EFFECT OF GROWTH REGULATORS ON FLOWER AND FRUIT DROP IN CHILLI (Capsicum annuum L.)

THESIS
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR
THE DEGREE
MASTER OF SCIENCE IN AGRICULTURE
FACULTY OF AGRICULTURE KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF PLANT PHYSIOLOGY COLLEGE OF AGRICULTURE
VELLAYANI
THIRUVANANTHAPURAM

Dedicated

$$
7 a
$$

My beloved family

DECLARATION

I hereby declare that this thesis entitled "Effect of growth regulators on flower and fruit drop in chilli (Capsicum annuum L.)" is a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award of any degree, diploma, associateship, fellowship or other similar title, of any other university or society.

Vellayani,
20-12-2000

CERTIFICATE

Certified that this thesis entitled "Effect of growth regulators on flower and fruit drop in chilli (Capsicum annuum L.)" is a record of research work done independently by Ms. Sreeja Rajendran under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

```
Vellayani,
20-12-2000
```

Dr. M. M. Viji,
(Chairman, Advisory Committee)
Assistant Professor,
Department of Plant Physiology
College of Agriculture, Vellayani
Thiruvananthapuram

APPROVED BY:

CIAARMAN

Dr. M. M. VIJI
A
Wept of PLant Whayrodogy
Eders of Bqrantiver lillogeni
MEMBERS

1. Dr. S. T. MERCY

$$
\mathrm{N} \cdot \frac{1}{4}
$$

1. Ifficpeqct pifet of Llant In tsiolar

2. Dr. L. RAJAMONY Yovac Hrafie thecel Doct of Olenciuthure Colloge of Agminture, Lhifegenic
3. Dr. D. S. RADHADEVI Hacr Praferar Thet of Phit Eraedingut Equatics Collece sf Ficricuthores , Dellagani

EXTERNAL EXAMINER

DD.K.3 Krishnamurthy Scientist,
Indian insfitule of spices. cabicut.
$\mathcal{A C K N O W L E D G E M E N T}$
This thesis will be incomplete without expressing my gratitude to:

Dr. M. Th. Vifi, Assistant Professor, Department of Plant Physiology and Chairman of ky Aduicany Committee for her valuable guidance, friendly approach and unfailing patience. I am deeply indebted to her for the wholehearted help. constant encouragement and moral support rendered throughout the course of research mark and preparation of the thesis.

Dr. 5. 7. Mercy. Professor and Head. Department of Plant Physiology for the constructive criticisms and kelp rendered during the course of this study.

Dr. 2. Rajamany, Associate Professor and Head. Department of Olericulture for the expert advise. timely suggestions. genuine interest and ever willing help rendered throughout the course of the research work.

Dr. D. S. Radhadeui, Associate Professor, Department of Plant Breeding and Genetics for the friendly approach. wholehearted help and constructive perusal of the manuscript.

Or. C. Vifayalakshmi, Associate Professor, Department of Forest Biology. Forestry College and Research Institute for the bind approach and timely help in peronitting the use of the Photosynthesis System without which the completion of this thesis cusuld have remained uncertain. Why thanks also goes to Mr. Elanga, K. 7., Ph.D. Scholar far the help rendered in reading the Photosynthesis System and for proulding information about the apparatus.

All the teaching and nor-teaching staff of Department of Plant Physiology. Kerala 7 orest Research Institute. Peechi for their help rendered during the research period.

Sot. 4. Kamalam. Associate Professor. Department of Plant Breeding and Genetics for the timely help during the course of this study.

Instructional Farm. College of Agriculture. Vellayani for the wholehearted and rionely kelp provided during the course of my field work.

Dr. 7. Sreelathakumart. Assistance Professor. Department if Pomology and 7 lariculture for all the help rendered during she study.

Department of Biotechnology for permitting me to utilize the facilities during the course of this investigation.

Dr. Mantic and Dr. Rrishmaprasad for their kelp extended during the study.

Manat. S. for taking the photographs.
Sri. C. E. Ajithkumar. Duscar Programmer, Department of Agricultural Statistics for the assistance rendered during the statistical analyses of the data.

Subramaniax and Co. Typing Centre. Palakkad for the timely help in typing the manuscript.

Bifu. P. of ARDRA for the neat preparation of tables, graphs and typesetting of the thesis.

Kerala Agricultural University for granting me the K.A.U. Ionian Fellowship.
tAsha. Sindhu, Saru, Beena. Samasya. Mandira and other friends for their help rendered during the study.

Leenamal. Sindhumal cheek t and Sanchu for their selfless help, affection and for being there always in timed of need.

Deepthy. Dhanya and K.P. for their laue. affection, moral support and for adding colour in my life.

My Daddy. Mummy and Shafice for their unbound love, support. constant encouragement and for everything which cannot be expressed in words.

Above all. I back my head before gad almelgkty who give me the courage and strength to pursue this endeavour to completion.

CONTENTS

> Page No.

1. INTRODUCTION 1-3
2. REVIEW OF LITERATURE 4.22
3. MATERIALS AND METHODS $23-41$
4. RESULTS
.... $42-84$
5. DISCUSSION 85-113
6. SUMMARY $114-120$
REFERENCES $i=x v$
APPENDICES1-11
ABSTRACTi- iii

LIST OF TABLES

Table No.	Title	Page No.
1.	Growth regulators	26
2.	Effect of different growth regulators on morphological characters	43
3.	Effect of different growth regulators on plant height	46
4.	Effect of different growth regulators on leaf area	47
5.	Effect of different growth regulators on leaf area index	49
6.	Effect of different growth regulators on specific leaf weight	51
7.	Effect of different growth regulators on leaf area ratio	53
8.	Effect of different growth regulators on crop growth rate	54
9.	Effect of different growth regulators on relative growth rate	56
10.	Effect of different growth regulators on net assimilation rate	58
11.	Effect of different growth regulators on root-shoot ratio	59
12.	Effect of different growth regulators on physiological parameters	61
13.	Effect of different growth regulators on chlorophyll-a content	6.3
14.	Effect of different growth regulators on chlorophyll-b content	65
15.	Effect of different growth regulators on total chlorophyll content	66
16.	Effect of different growth regulators on chlorophyll a / b ratio	68

LIST OF TABLES contd...

17.	Effect of different growth regulators on protein content	69
18.	Effect of different growth regulators on carbohydrate content	71
19.	Effect of different growth regulators on leaf proline content	73
20.	Effect of different growth regulators on reducing sugars, carotenoids and capsaicin content of fruits	74
21.	Effect of different growth regulators on total fresh weight	76
22.	Effect of different growth regulators on total dry weight	78
23.	Effect of different growth regulators on yield parameters	80
24.	Economics of chilli cultivation	83
25.	Simple correlation studies of crop characters with fruit yield	84

LIST OF FIGURES

Fig. No.	Title	Page No.
1.	Weather data for the cropping period - December 1999 to March 2000	24
2.	Effect of different growth regulators on flower and fruit initiation	86
3.	Effect of different growth regulators on flowering and flower drop	88
4.	Effect of different growth regulators on fruiting and fruit drop	90
5.	Effect of different growth regulators on plant height	92
6.	Effect of different growth regulators on leaf area	94
7.	Effect of different growth regulators on LAI, SLW and LAR	96
8.	Effect of different growth regulators on CGR, RGR, NAR and RS ratio	98
9.	Effect of different growth regulators on physiological parameters	100
10.	Effect of different growth regulators on photosynthetic pigments	102
11.	Effect of different growth regulators on protein, carbohydrate and proline content of leaves	104
12.	Effect of different growth regulators on reducing sugars, carotenoids and capsaicin content of fruits	106
13.	Effect of different growth regulators on fresh weight and dry weight per plant	108
14.	Effect of different growth regulators on yield characters	110

LIST OF PLATES

Plate. No.	Title	Between pages
1.	View of the experimental field	$23-24$
2.	Effect of IAA on fruit size	$111-112$
3.	Effect of NAA on fruit size	$111-112$
4.	Effect of triacontanol on fruit size	$111-112$
5.	Effect of GA on fruit size	$111-112$

LIST OF APPENDICES

SI. No.	Title	Appendix No.
I.	Soil characteristics of the experimental field	I
2.	Weather data during the cropping period - December 1999 to March 2000	Il

LIST OF ABBREVIATIONS

${ }^{0} \mathrm{C}$	Degree Celsius
Fig.	Figure
ppm	parts per million
IAA	Indole-3 acetic acid
IBA	Indole-3 butyric acid
NAA	Naphthalene acetic acid
GA	Gibberellic Acid
cv.	Cultivar
rpm	Rotations per minute
nm	Nanometer
M	Molar
ha	Hectare
μ	Micro
LAI	Leaf area index
SLW	Specific leaf weight
LAR	Leaf area ratio
CGR	Crop growth rate
RGR	Relative growth rate
NAR	Net assimilation rate
RS	Root-shoot
C1	Control (water spray)
C2	Control (No spray)

Intraductian

1. INTRODUCTION

The concept of hormonal regulation of plant growth dates back to nearly a century. Julius Sachs noticed from his experiments on plants that special substances are responsible for the formation and growth of different organs. With this information, scientists discovered that the growth and behaviour of many plants could be changed and often controlled by applying small amount of organic chemicals to roots, stems, buds, leaves or flowers. These chemicals have come to be known as 'growth regulators'. The growth regulators impart their effects by modifying plant growth and development through changes in the endogenous levels of naturally occurring hormones. There are numerous reports of studies carried out by different workers in various crops and hence the role of different growth regulators in seed germination, seed dormancy, flowering, sex expression, hybrid seed production, fruit set, fruit ripening etc. has been well established. This manipulation of physiological efficiency of crop plants by the use of growth regulators has emerged as a new era for achieving quantum jump in productivity.

India is the largest producer, consumer and exporter of spices in the world. Spices constitute 12 per cent of total agricultural commodities exported from India. During 1997 -98, the country earned a foreign exchange worth rupees 1352.1 crores by the export of 218750 tonnes of spices in raw as well as value added forms (Sivaraman and Peter, 1999).

Chilli (Capsicum annuum L.) is one of the most important solanaceous spice cum vegetable crop valued for its aroma and flavour, which it imparts to food and beverages. It forms an important indispensable adjunct in the
common Indian dishes and is used either in green form as a vegetable or dried form as chilli powder. Extracts of chillies are used in the manufacture of ginger beer and other beverages. Chillies also form a rich source of vitamin C in its fresh state. It has unique medicinal properties and is used internally as a powerful stimulant and carminative and externally as a counter-irritant.

The geographical distribution of this crop extends to tropical and subtropical parts of a number of countries in the world. It's adaptability to varying agroclimatic conditions makes it suitable for growing in almost all regions in India. It is practically grown all over India and there is not a single household in the country where it is not utilized in one form or the other.

India is the largest producer of chillies contributing to 25 percent of world's production. It is cultivated in an area of 5.73 lakh hectares (Attavar, 2000) with a production of 8.21 lakh tonnes (Peter, 2000) as per 1997-98 data. In India, chilli occupies an important place among the cash crops of Andhra Pradesh, Maharashtra, Karnataka and Tamil Nadu accounting for 75 per cent of country's net area and production.

Eventhough chilli is cultivated in a larger area, the production per unit area is less, despite good agronomic practices. It's productivity relies greatly on external factors which includes the weather conditions during critical phases of crop growth as well as internal physiological factors. In chillies, the poor yield can be attributed to the very low percentage of fruit set (15-30) as reported by Rajamani et al. (1990). The heavy drop of flowers and fruits is one of the major problems reducing the fruit set and hence the yield drastically. Flower drop is a serious problem in chillies causing great reduction in yield up to even 94 per cent as reported by Krishnamohan et al.
(1993). Flower drop is a complex phenomenon influenced by abiotic stresses like temperature, sunlight, rainfall and soil reaction. Flower drop was increased when chilli plants were exposed to severe water stress and high irradiance, whereas at low irradiance, flower drop was found to be due to low dry matter accumulation (Jaafer et al., 1994). During normal growth, auxins produced by reproductive organs prevent formation of an abscission zone at the base of the pedicel. When stress is imposed like low light intensity or heat stress, ethylene is generated by the reproductive structures resulting in their abscission (Wein et al., 1989). By reducing flower drop, high yield can be expected.

It has been claimed that the application of growth regulators prevents flower and fruit drop and increases production in various crops. Promising results in solanaceous vegetables have been obtained by Mote et al. (1975), Usha and Peter (1988), Singh (1995) etc. Application of growth regulators has gained importance as one of the latest technology to increase the yield of vegetables.

Hence the present investigation was carried out in chillies with four growth regulators viz. Indole-3- acetic acid, Naphthalene acetic acid, Triacontanol in the form of Vipul and gibberellin. The objectives of the investigation were envisaged as:

1. To study the effect of these growth regulators on flowering and flower drop.
2. To study the effect of the above growth regulators on fruiting and fruit drop.
3. To assess the effect of these growth regulators on morphological, growth, biochemical and yield parameters.

Revien of
Literature

2. REVIEW OF LITERATURE

Chilli (Capsicum annuum L.) is an important commercial spice cum vegetable crop grown for domestic as well as export market. It is valued for its aroma and flavour which it imparts to food and beverages. Flower shedding is one of the most limiting factor in stepping up chilli production. Flower drop is a complex phenomenon causing a great reduction in yield up to even 94 per cent (Krishnamohan et al., 1993). All the flowers produced by chilli plants do not set fruits and the percentage of fruit set is very low i.e. about 5 per cent as reported by Gopalratnam (1933). Application of growth regulators prevents flower and fruit drop and increases production in various crops. Promising results have been obtained by Negi and Singh (1956) in cotton, Jagirdar and Choudry (1967) in mango and Mukherji and Roy (1966) in tomato.

The present investigation was carried out to study the effect of different growth regulators viz. IAA, NAA, Triacontanol and GA in preventing flower and fruit drop in chilli and also to know the effects of these growth regulators on various morphological, biochemical, growth and yield parameters. Correlation studies of the different parameters with yield was also undertaken. A review of the information available on these aspects is presented in this chapter.

2.1 Morphological characters

Nanjappa (1965) studied the effects of GA, IAA, and NAA at different concentrations on chilli and reported that foliar spray of gibberellic acid 50
ppm increased the height of plants and reduced the number of flowers produced subsequent to spraying. Foliar spray of NAA 5 ppm showed 45 per cent higher fruit set over control and NAA 10 ppm reduced the flower drop by 27 per cent.

In tomato, an improvement of fruit set was shown by Mehrota et al. (1970) when foliar application of NAA 10 ppm and $\mathrm{GA}_{3} 10 \mathrm{ppm}$ were given at flowering.

In a study carried out by Chandra and Shivraj (1972) in chilli, the number of flowers formed in GA treated plants did not show significant difference compared to control. The flower shedding was less when foliar sprays of GA 25 ppm and 50 ppm were given. Also spraying of IAA 25 ppm and NAA 10 ppm showed increased flowering and fruit set with a reduction in flower and fruit drop.

An increase in the height of GA treated tomato plants to an extend of 60 per cent under pot culture and 22 per cent under field conditions was reported by Irulappan and Muthukrishnan (1974).

Jayanandam et al. (1976) reported that when NAA 15 ppm and 1BA 20 ppm were sprayed thrice in chilli at 15 days intervals, there was an increase in flower production. NAA and 1BA also had a role in reducing flower drop. The percentage fruit set was more in NAA treated plants. Good fruit set was obtained with planofix (NAA) 10 ppm in tomato by Kanwar et al. (1976) and in chillies by Chandra et al. (1976).

Warade and Singh (1977) conducted a study to investigate the role of planofix (NAA 4.5 per cent) in preventing flower drop and increasing fruit set
in chillies. Early flowering was reported with planofix 200 ppm sprayed at 4-5 leaf stage. Planofix 200 ppm sprayed during the bloom stage gave a maximum fruit set of 70.5 per cent against 52.16 per cent in control.

Increased fruit set in brinjal has also been reported with foliar spray of IAA 100 ppm by Bisaria and Bhatnagar (1978).

Good reduction in flower drop was obtained by Patil and Ballal (1980) in Capsicum annuum cv. NP-46-A whose seeds were treated with IAA 40 ppm followed by two subsequent foliar sprays, one at the beginning of flowering and then at 20 days after flowering.

Oenofeghara (1981) reported that when tomato seedlings were sprayed with NAA 25 ppm and 50 ppm , it promoted flower primordia formation. IAA more than 125 ppm was found to be toxic.

Hariharan and Unnikrishnan (1983) opined that by soaking the seeds of Capsicum annuum L. in NAA 50 ppm for $4-5$ days, the plants reached flowering stage earlier than untreated controls.

Patil et al. (1985) reported that in chillies, double foliar sprays of planofix 10 ppm once at flowering and then after five weeks of flowering decreased flower shedding and gave the best fruit set.

Foliar sprays of triacontanol 2 mg per litre applied at 30 days after transplanting and again at blooming stage were effective in checking flower drop and enhancing fruit yield in chillies (Srinivas et al.,1986).

In a study carried out by Maurya and Lal (1987), when roots of seven week old chilli seedlings were dipped in aqueous solutions of GA 150 ppm and transplanted, the plants showed maximum plant height (62.66 cm) and
seedlings dipped in NAA 50 ppm showed the minimum plant height $(51.28 \mathrm{~cm})$. NAA 150 ppm resulted in minimum number of fruits due to premature fruit drop. Miniraj and Shanmugavelu (1987) opined that in chillies, foliar sprays of triacontanol 1 and 2 ppm one at 30 days after transplanting and then at full bloom stage resulted in plants coming to flower earlier than control. Plants sprayed with Triacontanol 1 ppm produced 499.1 flowers per plant while control plants produced only 355.5 flowers per plant. These plants also had a higher fruit set of 52.21 per cent againt 34.27 per cent in control.

In the summer and monsoon trials carried out by Usha and Peter (1988) in chilli cv. KAU cluster, foliar sprays of triacontanol (as Vipul) 0.5 ml per litre at 15,30 and 60 days after transplanting gave the highest reduction in flower drop during summer. Whereas, during the monsoon season, foliar sprays of NAA 15 ppm at 15,30 and 60 days after transplanting was found to be the most effective in reducing flower drop.

Doddamani and Panchal (1989) reported that in Byadagi chilli (Capsicum annuum Linn. var. acuminatum), foliar sprays of NAA 10 ppm before flowering gave the highest plant height (99.36 cm) and highest fruit set (29.83 per cent).

In chillies, foliar sprays of triacontanol 1.25 ppm given at $20,40,60$ and 80 days after transplanting resulted in higher number of flowers produced per plant (560.50) compared to the control (393.26). The percentage of fruit set was also found to be maximum (52.93) in triacontanol 1.25 ppm compared to control (29.32). This was reported by Rajamani et al. (1990). In irrigated field trials by Rao et al. (1990), when chilli cultivars G_{4} and LCA- 235 were given foliar sprays of NAA 20 ppm at flower initiation and at peak flowering
stages, the number of flower buds shed decreased from 422 per m^{2} in control to 288 per m^{2} in NAA treated plants. The corresponding values for fruit set were 61 per cent and 47.6 per cent for the treated and control plants respectively.

Phookan et al. (1991) reported an increased plant height up to 30 ppm NAA in tomato. In an experiment conducted by Ramanandam et al. (1991) to study the effect of growth regulators on fruit set in brinjal, triacontanol 5 ppm applied as foliar spray resulted in highest percentage fruit set.

El-Asdoudi (19936) studied the effect of gibberellins on flowering and fruiting in Capsicum annuum cv. California Wonder plants and reported that the maximum fruit set of 61.2 to 63.3 per cent was observed in plants sprayed with GA; 15 ppm .

El-Asdoudi and Ouf (1993) opined that in tomato the tallest plants were got from 3 foliar sprays of GA 50 ppm given at 15 days interval. Kar et al. (1993) observed the best fruit retention and yield in tomato cv. Pusa Early dwarf with both NAA 15 ppm and NAA 25 ppm given as a seed presoak and a foliar spray at 30 days after transplanting. Krishnamohan et al. (1993) found that foliar sprays of IAA at 10 ppm and 25 ppm at the time of flowering were insignificant in retaining the reproductive structures in chilli. Singh et al. (1993) reported that in chilli cultivars Pant C_{1}, Pusa Jwala and NP 46-A, foliar sprays of NAA 40 ppm applied during 40 and 60 days after transplanting improved the plant height and resulted in maximum percentage of fruit set.

Sharma (1995), observed that in tomato cv. Solangola, foliar sprays of triacontanol 7.5 ppm applied at 4,8 and 12 weeks after transplanting increased the height of plants. In tomato, Singh (1995) obtained early induction of flowering and an improvement of fruit set by foliar sprays of NAA $5-10 \mathrm{ppm}$. Good fruit set was obtained in Capsicum annuum cv. Pantnagar by foliar sprays of NAA 20 ppm (Singh and Lal, 1995).

An increase in plant height was observed by Tomar and Ramagery (1997) when seedlings of tomato cultivars, Sweet $72, \mathrm{SK}-1$ and CO-3 were transplanted to the field after soaking their roots for 30 minutes in $G A_{3} 50$ ppm.

2.2 Growth parameters

Gazizova (1986) observed that in wheat, the relative growth rate of the ear was increased by 35 per cent when the roots were treated with 100 ppm IAA.

Miniraj and Shanmugavelu (1987) reported an increase in the number of leaves in chillies when the plants were given foliar spray of Triacontanol 2 ppm 30 days after transplanting and again at full bloom stage. Increase in number of leaves by triacontanol treatment may be due to delayed senescence of leaves as reported by Billa (1981) and increased uptake of nutrients. Same was reported by Pocock (1979) in sugarbeet and Gunasekaran (1982) in tomato.

Lou and Kato (1988) noticed a decrease in stem to root ratio in the eggplants grown in pots after a foliar spray of GA 20 ppm .

Katayama and Akita (1989) reported that when seedlings of Japonica rice cv . Tanginbozu and Nipponbare were grown in nutrient solution with 1 and $10 \mathrm{ppm} \mathrm{GA}_{3}$, the net assimilation rate was found to increase with increasing GA_{3} concentration. It was attributed to increased sink activity of leaf sheaths. Narwadkar and Anser Wadekar (1989) observed that when mango grafts were sprayed with 200 and 700 ppm IAA, there was an increase in number of leaves and total leaf area.

Ray (1991) studied the effect of foliar sprays of triacontanol $0.5-1 \mathrm{mg}$ per litre in chilli varieties Arka Basant and California Wonder. The treated plants had a high leaf area, relative growth rate, crop growth rate and leaf area index.

El-Asdoudi (1993 a) observed that when seeds of Capsicum annuum cv . California Wonder were treated with $\mathrm{GA}_{3} 30,100$ and 300 ppm , the root to shoot ratio decreased with increase in GA_{3} concentration applied to apex of the plant. Krishnamohan et al. (1993) reported a leaf area index value of 0.36 at 45 days after transplanting in chillies sprayed with IAA 25 ppm at flowering. NAA 40 ppm applied as foliar spray at 40 and 60 days after transplanting resulted in greatest increase in leaf area (Singh et al.,1993). Takagaki (1993) observed that in Capsicum annuum, changes in relative growth rate was found to be influenced by fruit growth and fruit size. Much dry matter accumulation was noted in large fruits.

2.3 Physiological parameters

Eriksen et al. (1981) conducted a hydroponics experiment in tomato where the plants were grown in nutrient solution in which triacontanol was
added twice a week. After four weeks, photosynthesis in younger leaves was inhibited by 39 per cent in control compared to only 27 per cent inhibition in triacontanol treated plants.

Zhang et al. (1985) reported that in capsicum cv. Bruinsma Wonder, treatment of seeds with NAA, IAA and IBA all at 200 ppm reduced the transpiration rate. NAA treatment increased dry matter accumulation by higher rate of photosynthesis.

IAA application to mango grafts at 200 and 500 ppm was reported to decrease the rate of transpiration (Narwadkar and AnserWadekar, 1989).

In experiments conducted with potted trees of lemon cultivar Pant Lemon-1, IAA 20 ppm and triacontanol (as mixtallol) 2 and 4 ppm when sprayed on one month old shoots were found to increase the net photosynthetic rate. But $\mathrm{GA}_{3} 20 \mathrm{ppm}$ was noted to have the opposite effect (Sharma and Singh, 1990).

Takagaki (1993) studied the influence of day temperature on four Capsicum annuum varieties and reported that transpiration rate and stomatal conductance was increased under the influence of day temperature.

Application of IAA to the polato stolons in lanolin paste was found to enhance the photosynthetic rate (Puzina et al., 1998).

2.4 Biochemical parameters

Plant growth regulators have been reported to affect quality in many vegetables (Chhonkar and SenGupta, 1972). Chandra and Shivraj (1972) observed an increase in chlorophyll and carbohydrate content in chillies when
the plants were given.two foliar sprays of NAA 25 ppm and NAA 10 ppm 25 days after transplanting and again at 50 days after transplanting.

Prasad and Prasad (1977) observed that in tomato cv. Pusa Ruby, foliar spray of NAA 15 ppm at 20 days after transplanting improved the fruit quality and TSS content.

Chaubey and Chaturvedi (1982) reported a protein content of 4.99 g per 100 g of dry matter in tomato fruits whose seedling roots were treated with NAA 20 ppm for one hour.

In a greenhouse trial carried out by Patil et al. (1985), NAA 20 ppm spray at flower opening stage followed by two more successive sprays at an interval of 30 days was found to be most effective in increasing capsaicin content, carbohydrate and protein content of chilli fruits. Umajyothy and Shanmugavelu (1985) reported that in brinjal, two sprays of triacontanol lppm, 2,4-D $10 \mathrm{ppm}+$ boron 2 ppm applied once at 15 days after transplanting and then at the time of flowering resulted in an increase in protein content of 13.62 per cent as against the control (9.08 per cent).

Miniraj and Shanmugavelu (1987) studied the effect of triacontanol on growth, yield, quality and nutrient uptake in chillies. Foliar spray of triacontanol 2 ppm on the 30 th day after transplanting and again at full bloom stage recorded the highest capsaicin content of 4.99 mg per g in fruits as against the control (3.28 mg per g). A slight increase in total soluble sugars was also seen due to triacontanol application.

Bal et al. (1988) observed a greater increase in reducing sugar in fruits of ber cv. Umran with the treatment of NAA 25 ppm . Omar et al. (1988)
reported that increasing GA_{3} concentration was found to reduce both chlorophyll-a and chlorophyll-b contents together with leaf carotenoid content in Vicia faba plants which were sprayed with GA 250 ppm and 500 ppm 21 days after sowing and again after 30 days. Sidda Reddy (1988) found an increase in reducing sugars and protein content of potato with foliar sprays of mixtallol at 1 or 2 mg per litre.

Chrungoo and Farooq (1989) observed that application of GA_{3} at 100 mg per corm in Saffron crocus bought about the degradation of reserve carbohydrates. NAA at 100 mg per corm promoted the accumulation of reducing sugars.

IAA and GA_{3} both at concentration of 50 ppm sprayed on to maize, cowpea and Vicia faba increased the chlorophyll and carotenoid contents (Shaddad and El-Tayeb, 1990).

In tomato, a TSS content of 5.50 Brix was observed in fruits by Phookan et al. (1991), when foliar spray of NAA 40 ppm was given at flowering stage. In control, the TSS content was only 4.2^{0} Brix.

Deli et al. (1992) have reported that the total carotenoid content of ripe fruts in chilli was about 3.2 g per 100 g dry weight. In a potting trial conducted by El-Sayed (1992), three month old Capsicum annuum plants when subjected to water stress conditions, the proline content of the leaves was increased significantly. In control plants, proline oxidase activity was much higher. Janardhanan (1992) reported that in pigeon pea cv. CO-5, Cowpea $\mathrm{cv} . \mathrm{CO}-3$ and soyabean $\mathrm{cv} . \mathrm{CO}-1$, seed treatment with triacontanol

1 ppm for 24 hours increased the leaf chlorophyll and carotenoid contents in all these three crops.

El-Asdoudi (1993b) observed a marked reduction in sucrose content in the fruits of Capsicum annuum cv. California wonder plants which were given foliar spray of GA_{3} at 15 and 30 ppm .

Monge et al. (1994) reported that $\mathrm{GA}_{3} 1000 \mathrm{ppm}$ sprays given 14 days after full bloom in peach trees significantly reduced the chlorophyll-a and chlorophyll-b content.

Mosquera and Mendez (1994) monitored the changes in photosynthetic pigments of Capsicum annuum fruits. The chlorophyll pigments disappeared during ripening stage and the concentration of carotenoids were highest at fully ripe stage. Zrust (1994) observed that in potato tubers, the most drought resistant cultivars had the highest tuber proline content when subjected to water stress.

Foliar sprays of 2 and 4 ppm mixtallol were found to significantly increase the chiorophyll content of leaves of rape cv. 601 (Zhou et al., 1995).

Belakbir et al. (1996) reported a decrease in soluble carbohydrate concentration and an increase in concentration of glucose, fructose and sucrose in pepper fruits when foliar sprays of GA_{3} were given at flowering stage and further at 30 and 60 days after flowering. E1-Said (1996) described the chemical composition of sweet pepper cv. Gedeon and hot pepper cv. Pical. The total carbohydrates were found to decrease with increasing maturity. Protein concentration fluctuated but tended to decrease with
increasing maturity. . Capsaicin content increased with increasing maturity reaching 230 mg per 100 g in hot pepper.

Chemical analysis of fruits of Capsicum annuum L. by Hyun et al. (1997) revealed that the concentration of total capsaicinoids was 5.4 mg per 100 g fresh weight. Carotenoids had a total concentration of 6.5 mg per 100 g fresh weight. Ishikawa et al. (1997) reported that in Capsicum annuum, chlorophyll content was highest at 2 weeks after flowering and declined gradually.

Belakbir et al. (1998) reported that in chillies, GA3 sprays given during flower initiation stage followed by two successive applications at 30 days interval increased the soluble solid content of fruits.

2.5 Yield parameters

One of the latest low cost technologies to increase the yield of vegetables is through the application of plant growth regulators. The great potentialities of IAA, NAA and GA for maximising the yield in vegetable crops have been emphasized by various research workers like Prasad and Tyagi (1963), Srivastava and Adhikari (1972) and Sinha and Pal (1983). Increased yields by application of triacontanol on vegetables has also been reported by Gunashekaran (1982), Mamat et al. (1983) and Ries et al. (1978). Chandra and Shivaraj (1972) could obtain maximum yield in chilli with two foliar sprays of NAA 10 ppm , one at 25 days after transplanting and the other at 50 days after transplanting. It was found to be related to the rise in total carbohydrate content which in turn increased the number of fruits harvested per picking.

Around 27 percent extra yield over control was observed by Jayanandam et al. (1976) in chilli when NAA 15 ppm was sprayed thrice at 15 days interval. In trials with tomato cv. Pusa Ruby, NAA 15 ppm applied 20 days after transplanting gave the best results with regard to yield ie. 1.56 kg per plant (Prasad and Prasad, 1977).

Eriksen et al. (1981) observed that when tomato plants were grown in nutrient solution in which triacontanol was added twice a week, it caused significant increase in dry weight. In three year trials with Capsicum annuum cv. NP-46-A and one year trial with cv. Pusa Jwala by Pandita et al. (1980), planofix 10 ppm applied once at the beginning of flowering and then 3 weeks later resulted in highest yield of 103-107 quintals per hectare. Sinha and Pal (1980) studied the effect of plant growth regulators on vegetative growth and yield of Capsicum annuum L.var. Bullnose. Planofix applied at flowering stage had the most beneficial effect on plant productivity ie. 464.4 g per plant compared to control (280.6 g per plant).

Hariharan and Unnikrishnan (1983) reported that in chillies, germination was hastend by soaking the seeds in both 30 and 50 ppm NAA. The treated plants produced larger fruits with bigger seeds. In field trials of Tobasco pepper, triacontanol 1.25 mg per litre applied as soil drench (25 ml per plant) at transplanting significantly increased early ripening, number of fruits and total yield (Mamat et al., 1983). Watkins and Cantliffe (1983) observed that in Capsicum annuum, GA 100 ppm was slightly more effective in stimulating germination rate. Auxin application were not found to alter germination rates.

In a greenhouse trials by Patil et al. (1985) with NAA and GA, foliar application of NAA 20 ppm during the period of first flower opening followed by two successive sprays at an interval of 30 days was most effective in increasing yield and number of fruits per plant. Uma jyothi and Shanmugavelu (1985) reported that in brinjal, the highest number of fruits per plant (20.4) were obtained with two foliar sprays of triacontanol $2 \mathrm{ppm}+$ boron 4 ppm applied 15 days after transplanting and then at 30 days after transplanting. In control, the number of fruits were 10.8 per plant with an yield of 0.91 kg per plant.

Mayura and Lal (1987) studied the effect of NAA, IAA and GA on growth of vegetable chilli by dipping the roots of seven week old seedlings in aqueous solutions of growth regulators. They observed that GA 150 ppm gave the maximum number of fruits (22.16 per plant), fruit weight (48.4 g per plant), fruit length 8.06 cm and yield of 280.66 quintals per hectare. 1AA 50 ppm recorded fruit length 6.72 cm and fruit weight of 39.04 g per plant. Minimum number of fruits and yield were recorded by NAA 150 ppm . An increase in dry matter accumulation through higher photosynthesis was reported by Zhang et al. (1985) when seeds of green house grown capsicum seedling cultivars were treated with NAA 200 ppm .

NAA 10 ppm applied as foliar sprays before flowering in Byadagi chilli was found to give the greatest fruit yield (13.93 quintal per hectare), number of fruits per plant (182), fruit length (12.01 cm) and fruit thickness of 13 mm (Doddamani and Panchal, 1989). Foliar sprays of mixtallol 2 mg per litre resulted in considerable enhancement in the yield of tomato (Shukla and Prabhakar, 1989).

Shaddad and El-Tayeb (1990) reported that the foliar sprays of IAA and GA_{3} on maize, cowpea and Vicia faba plants increased the plant fresh weight and dry weight probably by increasing water use efficiency.

In an experiment conducted by Pandita et al. (1991) on bhindi cv. Pusa Sawani, two foliar sprays of IAA 50 ppm gave maximum early fruit yield. Phookan et al. (1991) observed that in tomato var. Pusa Early dwarf, the number of fruits per plant were found to decrease with increasing concentrations of NAA sprays given at flowering stage. NAA 10 ppm gave the highest number of fruits per plant (48.88) and highest yield. Ray (1991) reported that in chilli, foliar sprays of triacontanol $0.5-1 \mathrm{mg}$ per litre exhibited a higher dry matter accumulation.

El-Asdoudi (1993a) found that the foliar sprays of $\mathrm{GA}_{3} 30 \mathrm{ppm}$ decreased the stem fresh weight in chillies. Three foliar sprays of $\mathrm{GA}_{3} 100$ ppm given at 15 days interval in tomato cv . Carmello gave the highest yield. GA sprays were found to decrease the fruit volume as well as the number of seeds per fruit in tomato (El-Asdoudi and Ouf, 1993). Singh et al., (1993) opined that NAA 40 ppm applied as foliar spray at 40 and 60 days after transplanting in chilli cultivars Pant $\mathrm{C}-1$ gave the greatest shoot and root fresh weight and maximum fruit yield (89.8 quintals per hectare). In control, the fruit yield was 54.49 quintals per hectare.

Singh and Lal (1994) obtained an increased fruit yield of 35.9 per cent with NAA 40 ppm sprayed at flower bud initiation stage and again 20 days later in Capsicum annuum plants of cultivars Pusa Jwala, NP 46-A and Pant C-1.

Sharma (1995). observed that in tomato cv . Solangola, foliar sprays of triacontanol 7.5 ppm applied at 4 and 8 weeks after transpianting increased the number of fruits per plant, the yield of fruits and thousand seed weight. An enhanced germination of 66.5 per cent as against 52 per cent in control was reported by Singh and Lal (1995) with NAA 20 ppm in Capsicum cv . Pantnagar. NAA 20 ppm was also gave a higher seed yield.

In capsicum cv . Gedeon (sweet pepper), fresh weight and dry weight increased with increasing maturity with peak values at 30-40 days after fruit set and then declined due to senescence and water loss. In hot pepper cv . Pical, the fresh and dry weight continued to increase up to the final sampling date. This was reported by El-Said (1996).

NAA 20 ppm was found to be more effective than mixtallol (triacontanol) 2ppm in improving dry matter production in Vigna mungo cv. T_{9} (Mahla et al., 1999). Seed treatment of maize, rice and sunflower with triacontanol 10 ppm was found to significiantly increase germination by Niranjana et al. (1999). In a study conducted by Singh (1999) in hybrid tomato, 500 ppm IBA +500 ppm IAA was found to be more effective in increasing the number of fruits per plant and yield. The increase in yield was due to induction of early flowering, fruiting and maximum number of fruits per plant. Thakur et al. (1999) observed that in pot experiments of bell pepper variety Yolo Wonder, foliar sprays of 5 ppm mixtallol applied 30 days after transplanting produced more number of fruits than control. Vijayaraghavan (1999) reported that in bhendi, seed treatment of GA 50 ppm recorded the highest germination percentage, total dry matter production, number of fruits per plant and yield of fruits.

2.6 Biotic factors

Leaf curl caused by a virus is one of the most serious disease taking a heavy toll of the crop. Bhatt and Verma (1958) observed that when NAA was sprayed on streak virus infected tomato plants, typical virus symptoms disappeared from the leaves and stems and the plants exhibited normal growth.

Nariani (1963) reported that application of GA 100 ppm three times at weekly intervals on leaf curl infected plants of tobasco pepper suppressed the leaf curl symptoms and there was a reversion of stunting effect of virus in about 3-4 weeks after the last spray. Similar effect have been observed with GA 150 ppm on leaf curl infected tomato plants (Lal and Singh, 1961).

Reddy and Yaragunataiah (1981) observed that in leaf curl infected tomato plants, three foliar sprays of GA 200 ppm at 15 days interval reversed the stunting effect of plants induced by the tomato leaf curl virus.

2.7 Environmental factors

The productivity of chilli relies greatly on the external factors which includes weather conditions prevailing during critical phases of crop growth as well as internal factors (Rajamani et al.,1990).

Gopalratnam (1933) has reported maximum fruit set in chillies at $20^{\circ} \mathrm{C}$. Higher night temperatures favoured vegetative growth at the expense of reproductive growth in chillies (Nanjappa, 1965).

In experiments on cv. Cambell Red Chief Delicious apple trees, Byres et al. (1991) noted that when fruits were 20 mm in diameter, shading of the whole trees for 3 days caused 98 per cent fruit abscission. Konsens et al. (1991) observed
that a day-night temperatures of $32-27^{0} \mathrm{C}$ reduced the pod set due to enhanced abscission of flower buds, flower and young pods in snapbean.

The abscission of reproductive structures in bell pepper is a major production problem in the north eastern United States and is often caused by periods of high temperatures (Wein, 1990).

In chillies, shading was observed to increase the drop of flower buds to the tune of 90.5 per cent in 50 per cent shading. This was reported by Krishnamohan et al. (1993).

Aloni et al. (1994) reported that heat stress caused abscission of flowers in pepper plant and suggested that the susceptibility of pepper to heat stress is due to ethylene produced under high temperature stress. Jaafar et al. (1994) observed that flower abortion was accelerated when Capsicum annuum cv. Blue star plants were exposed to severe water stress and high irradiance. Rylski et al. (1994) reported that weather conditions can seriously affect flowering of pepper and tomato with malformed ovaries and production of non viable pollen.

Around 58-60 per cent flower drop was observed by Bhatt et al. (1999) under 100 per cent irradiance in Capsicum annuum var. Arka Gaurav.

2.8 Correlation studies

A positive association of ripe fruit yield with number of flowers, percentage fruit set and negative correlation with plant height, fruit length and fruit girth was reported by Vijayalakshmi et al. (1988) in chilli.

Kaul and Sharma (1989) revealed that in chillies fruit yield was significantly and positively associated with plant height, leaf area, fruit length, number of fruits per plant, dry matter content and TSS content.

Rani et al. (1996) reported that in Capsicum annuum, yield dispiayed significant positive correlation with plant height, number of fruits per plant, fruit length, mean fruit weight and dry matter production.

Rani (1997) showed that in Capsicum annuum, number of fruits per plant showed negative correlation with each of fruit length, fruit diameter and thousand seed weight and did not show any correlation with the yield characters studied.

2.9 Economics of cultivation

Jayanandam et al. (1976) has reported that NAA 15 ppm recorded 170 kg extra yield of dry pods per hectare valued at Rs. 680 . The cultivator has to invest an extra amount of Rs. 60 towards the spraying of hormone and will be benefited by Rs. 620 per hectare.

Materials and Methods

3. MATERIALS AND METHODS

To suit the objectives planned, the field experiment was taken up in the Instructional Farm, College of Agriculture, Vellayani during 1999-2000. Analysis of the various biochemical parameters were carried out in the laboratory at the Department of Plant Physiology. Statistical analysis of the data collected relating to different parameters were done. Particulars of materials used and methodologies followed in the investigation are presented in this chapter.

3.1 Materials

3.1.1 Experimental site

The experiment was carried out in the D block of Instructional Farm attached to the College of Agriculture, Vellayani. The farm is situated at 8.5^{0} North latitude and 76.9^{0} East longitude at an altitude of 29 meters above mean sea level.

3.1.2 Soil

Prior to the conduct of the experiment, composite samples of soil were drawn from a depth of 0.15 cm and analysed for physico-chemical properties and the data are presented in Appendix-I. The soil of the experimental site was red sandy clay loam belonging to the order oxisol and taxonomic class, loamy kaolinitic, rhodic haplustox (Vellayani series). It was acidic in reaction, medium in available nitrogen and high in phosphorus and potassium content.

Plate 1 View of the experimental field

Fig. 1 Weather data for the cropping period - December 1999 to March 2000

3.1.3 Environmental conditions

The experimental site enjoyed a humid tropical climate. The data on various weather parameters like rainfall, maximum and minimum temperature, sunshine hours, wind velocity and relative humidity during the cropping period is given in Appendix-II and graphically presented in Figure1. In general, the weather conditions were favourable for the satisfactory growth of the crop.

3.1.4 Season

The experiment was conducted during the period from December 1999 to March 2000.

3.1. 5 Variety

The variety used was Jwalasakhi, a high yielding variety of vegetable chilli evolved by Kerala Agricultural University by crossing Vellanotchi, a popular cultivar of South Kerala with Pusa Jwala. It has got high yielding potential, ideal for culinary purposes and is suited for high density planting. The seed material was obtained from the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani.

3.1.6 Growth regulators

The growth regulators used (Appendix-II) were Indole-3-acetic acid(IAA), Naphthalene acetic acid (NAA), gibberellic acid (GA) each at concentrations of $10,20,30$ and 40 ppm and Triacontanol (Vipul) at concentrations of $1,2,3$ and 4 ppm .

Table 1 Growth regulators

Sl. No.	Name	Price	Brand
1.	Indole-3 acetic acid	Rs. $355 / 5 \mathrm{~g}$	SRL
2.	Naphthalene acetic acid	Rs. $140 / 25 \mathrm{~g}$	SRL
3.	Triacontanol (Vipul)	Rs. $35 / 100 \mathrm{mI}$	Godrej Agrovet. Ltd., Bombay
4.	Gibberellic acid	Rs. $181 / \mathrm{g}$	SRL

3.1.7 Nursery

50 gram of seeds were sown in 30 pots filled with potting mixture. The seeds were sown during November 1999 and the seedlings were irrigated almost every day. Hand weeding and plant protection measures were undertaken periodically as per KAU package of practices recommendation (1996). The seedlings were ready for transplanting in $30-35$ days.

3.2 Particulars

3.2.1 Design and layout

The experiment was laid out in randomised block design. The details of layout are given below:
Treatments 18

Replications : 3
Number of plots : 54

Plot size
$2.25 \times 2.25 \mathrm{~m}$

Number of plants in a plot: 25

Spacing $: \quad 0.45 \times 0.45 \mathrm{~m}$

3.2.2 Treatments.

The treatments included four growth regulators each at four different concentrations, one water spray and one control. Hence, there were 16 treatments and 2 controls and the number of replications were three. The details of treatments are as follows:
$\mathrm{T}_{1} \quad-\quad$ IAA at 10 ppm
$\mathrm{T}_{2} \quad-\quad$ IAA at 20 ppm
T3 - IAA at 30 ppm
$\mathrm{T}_{4} \quad-\quad$ IAA at 40 ppm
T_{5} - NAA at 10 ppm
$\mathrm{T}_{6} \quad-\quad$ NAA at 20 ppm
T_{7} - NAA at 30 ppm
$\mathrm{T}_{8} \quad-\quad \mathrm{NAA}$ at 40 ppm
T_{9} - Triacontanol at Ippm
$\mathrm{T}_{10}-$ Triacontanol at 2 ppm
T_{11} - Triacontanol at 3 ppm
T_{12} - Triacontanol at 4 ppm
$T_{13}-G A$ at 10 ppm
T_{14} - GA at 20 ppm
$\mathrm{T}_{15}-\mathrm{GA}$ at 30 ppm
$\mathrm{T}_{16}-\mathrm{GA}$ at 40 ppm
$C_{1} \quad-\quad$ Control with water spray
$C_{2} \quad-\quad$ Control with no growth regulator and no water spray.

3.2.3 Details of cultivation

The main field was dug twice and plots of $2.25 \times 2.25 \mathrm{~m}$ were laid out with bunds of 0.20 m width between plots. Bunds of width 0.30 m were laid on the boundary of the field and in between replications. Individual plots
were again dug and perfectly levelled. Ridges were taken at a spacing of 0.45 m and the seedlings were planted at a spacing of 0.45 m on these ridges. The plants were given uniform irrigation. Necessary shade was also provided for a week after transplanting.

3.2.4 Maintenance of the crop

Gap filling was done a week after transplanting. The crop was hand weeded at 25 days interval. Need based plant protection measures were undertaken to control pests and diseases.

3.2.5 Schedule of spraying

Two sprays of growth regulators were given:

1) During pre-flowering stage i.e., 20 days after transplanting.
2) During flowering stage i.e., 40 days after transplanting.

The solutions of IAA, NAA and GA were prepared by dissolving the weighed quantity in 95 percent ethyl alcohol and then making up to the required volume. In case of triacontanol, concentrations of $1,2,3$ and 4 ppm were prepared as Vipul $0.2 \mathrm{ml}, 0.4 \mathrm{ml}, 0.6 \mathrm{ml}$ and 0.8 ml per litre of water respectively (Rajamani et al., 1990). All the four growth regulators at different concentrations were given as foliar sprays twice as indicated above. In the case of water spray, distilled water was used. The spraying was done with knapsack sprayer till runoff started on the foliage. Teepole was used as a spreader.

3.2.6 Harvest

The crop was ready for first harvest, 48 days after transplanting and subsequent harvests were made at an interval of 10 days. On the whole, 7-8 pickings were carried out.

3.3 Observations

Observations related to morphological, growth and yield characters were recorded in five stages of crop growth viz. vegetative stage (S_{1}), flower initiation stage $\left(S_{2}\right)$, peak flowering stage $\left(S_{3}\right)$, maturation stage $\left(S_{4}\right)$ and ripening stage $\left(\mathrm{S}_{5}\right)$. Two plants were tagged in each plot as the observational plants leaving the border rows. All observations were recorded from these plants and the mean values were taken.

3.3.1 Morphological characters

3.3.1.1 Number of days to produce first flower

The number of days from transplanting to the production of first flower was recorded.

3.3.1.2 Number of days to produce first fruit

The number of days taken for the appearance of first fruit was recorded from the observational area.

3.3.1.3 Intensity of flowering

The total number of flowers produced from flower initiation to maturation stage were taken as such as the intensity of flowering.

3.3.1.4 Intensity of flower drop

The intensity of flower drop was recorded in percentage as per formula:

Number of flowers dropped
Total number of flowers

3.3.1.5 Intensity of, fruiting

The total number of fruits were recorded till the last harvest of the crop and the intensity of fruiting was calculated as :-
$\frac{\text { Number of fruits }}{\text { Number of flowers }} \times 100$

3.3.1.6 Intensity of fruit drop

The intensity of fruit drop was observed in percentage as:
$\frac{\text { Number of fruits dropped }}{\text { Number of fruit drop + Number of fruits }} \times 100$

3.3.1.7 Plant height

The height of plants in cm was measured from the base of the plant to the growing tip of the plants. Observations were recorded on the tagged plants at all the five growth stages.

3.3.2 Growth Parameters

3.3.2.1 Leaf area (LA)

Ll 3000 area meter with conveyor belt was employed for assessing the leaf area of the whole sampling unit and expressed as cm^{2} plant ${ }^{-1}$.

3.3.2.2 Leaf area index (LAI)

The leaf area index was calculated by employing the formula of Williams (1946).

Lear area per plant
Area occupied per plant

3.3.2.3 Specific leaf weight (SLW)

Specific leaf weight was calculated by using the formula suggested by Pearce et al. (1968) and expressed in $\mathrm{g} \mathrm{m}^{-2}$.

Leaf dry weight per plant Leaf area per plant

3.3.2.4 Leaf area ratio (LAR)

The leaf area ratio was worked of by using the formula of Hunt (1990) and expressed as $\mathrm{m}^{2} \mathrm{~g}^{-1}$.
$\frac{\text { Leaf area per plant }}{\text { Total plant dry weight }}$

3.3.2.5 Crop growth rate (CGR)

The CGR was worked out by using the formula of Watson (1958) and expressed in $\mathrm{g} \mathrm{m}^{-2}$ day ${ }^{-1}$

$$
\frac{W_{2}-W_{1}}{P\left(t_{2}-t_{1}\right)}
$$

Where,
W_{1} and $W_{2}=W$ hole plant dry weight at t_{1} and t_{2} respectively
t_{1} and $t_{2}=$ Time interval in days.
$\mathrm{P} \quad=$ Ground area on which W_{1} and W_{2} have been estimated.

3.3.2.6 Net assimilation rate (NAR)

The method proposed by Gregory et al. (1917) which was modified by Williams (1946) was employed for calculating NAR on leaf area basis and the values were expressed in $\mathrm{mg} \mathrm{cm}^{-2}$ day ${ }^{-1}$.

Where,
W_{1} and $W_{2}=$ Dry weights of whole plant at t_{1} and t_{2} respectively
L_{1} and $\mathrm{L}_{2}=$ Leaf area at time intervals of t_{1} and t_{2} respectively
t_{1} and $t_{2}=$ Time in days.

3.3.2.7 Relative growth rate (RGR)

The RGR was determined by the formula suggested by Williams (1946) and expressed in $\mathrm{mg} \mathrm{g}^{-1}$ day $^{-1}$.

$$
\frac{\log _{e} W_{2}-\log _{e} W_{1}}{t_{2}-t_{1}}
$$

Where,
W_{1} and $\mathrm{W}_{2}=$ Plant dry weight at time t_{1} and t_{2} respectively
t_{1} and $\mathrm{t}_{2}=$ Time interval in days.

3.3.2.8 Root-shoot ratio

The ratio of root dry weight to shoot dry weight is expressed as rootshoot ratio. The root and shoot portion of uprooted sample plants were cut and separated. The root and shoot portions were dried separately in oven at
$50^{\circ} \mathrm{C}$ for 3 days. The dry weights of root and shoot were recorded separately and the ratio was worked out.

3.3.3 Physiological parameters

A separate experiment with all the sixteen treatments and two controls $\left(C_{1}\right.$ and $\left.C_{2}\right)$ were carried out with three replications. 20 days after transplanting, the plants were sprayed with the different growth regulators as specified for the field study. Different physiological parameters like the photosynthetic rate. transpiration rate and stomatal conductance were recorded using Photosynthesis System, CI-301 PS manufactured by CID, Inc, Vancouver, Washington State, USA. For reading these parameters, the plants were taken to Forestry College and Research Institute, Mettupalayam 30 days after transplanting and the Photosynthesis System available in the Department of Forest Biology was utilized for the study.

3.3.4 Biochemical parameters

3.3.4.1 Photosynthetic pigments

Photosynthetic pigments viz. chlorophyll-a, chiorophyll-b, total chlorophyll and chlorophyll a / b ratio were estimated by the method described by Arnon (1949).

A representative sample of lg of leaf tissue was weighed and ground with 20 ml of 80 per cent acetone using a pestle and mortar. The homogenate was centrifuged at 5000 rpm for 5 minutes. The supernatant was collected and made up to 100 ml with 80 per cent acetone. The optical density (OD) value of the extract was measured at 663 and 645 nm using 80 per cent acetone as blank in a spectrophotometer. The amount of pigments were
calculated using the foilowing formula and expressed as mg of pigments g. 1 of fresh leaf.
mg chlorophyll-a per g tissue $=12.7\left(\mathrm{~A}_{663}\right)-2.69\left(\mathrm{~A}_{645}\right) \times \frac{\mathrm{V}}{1000 \mathrm{xW}}$
mg chlorophyll-b per g tissue $=22.9\left(\mathrm{~A}_{645}\right)-4.68\left(\mathrm{~A}_{663}\right) \times \frac{\mathrm{V}}{1000 \times \mathrm{W}}$
mg total chlorophyll per g tissue $=20.2\left(\mathrm{~A}_{645}\right)+8.02\left(\mathrm{~A}_{663}\right) \times \frac{\mathrm{V}}{\mathrm{mg}}$
Chlorophyll a/b ratio per g tissue $=\frac{1000 \times \mathrm{W}}{\text { mg chlorophyll-b per g tissue }}$ Where,
$A=$ Absorbance at specific wavelengths
$\mathrm{V}=$ Final volume of chlorophyll extract in 80 per cent acetone $\mathrm{W}=$ Fresh weight of tissue extracted.

3.3.4.2 Protein content

The protein content of fresh leaf was estimated by the method developed by Lowry et al. (1951). Five hundred mg of leaf material was ground well with a pestle and mortar in 10 ml of the buffer. 0.1 and 0.2 ml of supernatant was used for protein estimation and the residue was discarded. The volume was made up to 1 ml and was allowed to stand for 10 minutes after adding 5 ml of alkaline copper solution. To this 0.5 ml of FolinCiocalteau's reagent was added, mixed well and incubated at room
temperature in dark for 30 minutes. The intensity of blue colour developed was read at 660 nm using spectrophotometer. Protein content of different samples were calculated by referring the standard curve which was prepared using bovine serum albumin and expressed as mg of protein per gram of sample.

3.3.4.3 Total carbohydrates

The total carbohydrates of fresh leaves was estimated by Anthrone method (Hedge and Hofreiter, 1962), 100 mg of sample was weighed into a boiling tube. It was hydrolysed by keeping it in a boiling water bath for three hours with 5 ml of 2.5 N HCl and cooled to room temperature. The volume was made up to 100 ml after neutralising it with solid sodium carbonate. 0.5 and 1 ml of supernatant were used for the estimation of carbohydrates. The volume was made up to 1 ml and 4 ml of anthrone reagent was added. After heating for 8 minutes, it was cooled rapidly and the optical density of the green to dark green colour was read in a spectrophotometer at 630 nm . The amount of carbohydrates present in the sample was estimated using the standard curve prepared from standard glucose and the amount of carbohydrate as mg per 100 mg of sample was computed as :
$\frac{m g \text { of glucose }}{\text { Volume of test sample }} \times 100$

3.3.4.4 Leaf proline content

Proline accumulation in leaf was estimated by the method of Bates et al. (1973). The proline content was estimated as μ moles g^{-1} fresh weight. Five hundred mg of leaf material was macerated with 10 ml of 3 per cent
sulphosalicylic acid. This was centrifuged at 3000 rpm for 10 minutes. The supernatant was used for proline estimation and the residue was discarded. 2 ml of supernatant +2 ml of glacial acetic acid +2 ml of 6 M orthophosphoric acid were taken and boiled at $100^{\circ} \mathrm{C}$ in a water bath for about 1 hour and then cooled. The contents were transferred to a separating flask. To this 4 ml of toluene was added and shaken well for $20-30$ seconds. The lower layer was discarded and the upper layer was taken for estimating the $O D$ values at 520 nm in a spectrophotometer. Proline content was calculated by referring the standard curve which was prepared by using pure proline. The proline content in μ moles per g tissue was expressed as follows:
$\frac{\mu \text { gram proline per } \mathrm{ml} \times \mathrm{ml} \text { toluene }}{115.5} \times \frac{5}{\mathrm{~g} \text { sample }}$

Where,
$115.5=$ Molecular weight of proline

3.3.4.5 Reducing sugars

Ripe fruits were pulped in a blender and filtered through Whatman No. 4 filter paper. About 25 ml of filtered juice was transferred to a 250 ml volumetric flask. 100 ml of water was added and neutralized with IN NaOH . It was allowed to stand for ten minutes after adding 2 ml of lead acetate. Then 2 ml of potassium oxalate was added to remove excess of lead and the volume was made up to 250 ml with water. 5 ml each of Fehling's solution A and B were pipetted into a conical flask. 50 ml of distilled water along with 2 or 3 glass beads were added and the contents were boiled vigorously. While boiling, the clarified fruit juice was added till the blue colour just disappeared. It was again boiled for 1 minute after adding 0.5 ml of
methylene blue indicator. The titration was completed as quickly as possible by adding 2 to 3 drops of sugar solution until the brick red colour of cuprous oxide became dominant. The content of reducing sugar was calculated as per the following formula and expressed as g of glucose per 100 g of juice :

$$
0.05 \times \frac{250}{\mathrm{~V}} \times \frac{250}{50} \times \frac{100}{\mathrm{~W}}
$$

Where,
$V(\mathrm{ml})=$ Titre value
$\mathrm{W}(\mathrm{g})=$ Weight of fruit juice taken for analysis.

3.3.4.6 Carotenoids

The carotenoid content of red ripe fruits was estimated by the method described by Jensen (1978). A representative sample of 200 mg of fresh fruit was cut into small pieces and homogenised in a blender using 80 per cent acetone. The homogenate was made up to 100 ml with 80 per cent acetone and kept overnight in dark. The optical density of the extract was read at 450 nm using spectrophotometer. The carotenoids present in the extract was calculated using the following formula.

$$
C=\frac{D \times V \times f \times 100}{2500}
$$

Where,
$\mathrm{C}=$ Total amount of carotenoids in mg.
$\mathrm{D}=$ Absorbance at 450 nm in a 1 cm cell.
$\mathrm{E}=$ Volume of the original extract in ml .
$\mathrm{f}=$ Dilution factor .
$2500=$ Average extinction coefficient of the pigments.

3.3.4.7 Capsaicin content

Capsaicin content of red ripe fruits was estimated by Folin-Denis method as described by Mathew et al.(1971). The fruits were dried in hot air oven and finely powdered. To 1 g of the representative sample, 10 ml acetone was added and kept overnight. From this, aliquats of 1 ml was pipetted, added 25 ml of freshly prepared $\mathrm{Na}_{2} \mathrm{Co} 3$ solution and shook vigorously. The volume was made up to 100 ml and after 30 minutes and the optical density was measured at 725 nm in a UV-spectrophotometer. The capsaicin content was calculated in μ grams from the standard curve which was prepared by using pure capsaicin.

3.3.5 Yield parameters

3.3.5.1 Total fresh weight

One plant from the observational area was uprooted and the fresh weight was taken and expressed as g plant ${ }^{-1}$. The observations were recorded in all the five growth stages.

3.3.5.2 Total dry weight

The above said samples were dried to constant weights in a hot air oven at a temperature of $50^{0} \mathrm{C}$ and the total dry weight was taken and expressed as g plant ${ }^{-1}$.

3.3.5.3 Total number of fruits per plant

The total number of fruits from the observational plants were counted during each harvest and the mean was calculated.

3.3.5.4 Total weight of fruits per plant

The weight of fruits harvested from the tagged plants were recorded and the average was calculated.

3.3.5.5 Fruit length

From the selected plants, 15 fruits were taken at random from the second harvest. Fruit length in cm were measured and the average was worked out.

3.3.5.6 Fruit breadth

Fruits used for measuring the length were used for recording the breadth of fruits. The breadth was measured at the broadest part of the fruits.

3.3.5.7 Colour of fruit at ripening

The colour of ripe fruits was determined by visual observations.

3.3.5.8 Thousand seed weight

Red ripe fruits from each replication in every treatment was picked at random and dried in the sun. The seeds were extracted and thousand seed weight was recorded in gram.

3.3.5.9 Germination percentage of seeds

Fifty seeds were taken at random from each treatment and kept for germination by the petri dish method. The germination percentage of seeds was worked out as :

Number of seeds germinated

3.3.5.10 Harvest index

The harvest index of each treatment was computed on fresh weight basis.

$$
\text { Harvest index }=\frac{E Y}{E Y+B Y}
$$

Where,
$E Y=$ Economic yield ie. the total fruit yield
$B Y=$ Biological yield ie. the fresh weight of whole plant.

3.3.6 Biotic factors

3.3.6.1 Reaction towards pests and diseases

The incidence of leaf curl, colletotrichum fruit rot and mite infestation were noted as percentage by visual observations. They were given the rating of low, medium and high.

3.3.7 Economics of cultivation

The economics of cultivation was based on the cost of cultivation and prevailing price of crop produce.

Net income (Rs. ha ${ }^{-1}$) = Gross income - Total expenditure

$$
\text { Benefit-cost ratio }=\frac{\text { Gross income }}{\text { Total expenditure }}
$$

3.3.8 Statistical analysis

The data generated from the experiment were subjected to analysis of variance technique (ANOVA) as applied to randomised block design described by Cochran and Cox (1965), after appropriate transformations wherever needed. Important correlation were estimated and taken for significance (Snedecor and Cochran, 1967).

Results

4. RESULTS

The present investigation was carried out to study the influence of growth regulators viz. LAA, NAA, Triacontanol and GA on flower and fruit drop in chilli (Capsicum annuum L.). Relevant observations were made at different stages of the crop growth. The data recorded from the experiment were statistically analysed. The results are presented under the appropriate heads viz., morphological, physiological, biochemical, yield, biotic parameters and correlation studies.

4.1 Morphological parameters

4.1.1 Number of days to produce first flower

The data on days to produce first flower is presented in Table 2. The number of days to produce first flower ranged from $23.17\left(\mathrm{~T}_{7}\right)$ to $31.67\left(\mathrm{~T}_{4}\right)$. $\mathrm{T}_{6}(23.50), \mathrm{T}_{12}(24.50), \mathrm{T}_{3}(24.67)$ and $\mathrm{T}_{5}, \mathrm{~T}_{9}, \mathrm{~T}_{13}, \mathrm{~T}_{14}$ with a value of 26.33 were found to be on par with T_{7}. These treatments also showed lower values than C_{1} (28.84) and C_{2} (28.0).

4.1.2 Number of days to produce first fruit

The data on days to produce first fruit is given in Table 2. The values ranged from $28.67\left(\mathrm{~T}_{6}\right)$ to $35.50\left(\mathrm{~T}_{8}\right)$. Statistical analysis revealed no significant difference between the treatments. The control showed values of $34.34\left(\mathrm{C}_{1}\right)$ and $32.50\left(\mathrm{C}_{2}\right)$.

Table 2 Effect of different growth regulators on morphological characters

Treatment	Growth regulator	Concentration (ppm)	Number of days to produce first flower	Number of days to produce first fruit	Intensity of flowering (No. per plant)	Flower drop (per cent)	Intensity of fruiting (per cent)	Fruit drop (per cent)
T_{1}	1 AA	10	27.17	29.83	92.00 (46.80)	35.38 [40.61]	53.77 (58.92)	16.76
T_{2}	IAA	20	30.00	33.50	110.50 (76.32)	48.20 [19.10]	41.28 (22.05)	17.37
T_{3}	IAA	30	24.67	34.67	129.50 (106.63)	61.39	32.61	15.39 [2.34]
T_{4}	IAA	40	31.67	32.83	67.00 (6.90)	30.94 [48.06]	57.22 (69.18)	17.66
Ts	NAA	10	26.33	30.50	64.00 (2.12)	42.13 [29.28]	47.03 (39.05)	17.18
T_{6}	NAA	20	23.50	28.67	85.17 (35.90)	57.16 [4.06]	32.06	16.25
T_{7}	NAA	30	23.17	29.00	89.00 (42.01)	46.84 [21.38]	37.97 (12.27)	16.89
T_{8}	NAA	40	29.67	35.50	96.17 (53.45)	54.89 [7.87]	40.27 (19.07)	16.79
T_{9}	Triacontanol	1	26.33	30.33	88.33 (40.94)	39.16 [34.27]	50.02 (47.90)	16.41
T_{10}	Triacontanol	2	27.50	32.83	81.67 (30.31)	44.90 [24.63]	47.02 (39.03)	17.43
T_{11}	Triacontanol	3	28.33	32.50	60.50	46.76 [21.51]	44.03 (30.18)	17.21
T_{12}	Triacontanol	4	24.50	30.83	102.17 (63.02)	57.52 [3.45]	34.93 (3.28)	17.83
T_{13}	GA	10	26.33	30.83	73.33 (17.00)	31.65 [46.87]	55.09 (62.89)	16.94
T_{14}	GA	20	26.33	31.50	64.17 (2.39)	36.79 [38.25]	50.25 (48.58)	17.32
T_{15}	GA	30	28.00	33.17	82.67 (31.91)	63.98	30.91	16.84
T_{16}	GA	40	28.83	29.17	75.83 (20.99)	53.66 [9.93]	38.59 (14.10)	17.67
C_{1}	Control	Water spray	28.84	34.34	62.67	59.58	33.82	15.76
C_{2}	Control	No spray	28.00	32.50	58.33	51.34	43.54	14.45
Mean			27.17	31.86	82.38	47.90	42.80	16.78
F value			3.95**	0.86	3.15**	3.83**	41.29**	3.12**
CD			3.19	-	30.05	14.64	11.17	1.38

[^0]
4.1.3 Intensity of flowering

Data on intensity of flowering is presented in Table 2. Statistical difference. was observed among the different treatments. $T_{3}(129.50)$ produced the maximum number of flowers and $\mathrm{C}_{2}(58.33)$ recorded the lowest number of flowers. T_{2} (110.50) and $T_{12}(102.17)$ were on par with $T_{3} . C_{1}$ recorded a value of 62.67.

4.1.4 Intensity of flower drop (per cent)

Data on intensity of flower drop is presented in Table 2. Statistical analysis revealed significant difference among the treatments. The minimum percentage of flower drop was recorded in T_{4} (30.94) and the maximum in T_{15} (63.98). T_{1} (35.38), $\mathrm{T}_{5}(42.13), \mathrm{T}_{9}(39.16), \mathrm{T}_{10}(44.90), \mathrm{T}_{14}$ (36.79) and T_{13} (31.65) were on par with $\mathrm{T}_{4} \cdot \mathrm{C}_{1}$ and C_{2} showed values of 59.58 and 51.34 respectively.

4.1.5 Intensity of fruiting (per cent)

Data on intensity of fruiting is presented in Table 2. Significant difference was observed among the different treatments. The treatment values ranged from $57.22\left(\mathrm{~T}_{4}\right)$ to 30.91 per cent $\left(\mathrm{T}_{15}\right) . \mathrm{T}_{1}(53.77), \mathrm{T}_{5}(47.03), \mathrm{T}_{9}$ (50.02), T_{10} (47.02), T_{13} (55.09) and T_{14} (50.25) were on par with T_{4}. The control values were $33.82\left(\mathrm{C}_{1}\right)$ and $43.54\left(\mathrm{C}_{2}\right)$.

4.1.6 Intensity of fruit drop (per cent)

Data on intensity of fruit drop is presented in Table 2. The minimum number of fruit drop was observed in C_{2} (14.45) and the maximum drop in T_{12} (17.83). T_{3} (15.39) and C_{1} (15.76) were on par with C_{2}.

4.1.7 Plant height (cm)

The data on plant height recorded in five stages of crop growth are presented in Table 3. A steady increase in plant height was observed from S_{1} stage to S_{4} stage followed by a slow rate of increase in S_{5} stage. T_{16} (38.93) recorded the maximum value with a 16.94 per cent increase over $C_{1}(33.29)$. The other best treatments observed were T_{15} (38.33) and T_{14} (38.18). The lowest value was recorded in $\mathrm{T}_{1}(30.08)$.

Statistical analysis revealed a significant difference among the treatments in S_{2} stage only. In S_{1} stage $\mathrm{T}_{5}, \mathrm{~T}_{13}, \mathrm{~T}_{11}$ showed higher values (20.50, 18.50 , and 18.0 respectively) compared to C_{1} (13.50) and $C_{2}(13.33)$. T_{16} (32.58) recorded the highest plant height in S_{2} stage and it was on par with $\mathrm{T}_{14}(30.33), \mathrm{T}_{15}$ (31.16), T_{10} (30.61) and T_{5} (27.33). These treatments also showed higher values than $C_{1}(25.83)$ and C_{2} (26.58). In S_{3} stage, T_{11} (44.58) showed the maximum value and T_{7} (32.25) the minimum value. The control values were $C_{1}(37.00)$ and $C_{2}(39.25) . T_{16}$ (51.83 and 53.25) showed the highest values in S_{4} and S_{5} stages respectively. $T_{14}(51.0,51.75)$ and $T_{15}(50.50,51.66)$ recorded higher values than control in S_{4} and S_{5} stages respectively.

4.2 Growth parameters

4.2.1 Leaf area (cm^{2} plant ${ }^{-1}$)

The data relating to leaf area in five crop growth stages are presented in Table 4. A conspicuous increase in leaf area was observed from S_{1} to

Table 3 Effect of different growth regulators on plant height (cm)

[^1]Table 4 Effect of different growth regulators on leaf area (cm^{2} plant $^{-1}$)

Treatment	Growth regulators	Concentration (ppm)	Vegetative stage (S_{t})	Flower initiation stage (S_{2})	Peak flowering stage $\left(\mathrm{S}_{3}\right)$	Maturation stage (S S_{4})	Ripening stage (S_{s})	Mean
T_{1}	IAA	10	44.50	173.78	343.44	257.69	171.88	198.26
T_{2}	IAA	20	94.83	98.18	488.38	300.59	112.71	218.93
T;	IAA	30	138.54	200.54	555.74	496.87	438.93	$\begin{aligned} & 366.12 \\ & (36.76) \end{aligned}$
T_{4}	IAA	40	62.03	92.17	740.35	389.90	39.38	264.76
T5	NAA	10	47.30	138.25	562.82	294.08	25.08	213.50
T6	NAA	20	67.74	99.81	1094.87	654.46	214.29	$\begin{aligned} & 426.22 \\ & (59.21) \end{aligned}$
T_{7}	NAA	30	21.02	99.98	437.96	259.47	80.92	179.87
T8	NAA	40	33.17	220.92	620.05	412.93	205.72	$\begin{aligned} & 298.55 \\ & (11.52) \end{aligned}$
T9	Triacontanol	1	40.10	150.73	419.67	265.60	111.43	195.50
T_{10}	Triacontanol	2	21.90	203.23	1195.85	700.31	204.61	$\begin{aligned} & 465.18 \\ & (73.76) \end{aligned}$
T_{11}	Triacontanol	3	49.71	112.35	421.43	395.29	369.08	$\begin{aligned} & 269.57 \\ & (6.98) \end{aligned}$
T_{12}	Triacontanol	4	31.29	63.37	401.68	244.01	85.94	165.26
T_{13}	GA	10	38.56	159.39	547.70	326.41	105.10	235.43
T_{14}	GA	20	32.65	95.28	692.86	517.60	342.20	$\begin{gathered} 336.11 \\ (25.55) \end{gathered}$
T_{15}	GA	30	41.86	175.17	501.77	319.91	138.06	235.34
T_{16}	GA	40	28.47	126.86	1233.84	744.97	256.07	$\begin{gathered} 478.04 \\ (78.57) \end{gathered}$
C_{1}	Control	Water spray	33.72	57.62	526.36	415.76	305.07	267.77
C_{2}	Control	No spray	47.68	85.86	508.01	394.86	281.31	263.55
	Mean		48.61	130.75	627.37	410.59	193.76	
	F value		421.64**	807.42**	1757.70**	41548.95**	21172.00**	
	CD		3.87	4.83	18.17	2.12	0.72	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}
S_{3} stage and thereafter a decline in leaf area is seen in S_{4} and S_{5} stages. T_{16} (478.04) recorded the maximum leaf area with a 78.57 per cent increase over $C_{1}(267.77) . \quad T_{12}(165.26)$ recorded the minimum value and C_{2} recorded a value of 263.55 .

A significant difference among the treatments was observed in all the five stages. In S_{1} stage, T_{3} (138.54) recorded the maximum leaf area and T_{7} (21.02) the minimum. The control values were C_{1} (33.72) and C_{2} (47.68). T_{8} (220.92) recorded the highest value and C_{1} (57.62) the lowest value in S_{2} stage. T_{16} (1233.84) recorded the highest value in S_{3} stage and T_{1} (343.44) the lowest value. The control values were $C_{1}(526.36)$ and $C_{2}(508.01)$. In S_{4} stage also, T_{16} (744.97) showed the maximum leaf area and T_{12} (244.01) the minimum leaf area. The values ranged from $438.93\left(\mathrm{~T}_{3}\right)$ to $25.08\left(\mathrm{~T}_{5}\right)$ in S_{5} stage.

4.2.2 Leaf area index

The data on leaf area index (LA1) is given in Table 5. A distinct increase in LAI was seen from S_{1} to S_{3} stages. But during S_{4} and S_{5} stages, a decrease in LAI was recorded in all the treatments. T_{10} and T_{16} both recorded the maximum LA1 value of 0.23 showing a 91.66 per cent increase over $C_{1}(0.12) . T_{12}(0.08)$ recorded the minimum value.

Statistical analysis revealed a significant difference among the treatments in all the stages. $\mathrm{T}_{3}(0.07)$ recorded the highest value and $\mathrm{T}_{7}, \mathrm{~T}_{10}$ T_{12}, T_{16} and C_{1} all with a value of 0.01 showed the lowest value in S_{1} stage.

Table 5 Effect of different growth regulators on leaf area index

Treatment	Growth regulators	Concentration (ppra)	Vegetative stage (S_{I})	Flower initiation stage $\left(\mathrm{S}_{2}\right)$	Peak flowering stage (S_{3})	Maturation stage (S_{4})	Ripening stage (S_{s})	Меап
T	IAA	10	0.02	0.09	0.17	0.13	0.08	0.09
T_{2}	IAA	20	0.05	0.05	0.24	0.15	0.06	0.11
T ${ }$	IAA	30	0.07	0.10	0.27	0.25	0.22	$\begin{gathered} 0.18 \\ \{50.0\} \end{gathered}$
T_{4}	IAA	40	0.03	0.05	0.37	0.19	0.02	$\begin{gathered} 0.13 \\ (8.34) \end{gathered}$
T_{5}	NAA	10	0.02	0.07	0.28	0.14	0.01	0.10
T6	NAA	20	0.03	0.05	0.54	0.32	0.11	$\begin{gathered} 0.21 \\ (75.0) \end{gathered}$
T 7	NAA	30	0.01	0.05	0.22	0.13	0.04	0.09
T_{g}	NAA	40	0.02	0.11	0.31	0.20	0.10	$\begin{gathered} 0.14 \\ (16.66) \end{gathered}$
T_{9}	Triacontanol	1	0.02	0.07	0.21	0.13	0.05	0.03
T_{10}	Triacontanol	2	0.01	0.10	0.59	0.35	0.10	$\begin{gathered} 0.23 \\ (91.66) \end{gathered}$
T_{11}	Triacontanol	3	0.02	0.06	0.15	0.19	0.18	0.12
T_{12}	Triacontanol	4	0.01	0.03	0.20	0.12	0.04	0.08
T_{13}	GA	10	0.02	0.08	0.27	0.16	0.05	0.11
T_{14}	GA	20	0.02	0.05	0.34	0.26	0.17	$\begin{gathered} 0.16 \\ (33.34) \end{gathered}$
T_{15}	GA	30	0.02	0.09	0.25	0.16	0.07	0.11
T_{16}	GA	40	0.01	0.06	0.61	0.37	0.13	$\begin{gathered} 0.23 \\ (91.66) \\ \hline \end{gathered}$
C_{1}	Control	Water spray	0.01	0.02	0.25	0.20	0.15	0.12
C_{2}	Control	No spray	0.02	0.04	0.25	0.19	0.13	0.12
	Mean		0.02	0.06	0.30	0.20	0.09	
	F value		376.52**	874.36**	84.13**	146716.10**	12699.01**	
	CD		0.002	0.002	0.040	0.002	0.002	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}

In S_{2} stage, the LA1 values ranged from $0.11\left(\mathrm{~T}_{8}\right)$ to $0.02\left(\mathrm{C}_{1}\right) . \mathrm{T}_{16}(0.6 \mathrm{l})$ recorded the maximum value in S_{3} stage, which was on par with $\mathrm{T}_{10}(0.59)$. $\mathrm{T}_{11}(0.15)$ showed the lowest value and this was lower than C_{1} and $\mathrm{C}_{2}(0.25)$. In S_{4} stage, the values ranged from $T_{10}(0.35)$ to $T_{12}(0.12) . C_{1}$ and C_{2} recorded values of 0.20 and 0.19 respectively. in S_{5} stage, T_{11} (0.18) recorded the maximum value and $\mathrm{T}_{5}(0.01)$ the minimum. C_{1} and C_{2} showed values of 0.15 and 0.13 respectively.

4.2.3 Specific leaf weight $\left(\mathrm{g} \mathrm{m}^{-2}\right)$

The data on specific leaf weight (SLW) is presented in Table 6. S_{5} stage recorded the highest value for SLW. The highest value was recorded by T_{5} (1.30) followed by T_{12} (1.21). T_{3} (0.44) showed the minimum value, while C_{1} and C_{2} recorded SLW values of 0.57 and 0.58 respectively.

A significant difference was observed among the different treatments in all the five stages. $\mathrm{T}_{16}(0.63)$ recorded the highest value in S_{1} stage and T_{14} (0.58) was on par with $\mathrm{T}_{16} . \mathrm{C}_{1}(0.43)$ and $\mathrm{C}_{2}(0.28)$ both showed a higher value than T_{1} (0.05) which recorded the lowest value. In S_{2} stage, SLW values ranged from $1.24\left(\mathrm{~T}_{12}\right)$ to $0.35\left(\mathrm{~T}_{8}\right)$. The control values observed were $C_{1}(1.05)$ and $C_{2}(0.61) . T_{12}(0.58)$ recorded the highest value and $C_{2}(0.22)$ showed the lowest value in S_{3} stage. In S_{4} stage, the maximum SLW was recorded by T_{5} (1.17) and the lowest by both T_{3} (0.41) and $C_{2}(0.41)$. The values ranged from $3.86\left(\mathrm{~T}_{5}\right)$ to $0.31\left(\mathrm{~T}_{3}\right)$ in S_{5} stage.

Table 6 Effect of different growth regulators on specific leaf weight ($\mathrm{g} \mathrm{m}^{-2}$)

Treat- ment	Growth regulators	Concen- (ration (ppm)	Vegetative stage $\left(\mathrm{S}_{1}\right)$	Flower initiation stage $\left(\mathrm{S}_{2}\right)$	Peak flowering stage $\left(\mathrm{S}_{3}\right)$	Maturation stage $\left(\mathrm{S}_{4}\right)$	Ripening stage $\left(\mathrm{S}_{5}\right)$	Mean

** Significant at 0.01 level
() Indicates percentage increase over C_{1}

4.2.4 Leaf area ratio $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$

The data on leaf area ratio (LAR) recorded in five stages are presented in Table 7. T_{3} (1.02) was observed to have the highest LAR value followed by T_{1} (1.01). C_{1} and C_{2} recorded values of 0.55 and $0.9 l$ respectively and $T_{12}(0.38)$ showed the lowest value.

Statistical analysis revealed a significant difference among the treatments. T_{1} (3.60) recorded the highest LAR value and $\mathrm{T}_{8}(0.47)$ the lowest value in S_{1} stage. T_{8} recorded lower value compared to $C_{1}(0.77)$ and $\mathrm{C}_{2}(1.10)$. In S_{2} stage, T_{8} (1.54) showed the highest value compared to C_{1} (0.27) and $C_{2}(0.77)$ and $T_{12}(0.25)$ recorded the lowest value. In S_{3} stage, C_{2} (2.15) was observed to show the highest value and T_{14} (2.03) along with T_{16} (1.96) were on par with C_{2}. The lowest value was recorded by T_{15} (0.57). $\mathrm{C}_{2}(0.36)$ recorded the highest value in S_{4} stage followed by $\mathrm{T}_{8}(0.33)$ and $\mathrm{T}_{5}(0.10)$ showed the lowest value. In S_{5} stage, the LAR values ranged from $0.53\left(\mathrm{~T}_{3}\right)$ to $0.01\left(\mathrm{~T}_{5}\right)$. The control values were $\mathrm{C}_{1}(0.14)$ and $\mathrm{C}_{2}(0.19)$.

4.2.5 Crop growth rate $\left(\mathrm{g} \mathrm{m}^{-2}\right.$ day $\left.^{-1}\right)$

Data on crop growth rate (CGR) is presented in Table 8. An increase in CGR was observed up to P_{3} stage in most of the treatments followed by a decline in P_{4} stage. The highest $C G R$ value was recorded by $\mathrm{T}_{10}(2.24)$ and the lowest by $\mathrm{C}_{2}(0.65)$.

Table 7 Effect of different growth regulators on leaf area ratio $\left(\mathbf{m}^{2} \mathbf{g}^{-1}\right)$

Treatment	Growth regulators	Concentration (ppm)	Vegetative stage (S_{1})	Flower initiation stage (S_{2})	Peak flowering stage (S_{3})	Maturation stage (\mathbf{S}_{4})	Ripening stage (Ss)	Mean
T	IAA	10	3.60	0.64	0.58	0.13	0.13	$\begin{gathered} 1.01 \\ (84.36) \end{gathered}$
T_{2}	IAA	20	2.04	0.56	1.14	0.14	0.03	$\begin{gathered} 0.78 \\ (41.81) \end{gathered}$
T3	IAA	30	2.67	0.67	0.90	0.32	0.53	$\begin{gathered} 1.02 \\ (85.09) \end{gathered}$
T_{4}	IAA	40	0.83	0.43	1.71	0.15	0.02	$\begin{gathered} 0.62 \\ (12.72) \end{gathered}$
Ts,	NAA	10	1.71	0.63	0.69	0.10	0.01	$\begin{gathered} 0.62 \\ (12.72) \end{gathered}$
T6	NAA	20	0.72	0.58	1.65	0.29	0.11	$\begin{gathered} 0.67 \\ (21.81) \end{gathered}$
T,	NAA	30	0.77	0.47	1.56	0.20	0.03	$\begin{gathered} 0.60 \\ (9.09) \end{gathered}$
T8	NAA	40	0.47	1.54	1.06	0.33	0.09	$\begin{gathered} 0.69 \\ (25.45) \end{gathered}$
T9	Triacontanol	1	0.93	0.72	0.61	0.29	0.06	0.52
T_{10}	Triacontanol	2	1.41	0.53	1.76	0.21	0.11	$\begin{gathered} 0.80 \\ (45.45) \end{gathered}$
T_{11}	Triacontanol	3	1.23	0.41	0.73	0.24	0.09	0.54
T_{12}	Triacontanol	4	0.56	0.25	0.96	0.13	0.03	0.38
T_{13}	GA	10	0.69	0.53	0.99	0.17	0.04	0.48
T_{14}	GA	20	0.61	0.75	2.03	0.25	0.10	$\begin{gathered} 0.74 \\ (34.54) \end{gathered}$
T_{15}	GA	30	1.02	1.41	0.57	0.29	0.09	$\begin{gathered} 0.67 \\ (21.81) \end{gathered}$
T_{16}	GA	40	0.92	0.66	1.96	0.24	0.09	$\begin{gathered} 0.77 \\ (40.00) \end{gathered}$
C_{1}	Control	Water spray	0.77	0.27	1.32	0.29	0.14	0.55
C_{2}	Control	No spray	1.10	0.77	2.15	0.36	0.19	0.91
	Mean		1.22	0.59	1.22	0.22	0.10	
	F value		226.39**	480.96**	30.32**	261.73**	359.97**	
	CD		0.15	0.04	0.27	0.01	0.02	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}

Table 8 Effect of different growth regulators on crop growth rate ($\mathrm{g} \mathrm{m}^{-2} \mathrm{day}^{-1}$)

Treatment	Growth regulator	Concentration (ppm)	Vegetative stage to flower initiation stage (P_{1})	Flower initiation stage to peak flowering stage $\left(\mathrm{P}_{2}\right)$	Peak flowering stage to maturation stage (P_{3})	Maturation stage to ripening stage (P_{4})	Mean
T_{1}	IAA	10	0.80	0.98	2.24	1.10	$\begin{gathered} 1.28 \\ (25.49) \end{gathered}$
T_{2}	IAA	20	0.39	0.78	2.82	1.76	$\begin{gathered} 1.43 \\ (40.19) \end{gathered}$
T3	IAA	30	0.75	0.98	1.54	1.33	$\begin{gathered} 1.15 \\ (12.74) \end{gathered}$
T_{4}	IAA	40	0.42	0.68	3.68	2.29	$\begin{gathered} 1.76 \\ (72.54) \end{gathered}$
Ts	NAA	10	0.58	1.81	3.24	0.34	$\begin{gathered} 1.49 \\ (46.07) \end{gathered}$
T6	NAA	20	0.24	1.51	2.65	0.74	$\begin{gathered} 1.28 \\ (25.49) \end{gathered}$
T_{7}	NAA	30	0.57	0.22	1.71	1.92	$\begin{gathered} 1.10 \\ (7.84) \end{gathered}$
T_{8}	NAA	40	0.22	1.03	1.14	1.68	1.01
T9	Triacontanol	1	0.52	0.41	0.96	1.23	0.78
T_{10}	Triacontanol	2	1.12	0.91	4.30	2.63	$\begin{gathered} 2.24 \\ (119.60) \end{gathered}$
T_{11}	Triacontanol	3	0.70	0.95	1.82	4.62	$\begin{gathered} 2.02 \\ (98.02) \end{gathered}$
T_{12}	Triacontanol	4	0.60	0.51	2.25	0.93	$\begin{gathered} 1.07 \\ (4.90) \end{gathered}$
T_{13}	GA	10	0.75	0.77	2.29	0.42	$\begin{aligned} & 1.05 \\ & (2.94) \end{aligned}$
T_{14}	GA	20	0.23	0.66	2.94	2.09	$\begin{gathered} 1.48 \\ (45.09) \end{gathered}$
T_{15}	GA	30	0.26	2.30	0.38	0.87	0.95
T_{16}	GA	40	0.49	1.35	4.00	0.68	$\begin{gathered} 1.63 \\ (59.80) \end{gathered}$
C_{1}	Control	Water spray	0.50	0.91	1.56	1.11	1.02
C_{2}	Control	No spray	0.21	0.39	1.44	0.59	0.65
	Mean		0.51	0.95	2.27	1.46	
	F value		1566.22**	37.29**	867.70**	363.70**	
	CD		0.02	0.24	0.10	0.15	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}

Statistical analysis revealed a significant difference among the different treatments in all the stages. In P_{1} stage, T_{10} (1.12) recorded the highest value and $C_{2}(0.21)$ the lowest. $\mathrm{T}_{15}(2.30)$ was observed to show the maximum value and $C_{2}(0.39)$ the minimum at P_{2} stage. The values ranged from $4.30\left(\mathrm{~T}_{10}\right)$ to $0.38\left(\mathrm{~T}_{15}\right)$ in P_{3} stage and control recorded value of C_{1} (1.56) and C_{2} (1.44). In P_{4} stage, T_{11} (4.62) recorded the maximum value followed by $T_{10}(2.63)$ compared to $C_{1}(1.11)$ and $C_{2}(0.59)$ and $T_{5}(0.34)$ recorded the lowest value.

4.2.6 Relative growth rate ($\mathrm{mg} \mathrm{g}^{-1}$ day ${ }^{-1}$)

Data on relative growth rate (RGR) is presented in Table 9. P_{1} stage recorded the highest $R G R$ value and thereafter a decline was observed in P_{2}, P_{3} and P_{4} stages. $T_{10}(0.033)$ recorded the highest mean value with a 65.0 per cent increase over $C_{1}(0.020)$. The lowest value was recorded by T_{14} (0.015).

The difference between the treatments were observed to be statistically significant in all the stages. P_{1} stage showed RGR values ranging from 0.083 $\left(T_{1}\right)$ to $0.007\left(T_{14}\right) \cdot C_{1}(0.042)$ and $C_{2}(0.024)$ recorded higher values than T_{14}. In P_{2} stage, $T_{15}(0.054)$ recorded the maximum $R G R$ and $T_{7}(0.006)$ showed the minimum value. $T_{14}(0.026)$ recorded the maximum $R G R$ value in P_{3} stage and $\mathrm{T}_{2}, \mathrm{~T}_{4}, \mathrm{~T}_{10}, \mathrm{~T}_{16}$ with value of 0.025 and $\mathrm{T}_{7}(0.024)$ were on par with $\mathrm{T}_{14}, \mathrm{~T}_{3}$ and T_{8} recorded the minimum value of 0.014 . In P_{4} stage,

Table 9 Effect of different growth regulators on relative growth rate ($\mathrm{mg} \mathrm{g}^{-1}$ day ${ }^{-1}$)

Treat- ment	Growth regulator	Concen- tration (ppm)	Vegetative stage to flower initiation stage (P_{1})	Flower initiation stage to peak flowering stage (P_{y})	Peak flowering stage to maturation stage (P_{3})	Maturation stage to ripening stage (P_{4})	Mean
T	IAA	10	0.083	0.021	0.015	0.005	$\begin{gathered} 0.031 \\ (55.0) \end{gathered}$
T_{2}	IAA	20	0.035	0.023	0.025	0.006	$\begin{aligned} & 0.022 \\ & (10.0) \end{aligned}$
T3	IAA	30	0.047	0.019	0.014	0.010	$\begin{aligned} & 0.022 \\ & (10.0) \end{aligned}$
T	IAA	40	0.027	0.020	0.025	0.008	0.020
T;	NAA	10	0.056	0.032	0.018	0.007	$\begin{aligned} & 0.028 \\ & (40.0) \end{aligned}$
T6	NAA	20	0.016	0.031	0.016	0.004	0.016
T_{7}	NAA	30	0.056	0.006	0.024	0.008	$\begin{aligned} & 0.023 \\ & (15.0) \end{aligned}$
T_{8}	NAA	40	0.018	0.037	0.014	0.011	0.020
T ${ }_{4}$	Triacontanol	1	0.040	0.013	0.016	0.008	0.019
T_{10}	Triacontanol	2	0.081	0.018	0.025	0.009	$\begin{aligned} & 0.033 \\ & (65.0) \end{aligned}$
T_{11}	Triacontanol	3	0.053	0.020	0.015	0.013	$\begin{aligned} & 0.025 \\ & (25.0) \end{aligned}$
T_{12}	Triacontanol	4	0.059	0.014	0.022	0.005	0.020
T_{13}	GA	10	0.050	0.015	0.017	0.003	$\begin{aligned} & 0.021 \\ & (5.0) \end{aligned}$
T_{14}	GA	20	0.007	0.024	0.026	0.005	0.015
T_{15}	GA	30	0.030	0.054	0.005	0.004	$\begin{aligned} & 0.023 \\ & (15.0) \end{aligned}$
T_{16}	GA	40	0.049	0.033	0.025	0.002	$\begin{aligned} & 0.027 \\ & (35.0) \end{aligned}$
C_{1}	Control	Water spray	0.042	0.020	0.015	0.006	0.020
C_{2}	Control	No spray	0.024	0.020	0.022	0.007	0.018
	Mean		0.041	0.023	0.018	0.006	
	F value		83.964**	31.700**	17.488**	5.065**	
	CD		0.010	0.010	0.002	0.002	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}
the values ranged from $0.013\left(\mathrm{~T}_{11}\right)$ to $0.002\left(\mathrm{~T}_{16}\right) . \mathrm{C}_{1}$ and C_{2} recorded values of 0.006 and 0.007 respectively.

4.2.7 Net assimilation rate ($\mathbf{m g} \mathrm{cm}^{-2}$ day $^{-1}$)

Data on net assimilation rate (NAR) is presented in Table 10. The highest mean value was recorded by T_{2} (0.75) followed by T_{5} (0.73). The lowest mean value was recorded by $C_{2}(0.20) . T_{2}$ showed 50 per cent increase over $C_{1}(0.50)$.

Statistical analysis revealed a significant difference among the different treatments. In P_{1} stage, $T_{10}(1.21)$ recorded the highest NAR value compared to $C_{1}(1.0)$ and $C_{2}(0.30) . T_{12}(1.17)$ was on par with T_{10} and T_{8} (0.18) recorded the lowest value. In P_{2} stage, the values ranged from 0.65 $\left(\mathrm{T}_{15}\right)$ to $0.08\left(\mathrm{~T}_{7}\right)$ and C_{1} and C_{2} recorded values of 0.37 and 0.16 respectively. In P_{3} stage, the highest value was recorded by $T_{12}(0.78)$ followed by $\mathrm{T}_{15}(0.71)$ and the lowest value by $\mathrm{T}_{5}(0.07)$. The values in P_{4} stage ranged from $1.97\left(\mathrm{~T}_{2}\right)$ to $0.13\left(\mathrm{~T}_{16}\right) . \mathrm{C}_{1}(0.32)$ and $\mathrm{C}_{2}(0.15)$ recorded higher values than T_{16}.

4.2.8 Root-shoot ratio

The data on root-shoot (RS) ratio is presented in Table 11 . The highest RS ratio was recorded by T_{10} (0.69), which showed more than 100 per cent increased over C_{1} and $T_{9}(0.28)$ showed the lowest value. C_{1} and C_{2} recorded values of 0.31 and 0.37 respectively.

Table 10 Effect of different growth regulators on net assimilation rate ($\mathrm{mg} \mathrm{cm}^{-2} \mathrm{day}^{-1}$)

Treatment	Growth regulator	Concen- tration (ppm)	Vegetative stage to flower initiation stage (P_{1})	Flower initiation stage to peak flowering stage (P_{2})	Peak flowering stage to maturation stage $\left(\mathrm{P}_{3}\right)$	Maturation stage to ripening stage (P_{4})	Mean
T ${ }_{1}$	IAA	10	0.73	0.35	0.33	0.40	0.45
T_{2}	IAA	20	0.36	0.29	0.40	1.97	$\begin{gathered} 0.75 \\ (50.0) \end{gathered}$
T3	IAA	30	0.42	0.25	0.22	0.34	0.30
T_{4}	IAA	40	0.49	0.19	0.37	1.30	$\begin{gathered} 0.58 \\ (16.0) \end{gathered}$
T_{5}	NAA	10	0.59	0.47	0.07	1.80	$\begin{gathered} 0.73 \\ (46.0) \end{gathered}$
T6	NAA	20	0.25	0.32	0.08	0.66	0.16
T 7	NAA	30	0.99	0.08	0.50	0.22	0.44
T_{3}	NAA	40	0.18	0.31	0.29	1.19	0.49
T_{9}	Triacontanol	I	0.54	0.14	0.35	0.78	0.45
T_{10}	Triacontanol	2	1.21	0.14	0.25	0.31	0.47
$\mathrm{T}_{1 i}$	Triacontanol	3	0.81	0.36	0.48	1.07	$\begin{gathered} 0.68 \\ (36.0) \end{gathered}$
T_{12}	Triacontanol	4	1.17	0.25	0.78	0.54	$\begin{gathered} 0.68 \\ (36.0) \end{gathered}$
T_{13}	GA	10	0.78	0.22	0.32	0.19	0.37
T 14	GA	20	0.32	0.20	0.54	0.43	0.37
Tis	GA	30	0.24	0.65	0.71	0.35	0.48
T_{16}	GA	40	0.59	0.24	0.24	0.13	0.30
C_{1}	Control	Water spray	1.00	0.37	0.32	0.32	0.50
C_{2}	Control	No spray	0.30	0.16	0.22	0.15	0.20
	Mean		0.60	0.27	0.35	0.67	
	F value		175.55**	117.58**	608.06**	641.26**	
	CD		0.07	0.03	0.02	0.06	

[^2]Table 11 Effect of different growth regulators on root-shoot ratio

Treatment	Growth regulators	Concentration (ppm)	Vegetative stage (S_{1})	Flower initiation stage (S_{2})	Peak flowering stage (S_{3})	Maturation stage (S_{4})	Ripening stage (S_{5})	Mean
T	IAA	10	0.33	0.97	0.28	0.11	0.15	$\begin{gathered} 0.36 \\ (16.12) \end{gathered}$
T_{2}	IAA	20	0.75	0.49	0.54	0.13	0.46	$\begin{gathered} 0.47 \\ (51.61) \end{gathered}$
T_{3}	IAA	30	0.39	0.66	0.33	0.22	0.43	$\begin{gathered} 0.40 \\ (29.03) \end{gathered}$
T_{4}	1AA	40	1.12	0.23	0.62	0.39	0.51	$\begin{gathered} 0.57 \\ (83.87) \end{gathered}$
T_{5}	NAA	10	1.37	0.27	0.34	0.12	0.32	$\begin{gathered} 0.48 \\ (54.83) \end{gathered}$
T6	NAA	20	1.03	0.53	0.16	0.18	0.50	$\begin{gathered} 0.48 \\ (54.83) \end{gathered}$
T_{7}	NAA	30	0.44	0.76	0.25	0.36	0.25	$\begin{gathered} 0.41 \\ (32.25) \end{gathered}$
T_{8}	NAA	40	0.48	1.32	0.34	0.49	0.20	$\begin{gathered} 0.56 \\ (80.64) \end{gathered}$
T9	Tria. contanol	1	0.23	0.20	0.36	0.32	0.33	0.28
T_{10}	Triacontanol	2	1.83	0.48	0.36	0.28	0.31	$\begin{gathered} 0.69 \\ (122.58 \\) \end{gathered}$
T 11	Triacontanol	3	0.48	0.31	0.49	0.21	0.11	$\begin{gathered} 0.32 \\ (3.22) \end{gathered}$
T_{12}	Triacontanol	4	1.42	0.43	0.04	0.43	0.28	$\begin{gathered} 0.52 \\ (67.74) \end{gathered}$
T_{13}	GA	10	0.98	0.21	0.18	0.41	0.47	$\begin{gathered} 0.45 \\ (45.16) \end{gathered}$
T_{14}	GA	20	0.74	0.26	0.33	0.25	0.32	$\begin{gathered} 0.38 \\ (22.58) \end{gathered}$
Tis	GA	30	0.39	0.60	0.08	0.31	0.77	$\begin{gathered} 0.43 \\ (38.70 \end{gathered}$
T_{16}	GA	40	0.91	0.26	0.48	0.19	0.15	$\begin{gathered} 0.39 \\ (25.80) \end{gathered}$
C_{1}	Control	Water spray	0.43	0.35	0.43	0.17	0.19	$\begin{array}{r}0.31 \\ \\ \\ \hline\end{array}$
C_{2}	Control	No spray	0.50	0.36	0.47	0.10	0.44	0.37
	Mean		0.76	0.48	0.34	0.25	0.34	
	F value		3435.13**	6627.00**	2259.10**	1015.67**	2021.83**	
	CD		0.02	0.01	0.01	0.01	0.01	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}

The difference between the treatments were statistically significant in all the stages. S_{1} stage recorded the highest value of $1.83\left(\mathrm{~T}_{10}\right)$ and $\mathrm{T}_{9}(0.23)$ recorded the lowest value. $C_{1}(0.43)$ and $C_{2}(0.50)$ recorded higher values than T_{9}. The values ranged from $1.32\left(\mathrm{~T}_{8}\right)$ to $0.20\left(\mathrm{~T}_{9}\right)$ in S_{2} stage compared to C_{1} (0.35) and $\mathrm{C}_{2}(0.36)$. In S_{3} stage, T_{4} (0.62) recorded the maximum value and T_{12} (0.04) the minimum. In S_{4} stage, T_{8} (0.49) recorded the highest value and $C_{2}(0.10)$ the lowest value. The $R S$ ratio ranged from 0.51 $\left(\mathrm{T}_{4}\right)$ to $0.11\left(\mathrm{~T}_{11}\right)$ in S_{5} stage. Control showed values of $0.19\left(\mathrm{C}_{1}\right)$ and 0.44 $\left(C_{2}\right)$.

4.3 Physiological parameters

4.3.1 Photosynthetic rate (micromoles $\mathrm{m}^{-2} \mathrm{~s}^{-1}$)

Data on photosynthetic rate $\left(\mathrm{P}_{\mathrm{S}}\right)$ is presented in Table 12. Statistical analysis revealed significant difference among the treatments. The maximum photosynthetic rate was observed in T_{4} (28.09). C_{1} and C_{2} recorded values of 4.08 and 2.85 respectively. $\mathrm{T}_{3}(10.06), \mathrm{T}_{5}(4.52), \mathrm{T}_{12}(4.39), \mathrm{T}_{13}(10.02)$, $T_{14}(4.89)$ and $T_{16}(13.85)$ recorded higher values than C_{1}.

4.3.2 Transpiration rate (milli mol m $\mathbf{m}^{\mathbf{- 2}} \mathrm{s}^{\mathbf{- 1}}$).

Data on transpiration rate (E) is presented in Table 12. The highest value was recorded by $\mathrm{T}_{14}(0.74) . \mathrm{T}_{9}(0.73)$ and $\mathrm{C}_{1}(0.72)$ were on par with T_{14}.

Table 12 Effect of different growth regulators on physiological parameters

Treatment	Growth regulator	Concentration (ppm)	Photosynthetic rate (P_{s}) micromol m ${ }^{-2} \mathrm{~s}^{-1}$	$\underset{\substack{\text { Transpiration rate (E) } \\ \text { millimol m } \\-2 \mathrm{~s}^{-1}}}{ }$	Stomatal conductance (C) millimol m ${ }^{-2} \mathrm{~s}^{-1}$
T 1	IAA	10	0.08	0.57	51.60
T_{2}	IAA	20	0.06	0.22	17.30
T_{3}	IAA	30	10.06	0.28	20.90
T_{4}	IAA	40	28.09	0.09	4.70
$\mathrm{T}_{\text {s }}$	NAA	10	4.52	0.32	26.30
T_{6}	NAA	20	1.04	0.49	38.50
T_{7}	NAA	30	0.77	0.46	40.30
T_{8}	NAA	40	0.44	0.20	15.10
T9	Triacontanol	1	1.41	0.73	70.63
T_{10}	Triacontanol	2	0.51	0.15	14.40
T_{11}	Triacontanol	3	0.67	0.34	24.80
T_{12}	Triacontanol	4	4.39	0.12	9.10
T_{13}	GA	10	10.02	0.11	7.50
T_{14}	GA	20	4.89	0.74	68.00
T 15	GA	30	1.44	0.14	10.40
T_{16}	GA	40	13.85	0.64	65.50
C_{1}	Control	Water spray	4.08	0.72	78.00
C_{2}	Control	No spray	2.85	0.38	32.30
	Mean		4.95	0.37	33.18
	F value		85.32**	261.19**	3598.37**
	CD		2.11	0.04	1.11

** Significant at 0.01 levei

* Note: The values(of photosynthetic rate and transpiration rate) studied are not fully reliable (may be due to some instrumental error)

4.3.3 Stomatal conductance (milli mol me s^{-1})

Data on stomatal conductance (C) is presented in Table 12. The highest value was recorded by C_{1} (78.0) followed by $\mathrm{T}_{9}(70.63)$.

4.4 Biochemical parameters

4.4.1 Photosynthetic pigments

a) Chlorophyll -a content (mg fresh weight ${ }^{-1}$)

Data on chlorophyll-a content is presented in Table 13. An increase in chlorophyll-a content was observed till S_{3} stage and thereafter a decrease was seen in S_{4} and S_{5} stages. $\mathrm{T}_{3}(0.54)$ recorded the highest value with a 35 percent increase over $C_{1}(0.40)$. The next best treatment was $\mathrm{T}_{8}(0.53) . \mathrm{T}_{13}$ (0.31) recorded the lowest value.

A significant difference was observed among the different treatments in all the five crop stages. In S_{1} stage, $\mathrm{T}_{9}(0.08)$ recorded the highest value followed by T_{5} and T_{14} both with a value of 0.07 . The lowest value of 0.05 was recorded by $T_{1}, T_{2}, T_{3}, T_{11}, T_{13}$ and C_{2}, T_{8} and T_{14} recorded the highest value of 0.47 in S_{2} stage and the lowest value of 0.05 was recorded by T_{11} and C_{2}. The chlorophyll-a values ranged from $1.11\left(\mathrm{~T}_{9}\right)$ to $0.44\left(\mathrm{~T}_{15}\right)$ in the S_{3} stage. In S_{4} stage, $T_{3}(0.89)$ recorded the highest value and T_{14} recorded the lowest value of 0.25 . In S_{5} stage also, T_{3} (0.84) showed be highest value and $\mathrm{T}_{14}(0.76)$ and $\mathrm{T}_{6}(0.75)$ were observed to be on par with $\mathrm{T}_{3} \mathrm{~T}_{13}$ was observed to show the lowest value of 0.25 .

Table 13 Effect of different growth regulators on chlorophyll-a content (mg g fresh weight ${ }^{-1}$)

Treatment	Growth regulators	Concertration (ppm)	Vegetative stage (S_{1})	Flower initiation stage (S_{7})	Peak flowering stage (S_{3})	Maturation stage (S_{4})	Ripening stage (S_{5})	Mean
T_{1}	IAA	10	0.05	0.42	0.79	0.48	0.47	0.34
T_{2}	IAA	20	0.05	0.38	0.71	0.65	0.57	$\begin{gathered} 0.47 \\ (17.50) \end{gathered}$
T,	IAA	30	0.05	0.33	0.60	0.89	0.84	$\begin{gathered} 0.54 \\ (35.00) \end{gathered}$
T_{4}	[AA	40	0.06	0.30	0.55	0.25	0.61	0.35
Ts	NAA	10	0.07	0.30	0.53	0.76	0.50	$\begin{gathered} 0.43 \\ (7.50) \end{gathered}$
T_{6}	NAA	20	0.06	0.32	0.57	0.51	0.75	$\begin{gathered} 0.44 \\ (10.00) \end{gathered}$
T_{7}	NAA	30	0.06	0.32	0.58	0.57	0.59	$\begin{gathered} 0.44 \\ (10.00) \end{gathered}$
T_{8}	NAA	40	0.06	0.47	0.92	0.54	0.70	$\begin{gathered} 0.53 \\ (32.50) \end{gathered}$
T 9	Triacontanol	1	0.08	0.08	1.11	0.37	0.70	$\begin{gathered} 0.48 \\ (20.00) \end{gathered}$
T_{10}	Triacontanol	2	0.06	0.06	0.72	0.59	0.59	0.40
T_{11}	Triacontanol	3	0.05	0.05	0.80	0.57	0.47	0.38
T_{12}	Triacontanol	4	0.06	0.06	0.73	0.43	0.50	0.35
T_{13}	GA	10	0.05	0.27	0.49	0.51	0.25	0.31
T_{14}	GA	20	0.07	0.47	0.86	0.25	0.76	$\begin{gathered} 0.48 \\ (20.00) \end{gathered}$
T_{15}	GA	30	0.06	0.25	0.44	0.68	0.66	$\begin{gathered} 0.41 \\ (2.57) \end{gathered}$
T_{16}	GA	40	0.06	0.40	0.74	0.37	0.40	0.39
C_{1}	Control	Water spray	0.06	0.06	0.55	0.65	0.70	0.40
C2	Control	No spray	0.05	0.05	0.73	0.48	0.43	0.34
	Mean		0.05	0.25	0.69	0.53	0.58	
	F value		2.06*	87.44**	24.04**	84.96**	17.97**	
	CD		0.01	0.05	0.09	0.05	0.10	

** Significant at 0.01 level

* Significant at 0.05 level
() Indicates percentage increase over C_{1}

b) Chlorophyll-b content (mg fresh weight ${ }^{-1}$)

Data on chlorophyll-b content is presented in Table 14 . In most treatments, chlorophyll-b content increased till the S_{3} stage and then decreased in S_{4} and S_{5} stages. The highest chlorophyll-b value was recorded by $\mathrm{T}_{3}(0.80)$ and the lowest by $\mathrm{T}_{16}(0.24)$. The control values were $\mathrm{C}_{1}(0.31)$ and $C_{2}(0.38)$.

In S_{1} stage, the chlorophyll-b values ranged from $0.09\left(\mathrm{~T}_{9}, \mathrm{~T}_{16}\right)$ to $0.04\left(\mathrm{~T}_{1}, \mathrm{~T}_{3}\right) . \mathrm{T}_{8}(0.50)$ showed the highest value in S_{2} stage. $\mathrm{T}_{14}(0.36)$ was on par with T_{8} and $C_{1}(0.21)$ recorded the lowest value. In S_{3} stage, T_{8} (0.93) showed the maximum value and $T_{4}(0.84)$ was observed to be on par with $\mathrm{T}_{8} . \quad \mathrm{C}_{1}(0.37)$ recorded the lowest value. The chlorophyll-b values ranged from $1.74\left(\mathrm{~T}_{3}\right)$ to $0.30\left(\mathrm{~T}_{10}\right)$ in S_{4} stage. In S_{5} stage, $\mathrm{T}_{3}(1.23)$ recorded the maximum value and $\mathrm{T}_{4}(0.33)$ the minimum.

c) Total chlorophyll content (mg fresh weight ${ }^{-1}$)

Data on total chlorophyll content is presented in Table 15. A steady increase in total chlorophyll content was observed from S_{1} to S_{3} stage followed by a decline in the next two stages. T_{3} (1.13) recorded the highest total chlorophyll value followed by $\mathrm{T}_{9}(0.97) . \mathrm{T}_{13}(0.62)$ recorded the lowest value. C_{1} and C_{2} recorded values of 0.75 and 0.80 respectively.

No significant difference was observed among the treatments in S_{1} stage. $T_{9}(0.89)$ showed the highest value in S_{2} stage and C_{1} and T_{13} both with a value of 0.51 recorded the lowest value. $\mathrm{T}_{14}(0.83), \mathrm{T}_{1}(0.82)$ and

Table 14 Effect of different growth regulators on chlorophyll-b content (mg g fresh weight ${ }^{-1}$)

Treatment	Growth regulators	Concentration (ppm)	Vegetative stage (S_{t})	Flower initiation stage $\left(\mathrm{S}_{2}\right)$	Peak flowering stage (S_{3})	$\begin{aligned} & \text { Maturation } \\ & \text { stage } \\ & \left(\mathrm{S}_{4}\right) \end{aligned}$	Ripening stage (S_{5})	Mean
T	IAA	10	0.04	0.40	0.76	0.46	0.45	$\begin{gathered} 0.42 \\ (35.48) \end{gathered}$
T_{2}	IAA	20	0.06	0.34	0.62	0.68	0.62	$\begin{gathered} 0.46 \\ (48.38) \end{gathered}$
T_{3}	IAA	30	0.04	0.35	0.65	1.74	1.23	$\begin{gathered} 0.80 \\ (158.06) \end{gathered}$
T;	IAA	40	0.05	0.45	0.84	0.43	0.33	$\begin{gathered} 0.42 \\ (35.48) \end{gathered}$
T ${ }^{\text {b }}$	NAA	10	0.07	0.25	0.42	1.36	0.60	$\begin{gathered} 0.54 \\ (74.19) \end{gathered}$
T6	NAA	20	0.07	0.30	0.53	0.39	0.82	$\begin{gathered} 0.42 \\ (35.48) \end{gathered}$
T,	NAA	30	0.05	0.30	0.55	0.49	0.53	$\begin{gathered} 0.38 \\ (22.58) \end{gathered}$
T_{8}	NAA	40	0.08	0.50	0.93	0.54	0.82	$\begin{gathered} 0.57 \\ (83.87) \end{gathered}$
T 9	Triacontanol	1	0.09	0.30	0.51	0.39	0.73	$\begin{gathered} 0.41 \\ (32.25) \end{gathered}$
T_{10}	Triacontanol	2	0.06	0.39	0.72	0.30	0.57	$\begin{gathered} 0.40 \\ (29.03) \end{gathered}$
T_{11}	Triacontanol	3	0.05	0.38	0.71	0.54	0.49	$\begin{gathered} 0.45 \\ (45.16) \end{gathered}$
T_{12}	Triacontanol	4	0.07	0.32	0.58	0.45	0.61	$\begin{gathered} 0.40 \\ \{29.03) \end{gathered}$
T_{13}	GA	10	0.05	0.24	0.43	0.45	0.37	0.30
T_{14}	GA	20	0.07	0.36	0.65	0.39	0.35	$\begin{gathered} 0.36 \\ (16.12) \end{gathered}$
T_{15}	GA	30	0.06	0.26	0.46	0.60	0.66	$\begin{gathered} 0.40 \\ (29.03) \end{gathered}$
T_{16}	GA	40	0.09	0.24	0.42	0.45	0.45	0.24
C_{1}	Control	Water spray	0.05	0.21	0.37	0.41	0.51	0.31
C_{2}	Control	No spray	0.05	0.32	0.59	0.45	0.49	0.38
	Mean		0.06	0.32	0.59	0.58	0.59	
	F value		1.43	14.75**	16.68**	403.04**	21.23**	
	CD		-	0.06	0.11	0.05	0.13	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}

Table 15 Effect of different growth regulators on total chlorophyll content (mg g fresh weight ${ }^{-1}$)

Treatment	Growth regulators	Concentration (ppm)	Vegetative stage (S_{1})	Flower initiation stage (S_{2})	Peak flowering stage (S_{3})	Maturation stage (S_{4})	Ripening stage (S_{s})	Mean
T_{1}	IAA	10	0.09	0.82	1.55	0.94	0.92	$\begin{gathered} 0.86 \\ (14.66) \end{gathered}$
T_{2}	IAA	20	0.11	0.72	1.32	1.33	1.21	$\begin{gathered} 0.93 \\ (24.00) \end{gathered}$
T3	IAA	30	0.10	0.68	1.26	1.57	2.06	$\begin{gathered} 1.13 \\ (50.66) \end{gathered}$
T_{4}	IAA	40	0.13	0.55	0.97	0.64	1.07	0.67
Ts	NAA	10	0.15	0.55	0.95	1.55	1.08	$\begin{gathered} 0.85 \\ (13.33) \end{gathered}$
T6	NAA	20	0.13	0.65	1.18	0.89	1.68	$\begin{gathered} 0.90 \\ (20.00) \end{gathered}$
T,	NAA	30	0.11	0.62	1.13	1.06	1.12	$\begin{gathered} 0.80 \\ (16.66) \end{gathered}$
T8	NAA	40	0.14	0.66	1.19	1.08	1.51	$\begin{gathered} 0.91 \\ (21.33) \end{gathered}$
T9	Triacontanol	1	0.17	0.89	1.62	0.76	1.42	$\begin{gathered} 0.97 \\ (29.33) \end{gathered}$
T_{10}	Triacontanol	2	0.12	0.78	1.44	1.18	1.16	$\begin{gathered} 0.93 \\ (24.00) \end{gathered}$
T_{11}	Triacontanol	3	0.10	0.81	1.51	1.10	0.90	$\begin{gathered} 0.88 \\ (17.33) \end{gathered}$
T_{12}	Triacontanol	4	0.12	0.72	1.32	0.89	1.11	$\begin{gathered} 0.83 \\ (10.66) \end{gathered}$
T_{13}	GA	10	0.10	0.51	0.92	0.95	0.62	0.62
T_{14}	GA	20	0.15	0.83	1.52	0.64	1.24	$\begin{gathered} 0.87 \\ (16.00) \end{gathered}$
T_{15}	GA	30	0.13	0.57	0.90	1.29	1.31	$\begin{gathered} 0.84 \\ (12.00) \end{gathered}$
T_{16}	GA	40	0.11	0.58	1.58	0.81	0.74	$\begin{gathered} 0.81 \\ (8.00) \end{gathered}$
C_{1}	Control	Water spray	0.11	0.51	0.91	1.07	1.16	0.75
C_{2}	Control	No spray	0.11	0.74	1.32	0.93	0.92	0.80
	Mean		0.12	0.69	1.25	1.03	1.17	
	F value		1.29	19.40**	25.70**	221.27**	54.33**	
	CD		-	0.08	0.14	0.05	0.13	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}
$\mathrm{T}_{\mathrm{I} 1}(0.81)$ were on par with T_{9}. In S_{3} stage, T_{9} (1.62) recorded the maximum value and T_{16} (1.58), $\mathrm{T}_{1}(1.55), \mathrm{T}_{14}$ (1.52) and T_{11} (1.51) were on par with $\mathrm{T}_{9} . \mathrm{T}_{15}(0.90)$ recorded the lowest value. The total chlorophyll values ranged from $1.57\left(\mathrm{~T}_{3}\right)$ to $0.64\left(\mathrm{~T}_{4}, \mathrm{~T}_{14}\right)$ in S_{4} stage. In S_{5} stage, the maximum value was $2.06\left(\mathrm{~T}_{3}\right)$ and the minimum value was $0.62\left(\mathrm{~T}_{13}\right)$.

d) Chlorophyll a/b ratio

Data on chlorophyll a / b ratio is presented in Table 16. The maximum chlorophyll a / b ratio observed was $1.43\left(\mathrm{C}_{1}\right)$ followed by $1.24\left(\mathrm{~T}_{14}\right) . \mathrm{C}_{2}$ recorded a value of 1.08 .

In S_{1} stage, no significant difference was observed among the different treatments. T_{3} (1.47) recorded the highest value and $\mathrm{T}_{8}(0.85)$ the lowest value. T_{9} (1.55) recorded the highest value in S_{2} stage. C_{1} (1.36) and T_{3} (1.27) were on par with T_{9}. In S_{3} stage, the values ranged from $2.20\left(T_{9}\right)$ to $0.88\left(\mathrm{~T}_{16}\right) . \mathrm{C}_{1}$ and C_{2} recorded values of 1.48 and 1.24 respectively. The highest chlorophyll a/b value was $1.99\left(\mathrm{~T}_{10}\right)$ and the lowest value recorded was $0.51\left(\mathrm{~T}_{3}\right)$ in the S_{4} stage. S_{5} stage recorded the maximum value of 2.18 (T_{14}) and a minimum value of $0.68\left(\mathrm{~T}_{3}\right)$.

4.4.2 Protein content (mg g ${ }^{-1}$)

Data on protein content of leaves at five stages of crop growth are presented in Table 17. The protein content increased from S_{1} stage to S_{5} stage in most of the treatments. T_{12} recorded the maximum protein content

Table 16 Effect of different growth regulators on chlorophyll a/b ratio

Treat ment	Growth regulators	Concertration (ppm)	Vegetative stage (\mathbf{S}_{1})	Flower initiation stage $\left(S_{2}\right)$	Peak flowering stage (S_{3})	Maturation stage (S_{4})	Ripening stage (S_{5})	Mean
T 1	IAA	10	1.28	1.16	1.03	1.05	1.05	1.11
T_{2}	IAA	20	1.03	1.09	1.14	0.95	0.97	1.03
T_{3}	LAA	30	1.47	1.27	1.08	0.51	0.68	1.00
T4	IAA	40	0.86	1.14	1.33	0.55	1.39	1.05
T;	NAA	10	0.99	1.09	1.29	0.56	0.83	0.95
T_{6}	NAA	20	0.93	1.01	1.08	1.31	0.93	1.05
T 7	NAA	30	1.28	1.16	1.04	1.35	1.14	1.19
T_{8}	NAA	40	0.85	0.92	0.99	1.00	0.85	0.92
T9	Triacontanol	1	0.90	1.55	2.20	0.94	0.88	1.29
T 10	Triacontanol	2	1.13	1.06	0.99	1.99	1.07	1.24
T 11	Triacontanol	3	1.32	1.22	1.13	1.06	0.99	1.14
T_{12}	Triacontanoi	4	0.95	1.10	1.26	0.95	0.81	1.01
T_{13}	GA	10	1.30	0.90	1.17	1.13	0.69	1.03
T_{14}	GA	20	0.96	1.14	1.32	0.63	2.18	1.24
T_{15}	GA	30	1.02	1.00	0.99	1.14	1.00	1.03
T_{16}	GA	40	1.18	1.03	0.88	0.87	1.21	1.03
C_{1}	Control	Water spray	1.24	1.36	1.48	1.57	1.53	1.43
C_{2}	Control	No spray	1.12	1.18	1.24	1.04	0.85	1.08
	Mean		1.10	1.13	1.20	1.03	1.05	
	F value		0.99	1.98**	8.62**	$67.50{ }^{* *}$	9.74**	
	CD		-	0.31	0.28	0.13	0.32	

** Significant at 0.01 level

Table 17 Effect of different growth regulators on protein content ($\mathbf{m g} \mathrm{g}^{-1}$)

Treatment	Growth regulators	Concen- tration (ppm)	Vegetative stage (S,	Flower initiation stage (S_{2})	Peak flowering stage (S ${ }_{3}$)	Maturation stage (S_{4})	Ripening stage (S_{s})	Mean
T_{1}	IAA	10	0.46	0.83	1.20	2.07	2.21	$\begin{gathered} 1.35 \\ (16.37) \end{gathered}$
T_{2}	IAA	20	0.47	0.98	1.49	2.01	1.97	$\begin{gathered} 1.38 \\ (18.96) \end{gathered}$
T3	IAA	30	0.43	1.17	1.91	2.14	2.03	$\begin{gathered} 1.53 \\ (31.89) \end{gathered}$
T_{4}	[AA	40	0.47	0.89	1.30	1.83	2.20	$\begin{gathered} 1.33 \\ (14.65) \end{gathered}$
T,	NAA	10	0.41	0.84	1.26	2.11	1.98	$\begin{gathered} 1.32 \\ (13.79) \end{gathered}$
T 6	NAA	20	0.48	0.97	1.46	2.68	2.30	$\begin{gathered} 1.57 \\ (35.34) \end{gathered}$
T_{7}	NAA	30	0.51	0.93	1.35	1.87	2.81	$\begin{gathered} 1.49 \\ (28.44) \end{gathered}$
T_{B}	NAA	40	0.45	0.89	1.32	2.23	2.89	$\begin{gathered} 1.55 \\ (33.62) \end{gathered}$
T,	Triacontanol	1	0.44	0.78	1.13	2.19	2.91	$\begin{gathered} 1.49 \\ (28.44) \end{gathered}$
T_{10}	Triacontanol	2	0.47	0.97	1.48	2.22	2.90	$\begin{gathered} 1.60 \\ (37.93) \end{gathered}$
T_{11}	Triacontanol	3	0.44	0.79	1.04	1.80	1.90	1.19
T_{12}	Triacontanol	4	0.43	1.16	1.86	2.30	2.53	$\begin{gathered} 1.65 \\ (42.24) \end{gathered}$
T_{13}	GA	10	0.51	0.90	1.30	2.12	1.91	$\begin{gathered} 1.34 \\ (15.51) \end{gathered}$
T_{14}	GA	20	0.44	1.05	1.66	2.11	2.75	$\begin{gathered} 1.60 \\ (37.93) \end{gathered}$
T 15	GA	30	0.45	0.73	0.94	2.44	2.16	$\begin{gathered} 1.34 \\ (15.51) \end{gathered}$
T_{16}	GA	40	0.44	0.79	1.16	2.26	1.15	1.16
C_{1}	Control	Water spray	0.41	0.69	0.97	1.66	2.09	1.16
C_{2}	Control	No spray	0.38	0.68	0.95	1.65	1.93	1.11
	Mean		0.44	0.89	1.97	2.26	2.25	
	F value		1.81	23.88**	57.59**	10.80**	196.03**	
	CD		-	0.08	0.11	0.22	0.09	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}
of 1.65. This was followed by T_{10} and T_{14} both of which recorded a value of 1.60. C_{1} and C_{2} recorded values of 1.16 and 1.11 respectively.

In S_{1} stage, no significant difference was observed among the treatments. The highest value of 0.51 was recorded by both T_{7} and T_{13} whereas $C_{2}(0.38)$ recorded the lowest value. In S_{2} stage, T_{3} was on par with T_{12} with values of 1.17 and 1.16 respectively. $\mathrm{C}_{2}(0.68)$ recorded the lowest value. The values ranged from $1.91\left(\mathrm{~T}_{3}\right)$ to $0.94\left(\mathrm{~T}_{15}\right)$ in S_{3} stage. T_{12} (1.86) was on par with T_{3}. The highest value in S_{4} stage was $2.68\left(\mathrm{~T}_{6}\right)$ and the lowest value observed was that of $C_{2}(1.65)$. In S_{5} stage, the highest value was recorded by T_{9} (2.91) and the treatments $\mathrm{T}_{10}(2.90), \mathrm{T}_{8}(2.89)$ were on par with T_{9}. The lowest value was that of $T_{16}(1.15)$.

4.4.3 Total carbohydrates (mg glucose 100 g sample ${ }^{-1}$)

Data on total carbohydrate content of leaves is presented in Table 18. There was a steady increase in total carbohydrate content from S_{1} stage to S_{3} stage and thereafter declined in S_{4} and S_{5} stages. T_{16} (112.50) recorded the highest value followed by $T_{1}(86.03)$ and $C_{2}(38.0)$ recorded the lowest value.

Statistical analysis revealed a significant difference among the different treatments in all the five stages of the crop growth. In S_{1} stage, T_{8} (65.63) recorded the maximum carbohydrate content and T_{2} (50.66) the minimum value. $\quad \mathrm{T}_{16}(65.05), \mathrm{T}_{1}(64.58), \mathrm{C}_{1}(62.68), \mathrm{T}_{15}(62.18), \mathrm{T}_{14}$ (60.64) and T_{7} (60.19) were on par with $T_{8} \cdot T_{1}$ (102.68) and C_{2} (40.24) recorded the highest and lowest values in the S_{2} stage. The carbohydrate

Table 18 Effect of different growth regulators on carbohydrate content (mg glucose 100 g sample ${ }^{-1}$)

Treatment	Growth regulators	Concen- ration (ppm)	Vegetative stage (S_{1})	Flower initiation stage (S_{2})	Peak flowering stage (S_{3})	Maturation stage (S4)	Ripening stage (S_{9})	Mean
T	IAA	10	64.58	102.68	154.67	59.18	49.14	$\begin{gathered} 86.03 \\ (53.51) \end{gathered}$
T2	IAA	20	50.66	64.42	64.56	50.21	41.65	54.3
T3	IAA	30	52.45	54.94	55.14	48.87	43.94	51.06
T4	IAA	40	53.35	53.93	52.90	67.70	13.49	48.27
Ts	NAA	10	54.96	49.92	37.66	78.01	23.44	48.79
T6	NAA	20	57.95	67.24	82.04	48.42	18.02	$\begin{gathered} 57.73 \\ (3.01) \end{gathered}$
T7	NAA	30	60.19	60.13	60.07	38.55	57.02	55.19
T_{8}	NAA	40	65.63	73.16	80.70	63.21	24.23	$\begin{aligned} & 61.38 \\ & (9.52) \end{aligned}$
T 9	Triacontanol	I	57.02	59.04	58.73	24.66	21.20	44.13
T_{10}	Triacontanol	2	56.73	56.93	60.52	20.17	13.90	41.65
T_{11}	Triacontanol	3	55.47	59.42	53.81	54.24	28.51	50.29
T_{12}	Triacontanol	4	52.22	49.14	46.07	36.76	26.90	42.21
T_{13}	GA	10	54.74	54.36	51.11	37.66	78.43	55.26
T_{14}	GA	20	60.64	76.24	95.49	121.05	24.97	$\begin{gathered} 75.67 \\ (35.02) \end{gathered}$
T_{15}	GA	30	62.18	66.74	78.01	43.04	44.47	$\begin{aligned} & 58.88 \\ & (5.06) \end{aligned}$
T_{16}	GA	40	65.05	96.22	134.50	134.50	132.26	$\begin{gathered} 112.50 \\ (100.74) \end{gathered}$
C_{1}	Control	Water spray	62.68	61.99	56.48	56.04	43.04	56.04
C_{2}	Controi	No spray	57.94	40.24	23.76	53.79	14.30	38.00
	Mean		58.02	63.70	69.23	57.55	39.57	
	F value		2.95**	64.75**	143.86**	190.88**	1546.61**	
	CD		7.53	5.41	7.49	5.91	2.65	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}
content ranged from $154.67\left(\mathrm{~T}_{1}\right)$ to $23.76\left(\mathrm{C}_{2}\right)$ in the S_{3} stage. In S_{4} and S_{5} stages, T_{16} recorded the maximum values of 134.50 and 132.26 whereas T_{10} (20.17) and $T_{4}(13.49)$ showed the minimum values respectively.

4.4.4 Leaf proline content (μ moles g^{-1})

Data on leaf proline content is presented in Table $19 . \quad \mathrm{T}_{10}(1.92)$ recorded the highest value followed by T_{1} (1.62) and T_{13} (0.18) recorded the lowest value. The control values were $0.38\left(\mathrm{C}_{1}\right)$ and $0.33\left(\mathrm{C}_{2}\right)$.

The treatments were observed to be statistically significant in all the stages. In S_{1} stage, $\mathrm{T}_{10}(0.38)$ recorded the maximum leaf proline content and $T_{12}(0.01)$ the minimum. Treatment $T_{16}(2.02)$ was observed to show the highest value and $T_{13}(0.002)$ the lowest value in S_{2} stage. The leaf proline content ranged from $1.0\left(\mathrm{~T}_{1}\right)$ to $0.03\left(\mathrm{~T}_{8}\right)$ in S_{3} stage. $\mathrm{T}_{3}(0.73)$ recorded the highest value and $T_{9}(0.02)$ the lowest value in S_{4} stage. $T_{7}(0.68), T_{1}, T_{15}$ with a value of 0.66 and $T_{2}(0.61)$ were on par with $T_{3} . \ln S_{5}$ stage, T_{10} (8.78) recorded the maximum value and $\mathrm{C}_{2}(0.08)$ the minimum value.

4.4.5 Reducing sugars (g glucose $100 \mathrm{~g}^{-1}$)

The reducing sugar content of ripe fruits is presented in Table 20. Statistical analysis revealed a significant difference among the different treatments. $\quad \mathrm{T}_{6}(9.68)$ was found to show the highest value followed by T_{13} (8.47) ad T_{8} (8.03). C_{1} and C_{2} recorded values of 2.76 and 2.70 respectively.

Table 19 Effect of different growth regulators on leaf proline content (μ moles g^{-1})

Treatment	Growth regulators	Concentration (pprn)	Vegetative stage (S_{1})	Flower initiation stage (S_{2})	Peak flowering stage (S_{3})	Maturati on stage (S_{4})	Ripening stage (S_{5})	Mean
T_{1}	IAA	10	0.27	0.98	1.00	0.66	5.20	$\begin{gathered} 1.62 \\ (326.31) \end{gathered}$
T_{2}	IAA	20	0.20	0.02	0.19	0.61	0.16	0.23
T3	IAA	30	0.07	0.04	0.21	0.73	0.42	0.29
T_{4}	IAA	40	0.03	0.05	0.34	0.55	0.59	0.31
Ts	NAA	10	0.20	0.01	0.04	0.14	1.06	0.29
T_{6}	NAA	20	0.02	0.03	0.04	0.40	2.75	$\begin{gathered} 0.64 \\ (68.42) \end{gathered}$
T_{7}	NAA	30	0.20	0.16	0.05	0.68	4.17	$\begin{gathered} 1.05 \\ (176.31) \end{gathered}$
T_{8}	NAA	40	0.08	0.50	0.03	0.37	4.94	$\begin{gathered} 1.18 \\ (210.52) \end{gathered}$
T_{9}	Triacontanol	1	0.11	0.11	0.45	0.02	2.56	$\begin{gathered} 0.65 \\ (71.05) \end{gathered}$
T_{10}	Triacontanol	2	0.38	0.03	0.33	0.12	8.78	$\begin{gathered} 1.92 \\ (405.26) \end{gathered}$
T_{11}	Triacontanol	3	0.16	0.45	0.63	0.19	3.01	$\begin{gathered} 0.88 \\ (131.57) \end{gathered}$
T 12	Triacontanol	4	0.01	0.36	0.48	0.49	1.75	$\begin{gathered} 0.6 \mathrm{I} \\ (60.52) \end{gathered}$
T_{13}	GA	10	0.26	0.00	0.05	0.12	0.48	0.18
T_{14}	GA	20	0.20	0.31	0.12	0.39	2.72	$\begin{gathered} 0.74 \\ (94.73) \end{gathered}$
T 15	GA	30	0.04	0.09	0.18	0.66	0.36	0.26
T_{16}	GA	40	0.10	2.02	0.65	0.28	3.95	$\begin{gathered} 1.40 \\ (268.42) \end{gathered}$
C_{1}	Control	Water spray	0.11	0.34	0.19	0.32	0.96	0.38
C_{2}	Control	No spray	0.18	0.23	0.88	0.31	0.08	0.33
	Mean		0.14	0.31	0.32	0.39	2.44	
	F value		9.27**	2419.41**	15658.48**	26.37**	515439.40**	
	CD		0.09	0.01	0.01	0.20	0.01	

[^3]Table 20 Effect of different growth regulators on reducing sugars, carotenoids and capsaicin content of fruits

Treatment	Growth regulator	Concentration (ppm)	Reducing sugars (g glucose $100 \mathrm{~g}^{-1}$)	Carotenoids $\left(\mathrm{mg} 100 \mathrm{~g}^{-1}\right)$	Capsaicin content ($\mu \mathrm{g} \mathrm{g}^{-1}$)
T	IAA	10	2.19	1.36	67.52
T_{2}	IAA	20	5.10	2.35	64.05
T_{3}	IAA	30	5.18	1.40	61.34
T_{4}	1AA	40	4.21	2.69	55.13
T_{5}	NAA	10	6.96	0.84	61.65
T_{6}	NAA	20	9.68	1.31	49.71
T_{7}	NAA	30	4.99	0.36	51.62
T_{8}	NAA	40	8.03	1.12	59.11
T,	Triacontanol	1	2.67	1.36	51.30
T_{10}	Triacontanol	2	2.89	1.00	41.57
T_{11}	Triacontanol	3	3.81	0.84	48.43
T_{12}	Triacontanol	4	3.08	1.84	48.11
T_{13}	GA	10	8.47	2.12	59.90
T_{14}	GA	20	5.69	2.24	51.50
T_{15}	GA	30	3.93	1.08	66.24
T_{16}	GA	40	5.05	0.80	60.06
C_{1}	Control	Water spray	2.76	0.40	47.32
C_{2}	Control	No spray	2.70	0.88	45.25
	Mean		4.85	1.33	54.46
	F value		65.10**	10.08**	3.59**
	CD		0.77	0.88	12.67

* Significant at 0.01 level

4.4.6 Carotenoids (mg $100 \mathrm{~g}^{-1}$)

The data on carotenoid content of red ripe fruits of chilli is presented in Table 20. T_{4} (2.69) recorded the highest carotenoid content followed by T_{2} (2.35) and $\mathrm{T}_{14}(2.24) . \mathrm{T}_{7}(0.36)$ recorded the lowest value and this value was observed to be lower than $\mathrm{C}_{1}(0.40)$ and $\mathrm{C}_{2}(0.88)$.

4.4.7 Capsaicin content (μ gram gram ${ }^{-1}$)

The capsaicin content of ripe fruits is presented in Table 20. Statistical analysis revealed significant difference among the different treatments. T_{1} (67.52) was observed to be the best treatment with a 43.44 per cent increase over C_{1} (47.32). $T_{15}(66.24)$ and $T_{2}(64.05)$ were on par with $T_{1} . T_{10}$ and T_{14} both with a value of 41.57 recorded the lowest value.

4.5 Yield parameters

4.5.1 Total fresh weight (g plant ${ }^{-1}$)

Data on fresh weight per plant in five stages of crop growth is presented in Table 21. An increase in fresh weight of plants was observed from S_{1} to S_{4} stage and then a decrease is seen in the S_{5} stage. T_{2} (66.11) recorded the highest value followed by $\mathrm{T}_{5}(60.09) . \mathrm{T}_{3}$ (24.70) recorded the lowest value.

Statistical analysis revealed a significant difference among the treatments in all the five stages. In S_{1} stage, T_{6} (6.27) recorded the maximum fresh weight and T_{1} (1.13) the minimum. T_{10} (14.34) recorded the maximum value and T_{8} (5.32) the minimum value in S_{2} stage. T_{13} (14.13)

Table 21 Effect of different growth regulators on total fresh weight (g plant ${ }^{-1}$)

Treatment	Growth regulators	Concentration (ppm)	Vegetative stage (S S_{1}	Flower initiation stage (S_{2})	Peak flowerin g stage (S_{3})	Maturation stage (S_{4})	Ripening stage (S)	Mean
T_{1}	IAA	10	1.13	7.87	9.18	127.00	56.00	$\begin{gathered} 40.23 \\ (16.77) \end{gathered}$
T_{2}	IAA	20	2.41	5.63	13.51	197.67	111.33	$\begin{gathered} 66.11 \\ (91.90) \end{gathered}$
T3	IAA	30	3.51	11.05	15.68	116.00	81.67	24.70
T_{4}	IAA	40	5.16	9.28	21.39	144.00	49.08	$\begin{gathered} 45.78 \\ (32.88) \end{gathered}$
T's	NAA	10	2.23	11.23	15.25	180.00	91.75	$\begin{gathered} 60.09 \\ (74.42\} \end{gathered}$
T_{6}	NAA	20	6.27	10.24	13.14	160.00	42.17	$\begin{gathered} 47.36 \\ (37.47) \end{gathered}$
T_{7}	NAA	30	1.70	11.17	11.90	54.25	96.33	$\begin{aligned} & 35.07 \\ & (1.79) \end{aligned}$
TB	NAA	40	2.46	5.32	17.16	66.67	93.67	$\begin{aligned} & 37.05 \\ & (7.54) \end{aligned}$
T9	Triacontanol	1	2.41	9.64	18.83	82.00	66.83	$\begin{aligned} & 35.94 \\ & (4.32) \end{aligned}$
T 10	Triacontanol	2	2.18	14.34	22.15	174.33	71.33	$\begin{gathered} 56.86 \\ (65.05) \end{gathered}$
T 11	Triacontanol	3	2.89	7.12	25.65	99.67	120.67	$\begin{gathered} 51.20 \\ (48.62) \end{gathered}$
T_{12}	Triacontanol	4	3.02	10.47	17.23	130.00	112.50	$\begin{gathered} 54.64 \\ (58.60) \end{gathered}$
T_{13}	GA	10	3.72	14.13	22.01	54.67	86.67	$\begin{aligned} & 36.24 \\ & (5.19) \end{aligned}$
T ${ }_{14}$	GA	20	3.98	6.81	8.92	133.67	123.70	$\begin{gathered} 55.40 \\ (60.81) \end{gathered}$
T ${ }_{15}$	GA	30	4.40	6.67	16.97	148.00	59.33	$\begin{gathered} 47.07 \\ (36.63) \end{gathered}$
T_{16}	GA	$\begin{array}{r}40 \\ \hline\end{array}$	3.22	5.70	13.57	137.00	99.75	$\begin{gathered} 51.84 \\ (50.47) \end{gathered}$
C_{1}	Control	Water spray	3.31	5.95	28.01	67.00	68.00	34.45
C_{2}	Control	No spray	3.42	5.41	7.15	67.33	64.33	29.52
	Mean		3.19	8.77	16.53	118.84	82.89	
	F value		26.40**	$\underline{28.27 * *}$	75.59**	1243.25**	98.90**	
	CD		0.67	1.53	1.84	3.61	6.82	

** Significant at 0.01 Ievel
() Indicates percentage increase over C_{1}
was on par with T_{10}. In S_{3} stage, the values ranged from $28.01\left(\mathrm{C}_{1}\right)$ to 7.15 $\left(\mathrm{C}_{2}\right) . \mathrm{T}_{2}$ (197.67) recorded the maximum fresh weight and $\mathrm{T}_{7}(54.25)$ the minimum fresh weight in S_{4} stage. The highest value in S_{5} stage was recorded in T_{14} (123.70) followed by T_{11} (120.67) and the lowest value in T_{6} (42.17).

4.5.2 Total dry weight $\left(\mathrm{g} \mathrm{plant}^{-1}\right)$

Data on total dry weight per plant is presented in Table 22. T_{11} (13.22) recorded the highest dry weight followed by T_{16} (12.87) and C_{2} (5.75) recorded the lowest dry weight per plant.

The difference between the treatments were observed to be statistically significant. In S_{1} stage, $T_{6}(0.93)$ recorded the maximum value and $T_{1}(0.12)$ the minimum. T_{10} (3.83) and C_{2} (1.11) recorded the maximum and minimum dry weight respectively in the S_{2} stage. The values ranged from $8.69\left(\mathrm{~T}_{15}\right)$ to $2.40\left(C_{2}\right)$ in the S_{3} stage. In S_{4} stage, the highest dry weight per plant was observed in T_{10} (32.03) and the lowest in T_{9} (9.05). In S_{5} stage, the values ranged from $40.80\left(\mathrm{~T}_{11}\right)$ to $8.19\left(\mathrm{~T}_{3}\right)$.

4.5.3 Total number of fruits per plant

Data on number of fruits per plant is presented in Table 23. T_{1} (48.83) showed the maximum value with a 54.23 per cent increase over C_{1} (31.66). T_{2} (46.83), T_{9} (44.16) and T_{3} (42.16) were on par with $T_{1} . T_{7}$ (21.33) showed the minimum number of fruits per plant and this was observed to be lower than C_{1} (31.66) and $C_{2}(36.0)$.

Table 22 Effect of different growth regulators on total dry weight (g plant ${ }^{-1}$)

Treatment	Growth regulators	Concentration (ppm)	Vegetative stage (S_{1})	Flower initiation stage (S_{2})	Peak flowering stage (S_{3})	Maturati on stage (S_{4})	Ripening stage (S_{5})	Mean
T_{1}	IAA	10	0.12	2.72	5.90	19.06	13.24	8.02
T_{2}	IAA	20	0.46	1.73	4.27	20.82	30.08	$\begin{gathered} 11.47 \\ (10.60) \end{gathered}$
T3	IAA	30	0.52	2.95	6.13	15.20	8.19	6.59
T_{4}	[AA	40	0.75	2.12	4.32	25.97	13.89	9.41
T 5	NAA	10	0.28	2.16	8.03	27.05	25.25	$\begin{gathered} 12.55 \\ (21.02) \end{gathered}$
T6	NAA	20	0.93	1.71	6.61	22.16	18.25	9.93
T_{7}	NAA	30	0.26	2.10	2.80	12.85	22.98	8.19
T_{8}	NAA	40	0.73	1.43	5.85	12.56	21.43	8.40
T9	Triacontanol	1	0.42	2.09	3.41	9.05	16.03	6.20
T_{10}	Triacontanol	2	0.19	3.83	6.78	32.03	18.18	$\begin{gathered} 12.20 \\ (17.64) \end{gathered}$
T_{11}	Triacontanol	3	0.40	2.68	5.77	16.46	40.80	$\begin{gathered} 13.22 \\ (27.48) \end{gathered}$
T_{12}	Triacontanol	4	0.55	2.51	4.15	17.39	22.29	9.37
T_{13}	GA	10	0.55	3.00	5.51	18.93	21.16	9.83
T_{14}	GA	20	0.54	1.27	3.41	20.71	31.73	$\begin{gathered} 11.53 \\ (11.18) \end{gathered}$
T_{15}	GA	30	0.41	1.24	8.69	10.92	15.48	7.39
T_{16}	GA	40	0.31	1.90	6.27	29.74	26.14	$\begin{gathered} 12.87 \\ (24.10) \end{gathered}$
C_{1}	Control	Water spray	0.45	2.07	5.02	14.24	30.11	10.37
C_{2}	Control	No spray	0.42	1.11	2.40	10.87	13.99	5.75
	Mean		0.46	2.14	5.29	18.66	21.62	
	F value		1229.95**	1372.42**	498.84**	832.75**	10.97**	
	CD		0.02	0.05	0.22	0.65	6.79	

** Significant at 0.01 level
() Indicates percentage increase over C_{1}

4.5.4 Total weight of fruits per plant (g)

Data on weight of fruits per plant is presented in Table 23. Statistical analysis revealed a significant difference among the treatments. T_{2} (183.66) showed the highest value with a 42.67 per cent increase over $C_{1}(128.73) . \mathrm{T}_{9}$ (179.77). T_{4} (164.99). T_{1} (163.81) and T_{10} (162.82) were on par with T_{2}. $T_{16}(76.28)$ showed the lowest value while C_{2} recorded a value of 119.06 .

4.5.5 Fruit length (cm)

Data on fruit length is presented in Table 23. The difference between the treatments was observed to be statistically significant. $\mathrm{T}_{10}(7.87)$ recorded the maximum fruit length and showed 25.31 per cent increase over $C_{1}(6.28)$. $T_{14}(7.76), T_{15}(7.68), T_{6}(7.67), T_{13}(7.62), T_{2}$ (7.40) and T_{16} (7.00) were on par with $\mathrm{T}_{10} \cdot \mathrm{~T}_{12}$ (3.68) recorded the minimum fruit length.

4.5.6 Fruit breadth (cm)

Data on fruit breadth is presented in Table 23. Statistical analysis revealed no significant difference among the treatments. The maximum fruit breadth was recorded by $\mathrm{T}_{8}(1.76)$ and the minimum by T_{16} (1.15). The control values were $C_{1}(1.42)$ and $C_{2}(1.46)$.

4.5.7 Colour of fruit at ripening

The colour of fruits at ripening showed no visual difference among the treatments. In general, the colour of fruit at ripening was orangish red.

Table 23 Effect of different growth regulators on yield parameters

Treatment	Growth regulator	Concentration (ppm)	Number of fruits per plant	Total weight of fruits per plant (g)	Fruit length (cm)	Fruit breadth (cm)	1000 seed weight (g)	Germination percentage of seeds	Harvest index
T_{1}	IAA	10	48.83 (54.23)	163.81 (27.25)	6.16	1.50 (5.63)	3.78 (14.54)	60.00 (15.94)	0.74 (23.33)
T_{2}	IAA	20	46.83 (47.91)	183.66 (42.67)	7.40 (17.83)	1.22	2.73	61.25 (18.35)	0.62 (3.33)
T_{3}	1AA	30	42.16 (33.16)	140.36 (9.03)	5.74	1.20	3.09	32.66	0.63 (5.00)
T_{4}	IAA	40	37.16 (17.37)	164.99 (28.16)	5.66	1.47 (3.52)	4.62 (40.00)	42.83	0.77 (28.33)
T_{5}	NAA	10	29.50	117.41	6.57 (4.61)	1.58 (11.26)	3.56 (7.87)	56.00 (8.21)	0.56
T_{6}	NAA	20	27.33	138.20 (7.35)	7.67 (22.13)	1.35	3.79 (14.84)	62.50 (20.77)	0.73 (21.66)
T_{7}	NAA	30	21.33	82.79	5.31	1.21	3.85 (16.67)	82.33 (59.09)	0.46
T_{8}	NAA	40	25.33	99.96	6.36 (1.27)	1.76 (23.94)	3.49 (5.75)	72.56 (40.21)	0.60
T_{9}	Triacontanol	1	44.16 (39.48)	179.77 (39.64)	6.28	1.30	2.74	67.33 (30.10)	0.72 (20.00)
T_{10}	Triacontanol	2	38.50 (21.60)	162.82 (26.48)	7.87 (25.31)	1.43 (0.70)	2.75	59.33 (14.64)	0.70 (16.66)
T_{11}	Triacontanol	3	26.33	161.18 (25.20)	5.62	1.37	3.54 (7.27)	87.16 (68.42)	0.58
T_{12}	Triacontanol	4	31.33	90.44	3.68	1.30	3.43 (3.93)	62.16 (20.11)	0.45
T_{13}	GA	10	40.00 (26.34)	134.20 (4.24)	7.62 (21.33)	1.43 (0.70)	1.99	73.50 (42.02)	0.60
T_{14}	GA	20	32.50 (2.65)	114.65	7.76 (23.56)	1.26	4.02 (21.81)	77.83 (50.39)	0.48
T ${ }_{\text {S }}$	GA	30	25.50	85.49	7.68 (22.29)	1.44 (1.40)	2.39	65.00 (25.60)	0.59
T_{16}	GA	40	26.00	76.28	7.00 (11.46)	1.15	2.32	58.75 (13.52)	0.43
C_{1}	Control	Water spray	31.66	128.73	6.28	1.42	3.30	51.75	0.60
C_{2}	Control	No spray	36.00	119.06	5.76	1.46	3.44	60.55	0.64
Mean			33.91	130.29	6.46	1.38	3.26	62.97	0.60
F value			8.01**	13.35**	10.25**	1.60	10.26**	9.22**	19.52**
CD			7.98	26.15	0.96	-	0.58	12.72	0.07

[^4]
4.5.8 Thousand seed weight (g)

Data on thousand seed weight is presented in Table 23. The difference among the treatments were statistically significant. T_{4} (4.62) recorded the maximum value with a 40 per cent increase over $C_{1}(3.30) . T_{4}$ was followed by T_{14} (4.02). C_{2} (3.44) showed a higher value than T_{13} (1.99) which recorded the lowest value.

4.5.9 Germination percentage of seeds (per cent)

Data on germination percentage of seeds is presented in Table 23. Statistical analysis revealed significant difference among the treatments. T_{11} (87.16) recorded the highest percentage of germination with 68.42 per cent increase over $\mathrm{C}_{1}(51.75) . \mathrm{T}_{7}$ (82.33) and T_{14} (77.83) were on par with T_{11}. T_{3} (32.66) recorded the lowest value while C_{2} recorded a value of 60.55 .

4.5.10 Harvest index

Data on harvest index is presented in Table 23. The difference among the treatments were statistically significant. The harvest index ranged from $0.77\left(\mathrm{~T}_{4}\right)$ to $0.43\left(\mathrm{~T}_{16}\right) . \mathrm{T}_{1}(0.74), \mathrm{T}_{6}(0.73), \mathrm{T}_{9}(0.72)$ and $\mathrm{T}_{10}(0.70)$ were on par with T_{4}. The control values observed were $0.60\left(\mathrm{C}_{1}\right)$ and $0.64\left(\mathrm{C}_{2}\right)$.

4.6 Biotic factors

4.6.1 Reaction towards pests and diseases

From visual observations, it was inferred that the treatments T_{1}, T_{3}, T_{9}, T_{12}, T_{13} and T_{15} showed low level of leaf curl disease compared to a
higher level of infection in T_{11} and $\mathrm{T}_{16} \cdot \mathrm{C}_{1}$ and C_{2} showed medium level of leaf curl disease.

In general, the incidence of colletotrichum fruit rot was less among the different treatments.

The infestation of mites in leaves was high in T_{16} compared to medium infestations in $\mathrm{T}_{3}, \mathrm{~T}_{6}, \mathrm{C}_{1}$ and C_{2}. All other treatments showed low level of mite infestations.

4.7 Economics of cultivation

Data on economics of cultivation is presented in Table 24. The data revealed that among the treatments, T_{9} was the most remunerative followed by $\mathrm{T}_{2}, \mathrm{~T}_{10}$ and T_{11} in terms of net return. Benefit cost ratio was also the highest (1.51) under $\mathrm{T}_{9} . \mathrm{T}_{10}, \mathrm{~T}_{2}, \mathrm{~T}_{11}, \mathrm{~T}_{1}, \mathrm{~T}_{6}, \mathrm{C}_{1}$ and C_{2} also showed a benefit cost ratio more than one, $\mathrm{T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{7}, \mathrm{~T}_{8}, \mathrm{~T}_{12}, \mathrm{~T}_{13}, \mathrm{~T}_{14}, \mathrm{~T}_{15}$, and T_{16} recorded negative values for net return and registered benefit cost ratio less than one.

4.8 Correlation studies

Simple correlations of crop characters with fruit yield was worked out and is presented in Table 25.

The fruit yield of chilli was found to be significantly and positively correlated with number of fruits per plant, harvest index and root- shoot ratio. Plant height, fruit length, fruit breadth, thousand seed weight and dry weight per plant, CGR, LA, LAI, SLW, NAR, LAR and RGR recorded non significant correlation with fruit yield.

Table 24 Economics of chilli cultivation

Treat- ment	Growth regulators	Concen- ration (ppm)	Total cost ha (Rs)	Gross return ha $^{-1}(\mathrm{Rs})$	Net return ha (Rs)	Benefit - cost ratio
T_{1}	IAA	10	75586.50	97079.00	21492.50	1.28
$\mathrm{~T}_{2}$	IAA	20	81125.92	108836.16	27710.24	1.34
$\mathrm{~T}_{3}$	IAA	30	238176.50	83176.77	-154999.73	0.34
$\mathrm{~T}_{4}$	IAA	40	294301.50	97778.34	-196523.16	0.33
$\mathrm{~T}_{5}$	NAA	10	70354.50	69756.69	-597.81	0.99
$\mathrm{~T}_{6}$	NAA	20	70791.41	81896.76	11105.35	1.15
$\mathrm{~T}_{7}$	NAA	30	83178.50	49061.02	-34117.48	0.58
$\mathrm{~T}_{8}$	NAA	40	87602.50	59235.89	-28366.61	0.67
$\mathrm{~T}_{9}$	Tria- contanol	1	70459.50	106530.98	36071.48	1.51
$\mathrm{~T}_{10}$	Tria- contanol	2	71012.50	96486.98	25474.48	1.35
$\mathrm{~T}_{11}$	Tria- contanol	3	71566.50	95514.62	23948.12	1.33
$\mathrm{~T}_{12}$	Tria- contanol	4	73226.50	53600.30	-19626.20	0.73
$\mathrm{~T}_{13}$	GA	10	84946.50	79526.38	-5420.12	0.93
$\mathrm{~T}_{14}$	GA	20	99614.26	67941.13	-31673.13	0.68
$\mathrm{~T}_{15}$	GA	30	515466.50	50661.03	-464805.47	0.09
$\mathrm{~T}_{16}$	GA	40	663986.50	45203.22	-618783.28	0.06
C_{1}	Control	Water Gpray	69906.50	75692.28	5785.78	1.08
C_{2}	Control	No Gpray	69251.50	70554.47	1302.97	1.01

Cost of IAA	-
Rs. 355 per 5 g	
Cost of NAA	-
Rs. 140 per 25 g	
Cost of Triacontanol	-
Cost of GA	Rs. 35 per 100 ml
Wage rate of ordinary labourer	Rs. $188 \mathrm{~g}^{-1}$
Wager rate of skilled labourer (for spraying)	-
Cost of chilli	Rs. 140 day $^{-1}$
Rs. $145 \mathrm{day}^{-1}$	
Rs. $12 \mathrm{~kg}^{-1}$	

Table 25 Simple correlation studies of crop characters with fruit yield

SI. No.	Character	Fruit yield
1.	Plant height	0.096^{NS}
2.	Number of fruits per plant	$0.6610^{* *}$
3.	Fruit length	0.2266^{NS}
4.	Fruit breadth	-0.0333^{NS}
5.	Thousand seed weight	0.0730^{NS}
6.	Dry weight per plant	-0.0984^{NS}
7.	Harvest index	$0.7530^{* *}$
8.	Crop growth rate	0.1493^{NS}
9.	Leaf area	-0.0949^{NS}
10.	Leaf area index	-0.1316^{NS}
11.	Specific leaf weight	0.2360^{NS}
12.	Net assimilation rate	-0.2602^{NS}
13.	Relative growth rate	0.0762^{NS}
14.	Leaf area ratio	-0.2032^{NS}
15.	Root-shoot ratio	$0.460^{* *}$

** Significant at 0.01 level
NS Non-significant

Discussian

5. DISCUSSION

Chilli (Capsicum annuum L.) is a very important spice cum vegetable crop which forms an indispensable adjunct in the diet of both rich and poor all over the world. Economically chilli is a good choice for income generation among the farming sector. The control of flower and fruit drop, a major limitation in enhancing chilli production is highly desired. The enormous variation which can be brought about by the judicious application of growth regulators emphasizes the significance of their discovery and its use in crop production. The use of growth regulators in preventing flower and fruit drop has been widely reported by Negi and Singh (1956) in cotton, Jagirdar and Choudry (1967) in mango, Mukherji and Roy (1966) in tomato and Warade and Singh (1977) in chillies. The main emphasis of the present investigation was to study the effect of growth regulators viz. IAA, NAA, Triacontanol and GA in reducing flower and fruit drop in chilli var. Jwalasakhi and also to know their effect on various plant characters. The results of the investigation presented in the previous chapter provided information on the effect of these growth regulators on morphological, growth, physiological, biochemical and yield attributes. A critical discussion with the background material available from the literature is presented in the following pages to fulfill the objectives mentioned earlier.

5. 1 Morphological parameters

Earliness in flowering and fruiting is an indication of early transformation of plants to reproductive phase. Among the growth regulators

Fig. 2 Effect of different growth regulators on flower and fruit initiation

used, NAA 30 ppm was most effective in producing the earliest flowers (23.17 days) whereas control (water spray) took 28.84 days to initiate flowering (Fig.2). This result is in accordance with the findings of Chhonkar and Singh (1959), Singh (1995) in tomato and Warade and Singh (1977) in chillies. According to Usha (1988), NAA acts through fundamental processes like nucleic acid synthesis, enzyme synthesis and activation. Florigen or flowering hormone synthesized under the influence of auxins induced the production of flower primordia in Calendula officinalis (Raghava and Singh, 1970). Triacontanol and GA treated plants also induced earliness compared to control (water spray). Earliness induced by triacontanol might be due to increased synthesis of cytokinin in the roots and their simultaneous translocation to the buds, thereby triggering the metabolic processes and narrowing carbon-nitrogen ratio (Ries, 1985). All the growth regulators in the present study showed earliness in fruiting compared to control (water spray) except IAA 30 ppm and NAA 40 ppm (Fig. 2).

The flower production was increased by the different growth regulators tried. The plants treated with IAA 30 ppm produced the maximum number of 129.50 flowers per plant (Fig. 3). This represented over 100 per cent higher value than control (water spray). IAA 20 ppm and Triacontanol 4 ppm also produced more number of flowers per plant. Osborne (1963) opined that auxins delayed senescence through maintenance of RNA synthesis and increased synthesis of carbohydrates thus resulting in large number of flowers. Similar results have been reported by Jayanandam et al. (1976) in chillies and Oenofeghara (1981) in tomato. Henry and Gordon (1980) in peas and Umajyothy and Shanmughavelu (1985) in brinjal have reported increase

Fig. 3 Effect of different growth regulators on flowering and flower drop

in flower production due to Triacontanol application. Enhanced flowers may be due to higher peroxidase level and auxin breakdown in triacontanol treated plants as reported by Henry and Gordon (1980) in peas. Rajamani et al. (1990) have attributed the induction of more flowers in chillies by triacontanol treatment to the increase in photosynthetic efficiency and increased translocation of sugar to the points of axillary bud narrowing the carbon-nitrogen ratio.

An improvement in fruit set was observed with the application of growth regulators. This is a consequence of the effect of these chemicals to stimulate more number of ovaries and prevention of their subsequent abscission. Addicot and Lynch (1955) attributed the exhaustion of growth substances as the immediate cause of flower drop. In the present study, IAA 40 ppm was observed to be most effective in the producing the minimum flower drop of 30.94 per cent (Fig. 3) and maximum fruit set of 57.22 per cent (Fig.4). This accounted for about 48.06 per cent decrease in flower drop and 69.18 per cent increase in fruit set compared to control. Similar result was obtained with IAA in chilli var. NP-46-A by Patil and Ballal (1980). Leopold (1964) proved that auxins are the agents which stimulate ovaries to develop. At the time of anther dehiscence, auxin level of the flower falls off rapidly, but once the pollination and fertilization occurs, the auxin level of the flower is restored and the flower is not shed (Nitsch, 1952). External application of auxins in the present study might have supplemented the low level of auxins, leading to increased fruit set. All the other treatments except IAA 30 ppm and GA 30 ppm showed a better performance in reducing flower drop and increasing fruit set. The increased fruit set observed due to the

Fig. 4 Effect of different growth regulators on fruiting and fruit drop

application of triacontanol was through the stimulation of ovaries to develop and thus protecting the natural auxins from enzymatic destruction (Henry and Gordon, 1980). This increased content of native auxins might have prevented flower abscission and enhanced the fruit set. Hua et al. (1985) opined that triacontanol application in citrus inhibited cellulase and pectinase activities before the start of abscission and again during abscission thereby increasing fruit set and reducing flower drop. El-Asdoudi (1993b) reported a fruit set of 61.2-63.3 per cent by foliar sprays of GA_{3} in Capsicum annuum var. California Wonder. As such in the present study, none of the growth regulators showed a better performance compared to control in preventing fruit drop (Fig. 4). But the performance of IAA 30 ppm was relatively better in preventing fruit drop.

Studies on the effect of growth regulators revealed a significant difference in plant height only in the flower initiation stage (Fig. 5). This may be the result of the first foliar spray at pre-flowering stage. In the other stages, not much difference was noted among the growth regulators. GA 40 ppm showed the maximum plant height $(38.93 \mathrm{~cm})$ with a 16.94 per cent increase over control. GA at 20 and 30 ppm and Triacontanol at 3 ppm also showed considerable increase in plant height. The effectiveness of GA in increasing plant height has been reported by Nanjappa (1965), El-Asdoudi (1993b) in chillies, Irullappan and Muthukrishnan (1974) and Tomar and Ramagery (1997) in tomato. External application of gibberellins caused an increase in both cell elongation and cell division of the internodes resulting in an increase in ceil length and cell number and thus the height of the plants. The cell elongation by gibberellins is brought about by the mechanical

Fig. 5 Effect of different growth regulators on plant height (cm)

extensibility of cell wall and stress relaxation of walls of living cells (Taiz and Zeiger, 1998). Ries (1985) suggested that triggering of enzymes and secondary messengers by triacontanol resulted in increased plant growth. Thus it may have brought an increase in plant height. The works of Usha (1988) in chilli, Phookan et al. (1991) and Sharma (1995) in tomato supports the results obtained.

5.2 Growth parameters

Leaf as a major source in manufacturing photoassimilates forms one of the major components of the above ground mass. The leaf area develops at an exponential rate in annuals (Gardner et al., 1985). The leaf area progressively increased upto the flowering stage and then declined (Fig. 6). This trend might be due to the partitioning of assimilates after flowering wherein most of them are directed to the formation of the reproductive sink (Nazar, 1989). Senescence of older leaves and malformations of leaves due to leaf curl and crinkling might have also contributed to the decrease in leaf area at the later stages. The plants treated with GA 40 ppm showed the maximum leaf area ($478.04 \mathrm{~cm}^{2}$ plant $^{-1}$) which is 78.57 per cent higher than control. Triacontanol 2 ppm showed about 73.76 per cent greater leaf area compared to control. Stowe and Yamaki (1959), Abdulkhader and Madhava Rao (1983) in grape vine have also reported similar results. Anu (1997) and Salvi (1997) reported that in anthurium the application of GA increased the production of lateral branches and enhanced their growth too. The increased production of branches will naturally lead to more number of leaves per plant. Chhonkar (1957) in tomato and Mehrotra et al. (1970) in chilli have reported increased

Fig. 6 Effect of different growth regulators on leaf area

vegetative growth by GA_{3} application. Triacontanol application in tea increased the leaf production by delaying senescence of leaves and also by mobilizing increased uptake of nutrients (Raman, 1981). This is also supported by the reports of Gunashekaran (1982) in tomato and Pocock (1979) in sugarbeet.

The results of leaf area index (LAI) also showed a similar trend as that of leaf area. Significant difference was observed among the treatments by growth regulator application. A gradual increase in LAI was observed till peak flowering stage and thereafter a decline was seen. GA 40 ppm and Triacontanol 2 ppm recorded the highest LAI of 0.23 (Fig. 7). In the present study, LAI increased with increase in leaf area and thus showed a similar trend as that of leaf area.

Specific leaf weight (SLW) indicates accumulation of photosynthates with in a specific area. Growth regulators produced significant difference in SLW. The ripening stage recorded the highest SLW value. Plants sprayed with NAA 10ppm showed the maximum value of $1.30 \mathrm{~g} \mathrm{~m}^{-2}$ (Fig.7). Triacontanol sprays also enhanced SLW. Warade and Singh (1977) have stated that in chillies the high yield of NAA treated plants may be attributed to the fact that they are physiologically more active to build sufficient food reserves. Moreover auxins are known to delay the senescence of the leaves. Longevity of leaves favours sustained photosynthetic activity and thus an increased SLW.

In the present study, fluctuating values of leaf area ratio (LAR) was noted in the different stages. IAA 30 ppm showed the maximum LAR (1.02

Fig. 7 Effect of different growth regulators on LAI, SLW and LAR

$\mathrm{m}^{2} \mathrm{~g}^{-1}$) with a 85.09 per cent increase over control (Fig. 7). All the other treatments except GA 10 ppm and Triacontanol sprays showed better performance than control. In Eddoe Taro (Colocasia esculenta var. antiquorum L.), the leaf area per total plant dry weight i.e., LAR was maximum at the first month and drastically decreased at the end of fifth month (Chowdhury et al., 2000). They also reported that LAI had a significant positive correlation with LAR. High LAR in the vegetative stage must be due to low plant dry weight.

Dry matter accumulation per unit of land area per unit of time or crop growth rate (CGR) is the most meaningful growth analysis (Gardner et al., 1985). CGR of different treatments increased up to peak flowering stage when maximum leaf area was achieved. Similar trend was observed by Nazar (1989) in groundnut. Relative growth rate (RGR) was highest in the vegetative stage and declined towards the maturation stage. Triacontanol at 2ppm was observed to show the highest $C G R$ and $R G R$ value of $2.24 \mathrm{~g} \mathrm{~m}^{-}$ ${ }^{2}$ day $^{-1}$ and $0.033 \mathrm{mg} \mathrm{g}^{-1}$ day $^{-1}$ respectively (Fig. 8). Increase in CGR may be responsible for the increase in RGR. Net assimilation rate (NAR) is often used to express the rate at which dry matter is produced and is defined as the net assimilation per unit area. In the present investigation, most of the treatments showed high NAR at the vegetative stage. But in some cases, an increasing trend is seen till the maturation stage. Chowdhury et al. (2000) reported highest NAR in Eddoe Taro cultivars initially followed by a decine towards the end of fifth month. As the crop grows, LAI increases, more and more leaves becomes shaded, thus showing a decrease in NAR at the later

Fig. 8 Effect of different growth regulators on CGR, RGR, NAR and RS ratio

stages (Gardner et al., 1985). The results revealed that the plants treated with IAA 20 ppm showed the highest $\operatorname{NAR}\left(0.75 \mathrm{mg} \mathrm{cm}^{-2}\right.$ day $\left.^{-1}\right)$ followed by NAA $10 \mathrm{ppm}\left(0.73 \mathrm{mg} \mathrm{cm}^{-2} \mathrm{day}^{-1}\right)$ (Fig. 8). NAA treatment in capsicum cv . Bruinsma Wonder increased the dry matter accumulation by higher photosynthesis (Zhang et al., 1985). Beringer (1978) stated that the growth and yield of a crop is based on cell division, cell enlargement and the differentiation into assimilating, transporting and storage tissues. The role of auxins in inducing cell division and cell enlargement is well known.

The growth regulators produced significant effect on root-shoot ratio. Triacontanol 2 ppm produced the highest root-shoot ratio of 0.69 (Fig. 8). GA sprays in general showed lower root-shoot ratio which was contrary to the findings of Lou and Kato (1988) in brinjal and El-Asdoudi (1993a) in chilli var. California Wonder.

5.3 Physiological parameters

The application of growth regulators produced significant effect on the physiological parameters studied viz. photosynthetic rate, transpiration rate and stomatal conductance. The highest photosynthetic rate of 28.09 micromol $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ was shown in plants treated with IAA 40 ppm (Fig. 9). Similar results have been obtained by Zhang et al. (1985) in chilli and Sharma and Singh (1990) in lemon. Exogenous application of IAA to potato stolons enhanced the photosynthetic rate (Puzina et al.,1998). Narwadkar and AnserWadekar (1989) also reported similar resuits in mango. GA 40 ppm treatment also showed higher photosynthetic rate. With regard to transpiration rate, GA 20 ppm showed the highest value (0.74 millimol m $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) which was 2.77 per cent

Fig. 9 Effect of different growth regulators on physiological parameters

$$
1-|k \pi, \%|
$$

higher than control (Fig.9). Triacontanol 1 ppm also enhanced the transpiration rate of plants. 1AA 40 ppm recorded the lowest transpiration rate. Stomatal conductance indicates how open or closed the stomatas are. The plants in control showed the highest stomatal conductance (78.0 milli moi $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) followed by Triacontanol 1 ppm with a value of 70.63 milli $\mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$ (Fig.9). Higher stomatal conductance increases CO_{2} diffusion into the leaf and favours high photosynthetic rate.

5.4 Biochemical parameters

The data on photosynthetic pigments indicated an increase till the peak flowering stage followed by a decline in later stages. Nazar (1989) has reported a similar trend in ground nut. Significant variation was produced by the growth regulators in chlorophyll-b content and total chlorophyll content in all the stages. In vegetative stage, no significant difference among growth regulators was noted with respect to chlorophyll-a and chlorophyll a / b ratio. Foliar sprays of IAA 30 ppm showed the highest content of chlorophyll-a, chlorophyll-b and total chlorophyll with values of $0.54,0.80$ and 1.13 mg g fresh weight ${ }^{-1}$ respectively (Fig.10). GA 10 ppm recorded the lowest chlorophyll-a content (0.31 mg g fresh weight ${ }^{-1}$) and total chlorophyll content (0.62 mg g fresh weight ${ }^{-1}$) whereas GA 40 ppm showed the lowest chlorophyll-b value (0.24 mg g fresh weight ${ }^{-1}$). Chandra and Shivaraj (1972) reported that in chillies, GA treated plants showed chlorosis and a higher iron content compared to control plants. Increase in the uptake of iron may be present in unavailable form for chlorophyll synthesis. Omar et al. (1988) in Vicia faba

Fig. 10 Effect of different growth regulators on photosynthetic pigments

and Mosquera and Mendez (1994) in chillies also reported similar results. The role of auxins in increasing photosynthetic pigments can be supported by the reports of Chandra and Sivaraj (1972) in chillies and Shaddad and ElTayeb (1990) in maize and cowpea. The control showed the highest chlorophyll a / b ratio (1.43) followed by Triacontanol 1 ppm with a value of 1.29 (Fig. 10). The lowest chlorophyll a/b ratio was observed in NAA 40 ppm treated plants (0.92).

The protein content of plants is considered as a better index for assessing the status of plants for its growth and development. Nearly 50 per cent of total soluble protein extract in plants was accounted for RuBP carboxylase (Ellis, 1976). Therefore he stated that the estimation of soluble protein can be a better measure of RuBP carboxylase enzyme as well as the ultimate photosynthetic efficiency. The protein content of leaves increased from vegetative stage to maturation stage. Foliar sprays of Triacontanol 4 ppm showed the highest leaf protein content ($1.65 \mathrm{mg} \mathrm{g}^{-1}$) (Fig. 11). This was 42.24 per cent higher than control. Triacontanol 2 ppm and GA 20 ppm also showed higher values for protein content. The works of Sidda Reddy (1988) in potato and Subbiah et al. (1989) in tomato emphasized the role of triacontanol in improving the protein content.

A steady increase in carbohydrate content of leaves was observed from vegetative stage to peak flowering stage and thereafter a decline was seen. This may be attributed to the transport of assimilates to the reproductive sink at the later stages of crop growth. The plants treated with GA 40 ppm recorded the highest carbohydrate content of 112.50 mg glucose 100 g sample ${ }^{-1}$ (Fig. 11). This result is contrary to the findings of Chrungoo and Farooq

Fig. 11 Effect of different growth regulators on protein, carbohydrate and proline content of leaves

Total carbohydrates

Protein and proline content of leaves

[^5](1989) and Belakbir et al. (1996) in chillies. IAA 10 ppm, GA 20 ppm and NAA 40 ppm also considerably enhanced the carbohydrate content of leaves. The works of Chandra and Sivaraj (1972), Patil et al. (1985) in chillies supports the role of auxins in enhancing the carbohydrate content.

The accumulation of free amino acids is a characteristic mechanism of defence against wilting (Palfi et al., 1974). Leaf proline content estimated as a biochemical index shows the ability of a plant to withstand stress. The proline content of leaves varied in different stages though a higher value was seen in the ripening stage. This should have been the response to stress at the later stages of the crop. During peak flowering stage also, the proline content was higher. Among the growth regulators, foliar sprays of Triacontanol 2 ppm showed the highest proline content of 1.92μ moles g^{-1} (Fig. 11). IAA $10 \mathrm{ppm}, \mathrm{GA} 40 \mathrm{ppm}$, NAA 40 ppm and NAA 30 ppm sprays also recorded high proline values in their leaves.

Growth regulators revealed significant difference with respect to the biochemical constitution of the fruits viz. reducing sugars, carotenoids and capsaicin contents. NAA sprays of plants enhanced reducing sugar content of the fruits. The results revealed NAA 20 ppm to be the best with a value of 9.68 g glucose $100 \mathrm{~g}^{-1}$. NAA 40 ppm and GA 10 ppm also showed higher values. An increase in reducing sugar content of fruits by NAA treatment has been reported by Bal et al. (1988) in Ber, Chrungoo and Farooq (1989), Phookan et al. (1991) and Gabr et al. (1984) in tomato. As the fruits ripened, chlorophyll pigments disappeared and the concentration of carotenoids was increased. IAA 40 ppm recorded the highest carotenoid content $(2.69 \mathrm{mg} 100$ g^{-1}) in ripe fruits (Fig. 12). The performance of IAA and GA both at 20ppm

Fig. 12 Effect of different growth regulators on reducing sugars, carotenoids and capsaicin content of fruits

were also better. IAA and GA_{3} both were found to increase the carotenoid content in maize and cowpea (Shaddad and El-Tayeb, 1990). Capsaicin is the pungent principle present in chillies. The capsaicin content in IAA 10 ppm treated plants showed the highest value ($67.52 \mu \mathrm{gram}_{\mathrm{gram}}{ }^{-1}$) with 43.44 per cent increase over control (Fig. 12). GA 30 ppm and IAA 20 ppm also recorded higher values. This is in accordance with the reports of Patil et al. (1985) in chillies. Capsaicin content increases with increasing maturity (Elsaid, 1996).

5.5 Yield parameters

Wareing and Patric (1975) considered high dry matter production as an important prerequisite for greater yield in crop plants. Dry matter accumulation increases with the age (Watson, 1971). An increase in fresh weight was noted from vegetative stage to maturation stage and after which a decline was seen. This may be due to senescence and water loss in later stages of the crop growth. IAA 20 ppm recorded the highest fresh weight $(66.11 \mathrm{~g}$ plant ${ }^{-1}$) followed by NAA $10 \mathrm{ppm}\left(60.09 \mathrm{~g} \mathrm{plant}^{-1}\right)$ (Fig.13). The percentage increase over control was 91.90 and 74.42 respectively. Auxins maintain the rate of RNA synthesis and thereby delay the senescence of leaves. Initiation of lateral roots and adventitious roots is stimulated by high auxin levels. Auxins stimulate the cells to divide and hence result in more growth and increased fresh weight and cell elongation (Taiz and Zeiger, 1998). IAA increases fresh weight probably by increasing water use efficiency in maize and cowpea (Shaddad and El-Tayeb, 1990). NAA 40 ppm resulted in greatest increase in plant height along with shoot and root fresh weight in

Fig. 13 Effect of different growth regulators on total fresh weight and dry weight per

chillies (Singh et al., 1993). In case of dry weight per plant, it was observed to increase until the ripening stage. Growth regulators showed significant variation in increasing the dry weight per plant. Foliar sprays of triacontanol 3 ppm showed the highest dry weight of $13.22 \mathrm{~g} \mathrm{plant}^{-1}$ followed by GA 40 ppm (12.87 g plant $^{-1}$) (Fig.13). Increase in dry weight of plants by triacontanol treatment in tomato has been reported by Eriksen et al. (1981).

Number of fruits per plant is a principal yield attribute showing high positive correlation with yield. The results revealed that the plants given foliar sprays of IAA 10 ppm recorded the highest number of fruits per plant (48.83) with a 54.23 per cent increase over control (Fig. 14). IAA 20 ppm , LAA 30 ppm and Triacontanol 1 ppm also produced more number of fruits per plant. This must be related to the rise in carbohydrate content which in turn increased the number of fruits harvested per picking. Niranjana et al. (1999) and Mamat et al. (1983) in tobasco pepper got similar results. Growth regulators produced significant difference in the yield of fruits also. IAA 20 ppm recorded the highest yield (183.66 g plant ${ }^{-1}$) with a 42.67 per cent increase over control (Fig, 14). IAA at other concentrations and Triacontanol at 1,2 and 3 pprn also showed a better performance than control in enhancing yield The auxin directed translocation of nutrients and photoassimilates as reported by Krishnamurthy (1981) should have been responsible for the increased yield. Singh (1999) reported that the induction of early flowering and fruiting and maximum number of fruits to be the reasons for the increase in yield by IAA treatment. The yield increase by application of triacontanol was due to increase in both number of fruits as well as fruit weight. This can be attributed to increased uptake of nutrients, enhanced photosynthesis and

Fig. 14 Effect of different growth regulators on yield characters

more translocation of sugars and other metabolites (Umajyothy and Shanmughavelu, 1985). Shukla and Prabhakar (1989) in tomato, Pandita et al.(1991) in bhindi, Sharma (1995) in tomato and Thakur et al.(1999) in bell pepper also got similar results. Harvest index is the ratio of economic yield to biological yield. A higher harvest index indicates greater yield of a crop. Fruit yield displayed significant positive association with harvest index in chillies (Vijayalakshmi et al., 1988). IAA 40 ppm showed the highest harvest index of 0.77 (Fig. 14). IAA 10 ppm , NAA 20 ppm , Triacontanol at 1 and 2 ppm also showed a higher harvest index.

In chillies yield displayed significant and positive association with fruit length (Rani et al., 1996). Fruit diameter and number of fruits per plant exhibited antagonistic indirect effects with each other (Kaul and Sharma, 1989). Application of growth regulators produced significant difference in the length of fruits. The fruits of plants treated with Triacontanol 2 ppm recorded the maximum fruit length (7.87 cm) (Plate 4) showing a 25.31 per cent increase over control. GA at all the concentrations (Plate 5), IAA 20 ppm and NAA 20 ppm also showed an increase in length of pods compared to control (Plate 2 and 3). Vijayalakshmi et al. (1988) noticed negative correlation of fruit length with fruit girth in chillies. The maximum fruit breadth was observed in NAA $40 \mathrm{ppm}(1.76 \mathrm{~cm})$ while GA 40 ppm showed the minimum fruit breadth of 1.15 cm . This result is in accordance with the findings of Maurya and Lal (1987) in chilli, Mukherji and Roy (1966) in tomato and Doddamani and Panchal (1989) in chilli.

Plate 2 Effect of IAA on fruit size

Plate 3 Effect of NAA on fruit size

Plate 4 Effect of triacontanol on fruit size

Plate 5 Effect of GA on fruit size

The chlorophyll pigments of fruits disappeared at the later stages and the colour changed to orange red. Not much difference was produced by the growth regulators in the colour of fruits at the ripening stage.

The results of the study indicated significant difference being produced by the growth regulators with respect to thousand seed weight. IAA 40 ppm recorded the highest value (4.62 g) with a 40 per cent increase over control. GA 20 ppm also showed higher thousand seed weight (4.02 g). Singh and Lal (1995) reported a higher seed yield in chilli by auxin treatment. The role of growth regulators in the germination percentage of seeds was significant. The highest germination percentage of 87.16 was seen in plants treated with Triacontanol 3 ppm . NAA 30 ppm and GA 20 ppm also showed an enhanced germination percentage. Niranjana et al. (1999) reported significant increase in germination in maize, rice and sunflower by triacontanol treatment. In chilli, GA was more effective in stimulating germination while auxin application did not alter it (Watkins and Cantliffe, 1983). GA application stimulates the production of numerous hydrolases notably alpha-amylase by aluerone grains and thus the germination. Similar result was reported by Vijayaraghavan (1999) in bhendi. The works of Hariharan and Unnikrishnan (1985) and Singh and Lal (1995) showed the role of NAA in enhancing germination in chilli.

5.6 Biotic factors

In general the incidence of pests and diseases was less in most of the crop stages. Bhatt and Verma (1958) reported that NAA application to virus infected tomato plants resulted in the disappearance of the symptoms. Auxins sprayed on diseased plants corrected the internal auxin imbalance rather than
inhibiting virus multiplication (Reddy and Yaraguntaiah, 1981). The roie of GA in reversing the leaf curl symptoms are well reported by Nariani (1963), Lal and Singh (1961) in chillies and Reddy and Yaraguntiah (1981) in tomato. Triacontanol application reduced the leaf curl incidence due to insect repellant property of vipul in chilli var. KAU cluster (Usha, 1988). Though the incidence of pests and diseases were less, the growth regulator treated plants showed a better performance than control with respect to leaf curl, colletotrichum fruit rot and mite infestation.

5.7 Economics of cultivation

The role of growth regulators in enhancing the yield of crops has been well reported. The plants treatment with Triacontanol 1 ppm was found to be the most remunerative. It was observed that an additional investment of Rs. 1210 per hectare resulted in a 51 per cent extra yield over control and thus a greater income. This can be attributed to the role of triacontanol in enhancing the yield as reported by Umajyothi and Shanmugavelu (1985) in brinjal and Sharma (1995) in tomato along with the low cost of the growth regulator (Rs. $35100 \mathrm{ml}^{-1}$). The benefit cost ratio was also high (1.51). A high benefit cost ratio indicates the economic feasibility of the growth regulator triacontanol.

Summary

6. SUMMARY

The present investigation "Effect of growth regulators in reducing flower and fruit drop in chilli (Capsicum annuum L.)" was conducted at the Department of Plant Physiology, College of Agriculture, Vellayani during December 1999 to March 2000. The aim of the investigation was to study the effect of IAA, NAA, Triacontanol and GA in reducing flower and fruit drop in chilli var. Jwalasakhi and also to know their effect on various plant characters. IAA, NAA and GA were used at concentrations of $10,20,30$ and 40 ppm while Triacontanol was used at $1,2,3$ and 4 ppm . Two controls were also provided, one with distilled water spray and the other with no spray. The experimental design was randomized block design with three replications. Two foliar sprays of growth regulator were given, one at 20 days after transplanting and the other at 40 days after transplanting . Observations were taken at five stages of crop growth viz. vegetative stage, flower initiation stage. peak flowering stage. maturation stage and ripening stage. The salient findings of the investigation are summarized here.
$>$ Growth regulators produced significant difference with respect to earliness in flowering whereas no significant difference was observed in days to produce first fruit. Foliar sprays of NAA 30 ppm produced the earliest flowers in 23.17 days. Triacontanol and GA sprays also induced earliness compared to control (water spray).
$>$ The flower production was maximum in plants sprayed with 1 AA 30 ppm (129.50 flowers per plant) which is over hundred per cent more than control (water spray). IAA 20 ppm and Triacontanol 4 ppm also produced more number of flowers per plant. With regard to flower and fruit drop, the growth regulators produced significant difference. The plants sprayed with IAA 40 ppm was most effective in producing the minimum flower drop of 30.94 per cent and maximum fruit set of 57.22 per cent. This accounted for 48.06 per cent decrease in flower drop and 69.18 per cent increase in fruit set compared to control (water spray.) Thus the findings indicate the effectiveness of growth regulators in reducing the flower drop and increasing the fruit set.
$>$ The effect of growth regulators in enhancing the plant height was significant only in the flower initiation stage. GA 40 ppm recorded the maximum height of 38.93 cm showing a 16.94 per cent increase over control.
$>$ Leaf area progressively increased up to peak flowering stage and thereafter declined. Maximum leaf area of $478.04 \mathrm{~cm}^{2}$ plant $^{-1}$ was seen in plants treated with GA 40 ppm . Triacontanol 2 ppm also enhanced the leaf area. Similar trend was seen with leaf area index (LAI) where GA 40 ppm recorded a value of 0.23 . Specific Leaf Weight (SLW) was highest at the ripening stage. NAA 10 ppm showed the highest value of $1.30 \mathrm{~g} \mathrm{~m}^{-2}$. Triacontanol treatment also increased the SLW values. IAA 30 ppm recorded the maximum leaf area ratio of $1.08 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ with a 85.09 per cent increase over control.
$>$ Crop growth rate values of different treatments increased up to peak flowering stage when maximum leaf area was achieved. Relative growth rate was highest in the vegetative stage and it declined towards the ripening stage. Application of Triacontanol 2 ppm to the plants produced the highest crop growth rate and relative growth rate of 2.24 $\mathrm{g} \mathrm{m}^{-2}$ day $^{-1}$ and $0.033 \mathrm{mg} \mathrm{g}^{-1}$ day $^{-1}$ respectively. IAA 20 ppm showed the highest net assimilation rate of $0.75 \mathrm{mg} \mathrm{cm}^{-2}$ day $^{-1}$ followed by NAA $10 \mathrm{ppm}\left(0.73 \mathrm{mg} \mathrm{cm}^{-2}\right.$ day $\left.^{-1}\right)$.
\rangle The growth regulators produced significant difference with respect to root-shoot ratio. Triacontanol 2 ppm produced the highest root-shoot ratio of 0.69 .

Photosynthetic rate, transpiration rate and stomatal conductance of the leaves was recorded 30 days after transplanting. These parameters were significantly influenced by the growth regulators. Foliar sprays of IAA 40 ppm showed the highest photosynthetic rate $(28.09 \mu \mathrm{~mol}$ $\mathrm{m}^{-2} \mathrm{~s}^{-1}$). GA 40 ppm also enhanced the photosynthetic rate. With regard to transpiration rate, GA 20 ppm showed the highest value (0.74 milli mole $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) and $\mathrm{IA} \Lambda 40 \mathrm{ppm}$ recorded the lowest value (0.09 milli mole $\mathrm{m}^{-2} \mathrm{~s}^{-1}$). The performance of Triacontanol 1 ppm was on par with GA 20ppm. Stomatal conductance was highest in control plants (78 milli mole $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) followed by triacontanol $1 \mathrm{ppm}(70.9$ milli mole $\mathrm{m}^{-2} \mathrm{~s}^{-1}$).
$>$ An increase in photosynthetic pigments was seen till the peak flowering stage followed by a decline in the later stages. Significant difference was observed by the application of growth regulators with regard to chlorophyll-b content and total chlorophyll content in all the stages. In vegetative stage, no significant difference was seen with respect to chlorophyll-a content and chlorophyll a/b ratio. IAA 30 ppm showed the highest chlorophyll-a content (0.54 mg g fresh weight ${ }^{-1}$). chlorophyll-b content (0.80 mg g fresh weight ${ }^{-1}$) and total chlorophyll content of 1.13 mg g fresh weight ${ }^{-1}$. The control showed the highest chlorophyll a / b ratio of 1.42 followed by Triacontanol $1 \mathrm{ppm}(1.29)$.
$>$ The protein content of leaves increased from vegetative stage to maturation stage. The highest protein content ($1.65 \mathrm{mg} \mathrm{g}^{-1}$) was recorded in plants given foliar sprays of Triacontanol 4 ppm . This was 42.24 per cent higher than control.

Growth reguiators produced much variation in the carbohydrate content of leaves. A steady increase in carbohydrate content was observed from vegetative stage to peak flowering stage and further a decline was seen. GA 40 ppm recorded highest carbohydrate content of 112.50 mg g^{-1}. IAA $10 \mathrm{ppm}, \mathrm{GA} 20 \mathrm{ppm}$ and NAA 40 ppm also increased the carbohydrate content of leaves.
\% The proline content of leaves varied in the different stages, but a comparatively higher value was been in the ripening stage. Triacontanol 2 ppm showed the highest proline content $\left(1.92 \mu\right.$ moles $\left.\mathrm{g}^{-1}\right)$.

1AA $10 \mathrm{ppm}, \mathrm{GA} 40 \mathrm{ppm}$, NAA 40 ppm and NAA 30 ppm also recorded high proline content in their leaves.
$>$ Growth regulators revealed significant difference with respect to biochemical constitution of fruits viz. reducing sugar content, carotenoids and capsaicin content. NAA treatment of plants considerably enhanced the reducing sugar content. NAA 20 ppm recorded the highest value (9.68 g glucose $100 \mathrm{~g}^{-1}$) IAA 40 ppm recorded the highest carotenoid content of $2.69 \mathrm{mg} 100 \mathrm{~g}^{-1}$ in ripe fruits. IAA and GA both at 20 ppm also showed a higher value. Plants treated with IAA 10 ppm recorded the highest capsaicin content of $67.52 \mu \mathrm{gram}_{\mathrm{gram}}{ }^{-1}$ with a 43.44 per cent increase over control. IAA 20 ppm and NAA 10 ppm also showed higher capsaicin content.

An increase in fresh weight of plants was noted from vegetative stage to maturation stage after which a decline is seen. The dry weight of plants increased till the ripening stage. IAA 20 ppm recorded the highest fresh weight (66.11 g plant ${ }^{-1}$) followed by NAA 10 ppm ($60.09 \mathrm{~g} \mathrm{plant}^{-1}$). Triacontanol 3 ppm recorded the highest dry weight $\left(13.22 \mathrm{~g} \mathrm{plant}^{-1}\right)$ followed by GA at $40 \mathrm{ppm}\left(12.87 \mathrm{~g} \mathrm{plant}^{-1}\right)$.
$>$ Application of growth regulators produced significant difference with respect the number of fruits per plant and weight of fruits per plant. IAA 10 ppm recorded the highest number of fruits per plant (48.83) with a 54.23 per cent increase over control, IAA 20 ppm , IAA 30 ppm and Triacontanol 1ppm also produced more number of fruits per plant. IAA 20 ppm showed the maximum per plant yield ($183.66 \mathrm{~g} \mathrm{plant}^{-1}$)
which was 42.67 per cent higher than control (water spray). IAA at other concentrations and Triacontanol at 1,2 and 3 ppm also showed higher per plant yield compared to control (water spray)

- Significant difference was noticed in harvest index by growth regulator application. IAA 40 ppm showed the harvest index of 0.77 . IAA 10 ppm, NAA 20 ppm , Triacontanol at 1 ppm and 2 ppm also showed a higher harvest index.
$>$ Fruit length was significantly influenced by the application of growth regulators. Foliar sprays of Triacontanol 2 ppm recorded the maximum fruit length (7.87 cm) which was 25.31 per cent higher than control. GA at all the four concentrations, IAA 20 ppm and NAA 20 ppm also showed better fruit length compared to control. No significant difference was observed with respect to fruit breadth. NAA 40 ppm recorded the maximum fruit breadth $(1.76 \mathrm{~cm})$ whereas $G A 40 \mathrm{ppm}$ showed the minimum fruit breadth (1.15 cm)
$>$ The growth regulators had no significant role in influencing the colour of fruits at ripening . The highest thousand seed weight (4.62 g) was produced by foliar sprays of IAA 40 ppm . GA 20 ppm also enhanced the thousand seed weight.
$>$ The percentage germination of seeds was also influenced by the growth regulators. Triacontanol 3 ppm showed the highest germination percentage of 87.16 . NAA 30 ppm , GA 20 ppm and GA 10 ppm also increased the germination percentage of seeds.
$>$ Though the incidence of pests and diseases was less in all the crop stages, the plants sprayed with the growth regulators had lesser incidence of leaf curl, colletotricum fruit rot and mite infestation compared to control.
$>$ Correlation studies showed that the fruit yield was significantly and positively correlated with the number of fruits per plant, harvest index and root shoot ratio.
$>$ A comparison of the economics of cultivation revealed Triacontanol 1 ppm to be the most remunerative. It was observed that an additional investment of Rs. 1210 per hectare resulted in 5 I percent extra yield over control and thus a greater benefit-cost ratio (1.51).

$$
1-1831
$$

References

REFERENCES

Abdulkhader, M. D. and Madhava Rao, V. N. 1983. Studies on chemical control of flowering in grape vine. Effect on vegetative growth characters. South Indian Hort. 31 (3) : 167-176.

Addicott, F. T. and Lynch, R.S. 1955. Physiology of abscission. Ann. Rev. Pl. Physiol. 6:211-231

Aloni, B., Karm, L., Zaidman , Z., Riou, Y., Huberman, M. and Goren, R. 1994. The susceptibility of pepper (Capsicum annuum) to heat induced flower abscission : possible involvement of ethylene. J. Hort. Sci. 69 (5) : 923-928

Anu, G.K. 1997. Improvement of propagation efficiency of Anthrurium andreanum. Andre. M.Sc. (Hort.) thesis, Kerala Agricultural University, Thrissur

Arnon, D.I. 1949. Copper enzymes in isolated chloroplast : Polyphenol oxidase in Beta vulgaris. Plant Physiol. $24: 1-15$

Attavar, M. 2000. Hybrid vegetables: Tool for productivity gains. The Hindu-Survey of Indian Agriculture. National Press, Chennai, pp. 145-149

Bal, J.S., Randhawa, J.S. and Singh, S.N. 1988. Effect of NAA on fruit character and quality of ber cv. Umran. Haryana J. Hort. Sci. 17 (1-2): 20-23

Bates, L.S., Waidren, R.P. and Teare, I.D. 1973. Rapid determination of free proline in water stress studies. Plant \& Soil 39: 205-208
*Belakbir, A., Lamrani, Z., Ruiz, J.M., Cantarero, L. I., Valenzuela, J.L. and Romero, L. 1996. Effect of bioregulators on the concentration of carbohydrates in pepper fruits. Communications in soil science and plant analysis 27 (5-8):1013-1025

Belakbir, A., Ruiz, J.M.and Romero, L. 1998. Yield and fruit quality of pepper (Capsicum annuum L.) in response to bioregulators. Hort. Sci. 33 (1): 85-87

Beringer, H. 1978. Functions of potassium in plant, metabolism with particular refrence to yield. Potassium in soils and crops. (Ed.) Sekhar, G.S. New Delhi, pp. 6-9

Bhatt, R.M., Srinivasa Rao, N.K. and Anand, N. 1999. Response of bell pepper (Capsicum annuum L.) to irradiance photosynthesis, reproductive attributes and yield. Indian J. Hort. 56 (1) : 62-66

Bhatt, J.G. and Verma, S.S. 1958. Effect of growth regulating substances on virus affected tomato plants. Science and Culture 23:610-611
*Billa, P.R. 1981. Triacontanol as a plant biostimulant. Proc. $8^{\text {th }}$ Annual Plant Growth Regulator Society, Aug. 3-6, St. Petesburg Beat Fla.

Bisaria, A.K.and Bhatnagar, V.K. 1978. Effect of growth regulators on growth, fruit and yield in brinjal (Solanum melongena L.). Indian J. Hort. 35: 381-383

Byres, R.E., Carbaugh, D.H., Presley, C.N. and Wolf, T.K. 1991. The influence of low light on apple fruit abscission. J. Hort. Sci. 66(1) : 7-17

Chandra, R.P., Murthy, S.S. and Murthy, M.S. 1976. Effect of NAA (Planofix) on yield of chillies. Curr. Res. 5: 196-197

Chandra, R. and Shivraj, A. 1972. Influence of exogenous hormones on flowering, flower shedding and fruit set of chilli (Capsicum annuum L.). Andhra agric. J. 19 (1\&2): 34-41

Chaubey, L.K. and Chaturvedi, D.N. 1982. Growth regulators increase micronutrient content in tomatoes. South Indian Hort. $30: 148-151$

Chhonkar, V.S. 1957. Effect of gibberellic acid on growth, yield and quality of cabbage. Int. Symp. Sub-trop. Trop. Hort., pp. 37-42

Chhonkar, V.S. and Sen Gupta, B.N. 1972. Effect of plant growth regulators on growth, yield and quality of some important vegetables. Proc. $3^{\text {rd }}$. Int. Symp. Sub- Trop. Hort. Bangalore 2:166-172

Chhonkar, V.S. and Singh, S.N. 1959. Effect of NAA on growth, quality and yield of tomato (L. esculentum Mill.). Indian J.Hort. 16:235-242

Chowdhury, S.R., Naskar, S.K., Misra, R.S., Edison,S. and Ravi, V. 2000. Production physiology of edible yams and eddoe taro CTCRI, Sreekaryam, Thiruvananthapuram. p. 30
*Chrungoo, N. K. and Farooq, S. 1989. Influence of GA 3 and IAA on certain carbohydrate fractions in corms of Saffron crocus (Crocus sativus L.) during development. Acta Societatis Botanicorum Poloniae 58 (2): 237-246

Cochran, W. G. and Cox, G.M. 1965. Experimental Design. John Wiley and Sons, Inc. New York.

Deli, J., Matus, Z. and Szaboles, J. 1992. Carotenoid composition in fruits of black pepper (Capsicum annuum var. longum nigrum) during ripening. Journal of Agriculture and Food Chemistry 40 (11): 2072-2076

Doddamani, M. B. and Panchal, Y.C. 1989. Effect of plant growth regulators on growth and yield of Byadagi chilli (Capsicum annuum Linn. var acuminatum). Karnataka J. agric. Sci 2: 329-332
*El-Asdoudi, A.H. 1993 b. Effect of gibberellin on flowering, fruiting and fruit quality of pepper. Ann. agric. Sci., Cairo 38(2): 661-666
*El-Asdoudi, A.H. 1993a. Gibberellin effects on pepper vegetative growth. Ann. agric. Sci., Cairo 38(2) : 661-666
*El-Asdoudi, A.H.and Ouf. M.F. 1993. Effect of gibberellin on growth and fruiting of tomato plants. Ann. agric. Sci., Cairo 38(2): 629-635
*Ellis, R.J. 1976. The search for plant messenger RNA. Prospective in experimental biology. (Ed.) Sunderland, N. Oxford / New York Pergamon. 2:283-298

El-Said, H.M. 1996. Chemical composition of sweet and hot pepper fruits grown under plastic house conditions. Egyptian J. Hort. 22(1) : 11-8
*El-Sayed, H. 1992. Proline metabolism during water stress in sweet pepper (Capsicum annuum L.) plant. Phyton 32(2) : 255-261

Eriksen, A.B., Sellden, G., Skogen, D. and Nilsen,S. 1981. Comparative analysis of the effect of triacontanol on photosynthesis, photorespiration and growth of tomato and maize. Planta $152(1)$ 44-49

Gabr, S., Sharaf, A. and Fl-Sandany, S. 1984. Effect of cycocel and alar on some biochemical constituent in tomato plant and fruits. Ann. agric. Sci. 2:73-85

Gardner, F.P.. Pearce, R.B. and Mitchell, R.L. 1985. Physiology of crop plants. Scientific Publishers, Jodhpur. pp.1-56
*Gazizova, N.I. 1986. Aspects of IAA effect on growth and respiration of wheat ear. Inst.Biol., Kazan, USSR pp. 71-73

Gopalratnam, L. 1933. Studies in Capsicum. (1) Anthesis, pollination and fertilization. Madras agric. J. 21 : 496-502

Gregory, P.J., Kidd, G.E. and West, C. 1917. Growth analysis. Introductory Plant Physiology. (Eds.) Noggle, G.R. and Fritz, W. Prentice Hall, New Delhi, pp. 586-588

Gunasekharan, N. 1982. Studies on the effect of triacontanol on tomato (Lycopersicon esculentum Mill.) cv. CO.3. M.Sc. (Hort.) Thesis. Tamil Nadu Agricultural University, Coimbatore

Hariharan, M. and Unnikrishnan, K. 1983. Enhanced fruit size and seed set in Capsicum annuum L. by NAA treatment. Acta Botanica Indica 11 (2) : 161-163

Hariharan, M. and Unnikrishnan, K. 1985. Effect of alpha-napthalene acetic acid on variation in free amino acid content in developing fruits of Capsicum annuum L. Ann. Bot. 55 :329-33I

Hedge, J. E. and Hofrieter, B.T. 1962. Carbohydrate Chemistry. (Eds.) Whistler, R. L. and Be Miller, J. N., Academic Press, New York, p. 8-9

Henry, E.W and Gordon, C.J. 1980. The effect of triacontanol on peroxidase activity, IAA and plant growth in Pisum sativum cv. Alaska and Little Marvel. J. Expt. Bot. 31 : 1297-1303

Hua, L.B.,Rend, D. and Chen, J. 1985. Abscission of citrus fruit: The effect of triacontanol on cellulase and pectinase activities in the abscission of young fruit explants of Bendizao mandrain. Acta Hort. 12(2): 77-82

Hunt, R. 1990. Basic growth analysis. Linwin Hyman, London. pp. 112

Hyun, K.S., Hwan, K.Y.,Won, L.Z.and Dong, K.B. 1997. Analysis of chemical constituents in fruits of red pepper (Capsicum annuum L. cv. Bugang). J. Korean Soc. Hort. Sci. 38(4) : 384-390

Irulappan, I. and Muthukrishnan, C.R. 1974. Effect of growth regulators on seed germination, growth, yield and quality of $\mathrm{CO}-1$ tomato. South Indian Hort. 22 : 54-57

Ishikawa, K., Nunomura,O., Nakamura,H., Matsufugi,H. and Takeda, M. 1997. High ascorbic acid contents in the fruits of a deep green cultivar of Capsicum annuum throughout the fruit development. Capsicum and Eggplant Newsletter 16 :52-55

Jaafar, H., Black, C. R. and Atherton, J.G. 1994. Water relations, dry matter distribution and reproductive development of sweet pepper (Capsicum annuum). Aspects of applied biology 38:299-306

Jagirdar, S.A.P. and Choudry, M.R. 1967. Fruit drop control in mangoes by hormonal spray. W. Pakistan, J. agric. Res. 5:33-42

Janardhanan, K. 1992. Triacontanol promoted seed germination, seedling growth and chlorophyll pigments content in leguminous crops. Advances in Plant Science 5:290-295

Jayanandam, V.D.S., Bavaji, J.N. and Murty, S.N. 1976. A note on beneficial effects of NAA (planofix) on chilli. Andhra agric. J. 28 (1\&2): 16-18

Jensen, A. 1978. Chlorophylls and carotenoids. (Eds.) Hellebust, J. A. and Craigie, J. S. Handbook of Phycological Methods. Cambridge University Press, London, pp. 59-70

Kanwar, J.S., Saimbhi, M.S. and Nandpuri, K.S. 1976. Increasing fruit set and yield in tomato. Punjab Veg. Gr. 11:41-43

Kar, P.L., Longkumar, M. and Sanyal, D. 1993. Effect of plant growth regulators and their methods of application on growth, flowering and yield in tomato (Lycopersicon esculentum Mill.) cv. Pusa early dwarf. Hort. J. 6 (1) : 45-49
*Katayama, K. and Akita, S. 1989. Effect of exgenously applied gibberellic acid (GA3) on initial growth of rice cultivars. Japanese J. Crop Sci. 58(2): 217-224

KAU. 1996. Package of practices recommendations 'CROPS' 1996. Directorate of Extension, Kerala Agricultural University, Thrissur, Kerala.

Kaul, B.L. and Sharma, P.P. 1989. Correlation and path coefficient analysis studies in bell pepper (Capsicum annuum L.). South Indian Hort. 37(1) : 16-18

Konsens, I., Ofer,M. and Kigel, J. 1991. The effect of temperature on the production and abscission of flower and pods in snap bean (Phaseolus vulgaris L.). Ann. Bot. 67 (5) : 391-399

Krishnamohan, V., Rao, G.V.H. and Srinivasalu, R. 1993. Effect of light stress and hormonal sprays on plant growth retention of reproductive structures and yield in chilli (Capsicum annuum L). South Indian Hort. 41 : 22-27

Krishnamoorthy, H.N. 1981. Plant Growth Substances Including Applications in Agriculture. Tata Mac-Graw Hill Pub. Co. Ltd., Bombay. pp. 1-

Lal, S.B. and Singh, R.P. 1961. A note on the stimulation of growth of leaf curl infected tomato plants with gibberellic acid. Science and Culture 27:547-548

Leopold, A.C. 1964. Plant growth and development. Mac-Graw Hill Pub. Co. Ltd., Bombay. pp. 259-267
*Lou, H.N. and Kato,T. 1988. The effects of hormone treatment on the growth, mineral elements and hormone levels in xylem sap in egg plant seedlings. Research reports of Kochi Uty., Agrl. Sci, Japan. 37 :19-27

Lowry, O.H., Rosebrought, N.J., Farr, A.L. and Randau, R.J. 1951. Protein measurement with Folin-phenol reagent. J. Biol. Chem. 193 : 268278

Mahla, C.P.S., Dadheech, R.C. and Kulhari, R.K. 1999. Effect of growth regulators on growth and yield of black gram (Vigna mungo (L.) Hepper) at varying levels of phosphorus. Crop Res. (Hisar) 18 (1): 163-165
*Mamat, A.S.B., Fontenol, J.F. and Newsom, D.W. 1983. The effect of triacontanol on the growth and development of Tobacco pepper. Work Science 18 (2): 247-249

Mathew, A.G., Lewis, Y.S., Jagdishan, R., Nambudiri, E.S. and Krishnamurthy, N. 1971. Oleoresin capsicum. Flavour Ind. 2:23-26

Maurya, C.P. and Lal, H. 1987. Effect of NAA and GA on growth and yield of onion (Allium cepa L.) and vegetable chilli (Capsicum annuum L.). Progressive Hort. 19: 203-206

Mehrotra, O.N., Carg, R.C. and Singh, I. 1970. Growth, fruiting and quality of tomato as influenced by growth regulators. Progressive Hort. 2(1): 57-64

Miniraj, N. and Shanmugavelu, K.G. 1987. Studies on the effect of triacontanol on growth, flowering, yield, quality and nutrient uptake in chillies. South Indian Hort. 35 (3): 362-366

Monge, E., Aguirre, R. and Blanco, A. 1994. Application of paclobutrazol and GA3 to adult peach trees : effects on nutritional status and photosynthetic pigments. Journal of Plant Growth Regulation 13 (1) : 15-19

Mosquera, M.H.I. and Mendez, H.D. 1994. Formation and transformation of pigments during fruit ripening of Capsicum annuum cv . Bola and Agridulce. Journal of Agriculture and Food Chemistry 42(1): 38-44

Mote, V.N., Patil, A.V. and Wavhal, K.N. 1975. Effect of NAA (Planofix) sprays on flower drop and yield in important varieties of chillies. Res. J.Mahatma Phule Agric. Univ. 6 : 57-60

Mukherji, S.K.and Roy, B.K. 1966. Reducing fruit drop in West Bengal. World Crops 18 (3): 34

Nanjappa, P.P. 1965. Certain aspects of floral biology of chilli (Capsicum annuum L.) with special reference to influence of temperature, nitrogen levels and growth substances on flowering and fruit set. Madras agric. J. 52:365

Nariani, T.K. 1963. Effect of gibberellic acid on tobacco leaf curl affected plants. Indian Phytopath. 16:101-102

Narwadkar, P.R. and AnserWadekar, K.W. 1989. Effect of growth regulators on success of epictoyl grofting in mango. Acta Hort. 231 : 175-178

Nazar, A. 1989. Mitigating water stress and root pathogen (Macrophomina phaseolina (Tassi). Goid) by means of potassium spray (KCl) in black gram (Vigna mungo L. Hepper). M.Sc. (Ag) Thesis, Tamil Nadu Agricultural University, Coimbatore
*Negi, L.S. and Singh, A. 1956. A preliminary study on the effects of some hormones on yield of cotton. Ind. Cott.Gr. Rev. 10:153-156

Niranjana, S.R., Pandit, A., Prakash, H.S. and Shetty, H.S. 1999. Effect of triacontanol on the seed quality of maize, paddy and sunflower. Seed Science and Technology 27 (3) : 1007-1013
*Nitsch, J.P. 1952. Plant hormones in the development of fruits. Q. Rev. Biol. 27: 33-57
*Oenofeghara, F.A. 1981. The effect of growth substances on flowering and fruiting of Lycopersicon escutentum and Vigna anguiculata. Phyton Argentina 40 (1) : 107-116
*Omar, N.M., Kandil, M.M. and Hussein, M.M. 1988. Some effects of water deficit and GA on photosynthetic pigments and chemical status of Vicia faba plants. Egyptian J. Agron. 11 (1-2) : 43-52
*Osborne, J.D. 1963. The hormonal control of plant growth. World crops : I 5 (5) : 20
*Palfi, G.E., Koves, M.B. and Sebastian, R. 1974. The role of amino acids during water stress in species accumulating proline. Phyton 32: 127. 129.

Pandita, M.L., Sharma, N.K. and Arora, S.K. 1991. Effect of mixtallol and vipul on growth, flowering and yield of okra (Abelmoschus esculentus L.Moench). Veg. Sci. 18(1):32-40

Pandita, M.L., Pandey, S.C., Mangal, J.L. and Singh, G.P. 1980. Effect of various concentration of planofix as foliar spray on plant growth and fruit yield of chillies. Haryana J. Hort. Sci. 9(3-4): 170-174

Patil, P.K. and Ballal, A.L. 1980. Effect of seed treatment and foliar spray of various plant growth regulators on flower drop and yield of green chilli (Capsicum annuum var. NP-46-A). J. Maharashtra agric. Univ. 5 (3): 195-197

Patil, U.B., Sangale, P.B. and Desai, B.B. 1985. Chemical regulation of yield and composition of chilli (Capsicum annuum L.) fruits. Curr. Res. Reporter 1 (1): 39-43

Pearce, R.B., Brown, R.H. and Balster, R.E. 1968. Photosynthesis of alfalfa leaves as influenced by age and environment. Crop Sci. 6: 677-680

Peter, K.V. 2000. Spices : Diversification vital. The Hindu-Survey of Indian Agriculture. National Press, Chennai, pp. 83-84

Phookan, D.B., Shadeque, A. and Baruah, P.J. 1991. Effect of plant growth regulators on yield and quality of tomato. Veg. Sci. 18(1): 93-96
*Pocock, T.O. 1979. Growth regulator trials. U.K. Rothmstid Exptl. Sta Rep. for 1978. Part 1. Harpanden, Herts.U.P. p. 358.

Prasad, A. and Prasad, R. 1977. Response of tomato to plant growth regulators. Plant Science 9: 89-90

Prasad, A. and Tyagi I.D. 1963. Effect of gibberellic acid on the growth of coriander (Coriandrum sativum L.). Allahabad Farm J. 37 (4): 4349
*Puzina, T.I., Kiriuova, I.G. and Yakushkina, N.I. 1998. Influence of auxin on photosynthetc activity and growth of potato tubers. Russian agric Sci. 11: 12-17

Raghava S.P. and Singh, S.N. 1970. Effect of IAA on vegetative growth and flowering of Calendula officinalis. Punjab Hort. J. 10: 91-100

Rajamani, K., Sundararajan,S. and Veeraraghavathatham, D. 1990. Effect of triacontanol, 2,4-D and boron on the yield of certain chilli (Capsicum annuum L.) cultures. South Indian Hort. $38: 5,253-257$
*Raman, K. 1981. Preliminary observations on productivity in nature cional teas. Bulletin of United Planters Association of South India 37:7586

Ramanandam, G., Sankar, C.R. and Reddy, D.S. 1991. Effect of growth regulators on flower types and fruit set in brinjal. Indian J. Hort. 48 (1): 64-70

Rani, P.U. 1997. Studies on inter relations of fruit yield, yield attributes and some other chracteristics in chilli (Capsicum annuum L.). PKV Res. J. 22 (1): 35-38

Rani, K., Natarajan, S. and Thamburaj, S. 1996. Correlation and path analysis in chilli (Capsicum annuum L.). South Indian Hort. 44 (1\&2): 8-11

Rao, G.R., Rao, G.V.H. and Sujatha, T. 1990. Effect of NAA, IAA and 2,4D on bud and fruit drop in chilli (Capsicum annuum L.). J. Res., APAU 18(4): 349-354

Ray, R.C. 1991. Effect of triacontanol on growth and yield of capsicum (Capsicum annuum L.). Advances in Horticultural Science 5(4): 153156

Reddy, K.S. and Yaraguntaiah, R.C. 1981. Effect of certain plant growth regulators on leaf curl infected tomato (Lycopersicon esculentum Mill.). South Indian Hort. : 199-201

Ries, S.K., Richman, T.L. and Wert, V.F. 1978. Growth and yield of crops treated with triacontanol. J. Amer. Soc. Hort. Sci. 103: 361-364

Ries, S.K. 1985. Regulation of plant growth with triacontanol. Plant Science 2 (3): 239-285.
*Rylski, I., Aloni, B. , Karni, L. and Zaidman, Z. 1994. Flowering, fruit set, fruit development and fruit quality under different environmental conditions in tomato and pepper crops. Acta Horticulturae 366:45-55

Salvi, B.R. 1997. Optimization of shade, nutrients and growth regulators for cut flower production in anthurium. Ph. D. thesis, Kerala Agricultural University, Thrissur.
*Shaddad, M.A. and E1-Tayeb, M.A. 1990. Interactive effects of soil moisture content and hormonal treatment on dry matter and pigment contents of some crop plants. Acta Agronomica Hungarica 39 (1-2): 49-57

Sharma, S.K. 1995. Response of triacontanol application on certain morphological characters, fruit and seed yield and quality of tomato seeds. Ann. Agric. Res. 6(1): 128-130

Sharma, S.K. and Singh, R. 1990. Photosynthetic characteristics and productivity in citrus - Effect of solar photosynthetic flux density, water stress and growth regulation. Indian J. Hort, 47(1): 47-48

Shukla, V. and Prabhakar, B.S. 1989. Response of tomato (cv. Arka Vikas) to mixtallol application. Veg. Sci. 16: 93-95

Sidda Reddy, N. 1988. Effect of mixtallol (triacontanol) on growth, yield and tuber quality of two cultivars of potato (Solanum tuberosum L.). Mysore J. agric. Sci. 22:216

Singh, D.K. 1999. Response of hybrid tomato (Lycopersicon esculentum) to growth regulators. Indian J. agric Sci. 69(7): 523-525

Singh, D.K. and Lal, G. 1994. Response to $2,4-$ D and NAA of chilli (Capsicum annuum L.) cultivars. Recent Horticulture 1 (1): 68-73

Singh, D.K. and Lal, G. 1995. Effect of plant growth regulators on the fruit set, yield and quality of chilli (Capsicum annuum L.) cultivars. Advances in Horticulture and Forestry 4: 133-141

Singh, D.K., Lal, G. and Singh, R.P. 1993. Effect of synthetic auxins on performance of chilli (Capsicum annuum L.) cultivars under Tarai conditions of U.P. during winter season. Progressive Hort. 22 (1-4): 191-197

Singh, S.P. 1995. Responses of tomatoes to growth substances - a review. Advances in Horticulture and Forestry 4: 73-84

Sinha, M.M. and Pal, R.K. 1983. Effect of growth regulators on growth and yield of capsicum (Capsicum annuum L.). Progressive Hort. 12 (2): 65-68

Sinha, M.M.and Pal, R.S. 1980. Studies on vegetative growth and yield of Capsicum annuum L. var. Bullnose. Progressive Hort. 12(2) : 35-38

Sivaraman, K. and Peter, K.V. 1999. An overview of spices development in India, Indian Journal of Arecanut, Spices and Medicinal Plants 1 : 1-11

Snedecor, W.G. and Cochran, W.G. 1967. Statistical Methods ($6^{\text {th }}$ Edn.). Oxford and 1BH Publishing Co, Calcutta. p. 593

Srinivas, K., Prabhakar, B.S. and Shukla, V. 1986. A note on the response of hot pepper (Capsicum annuum L.) green chillies to atonik application. Haryana J. Hort Sci. 15 : 293-294

Srivastava, R.P. and Adhikari, B.S. 1972. Effect of pre-sowing treatment with growth substances on important vegetable crops. Punjab Hort.J. 12 (2\&3): 183-188

Stowe, B.B. and Yamaki, T. 1959. Gibberellins: Stimulants of plant growth. Science 51: 807-816

Subbiah. S., Ramanathan, K.M. and Francis, H.J. 1989. Effect of triacontanol on ascorbic acid content and yield of tomato var. Pusa Ruby. Madras agric. J. 67 (11): 758-761

Taiz, L. and Zeiger, E. 1998. Plant Physiology . $2^{\text {nd }}$ Edition. Sinauer Associates, Inc. Massachusetts. pp. 543-650

Takagaki, M. 1993. Influence of day temperature on RGR and NAR of 4 pepper (Capsicum annuum L.) varieties. Japanese J. Trop. Agric. 37 (4): 277-283.

Thakur, A., Thakur, P.S., Attiri S. and Kanaujja, S.P. 1999. Effect of bioregulators on fruit yield and quality of bell pepper varieties under water stress. Ann. agric. Res. 20(3) : 313-317

Tomar, T.S. and Ramagery, S.R. 1997. Effect of growth regulators on yield and yield attributes in tomato (Lycopersicon esculentum Mill.). Advances in Plant Science 10 (2): 29-31

Umajyothy, K. and Shanmughavelu, K.G. 1985. Studies on the effect of triacontanol, 2,4 - D and boron on the yield of brinjal cv. MDU. 1. South Indian Hort. 33: 234-239

Usha, P. 1988. Regulation of flowering and fruit set in clustered chilli through the use of stimultants, antitranspirants and regulators. M.Sc. (Hort.) thesis, Kerala Agricultural University, Thrissur.

Usha, P. and Peter, K.V. 1988. Control of flower fall through stimulants and regulators in chilli. Veg. Sci. 15(2) : 185-189

Vijayalakshmi, Y., Rao,M.R., Reddy, E.N. and Murthy, N.S.R.C. 1988. Phenotypic and genotypic correlations between different economic traits in chilli (Capsicum annuum L.). South Indian Hort. 36 (5) 245-247

Vijayaraghavan, H. 1999. Effect of seed treatment with plant growth regulators on bhendi (Abelmoschus esculentus L.) grown under sodic soil conditions. Madras agric. J. 86 (4-6) : 245-249

Warade, S.D.and Singh, K. 1977. Effect of planofix on control of flower drop and fruit set in chillies (Capsicum annuum Linn.). Pesticides 3: 24-26

Wareing, P.F. and Patric, J. 1975. Source sink relations and the partition of assimilates in the plant. Photosynthesis and productivity in different environments. (Ed.) Cooper, J.P. Cambridge University Press. London.

Watkins, J.T. and Cantliffe, D.J. 1983. Hormonal control of pepper seed germination. Hort. Sci. 18 (3) : 342-343

Watson, D.J. 1971. Size, structure and activity of the productive system of crops. Potential crop production. (Eds.) Wariegn, P.F. and Wooper, J.P. Weireman Education Books, London.

Watson, D.J.1958. The dependence of net assimilation rate on leaf area index. Ann. Bot. 22: 37-54

Wein, H.C. 1990. Screening pepper cultivars for resistance to flower abscission : a comparison of techniques. Hort. Sci. 25 (12) : $1634-$ 1636

Wein, H.C., Turner, A.D. and Yang, S.F. 1989. Hormonal basis for low light intensity-induced flower bud abscission of pepper. J. Amer. Soc.
Hort. Sci. 114: 981-985.

Williams, R.E. 1946. The physiology of plant growth with special reference to the concept of NAR. Ann. Bot. $10: 41-71$
*Zhang, F.M., Voican, I., Molea, I. and Popescu, V. 1985. Effect of some synthetic biostimultants on green house grown capsicum seedlings, cv. Bruinsma Wonder. Institutul Agronomic " N. Balcescu". (Horticultura). 28: 7-17

Zhou, W., Tao, S. and Zhao, D. 1995. Physiologic regulation of mixtallol in rape senescence and its yield effects. Journal of Plant Growth Regulation 14 (1): 37-40
*Zrust, J. 1994. Response of potato plants to drought stress by increasing proline levels in tubers. Rostlinna Vyroba 40 (8):711-720

* Originals not seen

Appendices

APPENDIX - I

Soil characteristics of the experimental field

	Particulars	Content
1.	Mechanical composition (per cent)	
a)	Coarse sand	16.70
b)	Fine sand	31.30
c)	Silt	25.50
d)	Clay	19.20
2.	Physical properties	1.33
a)	Bulk density (g cc-1)	20.03
b)	Water holding capacity (per cent)	30.65
c)	Porosity (per cent)	282.24
3.	Chemical properties	40.56
a)	Available Nitrogen (Kg ha-1)	160.35
b)	Available Phosphorus (Kg ha-1)	1.28
c)	Available Potassium (Kg ha-1)	4.80
d)	Organic Carbon (per cent)	
e)	Soil reaction (pH)	

APPENDIX - II

Weather data for the cropping period - December 1999 to March 2000 at Instructional Farm, College of Agriculture, Vellayani

Date (Weekly Average)	Temperature ${ }^{\circ} \mathrm{C}$		Relative Humidity (\%)	Wind velocity (km/h)	Rainfall (mm)	Sunshine hours	Soil temperature$-5 \mathrm{~cm}(\mathrm{C})$
	Maximum	Minimum					
Dec. 1 to Dec. 6	30.08	22.50	82.21	2.85	0.88	4.42	30.60
Dec. 7 to Dec. 14	31.47	21.94	79.21	2.42	0.00	3.59	30.48
Dec. 15 to Dec. 21	30.47	21.68	78.07	3.14	0.00	4.87	26.84
Dec. 22 to Dec. 28	30.74	21.32	77.00	3.00	0.05	4.08	31.22
Dec. 29 to Jan. 4	30.85	20.78	78.14	3.42	0.00	4.99	31.99
Jan. 5 to Jan. 11	30.97	23.14	78.78	2.42	1.07	3.85	32.10
Jan. 12 to Jan. 18	30.91	22.47	79.07	2.85	0.24	5.14	32.25
Jan. 19 to Jan. 25	30.45	20.35	78.07	2.85	0.00	6.91	32.69
Jan. 26 to Feb. 1	31.40	20.87	75.57	3.28	0.00	7.22	34.72
Feb. 2 to Feb. 8	30.52	22.67	79.57	3.00	14.02	5.93	32.69
Feb. 9 to Feb. 15	30.94	22.38	77.92	3.57	0.37	8.94	33.59
Feb. 16 to Feb. 22	30.85	22.55	76.57	3.14	0.00	8.48	34.23
Feb. 23 to Feb. 29	31.05	29.74	78.00	2.71	0.20	6.80	34.58
Mar. 1 to Mar. 7	31.52	22.75	77.78	3.28	0.17	7.88	35.52
Mar. 8 to Mar. 14	32.00	23.94	76.42	3.42	0.68	9.20	36.38
Mar. 15 to Mar. 21	31.84	23.31	76.42	2.85	0.48	9.72	37.19
Mar. 22 to Mar. 28	32.45	23.20	75.42	3.28	0.00	9.01	37.00
Mar. 29 to Mar. 31	32.60	24.43	78.00	3.66	0.00	9.10	38.10

EFFECT OF GROWTH REGULATORS ON FLOWER AND FRUIT DROP IN CHILLI (Capsicum annuum L.)

By
SREEJA RAJENDRAN

ABSTRACT OF THE THESIS
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR
THE DEGREE
MASTER OF SCIENCE IN AGRICULTURE
FACULTY OF AGRICULTURE KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF PLANT PHYSIOLOGY COLLEGE OF AGRICULTURE VELLAYANI
THIRUVANANTHAPURAM

Abstract

Investigations were carried out at the Department of Plant Physiology, College of Agriculture, Vellayani during December 1999 to March 2000 to find the effect of growth regulators viz. IAA, NAA, Triacontanol and GA in controlling flower and fruit drop in chilli var. Jwalasakhi. IAA, NAA and GA were used at concentrations of $10,20,30$ and 40 ppm while Triacontanol was used at $1,2,3$ and 4 ppm . Two controls were also provided, one with distilled water spray and the other with no spray. Two sprays of growth regulators were given, one at 20 days after transplanting and the other at 40 days after transplanting. The effect of these growth regulators on morphological, growth, physiological, biochemical and yield parameters were also studied.

The growth regulators produced considerable variation with respect to intensity of flowering, flower drop, fruit set and fruit drop. The flower production was increased upto 45.5 per cent with IAA 30 ppm . IAA 40 ppm was most effective in reducing the flower drop by 48.06 per cent increasing the fruit set by 69.18 per cent when compared to control (water spray). NAA 30 ppm induced earliness in flowering (23.17 days) and GA at 40 ppm showed the maximum plant height $(38.93 \mathrm{~cm})$.

The plants treated with GA 40 ppm showed the maximum leaf area (478.04 cm^{2} plant ${ }^{-1}$) and leaf area index (0.23). NAA 20 ppm recorded the highest specific leaf weight $\left(1.30 \mathrm{~g} \mathrm{~m}^{-2}\right)$ and IAA 30 ppm , the maximum leaf area ratio $\left(1.08 \mathrm{~m}^{-2} \mathrm{~g}^{-1}\right)$. The plants sprayed with Triacontanol 2 ppm showed
the highest crop growth rate $\left(2.24 \mathrm{~g} \mathrm{~m}^{-2}\right.$ day $\left.^{-1}\right)$, relative growth rate $(0.033$ $\mathrm{mg} \mathrm{g} \mathrm{g}^{-1} \mathrm{day}^{-1}$) and root-shoot ratio (0.69). Highest net assimilation rate (0.75 $\mathrm{mg} \mathrm{cm}^{-2}$ day $^{-1}$) was seen in plants sprayed with IAA 20 ppm .

Significant influence of growth regulators was observed in the physiological and biochemical parameters studied. The highest photosynthetic rate ($28.09 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$) was seen in plants sprayed with IAA 40 ppm . GA 20 ppm recorded the highest transpiration rate (0.74 milli mole $\mathrm{m}^{-2} \mathrm{~s}^{-1}$). Stomatal conductance was maximum (78.0 milli mole $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) in control plants followed by Triacontanol 1 ppm with a value of 70.9 milli mole $\mathrm{m}^{-2} \mathrm{~s}^{-1}$. IAA 30 ppm had a significant role in increasing the photosynthetic pigments viz., chlorophyll-a content (0.54 mg g fresh weight ${ }^{-1}$), chlorophyll-b content $\left(0.80 \mathrm{mg} \mathrm{g}\right.$ fresh weight $\left.{ }^{-1}\right)$ and total chlorophyll content $(1.13 \mathrm{mg} \mathrm{g}$ fresh weight ${ }^{-1}$). Foliar sprays of Triacontanol 4 ppm produced the highest protein content ($1.65 \mathrm{mg} \mathrm{g}^{-1}$) in leaves and GA 40 ppm recorded the highest carbohydrate content ($112.50 \mathrm{mg} \mathrm{g} \mathrm{g}^{-1}$). The proline content of leaves was more in Triacontanol 2 ppm sprays. The highest reducing sugar content (9.68 g glucose $100 \mathrm{~g}^{-1}$) of ripe fruits was seen in NAA 20 ppm , carotenoid content of $2.69 \mathrm{mg} 100 \mathrm{~g}^{-1}$ in IAA 40 ppm sprays and the capsaicin content of 67.52 μ gram gram $^{-1}$ was recorded in IAA 10 ppm treated plants.

Significant effect of growth regulators was seen in the yield parameters also. The maximum fresh weight (66.11 g plant $^{-1}$) and fruit yield (183.66 g plant ${ }^{-1}$) was seen in IAA 20 ppm sprays. The fruit yield was 42.6 per cent when compared to control. Triacontanol 3 ppm recorded the highest dry
weight ($13.22 \mathrm{~g} \mathrm{plant}^{-1}$) and germination percentage (87.16) of seeds. The number of fruits per plant (48.83), thousand seed weight (4.62 g) and harvest index (0.77) was maximum in foliar sprays of IAA 40 ppm . The maximum fruit length (7.87 cm) was recorded in Triacontanol 2 ppm while NAA 40 ppm showed the maximum breadth (1.76 cm) of the fruits.

Correlation studies indicated significant positive association of fruit yield with number of fruits per plant, harvest index and root shoot ratio. In terms of net income and benefit-cost ratio, foliar sprays of Triacontanol 1 ppm was the most remunerative. An additional expenditure of Rs. 1210 per hectare towards the growth regulator showed 51 per cent more yield over control and thus a greater benefit-cost ratio (1.51).

[^0]: ** Significant at 0.01 level
 () Indicates percentage increase over $C_{1}[]$ Indicates percentage decrease over C_{1}

[^1]: * Significant at 0.05 level
 () Indicates percentage increase over C_{1}

[^2]: ** Significant at 0.01 level
 () Indicates percentage increase over C_{1}

[^3]: ** Significant at 0.01 level
 () Indicates percentage increase over C_{1}

[^4]: Significant at 0.01 leve
 () Indicates percentage increase over C_{1}

[^5]: Growth regulators

