	580	558	C.D.(0.05) for FA	19.9 (9.80)
A2	30	508	600	615	574	C.D. (0.05) for FN	19.9 (9.80)
۹ <u>.</u>	35	511	593	554	553	C.D.(0.05) for AN	24.4 (11.79)
lean	L	498	603	583			

* 90: 45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

Fertilizer	Age	(Days)		Number	of seedling	s hill ⁻¹	Mear
(% of recommended dose*)	A ₁ 25	^А 2 30 ,	A ₃ 35	N1 2	^N 2 4	N3 6	
F, (50)	357	349	370	327	372	378	359
F_ (75)	376	391	377	341	407	396	381
Mean	367	370	374	334	390	387	

Table 28 a. Number of tillers m^{-2} at harvest as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

Age		Number	of seedling	gs hill ⁻¹	. Mean			
(Days	.)	N1 2	N2 4	N3 6		C.D.(0.05) for F C.D.(0.05) for A	15.4 NS	(7.59) (9.29)
			-			C.D.(0.05) for N	18.9	(9.29)
Α,	25	340	379	380	367	C.D.(0.05) for FA	NS	(13.15)
7	30	330	397	385	370	C.D.(0.05) for FN	NS	(13.15)
А ₂ Аз	35	332	393	396	374	C.D.(0.05) for AN	NS	(16.10)
Mean		334	3 9 0	387				

Table 28 b. Virippu 1983

Fertilizer (% of		Age (Days)		Number	of seedling	s hill ⁻¹	Mean
recommended dose*)	A 25	А ₂ 30	А _{.3} 35	^N 1 2	^N 2 4	^N 3 6	
F. (75)	389	381	396	367	399	400	389
F_ (100)	393	405	402	353	421	426	400
Mean	391	393	399	360	410	413	

Age		Number	of seedling	gs hill ⁻¹	– Mean			
(Days	;)	N ₁	^N 2	N ₃	, ic di	C.D.(0.05) for F	10.2	(5.02)
		2	4	6		C.D.(0.05) for A	NS	(6.14)
	_ ,				<u> </u>	C.D.(0.05) for N	12.6	(6.14)
А,	25	350	404	420	391	C.D.(0.05) for FA	17.7	(8.68)
A2	30	360	422	398	393	C.D.(0.05) for FN	17 .7	(8.68)
λ,	35	371	405	421	399	C.D.(0.05) for AN	21.6	(10.64)
Mean		360	410	413				

* 90: 45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

.

Fertilizers	Âg	e (Days)		Number	of seedling	s hill ⁻¹	- Mean
(% of recommended dose*)	A ₁ 25	A2 30	А _{.3} 35	^N 1 2	^N 2 4	^N 3 6	
F. (50)	546	522	547	488	562	566	538
F ₂ (75)	527	593	568	508	591	589	562
Mean	536	558	558	498	576	577	

Table 28 c. Number of tillers m⁻² at harvest as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

Age		Number	of seedlin	gs <u>hil</u> l ⁻¹	- Mean			
(Days	5)	N 1 2	^N 2 4	^N з 6		C.D.(0.05) for F C.D.(0.05) for A	14.5 17.8	(7.13) (8.72)
<u>-</u>						C.D.(0.05) for N	17.8	(8.72)
A	25	487	560	56 2	536	C.D.(0.05) for FA	25.1	(12.34)
1 A ₂	30	510	568	594	558	C.D.(0.05) for FN	ŅS	(12,34)
-2 ·A	35	497	600	576	558	C.D.(0.05) for AN	NS	(15.12)
3 Mean		498	576	577				

.

Table 28 d. Mundakan 1983

	ilizer		A	lge (Days)		Number	of seedling	5 hill ⁻¹	Mean
(% o reco dose	mmended		Å ₁ 25	A2 30	^A 3 35	^N 1 2	^N 2 4	^N 3 6	
F.	(75)		527	506	487	- 468 [:]	544	508	507
I F	(100)	.,	535	566	529	492	581	557	543
2 Mean			531	536	508	480	562	533	

Age	c	Number	of seedlin	gs hill ⁻¹	Mean			
(Days)		^N 1 2	N2 4	N3 6		C.D. (0.05) for F	12.4	
		<u></u>	7		,	C.D.(0.05) for A	15-2	
						C.D.(0.05) for N	15.2	
A.,	25	476	583	535	531	C.D.(0.05) for FA	21.5	
A_2	.30	483	569	555	536	C.D. (0.05) for FN	NS	
A_ A_	35	482	535	508	.508	C.D.(0.05) for AN	26.3	
J Mean		480	562	533		0.2.101037 101 1.	2010	

* 90:45: 45 kg NPK ha⁻¹

could not produce sufficient number of tillers at panicle initiation stage. Further, the duration of the crop is lesser in <u>mundekan</u>. By the time of harvest, it was able to make up this gap to a certain extent. Thus at hervest 25 days old seedlings have become comparable with 30 days old seedlings. This shows that the optimum age of seedlings for <u>mundakan</u> crop seems to be 30 days.

Two seedlings per hill were found to be inferior to four and six seedlings per hill in <u>virippu</u> as well as in <u>mundaken</u> during both years. This indicates that this variety needs four to six seedlings per hill to produce enough tillers which ultimately will reflect on the number of penicles. Inspite of it being a late maturing variety two seedlings per hill are not sufficient.

It is further noted that in <u>virippu</u> six seedlings gave the highest number of tillers upto flowering in the first year while in the second year 6 seedlings per hill produced more tiller upto harvest end it was significant upto flowering stage. But during <u>mundekan</u> season of the first year 4 and 6 meedlings were comparable at flowering and at harvest stages whereas in the second year four seedlings per hill were significantly superior to six seedlings per hill from panicle initiation stage onwards. It is receiled in this connection from the materials and methods, that the spacing for this veriety in the <u>mundakan</u> season is 20 x 10 cm as against 20 x 15 cm in <u>virippu</u>. A lesser specing is recommended in <u>mundakan</u> as the time available for tiller production is lesser. At this closer spacing there is not much space for increasing tiller number by planting more than four seedlings while in <u>virippu</u> providing a wider spacing could enable the six seedlings to produce more tillers.

1.3 Leaf area index

In both years during <u>virippu</u> and <u>mundakan</u>, fertilizer levels had a significant effect on LAI (Table 29 a, b, c & d). Higher level of fertilizer was superior to lower level. As the fertilizer levels are increased, N being the major component of the fertilizer, vegetative growth especially the tiller production was increased resulting in higher values of LAI. Tenaka et al. (1964), Kawano and Tenaka (1968) also observed similar increase in LAI with N fertilization.

Thirty days old seedlings gave more LAI in both seasons of the first year whereas 35 days old seedlings gave more LAI in the second year. This is attributed to the higher quantity of fertilizers given in the second year.

Table 29 a Leaf area index (LAI) at panicle initiation stage as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

.

..

Fertilizer	Age (Days)					Number (Mean		
(% of recommended dose*)	 `	А ₁ 25	A2 30	А ₃ 35		N ₁ 2	N2 4	^N 3 6	
		5.88	.88 6.64	5.90	5.59	6.31	6.53	6.14	
F ₁ (50)		6.05	7,17	6.81		5.95	6.99	7.08	6.68
F ₂ (75) Mean	د	5.96	6.91	6.36		5.77	6.65	6.81	

Age		Number o	of seedling	s hill ⁻¹	. Mean		
(Days)	-	N ₁	^N 2	N ₃	- nean	C.D.(0.05) for F	0.271 (0.13) 0.332 (0.16)
		2	4	6	<u> </u>	C.D.(0.05) for A C.D.(0.05) for N	0.332 (0.16)
	25	5.79	5.96	6.15	5.96	C.D.(0.05) for FA	NS (0.23)
1	30	6.37	7.18	7.16	6.91	C.D. (0.05) for FN	NS (0.23)
2	35	5.15	6.81	7.11	6.36	C.D.(0.05) for AN	0.576 (0.28)
د. lean		5.77	6.65	6.81			

<u>Virippu</u> 1983 Table 29-6

Fertilizer	Age	e (Days)	ζ.	Number o	Number of seedlings hill ⁻¹			
(% of recommended dose*)	A ₁ 25	A ₂ 30	А ₃ 35	^N 1 2	^N 2 4	N 3 6		
- (75)	5.83	6.16	6.24	5.13	6.63	6.48	6.08	
F ₁ (75) F ₂ (100)	6.02	6.69	6.75	5.64	6.96	6.88	6.49	
F ₂ (100) Mean	5.93	6.43	6.50	5.38	6.80	6.68		

Age	Number o	of seedling	s hill-1	Mean			
(Days)	N ₁ 2	^N 2 4	^N 3 6		C.D.(0.05) for F C.D.(0.05) for A	0.128 0.156	(0.06) (0.07)
					C_D.(0.05) for N	0,156	(0.07)
A, 25	5.12	6.34	6.32	5.93	C.D.(0.05) for FA	NS	(0.11)
A 30	5.47	6.95	6.87	6.43	C.D.(0.05) for FN	NS	(0.11)
2 A ₂ 35	5.66	7.10	6.85	6.50	C.D.(0.05) for AN	NS	(0.13)
Mean	5.38	6.80	6.68		• • • • •		

* 90: 45: 45 kg NPK ha⁻¹

Fertilizer —	Age (Days)			Number o	- Mean		
(% of recommended dose*)	A ₁ 25	^A 2 30	^A 3 35	^N 1 2	N ₂ 4	^N 3 6	
F. (50)	5.44	5.88	6.41	5.54	6.30	5.89	5.91
F ₂ (75)	6.05	7.24	6.40	5.88	6.92	6.88	6.56
2 Mean	5.74	6.56	6.40	5.71	6.61	6.39	

Table 29.5. Leaf area index (LAI) at panicle initiation stage as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

25 5.70 6.00 5.54 5.74 $G_{\rm D}$ (0.05) for FA 0.5
25 5.70 6.00 5.54 5.74 C.D. (0.05) for N 0.3 C.D. (0.05) for FA 0.5
30 6.37 6.42 6.90 5. 56

Table 29 rd. Mundakan 1983

Ferti (% of	lizer	Age	e (Days)		Number	hill ⁻¹	Mean		
••	mended	A ₁ A ₂ 25 30		^А з 35	^N 1 2	N2 4	^N 3 6 7.09		
F,	(75)	(75) 6.16 (6.63	5.33	6.75		6.39	
F	(100)	6.35	7.39	7.42	5.81	7.46	7.90	7.06	
∠ Mean		6.26	6.89	7.03	5.57	7.10	7.50		

.

		Number	of seedling	s hill ⁻¹	Mean			
Age					- Mean	C.D.(0.05) for F	0.214	(0.102)
(Day	5/	N ₁	N ₂	Nз		C.D.(0.05) for A	0.262	(0.128)
		2	4	<u> </u>		-C.D.(0.05) for N	0.262	(0,128)
Α,	25	5.30	6.49	6.98	6.26	C.D.(0.05) for FA	0.371	(0.181)
1 A2	30	5.59	7.35	7.71	6.89	C.D.(0.05) for FN	NS	(0.181)
A A	35	5.82	7.46	7.80	7.03	C.D.(0.05) for AN	NS	(0.222)
Mean		5.57	7.10	7.50				

* 90:45: 45 kg NPK ha⁻¹

Four seedlings per hill gave the highest LAI followed by six seedlings in <u>virippu</u> seasons of both years. Two seedlings per hill gave significantly lower values. In <u>mundakan</u> six seedlings per hill recorded the highest LAI followed by 4 and 2 seedlings per hill. May be that in <u>mundakan</u> as the duration is lesser, the crop required more number of seedlings to produce sufficient less area.

1.4 Dry matter production at hervest

Higher level of fertilizer has given higher DMP than the lower level in all the four seasons (Table 30 a, b, c 4 d). The higher level of fertilizer has resulted in higher DMP due to the well known reasons. The same trend was observed in the vegetative as well as reproductive characters.

Thirty five days old seedlings gave more EMP in the <u>virippu</u> season in both years. The lowest EMP was always associated with the youngest seedlings i.e., 25 days old seedlings. In <u>mundakan</u> 30 days old seedlings produced more DMP. From the results it is evident that 35 days old seedlings are best for <u>virippu</u> and 30 days for <u>mundakan</u>. During <u>mundakan</u> the duration of the crop is lesser and hence younger seedlings may be better for planting.

Table 30 Dry matter production of rice (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

Fertilizer	Age (Days)			Number of seedlings hill ⁻¹			Mean
(% of recommended dose*)	A ₁ 25	^À 2 30	А _{3.} 35	^N 1 2	^N 2 4	^N 3 6	
F, (50)	6558	6981	7067	6559	6835	7212	6869
F_ (75)	7219	7500	7765	7116	7680	7688	7495
Z Mean	6889	7241	7416	6838	7258	7450	

ð.co		Number of seedlings $hill^{-1}$			M			
Age (Day	s) _	N ₁	N ₂	. N ₃	- Меап	C.D.(0.05) for F C.D.(0.05) for A	293 359	(144) (176)
		2	4	.6		C.D.(0.05) for N	359	(176)
A.	25	6688	7007	69 7 2	6889	C. ^D .(0.05) for FA	NS	(249)
A2	3 0	7080	7447	7195	7241	C.D. (0.05) for FN	NS	(249)
.A_	.35	6746	7320	8183	7416	C.D.(0.05) for AN	622	(305)
Mean		6838	7258	7450		_		

Table 30 bin Virippu 1983

Fertilizer (% of	Age (Days)			Number	— Méan		
recommended dose*)	А ₁ 25	A2 30	А ₃ 35	N ₂ 2	^N 2 4	N3 6	
F ₁ (75)	8009	8149	8160	7848	8377	8094	8106
F, (100)	8826	8665	8815	8407	9285	. 8615	8769
Mean	8418	8407	8488	8127	8831	8355	

Aqé		Number (of seedling	s hill ⁻¹	Mean			
(Day		N,	N ₂	Na	—nean	C.D.(0.05) for F	230	(113)
		2	4	໒		C.D.(0.05) for A	NS	(139)
		<u>_</u>		-		C.D.(0.05) for N	282	(139)
A1	25	8041	8900	8313	8418	C.D.(0.05) for FA	NS	(196)
A2	30	8367	8748	8107	8407	C.D.(0.05) for FN	NS	(196)
A,	35	7974	8845	8644	8488	C.D.(0.05) for AN	NS	(240)
Mean		8127	8831	8355				

* 90: 45: 45 kg NPK ha⁻¹

Fertilizer	Age (Days)			Number	Number of seedlings hill ⁻¹		
(% of recommended dose*)	^A 1 25	A2 30	А _З 35	^N 1 2	^N 2 4	^N 3 6	- Mean
F ₁ (50)	6621	7067	6493	6491	6843	6847	6727
F, (75)	6866	7678	7014	6960	7268	7330	7186
Mean	6744	7373	6753	6726	7055	7088	

Table 30c. Dry matter production of rice (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

Age		Number (of seedling	s hill ⁻¹	- Mean	
(Day		Ň,	^N 2	' м _а		C.D.(0.05) for F
		2	4	ຣັ		C.D.(0.05) for A
						C.D.(0.05) for N
A 1	25	6516	6867	6848	6744	C.D.(0.05) for FA
A_2	30	7205	7684	7229	7373	C.D.(0.05) for FN
A	35	6456	6616	7188	6753	C.D.(0.05) for AN
Mean		6726	7055	7088		
А 3					6753	C.D.(0.0

C.D.(0.05)	for F	140	(69)
C.D.(0.05)	for A	172	(85)
C.D.(0.05)	for N	172	(85)
C.D.(0.05)	for FA	NS	(119)
C.D.(0.05)	for FN	NS	(119)
C.D.(0.05)	for AN	297	(146)

Table 30d. Mundakan 1983

Number of seedlings $hill^{-1}$ Fertilizer Age (Days) (% of Mean А₃ recommended A₁ A2 N 1 Nз ^N2 dose*) 25 30 2 35 4 6 F₁ F₂ (75) 9777 96**9**8 9441 9282 9944 **9**690 9639 (100) 10298 10562 10042 9933 10641 10326 10300 Mean 10037 10130 9742 9608 10293 10008

.

Age (Days)		Number	Number of seedlings hill ⁻¹				
(Daž		N1 2	^N 2 4	^N 3 6			
А ₁	25	9617	10129	10366	10037		
A_2	30	9731	10588	10071	10130		
А ₂ А ₃	35	9475	10161	9589	9742		
Mean	l =	9608	10293	10008			

C.D.(0.05)	for	F	212	(104)
C.D.(0.05)	for	A	259	(127)
C.D.(0.05)	for	N	25,9	(127)
C.D.(0.05)	for	FA	NS	(180)
C.D.(0.05)	for	FN	NS	(180)
C.D.(0.05)	for	AN	NS	(221)

* 90: 45: 45 kg NPK ha^{~1}

Planting 6 seedlings per hill gave more DMP in the first year during both seasons while 4 seedlings per hill in the second year. It may be mentioned in this context that during first year the higher level of fortilizer was limited to 75 per cent of the fertilizer recommendation while during the second year it has gone upto 100 per cent. The response of DMP to the number of seedlings is greatly influenced by the fertilizer levels received in the respective years. In the first year 6 seedlings per hill produced more DMP while in the second year 4 seedlings per hill could produce comparable or more DMP. This may be attributed to the higher amount of fertilization in the second year. This conforms the well accepted theory that in soils of lower fertility more plant population has to be given to derive the maximum banefit from that level of fertility (Yamada and Nakemura, 1968).

2 | Yield attributes

2 -1 Number of penicles m⁻²

The fertilizer levels showed significant effect on the number of panicles in <u>virippu</u> and <u>mundakan</u> of both years (Table 31 a, b, c & d). Higher level of fertilizer was superior to the lower levels in all seasons except

Table 31.3. Number of panicles m^{-2} as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

Fertilizer (% of -	A	ge (Days)		Number	of seedling	s hill ⁻¹	- Mean
recommended dose*)	A ₁ A ₂ 25 30		^A 3 35	N ₁ 2	N ₂ 4	N ₃ 6	
F, (50)	315	334	3 2 3	293	337	342	324
F_ (75)	332.	334	341	314	343	350	336
Méan	323	334	332	, 303	340	346	

Aqe	Number o	f seedling	gs hill ⁻¹	— Mean				
(Days)	N	N ₂	N,		C.D.(0.05) for	F	7.2	(3.54)
	2	4	6		C.D.(0.05) for	А	8,8	(4.32)
					C.D.(0.05) for	N	8.8	(4.32)
A ₁ 25	297	336	337	323	C.D.(0.05) for	FA	NS	(6.09)
а <mark>2</mark> 30	318	343	341	334	C.D.(0.05) for	FN	NS	(6.09)
A ₃ 35	295	340	360	332	C.D.(0.05) for	AN	15.2	(7.46)
Mean	303	340	346					

Table 31b. Virippu 1983

Fertilizer (% of -	Age (Days)			Number of seedlings hill ⁻¹			— Mean
recommended dose*)	A ₁ 25	, ^A 2 30	^А з 35	N 1 2	N2 4	N3 6	
7.		4					
F ₁ (75)	356	351	362	331	364	375	357
F_ (100)	357	378	385	341	390	389	373
Mean	356	364	374	336	377	382	

Age		Number of seedlings hill ⁻¹								
(Day:	5)	$ N_1 N_2 N_3 - 2 4 6 $				(0.05) (0.05)		7.7 9.5	(3.81) (4.67)	
							(0.05)		9.5	(4.67)
A 1	25	325	368	376	356	C.D.	(0.05)	for FA	13.4	(6.60)
A2.	30	328	., 382	383	364			for FN	13.4	
A_	35	354	380	387	374			for AN	16.4	(8.08)
Mean		336	377	382		C.D.	(0.05)	IOI AN	10.4	10.007
				1						

* 90: 45: 45 kg NPK ha⁻¹

Fertilizer	Age (Days)			Number	Mean		
(% of recommended dose*)	A ₁ A ₂ 25 30		A3 35	^N 1 2	^N 2 4	^N 3 6	
F ₁ (50)	364	354	374	309	382	400	364
F_{2} (75)	334	402	388	317	379	429	375
Mean	349	378	381	313	380	415	

			by fertilizer levels, age and
number of seedlings hill	-1.	Mundakan	1982

Age (Daýs)		Number of seedlings $hill^{-1}$			Mean	
		^N 1 2	^N 2 4	^N 3 6		C.D. (0.05) for F NS (5.81) C.D. (0.05) for A 14.5 (7.13)
						- C.D. (0.05) for N 14.5 (7.13)
Α,	25	299	340	408	349	C.D. (0.05) for FA 20.5 (10.08)
A2	30	318	400	4 16	378	C.D. (0.05) for FN NS (10.08)
A ₂	35	323	401	420	381	C.D. (0.05) for AN 25.1 (12.34)
Mean		313	380	415		

Table 31d. Mundakan 1983

Fertilizer (% of recommended dose*)		Age (Days)			Number	s hill ⁻¹	Mean	
		A ₁ A ₂ 25 30		^А ́ 35	^N 1 2	^N 2 4	^N 3 6	
F ₁	(7,5)	403	384	378	343	425	397	389
F	(100)	416	436	424	372	458	446	425
Mean		409	410	401	358	442	422	

Age (Days)		Number	of seedlin						
		N,	N ₂	N.	-Mean	C.D.(0.05)	for F	12.1	(5.9)
		2	4	6		C.D.(0.05)	for A	NS	(7.4)
	-					C.D.(0.05)	for N	15.0	(7.4)
A.1	25	356	457	416	409	C.D.(0.05)	for FA	NS	(10.3)
• <u>2</u>	30	342	446	442	410	C.D.(0.05)	for FN	NS	(10.3)
4	35	375	422	408	40 95	C.D.(0.05)	for AN	26.0	(12.8)
Mean		358	442	422					

.

* 90:45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

.

the <u>mundskan</u> of the first year wherein, though both the fertilizer levels were similar, the higher level recorded more number of panicles.

The results reveal that the number of panicles is significantly more in plants receiving higher quantity of fertilizer except in the <u>mundakan</u> season of 1982 where also higher level of fertilizer has produced more panicles though not significant. One of the objectives of the experiment was to ascertain whether there can be any fertilizer saving in this variety due to the reported nature of its performance under low fertility conditions. However, under the yield potential realized in Kerela the recommended level of fertilizers (90: 45: 45 kg NPK ha⁻¹) seems to be required for panicle production.

The age of seedlings has significant influence on the number of penicles. Youngest seedlings of 25 days old recorded significantly lower number of penicles in three out of four seasons. There seems to be not much difference between 35 and 30 days old seedlings. This shows that under the agro climatic conditions of Kerale, 25 days old seedlings are not ideal for producing sufficient number of penicles for maximum grain production. At the seme time the age can be extended upto 35 days without any

detrimental effect on panicle production in both the seasons. The duration of the variety is one factor which datarmines the age of seedlings in the nursery. For varieties of upto 140 days duration there seems to be no harm in planting 35 days old seedlings. This will be definitely advantageous from the fermers point of view since sufficient time gap will be available for transplanting especially during delayed onset of monsoons. This is in conformity with the findings of Sundarerajan (1978) and Theetherappan (1963).

The number of seedlings per hill showed significant effect on penicle production while the combination effects did not show a definite trend.

Data on number of seedlings show that eventhough six seedlings per hill gave more panicles in three seasons, it was comparable with 4 seedlings per hill. During the <u>mundakan</u> season of the second year, 4 seedlings per hill recorded the highest number of panicles compared to others. From this result it may be inferred that 2 seedlings per hill is definitely inferior for this variety inspite of the comparative longer duration. At least 4 seedlings should be planted to get sufficient panicle production. This variety is reported to possess high tillering capacity under adequate fertilization (IARI, 1979). In the present investigation a fertilizer level of 90: 45: 45 kg NPK ha⁻¹ is the highest dose given. Probably for this variety, the dose is not sufficient for the full expression of the tiller potential. In these circumstances, higher number of seedlings are to be used for ensuring adequate panicle production. It may be mentioned in this connection that under low fertility conditions higher number of seedlings are generally used to enhance tiller production. Hence the number of seedlings to be plented has to be increased from the presently recommended two to four. Neterajan (1982) also reported increase in penicle number with increase in seedling number from two to six in late maturing types such as Fonni end ASD, 15.

22. 2 Number of filled grains per panicle

Fartilizer levels showed significant effect on number of filled grains per panicle only in <u>mundakan</u> seasons of both years (Table 32 a, b, c & d). Higher level of fertilizer gave significantly higher number of filled grains per panicle. Higher smount of fertilization is always effective in producing more number of filled grains per panicle (Dayanand et al. (1972), Verma and Srivastava (1972), Balasubramaniam (1980) and Sreakumaran (1981).

Fertilizer (% of recommended dose*)		Age (Days)			<u> </u>	Number of seedlings hill ⁻¹			Mean
		A ₁ 25	- ^A 2 - 30	A ₃ 35		^N 1 2	^N 2 4	^N 3 6	
F,	(50)	67	74	66	,	60	73	73	69
F,	(75)	69	70	72		63	78	70	70
Mean		68	72	69		61	76	72	

	¹ as influenced by fertilizer levels, age
and number of seedlings hill ⁻¹ .	Virippu 1982

Age (Da y s)		Number of seedlings hill ⁻¹						
		N	No No			C.D.(0.05) for F	NS	(3,10)
		^N 1 2	2 3	"3 6		C.D.(0.05) for A	NS	(3,80)
		2					7.7	(3.80)
Α.	25	64	• 73	66	68	C.D.(0.05) for FA	NS	(5.37)
A	30	60	83	74	72	C.D.(0.05) for FN	NS	(5.37)
A,	35	60	72	72	69	C.D.(0.05) for AN	NS	(6.58)
3 Mean		61	76	72				

Table 32 b. Virippu 1983

Fertilizer (% of	Àge (Days)			Number	Mean		
recommended dose*)	A A ₂ 25 30		A 35	^N 1 2	^N 2 4	N ₃ 6	
F ₁ (75)	62,	69	61	62	.68	62	64
F_ (100)	64	64	67	59	76	60	.65
Méan	63	67	64	60	72	61	

Age (Days)		Number	- Mean		
		N 1 2	N 2 4	N ₃ 6	
Ă,	25	59	68	61	63
A2	30	63	78	59	67
A ₃	35	59	71	62	.64
Mean		60	72	61	

			•	
C.D.(0.05)	for	F	NS	(3.21)
C.D.(0.05)	for	Α	NS	(3,93)
C.D.(0.05)	for	N	80	(3.93)
C.D.(0.05)	for	FA	NS	(5.56)
C.D.(0.05)	for	FN	NS	(5.56)
c.D.(0.05)	for	AN	NS	(6.81)

* 90: 45: 45 kg NPK ha⁻¹

Ferti (% of	lizer		Age (Days)		Number	of seedling	s hill ⁻¹	Mean
	mended	а _ї 25	A2 30	А ₃ 35	N1 2	^N 2 4	N ₃ 6	
F_ (50)		61	62	60	52	64	67	61
- 1 F_	(75)	68	75) 68 6 9	62	58	70	70	66
z Mean		65		61	55	67	68	

Table 32 c. Number of filled grains panicle⁻¹ as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

-		Number	of seedlin	igs hill ⁻¹	M				
Age (Day:	5)	N ₁ 2	N2 4	N ₃ 6	— Mean	C.D.(0.05) C.D.(0.05) - C.D.(0.05)	for A	5.3 NS 6.4	(2.60) (3.14) (3.14)
	25	57	68	70	65	C.D. (0.05) C.D. (0.05)	for FA	NS NS	(4.47) (4.47)
^A 2 ^A 3	30 35	57 53	71 63	68 67	66 61	C.D.(0.05)		NS	(5.48)
Mean		55	67	68					

Table 32 d. <u>Mundakan</u> 1983

Mean	s hill ⁻¹	of seedlings	Number		Age (Days)			Fertilizer	
	^N З 6	N2 4	^N 1 2	^А з 35	A2 30	1 2	f mmended	(% of recommended dose*)	
64	65	65	60	63	64	64	(75)	F.,	
70	72	73	65	69	71	70	(100)	F_	
	69	69	63	6 6	6 7	67		∠ Mean	

		Number	of seedlin	gs hill ⁻¹	→ Mean			
Age (Days	;)	N1 2	N ₂ 4	^N 3 6	neon	C.D.(0.05) for F C.D.(0.05) for A	4.8 NS	(2.40) (2.94)
						C.D.(0.05) for N	5.9	(2.94)
А,	25	64	70	68	67	C.D.(0.05) for FA	NS	(4.16)
A2	30	63	71	68	67	C.D.(0.05) for FN	NS	(4.16)
A3	35	61	68	70	66	C.D.(0.05) for AN	NS	(5.09)
Mean		63	69	69				

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/- The age of seedling dide not exhibit any aignificant effect on the number of filled grains.

Planting 4 seedlings per hill gave more number of filled grains per panicle in three seasons and it was significantly superior to others in <u>virippu</u> season of the year. It was comparable with 6 seedlings per hill in two seasons. However, in <u>mundekan</u> season of 1982, 6 seedlings per hill gave more grains per panicle eventhough it was comparable with 4 seedlings per hill. Two seedlings per hill produced significantly inferior number of filled grains per penicle in three out of four seasons and lower numbers in the fourthseason. Thus from the result it can be reasoned out that 4 seedlings per hill are optimum for obtaining sufficient number of filled grains per penicle.

A perusal of the data on LAI (Table 29 a, b, c & d) shows that 4 saedlings per hill gave higher LAI in most of the seasons. The source available for photosynthesis is decided by the LAI. The same treatment is found to be favouring the highest number of penicles as well as number of filled grains per panicle. Similar relationship with the photosynthesising surface area of the plant with productive attributes such as penicle number and grains per panicle are reported by Tenaka (1972).

It may be further noticed that under a limited supply of nutrition there is an optimum number of seedlings which can produce a definite number of panicles as well as number of filled grains per panicle. An increase in the seedling number does not proportionately increase the panicle number or grains per panicle probably because fertility is the limiting factor there. A lower number of seedlings is definitely inferior since under this limited fertility conditions sufficient panicle production as well as number of grains per panicle cannot be ensured.

2.3. 1000 Grain weight

The results of the data on 1000 grain weight (Table 33 a, b, c & d) show that the fertilizer levels, age of seedlings and number of seedlings could not influence the thousand grain weight in most of the seasons.

Thousand grein weight, generally regarded as a varietal character is not influenced by agronomic attributes such as number, age of seedlings etc. Even the fertilizer application has been reported to be effective only upto a particular level. Further, in the present invastigation, the difference in fertilizer levels tried

Fertilizer		ge (Days)		Number C	- Mean		
(% of recommended dose*)	A1 25	А ₂ 30	A ₃ 35	N 1 2	^N 2 4	^N 3 6	
F. (50)	20.73	20.74	20.81	21.12	20.47	20.67	20.76
F, (75)	20.29	20.74	21.23	20.37	20,84	21.08	20.76
Mean	20.51	20.74	21.02	20,75	20.66	20.88	

Table 33 a. Thousand grain weight (g) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

_	Number of seedlings hill ⁻¹			Mean				
	N,	No	N,		C.D.(0.05)	for F	NS	(0.157)
-	2	4	6		C.D.(0.05)	for A	0.392	(0.193)
					C.D.(0.05)	for N	NS	(0,193)
•	20.65	20.13	20.76	20.51	C.D.(0.05)	for FA	NS	(0.272)
1	20.59	20.81	20.83	20.74	C.D.(0.05)	for FN	0.554	(0.272)
i i	21.00	21.03	21.03	21.02	C.D.(0.05)	for AN	NS	(0.333)
	20.75	20.66	20.88					
	I	20.65 20.59 21.00	20.65 20.13 20.59 20.81 21.00 21.03	2 4 6 20.65 20.13 20.76 20.59 20.81 20.83 21.00 21.03 21.03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 33 b. <u>Virippu</u> 1983

ertilizer % of	Age (Days)		Number o	Mean		
ecommended lose*)	A 25	A2 30	A ₃ 35	^N 1 2	^N 2 4	^N з 6	
' ₁ (75)	20.36	21.33	20.98	21.28	20.52	20.87	20.89
(100)	21.16	21.07	21.33	20.98	21.27	21.31	21.19
lean	20.76	21.20	21.16	21.13	20.89	21.09	

Age -		Number o	Number of seedlings hill ⁻¹				
(Day:	3)	N 1 2	^N 2 4	N ₃ 6			
⁴ 1	25	21.05	20.33	20.88	20,76		
۹ ₂	30	21.32	21.10	21.18	21.20		
А ₃	35	21.02	21.25	21.20	21.16		
lean		21.13	20.89	21.09			

C.D.(0.05)	for	F	NS	(0.164)
C.D.(0.05)	for	A	NS	(0,202)
C.D.(0.05)	for	N	NS	(0.202)
C.D.(0.05)	for	FA	0.579	(0.285)
C.D.(0.05)	for	FN	0.579	(0.285)
C.D.(0.05)	for	AN	'NS	(0.349)

* 90: 45: 45 kg NPK ha⁻¹

Fertilizer		Age (Days)		Number o	- Mean		
(% of recommended dose*)	A ₁ 25	A.2 30	A 35	^N 1 2	^N 2. 4	^N 3 6	_
F, (50)	20.16	21.23	20.59	20.54	20.96	20.47	20,66
1	20.84	20.77	20.54	20.97	20.36	20.82	20.72
F ₂ (75) Mean	20.50	21,00	20.56	20.76	20.66	20.64	

Table 33 c. Thousand grain weight (g) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

		Number o	f seedling	s hill ⁻¹	Mean			
Age (Days))	N 2	N2 4	N3 6		C.D.(0.05) for F C.D.(0.05) for A	NS 0.421 NS	(0.169) (0.207) (0.207)
				20.22	20.50	C.D.(0.05) for N C.D.(0.05) for FA	0.595	(0.292)
A 1	25	20.70	20.58	20.22	20.50	C.D. (0.05) for FN	0.595	(0.292)
^A 2	30	20.93	21.01		20.56	C.D.(0.05) for AN	NS	(0.358)
^А з	35	20.64	20.40	20.65	20.50	0.2.(0.05) 101 1		
Mean		20.76	20,66	20.64		_		

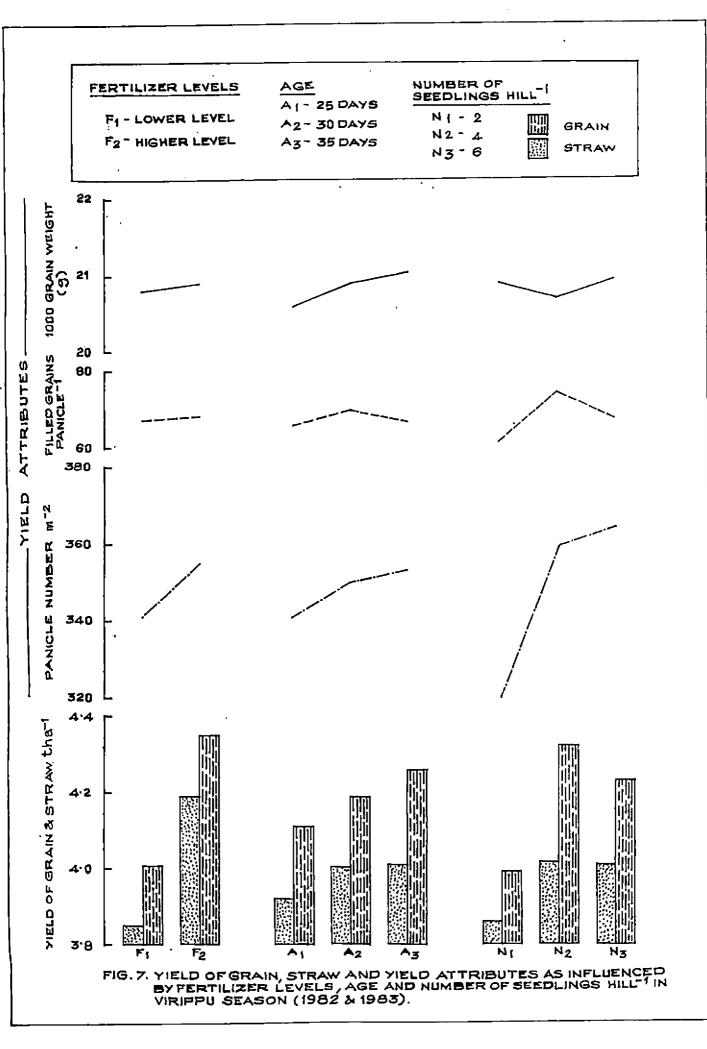
Table 33 d. Mundakan 1983

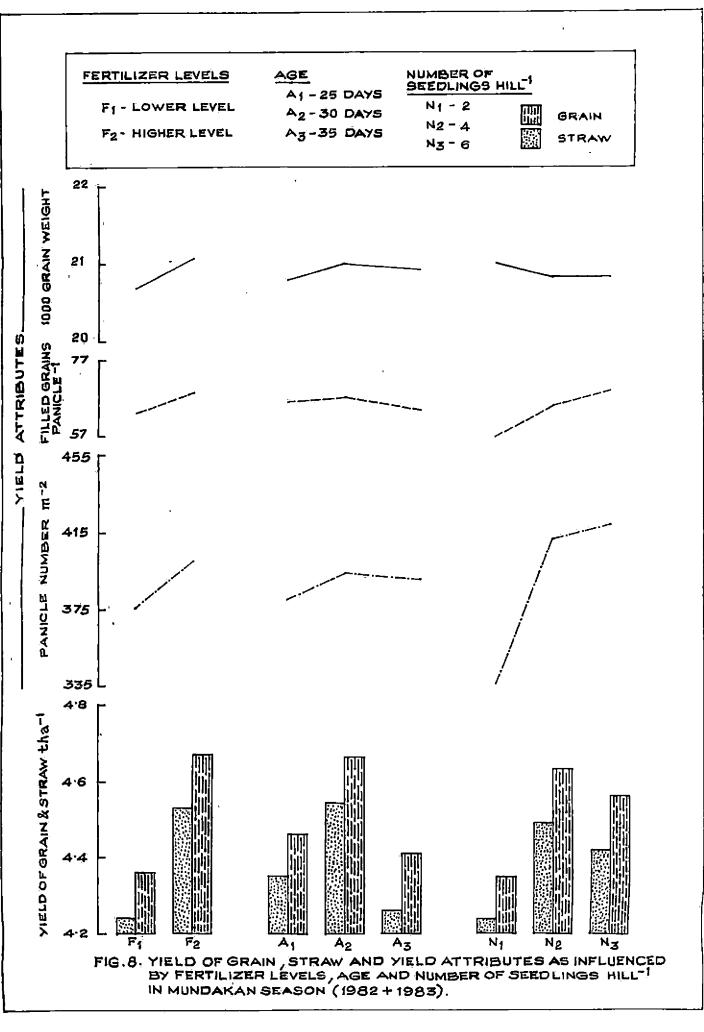
.

Fertilizer (% of	Age (Dàys)			Number of seedlings hill ⁻¹			Mean
recommended dose*)	A 25	A2 30	^А з 35	^N 1 2	^N 2 4	^N 3 6	
F. (75)	20.62	20.98	20.84	21.08	20,80	20.57	20.81
F_{2} (100)	21.53	21.57	21.18	21.53	21.27	21.48	21.43
Mean	21.08	21.27	21.01	21.31	21.03	21.02	

		Number o	f seedling:	s hill ⁻¹	Mean
Age (Days)		N12	^N 2 4	^N 3 6	
A 1	25	21.23	20.97	21.03	21.08
A A ₂ A ₃	30 35	21.35 21.33	21.30 20.83	21.17 20.87	21.27 21.01
Mean		21.31	21.03	21.02	

C.D.(0.05) C.D.(0.05) C.D.(0.05) C.D.(0.05) C.D.(0.05) C.D.(0.05)	for for for	a N Fa	NS	(0.207) (0.253) (0.253) (0.358) (0.358)
C.D.(0.05) C.D.(0.05)			ns NS	(0.358) (0.439)


* 90: 45: 45 kg NPK ha⁻¹


was only by 25 per cent and hence not much difference in 1000 grain weight could be expected.

3. Grain yield

The highest level of fertilizer recorded more grein yield in all the four seasons (Table 34 a, b, c end d). Thirty five days old seedlings recorded the highest grain yield while 25 days old seedlings produced the lowest grain yield in <u>virippu</u> in both years (Fig.7) even though in the second year it was not significant. In contrast, in <u>mundaken</u> more grain yield was associated with 30 days old seedlings (Fig.6). The number of seedlings is also a crucial factor in deciding the yield. Two seedlings per hill recorded the lowest grain yield in ell the four seasons. During the first year in both the seasons the highest number of six seedlings produced more grain yield while in the second year four seedlings per hill topped in grain groduction. The combination did not show a definite trand.

Eventhough IR 42 is a low fertilizer responsive variety, the dose of fertilizer applied is only 90:45:45 kg

Fertilizer		Ā	ge (Days)		Number of seedlings hill ⁻¹			Mean
(% of recommended dose*)	A ₁ 25	А ₂ 30	А ₃ 35	^N 1 2	N ₂ 4	^N 3 6		
F.	(50)	3359	3583	3629	3382	3488	3701	3524
F,	(75)	3709	3891	4015	3694	3949	3973 '	3872
∠ Mean		3534	3737	3822	3538	3718	3837	

Table 34 a. Grain yield (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

Åqe		Number of seedlings $hill^{-1}$			_ Mean			
Days)		N,	N ₂	N ₂		C.D.(0.05) fo	r F	155.2
		2	4	6		C.D.(0.05) fo	r A	190.1
						C.D.(0.05) fo	r N	190.1
•	25	3455	3562	3585	3534	C.D.(0.05) fo	r FA	NS
⁴ 1 ⁴ 2			3838	3704	3737	C.D.(0.05) fo	r FN	NS
	30	3669				C.D.(0.05) fo	r AN	329.3
^А з	35	3490	3755	4222	3822			
Mean		353B	3718	3837				

Table 34 b. Virippu 1983

Fertilizer (% of	Age	(Days)		Number	of seedlings	; hill ⁻¹	Mean
recommended dose*)	А ₁ 25	A2 30	^А з 35	N1 2	^N 2 4	N ₃ 6	
F, (:75)	4172	4140	4218	4020	4321	4179	4177
F. (100)	4460	4576	4508	4348	4800	4396	4515
Mean	4316	4358	4363	4184	4566	4287	

		-	s hill ⁻¹	—Mean			
	^N 1 2	N2 4	^N 3 6				
5	4281	4509	4158	4316			
)	4172	4610	4292	4358			
5	4100	4578	4412	4363			
	4184	4566	4287				
)		2 4281 4172 4100	2 4 4281 4509 4172 4610 4100 4578	2 4 6 4281 4509 4158 4172 4610 4292 4100 4578 4412			

-

c.D.(0.05)	for	F	124.4	(61.2)
C.D.(0.05)	for	A	NS	(74.9)
C.D.(0.05)	for	N	152.4	(74.9)
C.D.(0.05)	for	FA	NS	(105.9)
C.D.(0.05)	for	FN	NS	(105.9)
C.D.(0.05)	for	AN	NS	(129.8)

* 90: 45: 45 kg NPK ha⁻¹

Table 34 c. Grain yield (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings $hill^{-1}$. <u>Mundakan</u> 1982

Fertilizer (% of recommended dose*)		Ag	e (Days)		Number	of seedlings	hill ⁻¹	Mean
	A 25	A2 30	^А з 35	^N 1 2	N ₂ 4	N3 6		
F.	(50)	3420	3673	3343	3360	3541	3535	3479
F,	(75)	3559	3983	3610	3610	3751	3791	3717
Mean		3490	3828	3477	3485	3646	3663	

Maa		Number (Number of seedlings hill ⁻¹				
Age (Days)		^N 1 2	N2 4	N3 6	. Mean		
А,	25	3390	3546	3533	3490		
A1 A2 A3	30	3746	3995	3743	3828		
A	35	3319	3397	3714	3477		
Mean		3485	3646	3663			

C.D.(0.05)	for F	73.2	(36.0)
C.D.(0.05)	for A	89.7	(44.1)
C.D.(0.05)	for N	89.7	(44.1)
C.D.(0.05)	for FA	NS NS	(62.3)
C.D.(0.05)	for FN	NS	(62.3)
C.D.(0.05)	for AN	155.4	(76.4)

Table 34 d. Mundakan 1983

Fertilizer (% of	Age	(Days)		Number of seedlings hill ⁻¹			Mean
recommended dose*)	A ₁ 25	^А 2 30	А ₃ 35	^N 1 2	^N 2 4		
F ₁ (75)	5089	5039	4915	4828	5180	5035	5014
F_{2}^{-} (100)	5362	5474	5188	5168	5516	5342	5342
Mean	5226	5257 .	5052	4998	5348	5188	

Age		Number (Number of seedlings hill ⁻¹				
(Days)		N 1 2	^N 2 4	^N 3 6			
A ₁	25	5025	5 27 3	5379	5226		
A_2	30	5068	5497	5205	525 7		
A ₃	35	4901	5274	4981	5052		
Mean		4998	5348	5188			

C.D.(0.05)	for	F	110.0	(54.1)
C.D.(0.05)	for	А	134.3	(65,9)
C.D.(0.05)	for	N	134.3	(65.9)
C.D.(0.05)	for	FA	NS	(93.4)
C.D.(0.05)	for	FN	NS	(93.4)
C.D.(0.05)	for	AN	NS	(114.6)

* 90: 45: 45 kg NPK ha⁻¹

NPK he⁻¹ which is far below the optimum. Even in such a lower dose of fertilizer, it has given a grain yield of 4.5 to 5.3 t ha⁻¹. It is further noticed that at 50 per cent of the recommended dose of fertilizer i.e. with 45; 22.5; 22.5 kg NPK ha⁻¹, the grain yield varied from 3.48 to 3.52 t he⁻¹. This highlights the edeptability of this variety under low levels of fertilizers. The suitability of this variety under low levels of fertility was reported earlier (IRRI, 1978; 1979a; Khush et al., 1979, Fonnamperuma, 1979).

The grain yield is related to the performance of the yield attributes by the respective treatments. The number of panicles m^{-2} (Table 33 a, b, c & d) showed that the youngest seedlings (25 days old) produced the lowest number. Thirty five days old seedlings produced more number of panicles m^{-2} in <u>virippu</u> season of the second year. During the same season of the first year, 35 and 30 days old seedlings were comparable. In <u>mundakan</u> season of the first year 30 and 35 days old seedlings produced more number of panicles m^{-2} . With respect to 1000 grain weight, highest value was observed in 35 days old seedlings in <u>virippu</u> and 30 days old seedlings in <u>mundakan</u>. This variety being a late maturity one (140-145 days) planting 35 days old seedlings is better during <u>virippu</u> while 30 days old seedlings performed better in <u>mundekan</u>. This is because during <u>mundeken</u> the duration of the crop is lesser and as such the vegetative growth period especially for tiller production is reduced and hence younger seedlings are preferred.

The difference in the fertilizer dose given might be the responsible factor for the differential response of the number of seedlings noticed.

It is further evident from the number of filled grains per panicle (Table 32 a, b, c & d) that six seedlings per hill gave more number of filled grains in <u>mundekan</u> season of the first year while four seedlings per hill produced higher number of filled grains in both seasons of the second year. During <u>mundekan</u> season of the first year, Six seedlings per hill recorded more filled grains per penicle while in the second year almost the same number of filled grains was produced by four seedlings per hill. This shows that the eveileble photosynthetes were distributed uniformly emong ell the panicles in the first year even with e low level of fertilizer dose. This equin indicates the adaptation of the variety to lower fertility conditions wherein every panicle was made to produce maximum number of grains in a hill which received the highest number of seedlings (Khush et al., 1979; Ponnamperuma, 1979).

4. Straw yield kg ha-1

Higher level of fertilizer recorded more strew yield in <u>virippu</u> and <u>mundekan</u> seasons of both years and it was significantly superior to the lower levels tried (Table 35 a, b, c & d).

It may be seen from the results of tiller production (Table 27 a, b, c & d and 28 a, b, c & d) and LAI (Table 29 a, b, c & d) that these two characters which are directly contributing for straw yield have given higher values than the lower fertilizer dose thereby, resulting in higher straw production. It may be pointed out in this connection that the recommended dose of fertilizer is 90: 45: 45 kg NPK ha⁻¹ and the major component is N. The influence of N in enhancing the vegetative growth is well known.

During <u>virippu</u> season of the first year 35 days old seedlings gave higher straw yield than others and was comparable with 30 days old seedlings. In the second year also 35 days old seedlings gave more straw production though

Fertilizer	Age (Days)			Number o	hill ⁻¹	Mean	
(% of recommended dose*)	A 25	1 2		^N 1 2	^N 2 4	^N 3 6	
F_ (50)	3545	3765	3810	3522	3707	3890	3707.
F_{2}^{1} (75)	3890	4004	4158	3797	4135	4119	4017
2 Mean	3717	3884	3984	3660	3921	4005	

Table 35 a. Straw yield (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

		Number	of seedling	s hill ⁻¹	- Mean			
Age (Days)	N ₁ N ₂	^N 2	N3	- nean	C.D.(0.05) for F C.D.(0.05) for A	156.0 191.1	(76.7) (93.9)
		2	4	6		C.D.(0.05) for N	191.1	(93.9)
	05	3585	3813	3754	3717	C.D.(0.05) for FA	NS	(132.9)
A 1	25					C.D.(0.05) for FN	NS	(132.9)
A2	30	3783	4000	3870	3884	C.D.(0.05) for AN	331.1	'162.7)
A,	35	3611	3950	4391	3984	0.0.00000000000000000000000000000000000		
Mean		3660	3921	4005				

Table 35 b. Virippu 1983

Fertilizer	Age (Days)			Number of seedlings hill ⁻¹			Mean
(% of recommended dose*)	A ₁ 25	А ₂ 30	А ₃ 35	^N 1 2	^N 2 4	^N 3 6	
F, (75)	4336	4291	4371	4170	4487	4342	4333
F_{2} (100)	4661	4714	4703	4501	4973	4605	4693
Mean	4499	4502	4537	4336	4730	4473	

		Number	Number of seedlings hill ⁻¹					
Age (Day:	s)	N ₁ 2	N2 4	^N 3 6	_ Mean			
A _{1.}	25	4422	4700	4376	4499			
A ₂	30	4292	4757	4458	4502			
^А 2 А ₃	35	4294	4733	4586	4537			
Mean		4336	4730	4473				

C.D.(0.05)	for	F	124.1	(61.0)
C.D.(0.05)	for	A	NS	(74.7)
C.Ď.(0.05)	for	N	152.0	(74.7)
C.D.(0.05)	for	FA	NS	(105.7)
C.D.(0.05)	for	FN	ŊS	(105.7)
C.D.(0.05)	for	AN	NS	(129.5)

.

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

Fertil: (% of	izer .	Age	e (Days)		Number o	of seedlings	: hill ⁻¹	Mean
dose*)	ended	A ₁ A ₂ 25 30		А _{.3} 35	N ₁ 2	^N 2 4	^N 3 6	
F ₁ (50)	3549	3766	.3492	3473	3661	3672	3602
F_ (75)	3646	4099	3772	3715	3900	3902	3839
Mean		3597	.3932	3632	3594	3781	3787	

Aae		Number of seedlings hill ⁻¹			- Mean		
Age (Days) A ₁ 25 A ₂ 30 A 35	$ N_1 N_2 N_3 2 4 6 $		C.D.(0.05) for F C.D.(0.05) for A	80.6 (39.6) 98.8 (48.5)			
	•					C.D.(0.05) for N	98.8 (48.5)
Α.	25	3467	3682	3642	3597	C.D.(0.05) for FA	NS (68.7)
A A	30	3838	4093	3866	3932	C.D.(0.05) for FN	NS (68.7)
2 A ₃	35	3477	3567	3853	3632	C.D.(0.05) for AN	171.2 (84.1)
Mean		3594	3781	3787			

Table 35 c. Straw yield (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

Table 35 d. <u>Mundakan</u> 1983

Fertilizer		Age (Days)			Number of seedlings hill ⁻¹			— Mean	
(% of recor dose	mended	A A 2 25 30		А ₃ 35	^N 1 2	^N 2 4	м ₃ 6		
F,	(75)	5202	5169	5023	4942	5287	5165	5131	
F,	(100)	5478	5639	5382	5284	5686	5528	5500	
Mean		5340	5404	5203	5113	5487	5347		

ï

	Number of seedlings hill ⁻¹			Mean				
Age (Days)	N ₁ N ₂ N ₃			C.D.(0.05)	for F	116.0	(57.0)	
_	2	4	6		C.D.(0.05)	for A	142.1	(69.8)
			_		C.D.(0.05)	for N	142,1	(69.8)
Ă ₁ 25	5098	5389	5532	5340	C.D.(0.05)	for FA	NS	(98.8)
A ₂ 30	5168	5648	5396	5404	C.D.(0.05)	for FN	NS	(98.8)
A 35	507.3	54 23	5112	5203	C.D.(0.05)	for AN	NS	(121.08)
Mean	5113	5487	5347					

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/- not significent, in <u>virippu</u>. But in <u>mundakan</u> 30 days old seedlings produced more strew in both years. A perusal of the date on tiller production shows that during <u>mundakan</u> in both years, 30 days old seedlings gave the highest tiller number. The reason for increasing the tiller production by this treatment was discussed elsewhere. In the case of height elso, 30 days old seedlings have recorded taller plants in <u>mundakan</u> season in the first year while in the second year it was similar to 25 days old seedlings which produced taller plants.

So from the point of view of straw production it may be pointed out that in <u>virippu</u>, 35 days old seedlings and in the <u>mundekan</u>, 30 days old seedlings are the bast.

Data on LAI (Table 29 a, b, c & d) and tiller number (Table 27 a, b, c & d and 28 a, b, c & d) have already indicated that four and six seedlings were comparable in most cases. In the straw yield also, almost the same trend is noticed in most of the seasons.

The combination effect was significant only in <u>virippu</u> season of the first year. No definite trend could be noticed in other seasons.

5. Harvest index (HI).

HI was unaffected by the treatments in all seasons except <u>virippu</u> season of the fight, year (Table 36 a, b,c 4 d).

The difference between fertilizer level tried was only 25 per cent in both years. Within that narrow range, there is a corresponding increase in both grain and straw yield with increase in fertilizer doses thereby resulting in the lack of significant difference in HI.

In the case of grain yield during the <u>virippu</u> season 35 days old seedlings gave the highest value while 30 days old seedlings in the <u>mundekan</u> season. With respect to straw yield as well, the same trend was observed. An increase in grain yield was followed by a corresponding increase in straw yield. Hence it is guite natural that a significant increase in HI is not obtained.

The number of seedlings per hill also followed the same trend as that of the above two characters. IR 42 being a high tillering variety, has the inherent capacity to adapt to varying plant densities. Baba (1959) and Yoshide and Cock (1971) have stressed the adaptability of high tillering genotypes to varying plant densities. Hence for the levels of fertilizer tried no drastic change in grain straw ratio is expected.

	ilizer _	Age		Number of seedlings $hill^{-1}$				
(% o reco dose	mmended	A ₁ A ₂ 25 30		A 3 35	^N 1 2.	^{N.} 2 4	^N 3 6	
F ₁	(50)	48.76	48.65	48.73	48.98	48.44	48.73	48.71
F ₂	(75)	49.28	48.82	49.13	49.30	48.83	49,10	49.08
Mean		49.02	48.73	48,93	49.14	48.63	48.92	

Table 36 a. Harvest index (HI) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

Age		Number o	f seedling	s hill ⁻¹	- Mean			
(Day		^N 1 2	^N 2 ^N 3 4 6		- Mean	C.D.(0.05) for F C.D.(0.05) for A	0.278 NS	(0.136) (0.167)
	<u>.</u>					C.D.(0.05) for N	0.340	(0.167)
^A 1	25	49.24	48.93	48,89	49.02	C.D.(0.05) for FA	NS	(0.236)
A2	30	49.07	48.30	48.83	48,73	C.D. (0.05) for FN	NS	(0,236)
A 3	35	49.10	48.67	49.02	48.93	C.D. (0.05) for AN	NS	(0.289)
Mean		49.14	48.63	48.92		0.0.(0.03) IOL M	NO	(0.205)

Table 36 b. Virippu 1983

Fertilizer (% of '- recommended dose*)		Age (Days)			Number of seedlings hill ⁻¹			- Mean
		A ₁ A ₂ A ₃ 25 30 35		3	N ₁ 2	N2 4	^й з 6	- neen
F-1	(75)	49.10	49.02	49.10	49.07	49.11	49.03	49,07
F.2	(100)	49.25	48.88	49.92	49.14	4910	48.82	49.02
Mean	•	49.18	48.95	49.01	49.11	49.11	48.93	

Aġe (Days)		Number of seedlings hill-1			M				
		N ₁	N ₂	Na	Mean	C.D.(0.05)	for F	NS	(0.
		2.	4 6	~		C.D.(0.05)	for A	NS	(0.
						C.D.(0.05)	for N	NS	(0.0
Α,	25	49.29	49.21	49.03	49.18	C.D.(0.05)	for FA	NS	(0.
2	30	49.18	48,96	48.72	48.95	C.D. (0.05)	for FN	NS	(0
A.3	35	48.85	49.15	49.03	49.01	C.D.(0.05)	for AN	NS	(0.:
Mean		49. .1 1	49.11	48.93					

* 90: 45: 45 kg NPK ha⁻¹

Fertilizer	Age	Age (Days)			Number of seedlings hill ⁻¹		
(% of recommended dose*)	-	^A 2 30	А ₃ 35	^N 1 2	^N 2 4	N3 6	- Mean
F ₁ (50)	49.07	49.37	48.90	49.17	49.13	49.05	49.11
P ₂ (75)	49.25	49.28	48.89	49.27	49.01	49.13	49,14
Mean	49.16	49.32	48 .8 9	49.22	49.07	49.09	

Table 36 c. Harvest index (HI) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

Age		Number of seedlings hill ⁻¹			M			
(Day		N ₁ N ₂ 2 4		N ₃ 6	Mean	C.D.(0.05) for F C.D.(0.05) for A	NS 0.236	(0.094) (0.116)
						- C.D.(0.05) for N	NS	(0.116)
A. 1	25	49.43	49.05	49.01	49216	C.D.(0.05) for FA C.D.(0.05) for FN	NS	(0.164)
A 2	30	49.39	49.39	49.19	49.32		NS	(0.164)
A_3	35	48.84	48,77	49.08	48.89	C.D.(0.05) for AN	NS	(0.201)
Mean		49.22	49.07	49.09				

Table 36 d. <u>Mundakan</u> 1983

Fertilizer	Age	Age (Days)			Number of seedlings hill ⁻¹		
(% of recommended dose*)	1 ^A 1 25	A30	А ₃ 35.	N1 2	N ₂ 4	N3 6	- Mean
F ₁ (75)	49.45	49.33	49.45	49.41	49.46	49.36	49.41
F_2 (100)	49.47	49.24	49.08	49.41	49.25	49.13	49.26
Mean	49.46	49.29	49.26	49.41	49.35	49.25	

Age		Number of seedlings hill ⁻¹			Mean				
(Day		N ₁ 2	N24	N3 6	ngan	C.D.(0.05) for H C.D.(0.05) for H		NS NS	(0.081) (0.099)
						C.D. (0.05)		NS	(0.099)
^A 1	25	49.63	49.45	49.30	49.46	C.D. (0.05)		NS	(0.140)
A	30	49.47	49.30	49.09	49.29	C.D.(0.05)	for FN	NS	(0.140)
A ₃	35	49.13	49.31	49.35	49.26	C.D.(0.05)	for AN	NS	(0.172)
Mean		49.41	49.35	49.25					

.

* 90: 45: 45 kg NPK ha⁻¹

61. Chemical analysis

1. Plant analysis

1.1 Protein content of grain

Maximum level of fartilizer has given the highest protein content in all the four seasons (Table 37 a, b, c & d). Generally in cereals, the protein content is low and the transformation of carbohydrates to protein take place after attaining a certain level of carbohydrate production. An increase in protein content beyond a certain level of N was generally followed by a decline in grain yield (IRRI, 1974). This explains the reason for lower protein content in treatments receiving low fertilizer doses particularly N. Schekel et al. (1972) and Singh and Modgal (1978) reported higher protein content with increased rate of N epplication.

Protein content was found to be unaffected by different age levels tried in all the four seasons. Protein content is more or less a genetic factor influenced by nutrition only to a certain extent.

Higher number of seedlings produced more protein content in all the seasons. Under low fertility condition both grain and straw yields were increased with six seedlings per hill and the applied fertilizer would have

Fertilizer	Age (Days)			Number of seedlings hill ⁻¹			Mean
(% of recommended dose*)	A 1 25	^А 2 30	^А з 35	^N 1 .2	^N 2 4	^N 3 6	
	8.6	8.6	8.5	8.2	8.7	8.9	8.6
F ₁ (50) F ₂ (75)	8.9	9.1	9.4	8.9	9.4	9.2	9.2
F ₂ (75) Mean	8.8	8.9	9.0	8.5	9.1	9.1	

Table 37 a. Protein content of grain (%) as infl	uenced by fertilizer levels, age
Table 57 d. Libbour chart and a second	1
and number of seedlings hill ⁻¹ . <u>Vir</u>	<u>1997</u> 1982

		Number of seedlings hill ⁻¹				
Age (Days)	-	N ₁	N ₂	м _з	- Mean	C.D.(0.05) for F
		2	4	6		C.D.(0.05) for A C.D.(0.05) for N
A. 25		.8.4	9.0	8.9	8.8	C.D.(0.05) for FA
A 25 A 30 A 30		8.3	9.0	9.3	8.9	C.D.(0.05) for FN
⁶ 2 35 A ₂ 35		8.8	9.2	8.9	9.0	C.D.(0.05) for AN
-3 Mean		8.5	9.1	9.1		÷

Table 37 b. <u>Virippu</u> 1983

Fertilizer	Age (Days)			Number of seedlings hill ⁻¹			- Mean
(% of recommended dose*)	A ₁ 25	A2 30	A3 35	N1 2	^N 2 4	^N 3 6	
(ar)	8.2	8.3	8.3	7.9	8.4	8.5	8.3
F ₁ (75) F ₂ (100)	8.4	8.8	8.8	8,2	8.9	8.9	8.7
F Mean	8.3	8,5	8.5	8.0	8.7	8.7	

		Number	- Mean			
·Age (Days)	N 2	^N 2 4	^N 3 6		
	25	8.0	8.5	8.5	8.3	
^А 1 ^А 2 ^А 3	30	8,1	8.7	8.B	8.5	
	35.	8.0	8.9	8.7	8.5	
Mean		8.0	8.7	8.7		

C.D.(0.05) fo	rF	0.20	(0.098)
C.D. (0.05) fo			(0.118)
C.D. (0.05) fo		0.24	(0.118)
C.D.(0.05) fo		NS	(0.165)
C.D.(0.05) fo	r FN	NS	(0.165)
C.D.(0.05) fo	r AN	NS	(0,203)

0.21 (0.103)

0.26 (0.126)

(0,126)

(0.178)

(0.178)

(0.219)

NS

NS

NS

NS

* 90: 45: 45 kg NPK ha⁻¹

Fertilizer (% of recommended dose*)		Ag	e (Days)		Number	of seedling:	- Mean	
		A 25	A2 30	A 3 35	N ₁ 2	^N 2 4	^N 3 6	
							-	
F.	(50)	8.4	8.3	8.4	8.1	8.5	8.5	8.4
1	(75)	8.6	8.6	8.8	8.4	8.9	8.8	8.7
F ₂ Mean	(1.57	8.5	8.5	8.6	8.3	8.7	8.6	

Table 37 c. Protein content of grain ()	6) as influenced	by fertilizer levels, age
and number of seedlings hil	11 ⁻¹ . <u>Mundakan</u>	1982

		Number of seedlings hill ⁻¹			Mean			
Age (Days))	N ₁ 2	N ₂ 4	^N з 6		C.D.(0.05) for F C.D.(0.05) for A	0.16 NS	(0.078) (0.095)
						C.D.(0.05) for N	0.20	(0.095)
			0.5	8.6	8.5	C.D.(0.05) for FA	NS	(0.135)
^A 1	25	8.3	8.5			C.D.(0.05) for FN	NS	(0.135)
A_2	30	8.2	8.7	8.5	8.5	C.D.(0.95) for AN	NS	(0.166)
A ₃	35 [.]	8.3	8.8	8.7	8.6			
Mean		8.3	8.7	8.6		-		

Table 37 d. <u>Mundakan</u> 1983

Fertilizer (% of	Age (Days)			Number of seedlings hill ⁻¹			Mean	
recommended dose*)	A ₁ A ₂ 25 -30		А ₃ 35	N1 2	N ₂ N ₃ 4 6			
F. (75)	8.3	8.6	8.3	8.2	8.4	8,5	8.4	
F_2 (100)	8.4	8.7	8,9	8.3	9.1	8.6	8.7	
2 Mean	8.3	8.6	8.6	8.3	8.7	8.6		

Age (Days)		Number	Number of seedlings hill-1					
		N ₁ 2	N2 4	N3 6				
	25	8.2	8.4	8.4	8.3			
A_	30	8.3	8.9	8.7	8.6			
A ₁ A ₂ A ₃	35	8.4	8.9	8.5	8.6			
Mean		8.3	8.7	8.6				

c. Ď. (0.05)	for	F	0.21	(0.103)
C.D.(0.05)	for	А	NS	(0.127)
C.D.(0.05)	for	N	0.26	(0.127)
C.D. (0.05)	for	FA	NS	(0.182)
C.D.(0.05)	for	FN	0.37	(0.182)
C.D.(0.05)	for	AN	NS	(0,220)

* 90: 45: 45 kg NPK ha⁻¹

been first utilized for grain and straw production. Consequently, no significant difference could be noticed in the protein content between the two higher levels i.e. four and six seedlings per hill. In the second year four seedlings per hill gave more grain and straw yield. It is attributed to the higher level of fertilization in the second year. The higher dose of fertilizer application favoured the grain and straw production and no excess nutrition was usually available to increase the protein content thus resulting in the lack of significant difference batween four and six seedlings per hill.

In both years higher number of seedlings gave more protein. In the first year six seedlings per hill with low fertilization produced more protein while during the second year the highest protein content was produced by four seedlings per hill with the application of more fertilizer compared to the first year. This shows the efficiency of four seedlings hill⁻¹ in producing more grain yield as well as synthesis of more protein compared to planting six seedlings hill⁻¹.

1.2 N uptake

The data on the uptake of N (Table 38 a, b, c & d) reveal the superiority of higher levels of fertilizer in all the seasons.

1

Fertilizer (% of recommended dose*)		Age (Days)			Number o	f seedlings	hill ⁻¹	Mean
		$ $		A 35	^N 1 2	N ₂ 4	N ₃ 6	<u> </u>
F.	(50)	67.37	72.52	72,78	63,56	71.84	77.27	70.89
⁻ 1 F ₂	(75)	78.61	83.64	88.32	76.90	87.26	86.42	83.53
⁻2 Mean		72.99	78.08	80.55	70.23	79.55	81.85	

Table 38 a. M., uptake (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

		Number o	f seedling	s hill ⁻¹				
Age (Day s)	$\begin{array}{ccc} N_1 & N_2 & N_3 \\ 2 & 4 & 6 \end{array}$		Mean	C.D.(0.05) for F C.D.(0.05) for A C.D.(0.05) for N	3.336 4.086 4.086	(1.640) (2.009) (2.009)	
A1 A2	25 30	67.11 72.28	76.01 81.33	75.86 80.63 89.05	72.99 78.08 80.55	C.D.(0.05) for FA C.D.(0.05) for AN C.D.(0.05) for AN	ns NS NS	(2.841) (2.841) (3.480)
A ₃ Mean	35	71.29 70.23	81.31 79.55	89.05	00.00			

Table 38 b. Virippu 1983

Fertilizer	Age (Days)			Number (Number of seedlings hill ⁻¹		
(% of recommended dose*)	A ₁ 25	*2 30	^A 3 35	N1 2	N2 4	N3 6	
F. (75)	80,80	82.82	83.27	75.05	86,94	84.90	82.30
1 F ₂ (100)	92.54	92.81	94.69	84.41	101.46	94.18	93.35
Z Mean	86.67	87.82	88.98	79.73	94.20	89.54	

		Number o	Mean			
Age (Days)	N ₁ 2	N ₂ 4	N3 6		
А,	25	78.61	92.41	89.00	86.67	
^A 1 ^A 2	30	81. 88	94.00	87.58	87.82	
А ₃	35	78.71	96.18	92.04	88.98	
Mean		79.73	94.20	89.54		

for	F	3.278	(1.612)
for	A	NS	(1.973)
for	Ń	4.014	(1.973)
for	FA	NS	(2.791)
for	fn	NS	(2.791)
for	AN	NS	(3.419)
	for for for for	for F for A for N for FA for FN for AN	for ANSfor N4.014for FANSfor FNN5

* 90: 45:45 kg NPK ha⁻¹

Table 38 c.		influenced by fertilizerl levels,	, age and number
	of seedlings hill ⁻¹ . <u>Mundaka</u>	<u>n</u> 1982	

Fertilizer (% of recommended dose*)		Age (Days)			Number of seedlings hill ⁻¹			— Mean
		A ₁ 25	⊥ ∠	А _Э 35	^N 1 2	^N 2 4	^N 3 6	.,2 017
F ₁	(50)	67.66	72.03	66.98	63.92	70.98	71,76	68.89
F ₂	(75)	72.03	82.21	75.71	71,29	79.29	79.37	76.65
Mean		69,84	77.12	71.35	67.61	75.13	75.57	

Age (Days)		Number of seedlings hill ⁻¹			- Mdan			
		N1 2	N2 4	N3 6	- Adan	C.D.(0.05) for F C.D.(0.05) for A	1.900 2.327	(0.934) (1.144)
						C.D.(0.05) for N	2.327	(1.144)
^A 1	25	65.70	71.44	72.39	69.84	C.D.(0.05) for PA	3.291	(1.618)
A2	30	72.31	82.33	76.71	77.12	C.D.(0.05) for FN	NS	(1.618)
A_3	35	64.81	71.63	77.60	71.35	C.D.(0.05) for AN	4.031	(1.982)
Mean		67.61	75.13	75.57				

Table 38 d. Mundakan 1983

×

Fertilizer (% of	Age (Days)			Number of seedlings hill ⁻¹			Mean
recommended dose*) 	^A 1 25	A2 30	А ₃ 35	N1 2	^N 2 4	^N 3 6	_
F ₁ (75)	99.95	102.06	97.35	92.63	104.25	102.47	99.78
F ₂ (100)	106.21	113.29	109.08	101.16	107.83	109.59	109.53
Mean	103.08	107.67	103.21	96.89	111.04	106.03	

Age (Days)		Number o				
		N ₁ 2	N ₂ N ₃ 4 6		- Mean	
	·				·	C.1
A 1	25	96.14	105.15	108.95	103.08	C.I
^A 2	30	98.66	116.09	108.26	107 .67	c.1
Å ₃	35	95.87	112.89	102.87	103.21	c.1
Mean	I	96.89	111.04	106.03		

for F	2.250	(1.110)
for A	2.756	(1.358)
for N	2.756	(1.358)
for FA	NS	(1.915)
for FN	NS	(1.915)
for AN	4.773	(2.346)
	for F for A for N for FA for FN for AN	for A2.756for N2.756for FANSfor FNNS

* 90: 45: 45 kg NPK ha⁻¹

Thirtyfive days old seedlings were found to be better for <u>virippu</u> and 30 days old seedlings for <u>mundekan</u> with respect to the uptake of N.

Planting six seedlings per hill was better in the first year while four seedlings per hill in the second year.

On perusal of the data on grain and straw yield (Tables 34 a, b, c & d and 35 s, b, c & d) it is seen that higher level of fertilizer was giving batter yield of both grain and straw. This has probably led to higher uptake of N in the higher level of fertilizer.

N uptake was higher in older seedlings (30 and 35 days old) when compared to 25 days old seedlings. Maximum utilization of nutrients starts immediately after the establishment of seedlings. In the older seedlings, the wastage of fertilizer is lesser due to the well developed root system. Between seasons, 30 days old seedlings were better suited for mundakan while 35 days old seedlings seem to be ideal for <u>virippu</u> season. As the duration of the crop is lesser in <u>mundakan</u>, slightly younger seedlings ere to be preferred for achieving maximum vegetative growth. Twentyfive days old seedlings are inferior in all the seasons.

Planting two seedlings per hill was definitely inferior to planting four and six seedlings. This is

because as the number of seedlings is more, higher will be the foraging capacity and hence an increased uptake. Lesser number of seedlings probably need more time to attain the same dry matter production as that of the higher number of seedlings.

1.3 PUptake

Almost the same trand of N is obtained in the uptake of P also. Higher dose of fertilizer gave more uptake, irrespective of the seasons (Table 39 a, b, c & d).

Twentyfive days old seedlings gave significantly lesser uptake of P in all seasons except <u>mundakan</u> season of the second year.

Four and six seedlings were similar and ware superior to two seedlings per hill in all seasons.

The above results reveal that higher P uptake was associated with higher levels of fertilization which naturally received more P. Moreover, the grain and straw yield were also more with higher levels of fertilizers.

The higher P uptake in older seedlings might be due to the better absorption of P by more efficient root system of the older seedlings.

Fertilizer	Age (Days)			Number o	- Mean			
(% of recommended dose*)	^А 1 25	А ₂ 30	^А з 35	^N 1 2	^N 2 4	^N 3 6		
F, (50)	27.98	31.33	31.05	27.33	30.37	32.67	30.12	
F ₂ (75)	33.89	35.31	39.27	32.60	37.70	38.18	34,16	
Mean	30.94	33,32	35.16	29.97	34.03	35.42		

Table 39 a. P uptake (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

		Number o	f seedling	s hill ⁻¹	M		·	
Age (Days))	N ₁ 2	N2 4	м ₃ 6	Mean	C.D.(0.05) for F C.D.(0.05) for A	1.718 2.104	(0. (1.
						C.D.(0.05) for N	2.104	(1.
1	25	29,20	31.58	32.03	30,94	C.D.(0.05) for FA	ns	(1.
	30	30.05	35.00	34.93	33.32	C.D.(0.05) for FN	NS	(1.
2 3	35	30.65	35.52	39.31	35.16	C.D.(0.05) for AN	NS	(1.
ean		29.97	34.03	35.42				

Table 39 b. Virippu 1983

Fertilizer (% of recommended dose*)		Age (Days)			Number o	- Mean		
		A ₁ A ₂ 25 30	~	А ₃ 35	^N 1 2	^N 2 4	N3 6	•
F.	(75)	33.28	35,42	35.56	30.83	36.63	36.80	34.76
P	(100)	37.93	39.38	40.99	34.46	43.07	40.77	39.43
iean		35.60	37.40	38.28	32.64	39.85	38.79	

Age		Number c	f seedling	s hill ⁻¹	Mean
Age (Days))	^N 1 2	^N 2 4	N3 6	
Α,	25	31.44	38.30	37.07	35.60
A ₁ A ₂	30	33.95	39.76	38.49	37.40
A_3	35	32.54	41.50	40.80	38.28
Mean		32.64	39.85	38.79	

C.D.(0.05)	for	F	1.366	(0.671)
C.D.(0.05)	for	A	1.673	(0.823)
C.D.(0.05)	for	N	1.673	(0.823)
C.D.(0.05)	for	FA	NS	(1.163)
C.D.(0.05)	for	FN	NS	(1.163)
C.D.(0.05)	for	An	NS	(1.425)

* 90: 45:45 Kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

- Mean	hill ⁻¹	f seedlings	Numbér c	Age (Days)				Fertilizer (% of	
	N3. 6	N2 4	N1 2	А ₃ 35	A ₁ A ₂ 25 30	1	mended	teconner dose*)	
25.62	27.12	26.84	22.89	24.77	27.54	24.54	(50)	P.1	
28.5	29.73	30.14	25.83	27.87	31.41	26.62	(75)	P.,	
	28.43	28.49	24.36	26.22	29.47	25.58		Mean	

Table 39 c. P uptake (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

		Number o	of seedling	s hill ⁻¹	Mean			
Age (Days)	N,	N2	N		C.D.(0.05) for F	1.036	(0.500)
		2	4	6		C.D.(0.05) for A	1.269	(0.624)
					-	C.D.(0.05) for N	1.269	(0.624)
А,	25	23.33	26.48	26.95	25.58	C.D.(0.05) for FA	NS	(0.882)
A2	30	27.28	31.94	29.19	29.47	C.D.(0.05) for FN	NS	(0.882)
A	35	22.47	27.05	29.14	26.22	C.D.(0.05) for AN	2.199	(1.081)
Mean		24.36	28.49	28,43				

Table 39 d. Mundakan 1983

Fertilizer	Age (Days)			Number o	Mean			
(% of recommended dose*)	A 25	А ₂ 30	А ₃ 35	^N 1 2	^N 2 4	^N 3 6		
F ₁ (75)	43.54	42.94	42.14	37.63	45.55	45.44	42.87	
P_ (100)	46.86	49.20	47.17	44.41	50.07	48.73	47.74	
Mean	45.20	46.07	44.66	41.02	47.81	47.09	•	

_		Number C	f seedling	s hill-1	Mean			
Age (Days)	N ₁	^N 2	м _з		C.D.(0.05) for F	0.861	(0.423)
		2	4 .	6		C.D.(0.05) for A	1.055	(0.521)
						C.D.(0.05) for N	1.055	(0.521)
A ₁	25	41.18	47.09	47.33	45.20	C.D.(0.05) for FA	1.492	(0.733)
	30	41.45	49.30	47.45	46.07	C.D.(0.05) for FN	1.492	(0.733)
^А 2 ^А 3	35	40.44	47.04	46.49	44.66	C.D.(0.05) for AN	NS	(0.900)
د Mean		41.02	47.81	47.09				

* 90: 45: 45 kg NPK ha^{*1}

Values in parenthesis are S.Em +/-

Higher the number of seedlings per hill better the nutrient absorption as the total foreging capacity of roots are more.

1.4 <u>K uptake</u>

The data on K upteke (Table 40 a, b, c & d) show that higher level of fertilizer is giving higher values of K uptake.

Though age levels showed significant effect only in two seasons of the first year, youngest seedlings (25 days old) gave the lowest values in three reasons out of four. Planting two seedlings per hill was always inferior to four and six seedlings per hill.

From the above results, it is seen that higher the fertilizer level, more the uptake of K because at thes level of fertilization more K is applied. Further, the grain and straw yield also more more at higher fertilizer level. Lowest K uptake was observed in two seedlings per hill. Both grain and straw yields were also lowest with two seedlings per hill.

Fertilizer (% of recommended dose*)		Ag	le (Days)		Number c	h111 ⁻¹	_ Mean	
		A 25	A2 30 _	А ₃ 35	^N 1 2	^N 2 4	N3 6	- 116911
F ₁	(50)	87.19	92.64	94.27	86.60	91.60	95 .9 0	91.36
F_2	(75)	94.69	92.21	103.04	92.04	97.77	100.12	96.65
Mean		90.94	92.43	98.65	89.32	94,69	98.01	

Table 40 a. K uptake (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

		Number c	of seedling	15 hill ⁻¹	-Mean	·			
Age (Days))	N ₁	^N 2	N ₃	-176 641	C.D.(0.05) fo	or F	4.941	(2.429)
		2	4	6		C.D.(0.05) fo	or A	6.051	(2.975)
						C.D.(0.05) fo	or N	6.051	(2.975)
A. 1	25	84.46	93.23	95.12	90.94	C.D.(0.05) fo	r FA	NS	(4.208)
A2	30	93.52	95.67	88.10	92.43	C.D.(0.05) fo	r FN	NS	(4.208)
А ₃	35	89.99	95.16	110.80	98.65	C.D.(0.05) fo	or AN	10.482	(5.154)
Mean		89.32	94.69	98.01					

Table 40 b. <u>Virippu</u> 1983

Fertilizer (% of recommended		Age (Days)			Number o	M			
dose'		A1 25	A_2 30	А ₃ 35	N1 2	N24	^N 3 6	Mean	
F ₁	(75)	98.52	103.36	104.75	90.50	109.67	106.46	102.21	
F2	(100)	109.69	113.97	112.83	100.87	121.84	113.78	112.16	
Mean		104.10	108,66	108.79	95.68	115 .76	110.12		

Age		Number of seedlings hill ⁻¹			Mean				
Age (Days)		^N 1 2	^N 2 4	N3 6	-	C.D. (0.05) C.D. (0.05)	for A	4.212 NS	(2.071) (2.537)
						C.D.(0.05)		5.159	(2.537)
Α,	25	91.88	114.21	106,22	104.10	C.D.(0.05)	for FA	NS	(3.587)
A_2	30	100.10	116.36	109.53	108.66	C.D.(0.05)	for FN	NS	(3.587)
^А 3	35	95.07	116.70	114.61	108.79	C.D.(0.05)	for AN	NS	(4.393)
Mean		95.68	115.76	110.12					

* 90: 45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

Fertilizer	Age (Days)			Number o	- Mean			
(% of recommended dose*)	A ₁ 25	A ₂ 30	А ₃ 35	^N 1 2	^N 2 4	^N 3 6		
F, (50)	85.21	92.17	83.87	81.78	88.00	91.47	87.09	
F ₂ (75)	90.35	99.91	94.08	92.79	96.23	95.33	94.78	
Mean	87.78	96.04	88.98	87.29	92.12	93.40		

Table 40 c. K uptake (kg ha⁻¹) as influenced by fertilizer levels, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

Age	Number of seedlings hill ⁻¹			Mean				
(Days)	^N 1 2	N24	N3 6	Me dat	C.D.(0.05) C.D.(0.05)		2.336 2.861	(1.148) (1.406)
					C.D.(0.05)	for N	2.861	(1.406)
A. 25	83.69	88.85	90.80	87.78	C.D.(0.05)	for FA	NS	(1.989)
4					C.D.(0.05)	for FN	NS	(1.989)
A ₂ 30	91.92	100.82	95.38	96.04	C.D.(0.05)	for AN	4.956	(2.437)
A_ 35	86.25	86.68	94.00	88.98	C.D. (0.05)	IOI AN	4.700	(2.4577
Mean	87.29	92.12	93.40					

Table 40 d. Mundakan 1983

Fertilizer	Age (Days)			Number o	— Mean			
(% of recommended dose*)	A 1 25	А ₂ 30	А ₃ 35	^N 1 2	N2 4	^N 3 6		
F, (75)	120.65	122.68	118.21	106.14	128.47	126.93	120.51	
F ₂ (100) Mean	136.13 128.39	139.33 131.00	131.05 124.63	126.22 116.18	143.39 135.93	136.90 131.91	135.50	

		Number of	f seedlings	hill ⁻¹	Mean			
Age (Day	s)	N.	N ₂	N ₃		C.D.(0.05)	for	F
	_,	2	4	6		C.D.(0.05)	for	A
			-		·	C.D. (0.05)	for	N
A_1	25	117.92	132.38	134.87	128.39	C.D.(0.05)	for	FA
A2	30	116.44	142.73	133.85	131.00	C.D.(0.05)	for	FN
A,	35	. 114.20	132.68	127.02	124.63	C.D.(0.05)	for	AN
Mean		116,18	135.93	131.91				

* 90: 45: 45 kg NPK ha⁻¹

.

Values in parenthesis are S.Em +/-

4.748 (2.333) NS (2.858) 5.816 (2.858) NS (4.041) NS (4.042) NS (4.951)

6.2 Soil analysis

2.1 Residual nutrient status of soil

The data on residual organic carbon, P and K content of soil after cropping (Tables 41 a, b, c & d, 42 a, b, c and d and 43 a, b, c and d) show that N, P and K contents of soil were affected by fortilizer treatments only. In all seasons higher level of fertilizer has resulted in better residual status of the above nutrients. This might be because at higher levels of fertilizer, N, P and K contents were also more.

Fertilizer (% of recommended dose*)		Age (Days)			Number	1 hill ⁻¹	_ Mean	
		А ₁ 25	^A 2 ^A 3 30 35		N 1 2	^N 2 4	N _{.3} 6	
F,	(50)	1.60	1.62	1.61	1.58	1,63	1.61	1.62
F,	(75)	1,64	1.62	1.59	1.64	1.61	1.61	1.61
Mean	1	1.62	1.62	1.60	1.61	1.62	1.61	

Table 41 a. Residual organic carbon content of soil (%) as influenced by fertilizer, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

100		Number of seedlings hill ⁻¹			- Mean		
2 30)	N1 2	N2 4	^N 2 ^N 3 4 6		C.D.(0.05) for C.D.(0.05) for	
						C.D.(0.05) for	n ns
4	25	1.65	1.62	1.58	1,62	C.D.(0 05) for	
L	30	1.61	1.62	1.64	1.62	C.D.(0.05) for	FN NS
2 3	35	1.57	1.62	1.60	1.60	C.D.(0.05) for	AN NS
lean		1.61	1.62	1.61			

Table 41 b. Virippu 1983

Fertilizer	Age (Days)			Number (Mean		
(% of recommended dose*)	А ₁ 25	A2 30	А ₃ 35	N1 2	^N 2 4	^N 3 6	
F ₁ (75)	1.51	1.52	1.50	1.52	1.52	1.50	1.51
F2 (100)	1.66	1.67	1.64	1.64	1.66	1.66	1.65
Mean	1.58	1.60	1.57	1.58	1.59	1.58	

Age		Number	Number of seedlings hill ⁻¹				
(Day	s)	N1 2	N2 4	N3 6	Mean		
Α,	25	1.58	1.61	1.56	1.58		
А А ₂	30	1.60	1.59	1.60	1.60		
A3	35	1.56	1.57	1.58	1.57		
Mean	I	1.58	1.59	1.58			

C.D.(0.05)	for F	0.069	(0.034)
C.D.(0.05)	for A	NS	(0.042)
C.D. (0.05)	for N	NS	(0.042)
C.D.(0.05)	for FA	NS	(0.059)
C.D. (0.05)	for FN	NS	(0.059)
C.D.(0.05)	for AN	NS .	(0.072)

* 90: 45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

Fertilizer	Age (Days)			Number (Mean			
(% of - recommended dose*)	^A 1 25	A 2 30	А ₃ 35	^N 1 2	N ₂ 4	^N 3 6		
	1.53	1.51	1.54	1.54	1,52	1.52	1,53	
F ₁ (50) F ₂ (75)	1.55	1.67	1.62	1.68	1.66	1.64	1.66	
F ₂ (75) Mean	1.61	1.59	1.58	1.61	1.59	1.58		

Table 41 c. Residual organic carbon content of soil (%) as influenced by fertilizer, age and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

•		Number of	_ Mean		
Age (Days)	, _	N1 2	^N 2 4	^N 3 6	
A1	25	1.63	1.61	1.60	1.61
¹ A ₂	30	1.62	1.57	1.57	1.59
2 A ₃	35	1.59	1.59	1.57	1.58
3 Mean		1.61	1.59	1.58	

for P	0.060	(0.029)
for A	NS	(0.035)
	ns	(0.035)
	NS	(0.051)
	NS	(0.05))
	NS	(0.062)
	for F for A for N for FA for FN for AN	for A NS for N NS for FA NS for FN NS

Table 41 d. <u>Mundakan</u> 1983

Fertilizer	Age	e (Days)	<u>_</u>	Number of seedlings hill ⁻¹			Mean	
(% of recommended dose*)	A 1 25	A ₂ 30	а _з 35	^N 1 2	^N 2 4	^N 3 6		
ه . (75)	1.53	1.54	1.57	1.56	1.54	1.53	1.55	
¹ F ₂ (100)	1.64	1.62	1.65	1.64	1.63	1.64	1.63	
12 Mean	1.58	1.58	1.61	1.60	1.59	1.59		

Age	Number (of seedling	s hill ⁻¹	Mean			
(Days)		N ₂	Na		C.D.(0.05) for	F 0.04	40 (0.019)
	N 1 2	**2 4	~3 6		C.D.(0.05) for	A N	5 (0.024)
	<u> </u>				_ C.D.(0.05) for	N N	s (0 .024)
A. 25	1.60	1.57	1.57	1.58	C.D.(0.05) for		s (0.033)
A ₂ 30	1.57	1.58	1.60	1.58	C.D.(0.05) for		s (0.033)
A ₂ 35	1.62	1.61	1.59	1.61	C.D.(0.05) for	AN N	s (0.041)
Mean	1.60	1.59	1.59				

* 90: 45: 45 kg NPK ha⁻¹

.

Values in parenthesis are $S_Em +/-$

Fertilizer			Age (Days	;)	Number	of seedlings	: hill ⁻¹	Mean
(% c recc dose	mmended	A 1 25	A2 30	А ₃ 35	^N 1 2	N2 4	N3 6	
F1	(50)	15.50	15.35	15.76	15.88	15.50	15.22	15.53
F,	(75)	19.08	19.13	17.73	18.63	18.60	18,75	18.65
Mear	1	17.29	17.24	16.75	17.25	17.05	16.97	

Table 42 a. Residual P content of soil (kg ha⁻¹) as influenced by fertilizer lays, age and number of seedlings hill⁻¹. <u>Virippu</u> 1982

.

Aqe		Number o	f seedlings	5 hill ⁻¹	Mean			
(Days	•)	N1 2	N2 4	N3 6	·	C.D.(0.05) for F C.D.(0.05) for A	1.039 NS	(0.511) (0.625)
						C.D.(0.05) for N	NS	(0.625)
Α,	25	17.52	17.34	17.01	17.29	C.D.(0.05) for FA	NS	(0.885)
А. А.2	30	17.42	17.33	16.97	17.24	C.D.(0.05) for FN	NS	(0.885)
2 A ₁	35	16.83	16,48	16.94	16.75	C.D.(0.05) for AN	NS	(1.083)
Meán		17,25	17.05	16.97				

Table 42 b. Virippu 1983

Fertilizer	Age	(Days)		Number of seedlings hill ⁻¹			
(% of recommended dose*)	^A 1 25	A ₂ 30	А ₃ 35	^N 1 2	^N 2 4	^N 3 6	Mean
F ₁ (75)	16.10	15.33	14.54	15.12	15.35	15.50	15,32
\mathbf{F}_{2}^{-} (100)	19.08	19.47	18.91	19.62	19.31	18,53	19.15
Mean	17,59	17.40	16.72	17.37	17.33	17.02	

Age		Number C	Number of seedlings hill ⁻¹				
Age (Days)		N 1 2	N2 4	^N 3 6	- Mean		
Å ₁	25	17.41	17.13	18.22	17.59		
A_2	30.	17.72	18.11	16.37	17.40		
A_2 A_3	35	16,98	16.73	16.46	16.72		
Mean		17.37	17.33	17.02			

C.D.(0.05)	for	P	1.223	(0.601)
C.D.(0.05)	for	A	NS	(0.736)
C.D.(0.05)	for	N	NS	(0.736)
C.D.(0.05)	for	FA	ns	(1.041)
C.D.(0.05)	for	FN	NS	(1.041)
C.D. (0.05) foi	r AN	NS	(1.275)

* 90: 45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

Fertilizer {% of		Age (Days)			Number of	Mean		
-	mended	A 1 25	^А 2 30	^А з 35	^N 1 2	^N 2 4	N ₃ 6	
F,	(50)	16.5	15.8	16.0	16.4	15.8	16.1	16.1
P2	(75)	18.8	19.5	19.2	19.9	18.9	18.7	19,2
Mean		17.6	17.6	17.6	18.1	17.3	17.4	

Table 42 c. Residual P content of soil (kg ha⁻¹) as influenced by fertilizer kyels, age

and number of seedlings hill⁻¹. <u>Mundakan</u> 1982

		Number o	f seedlings	a hill ⁺¹	Mean			
Age (Day		N ₁ 2	N ₂ 4	N3 6		C.D.(0.05) C.D.(0.05)		(0.602) (0.737)
				-		C.D. (0.05)		(0.737
A,	25	18.07	17.26	17.66	17.6	C.D.(0.05)		(0.04
2	30	17.75	17.54	17.77	17.6	$C_D_{(0.05)}$		(1.04)

16,93

17.4

Table 42 d. Mundakan 1983

18.76

18.1

.

17.28

17.3

.

А3

Mean

35

Fertilizer (% of		A	ge (Days)		Number of	seedlings hi	.11-1	Mean
	me nded	^А 1 25	^A 2 30	^А з 35	- N1 2	^N 2 4	^N 3 6	
F,	(75)	15.63	15.58	15.61	15.74	15.58	15.50	15.61
F,	(100)	20.59	20.02	19.21	20.24	19.95	19,63	19.94
Mean		18.11	17.80	17.41	17.99	17.77	17.56	

17.6

Age — (Days)		Number o	f seedlings	hill ⁻¹	Mean
		N 2	^N 2 4	^N 3 6	
Α,	25	18,47	17,92	17.94	18.11
A	30	17.80	18.05	17.57	17.80
^А 1 ^А 2 ^А 3	35	17.69	17.35	17.19	17.41
lean		17.99	17.77	17.56	

for	F	0.923	(0.452)
for	A	NS	(0.554)
for	N	NS	(0.554)
for	FA	NS	(0.784)
for	FN	NS	(0.784)
for	AN	NS	(0.960)
	for for for for	for F for A for N for FA for FN for AN	for ANSfor NNSfor FANSfor FNNS

C.D.(0.05) for AN NS (1.277)

* 90: 45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

Fertilizer		A	ge (Days)		 Number of	seedlings h	<u>111⁻¹</u>	- Mean	
(% o: recoi dose	mmended	A 25	A ₂ A ₃ 30 35		 ^N 1 2	^N 2 4	^N з 6		
F.,	(50)	212	203	193	205	205	198	203	
F ₂	(75)	277	274	272	274	274	275	274	
∡ Mean		245	238	233	2403	280	236		

.

Table 43 a.	Residual K content of soil (kg ha ⁻¹) as influenced by fertilizer kvels, age and	
	number of seedlings hill ⁻¹ . <u>Virippu</u> 1982	

		Number	of seedling	s hill ⁻¹	Mean	
Age (Days)	N1 2	^N 2 4	^N 3 6		C.D.(0.05) fo C.D.(0.05) fo C.D.(0.05) fo
<u> </u>	25	247	244	243	245	C.D.(0.05) fo C.D.(0.05) fo
1 A ₂	30	234	246	235	238	C.D.(0.05) fo
A	3 5	238	229	231	233	
Mean		240	240	236		

٠

(7.31) or F 14.8 or A NS (8.95) (8.95) or N NS or FA NS (12.67)or FN NS (12.67) (15,51) or AN NS

1

Table 43 b. <u>Virippu</u> 1983

Fertilizer (% of	Age	(Days)		Number o:	Mean		
recommended dose*)	A ₁ A ₂ 25 30	А ₃ . 35	N ₁ 2	N ₂ N ₃ 4 6			
F. (75)	202	175	174	189	181 .	180	184
F_ (100)	27 7	269	265	275	269	266	270
Mean	239	222	220	232	225	223	

, Age		Number	Number of seedlings hill ⁻¹				
Age (Days	3)	^N 1 2	^N 2 4	^N з 6	- Mean		
Α,	25	248	238	232	239		
А ₂	30	227	220	219	222		
A ₁ A ₂ A ₃	35	223	218	218	220		
Mean		232	225	223			

C.D.(0.05)	for	F	9.955	(4.895)
C.D.(0.05)	for	A	NS	(5 .9 95)
C.D.(0.05)	for	N	12.192	(5.995)
C.D.(0.05)	for	FA	NS	(8.478)
C.D.(0.05)	for	FN	NS	(8.478)
C.D.(0.05)	for	AN	NS	(10.384)

* 90:45: 45 kg NPK ha^{-1}

Values in parenthesis are S.Em +/-

Fertilizer (% of recommended dose*)		Age	(Days)	····· -	Number o	<u>f seedlings h</u>	<u>111⁻¹</u>	Mean
		^A 1 ^A 2 25 30		А ₃ 35	^N 1 2	^N 2 ^N 3 4 6		
 F.	(50)	190	171	169	179	177	174	176
-1 F2	(75)	199	213	211	209	208	206	208
2 Mean		194	192	190	194	192	190	

Table	43 c.	Residual K content of soil (kg ha-1) as influenced by fertilizerkvels, age
		and number of seedlings hill ⁻¹ . <u>Mundakan</u> 1982

Aco		Number	Mean		
Age (Days)	N 2 ¹	^N 2 4	^N 3 6	
A.	25	199	195	190	194
A A	30	197	190	188	192
^А 1 ^А 2 ^А 3	35	187	193	191	190
Mean		194	192	190	

C.D.(0.05)	for	F	10.2	(5.0)
C.D.(0.05)	for	A	NS	(6.2)
C.D.(0.05)	for	N	NS	(6.2)
C.D.(0.05)	for	FA	17.8	(8.7)
C.D.(0.05)	for	FN	ŃS	(8.7)
C.D. (0.05)'	for	AN	NS	(10.7)

Table 43 d. Mundakan 1983

	Age	(Days)		Number of	seedlings h	i11 ⁻¹	Mean
(% of - recommended dose*)	A 25	Å ₂ 30	А ₃ 35	N ₁	N2' 4	N ₃ 6	
F. (75)	177	171	168	174	172	170	172
F_2 (100)	217	199	194	208	200	201	203
2 Mean	197	185	181	191	186	185	

		Number	Mean		
Age (Day	s)	N ₁ 2	N2 4	N3 6	
A,	25	204	200	188	197
A A	30	187	183	184	185
^A 1 ^A 2 ^A 3	35	182	175	185	181
Mean	l	191	186	185	

C.D. (0.05)	for	F	12.26	(6.0)
C.D.(0.05)	for	А	NS	(7.3)
C.D.(0.05)	for	N	NS	(7.3)
C.D.(0.05)	for	FA	NS	(10.4)
C.D.(0.05₽	for	FN	NS	(10.4)
C.D.(0.05)	for	AN	NS	(12.7)
_				

* 90; 45; 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

Trial III. Evaluation of azolla as a low cost biofartilizar in rice variety IR 42

1. Growth and growth characters

1.1. Height of plants

During the mundekan season of the first year treatments showed significant influence on height at all . stages except at active tillering. Full recommended dose of fertilizer produced the tallest plants and was superior to all the other fertilizer levels at all stages (Table 44 a and b, 45 a and b). At panicle initiation stage all the higher levels of fertilizer were superior to the next lower levels while at flowering and at hervest 75 and 50 per cent of the recommended dose of fertilizer were comparable. With regard to ezolla levels, 20 t ha-1 recorded the highest value and was superior to all the other levels of ezolla from panicle initiation to harvest while 15 and 10 t of azolla ha-1 were similar. Though 50 per cent of the recommended dose of fertilizer along with azolla # 20 t ha-1 gave the highest value it was comparable with full dose of fertilizer in combination with azolla @ 10 t ha-1.

Treatments showed significant effect on height from active tillering to harvest in the second year as well. Among fertilizer levels, full dose of fertiliser recorded the highest value and was superior to others et all stages except harvest. At hervest 100 and 75 per cent

Fertilizer Levels		Azolla 3	Levels (t h	ia ⁻¹)				
(% of recommended lose*)	х ₁ 5	^A . 2 10	^A 3. 15	Å4 20	Mean			
⁹ 0 - 0	50.7	51.4	52.8	56.1	52.6	C.D.(0.05) for F	1.80	(0.82)
$P_1 - 50$	56.3	53.0	54.5	57.5	55.3	C.D. (0.05) for A	1.43	(0.70)
² - 75	56.7	56.0	56.7	59.4	57.2	C.D. (0.05) for A	I NS	(1.42)
$P_3 - 100$	61.1	58.2	59.4	59.3	59.5	within same F levels	I no	
lean	56.2	54.7	55.9	58.1	•	C.D.(0.05) for A between F levels	I NS	(1.48)
Table	44 b. <u>M</u> i	undaken :	1984 ₋					
Fertilizer			1984 vels (t ha ⁻	·1)				
Table - Fertilizer levels (% of recommended dose*)			• ********	-1) -A 20	Maan			
Fertilizer Levels - (% of recommended Sose*)		Azolla lev Azol	vels (t ha [*] ^A 3	· A4	Maan 42.1	C.D.(0.05) for F	0.45	(0.21)
Fertilizer Levels - (% of recommended Sose*) F ₀ - 0	^ 1 5	Azolla lev Az 10	vels (t ha [*] ^A 3 15	A 20				(0.21) (0.28)
Fertilizer Levels - (% of recommended lose*) F ₀ - 0 F ₁ - 50	^1 5 43.0	Azolla lev Az 10 40.8	vels (t ha [*] ^A 3 15 40.3	^A 4 20 44.4	42.1	C.D.(0.05) for F C.D.(0.05) for A C.D.(0.05) for A	0.57 I 1 14	(0.28)
Fertilizer levels - (% of recommended dose*) F ₀ - 0 F ₁ - 50	A1 5 43.0 42.5	Azolla lev Az 10 40.8 49.1	vels (t ha [*] ^A 3 15 40.3 50.2	A 20 44.4 50.1	42.1 48. 0	C.D.(0.05) for F C.D.(0.05) for A	0.57 I 1 14	

Table 44 a. Height of plants (cm) at panicle initiation stage as influenced by fortilizer and azolla levels. <u>Mundakan</u> 1982

-

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

<u>797</u>

Pert leve		zer	Azolla levels (t ha ⁻¹)						
(% c)£)mme	ended	А ₁ 5	л ₂ 10	л _э 15	A4 20	Məan		
Fo	-	, O	60 .6	60.6	65,8	64.8	63.0	C.D.(0.05) for F	0.90 (0.42)
F1	-	50	69.6	69.4	69.9	75.7	71.2	C.D. (0.05) for A	1.49 (0.73)
F2 F3	-	75	71.3	70.7	70.6	72.0	71.2	C.D. (0.05) for A	
F 3	-	100	72.7	73.7	71.3	71.9	72.4	within some P levels	2.97 (1.47)
Mear	1		68.6	68.6	69.4	71.1		C.D.(0.05) for A between F levels	2.70 (1.34)

Table 45 a. Height of plants (cm) at harvest as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

Table 45 b. Mundakan 1984

.

7

Fer lev		izer							
(%	of :0522	ended	л ₁ 5	A2 10	^А з 15	л ₄ 20	Mean		
F0 F1	-	0	62.3	63.7	65,2	64.8	64.0	C.D.(0.05) for F	0.83 (0.38)
F 1	-	50	68.5	75.8	76.1	75.0	73.9	C.D. (0.05) for A	0.94 (0.46)
£	-	75	76.3	78.8	78.2	69.9	75.8	C.D. (0.05) for A	
₽_3	-	10 0	72.5	77.8	77.7	77.4	76.4	within same F levels	1.88 (0.93)
Mea	n		69.9	74.0	74.3	71.8		C.D.(0.05) for A between F levels	1.80 (0.89)

* 90: 45: 45 kg NFK ha-1

Values in parenthesis are S.Em +/-

-

of the recommended dose of fertilizer were similars and were superior to lower levels. At active tillering and flowering stages, 75 and 50 per cent of the recommended dose of fertilizer were comparable while at panicle initiations stage, each higher level of fertilizer was superior to the next lower level of fertilizer tried.

Azolla @ 10 t ha⁻¹ produced taller plants at all stages upto flowering while at hervest azolla @ 15 t ha⁻¹ gave taller plants and was similar to azolla @ 10 t ha⁻¹. Full dose of fertilizer in combination with azolla @ 10 t ha⁻¹ recorded more height both at active tillering and flowering stages while at harvest, 75 per cent of the recommended dose of fertilizer along with azolla @ 10 t ha⁻¹ recorded the highest value. However, full dose of fertilizer in combination with azolla @ 10 t ha⁻¹ was comparable with latter.

From the above results, it is seen that during first year full dose of fertilizer and excelle 20 t he^{-1} , respectively were needed for achieving maximum height. But when the combination effect is examined it is seen that, full dose of fertilizer along with excelle 0 t he^{-1} and 50 per cent of the recommended dose of fertilizer in combination with excelle 20 t he^{-1} are similar in their

performance. In second year, full dose of fertilizer and azolla \clubsuit 10 t ha⁻¹ were the beat with regard to individual performance. With respect to combination effect full dose of fertilizer along with azolla \clubsuit 10 t ha⁻¹ gave comparable values with 75 per cent fertilizer and 10 t of azolla ha⁻¹.

The effect of fertilizer on height is meinly due to the effect of N. The role of N in increasing the vegetative growth is well known. At the highest level of fortilizer, there was no need of increasing the azolla beyond 10 t ha-1. But when the fertilizer level was reduced to zero, the quantity of azolla could go upto 20 t ha-1. Then the entire requirement of N of the crop was met from azolla. This is in conformity with the findings of Balasubrameniam (1980), Sethesivan (1980) and Padelia (1981). They observed a linear increase in plant height with graded levels of fertilizer N while Singh (1977 b, d) recorded increased plant height with azolla application. The increased availability of both organic and inorganic fertilizer nutrients resulting from the combined application of both also might have contributed to increase in height. The N supply through combined application of organic and inorganic fertilizers is reported to be more steady and long lasting (Hauang Dong Mai et al 1981)

171042 - 201

Pillai and Vamadevan (1978) and Hesse (1984) have stressed the beneficial affect of application of organic manure in conjunction with inorganic fertilizers.

1.2 Number of tillers m⁻²

During the first year of the experiment (Table 46 a and b and 47 a and b) full dose of fertilizer recorded the maximum number of tillers and was superior to other levels of fertilizer at all stages. At hervest though full dose of fertilizer gave the highest value it was comparable with 75 per cent of the recommanded dose. Azolla @ 10 and 15 t ha⁻¹ gave the highest tiller number at active tillering and at hervest stages, respectively. With regard to combinations full dose of fertilizer along with azolla @ 10 t ha⁻¹ gave the maximum value at all stages.

Full dose of fertilizer gave the highest number of tillers during the second year also and was superior to other fertilizer levels at all stages except at harvest. At harvest, full dose, 75 and 50 per cant of the recommended dose of fertilizer were similar in their performance. The levels of azolla except 5 t ha⁻¹ were comparable in their effect at all the three stages. As to combinations, full dose of fertilizer in combination with azolla \oplus 10 t ha⁻¹ recorded the highest tiller number at all stages.

Table 46 a. Number of tillers m⁻² at panicle initiation stages as influenced by fortilizer and azolla levels. <u>Mundakan</u> 1982.

Fert		zer		Azolla le	velš (t)	na ⁻¹)				
leve (% o reco dose	e Currei	nđeđ	A1 5	^A_2 10	^А з 15	A 20	Mean			
 Fa	-	0	50 7 '	58 5	625	647	591	C.D.(0.05) for F	14.3	(6.5)
°0 F1	-	50	574	66 3	677	698	653	C.D. (0.05) for A	9.8	(4.8)
2	-	7 5	591	685	698	70 7	670	C.D. (0.05) for A	I 19.6	(9.7)
, 6	-	100	65 5	732	714	712	703	within same F levels	1	
3 lean	L		582	666	679	691		C.D.(0.05) for A between F levels	I 21.5	(10.6)

Table 46 b. Mundakan 1984

•

Fert		2 8 1		Azolla le	vels (t)	na ⁻¹)			
leve (% c reco dose	e Lane	nded	A` 1 5	*2 10	^А з 15	A 20	Meén		
Fo		0	491	505	514	523	508	C.D.(0.05) for F	12.5 (5.7)
Σ,	-	50	588	650	660	665	641	C.D.(0.05) for A	5.0 (2.4)
F1 F2 F3	÷	75	596	670	676	658	650	C.D.(0.05) for A within same F levels	¥ 10.8 (4.9)
.	-	100	620 6 2 4	692 620	680 6 33	669 620 -	665	C.D. (0.05) for A	2 14.5 (7.2)
Mear	1		574	629	033	629 -		between F levels	I 14.5 (7.2)

* 90; 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Em +/-

ertilizer evels		Azolla le	vels (th	1 a -1)				
levels (% of (conten) lose*)	ded	A 1 5	*2 10	а _з 15	A4 20	Mean		
ro -	0	368	403	434	442	412	C.D. (0.05) for F	22.2 (10.2)
· · · · ·	50	452	507	510	515	496	C.D. (0.05) for A	9.8 (.4.9)
r_{2}^{1} -	75	470	521	529	505	⁴ 506	C.D. (0.05) for A	1 19.7 (9.8)
	100	498	552	522	482	514	within same F levels	A
j lesn		447	496	499	487		C.D. (0.05) for A	I_{1}^{1} 23.5 (11.1)
	Table	e 47 b.	Mundekan	1984			between P levels	¥7
		·····		1984			D92AG\$U t T6AGT2	
Pertiliz evels (% of recommen	er	·····	Mundekan	1984		Mean	D92AG\$U 1 I6A412	
Pertiliz evels (% of ecommen lose*)	er	^ <u>^</u> 1	Mundekan Acolla le ^A 2	1984 Ivels (t H	ha ⁻¹) A4	Mean 394	C.D. (0.05) for F	21.3 (9.8)
ertiliz evels % of ecomment lose*)	er ded	Å 1 5	<u>Mundekan</u> Acolla le ^A 2 10	1984 evels (t) ^A 3 15	^A 4 20	•		
ertiliz evels % of ecomment lose*)	er ded 0	Å1 5 367	Mundekan Acolla le Acolla le Acolla 384	1984 evels (t H ^A 3 15 400	^A 4 20 426	394	C.D.(0.05) for F C.D.(0.05) for A C.D.(0.05) for A	21.3 (9.8) 13.6 (6.8)
Pertiliz Levels (% of recomment loss*)	er ded 0 50	Å1 5 367 461	Mundekan Acolla 1e Acolla 1e 384 507	1984 Avels (t f A 15 400 536	^A 4 20 426 516	394 505	C.D.(0.05) for F C.D.(0.05) for A	21.3 (9.8)

Table 47 a. Number of tillers m⁻² at harvest as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

* 90: 45: 45 kg NPK ha⁻¹ Values in paranthesis are S.Em 4/-

As in the case of height, tiller number is also a vegetative character and is influenced by the fertilizer component and ezolla. Accordingly, the highest fertilizer level has given the maximum tiller number. However, the interaction effect shows that full dose of fertilizer in combination with ezolla \oplus^{10} tha⁻¹ is favouring maximum tiller production. This means that at 100 per cent of the recommended dose of fertilizer, azolla can be restricted to 10 t ha⁻¹. It may be recalled that in height also the same combination was found to be optimum. Increased availability of nutrients due to the combined application of both orgenic end inorgenic <u>Sources</u> might have resulted in increased tiller production (Huang Dong-mai*et al.*08). Jaikumaran (1981) elso recorded higher tiller number with combined application of fertilizer end exolla.

1.3 Leef area index (LAI)

During the first year of the expaniment fertilizer as well as azolla had no significant effect on the LAI at active tillering stage. At panicle initiation stage full dose of fertilizer gave the highest value and was similar to 75 per cent of the recommended dose (Tables 48 a 4 b). Azolla levels had no significant effect. Among combinations, full dose of fertilizer combined with ezolla @ 10 t he⁻¹

Fert		zer	Azolla levels (t ha ⁻¹)		_				
leve (% c recc dose)£ Mice	nded	. A 1 5	^A 2 10	λ ₃ 15	A 20	Mean		
Fo		0	4.44	5.09	5.32	5.51	5.09	C.D. (0.05) for F	0.548 (0.251)
F ₀ F1	-	50	5.29	6.11	5.80	6.87	6.02	C.D. (0.05) for A	NS (0.260)
F2	-	75	6.17	6.84	7.85	6.17	6 .7 6	C.D. (0.05) for A	I 1.048 (0.522)
¥3	-	100	6.80	6 .97	6.05	6.63	6.61	within some F levels	I read (a. 25%)
Mean	L	·	5.6 8	6.25	6.26	6.30		C.D. (0.05) for A between F levels	1.039 (0.617)

Table 48 a. Leaf area index (LAI) at panicle initiation stage as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

Teble 48 b. Mundakan 1984

Fert	tilizer els	Azolia levels (t ha -)						
(% c reco dose	manded							
Fo	- 0	4.40	5.13	5.36	5.93	5.21	C.D.(0.05) for F	0.429 (0.196)
F ₀ F ₁	- 50	5.68	6.14	6.21	6.43	6.12	C.D.(0.05) for A	0.261 (0.130)
₹_2	ʻ 7 5	6.03	6.66	7.00	6.00	6.42	C.D. (0.05) for A I	0.523 (0.260)
F,	- 100	6.51	7.30	6.54	6.43	6.70	within same F levels I	
Hear	1	5.66.	6.31	6.28	6.20		C.D. (0.05) for A I between P levels I	0.601 (0.299)

* 90: 45: 45 kg HFK ha-1

Velues in parenthesis are S.Em +/-

.

recorded the maximum value. At flowering stage full dose of fertilizer was superior to all the other levels of fertilizer. Azolla @ 10 t ha⁻¹ gave the highest value and was similar to the higher levels. Among combinations full dose of fertilizer in combination with azolla @ 10 t ha⁻¹ recorded the highest value and was superior to the rest.

During second year of the experiment full dose of fertilizer recorded the maximum LAI at all steges and was on per with 75 per cent of the recommended dose of fartilizer. Application of azolla at 20 t ha⁻¹ gave the highest value at active tillering and was comparable with 10 and 15 t ha⁻¹. At panicle initiation stege 10 t of azolla recorded the highest value which was similar to the higher levels of azolla. As to combinations, full dose of fertilizer together with azolla • 10 t ha⁻¹ produced the highest LAI value at penicle initiation whereas at flowering stege azolla levels and their combinations had no significant effect.

Thus the overall trend of the individual effects of two years seems to be in favour of full dose of fertilizer and exclla @ 10 t ha⁻¹. When the combination effect was examined full dose of fertilizer along with exclla @ 10 t ha⁻¹ appears to be better. It may be

recalled that both in the case of height as well as number of tillers, this combination was giving better performance. Since leaf area is influenced by these two characters, it is guite natural that the same combination is beneficial with regard to LAI also.

In both years LAI increased upto panicle initiation stage and declined thereafter. At panicle initiation stage a value around six was recorded. This is in accordance with the finding of Murata (1969). According to him LAI increases with increase in N application especially before panicle initiation. The LAI of rice plants showed an increasing trand with increase in the level of N (Tanaka, 1972; Yogeswara Rao et al., 1972; Remaswamy, 1975; Raju,1979 and Sathesiven, 1980). Mathewkutty (1982) also recorded maximum LAI with combined application of fertilizer and azolla.

1.4 Dry matter production at harvest

Full dose of fertilizer recorded the highest value of dry matter production and was superior to other fertilizer levels during the first year of study (Table 49 a). Each higher level of fertilizer was superior to the next lower level. Azolia \bullet 15 t ha⁻¹ recorded the highest value and was comparable with ezolia \bullet 20 t ha⁻¹.

	rtilizer		· 2	azolla let	vels (t h	a ⁻¹)			
level (% of recom dos e *	nen	đeđ	А <u>1</u> 5	^A 2 10	^A 3 15	^A 4 20	Mean		
[?] 0	-	0	4848	6005	6701	6933	6122	C.D. (0.05) for F	246.3 (113.0)
0 F ₄	-	50	6792	7389	7689	7707	7394	C.D.(0.05) for A	214.9 (106.9)
*2	-	75	7814	80 63	8342	7754	7993	C.D.(0.05) for A	¥ 429.8 (213.8)
5. F.	-	100	8323	8535	8342	8189	8347	within same F levels	
- 3 Mean		` •	6944	7498	7768	764 6	•	C.D.(0.05) for A between F levels	¥ 436.1 (216.9)

÷.

Table 49 2. Dry matter production of rice (kg ha⁻¹) as influenced by fertilizer and szolla levels. <u>Mundakan</u> 1982

Table 49 b. Mundaken 1984

lzer	Azo	olla level	ls (t ha	3.)			
- ended	λ ₁ 5	^h 2 10	<mark>А</mark> з 15	A ₄ 20	Mean		
0	5320	5702	5820	6349	5798	C.D.(0.05) for F	313.9 (144.1)
50	6264	6782	7023	7324	6848	C.D.(0.05) for A	166.5 (82.8)
75	б 97 8	7521	7703	7615	7472	C.D.(0.05) for A within same F levels	¥ 332.9 (165.6)
1 0 0					7510	C.D.(0.05) for A 🧐	1 408.7 (203.3)
	ended 0 50	anded 5 0 5320 50 6264 75 6978	anded $\begin{array}{cccc} \lambda_1 & \lambda_2 \\ 5 & 10 \end{array}$ 0 5320 5702 50 6264 6782 75 6978 7521 100 7237 7861	anded $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	anded $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	anded $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	anded $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* 90: 45: 45 kg NPK ha⁻¹ Values in parenthesis are S.Ea +/-

Full dose of fertilizer together with azolla @ 10 t ha⁻¹ registered the highest dry matter production which was similar to 75 per cent of the recommended dose of fertilizer in combination with ezolla \odot 15 t ha⁻¹.

During the second year of the study as well, full dose of fertilizer recorded more dry matter production but was comparable with 75 per cent of the recommended dose (Table 49 b). Though azolla @ 20 t ha⁻¹ obtained the highest value it was similar to ezolla @ 15 t ha⁻¹ whereas no significant difference was observed between 15 and 10 t of azolla ha⁻¹. Full dose of fertilizer combined with azolla @ 10 t ha⁻¹ registered the maximum dry matter production which was comparable with the combination, 75 per cent of the fortilizer along with azolla @ 15 t ha⁻¹.

Full dose of fertilizer and azolla @ 15 t ha⁻¹ individually were found to give the highest dry matter production.

Full dose of fertilizer combined with azolla 9 10 t ha⁻¹ was found to be the beat in both the years.

On perusal of the data on the yield of grain full dose of fertilizer had recorded the highest value in both

years. With respect to azolle levels, azolla @ 15 t ha⁻¹ was seen to be better. On considering the effect of combinations, full dose of fertilizer combined with azolla @ 10 t ha⁻¹ and 75 per cant of the recommended dose of fertilizer along with azolla @ 15 t ha⁻¹ were similar in their performance with the former topping the list. Almost same trend was observed with the yield of straw also so as to make dry matter production go in line with the grain yield. The reason for the batter performance of 75 per cent of the recommended dose of fertilizer in combination with azolla @ 15 t ha⁻¹ is discussed elsewhere.

2. Yield attributes

2.1 Number of panicles m^{-2} .

In both years fertilizer and axolle levels hed significant effect on the number of panicles (Table 50 a & b). Full dose of fertilizer registered the highest number and was comparable with the next two lower levels in the first year. In the second year of study full dose of fertilizer obtained the highest number. Seventy five per cent of the recommended dose was similar to full dose as well as 50 per cent. With regard to axolla during the first year no significant difference was observed between 10 and 15 or 20 t ha⁻¹ through 15 t ha⁻¹ registered the highest number

fertilizer	Aa	olla leve	ls (t ha	-1)					
levels (% of recommended lose*)	A 5	A10	λ ₂ λ ₃ 10 15	Å4 20	Need				
r _o - 0	261	281	330	334	302	C.D.(0.05) for F	24.1 (11.1)		
P ₁ - 50	341	395	402	409	387	C.D. (0.05) for A	12.1 (6.0)		
² ₂ - 75	362	412	422	389	.396	C.D. (0.05) for A I	24.2 (12.1)		
$r_3 - 100$	38 8	341	416	376	405	within same P levels I			
jean 🛛	338	383	393	377		C.D. (0.05) for A I between F levels I	27.4 (13.1)		
Table	50 b. <u>Hur</u>	ndeken 198	×			<u>, , , , , , , , , , , , , , , , , , , </u>	(
ertilizer		<u>deken</u> 198)lla level	4	L)			,		
Table Pertilizer levels (% of recommended lose*)			4	^A 4 20	Mean				
Pertilizer Levels (% of Tecommended lose*)	Ażo Aj	olla level	4 s (t ha ⁻² ^A 3	A4	Mean 287	C.D.(0.05) for F	19.0 (8.7)		
ertilizer evels % of ecommended lose*)	λżα ^A 1 5	olla level A ₂ 10	s (t ha ⁻² ^A 3 15	^A 4 20		C.D.(0.05) for F C.D.(0.05) for A	19.0 (8.7) 6.8 (3.3)		
Pertilizer (% of recommended lose*) 70 - 0 71 - 50 72 - 75	Ażo ^1 5 262	276 391 409	4 s (t ha ⁻² ^A ₃ 15 289 404 417	^A 4 20 320 410 409	287 390 399	C.D. (0.05) for A C.D. (0.05) for A			
Pertilizer levels (% of recommended lose*) 70 - 0 71 - 50	A20 A1 5 262 354	276 391	4 s (t ha⁻¹ A ₃ 15 289 404	A 20 320 410	28 7 390	C.D. (0.05) for A	6.8 (3.3)		

Table 50 a. Number of panicles m⁻² as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

1

*90: 45: 45 kg NPK ha-1

Values in parenthesis are S.Em +/-

of panicles. In the second year, azolla @ 20 t ha⁻¹ produced more panicles than 15 t ha⁻¹ though the difference was not significant. Azolla @ 15 and 10 t ha⁻¹ were also comparable in their performance. Though the combination of full dose of fertilizer along with azolla @ 10 t ha⁻¹ gave the highest number of panicles, it was similar to 75 per cent of the recommended dose with azolla @ 15 t ha⁻¹ in both the years.

From the above results it is observed that number of panicles could be increased with azolla levels. But when the azolla levels ware increased beyond a cartain level along with fertilizer levels, panicle number was reduced indicating that the crop had an optimum requirement of both. At zero level of fertilizer, though there was increase in panicle number with increase in azolla levels, the increase was not proportional. This reveals that azolla at higher levels are not that good even in the absence of fertilizer. This might be because of the slow availability of the nutrients in azolla due to the high content of lignin (Shi-Shu-lian et al., 1983).

2.2 Number of filled grains per panicle

The treatments showed no significant effect on number of filled grains per panicle during the first year

of study (Table 51 a). However, during the second year fertilizer as well as azolla levels showed significant effect on the number of grains. Full dose of fertilizer recorded more number and was comparable with 75 per cent of the recommended dose of fertilizer (Table 51 b). Among combinations 75 per cent of the recommended dose along with azolla @ 15 t ha⁻¹ gave the highest value and was on per with azolla @ 10 t ha⁻¹ with 75 and 100 per cent of the recommended dose of fertilizer.

From the above results it is noticed that with no fertilizer, the number of filled grains was found to increase with increase in azolla levels whereas in combination with fertilizer levels, filled grains were increased only upto a certain level of azolla beyond which there was reduction in the number.

The above result is in agreement with the findings of Kulesoorya and Desilva (1977 Å). Singh (1977 a) and Jaikumaran (1981). They could record an increase in the number of filled grains with a combination of fertilizer N plus azolla. The increased availability of nutrients from both organic and inorganic sources due to the combinad application might be the reason.

Fertilizer levels - (% of recommended dose*)		Azol	la levels	$(t ha^{-1})$)					
		A 1 5	^A 2 10	^A 3 15	A ₄ 20	Mean				
°o	-	0	62.7	51.4	67.1	62.5	58.4	C.D.(0.05) for F	ns [`]	(2.67)
F1	-	50	. 59.3	59 .7	63.3	56.2	59+6`	C.D.(0.05) for A	ns	(2.15)
2	-	75	58.6	58.4	60.7	53.9	57.9	C.D.(0.05) for A I within same F levels I	NS	(4.29)
F ₃	- ,	100	60.1	60.3	53.5	62.0	59.0		-	
Mean	ł		60.2	57 . Ś	58.7	58.7		C.D. (0.05) for A I between F levels. I	ns	(4.58)
		Table	e 51 b. <u>P</u>	<u>fundekan</u>	1984					
	1115			<u>fundeken</u> la levels						
leva (% c reco	els of maer					А ₄ 20	Mean			
leva (% c reco dose	els of maer	201	A2013	la levels	(t ha ⁻¹) ^A 3	A4	Mean 55 -3	C.D.(0.05) for F	2.7	4 (1.21)
Leva (% c ceco dose	els of maer	loc	A2013 A 1 5	A levels A 2 10	(t ha ⁻¹) A ₃ 15 55.4	*4 20		C.D.(0.05) for F C.D.(0.05) for A		4 (1.21) 1 (0.79)
Leva (% c reco dose F0 F1	els of maer	zer nded 0	Azol) Azol) 5 5	A210 51.9	(t ha ⁻¹) ^A 3 15 55.4	A420	55 . 3	C.D.(0.05) for A C.D.(0.05) for A X	1.6	(0.79)
leva (% c	els of maer	zer nded 0 50	A2013 A2013 5 1 5 49.4	A2 10 51.9 51.0	(t ha ⁻¹) A ₃ 15 55.4 53.6	A 20 62.5 54.6	55 .3 52.2	C.D.(0.05) for A	1.6	

Table 51 a. Number of filled grains panicle⁻¹ as influenced by fertilizer levels. <u>Mundakan</u> 1982

* 90: 45: 45 kg NPK ha-1

Volues in parenthesis are S.Sm +/-

2.3 Thousand grain weight

During first year of the experiment fertilizer and azolla levels had no significant effect on thousand grain weight though there was a decreasing trend in weight with decrease in fertilizer levels (Table 52 a). In the second year full dose of fertilizer gave the highest value and was comparable with 75 per cent of the recommended dose (Table 52 b). Fifty and seventyfive per cent of the doses were similar in their performance. The azolla levels and the combinations were not significant in both the Second.

From the results it is seen that while azolla as such had no effect on increasing the thousend grain weight, fertilizer had only a slight effect. This being a varietal character, much influence is not expected also. However, some of the investigators like Ahmed and Abdul Faiz (1969), Lenka (1969) did get an increase in thousand grain weight while others like Eumus and Sadeque (1964); Sundererajan (1978) did not observe any increase.

2.4 Sterility percentage

During first year of the experiment neither fertilizer nor azolla levels showed any significant effect on storility percentage (Table 53 a). But in the second

Fertilizer Levels		Azolla	levels (t ha ⁻¹)				
(% of recommended dose*)	ended	* <u>1</u> 5	*2 10	^A 3 15	A4 20	Nean		
Fo -	0	19.90	20.00	19.90	20.04	19.96	C.D.(0.05) for F	NS (0.374)
F1 -	50	20.00	20.10	20.46	20.14	20.18	C.D. (0.05) for A	NS (0.305)
F ₂ -	75	20.60	20.48	20.34	20.14	20.39	C.D.(0.05) for A I within same F levels I	ns (0.611)
F ₃ - Mean	100	21.64 20.54	20.44 20.26	19 .94 20 .16	20.74 20.27	20 .69	C.D. (0.G5) for A I between F levels I	NS (0.648)
Fert11	4	وكوالاعتبي بخراقت والمتاري عكارت	فالاستعاد فكفؤك فجايبات		والمتحدثة والتقديقية فتقدينهم الشيامية	the second s	ويحمد المراجع والمراجع بالمحارب والمحار بالمحار والمحار والمحار والمحار والمحار والمحار والمحار والم	
		Azol	la levels	(t ha-1)	•			
levels (% of recomm	anded	.Azol ^A 1 5	le levels A2 10	(t ha ⁻¹) ^A 3 15	A 20	Mean .		
levels (% of recomm dose*)	anded	^A 1	A2	л ₃	A.	Mean . 18.31	C.D. (0.05) for F	0.413 (0.189)
levels (% of recomm dose*) F ₀	anded	^A 1 5	*2 10	^л з 15	A 20		C.D.(0.05) for F C.D.(0.05) for A	0.413 (0.189) NS (0.179)
levels (% of recomm cose*) F ₀ F ₁	ended 0	^A 1 5 17.99	^A 2 10 18.02	^A 3 15 18,42	A 20 18.82	18,31	C.D.(0.05) for A C.D.(0.05) for A	NS (0.179)
levels (% of recomm dose*) F ₀	anded 0 50	^A 1 5 17.99 18.92	A2 10 28.02 19.06	A ₃ 15 18.42 19.05	A 20 18.82 19.30	18 .31 19.09	C.D. (0.05) for A	0.413 (0.189) NS (0.179) NS (0.359)

Table 52 a. Thousand grain weight (g) as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

1

.

* 90: 45: 45 kg NFK ha⁻¹ Values in parenthesis are S.Em +/-

Pertilizor Levels - (% of recommanded lose*)		201	Azo	lla level	s (t ha ⁻	1)		•		
		nđed	^{.A} 1 5	A ₂ 10	А _{́з} 15	A4 20	' Mean			
0_		0	17.66	19.20	22.84	19.56	19.83	C.D. (0.05) for F	NS	(1.193)
1	-	50	18.64	16.32	21.40	19.10	18.87	C.D.(0.^5) for A	NS	(1.209)
2	-	75	21.86	18.94	20.54	25.18	21.63	C.D. (0.05) for A	ns	(2.419)
3	-	100 -	- 19,14	21.22	19.06	23.60	20.76	within same P levels	4 8 Cut	1003437
ean			19.33	18.92	20.95	21.86		C.D.(0.05) for A between F levels	ns	(2.411)

Table 53 a. Sterility percentage as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

Table 53 b. Mundakan 1984

	:ilizer	Azol	la level a	(t ha ⁻¹)	-	-		
leve (% c tecc dose	of xmended	^A 1 ^A 2 5 10		^A 3 ^A 4 15 20		Mean			-
F ₀	- 0	22.60	20,88 19.3	19.36	17.90	20,19	C.D.(0.05) for F	1.721	(0.769)
5	- 50	21.36	20.98	19.90	18.34	20.15	C.D.(0.05) for A	ns	(1.199)
\$2	- 75	22.62	20.84	20.55	26.90	22.73	C.D. (0.05) for A	NS	(2.398)
₹_	- 100	22.28	21.41	25.17	23.44	23.08	<pre>/ within same F levels I</pre>	53.64	(2,0)0+
Meen	r	22.22	21.03	21.25	21.65		C.D.(0.05) for A X between Flevels	N3.	(2.222)

* 90: 45: 45 kg NPK ha⁻¹

Values in parenthesis are S.Em +/-

year, fertilizer levels alone showed significant affect on sterility percentage (Table 53 b). Highest sterility was associated with full dose of fertilizer. When the number of spikelets increases consequent to application of higher levels of N, photosynthetes may not be sufficient to fill all the spikelets. The above result is in conformity with the finding of Jaikumaran (1981) and Sreekumaran (1981).

3. Grain yield

The pooled analysis of date on grain yield for two seasons (Table 54) ravealed that higher levels of fertilisers were similar in their effect though highest grain yield was produced by full dose of fertilizer. Both these treatments were superior to other lower levels of fertilizer. Azolla \Rightarrow 15 t ha⁻¹ gave the highest yield. Application of esolle either 10, 15 or 20 t ha⁻¹ resulted in similar yield. As to combinations full dose of fertilizer in combination with ezolla \Rightarrow 10 t ha⁻¹ recorded the highest yield and was comparable with 75 per cent and 100 per cent (full dose) of the recommended dose of fertilizer, respectively in combination with ezolla \Rightarrow 15 t ha⁻¹.

From the results it is seen that 100 per cent (full dose) of the recommanded dose of fertilizer gave more yield even though it was similar to 75 per cent. IR 42 is classified as a variety which gives a fairly high yield at low fertility conditions according to Khush et al. (1979). Even with no fertilizer and with axolla \oplus 5 t ha⁻¹ this variety has given

Fertiliza levels	er –	λ20	lla level	s (t ha ⁻¹	.)			
(% of recommend dose*)	leđ	л ₁ 5	л ₂ . 10	А ₃ 15	A_ 20	Mean		
F ₀ -	0	2524	2913	3115	3304	2964	C.D.(0.05) for F	110.7 (35.9)
F ₁ - 5	50	_ 3218	3482	3609	3694	3501	C.D.(0.05) for A	61.8 (20.0)
F ₂ - 7	15	3590	3850	3951	3784	3794	C.D. (0.05) for A	123.6 (61.5)
F ₂ - 10	0	3830	4039	3919	3750	3884	within same F levels Î	TT3+0 (01+3)
Mean		3291	3571	3648	3633		C.D.(0.05) for A I between F levels I	154.0 (76.7)

Table 54. Grain yield (kg ha⁻¹) as influenced by fertilizer and azolla levels (Pooled data for Mundakan 1982 and 1984)

* 90: 45: 45 Kg NPK ha-1

.

Values in parenthesis are S.Em +/-

a fairly good yield of 2.5 t ha⁻¹. In specing trial also, this has given elmost the same yield without any azolla or fertilizer (Table 13 a, b, c f d). This again proves the potential of the variety to perform under low fertility conditions. Similar reports on the performance of this variety under such conditions are available (Anon, 1981).

Comparison of the respective individual effect of azolla and fertilizer shows that the fertilizer has given a better response than azolla. By application of 20 t of azolla the yield could be increased to 3.3 t under zero fertilizer level whereas the yield could go upto 3.8 t with 100 per cent of the recommended dose of fertilizer. The low yield in plots which received higher doses of azolla might be due to the high lignin content of azolla. According to Shi-Shu-lian et al. (1981) the lignin content of azolla is about 20.2 per cent which is responsible for the low evailability of the nutrients in ezolla compared to inorganic fertilizer. Talley and Rains (1960) also reported low availability of N with excessive application of azolla as green manure.

The combination effect seems to be better than the individual effect. Full dose of fertilizer in combination with azolla 0 10 t ha⁻¹ has given the highest yield of 4.03 t ha⁻¹ closely followed by 75 per cent of the recommended

dose of fertilizer along with azolle @ 15 t ha-1 which has given about 3.95 t ha-1. However, these two combinations were similar to full dose of fertilizer together with azolla @ 15 t ha-1 as well. Full dose of fertilizer gave the best performance with 10 t of azolla. But, when the fertilizer dose was reduced to 75 per cent, it was requiring 15 t of agolla to produce similar yield. This means that when the fertilizer dose is increased to 100 per cent, azolle can be reduced to 10 t ha-1. At the same time increasing azolla lavels from 10 t to 15 t in (conjunction with 100 per cent recommanded dose of fertilizer does not give a proportionate increase in production. Further, it is numerically inferior to the combination 75 per cent of the recommended dose of fertilizer elong with azolla @ 15 t ha-1. This shows that at the dighest at level of fertilizer, increase in azolla from 10 to 15 t or at 15 t of azolla ha⁻¹ increasing the fertilizer from 75 to 100 per cent doas not give any additional benefit. It is, therefore, assumed that 75 par cent fertilizer with 15 t of ezolla is optimum for this variety. A combination of the inorganic plus organic sources of N has been reported to be better then either of the sources of N (Pillai and Vamade Van, 1978). It has also been proved that fertilizer in combination with azolla is the best

(Hesse, 1984). This might be because by an integrated application system involving both organic and inorganic fertilizer will increase the mineralization of the organic form and reduce the immobilization of the inorganic form, thus enhancing the total nutrient availability to the crop. Moreover, the beneficial effect of organic matter in the development of superficial roots which are directly involved in the root respiration and nutrient absorption in rice was reported earlier (KawataandtSoejuma1976). Further, the quinones, degradation products of humic acid is reported to have nitrification inhibition property thus enabling the nutrient especially N more available to the plant. Moreover the phenols produced by the degradation of lignin act as phytohormones and possess a favourable influence on plant metabolism (Flaig, 1975 manhere are also considerable reports to the effect that fertilizer N could be saved to the extent of 20-50 per cent by incorporation of azolla (Kannaiyan et al., 1982; Mathewkutty, 1982; Mandal and Bharati, 1983). Since azolla is a low cost input every effort should be made to popularise its use and thereby reduce the fertilizer dosage.

However, increasing the dose of azolla from 15 to 20 t does not give any additional grain yield. At the same

time it results in a decreased grain production as is evident from the Table 54. Azolla response per 100 kg of azolla applied, also showed a decreasing trend when azolla level was increased along with increase in fertiliser levels (Table 55). This might be because of several reasons. Beneficial effect of organic matter application is masked by its higher rates of application along with the full recommended dose of fertilizer. The shorter interval between incorporation of azolla and transplanting might have resulted in CO2 accumulation during the initial stages of growth of the crop. Since higher concentration of CO2 is injurious for root development, in the present investigation tiller number m⁻² was found to be lower in the treatment receiving full dose of fertilizer and highest level of azolla (Table 46 a & b and 47 a & b). Incorporation of organic matter like azolla might have resulted in immediate reduction in redox potential of soil releasing a number of organic es well as inorganic reduced components such as organic acids, H2S, phenols, Soluble Fe, Mn, A1 which are toxic for the growth of the rice plant. Reduced organic compounds are reported to compete with rice roots for respiration (Ponnamperuma, 1978) thus inhibiting root respiration as well as nutrient upteke. A perusal of the data on nutrient

uptake (Table 57 a & b, 60 a & b, and 61 a & b) substantiates it. Further, the quinones - the degradation products of humic acid, produced in large quantities were reported to have urease inhibitory activity (Bundy and Bremmer, 1973). The soluble urea might have either been washed out of the soil or leached down beyond the root zone.

With regard to the beneficial effect of the particular combination, the data on panicle number (Table 50 a & b) show that the combination 75 per cent of fertilizer plus axolla 15 t ha⁻¹ had given the highest number a^{p}_{p} enicles. The number of filled grains penicle⁻¹ (Table 51 a & b) and thousand grain weight (Table 52 a & b) also show that this combination is better. The beneficial effect of all these yield attributes would have resulted in giving higher grain production by this combination.

It may be further seen from the Table that, there seems to exist an optimum combination of arolls for a particular level of fertilizer. At zero level of the fertilizer, 20 t of azolls has given the highest yield while at 50 per cent fertilizer dose, 15 t of azolls seems to be significant whereas at 75 per cent level 10 t of azolls eppears to be

necessary for highest yield. This shows that as the fertility level increases, the optimum dose of azolla required for grain production is reduced. But a combination of azolla and inorganic fertilizer is always found to be better. With reference to fertilizer saving also the same trend is recorded. At 5 and 10 t of ezolla, 100 per cent fertilizer dose is required while at 15 t of azolla 75 per cent of the recommended dose of fertilizer is enough. At 20 t of azolla 50 per cent of the fertilizer dose is sufficient. This means that azolla can substitute fertilizer upto 50 per cent even though there is a numerical reduction in yield of around 300 kg. From the economics (Table 55) it is seen that the combination 75 per cant of the recommended dose with azolla \otimes 15 t ha⁻¹ has given a net return of &. 6330 and 100 per cent of the recommended dose of fertilizer with azolla @ 10 t ha-1, S. 6508. This shows that the difference is only less than R. 200. At the same time the benefit cost ratios were almost equal i.e. 2.12 and 2.13 in the former and latter combinations, respectively. Out of these two combinations, the return per rupse invested on fertilizer was more in the former. Thus it can be seen that 75 per cent of the recommended dose of fertilizer with 15 t of azolla ha-1 seems to be optimum from the economic point of view also.

Table 55.	Economics	of	trial	III (Azoll	a trial)

Treatments	Grain yield kg ha ⁻¹	Straw yield kg ha ⁻¹	Gross return ‰.ha ⁻¹	Cost of cultiva- tion R. ha ⁻¹	Net return ‰.ha ⁻¹	Benefit cost ratio	Azolla response per 100 kg of azolla applied	Return rupee-1 invested on ferti- lizer
		2580	7628	4744	2884	1.60	50.48	_
F0 ^A 1	2524			4858	3909	1.80	29,13	_
F0 ^A 2	2913	. 2941	8767					
Fo A3	3115	3146	9376	4972	4404	1.88	20.76	
F0 ^A 4	3304	3347	9955	5102	4853	1.95	16.52	
F. A.	3218	3310	9746	5217	4529	1.86	64.36	10.57
F ₁ ^A 2	3482	3603	10567	5331	5236	1.98	34.82	12.06
F ₁ A ₃	3609	3747	10965	5445	5520	2.01	24.06	12.67
F1 A4	369 4	3822	112 10	5575	5635	2.01	18.47	12.91
F ₂ A ₁	3590	3816	10996	5416	5580	2.03	71.80	9.30
F ₂ A ₂	3850	3966	11666	5530	6136	2.10	38.50	10.13
F2 A3	3951	4072	11974	5644	6330	2.12	26.34	10.41
F ₂ A ₄	3784	3901	11469	5744	5695	1.98	18.92	9.47
F ₃ ^A 1	3830	3950	11610	5615	5995	2.06	76.60	7.88
5 1 F ₃ A ₂	4039	4159	12237	5729	6508	2.13	40.39	8.47
F 3 A 3	3919	4054	11892	5843	6049	2,03	26.12	7.94
33 F ₃ A ₄	3750	3935	11435	5973	5462	1.91	18.75	7.27

Fertilizer levels

Fo		0				
F,	=					kg NPK ha ⁻¹
F ₂						kg NPK ha ⁻¹
F	=	100% of	90:	45:	45	kg NPK ha ^{⊶1}

<u>Azolla levels</u>

Α,	=	$5 \text{ t} \text{ ha}^{-1}$	Price of rice= Rs. 2 kg ⁻¹
A2	6	10 t ha ⁻¹	Price of straw = Re.1 kg ⁻¹
A,	F	15 t ha ⁻¹	
A_4	13	20 t ha $^{-1}$	

4. Straw yield

On pooled analysis of the data on straw yield (Table 56) it can be seen that full dose of fertilizer recorded the highest straw yield and was comparable with 75 per cent of the recommended dose of fertilizer. Both were superior to lower levels of fertilizer. Azolla @ 15 t ha-1 gave the highest value and was similar to 20 t ha-1. Both of them were superior to the lower levels of azolla. Full dose of fertilizer along with 10 t of azolla recorded the hickest straw yield which was comparable with azolla @ 15 t ha⁻¹ in combination with 75 and 100 per cent of the recommended fertilizer dose. At zero level and at 50 per cent of the recommended dose of fartilizer, there was a progressive increase in strew yield with increasing levels of azolla upto 20 t ha⁻¹. At 75 per cent level of fertilizer straw yield increased only upto 15 t of azolla while at 100 per cent level of fertilizer increase in yield of straw was only upto 10 t ha⁻¹.

A perusal of the data on height, tiller number and LAI (Tables 44 to 48 a & b) indicates that the treatment combination of full dose of fertilizer along with azolla © 10 t ha⁻¹ recorded uniformly higher values in all these attributes. The role of fertilizer especially N in increasing the vegetative growth and thereby increasing the straw yield

Feri leve		2e f	Azo)	lla level	5 (t ha ⁻¹)			
(X c)í Nnac	nded	<mark>А</mark> 1 5	*2 10	^А з 15	A4 20	Mean		
F ₀	-	0	2580	2941	3146	3337	3001	C.D.(0.05) for P	111.43(36.2)
F ₁	198	50	3310	3603	3747	3822	3620	C.D.(0.05) for A	70.24(22.7)
F2	-	75	3816	39 66	4072	39 01	3939	C.D. (0.05) for A within same P levels	I 140.47(69.8)
FЗ	-	100	39 50	4159 ´	4054	3935	4025	C.D.(0.05) for A	I 164.97(82.2)
Mæei	2		3414	3667	3755	3749		bêtween 7 levels	L 104457 (02.27

Table 56. Straw yield (kg ha⁻¹) as influenced by fertilizer and azolle levels (Pooled data for Mundakan 1982 and 1984)

* 90: 45: 45 kg NPK ha⁻¹

-

.

Values in parenthesis are S.Em #/-

with increasing levels of N and axolle were reported by Krishnarajan and Mathur et al. (1981), Belesubremenien (1983), Kennaiyan et al. (1983), Tahmida and Abdul Kader (1983).

From the above results it is observed that higher values of straw yield were always associated with higher levels of fertilizer. A decrease in straw yield at higher levels of azolla especially in combination with higher levels of fertilizer was observed. The harmful effects of higher doses of azolla in conjunction with full dose of fertilizer are discussed elsewhere.

5. Harvest index (HI)

During first year, treatments had no significant effect on HI while during the second year high HI values were essociated with zero level of fertilizer (Table 57 a 4 b). Azolla levels had no significant effect.

The above results reveal that the $H_O I_O$ in fertilized plots were lower then that of the unfertilized plots. The high HI values associated with zero level might be because in the absence of fertilizer application, there will be reduction in grain as well as straw yield. Conversely, as the fertilizer level increases, N being the major component of fertilizer, both grain and straw yield increases. The increase may not be proportionate. N fewours more straw

Pertilizer levels		A201	lla levels	; (t ha ⁻¹))		·		
(% of recomm dose*)	ended	λ ₁ 5	^A 2 10	· ^A 3 15	A. 20	Mean			
Fo -	G	49.54	49.74	49.75	49.74	49.69	C.D.(0.05) for F	0.119	(0.055)
F ₁ -	50	49.25	49.26	49.28	48.97	49.19	C.D.(0.05) for A	NS	(0.054)
F2 - F3 -	7 5 100	49.26 49.26	49.25 49.26	49.25 49.25	49.21 49.26	49 . 24 49.25	C.D.(0.05) for A within same F levels	i ns	(0.108)
s Mean		49.33	49.38	49.38	49.30		C.D.(0.05) for A between F levels	I ns	(0.109)

Table 57 a. Harvest index as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

.

Table 57 b. Mundekan 1984

٦

Fer lev		izer	Azolla levels (t ha ⁻¹)					
(%	of ona	ended	A 1 5	л ₂ 10	А ₃ 15	A ₄ 20	Mean	
F		0	49.75	49.76	49.75	49.74	49.75 -	C.D. (0.05) for F 0.402 (0.185)
F1	-	50	49.34	49.02	48.82	49.32	49.13	C.D. (0.05) for A NS (0.201)
F2	-	7 5	47.62	49.26	49.23	49.26	48.84	C.D. (0.05) for A [0.609 (0.403)
F	-	100	49.19	49.26	49.01	48.24	48.93	within same F levels I 0.009 (0.405)
Mea	n		49.00	49.33	49.20	49.14		C.D.(0.05) for A X 0.793 (0.394) between F levels X 0.793 (0.394)

* 90: 45: 45 kg NPK ha-1

Values in parenthesis are S.Em +/-

production and as such the HI is reduced. This is in agreement with the findings of several workers like Sreedharan (1975), Sahu et al. (1980).

6. Chemical analysis

6.1 Plant enelysis

6.1.1 Protein content of grains

The pooled analysis of the date on protein content reveals that emong fertilizer levels, full dose of fertilizer recorded the highest value (Table 58). Each higher level of fertilizer was superior to the next lower lovel. Azolla \oplus 20 t ha⁻¹ recorded the maximum value which was superior to all other lower levels of azolla. Even though not significent, the combination full dose of fertilizer along with azolla \oplus 20 t ha⁻¹ gave the highest protein content.

The above results reveal that both fertilizer and agolla at the highest level individually or in combination gave more protein content.

It may be recalled that the grain yield was highest at the full dose of fertilizer in combination with azolla @ 10 t ha⁻¹. When the azolla levels were increased to 15 and 20 t ha⁻¹ elong with full dose of fertilizer, there was a reduction in grain yield. This reduction in the later combination was significant. This means that the fertilizer

Fertilizer levels -	Ag	olla leve	ls (t ha	•1)		
(% of recommended dose*)	A1 5	^A 2 10	A 15	A. 20	Meen	- -
¥9 - 0	6 .7 0	7.33	7,69	7.80	7.38	C.D. (0.05) for F 0.160 (0.052)
F <u>1</u> - 50	7.94	8.32	8.55	8.85	8,42	C.D. (0.05) for A 0.162 (0.053)
^P 2 - 75	8.38	8.53	8.88	9 .05	8.71	C.D.(0.05) for A (0.325 (0.161) within same F levels (0.325 (0.161)
F ₃ ~ 100 Meen	8.74 3.94	9.06 8.31	9.36 8.62	9.92 8.91	9,27	C.D. (0.05) for A I 0.323 (0.160) batween F levels I 0.323 (0.160)

Table 58. Protein content of grain as influenced by fertilizer and azolla levels. (Pooled data for Mundakan 1982 and 1984)

* 90: 45: 45 kg NPK he⁻¹

Values in parenthesis are S.Em +/-

_

requirement especially of N for giving highest grain yield is not the same for recording highest protein content.

A higher nutrition seems to favour a higher protein content even though, the yield was decreased at this level. This may be due to the fact that the balance in the synthesis of carbohydrate shifts in favour of protein at higher level of nutrition especially N. This is because azolla gives more N compared to other nutrients. Similar reports of a shift in emphasis from carbohydrate synthesis to protein synthesis at higher level of N has been reported by several investigators (De Datta et al. 1964, Rego, 1973).

It is further noted that the grain yield was lowest in the combination receiving full dose of fertilizer with the highest dose of exolla then treatments receiving full dose of fertilizer with lower doses of exolla. The number of panicles m^{-2} was also lowest in the former combination thus enabling more concentration of N in grains leading to increased protein content.

6.1.2 NFK upteke

-N uptake was more in treatments receiving full dose of fertilizer in both years (Table 59 a 2 b). During the second year full dose and 75 per cent of the recommended dose of fertilizer were comparable. The lowest N uptake was noticed

Table 59 a. N uptake (kg ha⁻¹) as influenced by fortilizer and azolla levels. <u>Mundakan</u> 1982

Fertili levels		· ·	Azolla le	vals (t)	ls (t ha ⁻¹)				
(% of recomme lose*)		A <u>1</u> 5	^А 2 10	л _э 15	A4 20	Mean ,			
P ₀ -	0′	35.60	51.58	58.80	63 .61	52.40	C.D.(0.05) for F	4.069	(1.867)
F ₁ -	. 50	62.33	72.03	74.17	78.13	71.67	C.D. (0.05) for A		(1.439)
² 2 -	75	72.66	80.61	79.98	74.71	76.99	C.D. (0.05) for A	5.787	(2.879)
	100	82.32	95.73	85.07	81.87	86.26	within seme F levels	34101	1209191
lean		63.23	74.99	74.50	74.58		C.D. (0.05) for A	6.261	(3.115)
	Table	₩ <u></u> ₩		1984			batween F levels		
Fertili		e 59 b. M		1984			DSEMGER & IGASIC		
Fertili levels (% of recomment lose*)	zer	e 59 b. M	undeken	1984		Meen	DSEMGER & LEVELS		
Certili Levels (% of teconne lose*)	zer	e 59 b. M Azol	<u>lundekan</u> la levels ^h 2	1984 (t ha ⁻¹) ^A 3) ^A_4	Mean 50.97	C.D.(0.05) for F	4.764	(2.186)
ertili evels % of ecomment lose*)	zer nded	e 59 b. M Azol ^A 1 5	la levels ^h 2 10	1984 (t ha ⁻¹) ^A 3 15) ^A 4 20				(2.186) (1.203)
ertili evels % of ecomment lose*)	zer nded 0	e 59 b. <u>M</u> Azol ^A 1 5 39.94	londekan la levela ^h 2 10 49.64	1984 (t ha ⁻¹) A ₃ 15 54.06	A ₄ 20 60.25	50.97	C.D.(0.05) for F C.D.(0.05) for A C.D.(0.05) for A	2.418	(1.203)
Fertili Levels (% of recommendation	zer nded 0 50	e 59 b. <u>M</u> Azol ^A 1 5 39.94 68.54	<u>londekan</u> la levels ^h 2 10 49.64 67.40	1984 (t ha ⁻¹) ^A 3 15 54.06 70.38	^A 4 20 60.25 74.40	50.97 67.71	C.D.(0.05) for F C.D.(0.05) for A	2.418	

* 90: 45: 45 kg NPR ha⁻¹ Values in parenthesis are 3.Em +/-

in azolla \oplus 5 t ha⁻¹. All the higher levels of ezolla were similar. Though full dose of fertilizer in combination with azolla \oplus 10 t ha⁻¹ recorded highest uptake it was comparable with 75 per cant of the recommended dose of fertilizer along with azolla \oplus 15 t ha⁻¹.

F uptake also followed elmost the above trend. Full dose of fertilizer and 75 per cent of the recommended dose of fertilizer were similar in both years (Table 60 a 4 b). Azolla @ 15 t ha⁻¹ registered more P uptake in the first year which was comparable with azolla @ 10 t ha⁻¹. But during the second year azolla @ 10 t ha⁻¹ recorded the highest value which was similar to the higher levels of azolle tried. The combinations associated with higher N uptake recorded more P uptake as well.

The trend in the upteke of N and P could be noticed in the case of K upteke also. Full dose of fertilizer recorded more uptake of K in both years (Table 61 a 4 b) and was comparable with 75 per cent of the recommended dose of fertilizer only in the second year. Azolla \ge 20 t ha⁻¹ recorded the highest uptake in both years and was similar to ezolla \ge 10 and 15 t ha⁻¹ in the first year. During the second year azolla \circledast 10 and 15 t ha⁻¹ were comparable. The combinations wherein the uptake of N and P was higher topped in K uptake also.

ertilizer	Azoli	la levels	(t ha ⁻¹)					
evels - [% of recommended lose*)	л ₁ 5	^A 2 10	A 3 15	^А 4 20	Mean			
0 - 0 - 50	10.81	13.49 18.96	16.00 19.01	16.62 20.21	14.23 18.85	C.D.(0.05) for F C.D.(0.05) for A		(0.771) (0.649)
1 2 - 75	19.55	21.25	25.13	19.64 19.54	21 . 39 22.06	C.D. (0.85) for A I within same F lovels.	2.610	(1.298)
23 - 100 Ngan	20.64 17.06	24.85 19.64	23.20 20.84	19.54 19.00	42.00	C.D. (0.05) for A I between Flevels I	2.741	(1,363)
,	Table 60 b	• <u>Mundak</u>	<u>an</u> 1984	× ·				
Fortilizer	Table 60 b	. <u>Mundak</u> la levels		· · ·				
fortilizer Levels (% of recommended	Table 60 b) A ₄ 20	Mean			
Fortilizer Levels (% of recommended iose*)	Table 60 b Azol	la levels	(t ha ⁻¹) A ₃	A ₄	Mean 14.95	C.D.(0.05) for F	1.259	(0.578)
Fortilizer Levels (% of recommended dose*) Fo - 0	Table 60 b Azol Azol 5	la levels A ₂ 10	(t ha ⁻¹) A ₃ 15	А ₄ 20	- 	C.D.(0.05) for F C. ² .(0.05) for A	0.759	(0.377)
Fortilizer levels (% of recommended dose*) F ₀ - 0 F ₁ - 50	Table 60 b Azol Azol 5 12.35	la levels A2 10 14.44	(t ha ⁻¹) A ₃ 15 15.55	A ₄ 20 17.46	14.95 18.54 20.29	C. ^D . (0.05) for A C.D. (0.05) for A	0.759 (1.519	
Fortilizer levels (% of recommended dose*) F ₀ - 0 F ₁ - 50	Table 60 b Azol Azol 12.35 16.27	la levels A ₂ 10 14.44 18.31	(t ha ⁻¹) A ₃ 15 15.55 19.30	A ₄ 20 17.46 20.27	14.95 18.54	C. ² .(0.05) for A	0.759 (1.519	(0.377)

Table 60 a. P uptake (kg ha⁻¹) as influenced by fertilizer and azolla levels. <u>Mundokan</u> 1982

Values in parenthesis are S.Sm +/-

Table 61 a.	K uptake (<u>Mundakan</u>	(kg ha ⁻¹) 1982	as influenced	ЪУ	fertilizer and	azolla	levels.
-------------	-------------------------------	--------------------------------	---------------	----	----------------	--------	---------

.

Fertilizer	A	colla leve	als (t ha	•1}	-			• •
levels " (% of recommended dose*)	^А 1 5	A2 10	*3 15	A 20	Mean		-	
F 0	56.53	68.69	73.80	84.77	70.95	C.D. (0.05) for F	4.903	(2.250)
$\begin{array}{rrrr} \mathbf{F}_0 & - & 0 \\ \mathbf{F}_1 & - & 50 \end{array}$	78.33	84.89	89.00	92.04	86.07	C.D.(0.05) for A	4.100	(2.039)
$F_1 = 50$ $F_2 = 75$	86.80	93.62	99.07	92.42	99.98	C.D. (0.05) for A I within some F levels I	8.199	(4.079)
F - 100	100.77	105.44	100.70	93.44	100.09	c.D. (0.05) for A 1	a 440	(* ****)
Mean	80.61	88 .16	90.64	90.67	``	between F levels I	8.419	(4.188)

Table 61 b. Mundakan 1984

-

.

	lizer	Azo	lla level	s (t ha ⁻¹	L)			
level (% of fecos dose	E mended	^А 1 5	^A 2 10	A ₃ 15	A4 20	Mean	-	·
F	- 0	59.42	66.11	67.31	77.99	67.71	C.D.(0.05) for F	5.649 (2.592)
F F	- 50	73.15	80.46	84.21	90.64	82.12	C.D. (0.05) for A .	2.429 (1.208)
1 F ₂	- 75	84.57	91.49	97.23	94.02	91.82	C.D.(C.O5) for A within seme P levels	4.858 (2.416)
£	-100	87.60	98 .9 9	94.81	91.91	93.3 <u>3</u>	C.D. (0.05) for A	
Mean		76.19	84.26	85.89	88.64		between F levels	

*90: 45: 45 kg NPX ha-1 Values in parenthesis are S.Em +/-

J,

The above results revealed that treatments receiving full dose of fertilizer has given the highest values for N, P and K uptake followed by the lower levels in the descending order. With respect to azolla, higher levels of azolla were always giving more uptake of the above nutrient. But, no significant difference was observed between 10, 15 and 20 t indicating that azolla @ 10 t ha-1 is sufficient for the crop. Further, a reduction in the uptake of N, P & K was noticed with the application of higher doses of azolla at full dose of fertilizer. By the combined application of both, a good part of the fertilizer N would have been immobilized resulting in a reduction in the uptake. Findings of Broadbent and Nakashima (1970), Yoshida and Padre (1974) also showed a reduction in N uptake due to the immobilisation of significant amount of fertilizer N when. applied in combination with large amounts of organic materials under flooded conditions. This further affects the P and K uptake. Full dose of fertilizer in combination with azolla © 10 t ha-1 was found to be favouring the N, P and K uptake. Both grain and straw yields were higher in the above combination. Further the percentage content of the above nutrients were also higher. Both these aspects might have contributed to high values of N, P and K uptake. Similar results were reported by Gopalaswamy and Rej (1977) and Reju (1978). Higher values of N, P and K uptake with the combined

application of azolla with 100 or 75 per cent of N fertilizer was reported by Jaikumaran (1981) under Kerala condition.

6.2 <u>Residual nutrient status of soil after cropping</u> 6.2.1 <u>Organic carbon content of soil</u>

Organic carbon content of soil was influenced significantly by the fertilizer as well as azolia treatments in both years. Treatments which received full dose of fertilizer recorded more residual organic carbon (Table 62 a & b). During first year each higher level of fertilizer was comparable with the next lower level while in the second year each higher level was superior to the next lower level. Azolla levels also followed the same trend as in the case of fertilizer in the respective years. Combination effect was not significant in the first year though full dose of fertilizer in combination with azolla © 20 t ha⁻¹ recorded the highest value and was superior to other combinations in the second year.

From the results it is evident that treatments which received full dose of fertilizer and highest level of azolla i.e. # 20 t ha⁻¹ recorded the highest value of organic carbon. Even though treatments which received full dose of fertilizer resulted in highest dry matter production

Fertilizer levels -	b zo)	lla levels	s (t ha-1)				
(% of recommended dose*)	л 5	2 10	• ^A 3 15	л ₄ 20	Mean			
F ₀ - 0	1.45	1.48	1.50	1,58	1.50	C.D.(0.05) for P	0.064	(0.035)
F <mark>1 - 50</mark>	1.48	1.48	1.62	. 1.61	1.55	C.D.(0.05) for A	0.057	(0.029)
F ₂ - 75	1.46	1.59 1,60 -	1.59 1.62	1.61 1.63	1.56 1.61	C.D.(0.05) for A within same F levels	NS	(0.058)
F ₃ - 100 Mean	1,50	1.54	1.58	1.61	1.04	C.D. (0.05) for A	NS	(0.061)
		Mundakan	1984			between F levels		
Tabl Fertilizer	e 62 b. 1	·	1984			betwaen P levels		· · · · · · · · · · · · · · · · · · ·
Tabl	e 62 b. 1	Mundakan	1984		Mean	betwaen P levels		,
Tabl Fertilizer levels (% of recommended dose*)	e 62 b. <u>1</u> Azo	Mundakan olla level	1984 ls (t ha ⁻ ^A 3	1) ^A 4	Mean 1.54	C.D. (0.05) for F	0.030	(0.013)
Tabl Fertilizer levels (% of recommended dose*) F ₀ - 0 F - 50	e 62 b. 1 Azo ^A 1 5	Mundakan olla level A2 10	1984 ls (t ha ^A 3 15	1) ^A 4 20				(0.013) (0.012)
Tabl Fertilizer levels (% of recommended dose*) F ₀ - 0 F - 50	e 62 b. 1 Azo ^A 1 5 1.48	Mundakan olla level A2 10 1.52	1984 ls (t ha ⁻ ^A 3 15 1.55	1) A4 20 1.62	1.54	C.D.(0.05) for F C.D.(0.05) for A C.D.(0.05) for A	0.024	(0.012)
Tabl Fertilizer levels	e 62 b. <u>1</u> Azo ^A 1 5 1.48 1.60	Mundakan olla level A2 10 1.52 1.61	1984 1.s (t ha ^A 3 15 1.55 1.61	¹) ^A 4 20 1.62 1.62	1.54 1.61	C.D.(0.05) for F C.D.(0.05) for A	0.024	

62 a. Residual organic carbon content (%) of soil as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

۰.

7

* 90: 45: 45 kg NPK ha-1

Values in parenthesis are S.Em +/-

still some quantity of nutrient from the fertilizer might have been left in the soil. In the case of axolla also, at the highest lavel, the uptake could not have been to the fullest extent thereby leaving more residual organic carbon in the soil. The slow availability of azolla N due to the high lignin content might have resulted in higher residual organic carbon in the soil. Slow availability of nutrients of azolla is attributed to the high lignin content (Shi Shu lian et al., 1981). Further, higher residual organic carbon with the application of higher levels of fertilizers were reported by Singh (1979 a) and Arunachelan (1960).

6.2.2 P and K content of soil

Buring first year, full dose of fertilizer gave the highest P content (Table 63 a) and was comparable with 75 per cent of the recommended dose of fertilizer and superior to other lower levels. But in the second year, though 75 per cent of the recommended dose of fertilizer produced the highest value, it was similar to full dose and 50 per cent of the recommended dose (Table 63 b). Azolla \oplus 20 t ha⁻¹ gave the highest value and was comparable with azolla \oplus 15 t ha⁻¹ in both years. Azolla \oplus 15 and 10 t ha⁻¹ ware equal in the first year whereas they were similar in the second year. But azolla \oplus 10 t ha⁻¹ end 5 t ha⁻² were

ertilizer	Azol	la level:	$t ha^{-1}$)		-		
evels - % of ecommended ose*)	^A 1 5	^A 2 10	^A 3 15	^A 4 20	Mean			
~ 0	10.98	10.87	-11.84	12.73	11.61	C.D.(0.05) for F	0.990	(0.454)
0 - 0	14.29	16.73	17.86	19.94	17.21	C.D. (0.05) for A	1.669	(0.930)
2 - 75	16.48	18.02	18.85	19.62	18.24	C.D.(0.05) for A within seme F levels	I NS	(1.660)
- 100	17,60	18.78	18.53	19.22	18.54	C.D. (0.05) for A		

Table 63 a. Residual content of soil (kg ha-1) as influenced by fertilizer and azolla levels. <u>Mundékan</u> 1982

Table 63 b. Mundakan 1984

1

.

	ilizer	Å2	olla levo	ls (the	-1)				
leve (% o reco dose	nnended	Å1 5	л ₂ 10	<mark>А</mark> з 15	A 20	Mean	,		
F0	- 0	12.21	13.29	.14.10	16.65	14.06	C.D. (0.05) for P	1.951	(0.895)
	- 50	18.50	19.15	19.88	20.56	19.52	C.D. (0.05) for A	1.453	(0.723)
2	- , 75	18.96	20.97	22.13	21.01	20.76	C.D.(0.05) for A within same F levels	I NS	(1.446)
3	- 100	19.46	20.36	20.55	22.19	20.64	C.D. (0.05) for A	Ŷ	
lean	1	17.28	18.44	19.16	20.10		between F levels	i ^{ns}	(1.404)

* 90: 45: 45 kg NPK ha-1

Values in parenthesis are S.En +/-

 \sim 42

×.

comparable only in the second year. Though combination effect was not significant full dose of fertilizer with azolla @ 20 t ha⁻¹ recorded highest value in the second year.

Highest K content was associated with full dose of fertilizer in both years (Table 64 a & b) followed by the next lower levels in the descending order. Full dose, 75 and 50 per cent of the recommended doses of fertilizer ware comparable only in the first year. In the second year full dose add 75 per cent of the recommended dose were similar while 75 and 30 per cent of the recommended dose were elso comparable. Azolla levels followed the same trend as in the case of F content. Azolla \oplus 20 t he⁻¹ recorded more residual K content which was similar to azolla 10 and 15 t ha⁻¹ in both years. Though not significant, full dose of fertilizer in combination with azolla 20 t ha⁻¹ gave more residual X content.

The above results reveal that more residual P and K status were associated with the application of highest dose of both the fertilizer and ezolla individually as well as in combination. Higher the application, more will be the contribution to the soil reserve. Azolla itself contains

fertilizer Levels	Azo	lla leval	s (t ha ⁻¹)	_			
(% of ecomsonded lose*)	^A 1 5	A ₂ _10	^А з 15	A ₄ 20	Mean			
o - 0	126	135	146	140	137	C.D.(0.05) for F	16.3	(7.5)
- 50	. 137	149	148	157	148	C.D. (0.05) for A	12.8	(6,4)
$\frac{1}{2} - 50$	140	146	149	177	- 152	C.D. (0.05) for A I within same F levels I	ns	(12.7)
3 - 100	138	166	173	175	163	C.D. (0:05) for A I	NS	(12.2)
	135 64 b. <u>M</u>	149 <u>undakan</u>	154 	161	<u>.</u>	between Flevels I		
Table Fertilizer	64 b. M	······································	1984			between Flevels I		
Table Table Fertilizer Levels X of secommended	64 b. M	undakan	1984		Mean	between Flevels X		
Table Fertilizer Levels (% of recommended Nose*)	64 b. <u>M</u> Azo	undakan lla level A ₂	1984 s (t ha ⁻¹ ^A 3	L; A	Mean 138	between Flevels I C.D. (0.05) for F		(5.051)
Table Table Pertilizer evels % of recommended losa*) 0 - 0	64 b. <u>M</u> Azo ^A 1 5	undakan ils ievel A ₂ 10	1984 s (t ha ⁻¹ ^A 3 15	¹) ^A 4 20			11.01	
Table Table Vertilizer	64 b. <u>M</u> Azo ^A 1 5	undakan llælevel A ₂ 10 136	1984 s (t ha ⁻¹ ^A 3 15 142	¹) ^A 4 20 143	138	C.D. (0.05) for F C.D. (0.05) for A C.D. (0.05) for A I	11.01 8.25	(5.051) (4.125)
Table Table Fertilizer Levels (% of recommended Nose*) 70 - 0 71 - 50	64 b. M Azo ^A 1 5 129 160	undakan llæ level A ₂ 10 136 159	1984 s (t ha ⁻¹ ^A 3 15 142 164	¹ ; ^A 4 20 143 170	138 159	C.D. (0.05) for F C.D. (0.05) for A	11.01 8.25	(5.051)

Table 64a. Residual K content of soil (kg ha⁻¹) as influenced by fertilizer and azolla levels. <u>Mundakan</u> 1982

.

J.

Values in parenthesis are G.Em */-

.

.

 \sim 44

.

about 0.24 per cent P and 2 per cent K. Further, the high lignin content of azolla (Shi shu lian et al., 1981) resulted in slow availability thereby encouraging more residual nutrient status. Residual effect of P due to azolla application has already been reported by Mohanakrishnan (1983) under Kerala conditions.

Summary

SUMMARY

A series of investigations were carried out at the Regional Agricultural Research Station, Pattembi, Kerala, India to evaluate some of the low cost agronomic techniques for sustained rice production in IR 42, a rice variety suited to low fertility conditions, during the period from 1982 to 1985.

The results obtained from these trials are summarized hereunder.

Trial I

In this trial, the performance of TR 42 was studied under four levels of fertilizer (zero, 50, 75 and 100 per cent of the recommended dose of 90: 45: 45 kg NPK ha⁻¹) and six specings (20 x 20, 20 x 15, 20 x 10, 20 x 5, 15 x 15 and 15 x 10 cm). The trial was laid out in split plot design with five replications.

During both years in <u>virippu</u> and <u>mundekan</u> season, full dose of fertilizer produced tellest plants with more number of tillers and leaf area index.

Irrespective of the year and season the widest spacing, 20 x 20 cm (25 hills m^{-2}) recorded the tallest plants while the closest spacing 20 x 5 cm (100 hills m^{-2}) produced the shortest plants in most of the steges. A reverse trend was noticed with respect to number of tillers and leaf area index.

Dry matter production was also more in treatments which received full dose of fertilizer in all the seasons. The spacing, 20 x 15 cm recorded the maximum dry matter production whereas the spacing, 20 x 5 cm gave the lowest value. The combination of full dose of fertilizer with a spacing 20 x 15 cm (33 hills m^{-2}) gave more dry matter production.

Yield attributes such as number of panicles, number of filled grains and thousand grain weight were highest/maximum with full dose of fertilizer only during <u>virippu</u> season. Sterility percentage was not much influenced by fertilizer levels. Number of panicles and sterility percentage were more in the spacing 20 x 5 cm (100 hills m⁻²) while number of filled grains penicle⁻¹ end thousand grain weight were more in the wider spacings of 20 x 20 cm and 20 x 15 cm (25 and 33 hills m⁻²).

Grain and straw yields were also influenced significantly by treatments. Full dose of fertilizer, 90: 45: 45 kg NPK ha⁻¹ combined with a plant population of 33 hills m⁻² (spacing 20 x 15 cm) gave the highest grain yield of 4.24 t ha⁻¹ in <u>virippu</u> and 3.20 t ha⁻¹ in <u>mundakan</u>. The straw yield was 4.39 t ha⁻¹ in <u>virippu</u> as egainst 3.46 t ha⁻² in <u>mundakan</u>. The highest net return of B. 6913 and B. 3890 were obtained from the <u>virippu</u> and <u>mundakan</u> crop, respectively from the above combination. The benefit cost ratio was also more in both seasons in the combination.

With respect to protein content of grain as well, the above combination topped the list.

Full dose of fertilizer and the spacing 20 x 15 cm individually or in combination recorded the highest N, P end K uptake.

Residual nutrient status with respect to organic carbon, P and K content of soil was more in the treatments which received full dose of fertilizer. The lower values were associated with zero fertilization end highest plant population of 100 hills m^{-2} (spacing 20 x 5 cm).

Trial II

The effect of seedling age (25, 30 and 35 days) and planting density (2, 4 and 6 seedlings $hill^{-1}$)were studied at fertility levels of 50 and 75 per cent of 90: 45: 45 kg NPK ha⁻¹ in the first year and 75 and 100 per cent of the same in the second year. The trial was laid out in factorial RBD with three replications.

Fertilizer had no influence on the height of plants in all seasons. During <u>virippu</u> seasons, age had no effect on height of plants whereas during <u>mundakan</u> 25 days old seedlings were found to produce taller plants. Plant height was not much influenced by the number of seedlings hill⁻¹.

Higher level of fertilizer recorded more LAI and tiller number.

Age of seedling can go upto 35 days in the <u>virippu</u> season and 30 days in the <u>mundakan</u> season in registering higher tiller production. Highest LAI was associated with 30 days in both seasons of the first year end 35 days in the second year where an increased fertiliser level was given.

Four seedlings hill⁻¹ were needed for higher tiller production and LAI values. The lowest values for umber of tillers and LAI were found in treatments which had two seedlings hill⁻¹.

The dry matter production at harvest was more at the higher level of fertilizer in both years. Thirty five days old seedlings recorded maximum dry matter production in <u>virippu</u> season and 30 days old seedlings in <u>mundakan</u> season. Six seedlings hill⁻¹ produced more dry matter in the first year while four seedlings were superior in the second year.

Higher fertilizer level produced more number of panicles in both years. Number of filled grains per panicle was influenced by this treatment only during <u>mundakan</u> season. Thousand grain weight was not influenced by fertilizer levels in most of the seasons.

Seedling() age showed significant effect only on number of panicles m⁻² wherein thirty and thirty five days old seedlings produced more panicles.

Six and four seedlings hill⁻¹ produced comparable number of panicles m⁻² and filled grains panicle⁻¹ while 1000 grain weight was not much influenced by this treatment.

Higher grain and straw yieldsware associated with higher level of fertilizer in both years. Thirtyfive days old seedlings produced more of these attributes in <u>virippu</u> season and 30 days old seedlings in <u>mundaken</u> season. Six seedlings hill⁻¹ recorded maximum production in first year while four seedlings hill⁻¹ was better in the second year.

Protein content was also more at higher levels of fertilizer in both years. But age did not influence protein content. Four and six seedlings hill⁻¹ gave similar protein content and were higher than with two seedlings hill⁻¹.

The uptake of N, P and K was more at higher level of fertilizer in both years. Seedlings of 25 days old recorded lowest uptake of nutrients. Planting two seedlings was always inferior to four and six seedlings.

Residuel nutrient status of the soil after cropping was more at higher level of fertilizer.

Trial III

The biofertilizer azolla was evaluated as a lowcost organic source of nutrition in IR 42. The treatments consisted of four levels each of azolla 5, 10, 15 and 20 ft ha⁻¹ and fertilizer (0, 50, 75 and 100 per cent of

90: 45: 45 kg NPK ha⁻¹) fitted in a split plot design with five replications.

Fertilizer and azolla had significant influence on vegetative characters like height of plants, tiller production and leaf area index. The combinations of full dose of fertilizer with 10 t of azolla ha⁻¹ and 75 per cent fertilizer with 15 t of azolla ha⁻¹ were comparable and produced taller plants in both seasons. Tiller production and LAI were however, move in the former treatment in most stages.

The above two combinations were superior with respect to dry matter production at harvest in both seasons.

Full fertilizer with 10 t of azolla and 75 per cent fertilizer with 15 t of azolla produced higher number of panicles then the rest. Number of filled grains per panicle was also more in the above treatment combinations.

A reduction in thousand grain weight was noticed at lower fertilizer levels in both years.

Grain and straw yields were more and comparable in combinations of full fertilizer with 10 t of azolla and 75 per cent fertilizer with 15 \pm of azolla ha⁻¹. Thus a saving of about 25 per cent of fertilizer could be achieved

if an extra dose of 5 t of azolla he⁻¹ was given with 75 per cent fertilizer. The benefit cost ratios were almost equal in both the combinations while the return per rupee invested was more in the latter combination.

Protein content was increased with fertilizer and azolla levels. The combination receiving full dose of fertilizer and azolla © 20 t ha⁻¹ recorded the highest protein content.

The residual organic carbon, P and K contents of soil after every crop were more with the highest dose of fertilizer and azolla.

Conclusion

The results of these experiments led to the following conclusions.

IR d2 - the rice variety known for its better performance under low fertility conditions, can respond to higher doses of fertilizers than 90: 45: 45 kg NPK ha⁻¹ as wall. In the present investigation highest level() of fertilizer tried was only 90: 45: 45 kg NPK ha⁻¹. It is the recommendation for high yielding medium duration group of rice under Kerela condition. This variety is having a duration of 140-145 days in Kerela. Hence it requires higher amount of fertilizers to express its full yield potential.

It is interesting to note that the variety has given reasonably good yields of above 2 t ha^{-1} without fertilizer, in ell the seasons. This shows the potential of the variety even under low fertility conditions.

Despite the variety being a late maturing type, increasing number of seedlings hill⁻¹ from two to four was found to be advantages. Especially at low levels of fertility six seedlings hill⁻¹ were found to give more grain yield.

The age of seedlings can go up to 35 days in <u>virippu</u> and 30 days in <u>mundakan</u>. This enables the farmers to get more time for land preparation of the main field. The variety will suit well with large number of ordinary farmers who cannot strictly follow the rigidity of nursery age of 20 or 25 days recommended for other modern varieties.

Application of azolla \oplus 15 t ha⁻¹ with 75 per cent fertilizer can save about 25 per cent of the recommended fertilizer dose thereby reducing the fertilizer bill of the farmer.

9.5 Z

References

REFERENCES

- Ahmed, I.U. and Faiz, S.M.A. 1969. A study on the effect of different levels of nitrogen and water on the growth, yield and guality of IR-288-3 rice. <u>Pakistan J. Soil</u> 5: 1-15.
- Annappan, R.S., Manual, W.W., and Vairavan, S. 1973. A study on the effect of season and age of seadling of a few variaties of paddy. Aduthurai Reptr., TNAU, May 1973.
- Anonymous, 1977. A good account of the techniques for using azolla in rice culture in China. <u>F.A.O.</u> Soils <u>Bull.</u>, 40: 29-38.
- Anonymous, 1981. Annual Report for 1981. Kerala Agricultural University, Trichur, Kerala, India. pp.51.
- Arunachalam, G. 1980. Application of azolla for rice production. <u>Azolla - A Biofertilizer</u>. TNAU, Coimbatore, pp.133-139.
- Atanesiu, N. and Samy, J. 1983. <u>Rice Effective Use of</u> <u>Fartilizers</u>. Centre d'Etude de 1º Azote, Zurich, 80 p.
- Baba, I. 1959. Breeding rice for nitrogen responsiveness. Int. Rice Comm. Newsl., 13 (3): 20-26.
- Balasubramenian, A., Venkatareman, R. and Palaniappan, S.P. 1977. Studies on the time of planting and seedling age on the performance of rice. <u>Madras equic. J.</u>, <u>64</u>: 47-49.
- Balasubremanian, P. 1980. Nitrogen and herbicide management under different planting systems with carbofuren application in low lend rice, IET 1444. M.Sc.(Ag) thesis, TNAU, Coimbatore.

- Bartholomew, W.V. and Clark, F.C. 1965. Soil nitrogen. In.Agronomy series. No.10, Am. Soc. Agron., Wisconsin, P.524.
- Borthakur, B.C. and Gogai, H.N. 1974. Seedling ages and plant densities on photoperiod insensitive rice varieties under spring planting. <u>Indian J. Agron.</u>, <u>19</u>: 27-29.
 - Bayappe, K.V.A. and Rao, K.H. 1956. The response of rice to lime and potesh manuring in South Kanara. <u>Madras agric. J., 43</u>: 505-509.
 - Beachell, H.M., Khush, G.S. and Juliano, B.O. 1972. Breading for high protein content in rice. <u>Rice Breeding</u>. International Rice Research Institute, Manila, Philippines. pp.419-427.
 - Bhaktal, G.V. 1960. Study of stand and number of tillers in paddy with reference to seed rate and spacing. <u>Negpur. Agric. Coll. Mag. 34</u> (1-2): 17-20.
 - Bhattacharyya, R.K. 1977. Influence of time of planting and spacing on rice yield under coastal saline soil of Sunderban (West Bengal). <u>Indian</u> <u>Agriculturist</u>, <u>21</u> (1): 83-86.
- 8

8

- *Brown, F.B. 1958. Some effects of seedling age on transplanted rice. <u>The Malayasian agric. J.</u>, <u>41</u>: 221.
 - Broadbent, F.E. and Nakashima, T. 1970. Nitrogen immobilization in flooded soils. <u>Proc. Soil Sci. Soc. Am.</u> <u>34</u>: 218-221.
 - Bundy. L.G. and Bremner, J.M. 1973. Effects of substituted P-Benzoquinones on urease activity in soils. Soil Biol. Biochem., 5: 847-853.

1

- *Cada, E. and Taleon, S. 1963. The effect of age of seedlings at transplanting upon the growth and yield of early, medium and late maturing variaties. <u>Philippines J. Agric.</u>, <u>28</u>: 115-119.
- *Chandler, R.F. 1969. <u>Rice in the Tropics</u>. A Guide to the Development of National Program. West View Press, Inc. Colorado, U.S.A. p.145-163.
- Chandraker, B.L. and Khan, R.A. 1981. Optimum spacing for early, medium and late duration tall indica rice cultivers. <u>Oryga</u>, <u>18</u>(2): 108-109.
- Chandresekharan, N.R., Ramaswamy, S., Kandesamy, C.S., Chandresekharan, B. and Sennaiyan, P.A19845. Nursery age, field durationgand grain yield of rice. IRRN., 9(5): 26.
- Chang, W.L. and Su, H.P. 1977. Nitrogen and spacing responses of semi dwarf and tall indica rice cultivars at Al Hassa Oasis. <u>Taiwan Agricultural</u> <u>Cuarterly</u>, <u>13</u> (1): 214-236.
- Chhillar, R.K., Sherma, D.K. and Singh, K.N. 1984. Nonmonetary inputs for crop production in sodic soil. <u>Indian Fmg.</u>, <u>34</u>(6): 17-18 & 34.
- Daniel, K.V. 1971. Nitrogen requirement of sami dry rice in Trivandrum, Kerala, <u>Indian J. agric. Sci.</u>, 40: 288-291.
- Dargan, K.S. and Gaul, B.L. (1974). For paddy alkali soil, seedling age and planting date vital. <u>Indian</u> <u>Pmg</u>., <u>24</u> (5): 11-12.
- Dayanand, K., Singh, N. and Bains, S.S. 1972. Relative response of different vorieties of rice to graded levels of nitrogen on saline soil. <u>Indian</u> <u>J.</u> <u>Agron.</u>, <u>17</u>: 156-157.

- De Datta, S.K., Obceamea, W.M. and Jana, R.K. 1964. Protein content of rice grain as affected by nitrogen fortilizer and some traizines and substituted urces. <u>Agron. J.</u>, <u>64</u>: 785-788.
- Donald, C.M. 1962. In search of yield. J. Aust. Inst. agric. Sci., 28: 171-178.
- Enyi, B.A.C. 1964. Effect of varying phosphorus and water supply on growth and yield of rice variety (Oryza sativa L.) Trop. Agric., 41: 47-53.
 - Esakimuthu, N., Krishnamurthy, K.K. and Loganathan, S.1975. Influence of N and K and method of application of potassium on yield and nutrient uptake in rice. <u>J. Indian Soc. Soil Sci., 23</u>: 452-457.
 - Eunus, M. and Badeque, M.A. 1974. Note on the effect of different levels of nitrogen and plant spacing on the yield of transplanted rice. <u>Indian J. agric.</u> <u>Sci.</u>, 44: 618-620.
 - Fagade, S.U. and De Datte, S.K. 1971. Leaf area index, tillering capacity and grain yield of tropical rice as affected by plant density and nitrogen levels. <u>Agron. J., 63</u>: 503-506.
 - F.F.T.C. 1984. Annual Report. Food and Fertilizer Technology Center for the Asian and Pacific Region. Taipei, Taiwan. pp. 32.
 - Fischer, R.A. and Hsiaco, T.C. 1968. Stomatel opening in isolated epidermal strips of <u>Vicia febs</u> II. Responses to KCC concentration and the role of potassium absorption. <u>Pl. Physicl.</u>, <u>43</u>: 1953-1958.
- *Flaig, W. 1975. Specific effects of soil organic matter on the potential of soil productivity. <u>FAO Soil</u> <u>Bull.</u> 27. Rome, pp.31-69.

- *Fujino, M. 1967. Role of adenosine-triphosphate and adenosine triphosphatese in stematel movement. <u>Sci. Bull. Fac. Educ. Nagesaki Univ. 18</u>: 1-47.
- *Fujiwara, A., Tauboi, I. and Yoshida, F. 1947. Fixation of free nitrogen in non-leguminous plants. <u>I. Azolla pinnata. Nogaku 1</u>: 361-363.
- Gately, T.F. 1968. The effect of different levels of NPK on the yield and nitrogen content of plants. <u>J. agric. Sci., 70</u>: 361-362.
- Gautam, R.C. and Sharma, K.C. 1982. Effect of planting time and density on yields of short duration rice varieties. <u>IRRN.</u>, 7(2): 19-20.
- Gautam, R.C., Sharma, K.G. 1983. Improving the yield and yield attributes of short duration rice variaties through planting scheme and plant densities. <u>Indian J. agric. Sci., 53</u>: 807-811.
- Ghosh, D.C. 1982, Effect of ege of seedlings and planting density on growth and yield of rice under late planting. <u>Madres agric. J., 69</u>: 376-382.
- S. Sahai, B.N., Suri, M.K., Haque, M.S. and Saren, S.1979. Effects of LAI and spacing on the productivity of pankaj. <u>IREN.</u>, 4 (1): 22.
- Gopalakrishnan, R., Pisharody, P.N., Nair, R.R. and Pillai,G.R. 1970. Effect of time of application of nitrogen on the yield of IR-8 rice. <u>Indian J. agric. Sci.</u> <u>41</u>: 98-101.
- Gopaleswamy, A. end Rej, D. 1977. Effect of fertilizer doses end variatal variations on soil constituents, nutrient uptake and yield of rice variaties. <u>Madras agric. J., 64</u>: 511-515.

.

Govindarajan, K., Kannaiyan, S., Jagannathan, R., Palaniyandi, V.G. and Ramachandran, M. 1980. Effect of azolla inoculation on rice yields. <u>IRAN., 5</u> (1): 20.

Guar, A.C. and Singh, R. 1982. Integrated nutrient supply system. <u>Fort. News., 27</u> (2): 87-98.

Hag, H., Rosh, D. and Shah, P. 1984. Azolla as a substitute for fortilizer. <u>IRRN.</u>, <u>9</u> (3): 24.

Hesse, P.R. 1984. Potentials of organic materials for soil improvement. <u>In Organic Matter and Rice.</u> International Rice Research Institute, Manila, Philippines, pp.35-42.

- Huang Dong mai, Gao Jai hua, Zhu Pei li, 1981. Transformation and distribution of organic and inorganic fortilizer nitrogen in rice and soil system. <u>Proc. Symp. Paddy Soil</u>, Institute of Soil Science, Academia Sinica, Nanjing, pp.570-577.
- IARI, 1969. Scientific Report for 1969. Indian Agricultural Research Institute, New Delhi, India, pp.102-103.
- IARI, 1971. Annual Report for 1971. Indian Agricultural Research Institute, New Delhi, India, pp.179.
- Ibrahim, A.A., Zeiden, E.M., Assey, A.A. and Badawy, A.E.1980. Growth and hill yield of rice crop as influenced by N fertilizer hill spacing and time of hervest. <u>Ann. agric. Sci., Moshkohov.12</u>: 63-78.
- IRRI, 1965. Annuel Report. International Rice Research Institute, Manila, Philippines.
- IRRI, 1972. Laboratory Manual for Physiological Studies of Rica. International Rice Research Institute, Manila, Philippines.

- IRRI, 1974. Annual Report for 1973. International Rice Research Institute, Manile, Philippines. pp.48-63.
- IRRI, 1978. Annual Report for 1977. International Rice Research Institute, Manila, Philippines. pp.548.
- IRRI, 1979. International Rice Testing Programme, 1978. The Fifth International Rice Yield Mursery Medium. International Rice Research Institute, Manila, Philippines.
- Islam, M.A. and Ahmed, M. 1983. Effect of age of seedlings on the yield and yield components of five varieties of transplanted rice. <u>Indian J. agric. Sci., 53</u>: 1006-1008.
- Jackson, M.L. 1958. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, pp.111-225.
- Jaikumaran, U. 1981. Nitrogen economy through incorporation of azolla in rice. M.Sc.(Ag) thesis. Kerala Agricultural University, Trichur, Kerala, India.
- Kalyanikutty, T., Narayanan, T.R. and Srinivasan, V. 1968. A note on varietal response to fertilizers. <u>Madres agric. J., 55</u>: 40-42.
- *Kang, J.C. and Choi, B.S. 1976. Effect of number of seedlings per hill on the heading and grain yield of rice. Research Reports of the Office of Rural Development, Crops Gyeongbug Provincial Office of Rural Development, Chilgog, S.Korea 18: 101-104.
- Kanneiyan, S. and Govindarajan, K. 1982. Usefulness of azolla inoculation for rice crop. <u>Madras agric.</u> <u>J., 69</u>: 254-255.
- Kannaiyan, S., Thangaraju, M., Alagirisami, G., Venkatakrishnan, J., Kanagaraj, S. and Oblisami, G. 1983. Azolla application and rice crop response in Tamil Nadu, <u>IRRN</u>, <u>8</u>(3): 17.

- Kanneiyan, S., Thengeraju, M. and Oblisami, G. 1984. Azolla - a potential biofertilizer for rice production. In <u>Practical Application of Azolla for</u> <u>Rice Production</u>. Dordrecht, Netherlands, Martinus Nyhoff. pp. 119-122.
- Kenwar, J.S. and Grewal, J.S. 1966. Direct and residual availability of native and applied potassium in soil. J. Res., Punjab Agric. Univ., 3: 1-6.
- KAU, 1981. Package of Practices Recommendations. Kerala Agricultural University, Trichur, Kerala, India. pp.1-39.
- Kaushik, B.D. and Venkataraman, G.S. 1981. Response of Basmati 370 to azolla application <u>IRRN., 6</u> (6): 24.
- *Kawaguchi, K. and Kyuma, K. 1977. <u>Paddy Soils in Tropical</u> <u>Asia. Their Material Nature and Fertility.</u> The University Press of Hawaii, Honolulu, 258 p.
- *Kawano, K.J. end Tanaka, A. 1968. Studies on the interrelationships among plant characters in rice. 1. Effect of variatel differences and environmental condition on the correlation between characters. <u>Jap. J. Breeding</u>, <u>18</u>: 73-79.
- *Kawata, S. and Soejima, 1976. The effect of form compost application to the paddy field on the formation of superficial roots of rice. <u>Proc. Crop. Sci. Soc.</u>, Japan <u>45</u>: 99-116.
- Khan, R.A. and Swarnkar, A.K. 1980. Relation of sowing time and seedling age to rice yields during rabi season <u>IRRN.</u>, 5(6): 19.
- *Khush, G.S., Nanda, J.S., Cope, J.T., Nishiyamma, T. and Change, T.T. 1979. Agronomic characteristics. A summary statement presented at the Internal Programme Review, 22 January 1979. International Rice Research Institute, Manila, Philippines. p.16.

c

- Kikuchi, M., Watanaba, I. and Haws, L.D. 1984. Economic evaluation of azolla use in rice production. <u>Organic Matter and Rice</u>. International Rice Research Institute, Manile, Philippines. pp.569-592.
- *Kira,etal 1959. Ecology of plont growth Nogyo Oyobi Engel, 34: 67-72. In. <u>Theory end Practice of Growing Rice</u>. Fuji Publishing Co. Ltd. (1-26, Nishigahara Kita-ku, Tokyo, Japan.
 - Krishnarajan, J. and Balasubremanian, P. 1983. Azolla end blue-green algae for wet land rice culture. <u>IRRN., 8</u> (4): 24.
- Krishnareo, D.V., Rao, D.M.V.P. and Subharso, I.V. 1962. Effect of placement on phosphate availability in rice soils. <u>Anchra agric. 1., 2</u>: 209-218.
- Kulasocriya, S.A. and De Silva, R.S.Y. 1977. Effect of azolla on yield of rice. <u>IRRN.</u>, <u>2</u> (3): 10.
- Kumura, A. 1956. Studies on the effect of internal nitrogen concentration of rice plant on the constitutional factor of yield. <u>Proc. Crop. Sci. Soc. Japan 24</u>: 177-180.
- Kurup, U.K. and SreeSharan, C. 1971. Studies on the performance of <u>Karuna</u> to different levels of nitrogen and spacing under Kerela condition. <u>Agric.</u> <u>Res. J. Kerala</u>, 2: 33-39.
- Lal, P., Mishra, C.N., Gautam, R.C. and Bisht, P.S. 1982. Response of transplanted rice to different plant population under limited supply of nitrogen. <u>Indian J. soric. Sci. 52</u>: 372-377.
- *Lei, H.S. and Xi, D.B. 1967. On tillering rate of rice plant (Chinese). Acta. Biol. Exp. Sinica, g(1): 35-44.
 - Lenka, D. 1969. Response of indica and ponlai varieties of rice to high levels of nitrogen in wet and dry seasons. <u>Indian J. Agron.</u>, <u>12</u>: 353-357.

- Lenka, D. 1971. Response of T(N)I rice to water management practices and N fertilizer in dry season. <u>Indian</u> J. <u>agric. Sci.</u>, <u>41</u>: 166-172.
- Lenka, D. end Behera, P.C. 1967. Response of four Taiwan and two local variaties of paddy to high levels of N. <u>Indian J. Agron., 12</u>: 353-357.
- Lizhuo-xin, 1982. Nitrogen fixation by ezolla in rice fields end its utilization in Chine. Mon-symbiotic nitrogen fixation and orgenic matter in the tropics. <u>Symposia pepers - 1</u>, 12th International Congress of Soil Science, New Delhi, pp.83-95.
- Lusenandana, B. and Suwanawaong, S. 1967. A study on time and rate of superphosphate application in rice cultivation and the residual effect of superphosphate from various methods of placement. <u>Proc. Conf. Tech.</u> <u>Staff. Rice. Dept. Theilend</u>, pp. 309-334.
- Mahadevappa, M., Ikehashi, H. and Ponnamperuma, F.N. 1979. Contribution of varietal tolerance for problem soils to yield stability in rice. <u>IRP6</u>. 43.
- Mahapatra, I.C. 1969. Recent edvonces in rice agronomy. <u>Indian Fmg., 19</u> (5): 9-11.
- Mahapatra, I.C., Bhatia, P.C., Singh, K.N., Dayananda and Penda, S.C. 1971. Agronomic management for upland rice in North and North Western India. <u>Orvze</u>, <u>B</u>: 239-249.
- Mehapatra, I.C. and Leelavathi, C.R. 1971. Agronomic investigations on high yielding variaties of rice in Andhra Pradesh. <u>Indian Fmg., 4</u>(2): 32-33.
- Mahapatra, I.C. and Prasad, R. 1970. Response of rice to potessium in relation to its transformation and availability under waterlogged conditions. <u>Fert. News.</u>, 15(2): 34-41.

- *Majid, A., Ahmad, S. and Shah, I.A. 1976. Effect of spacing x fertilizer doses on paddy yields in different varieties. <u>Apriculture Pakistan</u>, <u>27</u> (1): 13-21.
- Mandal, B.K. and Bharati, A.K. 1983. <u>Azolla pinnata</u> as an organic manure for rice in West Bengal. <u>Indian</u> J. <u>Agric. Sci., 53</u>: 472-475.
- Mancharan, B. 1981. Studies on the effect of seedling root dippings on aged seedlings of rice IR-20. M.Sc.(Ag) thesis, TNAU, Coimbators.
- Mathewkutty, T.I. 1982. Utilization of azolla in rice ecosystem - effect of dual culture and incorporation in first crop rice. M.Sc.(Ag) thesis, Kerala Agricultural University, Trichur, Kerala, India.
- Mathewkutty, T.I. and Sreedharan, C. 1983. Azolla as a substitute for N fertilizer in rice. <u>IRRN.</u>, <u>B</u>(2): 20.
- Mathur, A.S., Krishnemoorthy, S. and Anavaradham, L. 1981. Azolla influence on rice yield. <u>IRRN</u>., <u>6</u> (5): 23-24.
- Matsushima, S. 1970. <u>Crop Science in Rice. Theory of Vield</u> <u>Determination and Its Application</u>. Fuji Publishing Co.Ltd., Tokyo, Japan, pp.1-379.
- Mehrotra, O.N., Saxena, M.K. and Ram, R.S. 1975. Leaf area index, growth and yield of paddy under varying plant densities. <u>Indian J. Fm. Sci. 3</u>: 53-59.
- Mishra, G.N. 1976. Plant population studies in rice under fertilizer nitrogen constraint. <u>Pant Nager J.</u> <u>Research</u>, 2: 253.
- Mohanakrishnan, B. 1983. Utilization of azolla in rice eco-system - Direct and residual effects of azolla dual culture. M.Sc.(Ag.) thesis, Kerala Agricultural University, Trichur, Kerala, India.

- Moore, A.W. 1969. Azolla biology and agronomic significance. <u>Bot. Rev.</u>, <u>35</u>: 17-34.
- Mukherji, S., Kundu, K.K. and Sircar, 1968. Studies on the physiology of the rice plant. XIX. Effect of the heavy fertilizer stress on culm characteristics of two winter varieties in relation to yield and lodging behaviour. <u>Indian J. agric. Sci.</u>, <u>38</u>: 326-337.
- Murata, Y. 1969. <u>Physiological Response to Nitrogen in Plants</u> -<u>Physiological Aspects of Crop Yield. An. Soc. Agron.</u> Crop Sci. Soc., Madison, Wisconsin pp. 235-256.
- *Murate, Y., Osade, A. and Iyama, J. 1957. Studies on the photosynthesis in rice plant. VII. Photosynthesis of rice plants grown under different conditions in menuring or plant specing. <u>Proc. Crop. Sci. Soc.</u> <u>Japan. 26</u>: 159-164.
- Murty, K.S. and Sahu, G. 1979. Effect of age of seedlings at normal transplanting on growth and yield of rice variaties. <u>Indian J. agric. Sci.</u>, <u>49</u>: 799-801.
- Murthy, K.K., Pillai, K.G., Srinivasen, T.E., Prasad, A.S.R. 1983. Rice varieties and technological improvements for late planting during the main kharif seeson. <u>Seeds and Farms</u>, 9 (2/3): 9-13.
 - Muthuswamy, P., Rej, D. and Krishnemcorthy, K.K. 1972. Response to <u>Karuna</u>, <u>Kaveri</u> and <u>Kanchi</u> paddy varieties to forms and levels of fertilizer nitrogen. <u>Madras agric. J., 59</u>: 603-608.
 - Neir, V.M. 1968. Studies on the comparative performance of three short duration rice variaties (Vellayani-1, Adt-27 and Ptb-10) at varying levels of nitrogen under semi-dry conditions in Vellayani. M.Sc.(Ag) thesis, Division of Agronomy, Agricultural College and Research Institute, Vellayani, Trivendrum, Kerals.
 - Neir, M.A. and George, C.M. 1973. Studies on the performance of rice Culture 12035 under varying levels of nitrogen and spacing. <u>Agric. Res. J. Kerala, 10</u>: 1-4.

- Nair, R.R., Kuriekose, T.F. and Seifudeen, N. 1981. Menagement requirements of overaged rice seedlings. <u>Agrl. Res. J. Kerels, 19</u> (1): 98-102.
- Narayanasamy, P. and Nagarathinam, A.K. 1966. A study on the age of seedlings and time of planting of two medium duration paddy strains. ASD 5 and ASD 11. <u>Medras agric. J., 53</u>: 516-517.
- Naterajan, C.T. 1982. Studies on the contribution of yield attributes to yield of rice under verying nitrogen and plant population. Ph.D. thesis, TNAU, Coimbatore.
- Natarajan, M. and Arunechalam, A.A. 1979. Effect of seedling age on flowering of two variaties of rica. <u>Aduthurei Reptr.</u>, TNAU, <u>3</u>: 130-131.
- Neterajan, M., Nevakodi, K., Kelaimani, S., Thyagarajan, A. and Rajagopalan, S. 1980. Effect of seedling age of rice on grain yield. <u>Aduthurai Reptr</u>, TNAU, 5:
- Natarajan, C.T. and Sadayappan, C. 1980. <u>Azolla Anabaena</u> complex as a nitrogen source for rice. <u>Azolla - A</u> <u>Biofertilizer</u>. Tamil Nadu Agricultural University, Coimbatore, India, pp.43-46.
- Naterajan, T., Sunderem, S.P., Senthanekrishnan, P. and Oblisami, G. 1980. Effect of <u>Azolla pinneta</u> on rice varieties. <u>Azolla - A Biofartilizer</u>. Temil Nadu Agricultural University, Coimbatore, India, pp.27-32.
- Navekodi, K., Suresh, T.N. and Remachandran, M. 1981. Performance of short and medium duration rice cvs in relation to seedling age. <u>IREM.</u>, <u>6</u>(1): 22.
- Ngnu, N.V. and Alluri, K. 1983. Upland rice under high rainfall. Annual Report for 1983. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp.23-25.

- *Nishiyama, I. 1977. Physiology of cold injury in direct seeded rice with special reference to germination and seedling growth. <u>Agric. Hortic.</u>, <u>Tokyo</u>, <u>Japan</u>, <u>52</u>0 1353-57, 1480-82.
- *Nitsos, R.B., and H.J.Evans, 1969. Effects of univalent cations on the activity of particulate starch synthetese. <u>Pl. Physiol</u>, <u>44</u>: 1260-1266.
- *Oshima, M. 1962. Studies on the nitrogen nutrition of plant. {Effect of nitrogen nutrition on the tillering of rice plant, part 4 in Japanese). J. Sci. Soil Manure, Japan 33(5): 243-246.
 - Padelia, C.R. 1981. Effect of age of seedlings on the growth and yield of transplanted rice. Oryze, 18: 165-167.
 - Palanichamy, K. 1978. Effect of aged seedlings on growth and yield of rice. M.Sc. (Ag) thesis. TNAU, Coimbatore.
 - Pande, S.C. and Das, K.C. 1978. Effect of age of seedlings and fertilization on the high yielding variaties of rice. <u>Proc. Symp. on Non-monetary Inputs</u> -<u>Field Crop Production</u> held at Haryana Agricultural University on 11 - 12 February, 1978. Indian Society of Agronomy, pp.83-88.
 - Panse, V.G. and Sukhatme, P.V. 1978. <u>Statistical Method</u> <u>for Agricultural Workers</u>. 3rd Edn. Indian Council of Agricultural Research, New Delhi, pp.157-202.

1

- Pareshar, K.S. 1976. Effect of spacing on the yield of rice. Indian J. Agron., 21: pp.467-468.
- Patel, I.S. and Patel, R.B. 1983. Response of rice variaties to age of seedlings in summer season. <u>Indian</u> J. <u>Agron., 28</u>: pp.313-314.

- Patel, C.L., Patel, R.B., Patel, Z.G. and Patel, H.C. 1983. Response of rice var. Mahsuri to age of seedlings at transplanting, methods of transplanting and depth of planting. <u>Gujarat agric. Univ. Res. J.</u>, §(2): 55-57.
- Patnaik, S., Reo, M.V. and Nanda, B.B. 1971. Some considerations on the technique of evaluating nitrogen responsiveness of rice varieties independent of soil. <u>Proc. Int. Symp.</u> <u>Soil Fert. Eval</u>. Indian Soc. Soil Sci., New Delhi, pp. 679-685.
- Pillai, G. and Katyal, J.C. 1977. Low-monetary inputs in rice production. Indian Fmg., 4(27): 3-4.
- Pillai, K.G. and Vamadevan, V.K. 1976. Studies on an integrated nutrient supply system for rice. <u>Fort. News., 23</u>: 11.
- Piper, C.S. 1942. <u>Soil and Plant Analysis</u>. University of Ade laide, Australia, pp.368.
- Place, G.A., Sims, J.L. and Hall, V.L. 1970. Effect of nitrogen and phosphorus fertilization on growth, yield and cooking characteristics of rice. <u>Agron. J., 62</u>: 239-243.
- *Ponnemperuma, P.N. 1978. Electrochemical changes in submarged soils and the growth of rice. <u>Soils and Rice</u>. International Rice Research Institute, Manila, Philippines, pp.421-441.
 - Ponnemperuma, F.N. 1979. IR 42; A rice type for small farmers of South and Southeast Asia, <u>IRPS.</u>, <u>44</u>: 10.
 - Pothiraj, P., Morachan, Y.B., Subbiah, K.K. 1977. Effect of plant population and number of seedlings per hill on leaf area index of rice. <u>Madras Agric.</u> J., 64:355-357.

- Potty, S.N. 1964. Studies on the response curves of major nutrients on rice (<u>Oryze sativa</u>, L. var. indica) in Kerela. M.Sc. (Ag) thesis. Agricultural College and Research Institute, Vellayani, Trivandrum, Kerala.
- Pyerelal, R.C., Gautum and Bisht, P.C. 1981. Success with old rice seedlings. <u>IRRN.</u>, 6(3): 126.
- Raj, S.M., Morachan, Y.B., Subramenian, S. and Subbish, K.K. 1974. Effect of plant density and rate of nitrogen epplication on IR-20 rice. <u>Madras agric. J</u>., <u>61</u>: 289-292.
- Raju, R.A. 1978. Effects of levels and sources of nitrogen on Jzya. <u>IREN.</u>, <u>3</u>(2): 14.
- Raju, R.A. 1979. Response of dwarf indica rices to varying levels of sources of nitrogen on sendy clay loam soils. <u>Int. Rice Comm. Newal.</u>, 28: 32-33.
- Raju, M.S. and Rao, C.F. 1983. Management of transplanted rice with seedlings of different ages. <u>IRRN., 8(4)</u>: 24.
- Remenujem, T. and Rao, J.S. 1971. Influence of nitrogen supply on growth factors of rice. (Oryga sativa L.) Madras agric. J., 58: 239-244.
- Ramasamy, S., Sennaiyan, P. and Sivasubramanian, V. 1985. Effect of N level on aged rice seedlings. <u>IRRN.</u>, <u>10</u> (4): 28.
- *Remiah, K. 1937. Rice in Madres A Popular Hand book. TNAM pp.34-37.

- *Reo, M.V. 1963. Study of differential response of some medium duration variaties of rice (<u>Oryza sativa</u> L.) to increasing levels of nitrogen. M.Sc.(Ag.) thesis. Utkal University.
 - Rao, N.N.F. 1972. Studies on the effect of solar radiation intensity and sunshine hours in productivity of rice and wheat at different N levals. Ph.D.thesis, IARI, New Delhi.
 - Rao, T.K.G., Kolandaiswamy, S., Seshadri, P. and Sankaron, S. 1974. Studies on levels and times of application of phosphorus and potassium on rice. <u>Madras agric.</u> <u>J. 61</u>: 258-261.
 - Rao, Y.Y., Reddy, G.H.S. and Reddy, K.R. 1972. Leaf area index of high yielding rice varieties in relation to cultural prectices and its correlation with yield and yield attributes. <u>Madras agric. J., 61</u>: 169-171.
 - Reddy, M.D. and Mittra, B.N. 1984. Effect of time of planting, age and number of seedlings per hill on yield and yield components of rice variaties in flood prone situations. <u>Thai</u> <u>J.</u> <u>agric.Sci.</u>, 17 (1): 41-49.
 - Rego, J. 1973. A study of direct seeded vs. transplanted rice variaty 'Bala' grown under varying levels of water and nitrogen management. Ph.D. thesis. Indian Agricultural Research Institute, New Delhi.
 - Richards, L.A. 1948. Pressure membrane apparatus. Construction and use. <u>Agri. Engg.</u>, <u>28</u>: 451-454.
 - Roy, B. 1984. Manuring of rice crop with ezolla. In <u>Practical</u> <u>Application of ezolla for Rice Production</u>. Dordrecht, Netherlands, Martinus Nijhoff pp.145-150.
 - Rumiati end Oldeman, L.R. 1974. Influence of plant density on some growth characters and grain yield of rice. Natherlands Research Report 1968-78. Central Research Institute for Agriculture, Bogor, Java pp.43-50.
 - Sahu, B.N. 1965. Effect of farm yard manure, annonium sulphate and superphosphate on the yield of paddy. <u>Indian J. Agron., 10</u>: 155-164.

xviii

- Sahu, B.N. and Lenka, D. 1966. Cultural cum manurial trials on paddy studies on the effect of date of planting, spacing, rates of planting end levels of N and P on the yield of paddy. <u>Indian J. Agron.</u>, <u>11</u>: 127-137.
- Sahu, B.N. and Lenka, D. 1967. Nutrition of rice crop by soil and foliar application of urea. <u>Indian</u> J. <u>scric. Sci.</u>, <u>37</u>: 437-444.
- Sahu, B.N. and Ray, M. 1976. Response of tall indica rice to application of potash in combination with farm yard manure in lateritic soil of Orissa. <u>Bull. Indian Soc. Soil Sci., 10</u>: 259-263.
- Sahu, G., Murty, K.S. and Rai, R.S.V. 1980. Effect of season, nitrogen rate and planting density on harvest index in rice. <u>Oryza</u>, <u>17</u>: 28-33.
- Sanchez, P.A. and Larrea, N. 1972. Influence of seedling age at transplanting on rice performance. Agron. J., 64: 828-833.

Serevenen, A. and Ramanathan, K.M. 1984. Effect of bio, organic and chemical fertilization on rice grain yield. <u>IRRN.</u>, <u>9</u> (6): 26.

Sathasivan, K. 1980. Interaction effects between soil and applied pesticides and fertilizer nitrogen on low lend rice. M.Sc. (Ag.) thesis. Temil Nadu Agricultural University, Coimbatore, India.

Sawatdee, P., Saetanum, W., Chermairi, C., Kaneraugsa, C. and Takaheshi, J. 1978. Effect of azolla as a green manure crop on rice yields in North Eastern Thailand, <u>IRRN.</u>, <u>3</u>(3): 22-23.

Savatdee, P. and Sectenum, W. 1979. Azolla as a nitrogen source for rice in North East Thailand, IRRN., <u>4</u> (5): 24.

xix

- *Sawatdee, P., Wearasopon, O.A., Khunathai, M., Sooksavut, A., Komtong, N., Naklang, K., Seetanum, W., Paewponsong, C., Atawongsa, A., Wattanapayakun, S and Pattayarak, T. 1980. Use of ezolla (<u>Azolla</u> <u>pinnata</u>) as green manure for rice - comparison with chemical fertilizer. <u>Kasetsart</u>, J., <u>14</u> (2): 1-6.
 - Secret, Y. 1972. Effect of different ages of seedling on grain yield of some rice cvs. <u>Field Crop Abstr.</u>, <u>25(2)</u>: 248.
 - Seshadri, P., Zesuddin, P. and Kasiviswalingam, P. 1976. Response of rice variety Padma to graded levels of nitrogen. <u>Andhra agric.</u> <u>J.</u>, <u>23</u>: 219-223.
 - Sewaram, S.K., Kaushik and Gupte, R.S. 1973. Effect of varying plant density and nitrogen levels on the wield of rice variaties. <u>Indian J. Agron.</u>, 18: 28-30.
 - Shahani, B.H., Khan, A.B., Khan, D.I., Khan, M.A. and Khan, D.I. 1984. Effect of seedling age at transplanting and fertilizer levels on grain yield. <u>IERN.</u>, 2(2): 27.
 - Shahi, M.N., Gill, P.S., Khind, C.S. 1976. Effect of number of seedlings per hill and spacing on growth and yield of rice. Indian J. Agron., 21: 392-395.
 - Shahi, H.N., Gill, P.S. 1978. Cuantitative relationship of grain yield and its components to age of seedlings under different dates of transplanting in rice. Indian J. Agron., 10: 140-144.
 - Sharma, G.L., Gautem, R.C. and Bisht, P.S. 1979. Effect of seedling age and number per hill on grain yield of rice variaties. <u>IRRN.</u>, <u>4</u>(6): 19-20.
- *Shimizu, T. 1957. Processes of yield formation in rice plants from the point of dry matter production <u>Dry Matter Production in Crops</u>, 4: 12-26.

- Shishu-lian, Lin xin-xiong and Wen Gui-xiao, 1981. Decomposition of plant materials in relation to their chemical composition in paddy soil. <u>Proc. Symp Paddy Soil</u>. Institute of Soil Science, Academia Sinica, pp.306-310.
- Simpson, J.E., Adair, C.R., Kohler, G.O., Dawson, E.H., Dabald, H.A., Kester, E.B. and Klick, J.T. 1965. Quality evaluation studies of foreign and domestic rices. <u>Tech. Bull</u>., No.1331. Service U.S.D.A. pp.1-186.
- Singh, B.K. and Modgal, S.C. 1978. Effect of levels and methods of nitrogen application on the performance of dwarf rice varieties on rainfed uplands. <u>Indian J. agric. Sci., 48</u>: 337-341.
- Singh, B.K., Thakur, R.B. and Singh, R.P. 1982. Effect of nitrogen levels and spacing on the performance of kharuhan rice. <u>Indian J. Agron.</u>, <u>27</u>: 310-312.
- Singh, D.N. and Bhattacharya, A. 1975. Effect of age of seedlings at transplanting on growth and yield of rice varieties. <u>Exptl. Agric.</u>, <u>11</u>: 65-74.
- Singh, P.K. 1977a. Azolla, a precious green compost for rice cultivation. <u>Proc. 64th Indian Sci. Conq</u>. Part I, Sect. X - Agri.Sci., pp.177.
- Singh, P.K. 1977 b. Azolla plants as fertilizer and feed. Indian Fmg., 27 (1): 19-22.
- Singh, P.K. 1977c. Effect of szolla on the yield of paddy with and without application of N fertilizer. <u>Curr. Sci., 46</u>: 642-644.
- Singh, P.K. 1977d. Multiplication and utilization of fern ezolla containing N fixing algal symbiont as a green manure in rice cultivation ILRISO. 26: 125-136.

- Singh, P.K. 1977e. The use of <u>Azolla pinnate</u> as a green menure for rice. <u>IRRN.</u>, 2(2): 7.
- Singh, P.K. 1978. Nitrogen economy of rice soils in (relation to nitrogen fixation by BGA and azolla. <u>Proc. National Symp. On Increasing Rice Yield</u> <u>Kharif</u>, CRRI, Cuttack, 221-239.
- Singh, P.K. 1979a. Effect of dual culture of <u>Azolla pinnata</u> on yield of rice. <u>Proc. 66th Indian Sci. Cong.</u>, Part IV.Sect. X. Agric. Sci. pp. 114.
- Singh, P.K. 1979b. Use of azolla in rice production in India. <u>Nitrogen and Rice</u>. International Rice Research Institute, Manila, Philippines. pp. 407-418.
- Singh, R.P., Singh, J. and Gupta, D.K. 1982 a. Annual Report for 1982. Optimum time and plant spacing for late transplanted rice. VICAR Research Complex for North Eastern Hills region. Shillong, Assam, pp.37.
- Singh, R.P., Singh, J. and Gupta, D.R. 1982 b. Annual Report for 1982. Effect of seedling age and additional dose of fertilizer on yield of late transplanted rice. VICAR Research Complex for North Eastern Hills region, Shillong. pp.37 and 38.
- Singh, R.P. and Modgal, S.C. 1977. Response of Indica rices to nitrogen and plant spacings. <u>Indian J. Agron.</u>, 22: 82-86.
- Singh, S.S. and Singh, R. Deosharan, 1980. Varietal reaction of rice to age of seedlings transplanted in alakali soils. <u>IRRN.</u>, 5(2): 18-19.
- Singh, S.S. and Tarat, R.K. 1978. Effect of seedling age on the growth and yield of rice varieties. IRRN., 3(1): 5-6.
- Singh, T.N. 1982. Spacing and plant population for transplanted rice in alkali soil of eastern Utter Pradesh, <u>IRRN.,7</u>(6): 19-20.

xxii

- Sood, P.R. and Singh, N. 1972. Effect of nitrogen and spacing on rice yield. J. <u>Res. Punjab Agric. Univ.</u>, § (3): 292-295.
- Sreedharan, C. 1975. Studies on the influence of climatological factors on rice under different water management practices. Ph.D. thesis. Orissa University of Agriculture and Technology, Bhubaneswar.
- Sreekumaran, V. 1981. Response of rice culture-31-1 to graded doses of fertilizers. M.Sc.(Ag.) thesis. Department of Agronomy, College of Agriculture, Vellayani, Trivandrum, Kerala.
- Sreenivasulu, K. and Pawar, M.S. 1965. Studies on the influence of N, P and K on some quantitative characters in two indica x japonica rice hybrids. <u>Rice News Teller</u>, <u>13</u>: 81-83.

Sreenivasan, S. 1977. Azolla. Aduthursi Reptr., TNAU, 30.

- Sreenivasan, S. 1980. Azolla manuring and grain yield of rice. IRRN., 5 (4): 25.
- Sreenivasan, S. 1983. Effect of azolla manuring with nitrogen fertilization. <u>IRRN.</u>, <u>8</u> (2): 18.
- Subramaniem, A. 1965. A short note on paddy strains ADT 27. <u>Medras soric. J., 52</u>: 350.
- Subremanian, V. 1981. Studies on the effect of azolla and blue green algae with and without uses on the yield and quality of rice (<u>Oryza sativa</u> L.) var. IR.20, M.Sc.(Ag.) thesis (Soil Science and Agricultural Chemistry), TNAU, Coimbatore.
- Subramanian, A., Palaniappan, S.P. and Morachan, Y.B. 1974. Effect of graded doses of nitrogen and the method of planting on the protein content of rice. <u>Madras agric. J.</u>, <u>61</u>: 657-658.

xxiii

- Subha Rao, N.S. 1981. Contribution of biofertilizers in supplementing nitrogen requirements. <u>Indian Fmg.</u>, 31 (7): 13-16.
- Subudhi, B.P.R. and Singh, P.K. 1980. Residuel effect of azolla application of rice yield, IRRN., 5(4): 24-25.
- Sundaram, S.F., Senthanakrishnan, P., Natarajan, T. and Oblisami, G. 1979. Effect of azolla on rice cultivation. Abstracts of the State Level Workshop on Microbiel Inoculants. Department of Agricultural Microbiology, TNAU, Coimbatore, pp.26.
 - Sundarerajan, V. 1978. Studies on the management of eged seedlings in rice ADT. 31. M.S.C.(Ag.) thesis. TNAU, Coimbatore.
 - Tahmida, Z.N. and Abdulkader, 1983. Effect of azolla on the growth and yield of rice. IRRN., 8(6): 22.
 - Talley, S.N., and Rains, D.W. 1980. <u>Azolla filiculoides</u> Lam as a fallow season green menure for rice in temperate climate. <u>Agron. J.</u>, 72: 11-19.
 - Tanaka, A. 1958. Comparative study of N requirements of indica and japonica variaties. <u>Proc. Indian Acad.</u> <u>Sci.</u>(8), <u>48</u>: 14-27.
 - Teneka, A. 1966. Mutual shading as a factor limiting the yield response of rice to application of nitrogen. Phosphorus and potassium fertilizers. <u>Pl. Soil</u>. <u>25</u>: 201-210.
 - Tanaka, A. 1972. The relative importance of source and sink as the yield limiting factors of rice. <u>Tech. Bull.</u>, (6) Food and Fertilizer Technology Centre.
- Tenska, A., Navesero, S.A., Gracia, C.V., Pareo, F.T. and Ramirez, E. 1964. Growth habit of rice plant in the tropics and its effect on nitrogen response. <u>Tech. Bull.</u> No.3 IRRI, Menile, Philippines pp.80.

vix

- Thangamuthu. G.S. and Eubramanian, S. 1983. Effect of plant population and urea super granule deep placement on rice yield. <u>IRRN.</u>, <u>8</u> (5): 23.
- Theetheroppen, T.S. 1983. Studies on management of eged seedlings in lowland rice. Ph.D. thesis in Agronomy, TNAU, Coimbatore.
- Theetherappen, T.S. and Palaniappen, S.F. 1984. Optimum seedling age for transplanting short duration rice. <u>IRRN., 9</u>(2): 29.
- *Thuyet, T.O. and Tuen, D.T. 1973. Azolla: A green compost. Vietenamese Studies 38, Agric. Problems. <u>Agron. Data</u>, 4: 119-127.
- *Trujillo, 2. 1961. Effectodel transplants en el eumento de la production Y calidad de arroz (Oryza sativa L.). <u>Acta Agren., 11</u>: 87-110.
- Vachhani, M.V., Upadhyaya S.R. and Rao, M.V. 1981. Influence of spacing on plant characters and yield of transplanted rice. <u>Rice News Taller.9</u>(2): 15.
- *Van de Goor, G.A.W. 1953. Effect of the age of seedlings on the yield of rice. <u>Landboun</u>., (Indonesia) 25: 247-254.
 - Venkataraman, A. 1980. Azolla propagation in China. <u>Azolla - A biofertilizer</u>, TNAU, Coimbatore, pp.1-16.
 - Venkataraman, R. 1981. Physiomorphism in rice yield constraints. <u>Aduthurai Reptr.</u>, TNAU, <u>5</u>: 25-30.
 - Verma, V.N. and Srivastava, K.N. 1972. Effect of IR-8 to different levels and split application of nitrogen. <u>Indian J. Agron.</u>, <u>17</u>: 5-8.
 - Vijayan, P.K. and Menon, M.K. 1965. Varietal response to manuring with ammonium sulphate. <u>Rico News Teller</u>, <u>13</u>(1): 16-18.

- Wasano, K. 1983. Annual Report for 1983. Lowland rice International Institute of Tropical Agriculture, Ibadan, Nigeria, pp.23-25.
- Watenebe, I. 1977. Azolla utilization in rice culture. <u>IRRN., 2</u> (3): 10.
- Wetenebe, I. 1978. Azolle and its use in low land rice culture. Soil Microbes. Japan, 20: 1-10.
- Watanebe, I., Berja, N.S. and Rosario, D.C.D. 1980. Growth of azolla in paddy field as affected by phosphorus fertilizer. Soil Sci. Pl. Nutr., 26: 301-307.
- Yamada, N. 1959. Noture of fertilizer response in japonica and indica rice verieties. <u>Int. Rice Comm. Newsl.</u> g: 16-19.
- Yemada, N. 1961. On the relationship between yield and spacing in rice. Agric. Hort. 36 (1): 13-18, 311-316.
- Yamada, N. and Nakamura, H. 1968. <u>Theory and Practice of</u> <u>Growing Rica</u>. Fiji Publishing Co.Ltd., Tokyo, Japan, pp.172+177.
- Yoshida, S. 21972 Physiological espects of grain yield. A. Rev. Pl. Physiol., 23: 437-464.
- Yoshida, S. 1981. <u>Fundamentals of Rice Crop Science</u>. International Rice Research Institute, Manila, Philippines, 267 p.
- Yoshida, S., and Cock, J.H. 1971. Growth performance of an improved rice variety in the tropics. <u>Int. Rice</u>. <u>Comm. Newsl.</u>, <u>20</u>: 1-15.

xxvi

- Yoshida, S., Cock, J.H. and Parao, F.T. 1972. Physiological aspects of high yields. <u>Rice Breeding</u>, International Rice Research Institute, Manila, Philippines, pp.455-465.
- Yoshida, T. and Padre, B.C. Jr. 1974. Nitrification and denitrification in submarged Maahas clay soil Soil Sci. Pl. Nutr., Tokyo, Japan, 20: 241-247.

* Originals not seen

Appendix

APPENDIX I. Weather data during the cropping period

Standard			Mean temperature(°C)		Mean	Mean RH (%)		Total rainfall (mm)	Evapora- tion mmd ⁻¹
	week and month		Max. Min.		sun shine hours d ⁻¹	0720 h	1420 h		
			2	3	4	5	6	7	8
	1								
1982	-				ä e	97 [.]	77	185.1	_
28	9-15	July	2916	23.2	1.5	97	80	186.5	-
29	16-22		28.9	22.8	2.3	95	75	48.4	3.9
30	23-29		29.9	23.5	4.8	96	83	260.4	-
31	30-5	August	27.8	22.9	0.9 3.2	96	82	196.6	-
32	6-12	2	28.5	22.7	-	97	80	119.6	-
33	13-19 🗹	-	28.6	22.9	4.5	97	76	69.8	3.5
34	20-26		29.6	23.3	9.2	96	67	18.0	4.7
35	27–2	September	30.9	23.9	8.6	95	61	-	4.5
36	. 3-9		31.2	22.6	7.1	95	66	. 26.4	4.7
37	10-16		30.7	23.4	5.6	94	71	44.8	4.8
38	17-23		31.2	23.7		97	61	2.2	4.4
39	24-30		31.2	22.1	7.0	96	63	8.2	5.1
40	1-7	October	33.2	23.0	7.5	90 94	62	31.8	4.2
41	8-14		33.5	23.4	7.4	95	68	6.5	3.7
42	15-21		32.5	23.2	. 6.6	95 97	71	117.4	.
43	22-28		32.9	23.1	6.8	93	60	206.0	3.7
44	29-4	November	32.5	23.1	6.8	95 95	65	208.0	4.0
45	5-11		32.1	23.3	6.3	93 91	59	0.8	4.0
46	12-18		32.7	23.6	7.2	91 82	50	-	4.0
	. 19–25		33.8	23.0	9.1	• 77	47	-	5.0
48	26-2	December	33.7	23.9	7.6	76	46	_	5.9
49	.3-9		32.9	21.9	8.8	. 78	45	0.6	6.8
50	10-16		32.7	21.8		75	38	-	7.2
51	17-23		33.5	22.2	9.2	7 <u>5</u> 74	37	-	6.6
52	24-31		33.0	21.5	7.7	74	5,		
<u>1983</u>					,	, 75	36	_	5.8
1	1-7	January	33.4	19.8	9.2		31	-	6.0
2	8-14		34.1	17.3	9.9	74 74	37	_	6.9
3	15-21		33.9	21.1	9.1	74	39	. _	6.5
4	22-28		34.6	21.8	9.6		40	_	6.2
5	29-4	February		21.4	9.3	81 84	40	-	5.4
6	5-11		34.5	21.1	9.5	86	38	-	6.5
7	12-18		36.1	22.4	9.4	.93	42	-	5.
в	19-25		36.1	22.3	9.9	.93 91	39	-	7.
9	26-4	March	.35.9	21.5	9.8	91	33	-	7.
10	5-11		:36.7	22.1	9.7	92 89	44	-	7.
11	12-18	3	37.3	24.5	9.5		45	-	7.
12	19-25	5	,35.9	24.3	9.2	88 90	40	_	7.
.13	26-1	April	37.3	23.7	9.9	90 87	40	_	7
14	2 - 8		37.8	24.1	9.5	90	42	_	6.
15	9-15	5	36.5	24.B	9.3	85	46	-	7.
16	16-23	2	36.4	24.6	8.9		46	.	8.
17	23-29	Ð	.37.0	25.5	9.9	83 78	46 46	_	6.
18	30-6	May	36.6	25.9	8.7	78	49	6.4	6.
19	7-1	3	36.0	25.2	9.4	83	49 60	93.6	6.
20	14-2	0	35.4	26.1	6.2	86	00	2010	

.

4 7 8 4 -5 6 3 2 1 53 0.6 6.3 8.7 88 34.8 25.5 21 21 - 276.1 89 27.3 58 9.0 22 28-3 June 34.4 25.9 60 1.1 8.6 90 7.6 33.9 25.6 23 4-10 87.8 4.1 76 -31.8 24.3 2.8 92 11-17 24 2.0 83 100.6 24.0 3.6 93 30.9 18-24 25 79 2.8 205.0 2.3 95 30.2 24.1 25-1 July 26 2.4 20.9 7.7 96 68 23.9 32.0 Ž-8 27 230.2 -88 98 29.4 23.7 3.2 28 9-15 87 253.8 -22.6 1.8 98 28.6 Ż9 16-22 92.2 79 1.2 2.0 96 29.4 23.6 30. 23-29 2.0 104.B 77 29.7 23,9 4.0 96 3-5 August 31 85 146.1 -23.6 0,9 98 28.5 6-12 32 88 170.4 _ 1.7 99 13-19 28.9 23.6 33 2.8 97 80 49.6 ÷ 23.9 29.6 20 - 2634 98 77 11.7 -5.1 27-2 September 30.4 24.5 35 78 174.6 _ 97 3.1 30.0 23.4 36 3-9 -82 142.9 99 _ 29.0 23.5 2.4 37 10-16 86 180.4 99 _ 28.1 22.7 2.3 17-23 38 78 97 38.4 _ 30.0 23.4 5.1 24-30 39 79 53.4 _ 29.8 23.7 5.4 99 1-7 October 40 4.8 22.0 9.2 96 63 -31.2 8-14 41 25.2 6.9 96 67 -31.5 23.0 15-21 42 83.2 32.5 23.5 6.1 95 66 _ 43 22-28 61.4 97 65 -32.3 23.4 5.6 44 29-4 November 92 58 15.0 _ 32+3 21.8 -9.0 45 5-11 3.7 50 -10.3 85 20.0 33.1 46 12-18 2.9 63 31.7 21.7 7.5 96 19-25 32.1 47 3.9 8.7 88 50 -32.4 21.9 26-2 48 December 4.0 4.8 32.7 8.2 83 48 23.0 49 3-9 5.5 9.6 83 47 -34.0 23.0 10-16 50 82 63 1.0 4.3 3.8 23.3 31.7 51 17-23 38.5 1.7 91 64 31.8 22.9 3.0 24-31 52 1984 45 5.5 8.8 77 ÷. 1 1-7 January 33.0 22.9 23.0 6.8 72 45 _ _ 32.2 2 8-14 14 3.4 90 51 33.7 .22.0 7.0 3 15-21 33.7 19.5 9.8 86 43 _ 5.8 22-28 4 74 39 5.5 8.2 _ 34.1 22.7 5 29 - 4February 79 49 6.1 34.3 24.5 5.5 _ 6 5-11 86 48 -8.8 12-18 34.9 24.9 -7 4.9 94 37 _ 9.4 8 19-25 35.7 23.1 5.5 24.7 7.3 65 33 _ 9 26-3 35.6 March 12-0 3.9 4.8 89 59 33.2 23.2 10 4-10 6.0 4.5 47 11 11-17 36.1 23.3 9,4 93 4.9 18-24 37.5 23.6 .9.1 93 36 _ 12 36.9 24.8 8.6 89 47 _ 6.1 13 25-31 34.7 24.9 5.8 94 60 32.0 3.9 14 1-7 April 24.2 3.8 35.4 24.3 8.5 92 59 8-14 15 14.4 3.3 15-21 34.4 23.8 6.5 93 65 16 9.4 4.3 25.0 8.2 92. 58 22-28 34.2 17 5.7 53 26.1 9.6 68 _ 18 29-5 May 35.9 5.0 25.9 9.6 92 60 5.6 36.2 19 6-12 15.7 3.9 89 56 25.5 8.9 20 13 - 1935.8

APPENDIX -I (Contd.)

APPENDIX - I	(Contd.)

	1	2	2	3	4	5 -	6	7	8
21	20-26		35.5	25.2	9.9	89	51	16.6	5.6
22	27-2	June	32.3	24.0	5.4	97	71	227.0	2.5
23	3-9		28.9	22.8	2.2	93	83	88.4	1.2
24	10-16		29.7	23.5	1.5	.92	92 .	229.6	0.2
25	17-23		28.7	23.1	2.1	95	89	172.0	0.5
26	24-30		28.6	22.5	2.3	94	85	201.6	1.2
27	1-7	July	28.9	22.9	2.1	96	78	201.4	0.2
28	8-14		28.5	23.3	3.3	94	82	119.1	1.1
29	15-21		27.2	22.3	0.6	97	83	264.8	0.1
30	22-28		29.3	23.6	6.2	96	71	61.6	1.8
31	29-4	August	29.1	23.4	4.6	94	74	76.9	0.6
32	5-11		28.8	23.2	3.9	95	69	57.4	2.1
33	12-18		28.8	23.1	6.2	95	77 [•]	64.0	1.3
34	19-25		29.0	23.4	6.0	93	74	18.4	2.0
35	26-1	September	28.1	22.8	4.4	95	76	38.2	1.8
36	2-8		29.5	22.8	7.7	92	72	3.0	3.5
37	9–15		29.7	22.8	5.8	96	67	8.6	3.8
38	16-22		31.3	23.6	7.7	94	64	4.0	4.4
39	23-29		31.2	23.6	4.9	95	73	49.8	2.3
40	30-6	October	29.6	22.9	1.5	93	86	155.8	-
41	7-13		28.8	23.1	4.2	' 92	70	95.4	1.8
42	14-20		30.1	18,9	9.4	92	53	-	3.7
43	21-27		31.0	22.8	7.4	92	68	40.8	3.1
44	28-3	November	32.7	22.2	9.6	91	50	48.4	2.9
45	-4-10		31.9	23.0	6.8	93	59	-	4.1
46	11-17		33.0	22,5	7.2	94	54	-	3.2
47	18-24		32.5	22.9	6.1	85	58	12.8	3.7
48	25-1	December	31.2	20.5	5.5	91	60	17.6	2.3
49	2-8		32.4	21.6	8.2	85	49	-	3.9
50	9-15		33.0	18.1	10.1	85	42	-	3.7
51	16-22		31.9	17.2	9.8	84	47	-	4.4
52	23-31		33.9	20.9	.9.9	93	50	-	, 3,5
<u>1985</u>									
1	1-7	January	32.1	23.8	6.0	89	76	56.2	2.8
2	B-14		32.2	20.7	9.4	91	62	-	4.5
3	15-21		32.7	22.6	8.8	77	49		5.7
4	22-28		33.5	21.6	9.9	83	40	-	6.6
5	29-4	Pebruary	34.7	20.7	9.7	82	43	-	6.2
6	5-11		33.6	20,1	7.4	95	50	-	4.2
7	. 12–18		34.6	22.4	9.3	98	51	-	4.9
8	19-25		35.5	21.7	9.9	83	42	-	6.0
9	26-4	March	36.2	22.1	7.1	93	48	_	3.2

EVALUATION OF LOWCOST AGRONOMIC TECHNIQUES FOR SUSTAINED RICE PRODUCTION

Βу

SREEDEVI, P.

THESIS

submitted in partial fulfilment of the requirements for the degree

Doctor of Philosophy in Agriculture

Faculty of Agriculture Kerala Agricultural University

Department of Agronomy COLLEGE OF HORTICULTURE Vellanikkara - Trichur Kerala - India

1985

ABSTRACT

Three field experiments were conducted at the Regional Agricultural Research Station, Pattambi, Kerala to evaluate some of the low cost agronomic techniques for sustained rice production during the period from 1982 to 1985. In the first experiment the performance of IR 42, e rice variety suited to low fertility conditions was assessed under verying levels of nutrition and spacing. Fertilizer, age of seedlings and planting density, for IR 42 were the experimental variables for the second experiment. In the third trial, azolla was evaluated as a low cost biofertilizer for IR 42. The first end third trials were laid out in split plot design while the second trial in factorial RBD.

The rice cultivar IR 42 proved its mettle under the low fertility conditions. In fact, it gave an average yield of 2.78 t he⁻¹ in <u>virippu</u> and 2.32 t he⁻¹ in <u>mundakan</u> without any fertilizer application.

A plant population of 33 hills m^{-2} (spacing 20 x 15 cm) in conjunction with full dose of fertilizer

of 90: 45: 45 kg NFK ha⁻¹ recorded substantially more grain yield of 4.24 and 3.20 t ha⁻¹ in <u>virippu</u> and <u>mundakan</u> seasons, respectively. Relatively lower grain and straw yields were registered by the treatment 100 hills m⁻² (spacing 20 x 5 cm) at all levels of fertilizer application. The net return and benefit cost ratio were more in the former combination.

Increasing the seedling number hill⁻¹ from two to four or six was also found to be beneficial for this veriety. At lower levels of fertilizer six seedlings hill⁻¹ recorded higher grain yields. However, at higher levels four seedlings hill⁻¹werg found to be superior.

During <u>virippu</u> season planting of 35 days old seedlings was found to perform better compared to 30 and 25 days old seedlings whereas in <u>mundakan</u> season, 30 days old seedlings were found preferable in terms of grain yield.

Recommended dose of fertilizers (90: 45: 45 kg NPK ha^{-1}) with azolla @ 10 t ha^{-1} and 75 per cent of the same with azolla @ 15 t ha^{-1} recorded similar grain yields indicating that an extra dose of 5 t of azolla ha^{-1} could substantially reduce the chemical fertilizer requirement and save as much as 25 per cent of the fertilizer. The benefit cost ratios were almost equal in both the combinations while the return per rupes invested was more in the latter combination. The finding appears to ceution against excessive use of azolla expecting better exploitation of all the benefits attributed to it. Nevertheless, data on the residual fertility of the soil after each crop indicate that residual fertility was higher in the plots receiving full dose of fertilizer along with the highest level of azolla, 20 t ha⁻¹.