Stand Density Regulation in Even Aged Teak Plantations

By
PRASOOH KUMAR

SUBmitted in partial fulfilment of the FEQUIREMEHT FOR THE DEGREE

MASTER OF SCIENCE IN FORESTRY
kerala agricultural uhiversity

FACULTY OF AGRICULTUBE

Dedicated to
Dr.J.P.Srivastwa

DECLARATION

I hereby derlare that this thesis entitled "stand
density regulation in even-aged teak plantations" is a
bonafide record of research work done by me during the course
of research and that the thesis has not previously formed the
basis for the award to me of any degree, diploma,
associateship, fellowship, or other similar title, of any
other University or society
Place Vellanikkara
Date. 71991

CERTIFICATE

Approved by :

Charrman

Dr B Mohankumar

Members

2 Dr N K Vıjayakumar

3 Prof P V Prabhakaran

External Examiner

Ati Qhandrabeh anarib

CONTENTS

Page no
Acknowledgements V.1 - V.1.1 INTRODUCTION$1-4$
2. REVIEW OF LITERATURE $5-25$
2.1 Density Maragement
2.2. Biologiral Basis of Density Management221 Competition222 Self - thinning
223 Spacing
224 Thanning
225 Stand density indices
23 Emperical Approaches for Density Regulation
2.31 Percentage helght approach232 Helght and density approach233 Diameter and density approach234 Density management diagrams
3. STUDY AREAS $26-32$
3.1. Parambikulam (Wıldlıfe Sanctuary)
31.1 Geology, soil and climate
312 Management of teak plantations32 Thrissur Forest Division3.2 1 Geology, soil and climate322 Teak Plantations

CONTENTS (continued)

Page no
3.3 Chalakudy Forest Division
331 Geology, soil and climate
332 Teak plantation
4 MATERIALS AND METHODS
$33-37$
4.1 Statıstical Models Used
42 Construction of Density Management Diagram
5. RESULTS AND DISCUSSION
$38-68$
5.1 Stand Growth and Yield Characteristics
52 Mean Annual Increment (MAI)
53 Maximum Size density Relationship
54 Growth-growing Stock Relationship
55 Construction of Density Management Diagram
551 Regression models
552 Density management diagram format
5 6. Designing Density Management Regimes
5 6.1 Situation I. Log regime
5.6 2 Situation II: Pole production
5.7 Potentials and Limitations of Density managment Diagram
6 SUMMARY
7 REEERENCES
6^{9-72}

1 - K 11
APPENDICES
ABSTRACT

ACKNOWLEDGEMENTS

I wish t express my deep sense of gratitude and indebtness to D_{2} B. Mohankumar, Associate Professor, College of Forestry, Kerala Agricultural Unıversity, and Chaırman of my Advisory Committee for his valuable guidance, critical suggestions and constant encouragement during the course of this investigation and writting of this thesis

I am grateful to Dr C C Abraham,Associate Dean and Special Officer, Dr N K Vifayakumar, Associate Professor, College of Forestry, and Prof. P V. Prabhakaran, Professor, College of Horticulture, for their sincere help, guidance, inspiring suggestions and encouragement during the course of the investigation and also the preparation of the manuscript

I would also like to thank to Prof V K G Unnithan, College of Horticulture, Dr. Molly Kutty George, Mr Vishwanathan and Staff of the Computer Centre of Kerala Agricultural University for helping me in the tedious computations

I thank Mr V R K Nar, Former Sepcial Officer, College of Forestry, Dr. K. Sudhakara, Associate Professor, College of Forestry for finding time to help me

Thanks are due to Prof Kalayan Raman, Dept of Statistics, Kerala Unıversity, Trıvandrum, Mr Suresh, Centre for Development Studies, Trivandrum, Dr K Jayaraman, Statistician, Kerala Forest Research Institute for the statistical advice and help

I am greatly indebted to the Kerala Forest Department, specifically the Chief Conservator of Forests, Mr. V K Uniyal, wildlife warden, Mr O P Kaler, Assistant Conservator of Forest, Parambikulam, Divisional Forest Officers, Trichur and Gnalakudy, Range officers, Parambikulam, Karimala, Sungam, Pattikad, Pariyaram and Vellikulangara ranges for their kind co-operation during field work.

The author is also grateful to library staff of Kerala Forest Research Institute, College of Hortıculture and College of Forestry, Kerala Agricultural University, Vellanikkara for the invaluable help and assistance received during the course of this research work

I am thankful to Kerala Agricultural Univerisity for granting me a Junior Fellowship and also contingent expenditures for the research, without which this work was not possible

Last, but not the least, I would like to thank Mr S.S.Hyder Hussain, Mr Sanjaykumar Gawande, Mr Y B Taide, Mr K C. Mahato, Mr. Harvinder Singh Balı, Mr Monıram Moktan, Mr. Abdul Aziz, Mr Deen Mohammed, Mr M K Srinivasan for the help and encouragement received at various stages of this work.

1. INTRODUCTION

1. INTRODUCTION

Abstract

Teak (Tectona grandis Linn. f.) is the paragon among oriental tumbers It 1 s used for various kinds of works such as house building, carpentry, furniture making, wood carving etc In it natural habitat, teak forms a part of the moist and dry deciduous forests Teak plantations were extensively raised throughout Kerala, since the beginning of the last century The state has currentl, total area of 72,415 8 hectares under teak (KSFD, 1988) Many of these plantations are, however, in a state of neglect (Karunakaran, 1970; Iyer, 1982)

With regard to plantation management in teak, longer rotations were practised in several forest divisions in the Kerala State, eg Wynad (Adiyodi, 1973) in order to produce larger sized logs, for which there was great demand Afterwards, these rotations were reduced and now a general rotation age of 60 years $1 s$ being prescribed for teak in many parts of the state It $1 s$ felt that the motivation for the reduction of the rotation age was only to get yield in a shorter period of time This system is not based on any scientific considerations

Again, thinning schedules, which, ideally, must depend on initial spacing, site, topography, product output, utilization standards, management objectives, availability of labour and equipment, nearness to market etc, are
surprisingly uniform in many parts of the state $4,8,13,20,30$ and 45 years or 1 ts slight variants are common (Karunakaran, 1970; Adiyodi, 1973, Iyer, 1982) In this connection, Sagreiya and Chacko (1962) have found that a rotation age of 45 years is the best for producing poles of 12 inch diameter in the quality class $I I$ forests with initial 233 elites per acre with tending

The fixed rotation system as well as the rigid thinning cycles currently in vogue are perhaps consistent with the regulation of yield by area (Vasudevan, 1966), but certainly inconsistent with site-specific stand density management What $1 s$ required today $1 s$ the management of plantations on scientific lines to fulfil the various forest management objectives

Density management $1 s$ the manipulation and control of growing stock to achieve specific stand management objectives. These management objectives must be converted into stand level prescriptions. The first stepin d nsity management $1 s$ to translate the stand management objectives into appropriate level of growing stock congistent with these objectives In this context, the control of growing stock to achieve a certain management objective is of critical importance The control of density levels (growing stock) in a stand has tremendous impact on the stand
structure, productivity, and ability to produce a varity of resources (Daniel et al., 1979) Density management is the single most influential activity the silviculturist can perform between successive regeneration periods (Long, 1985) The manipulation of density (perhaps without affecting the stem form) would probably be the surest means for achieving diverse stand management objectives, such as producing large sized logs quickly (sudden sawlog regimes) or maximization of volume growth (as in the case of poles, small timber etc.).

Designing appropriate density management regimes to meet specific management objecties would therefore, be the logical course of action, considering the time value of money. Therefore, stand density management for specific management situation would be worth considering. This aspect has been completely ignored in the past in our country.

Various graphical aides have been developed for use in density management in other parts of the world using indexes based on size-density relationships (Gingrich, 1967, Wilson, 1979). The pioneer in this context $1 s$ Ando (1968), who has developed "Stand Density Control Diagram" for most of the important commercial timber species of Japan Similar diagrams have been produced for coastal Douglas-fir

2. REVIEW OF LITERATURE

(Pseudotsuga m plesil Mirb Franco.) (Drew and Flewelling, 1979) and lobl y pine (Pinus taeda L) (Flewelling, 1981) and lodgepole pine (Pinus contorta var latifolia Dougl) (Mc Carter and Long, 1986) in North America These diagrams are also being adopted to suit different management objectives like wildlife habitat improvement (Smith and Long, 1987) and traditional forestry (Long, w al., 1988) Density Management Diagrams incidentally are simple stand average models that 1 epresent dimensional relationships in a graphical form. These diagrams help resource specialists predict and display the consequences of stand density manipulation and also, translate the management objectives into practical density management regimes (Long et al, (988).
In the present study an attempt is made to develop a
density management diagram for teak to facilitate stand
density management for diverse objectives and also to
demonstrate $1 t s$ utility for designing alternate density
management regimes compatible with different management
objectives

2. REVIEW OF LITERATURE

2.1. Density Ma sment

Density management is the manipulatson and control of growing stock to achieve specific management objectives While the actual control of growing stock is relatil ly easy to achieve through initial spacing and intermediate cuttings, the determination of appropriate levels of growing st ck at the stand level $1 s$ a complex process involving biological, technological and economic factors specific to a particular management situation (Davis, 1966). The control of density levels in a stand has tremendous 1 mpact on stand structure, productivity and its abilıty to produce multiple outputs.

2.2. Biolopical Bas18 of Density Manapement

Small initial difference in seed size, time of germination, growth rate etc leads to greater differences as the monoculture stand develops (Black, 1958; Black and Wilkinson, 1963) After sometime, it results in very dominant and suppressed individuals in the stand As the over - crowded stand grows, the death of the suppressed individuals occur and this, in turn, reduces the plant density. The death may occur because of catastrophic causes namely, disease, fire or wind throw, or due to the competitive interaction between individuals

Abstract

2.2.1. Compgtition: The plant competition may be defined as "the tendency of neighbouring plants to utilise the same quantum of light, ion of a mineral nutrient, molecule of water, or volume of space " (Grime,1973) Under competitive conditions the form or size of plant may be modifie without leading to death of the plant These modifications are known as plastic responses (Hutchings and Budd, 1981).

Competition that trees experience early in stand development influences not only the rate of growth but also the form and eeneral appearance of therr boles (Baker, 1934) As the population continues to grow, a point is reached when the habitat may support no more biomass, the carrying capacity has been reached and any further growth can occur only at the expense of some blomass already present Thus, parts of plants or even whole plants will be lost from the population. These are usually the smallest and most suppressed individuals (Ford, 1975, Harper, 1977)

Even in a line thinned crop, those trees not adjacent to a removed line will have a relatively higher stocking density and hence higher mortality rates than those which are adjacent to a removed line (Rennolls and Peace, 1986) Generally speaking, increase in stand density causes a decrease in tree growth According to Sakaı et al (1987) even an increase of one tree would reduce the dimeter (d b h)
growth of neighbouring trees to the tune of about 075 cm This mec hat growth of one tree occurs at the expense of the other trees growing within a given distance. To sum up, competition in a plant community is a density dependent natural phenomenon and has a marked effect on the diameter growth
2.2.2. Self - thinning: All stands, whether of artificial or natural origin, start their life with a very much larger number of seedlings per unit area, compared to the number of trees that remain at maturity This reduction in number of plants $1 s$ due to the fact that the area has limıted resources for tree growth Therefore, as the seedlings grow, they compete amongst them for the limited sile resources In this struggle for existence only the most vigorous and the best adapted to the environment forge ahead leaving behind the rest The plants that are dying in this struggle are generally those which occupy lower layers of the canopy of a regular crop or smaller individuals (Ford, 1975, Harper, 1977; Khanna, 1984) This type of reduction in population $1 s$ called self-thinning The self-thinning may, therefore, be defined as "mortality imposed by crop on itself" (Westoby, 1984)

The atif-tifitifite 1 tit yourit teak (Tectona grandis Linn.f.) plantation was reported as early as in the 30 's, and
it was referred to as natural thinning. It was found that the number of trees reduced naturally and the suppressed and dominated trees were victims of this process (Shirley, 1929) After a period of 20 years mortality reduced the number of trees to an extent of $36-52 \%$ of the initial number of trees per hectare (Hellinga, 1939)

The relationship between size and density of individuals in populations experiencing density related mortality has been characterised by the "self-thinning rule" (Yoda et al, 1963). The self-thinning law quantified the relationship between number and average diameter on double logarithmic scale. Ohn Moung (1968) found a closer linear correlation between the logarithm of number of stem per acre and logarithm of average diameter, which could be used to calculate the stem number as given 1 n the yield table for a given average diameter with direct reference to plantation age.

The characteristic equation of the rule $B=C N \quad<$ (where $B=$ Biomass per unit area, $N=$ density of survivors, C is a constant) defines a straight thinning line of slope -1/2 on -3/2
double logarithmic scale Yoda's law, $W=C N$ defines the thinning line of slope - $3 / 2$ on a gragh of log W Vs log N Stands of small plants tend to accumulate biomass until they approach the thinning line Then they suffer mortality in
relation to biomass accumulation as they travel along this line (trajectory) The thinning line, therefore, represents a sort of dynamic upper equilibrium condition (Westoby, 1984).

The simple geometric model, developed by Yoda et al (1963) to explain interspecific weight/density relationship during self thinning of over - crowded stands of individual plant species seems also to apply to interspecific weight/density relationships among diverse species of similar morphology (White and Harper, 1970) or two contrasting species (Bazzaz and Harper, 1976) or ranging in shoot weight and in shoot density (Gorham, 1979). Kumar et al. (1989) reported that in a mixture of two dissimilar species, the self-thinning behaviour of the whole population is dictated by the dominant species in the size heirarchy and the size density relationship of the sub-ordinate species assumed a shallower slope prior to 1 ts elimination from the population Adherence of the self-thinning rule is a characterstic of shoots but not of whole plants of Lolium perenne (Lonsdale and Watkinson, 1982) They found that the thinning line for shoot plus root per plant was shallower than the thinning line for shoot weight per plant They further added that population grown in deep shade underwent thinning, but alone a line of slope of minus one, when sown at low density However, those sown at very high densities underwent an

Abstract

initial period of thinning following the rule but then followed a slope of mınus one It has been suggested that the self-thinning rule might be better stated in terms of canopy volume rather than weight (Lonsdale and Watkinson, 1983; Long and Smıth, 1984) Carleton and Wannamaker (1987) in their study 1 dentified the ecosystem processes related to changes in nutrient relations during stand growth which has a profound influence on the self-thinning behaviour in natural black spruce (Picea mariana) stand The tolerant species have also the same mortality as intolerant species (Zeide, 1985)

Weller (1987) on reanalysing many published data in support of thinning rule found that about one-third of them did not show any significant relationships between stand blomass density and plant density and out of the rest twothird, almost half were significantly different from the slope of manus half, the value predicted by thinning rule Deviations of the thinning slope from the predicted values are particularly 1 mportant because $1 t$ is the exponent of the power relationship So even small differences in slope represent large differences in the predictions of the equation. In the light of his and some other studies Weller (1987) suggested that the thinning rule as a qualitative law should be discarded, and the many claims made for the generality, theoretical importance, and an icability of the
rule should be carefully re-evaluated

Lonsdale (1990) after re-analysing the evidences put forward by the supporters (Lonsdale and Watkinson, 1982, Westoby, 1984) and opponents (Zeide, 1985, Weller, 1987) of the $-3 / 2$ self-thinning rule has reached the conclusion that the relatıons ip between shade tolerance or taxonomic aroups and the slope of the thinning exponents are weak. However, he was of the view that more experiments are required for the final rejection of the idea that there $1 s$ an 1 deal slope

The relationship between size and density of individuals in population experiencing density related mortality has been characterised by the self-thinning rule Self-thinning reduces the number of stems in a population due to the mortality of the supprawed and dominated individuals However, of late, several workers have questioned the universal constancy of the self-thinning exponent

low stand density was found to have more laree and fewer small branches than when stand density was high (Ballard and Long, 1988) They have also found a simılar relatıonship between number and diameter of green branches of lodgepole pine and have suggested that as density management cannot elimınate branches and, therefore, elımate knots, but it can control their sizes The initial density may be then based on the largest acceptable knot sıze for a particular product

Some authors suggest artificial pruning to 1 mprove the quality of logs in widely spaced plantation (Ware and Stahelin, 1948, Box et al , 1964, Brender, 1965, Bennett, 1969, Feduccia and Mosier, 1977) Intermediate spacıngs (1500 - 2000 trees per hectre (TPH) depending on site) coupled with thinning was suggested as the best compromise where multiple products are the objectives (Nebeker et al , 1985).

Many studies were made to quantify the effect of spacing of plantation on diameter and height growth (Rudolf 1951; Guilkey and Westing, 1956, Wilde et al , 1968, Zavitkovski and Dawson, 1978) Zavitkovski and Dawson (1978) ${ }^{(0)}$) height growth was depressed in higher density plantations compared to the average height at wider spacings and concluded that the main reason for height growth depression
was competition for light However, Lanner (1985) observed that the additional resources made available due to the increased spacing were not drawn to the leader, but were used else where in the tree as in the vascular ${ }^{\text {cambinm }}$, So, the height growth was not affected by the change in spacing but the radial growth increased Again, Zavitkovski and Dawson (1978) reported that basal diameter and breast height diameter growth were more in wider spacings Results of Barrett (1981) also indicate the same trend He found that the average rate of diameter and basal area growth were approximately twice in the widest spacing (1e. 62 trees/acre) than that of the narrowest spacing (i e. 500 trees/acre). However, the average height of trees on low density plots was greater than that of those on the high density plots. These results also hold good for Eucalyptus cloezina (Saramaki and Sekelı, 1984) They found significant difference in diameter development but height growth was not significant.

Although volume production may be independent of initial spacing, stocking will have a marked effect on the diameter growth, as well as the length of time necessary to produce a product of a desired size (Nebeker et al, 1985) Therefore, several workers (Ek and Dawson, 1976, Zavıtkovskı and Dawson, 1978, Outcalt, 1986) have attempted fixing rotation length according to the density of the stand A
rotation of 20-25 year has been recommended for Pinus clausa var. 1 mmugınata for a density of 600 stems per acre (Outcalt, 1986). It was found that the total merchantable volume was greater at this density He has also found significant differences in diameter development. At lower densıty, it was significantly greater but the net volume was less
Several workers suggested that although total volume was
less, wide spacing (10×10 feet or more) produced more
board foot volume in a relatively short rotation of $25-35$
years than closer spacings (Bennett, $1963,1969,1971$,
Shepard, 1973 , Arnold, 1978 , Shelton and Switzer, 1980,
Burton, 1982)

The effect of spacing on different tree characters has been studied. One important tree charactteristic that depends both on height and diameter is the slenderness ratio or taper (Assamann, 1970). Zavitkovski and Dawson (1978) indicated that the dominant trees taper more rapidly and also survival increased with increasing spacing The average tree werght as well as werght of all tree components - stems, branches and needles - increased with increasing spacing for Jack pine (Pınus banksiana)

Pearson et al (1984) found that the ru to between sapwood area and follage area was influenced by stand density The ratio, was quite different for an open stand
(400 to 1300 TPH) in comparison to that of a dense stand (more than 9000 TPH) In contrast, Hungerford (1987) did not find any influence of stand density on the ratio of folıage area basal sapwood area for lodgepole pine Studies in a natural forest of Ohi (Albizia chinesis Osbeck Merr (showed that density was inversely related to bark per cent and dıameter (Sagwal and Gupta, 1987)

Theoretical stability calculations for unth. ed plantation of Sitka spruce (Pıcea sitchensis) at different spacing showed that the increase in resistance of uprooting or stem breakage as a result of incresing the mean tree size outwelghed the greater drag force on the crown (Blackbury and Petty, 1988) They concluded that incrasing the spacing beyond the currently accepted norm of 2 meters would appear to 1 mprove stability

It can be summarised that spacing, either inital or after thinning, has a pronounced effect on height, diameter growth and biomass increment and thus affects the volume increment Spacing indirectly affects all those tree characters that depend on height and diameter (e g.taper) and also the rotation length required to produce a desired dimension loe or timber Resistance to stem breakage and uprooting can also be improved with correct spacing between trees
2.2.4. Thınnıng: Stand Self - thinning confers advantages such as increased height growth of the survivors, retention of more vigorous and in most cases, straight and more cylindrical stems However, it adversely affects the growth of even the domanant trees (Khanna, 1984) Therefore, it is necessary that the number of plants per unit area in stands $1 s$ gradually reduced as the crop advances in age $1 . e$ the stands should be thinned as they grow with age

Thinning may, therefore, be defined as "a felling made in an immature stand for the purpose of improving the growth and form of the trees that remain, without permanently breaking the canopy" (Khanna, 1984) Thinning is done only to regulate the distribution of the growing space for the purpose of 1 mproving the growth

It was seen that heavy thinning, in suppressed forests of good or better site quality, increased volume of standing timber than low light thinning due to higher radial growth rate, but not height Heavy thanning of domanant trees and heavy partial clearance of forest stimulated diameter growth, but later affected the yield, form and branching adversely (Beumee, 1922) It is now generally accepted that teak requires ample room for its development and that once the crown have been allowed to be restricted they do not respond rapidly to a thinning The aim of thinning must, therefore,
be to allow a healthy development of the crown while at the same time retaining as many trees per acre as possible It $1 s$ found that once a teak plantation has been allowed to get congested, the annual increment is not only reduced but that $1 t$ takes a number of years after thinning have been carried out to bring the current annual increment up to what it would have been if the stand was correctly thinned (Blanford, 1923)

Shirley (1928) reported that neglect and delay of thinning results in congestion of crown, poor under growth, erosion and slow growth increment and deficient volume Less diameter growth is the common features of unthinned stands than the thinned plantation However, the number and the total basal area per hectare was generally more in those stands Hellinga (1939) had reported a 5-25 per cent reduction in volume of the unthinned stand when total volume was taken into consinderation. Thinning intensities have negligible influence on height of trees in dominant and codominant positions (Wilson, 1946, FRI, 1955) Thinning affects the radial growth of individual tree positively and tree height growth negatively (Hibbs et al, 1989)

The average diameter of thinned crop and the main crop were independent on site quality and thinning grade for teak Within the range of C and D grade of ordinary thinning
(Mathauda, 1954) Studies at FRI (1955) revealed that heavier grades of thinning gave progressively higher diameter increments But at the end of 16 years, the yield of useful basal area and that of total volume produced decreased as intensity of thinning increased Similar results have been reported by Pongsopha (1962) also However, he observed significant height growth in 80% more removal than normal He sugested that a heavy thinning for teak is desirable Sarlin (1966) considered selection thinnıng better than mechanıcal thinnıng sınce the increment after first thinning of about 50% in the tenth year was grater Even in coppice forest of teak, it was found that the volume increased greatly in thanned shoots than unthinned ones (Edıe, 1916) He recommended the thinning out of inferior coppice shoots of teak only after 10 years.

Early heavy thinning is not advis Gable for teak because the young crop will become branchy and the danger of storm damage to young shallow rooted t_{2} es will be grater As the tree becomes branchy, pruning becomes necessary which is too expensive. Again, weed control will be difficult and also the thinned material at the age of first four years are too small to be merchantable Drastic opening of the canopy also can cause site degradation (Khalıl, 1943) But frequent light thinnings may yield a better quality product and perhaps more board foot volume than heavier thinnings
(Farrar, 1968; Fender, 1968, Feduccia and Mosier, 1977).

Abstract

Bryndum (1987) found that yield per hectare was independent of stand density in stands thinned lightly. He recommended an early moderate thinning followed by a slightly more intense thinning for beech which would produce good quality timbers. Leduc and Zeide (1987) reported that density and pruEning intensity had direct and inverse relationship with volume, respectively It was found that different intensities of thinning had no significant effect on average wood density of Cupressus lusitanica (Malende and Dingo, 1987).

Thinning affects the diameter growth, yield and branching Neglect or delay of thinning causes adverse effect on undergrowth, erosion and growth increment and volume Thinning has negligible influence on height growth of trees
2.2.5. Stand dengity indices: Drew and Flewelling (1979) has given a relative density index (the ratio of actual stand density to the maximum stand density attainable in a stand With the same mean tree volume) as a basis for quantifyine tree growth and stand yield The accepted measures of stand density (the number of stems per unit area, basal area and blomass) are satisfactory only when the average tree size is identical in the compared stands Hence, indices of stand
density that combine some expression of mean size (e.g mean werght, volume, herght and $d \mathrm{~b} h$) and density (Curtis, 1970, 1971; Long and Smıth, 1984) are relevant Perhaps the most familiar of these indices 19 Reineke's (1933) stand density index (SDI), based on the predictable relationship between quadratic mean diameter and trees per unit area in dense stands. Other indices that have been suggested as meaures of growing stock include mean volume-density (Drew and Flewelling, 1977) and mean height-density (Wılson, 1979). The Reineki's and other density indexes are independent of site quality and stand age (Daniel et al, 1979, Curtis, 1982, Long 1985)

Similar to Reineke (1933), Sterba (1987) has suggested a stand density index to give potential density of sites This approach 1 found to be suitable for evaluation of difference in aross volume hat would not have been detected from yield tables alone

It was found that the Slenderness index, which is defined as the height in feet divided by d.b.h in inches, decreased with increasing spacing of 10 year old jack pine trees (Rudolf, 1951) Zavitkovski and Dawson (1978) found that slenderness index followed the same trend for dominant trees also but the values were lower

Kıkuzawa (1983) has calculated compactness index for

Abstract

deciduous broad leaved forest. He drew Equivalent Diameter Curveg which show the number and volume of trees larger then a certain diameter at three levels of stand compactness and argued that most of the variation in the equivalent diameter points of each of the tree groups (grouped according to stand compactness levels) can be explained by the difference in stand compactness levels

Stand density index is an ldeal measure of growing stock A good index should combine mean size and density One of the widely used indexes is Reineke's stand density index which combines quadratic mean diameter and trees per unit area This index is independent of site quality and stand age.

2.3. Empirical Approaches for Density Requlation

There are different approaches to regulate density and yield from different forests as described below Fundamentally, thinning consists of removing some trees from the places they occupy, to assure the survivors adequate growing space. Also it is evident that no stand density formula can be written which does not include that basic item - the stem count - or the number of trees per unit of area (Wılson, 1979)

[^0]For red pine, 16 to 24% of height with thinning interval of 3 years and $17-30 \%$ of height with thinning interval of 3 years have been sugested by Day and Rudolph (1971) and Day and Rudolph (1972) Handler (1984) has given 10-20\% of mean height for sitka spruce for average stem distance and 18% of that for beech These relationships are very useful
2.3.2. Height and denaity approach: Sagreiya (1963) has proposed a relationship of stand density to height represented by the equation $N H=510,000$ (where H is the top height of stand and N is the number of stems per acre) He found that the height, within reasonable limits, was unaffected by the intensity of thinning In other words, his study was based on the fact that top height $1 s$ more or less independent of stand density He argued that this relationship is independent of age for all practical purposes and valid for the usual thinning period of a crop It has been contended that Sagreiya's formula of thinning results in heavy removals (Ram Prasad, 1973). He sugeeted that in early stages at least more stem per unit area be retained wid crop can be opened up more at later stages ror higher diameter nncrements
2.3.3. Diameter and density approach: Sagreiya and Chacko (1962) have given three equations relating height with site quality and age, secondly, normal diameter with top height
and lastly normal number of trees per acre at given mean diameter These three equations summarise the yield table for even aged teak forests They have suggested that 150163 elites per acre with a rotation of 60-65 years 1s preferrable to growing large number of poles of a specified size of 15 inch diameter Liu (1984) developed equations, for natural larch stand and china fir plantation, relating diameter and stand density
2.3.4. Density management diagrams: There are different stand control diagrams (as a guide for thinning schedules) Some of them are functions which use crown competition factor (CCF) as a measure of density (Yang and Lin, 1981). The site quality could also be introduced as a further independent variable in the variable density yield tables and stand control diagrams Often dy given for optimizing thinning schedule and rotation of evenaged plantations using, age, basal area, number of trees and time since thinnings (Ritters et al., 1982). They argued that forage and timber production can both be optimised because both are functions of stand density in ponderosa pine (Pinus ponderosa) Many diagrams used mean height, diameter, number of dead standing trees, basal area and stem wood volume as functions of planting and of stand density (Kikuzawa, 1983, Merzlenko, 1983, Kisilev and Atroshchenko, 1985, N1g1, 1986)

There are many management diagrams, which are based on the self-thinning rule, for different species, namely, Douglas fir (Psoudotsuga menziesil) and Ponderosa pine (Pinus ponderosa) (Ristters and Brodie, 1984) The geographical model of Dzedzyulya (1985) for regulating yield and size by changes in stand density is based on the law of competitive self-thinning and relative density index.

The growth models of Smith and Halı1 (1986) suggested a maximum relative density of 40 and 50% for Alnus rubra and Pinus resinosa respectively The model of Lloyd and Harms (1986) consists of the relationships between maximum plant size, time and density incorporating a function for survival Drew and Flewelling (1979) developed a simple stand management diagram tor Douglas fir (Pseudotsuga menziesil). The most comprehensive of the graphical models are density management diagrams (Long, 1985). Hara and Oliver (1988) developed a three dimensional model with the help of three variables, tree per hectare, breast height age and either mean tree volume or stand volume. This model $1 s$ a reasonably accurate representation of unthinned stand growth The density management diagram together with site index table can be used to estimate averase stem diameter and total yield produced with various stand densities of lodgepole pine (Pinus contorta) (Mc Carter and Long, 1986) Smith and Long (1987) has modified the lodeepole pine dengity management
dıagram of Mc Carter and Long (1986) and suggested the use of this graphical tool for the evaluation of wildlife habıtat Hıbbs (1987) found that the relative density value for crown closure, mortalıty and the lower thinning limit for red alder (Alnus rubra Bong) correspond to those for other species

Many statistical methods are avallable to regulate density and yield from different forests Commonly, the percentage height approach or diameter and density approach are in common use Density management diagrams are sımple stand average models that represent dimensional relationships in a graphical form These uiagrams help resource specialısts to predict and display the consequences of stand density manipulation and also, translate the management objectives into practical density management regimes These could be used in a variety of management situation, including traditional wood production as well as wildlife habitat improvement
3. STUDY AREA

3. STUDY AREAS

Stand inventory data were collected from the teak plantations at three locations, namely, Parambikulam (Wildiffe Sanctuary), Thrissur and Chalakudy Forest Divisions during the period from October 1989 to May 1990

3.1. Parambikulam (Wildlife Sanctuary)

 Teak was extensively planted in the erstwhile Parambikulam Forest Division (between 7631 and 7650 east longitude and 1021^{\prime} and 1026^{\prime} north latitude [Map 1]) ever aince 1921, until 1983 At present, no planting and harvesting operations are undertaken after the conversion of the division into a Wildife Sanctuary Table 1 contains the details concerning forest plantations in different ranges of the divisionTable 1 Plantation details of the erstwhile Parambikulam Forest Division

Range	Area under plantations (Hectare)				
	Teak		Eucalyptus	Teak +	A Lanthus molabarzcum
Karaimala	3254		-		-
Sungam	1796	00	7151		09
Orukomban	1702	54	-		-
Parambikulam	1752	00	-		-
Total	8504	81	7151		09

Teak plantations in the Karaimala and Sungam ranges of the Wildiffe Sanctuary were selected for the present study Tropical Evergreen forests, Tropical Semı-Evergreen forests and Moist Deciduous forests are the other prominent vegetation types occuring in this area Topographically, the area exihibits a hilly terrain with characteristic distribution of undulating plains and marsh lands interspersed in the valleys The valleys are low lying, having a gentle undulating surface and are covered with artificially regenerated teak The altitude varies between 300 m to 1430 m
3.1.1. Geology, Sosl and Climate: The main geological formation in the area are hornblende, biotite gneisses, charnockites which had been intruded by graniticorthogenisses and Plagioclase-porphyry-dykes (SSI, 1964) Major constituents of these rocks are quartz, biotite, orthoclase and plagioclase feldspar. The soll on the slopes are chocolate coloured, sandy loam which is rich in organic matter and supports a good vegetation. In the valley, it is clayey loam

The area gets both the south west and north east monsoons, south west being the most effective The mean monthly rainfall ranges from 1 cm to 36 cm in plains (Fig () In hills, it ranges from 1 cm to $46 \mathrm{~cm}\left(\mathrm{Fig}_{\mathrm{g}}\right.$ 2) The maximum

Fig. 1 Mean monthly rainfall, maxımum temperature and minımum temperature at Tuncadavu for the period from 1965 to 1985 ($0-0-0:$ Rainfall; $x-x-x$: maxımum temperature and o-0-0 \cdot minimum temperature)

Fig. 2 Mean monthly rainfall, maxımum temperature and mınımum temperature at Parambikulam for the period from 1965 to 1985 ($0-\infty$ Rainfall, $x-x-x$: maximum temperature, $0-0-0$: minımum temperature)
mean monthly temperatures fluctuates between $265^{\circ} \mathrm{C}$ to the valley (Fig 1) March and April are the hottest months 3.1.2. Management of Teak Plantations: Regarading thinning, the general principle followed was to thin early and heavily provided that no lasting gaps in the canopy are made. 'C' garde thanning was recommended A thinning cycle of $4,8,12,20,29$ and 40 years was fixed taking into account the faster girth increment (Unıyal, 1988). However, r rently no intermediate operations are being carried out in these plantations

3.2. Thrissur Forest Division

Thrissur Forest Division is situated on the 'T' shaped strip of the Western Ghat, south of Palghat gap (between 0 , 0 , 0 , 0 , 765 and 7645 east long1tude and 1020 and 1045 north latitudes [Map 1]) The altitude varies from 30 m to 1515 m 3.2.1. Geology, Solf and Climate: The prevailing geological formation $1 s$ metamorphic rocks of the gneiss series Laterites occur in places The soil is farly deep, blackish sandy loam which tends to be reddish in places on the lower slopes (George, 1954)

The climate is eenerally equable in the low country and farrly cool higher up March, April and May are the hottest
months when the maximum mean monthly temperature goes up to o
about 380 C , in the hills The maximum mean monthly temperature ranges between 320 C to 380 C and the minimum ranges from 200 C to 235 C in hills (Fig 3) However, in plains it varies from $290^{\circ} \mathrm{C}$ to $360^{\circ} \mathrm{C}$ and $203^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$ respectively (Fig 4) The coolest months are December, January and February Average annual rainfall is 268 cm in hills and 301 cm in the plains
3.2.2. Teak Plantations: The first teak plantation in the division was raised in the year 1872 This was followed by continuous annual planting up to 1889 except during the year 1874, 1875, 1881 and 1886 Regular plantings were resumed in the year 1923 (George, 1954) There are about 321956 hectares of teak plantations in the division (Table 2)

Table 2. Details of plantations in Thrissur Froest Division

Ranges	Area under plantations (Hectare)			
	Teak	Teak +	Bombax ceiba	Teak + Bamboo
Wadakanchery	51076		-	-
Machad	173868	571		-
Peechi	30908		-	36104
Pattikad	66104		-	-
Total	321904	571		36104

Fig. 3 Mean monthly rainfall, maximum temperature, minimum temperature and relative humidity - at Peechi for the period from 1985 to 1990 March ($0-0$: rainfall; x-x-x : maxımum temperature; 0-0-0 : minımum temperature and $0-0-0$ - relative humidity)

Fig. 4 Mean monthly rainfall, maximum temperature, minimum temperature and relative humidity at Vellanıkkara for the period from 1985 to 1990 July ($x-x-x$: Maximum temperature; o-o-o : Minımum temperature; $0-0-0$: Relative humidıty and $0-\square:$ Rainfall)

There 19 considerable varıation in the quality of the crop in different plantations Thinning cycle was different for different sites depending on site qualıty (George, 1954).

3.3. Chalakudy Forest Division

The Chalakudy Forest Division lies south of Thrissur Forest Division (between $76^{\circ} 10^{\prime}$ and $76^{\circ} 40^{\prime}$ east longitudes and $10^{\circ} 15^{\prime}$ and $\left.10^{\circ}\right\lrcorner 0^{\prime}$ north latitudes [Map 1]) within the Thrissur Revenue District The altitude varies from 30 m in the plains to over 1116 m in the hills Most of the area 1 s hılly in character and the ground is undulating, the eastern portion being more rugged and having many vall fs of which Chimany-Mooply, Seenıkuzh1-Idukkupara etc are 1 mportant.
3.3.1. Geology, Solls and Climate: The underlying rock formation $1 s$ metamorphic gneiss of a complex crystalline structure In the foot hills and over a greater part of the plains, the rock is follated to a great degree. Veins of quartz and feldspar appear in varying thickness and out-crops of mica and granite are not uncommon, laterite is more commonly met with on the foot hills than on the higher ridges (Akkara, 1984)

Solls have been formed from archaean rocks which include gnersses, charnockites and basic dykes Solls have been formed under sub-humid climate and under evergreen, semievergreen and moist deciduous types of vegetation Soils
under evergreen and semi-evergreen forests are dark brown to brown in colour. Most of the soils are deep and the surface horizons of these soils have the following characteristics sandy loam to loam texture, slightly acid reaction and fairly high organic carbon (Akkara, 1984)

The climate $1 s$ fairly equable with very little seasonal and diurnal temperature variations The dry season is from December to April and humid season from May to November The hottest months are March, April and May and the coldest are December to January In the hot months of March, April and May the average temperature will be 320 C to 36 O C in the low country and about 240 C to 30.0 C in the hills During the cold season (December, January and February) the temperature in the low country falls to 200 C whereas in the hills it drops to less than 150 C (Akkara, 1984) The mean average rainfall $1 s 298 \mathrm{~cm}$ and 1 s derived from both South West and North East monsoons (Fig.5).
3.3.2. Teak Plantations: Plantations were raised in groups
at Palapilly, Vellikulangara and Pariyaram ranges Apart
from pure plantations of teak, bombax and cashew mixed
plantations were also raised The earliest plantation
activity dates back to 1905 , though regular annual planting
started only in 1912 Total extent of plantation in the
division is 61720 hectares

Fig. 5 Mean monthly rainfall at Chalakudy for the period from 1971 to 1980

Table 3. Details of plantations in Chalakudy Forset Division.

Ranges	Area under plantations (Hectare)		
	Teak	Teak + Bombaxcerba	Acacıa + Teak
Palappilly	50698	80019	-
Vellikulangara	109640	-	-
Pariyaram	292324	-	2064
Total	452662	80019	2064

A thinning cycle of $5 t h, 10 t h, 15 t h, 20 t h, 30 t h$ and 40th year has been prescribed (Akkara, 1984) However, for want of adeqate timely tending operation the plantations are in a degraded condition

4. MATERIALS AND METHODS

4. MATERIALS AND METHODS

Teak plantations of different thinning intensities and age classes (average class interval = 5 years) starting from the 75 year old (1915 plantation) were selected from Parambikulam, Thrissur and Chalakudy Forest Divisions

Plots of $\operatorname{size} 6325 \mathrm{x} 63.25 \mathrm{~m}$ (one acre) were established in selected stands in the following manner First a base line was marked using a compass and a metre tape. On the base line a point was selected and a distance of 6325 m was measured Using the compass a 90 line was marked which formed the second side of the square plot The third and fourth sides were also determined in this fashion. A total of 116 such plots were established in the Thrissur (19 plots) Chalakudy (79 plots) and Paramtikulam (18 plots) divisions.

All trees in the 116 plots were enumerated Top helght (height of a tree up to the tip from the base) in meter and girth at breast height over bark (1.3m from the base) in centimeter were measured using a Ravi Multimeter (Ravi Vygyanik Yantra Nirmata, Dehradun) and DBH-tape respectively

Using these variables, average dıameter at breast height (DBH), quadratic mean diameter (Dq), mean height (Ht), density per hectare, basal area (BA), total volume, mean annual increment (MAI) for diameter (DMAI), height (HMAI) and

Abstract

for gross volume (GVMAI), stand density index (SDI) and relative density (f_{r}) were calculated using the equations given in Table 4. The age of the plantation was calculated as on 1990 from the year of plantation establishment

The data indicate that trees per hectare (TPH) ranged from 20 to 760 between the age of 10 to 75 years Ther total volume varied from 620076 m ha to 5197161 m ha whereas the basal area (BA) variation was from 31309 m ha $2-1$ to 214758 m h Tree herght varied between 81687 m to 28.8507 m (Table 5 and Appendix I)

4.1. Statistical Models Used

The following models weie used for the present study

$$
\begin{array}{|c}
\text { Mvol }
\end{array}=e^{\text {bo }} e^{b 1} \operatorname{Den} e^{b 2} H t
$$

$\widehat{\text { Dq }}=e^{\text {bo }} \cdot e^{b 1}$ Mvol $e^{b 2}$ Den

The models are logarithmically linear and were fitted by the principle of least squares (with SPSS/PC).

The transformed equations are as follows.

$$
n
$$

\ln Mvol $=b o+b 1 \ln$ Den+b2 $\ln H t$
$\ln \widehat{\mathrm{Dq}}=\mathrm{bo}+\mathrm{b} 1 \ln \mathrm{Mvol}+\mathrm{b} 2 \ln$ Den
Where bo $1 s$ the intercept, $b 1$ and b2 are the partial regression co-efficients, Den is the density per hectare, Mvol 1 s the mean volume per tree.

The models were also examined for the pattern of residuals to detect the possibility of any model violations

Table 4. Equations used for the calculation of variables.

Variables	Equations	Unit
11. Average diameter at	$\left(\sum \operatorname{CBH} / \pi\right) / \mathrm{N}$	cill
: breast height (DEH)	i in	1
12. Quadratic mean	12	
	$\sqrt{\Sigma(G B H / T T) / N}$	cm
1	I	1
13. Mean height(Ht)	$\Sigma H t_{s} / \mathbb{N}$	m
	1 边	
		-1
14. Density (TPH)	N/Plot area (ha)	Trees ha
!	1	
1	2	$2-1$
15. Basal Area (BA)	' \sum (GBH /4T < 10000 / Plot area	1 mm ha
1		1
;	2	
1 ,	i $\Sigma[(G B H / 4 \pi \times 10000)($ Hibar $)]$, 3-1
16. Total Volume		' m ha
	Plot area (ha)	
$1{ }^{\text {d }}$	1	
1	1	$1-1$
17. Drameter Mean Annual : Increment (DMAI)	$\sum(G E H / T$, Age $) / \mathrm{N}$	1 cm yr acre
	i 込	!
'		1
i	1	-1-1
18. Heıght Mean Annual	$\sum\left(\mathrm{Hts}_{5} / \mathrm{Age}\right) / \mathrm{N}$, m yr acre
- Increment (HMAI)	1)	
i	2	
19 Gross Volume Mean	$\boldsymbol{\Sigma}[(\mathrm{GBH})(\mathrm{Hts})]$	- 3 1-1
- Annual Increment : (GUMAI)	4TT/ 10000 / Age / N	m yr acre
i i		
:10 Reinete's Stand Density	16	1
(Index (SDI)(Reineke, 1933)	Density ($\mathrm{Dq} / 25$)	-
i	1)	'
i	'	
111. Relative densaty ($\mathrm{f}_{\text {r }}$)	, [\{10.08-1n Mvol\}/1.5]	,
- (Drew and Flewelling, 1977)	, Densıty/e	1
i	1	,

GBH - Girth at breath height overbark
N - Number of trees per acre
Hts - Heights of individal tree
\sum - Summation
cm - Centimeter
m Metre
ha - Hectare
yr - Year
ln - Natural logarıthm
TT - 3141592654
Muol- Mean volume per tree

Table 5 Stand characteristics of teak at different sites

Abbreviations used

```
ha - Hectare
m - Meter
Max - Maximum
Min.- Minimum
TPH - Tree per hectare
```


Abstract

4.2. Construction of Density Management Dıagram (DMD)

The elements of the density management diagram (DMD) include variables, namely, Dq, Mvol, Ht and SDI Densıty was represented on the x-axis of the log-log paper and $D q$ on the y-axis Dq and Density were chosen for the DMD because they are the most commonly used and easiest to estimate in the fleld.

The maxımum SDI for teak was obtained from the scatter dıagram for diameter and Density ($F_{1 g}$ 7) It is assumed that the maximum SDI is a reasonable approximation of the maximum size-density relation for teak and thus represents the maximum combination of diameter and Density possible in stands of this species

The regression equations for $\ln \mathrm{Dq}$ and \ln Mvol were used to generate two famılies of curves representing height and volume Use of diagram for designing alternate density management regimes is also illustrated for a hypothetical stand of 2500 TPH
5. RESULTS AND DISCUSSION

5. RESULTS AND DISCUSSION

5.1. Stand growth and yield characteristics

The mean stand volume, basal area, density, diameter and height were markedly greater at Parambikulam (Table 6) For instance the cotal mean stand volume in the 65 year old stand $3-1 \quad 3-1$ was 470 m ha as against 135 m ha foi Chalakudy Basal area and density also followed a similar trend In the case of 65 year old plantation, the average density was found to be 75 trees per hectare (TPH) and 41 TPH, respectively for Parambikulam and Chalakudy

Average diameter at breast height (DBH) at Parambikulam was also found to be more than that of Chalakudy and Thrissur. In case of the 65 year old plantations, the average DBH was 5611 cm as against 4256 cm at Chalakudy Average tree height also followed a similar trend Chalakudy, incidentally, had greater average helght than Thriggur at the age of 25 years (Table 6) In General. Parambikulam can be rated as a much better site for teak compared to Thrissur or Chalakudy
Two-way classification of the experimental plots with
respect to age and density clearly indicate that the stand
density decreased in the higher age classes (Table 7) For
example, density observed for $60-65$ year age clags ranged
from 0 to $100(10$ plots over three forest divisons) The

Table 6. Mean Stand Characteristics as a function of age.

D Division	$\begin{gathered} \text { Age } \\ \text { (Yeors) } \end{gathered}$, No	of plots	$\begin{gathered} 1 \\ \hline(\mathrm{~cm}) \end{gathered}$	$\mathrm{Dq}_{(\mathrm{cm})}$	$\begin{gathered} \mathrm{Ht} \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$1 \begin{gathered} \text { Den } \\ -\quad \text { STPH } \end{gathered}$	$\left(m^{B A} A^{-1}\right)$	$\left(\begin{array}{c} \left.V_{01} h^{-1}\right) \\ \hline \end{array}\right.$
- Chalakudy	75		10	459530 -	46.4179	- 222485	260000	- 4.3765	: 100.1584
1		;		(4.8407) '	(4.8188)	' (2.0648)	(3.3747)	: (0.7014)	, (21 7377)
$i \quad 1$		'						1	
'	65	1	8	42.5641	429509	223265	409375	59039	135.0663
1		1		(18923)	(2 2221)	(08676)	(74327)	- (09188)	(216108)
;		1		1	,			-	
1	56	;	10	, 398837 ,	40.3051	- 24.1314	: 752500	196418	2430419
1		;		- (2 2701)	(2.2384)	1 (2.0978)	, (4.9230)	i (1.3237)	. 48.2932)
1 -		;		1		I		!	1 ,
1	50	,	8	; 38.1393	39.3877	, 24.2606	90.9375	: 11.1030	(302.1843
$i \quad i$		i		((2.6872)	(2.3589)	. (16256)	: (14.5736)	(12.1381$)$	i 167.5435)
1		i		- i	+	I		1	
$i \quad 1$	45	i	6	- 297208 '	302837	, 19.7799	. 161.6667	- 115533	12350056
$1 \quad 1$;		(1.0165) ,	, (1.0793)	(0.6990)	((10.0830)	. (1.0314)	1(23.5879)
1		;		-		I	1		
1 i	40	;	8	, 27.1181 i	- 27.4381	18.5013	. 154.3750	9.1270	1722168
;		;		: (0 4849) ,	(0.4694)	(02406)	(97970)	. (06182)	(11.7021)
!		1		!	-		1	1	
$1 \quad 1$	25	1	5	1 244212	25.1736	- 22.2801	1910000	96582	2292100
$1 \quad 1$		1		. (3.0883) i	(3.1814)	(0.5472)	' 8.7678$)$	1 (2.4424)	(60.3538)
;		1		1 i		!		1	1
;	20	;	8	$17.825 d$	1 18.4406	- 17.4955	560.9375	14.9818	284.7896
$i \quad 1$		i		, (02465)	(0.2898)	(04370)	. 28.2191)	(0.8477)	(157167)
!		i		1 1	+	-	!	1	
1 i	15	;	8	; 121370 ,	, 13.1786	, 9.1814	5378125	73067	89.2944
$1 \quad 1$;		(0.6603) ${ }^{1}$	' (0.5581)	, (06321)	${ }^{1}(75.8339)$	(08854)	((10.2728)
1 i		!		!	,	'	1	1	
$1 \quad 1$	10	,	8	; 12.5557	, 13.1369) 10.4863	747.8125	1 10.1423	1262183
!		!		- 104078$)$	(0.3790)	, (0.6096)	(8.3919)	, (0.5942)	(11.1133)
1 !		1		,			1		
!Parambikulamı	74	1	1	¢ 575686	588325	. 27.9419	1 67.5000	18.3491	516.7011
$1 \quad 1$!		1				-	
;	65	1	2	561144	567177	246344	750000	189899	4703312
$1 \quad 1$;		(41641)	(3.7455)	(05906)	- 100000$)$	(2.5027)	(69 8408)

:40:

Table 6. contd.

!	${ }^{1}$ (ryezrs)				1 (${ }^{\text {吅, }}$	$: \begin{gathered} \mathrm{Ht} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1 \text { Den } \\ (T P H \text {) } \end{gathered}$		
,Parambrkulam,	50	,	2	359773	36.4986	20.4755	1525000	160193	328.9795
1 !				- (08349)	(0.8453)	, (0 2724)	(24 7487)	(3 3291)	(74 4513)
,		;							
, '	45		4	389434	39.3779	22.9429	140.6250	171778	3972619
1 i				(1 2837)	(1.3467)	(07551)	(8.7500)	(1.9976)	(34 6618)
;						1			
;	40		2	330065	33.7919	- 19.9000	171.2500	, 15. 1258	(306.4177
-				(3 3290)	((3.5608)	(00732)	(33.5876) :	(102077)	((6 2733)
1					,				
i	35	!	2	- 303273	- 308571	' 22.9475	2487500	18.6011	4338799
1 i		'		. (0 1590)	(01450)	(0.3014)	(1.7678)	(0.0427)	(5.0467)
!				-	,	!			
$1 \quad 1$	30	1	4	- 247237	25.3233	- 19.1754	278.7500	143103	, 289.9404
;		,		(14095)	(1.4304)	(1.7859)	(57 8252)	(47970)	(1280682)
$1 \quad 1$,		1	,				
!	17	i	1	205895	-21.1610	20.3474	4400000	154740	3222316
,									
\| Thressur	35	;	8	- 256633	- 264928	170133	. 1668750	90339	1659808
i i		,		(3 5007)	, (35573)	(2.5624)	(340102)	(1.6476)	(47 87111
;									
	30	'	6	' 229697	23.5116	153256	1812510	: 78001	127.7316
$1 \quad 1$		i		((17934)	(1.7743)	(1 1580)	(56) 1193)	(2.0131)	(396956)
;				1					
1	25	I	5	- 18.9517	- 19.4563	14.1498	326.500	9.7475	, 146.6192
,		1		, (1.2473)	: (1.2703)	(0.6329)	(179060)	: (1.4810)	, (26 2005)

Table 7. Two way classification of the espetirental plots with respect to Age (year) and Density (DEN) (trees per hectare).

marked reduction in stand density as a function of age can be attributed to either thinning or self thinning While establishing the experimental plots although care was taken to include stands thinned as per the schedule prescribed in the respective working plan and also unthinned stands, it was often not possible to obtain suffirient number of experimental plots satisfying these criteria Many of the plots, in fact, were not thinned regularly and hence a strict characterisation as to whether the reduction in density is due to mortality induced by man (thinning) or by the crop on 1tself (self-thinning) is difficult

A similar relationship was visible with respect to the density and quadratic mean diameter also (Table 8) In an attempt to predict stand age (for use in the density management diagram, described elswhere), it was regressed on quadratic mean diameter using a linear regression model The reaulting equation was $\hat{A_{\&} e}=-68852+15532 \mathrm{Dq}$ 2 $(r=089)$

In this context, several workers (Blume, 1961, Leak, 1975, 1985, Tubbs, 1977) suggested that diameter can be used as a surrogate for predicting age rhis approach will be all the more relevant for old growth stands where the large size of trees and the abundance of hollow ol rotten boles poses Garlbus \#IGHImils in extracting increment cores as a measure of tree age

Table 8. Two way classification of the experimental plots with respect to density (DEN) (trees per hectare) and quadratic drameter (Dq) (cm)

44 :

5.2. Mean Annual Increment (MA.I)

The data on volume $M A$ with respect to Parambikulam, Thrissur and Chalakudy divisions are presented in Table 9 and Fig. o The data presented here reiterate the superiority of Parambikulam over Chalakudy and Thrissur Incidentally, the data on Thrissur was not adequate for making an effective comparison The curve (Fig 6) appears to be "wavy" The wide varıatıon, especially observed 1 n Chalakudy with respect to volume MAI could probably be attributed to site quality changes Certain age classes were probably present on "low" sites only The author's observations confirm this For example, all the 1975 plantations enumerated from Chalakudy division were in a very deteriorated condition The average height $(919 \pm 063 \mathrm{~m})$ as well as average diameter $(1213 \pm$ 0.66 cm) were found to be very low (Table 6) These areas were also infected by teak leaf defoliators and stem borers

Parambikulam registered the lowest mean annual increment $\begin{array}{lll}3 & -1 & -1\end{array}$
(MAI) of 00338 m acre year at the age of 30 years and was followed by a sharp increase (Table 9 and Fig 6) The MAI curve for Parambikulam appears to culminate at the age of 74 years only, whereas, in the case of Chalakudy the volume MAI peaks at the age of 50 years $\begin{aligned} & 0 \\ & 3\end{aligned} \frac{-1}{-1} 0663 \mathrm{~m}^{3} h^{-1}$ ha $^{-1}$ year and 00661 m ha year , respectively) (Table 9 and Fig 6)

The various stand density indices such as Reineke's SDI

Fig. 6 Volume mean annual increment of teak at Parambikulam and Chalakudy ($\mathrm{x}-\mathrm{x}-\mathrm{x}$: Parambikulam, o-o-o Chalakudy)

Table 9. Mean annual increments and Stand density indices of different Stands as a function of age.

Table 9. contd

and relatıve density (RD) were also consistently and substantially greater for Parambikulam compared to Thrissur and Chalakudy It may be remembered that stand density indexes are independent of age and site quality and hence are 1 deal parameters for comparing stands of different ages
and sites Incidentally the latter, namely, RD is independent of species also Reineke's SDI can be made independent of species by taking the per cent of the maximum SDI for any given species

To sum up, results presented here clearly indicate that Parambikulam, in general, and Karaimala and Sungam ranges of this division, in particular, are very good for teak However, because of the shift in management objectives, consequent on the declaration of this area as a Wildife Sanctuary, establishment of new teak plantations in this area is probably out of question. The data also reveal that Chalakudy (particularly Vellıkulangara and Pariyaram ranges) 1s not an inherently good site for teak However, with appropriate crop management strategies (eg tending fertilization, plant protection etc) teak plantations can be made viable here also

5.3. Maxımum Size-density Relationships

The upper line in Fig 7 corresponds to an SDI of 600 roughly conforming to the maximum SDI represented in the data

Fig 7 Size-density relationships of teak showing maximum stand density index (SDI)

Abstract

set (Appendix I) It may be remembered that the data set contains stands under different intensities of thinning and also a cross section of the site qualities in which teak is usually grown and we assume that no real combination of size density would be possible above this line corresponding to an SDI 600

The translation of specific managment objectives into appropriate levels of growing stock is the key in Density Management However, this $1 s$ probably the most difficult step in designing a density managment regime (Davis, 1966) The use of a size-density based index of growing stock such as Reineke's SDI, however, greatly simplifies this process (Long, 1985) Reineke's SDI $1 s$ the number of trees at an average stand diameter (where the average stand diameter (ASD) $1 s$ the diameter at breast height of a tree with the average basal area) of 25 cm According to Reineke (1933), this approach of determining density holds good for any pure, fully stocked, even-aged stand of a given species

Since it $1 s$ a species dependent parameter, the maximum SDI will be different for different species For example, 600 for Douglas-fir (Pseudotsuga menziesi1, Drew and Flowelling, 1979) and 700 for lodgepole pine (pinus contorta, Mc Carter and Long, 1986) Maximum SDI represents the combination of size and dengity where self-thinning
starts It $1 s$ assumed to be 100% SDI that can be achieved by
the species (Daniel et al 1979) Maximum SDI is a
reasonable mpoximation of the maximum size density
relation for a species and thus represents the maximum
combination of diameter and density possible for a partirular
species

Fif 8, depicting the relationship between SDI and f_{ρ} (Relative density) indirates that the two size-density indexes are directly related to each other implying that fi can also be used for designing density management regimes Relative density index, fr, is the ratio of actual stand density to the maximum stand density attainable in a stand with the same mean tree volume (Drew and Flewelling, 1979)

5.4. Growth-growing stock relationship

Fig $9 a$ and b present the data concerning mean stand volume, mean tree volume as a function of stand density index (SDI). Table 10 presents some of the key SDI limits at which important processes and events in stand development occur The SDI limits portrayed in the fig 9 broady confirm the projections of Long (1985) We used these SDI limits for desiening alternate density management regimes for teak deacribed later in this text

Fig 8 Relationship between stand density index and relative density

Fig 9 Relationship between stand density index (SDI) and (a) stand volume (b) mean volume per tree

Table 10 Examples of "key" SDI values for teak

In this context, Langsaeter (1941), while discussing the effects of thinning on volume growth has described the effects of density (with density given in terms of volume in cubic meters) on volume growth Based on the response of the stand to increase in volume, Langsaeter's curve can be divided into five zones Zone I represents trees growing independent of each other Zone II marks the beginning of competitive interactions between the trees and the growth rate here 1 s below the potential In zone III growth rate changes rather very slowly (plateaus) In zone IV, the annual growth declines at an increasing rate As the stand volume increases further the annual growth declines very rapidly in zone V. These two zones namely, IV and V where the rate of growth decline rapidly were referred to as the "Zones of imminent competition mortality" by Drew and Flewelling (1977) In this zone, the self-thinning or competition-related-mortality $1 s$ likely to occur (Drew and Flewelling, 1979) Long (1985) has given a schematic
characterisation of the Langsaeter's curve by taking percentage of maximum SDI in place of density on the X -axis He hypothesised that zone I can be represented by 25% of the maximum SDI whereas zone II corresponds to 35% of the maximum SDI and zone III corresponds to 60% of the maximum SDI The zone IV and V are probably characterised by more than 60% of maximum SDI (Table 10)

Similarly a fr of 0 to 015 corresponds to the zone I of Langsaeter's curve or 0 to 25% of maximum SDI (Drew and Flewelling, 1979) The relative densities between 015 to 0.40 represent zone II of Langsaetar's curve and 25% to 35% of maximum SDI The relative density between 040 and 055 represent the zone between 35% to 60% of maximum SDI or zone III of Langsaeter's curve More than 055 Jr represents the zone $I V$ and V or zone of imminent competition mortality (more than 60% of the maximum $S D I$, Drew and Flewelling, 1979).

5.5. Construction of Density Management Diagram (DMD)

5.5.1. Regression models: From the calculated variables two multiple regression models were developed following the least square method These two models explains the relationships among ln Mol, ln $H t, \ln$ Den and $\ln \mathrm{Dq}$ Analysis of variance of both the models are presented in Appendix II and Appendix I II

The First equation, relating $\ln H t$ and \ln Den to \ln Mvol 2 has a co-efficient of determination (r) of 966%
\wedge
\ln Mvol $=-395248+223424 \ln H t-046716 \ln$ Den
(Eq 1)

The second equation, relating \ln Mvol and \ln Den to \ln 2
Dq has a co-efficient of determination (r) of 99.2%
$\ln \begin{aligned} & \text { Dq }\end{aligned}=3.57525+034435 \ln$ Mvol $-006108 \ln$ Den
(Eq 2)

Both equations were examined for residuals and their bias with respect to independent variables were also tested (Fig. 10 and Fig 11) It 1) found that the Eq 1 is slightly biased in the lower density range (Fig 10a) and the higher height range (Fig 10b) Fig 11 indicates that the Eq 2 is also slightly biased in the lower density (Fig 11a) and Mvol (Fig 11b) ranges Nevertheless, they gave avery high r values and the regression co-efficients were also highly significant (Appendix II and III) Further, the various other combinations of dependent and independent variables that we have examined yielded relatively lesser r values (Table 11) More work would be required to fit a better regression model linking Mvol with Dq, Den and Ht
5.5.2. Density management diagram (DMD) format: According to Long (1985), format of DMD is a matter of personal preference We followed the Mc Carter and Long (1986)

Table 11. Models for data set.

Fig.10(a) Bark transformed residuals of mean volume per tree versus density (equation I)

Fig 10(b) Bark transformed residuals of mean volume per tree against height (equation I)

Fig 11(a) Back transtorir 1 residuals of quadratir dimictur versu dellsity (equation il)

Pigll(b) Back trinsforined residuals of quadratie dialicicr versus Mvol per trec (equation II)
pattern and chose to display $D q$ and density on the ordinate and abscissa respectively

The density taken on x-axis ranges from 50 to 5000 TPH and $D q$ on y-axis ranges from 1 to 100 cm (F 1 g 12) These two parameters were chosen because, of the variables included, they are the most commonly used and easiest to estimate in the field.

The solid diagonal lines in Fig. 12 represent SDIs. For the construction of the DMD, Dqs were calculated for all possible combinations of SDI (50-600) and densities (505000 TPH) using Reineke's formula (Table 4) SDI lines were put on the diagram using the parameters $D q$ and Den (Appendix IV). The upper most $S D I$ line corresponds to the maximum SDI for teak found from the maximum size - density relationships for the species (Fig 7)

The shorter broken lines represent site helghts (the height of the dominants). For plotting height lines, first the Mvol were calculated for all the combination of helghts ranging from 5 to 60 meters and densities ranging from 50 to 5000 TPH with an interval of 5 m and 50 TPH respectively using Eq. 1 (Appendix V) Then, using Eq 2, Dqs were generated for these Mvola and the equpective densitics (Apperifix VI)

The longer broken lines represent volume (Fig 12)

Fig 12 Density management diagram for teak (Ttriona grandis Linn f)

Using Eq. 2, Dqs were calculated for different combinatıons of volumes and densities (Appendix VII) The volume ranged from 50 to $2000 \mathrm{~m}^{3} \mathrm{ha}^{-1}$ and density range was from 50 to 5000 TPH were used For convenience and to avoid over crowding all lines representing $S D I H t$ and volume are not plotted on the graph. Instead only few selected lines are shown

5.6. Dealgning Density Management Regimea

Use of density management diagram to design density management regimes is illustrated here with two alternate hypothetical density management situations The first logical step in designing density management regimes is to translate the stand management objectives into desirable levels of growing stock, compatible with these objectives This can be achieved by using any of the relative density indexes After choosing an appropriate size-density related index, suitable upper and lower limita are fixed.

The choice of the upper and lower limits represent a typical silvicultural trade-off between maximization of stand growth on the one hand and maximization of individual tree growth and vigour on the other This is because, maximization of individual tree growth and total volume production are in perpetual ronflict with each other As a result, one has to compromise one for the other Thus, the choice of dppropriate levels of growing stock becomes a
direct consequence of the stand management objectives 1 e , whether to maximise total volume production without regard to tree vigour or to maximize individual tree growth For maximization of volume growth, ideally the upper and lower limits of growing stock should be chosen in such a way that the stand would be in zone III of Fig 9 Alternatively, if the manager desires to maximise individual tree growth and sizes, without regard to total stand volume on an area basis, the stand could be maintained in zone I (1 ig 9) itself Similarly, if thc management objective is to get quick returns at shorter time intervals, then ideally the upper and lower limits must be kept closer to one another

Defining the management objectives and constraints such as maximization of individual tree growth vs stand growth, minimum acceptable tree vigour, end-of-rotation tree dimensions, thinning constraints such as minimum size and volume removed etc forms an essential pre requisite in the process of des+m山ing density management regimes In fact, the upper and lower limits of the growing stock will be a function of all these parameters and thus represent a compromise between the two silvicultural pxtremes (individual tree vs stand growth) The stand $1 s$ then allowed to grow up to the tareeted upper limit of growing stock and 19 thinned down to the lower limit This process is repeated as many tımes as necessary

To 1 llustrate the process, two simple density management regimes are developed for a hypothetical even aged stand with 2500 TPH

5.6.1. Situation I : Log regime: The stand management
objective here is to pr fure large sized logs This situation
assumes to produce logs with a quadratic diameter (Dq) of 50
cm (le Class 1 teak logs). The minimum commercially
utilizable Dq is assumed to be 10 cm (Class IV poles) The
management objective in the instant case can be interpreted
as maximization of individual tree growth (ie "sudden
sawlog"). According to Daniel et al (1979) to enhance
merchantable yıeld, 1 t ¢ s desirable to maintain stocking
level in the lower part of the optimal range because this
results in larger material with perhaps some sacrifice in

The first lofical step in this approach is to translate the management objective of bigger log production into desirable levels of growing stock. The following upper and lower limits of growing gtock were selected in this rontext

1 Lower limit of growing stock SDI of 120 (20\% of SDI max)
2. Upper limit of growing stock SDI of 210
(35% of SDI max)

These lımits were selected because the management
objective here was to maxımize individual tree growth and size, without regard to volume production on an area basis Therefore, an appropriate strategy would be to maintain the level of growing stock within zone 1 of fig 9, a direct consequence of which will be instant response to release Incidentally tree growth and vigour are greater when the level of growing stock is in this zone Hence a lower limıt of growing stock corresponding to 20% of the maximum SDI was chosen, which incidentally represents a level of growing stock much below the onset of competitive interactions in the stand (Table 10) and thus ensures tree growth at its maximum potential If we keep the stand above the threshold for competitive interaction (ie, transition between zone I and II, fig. 9), the individual tree growth falls below the potential for open grown trees of he species, site quality and age One possible fall out of the low level of growing stock is the manifestation of large number of lateral branches, and its possible negative influence on log quality This, however, can be prevented by resorting to pruning of the lateral branches

Regarding the upper limıt of growing stock, 35\% SDI was selected becasue it ensures full site utilization complete utilization of all the site resources) for atleast some part of the rotation Thus, much of the volume production is not sacrificed, although the total volume production is certainly
less than that of a density management regime with higher levels of growing stock

The trees under such a density management regime are growing reasonably fast with great vigour and the volume production sacrificed by means of retaining the level of growing stock lower also is not quite substantial

The target end-of-rotation Dq chosen here was 50 cm This target end-of-rotation Dq and the growing stock upper limit (SDI $=120)$ together define a stand with approximately 70 TPH and 400 m ha volume (Table 12 and Fig 13) It is then easy to work backward through the rotation as indicated in $\mathrm{F}_{1 \mathrm{~g}} 13$

For this, a line parallel to Y-axis was drawn from the point indicating $50 \mathrm{~cm} D q$ and 210 SDI till it hits the lower SDI of 120 and the Dq at that point was read Then the density before thinning was calculated using the Dq thus found and upper SDI limit with the help of Reineke's SDI formula wiven in Table 4 A line joining these two points was drawn This process was repeated till the Dq before thinning reached the minimum commercial Dq of 10 rm Further, a single precommercial thinning (PCT, 1θ thinning which does not give merchantable materials) was used to set up the first commercial thinning (CT) This precommercial thinning is desirable to avoid early overcrowding of the stand It is

Fig 13 Density management diagram for log regime

Table 12. yield table for \log regime.

[^1]similar to the first mechanical thinning in the sense that the thinned materials have no commercial value The volume before each thinning, the volume removed in thinning and site height (height of dominant trees, similar to crop height) were read from the diagram (Eig 13 and Table 12) The age, mean annual increment and periodic annual increment were also calculated (Table 12, Fig 15) Age w estimated using the equation $\quad \hat{A g \theta}=-68852+15532 \mathrm{Dq}$
5.6.2. Situation II : Pole production : The stand management objective here $1 s$ to produce teak poles (preferably Class I) rather quickly This management objective can r interpreted as maximization of volume production per unit area lhis situation assumes to pioduce poles of quadratıc diameter of 20 cm (I class teak poles) Thinning constraints include commercially utilizable poles with mınımum $D q$ of $8 \mathrm{~cm}, 1 e \mathrm{~V}$ class poles

The following upper and lower limits of growing stock which commensurate with the land management objectives were selected

1 Lower limit of erowing stock SDI of 210
(35\% of SDI max)
2 Upper limit of growing stock SDI of 300
(50: of SDI max)

In order to maximize total volume production, without
regard to individual tree size, upper and lower limits of growing stock should be chosen in such a way that the stand remains within zone III of Fig 9 for most part of the rotation. The volume increment of the stand will be higher, 1f it can be maintained in the zone III of Fig 9 The 60% of SDI max actually represents the commoncement of selfthinning No prudent land manager would allow stagnation in the stand and loss of volume production on account of competition related mortality To avoid rompetition related mortality and to ensure reasonable amount of vigour, an upper level of growing stock corresponding to an SDI of 50% of the maximum was chosen To ensure full site utilization, the lower limıt of 35% of maximum SDI was selected. Again, the closer upper and lower limits shortens the period between successive thinnings The target end-of-rotation Dq was 20 rm (Class I poles) The combination of the target end-of-rotation Dq and the growing stock upper limit (SDI=300) together results in a stand with approximately 420 TPH and a volume of 233 mm ha (Table 13 and Fig 14) This stand can also be worked backward as in the previous case The first commerrial thinning (CT) has been set up with a precommercial thinning (PCI) that reduced the level of growing stork to approximately 1718 TPH (Table 13 and Fie 14) Mean annual increment and periodir annual increment are shown in Fig 15

Fig 14 Density ir anagement dagram for pole regine

Table 13 yield table for pole tejume

Abbreviation used:
PCT - Precommercial thinning
CT - Commercial thammo
FH - Final harvest
SDI - Stand Density Index
TPH - Tree per hectare
cm - Centimeter
m - Meter
ha - Hectare
PAI - Periodic annual increment

Fig. 15 Relationshio between age and annual increments of \log and pole regime (---- Periodic annual increment, \qquad Mean annual increment)

It $1 s$ seen in both cases that only onp PCT has been suggested because the cost of thinning in case of PCT is more when cost/benefit analysis 15 done, because the materials removed in a PCT or for that matter in the first mechanical thinning do not have any commercial value It is obvious from Table 12 and 13 that the volume obtained fiom the pole production regime $1 s$ substantially larger than the sudden sawlog regime For example, the former gave a volume of about 6225 m ha at the age of 242 years (Table 13) while the latter gave only a total volume of 400 m ha at an age of 314 years (Table 12) Both mean annual increment (MAI) and periodic annual increment (PAI) were higher in case ot pole regime than the log regime (Fig 15) In both cases, however, the rotation ended before the culmination of the PAI One can formulate or design any number of alternate density management regime depending uṕon the management situations After examining all those options one of the better options can be selected and the stand could be managed accordingly

5.7. Potentialg and Limitationg of Density Management D1agram

The most outstanding feature of the density management diagram is that it 19 a simple, inexpensive, easy to usp, graphical tool to simulate stand growth and yield for any given set of management situations fhe use of density management diagram does not require any sophisticated
computer hardware or software, as in the rase of the newer generation stand growth and yield simulation models, eg prognosis (Stage, 1973, Wykoff et al 1982, Farrar, 1985) The mathemetical programming approaches have the criticism that the results are specific to the stands included in the analysis and are also not amenable to current optimization procedures (Ristters and Brodie, 1984) Despite its simplicity, density management diagrams can be used for predicting the likely consequences of a vety large number of alternate silvicultural decisions on stand growth and yield

Abstract

Densıty management diagrams delımıt stand condıtıons lakely to result in a particular pattern of growth and development This type of diagram can easily be used by nonbiometricians and can be extrapolated to untested management regımes easily

Stand density manipulation has a potential to make a major impact on individual tiee size and stand yield The densıty management diagrams repl θ the volumınous tables of stand yield It ran be used for comparing, checking and implementing the results of optimızation analysis apart from designing alternate management regimes

The regression models used in the construction of the density management diagrams are generally characterised by very high r values which means that a substantially high
proportion of the variations in the data-set are explained by these regression equations

Limitations: The important short-comings of the density management diagrams are discussed below

1) Lack of "memory" The density management diagram can not remember the influence of a heavy or light thinning especially late in the rotation
2) Another discomforting feature of the model is the convergence to the same rotation age irrespective of the path taken by the stand for a predetermined quadratic diameter (Dq) and stand densıty index (SDI) combination
3) In many cases the rotation ends before the culmination of the periodic annual increment
4) The growth-growing stock relationship in this case, portray only three initial phases of the Langsaeter's curve as against five in the original Langsaeter curve (Langsaeter, 1941) It may be because, Langsaeter may have developed the set of curves for a hypothetical stand or alternately the relative insufficiency of the data-set used in this investigation also might be responsible for this situation lhe data-set in the
instant case covers only three out of the 20 territorial forest divisions of Kerala State
5) The assumption of a single maximum size-density relation or stocking rate for a species is also questionable There may be potential differences in this respect in the case of species with wide ecological amplitude
6) The density management diagram $1 s$ applirable only for an even aged stand and is not suitable for complex unevenaged and mixed species stands However, recent works of Kıkuzawa (1983) suggested that densıty management diagrams can be constructed for stands with more structural complexity
7) The residual plots (Fig 10 and 11) against the independent variables depicts a divergent pattern of distribution indicating lesser dependability of the model for higher and lower values of height and mean volume The residual plots thus indirate a slight possibility of under-predicting at lower values and over predicting at higher values of mean volume and vice vprsa in the rase of height

Nevertheless, $1 t$ could be safely assumed that the model could give reasonably good predictions in the range of the
data-set However, extrapolation beyond the range of data set (for density, volume, age etc) may produce dublous results

Despite these short-comıngs, with more work, the present density management diagram can be 1 mproved to overcome many of the pitfalls mentioned herein
6. SUMMARY

6. SUMMARY

Forest plantation management in India, in general and Kerala, in particular, has not received much attention in the past The old practices are still being followed even now without much changes Proper management of the plantations $1: 3$ required especial $\overline{l y}$ in veiw of the rising demand for timber and other forest products The question is not only to utilize maximum land area but also how properly and economically the land can be utilized In short, forest management has to be geared to meet these new challenges The use of density management diagram would help forest manager to design stand density regimes to meet the ende of the multiple objective forest resource management

Density management diagram is a simple graphical representation of the stand growth thiough time in terms of stand characteristics, which enables the land mandeer to predict the likely consequences of various silvicultural operations on stand growth and yield A teak density management diagram to facilitate the management of teak plantations for various objectives such as traditional timber production, wild life habitat mariafement etc was constructed (E1g 12) using the stand inventory data collected from the teak plantations of Parambikulam, Thrıssur and Chalakudy divisions The format shows density ($\Gamma P H$) on x axis and quadratic mean diameter ($D q$) in centimeter on $y-$
axis Volume per hectare, site helght (ip herght of dominant trees) and stand density index (SDI) are also given in the diagram

The stand inventory data clearly indicate that Parambikulam was a better site for teak But in the light of the recent policy shift, the area cannot any longer be used for establishıng large srale teak plantations

The first step in desiening a densıty management regime $1 s$ to choose a suitable size-density relationship, which should be independent of sste, age and species In the present study Reineke's stand density index (SDI) which represents the number of trees having an average stand diameter of 25 cm at breast height, on a hectare basis was chosen for the purpose lhis index is indepedent of site qualıty and age and can be made independent of species too by using the percentage or proportion of the maximum SDI for the species. For teak (Tectona grandis Linn f) the maximum SDI was estimated to be 600 It $1 s$ assumed that there will not be any real combination of density and diameter which will correspond to more than the maximum SDI

The translation of the management objertives surh as maximization of volume produrtion per unit area or maximization of individudl tree growth, thinning intensity and interval between two successive thimings, etc, into

Abstract

appropriate lower and upper limit of growing stork is another crucial step in the design of density management regimes lhe upper and lower limits of growing stock ale dependert on the management objectives For example, if the management objective $1 s$ to maximise the volume per unit area without regard to individual tree vigour, the stand should always be above 35% of the SDI maximum (the zone where full site occupancy occurs) On the other hand, if 1 t suits the land manager to maximise the individual tree growth without regard to volume per unit area the level of growing stock should always correspond to less than 35% of maximum SDI because the tree growth will tall below its potertial for open erown trees of that species if the level of growing stock is greater than 35% of the max $S D I$ Another consideration in this context would be quick response to release

In the present study a density manafoment diagram was constructed for trak and 1 tg utility in designing alternate density management regimes is described for two hypothetical management situations, namely, log regime and pole regime In the former case the density management regime aims at maximization of tree vigour and in the latter, it is designed for maximization of volume per unit area without regard to tree vigour

The most dramatir feature of the density management
diagram $1 s$ that $1 t$ can be used for designing alternate management regimes and for predicting the likely consequences of different silvicultural operations on stand growth and yield processes It can also be used to check, implement and to compare the results of optimisation analysis and ran replace the volumirious stand yield tables However, it suffers from weaknesses such as lark of "memory", prediction of same rotation age for a predetermined Dq and SDI combination, rotation ends before the culmination of periodic annual increment, assumption of a single maximum size-density relation etc

7. REFERENCES

7. REFERENCES

Adiyodi, P N 1973 The seventh working plan for Wynad forest division (1974-75 to 1983-84) State Forest Department, Government of Kerala, Trivandrum, 150p

Akkara, K 1984 Working Plan for the Chalakudy forest division for the period 1984-85 to 1993-94 State Forest Department, Trivandrum, 315p

Ando, $T 1968$ Ecological studies on the stand density control in even aged pure stand Bull Govt For Exp Sta , Tokyo 210 1-153

Arnold, L E 1978 Gross yields of rough wood products from a 25 - year-old loblloly and short leaf pine spacing study Urbana, IL Illinois Agril Centre 6 230-236

Assamann, E. 1970. The pricıples of forest yıeld study studies in the organic production, structure, increment and yield of forest stands Pergamon Press, Oxford 506p

Baker, F S 1934 Theory and practice of silıvicuture Mc Grow Hıll Book Co , N Y 502p

Ballard, L A and Long, J N 1988 Influence of stand density on log quality of lodgepole pine Can J For Res , 18(7) 911-916

Barrett, J W 1981 Twenty year growth of thinned and unthinned ponderosa pine in the Methow valley of northern Washington Res Pap Pacific Northwest For and Range Exp Sta, USDA, For Ser , Pacıfic Northwest 286 13p

Bazzaz, F A and Harper, J L 1976 Relationshıp between plant weight and number in mixed populations of Sinapsis alba (L) Rabenh and Lepidium sativum (L) J Appl Ecol , 13 211-216

Bendtsen, B A 1978 Properties of wood from improved and intensively managed trees For Prod J, 28 61-72

Bennett, FA 1963 Growth and yis of slash pine plantations Res Pap Southeastern-1 Asheville, USDA, For Ser Southeastern For Exp Sta
$23 p$
Bennett, A A 1969 Spacing and slash pine quality timber production Res Pap Southeastern-53 Asheville, USDA, For Ser Southeastern For Exp Sta 9p

Bennett, A A 1971 The role of thinning and some other problems in manaement of slash pine plantations Res Pap Southeastern - 86 Asheville, USDA, For Ser Southeastern For Exp Sta 14p

Beumee, G B Jr 1922 Results of remeasuring of 40 permanent sample plots reserved for the investigation regarding thinning and yield of teak plantation Tectona 15 1-76

Black, J.N 1958 Competition between plants of different initial seed sizes in swards of subterranean clover (Trifolium subterraneum L) with particular reference of leaf area and lieht microclimate Australian Aeric Res, 9299-318

Black, J N and Wilkinson, $G N 1963$ The role of time of emergence in determining the growth of individual plants in swards of subterranean clover Australian Agric Res, 14 628-638

Blackbury, P and Petty, J A 1988 Theoretical calculation of the influence of spacing on stand density Forestry 61(3) 235-244

Blandford, $H R 1923$ Thinning in teak plantation Burma For Bull, 9 1-8

Blume, B M. 1961 Age-size relationships in all aged northern hardwoods Res Note 125 Broomall, PA USDA, For Ser Exp Sta 3p

Box, B H, Linnartz, NE and Applequist, M B 1964 Comparative growth and volume of loblolly pine planted at various spacings LSU For Note 60 Baton Rouge, LA Louisiana State Univ 2p

Brazier, J D 1977 The effect of forest practices on quality of the harvested crop Forestry SO 49-

Brender, E V 1965 Thinning loblolly pine Pages 99 110 In W G Wahlenberg (Ed) A guide to loblolly and slash pine plantation management in Southeastern USA Rep No 14 Macon, GA Georgia Forestry Res Council

Bryndum, H 1987 Danish thinning experiments with beech Allgemeine Forst-uad Jagdzeitung Danish Forest Exp Sta 2930 Klampenborg Denmark, 158(7/8) 115-121

Burton, J D. 1982 Sawtimber by prescription - The Sudden sawlog story through age 33 Res Pap So-179 New Orleans USDA, For Ser, Southern For Exp Sta 9p

Carleton, T J and Wannamaker, B A 1987 Mortality and self-thinning in postfire black spruce Ann Bot , 59 621-628

Curtis, R 0. 1970. Stand density measures an interpretation Forest Sci, 16 403-414

Curtis, R 01971 A tree area power function and related stand density measures for Douglas-fir Forest Sc1, 17 146-159

Curtis, R 01982 A simple index of stand density for Douglas-fir Forest Scı, 28 92-94

Daniel, T W , Helms, J A and Baker, F S 1979 Principles of Silviculture (2nded) Mc Grow Hill Book Co NY 500p

Davis, K P 1966 Forest management Regulation and Valuation (2nded) Mc Grow Hill Book Co N Y 519p

Day, M W and Rudolph, V J 1971 Thinning red pine by precent of height Mich Agr Exp Sta Res Rep , 1258 p

Day, M W and Rudolph, V J 1972 Chinning plantation ted pitie Mich Agr Exp Sta Res Rep, 151.12 P .

Drew, T J and Flewelling, J W 1977 Some recent Japanese theories of yield-density relationship
and their application to Monterey pine plantations Forest Sci, 23 517-534

Drew, T J and Flewelling, J W 1979 Stand densıty management an alternative approach and its application to Douglas-fir plantations Forest Sc1, 25(3) 518-532

Dzedzyuyla, A A 1985 Model and basic principles of density regulation in scots pine stand for the rapid production of large diameter timber Lesovodstion 1 Agrolesomelioratsiya, USSR, 70 30-33

Edie, A $G 1916$ Thinning of teak coppice in the poles areas of Kanara Indian Forester, 43(3) 157159

Ek, A.R and Dawson, D H 1976 Actual and projected growth and yields of populus 'Tristis \#1' under intensive culture Can J For Res , 6 132144

Farrar, R Jr 1968 Thinning longleaf pine on average sites J For, 66(12) 906-908

Farrar, R M Jr 1985 Predicted stand and stock tables from a spacing study in naturally regenerated longleaf pine USDA, For Ser Res Pap So219 Southern For Exp Sta New Orleans, LA Louisaina 28p

Feduccia, D P and Mosier, J 1977 The wood worth spacing and thinning study-an oblituary Forests and people, 27(1) 18-21

Fender, D E. 1968 Short rotation up to 33 years Pages 11-12 In G A Cordele G A (ed) Proc Symp on planted pines 1968 October 22-23 Atlanta USDA, For Ser Southeastern Area State and Private Forestry

Flewelline, J W 1981 A comparision of three stand density indices for predicting gross volume growth in plantation of loblolly pine Diss Univ of Georgia, Athens 83p

Ford, E D 1975 Competition and stand structure in some even-aged plant monocultures J Ecol, 63 311333
ERI (Forest Research Institute) 1955 Teak plantation-
Wynad-best intensity of thinning For Res
India Part III $1954-55$ Forest Research
Institute Dehradun, India, $78-79$

Gingrich, S F 1967 Measuring and evaluating stocking and stand density in upland hardwood forest in the Centrel State For Sci, 13 38-53

Gorham, $E 1979$ Shoot height, weight and standing crop
in relation to density of monspecific plant
stands Nature, $279148-150$

Grime, J P. 1973 Competition and diversity in herbaceours vegetation- a reply Nature, 244 310-311

Guilkey, $P C$ and Westing, $A H 1956$ Effects of initial spacing on the development ot young jack pine in north lower Michigan papers Michigan Acad Science, Arts, and Letter, 41 45-50

GSI (Geological Survey of India) 1964 After Uniyal $V K$ See Uniyal (1988)

Handler, M Relative distance of treesapplicability as a measuie of density Dansk Skovforerings Tidsskrift, 69(4) 361-374

Hara, K.L, and Oliver, C D 1988 Three Dimensional representation u Douglas-fir volume growth Comparison of growth and yield models with stand data Forest Sci, 34(3) 724-743

Harper, J L 1977 Population biology of plants Acad Press, New York 829p

Hellinga, G 1939 The natural thinning in unthinned Tectona grandis Plantation Tectona, 32(4/5)

Hibbs, D E 1987 The self-thinning rule and red alder management For Ecol Manage, 18 273-281

Hibba, D E, Emmingham, $\mathrm{H} H$ and Bondi, M C 1989

Thinning red alder Effects of method and spacing Forest Sci, 35(1) 16-29

Hungerford, $\quad D \quad 1987$ Estimation of foliage area in dense Montana lodgepole pine stands Can J For Res, 17 320-324

Hutchings, $M \mathrm{~J}$ and Budd, C S J 1981 Plant competition and $1 t s$ course through time Bioscience, 31(9) 640-645

Iyer, $M \mathrm{~K} C 1982$ Third working plan for the Punalur Forest Division State Fo est Department, Government of Kerala, Triv ndrum, 96 p

Karunakaran, $C K 1970$ Second working plan for the Kottayam Forest Division (1970-71 to 1984-85) State Forest Department, Government of Kerala, Trivandrum, 115p

Khalil, MAK 1943 . Advance thinning for teak plantation Indian Forester, 69(1) 15-19

Khanna, L S 1984 Tending Principles and practice of silviculture (3rded) Khanna Bandhu Publication, Dehradun, Indıa 414-457

Kikuzawa, K 1983 Yıeld-density diagram Compactness index for stand and stand components For Ecol Manage , $/(1)$ 1-10

Kisilev, A F and Atroshchenko, O A 1985 Modelling the giowth and productivity of Belorussian Norway spruce stands Lesovedenic 1 Lesnoe Khozyaistvo Belorrs, Technol Inst $1 \mathrm{~m} S \mathrm{M}$ Kirova, Minsk, Belorussian SSR No $2070-75$

KSED (Kerala State Forest Department) 1988 Kerala state forest department social forestry guide State Forest Department, Government of Kerala, Trivandrum, 1-6

Kumar, $B M$, Bhardwaj, S D. and Long, J N 1989 Relationships between size and density in mixed-species population Indian J Ecology (in press)

Langsaeter, A 1941 Om tynning enaldret gran-ogfuruskog (About thinning in even-aged stands of spruce, fir and pine) Meddel forske Nors

Skogforsoksvesen, 8 131-216
Lanner, R M 1985 On the insensitivity of height growth to spacing For Ecol Manage, 13 143-148

Leak, W B 1975 Age distribution in virgin red spruce and northern hardwoods Ecology, 56 1451-1454

Leak, W B 1985 Relationships of tree age to diameter in old growth northern hardwoods and spruce fir Res Note Northeastern - 329 USDA, For Ser Northeastern For Exp Sta 4p

Leduc, $D J$ and Zeide, $B 1987$ Development of loblolly pine stand at various levels of density and prunning Arkansas For Res Dep For Resour, Agric Exp Sta Univ Arkansas, Fayetteville, USA, 36(3) 2p

Liu, J.R 1984 Preliminary study on relationship between mean diameter and stand density For Sci, Technol, 317-21

Lloyd, F T. and Harms, W $R 1986$ An individual stand growth model for mean plant size based on the rule of self-thinning Ann Bot, 57(5) 681688

Long, J $N \quad 1985$ A practical approach to density management For Chron, 61 23-27

Long, J N, McCarter, J B and Jack, S B 1988 A modified density management diagram for coastal Dou\&las-fir Western J Appl Forestry, 3(3) 2p

Long, $J N$ and Smıth, W N 1984 Relation between size and density in developing stands a desciption and possible mechanisms For Ecol Manage, 7(3) 191-206

Lu gdale, W M 1990 The self-thinning rule dead or alive? Ecology, 71(4) 1373-1388

Longdale, $W M$ and Watkinson, $A R 1982$ Light and self-thinning New Phytol, $90431-445$

Lonsdale, $W M$ and Watkinson, $A R 1983$ Plant geometry and self-thinning J Ecol, 71 285-297

Malende, $Y H$ and Dingo, $W N 1987$ Effect of thinning intensities on wood basic density in Cupressus lusitanica Indian J For, 10(1) 24-26

Mathauda, G S 1954 Relationship between the average diameters of the main and subsidiary crops in the case of plantation teak (Tectona grandis Linn f) Indian Forester, 80(11) 707-708

Mc Carter, J B and Long, J N 1986 A lodgepole pine density management diagram Western J Appl Forestry, 1(1) 6-11

Merzlenko, M D 1983 differentıal approach to plantation density Lesnoe Khozyaistvo, No(3) 29-31

Nebeker, T E, Hodges, J D, Karr, B K and Moehring, D M 1985 Thinning practices in Southern Pines-with pest management recommendations USDA, For Ser Tech Bull, $17031-36$

Nigi, 1986 Development structure of selection cutting systems Analysis of the management of Thujopsis dolabrata forest in Shimonta national forest Res Bull the college experimental forest Hokkaido Univ, 43(2) 177316

Ohn Maung, 1968 Control of thinning of teak plantation in Burma Union Burma J Life Sci, 1(2) 194199

Outcalt, K S 1986 Stand density affects growth of choctawhatche stand pine Southern J Appl Forestry, 10(3) 128-131

Pearson, J A Fahey, T J and Knight, D H 1984 Blomass and leaf area in contasting lodgepole pine forests Can J For Res, 14 259-265

Pongsopha, Ch 1962 Comparison of teak growth resulting from different degree of thinning Thesis of Faculty of Forestry (1961-62) Kasetsart Univ Bangkok, Thailand 80p

Ram Prasad, 1973 Limitation of formula thinning in teak forest of $M P$ paper no 81 in the forestry conference (Silviculture conference) from 6 to

10th December 1973 at Forest Rsearch Institute, Dehradun (U P) Indıa

Reineke, L $H \quad 1933$ Perfecting a stand density index for even aged forest J Agric Res, 46 627638

Rennolls, K and Peace, A 1986 Flow models of mortality and yield for unthinned forest stands Forestry, 59(1) 47-58

Ristters, K, Brodie, J D and Hann, D W 1982 Dyanamic proframming for optimizing of timber production and grazing in ponderosa pine Forest Scı, 28(3) 517-526

Ristters, K and Brodie, J D 1984 Implementing optimal thinning strategies Forest Scı, 30(1) 82-85

Rudolf, P O 1951 Stand density and the development of young jack pine J For, 49 254-255

Sagreiya, K P 1963 Single stem silviculture (height/ spacing relatıonship) Indian Forester, 89(10) 652-656

Sagreiya, K P and Chacko, V S 1962 A statistical approach to models for yield tables in even aged teak forests and some application Indian Forester, 88(12) 896-906

Sagwal, S S and Gupta, N K 1987 A study on density of stem and percentage in natural forests of Oh1 (Albizzia chinensis Osbeck Merr) Indian J For , 10(2) 153-154

Sakaı, K I , Runibino, A , Iyama, S and Gadrınab, L V 1987 Studies on interference among trees in a plantation of Altingia excelsa Biotropia, 1(1) 26-40

Saramakı, J and Sekelı, M 1984 The effect of sparing and thinning on the growth and yield of Eucalyptus cloziana Res Note, Division of For Res , For Dept , Zambia, 34(1) 8p

Sarlin, $P 1966$ The first thinning in teak plantations Bios For Trop, 108 5-20
$\begin{aligned} & \text { Senft, J J, Bendtsen, } \mathrm{F} \text { A and Gallıgan, W.L } 1985 \\ & \text { Weak wood fast grown trees make problem } \\ & \text { tamber J For, } 83476-484\end{aligned}$
Shelton, M G and Switzer, G L 1980 The development of unthinned loblolly pine plantations at various spacings Pages 53-54 In Proc Symp on thinning southern pine plantations March 35 Long Beach MS Southern Fot Econ Workshop

Shepard, R K Jr 1973. The effect of various initial spacings on the development of loblolly pine For Res Rep Cathonn, LA North Louisiana Hill Farm Exp Sta , 15-35

Shirley, G S 1928 Effect of neglect of thinning in teak plantations Indian Forester, 54(3) 170172

Shirley, G S 1929 Note on the natural thinning in young teak plantations Indian Forester, 55(4) 225-227

Smıth, N J and Hann, D W 1986 A growth model based on the self-thinning rule Can J For Res, 16(2) 330-334

Smith, F W and Long, J N 1987 Elk hiding and thermal cover guidelines in the context of lodgepole pine stand density Western J Appl Forestry, 2 5p

Stage, A R 1973 Prognosis model for stand development USDA, For Ser Res Pap INT-137 32p

Sterba, H 1987 Estimating potential density from thinning experiment an inventory data Forest Sc1, 33(4) 1022-1031

Tubbs, C H. 1977 Age and strurture of a northern hardwood selection forest , 1929-1976 J Forestry, 75 22-24

Uniyal, V 1988 The first working plan for Parambikulam Wıldiffe Sanctuary Kerala Corest Department, 「rivandrum, 250p

Vasudevan, K G 1966 Working plan for Nılambur Forest Division (1967-68 to 1976 /7) State Forest Department, Govt of Kerala, Trivandrum, 247 p

For Ecol Manage , 13 149-166

APPENDICES

APPENDIX I
Data for stand characteristics for teak plantations.

Plot No. of Age no. trees (yr)	$\underset{(\mathrm{cm})}{\text { DBH }}$	$\begin{gathered} \mathrm{D}_{1} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { Ht } \\ \text { (II) } \end{gathered}$	$\begin{array}{r} \text { Den } \\ \text { (TPH) } \end{array}$	$\begin{array}{r} B A \\ (57 \mathrm{~cm}) \end{array}$	Volume (cu mi)	$\begin{array}{r} \text { DPAI } \\ (\mathrm{cm} / \\ \mathrm{ac} / \mathrm{yI}) \end{array}$	$\begin{array}{r} \mathrm{HPAI} \\ (\mathrm{~m} / \\ \mathrm{ac} / \mathrm{yr}) \end{array}$	GVPAI (cu ${ }^{m}$ / ac/yr)	SDI

1	12	75	423365	426530	216567	30.0	42864	942160	05645	0.2888	00419	70.5239	0 0770
2	9	75	53.1239	533976	240889	225	50385	1223596	07083	03212	00725	757727	00840
3	11	75	48.1820	48.5695	224918	27.5	50949	1164045	0.6424	0.2999	0.0565	795812	C 0869
4	11	75	486160	488548	240745	275	51549	1254874	06482	03210	00608	803304	00813
5	11	75	45.5486	45.9287	21.3236	275	4.5559	100.3926	06073	0.2843	0.0487	72.7719	00787
6	8	75	51.5279	52.0234	257775	200	42511	1112202	06870	0.3437	00741	646017	00797
7	9	75	41.4876	42.0924	203878	22.5	3. 1309	65.2083	0.5532	02718	0.0386	51.7851	00552
8	12	75	36.8985	37.2578	184508	300	32706	62.0076	04920	02460	00276	568020	00587
9	10	75	46.6656	47.4400	220440	250	4.4188	998744	0.6222	02939	00533	69.6736	00759
10	11	75	45.1435	45.9618	221891	27.5	45625	104.3529	06019	02959	00506	72.8558	00807
11	27	74	57.5686	58.8325	27.9419	67.5	183491	5167011	0.7780	0.3776	0.1034	2654531	03143
12	30	65	59.0588	59.3662	250520	750	207595	5197161	09086	03854	0.1066	2992400	03289
13	30	65	53.1699	54.0642	242717	75.0	17.2202	4209463	08180	0.3734	00863	2576776	02858
14	15	65	44.9255	45.3665	242167	37.5	6.0615	1471206	06912	0.3726	00604	972981	$011 c^{5}$
15	14	65	41.9272	423823	21.9600	35.0	4.9376	108.9138	0.6450	0.3378	0.0479	814439	00900
16	16	65	43.6893	44.1323	221956	40.0	6.1186	1412039	06721	0.3415	00543	993039	01119
17	23	65	40.4127	40.8228	212570	575	75257	164.7345	06217	0.3270	0.0441	126.0107	01399
18	18	65	40.3028	40.4827	219650	450	5.7920	1291670	0 ¢200	03379	0.0442	973060	01097
19	15	65	40.5751	40.7283	21.9180	37.5	4.8854	108.2845	06242	0.3372	0.0444	818768	00917
20	16	65	45.3207	46.3063	225075	400	67362	159.3917	06972	0.3463	00613	1072457	01213
21	14	65	423592	43.3860	225921	35.0	5.1742	1217146	06517	0.3476	00535	84.5520	00969
22	32	56	41.3417	41.6397	235350	800	108939	2625551	07382	0.4203	0.0586	180.9666	02132
23	30	56	43.2171	43.5375	28.8507	750	11.1652	3279212	07717	0.5152	0.0781	182.1902	42420
24	29	56	43.1378	436019	26.2517	72.5	108250	2931365	07703	04688	00722	176.5400	02220
25	32	56	39.7103	40.1374	230919	800	10.1220	241.6939	07091	04124	00539	170.6339	02017
26	28	56	36.4589	36.8968	226496	700	74843	177.0423	06511	04045	00452	1304899	01568
27	28	56	38.3006	388807	238457	700	8.3108	209.3399	0 0839	04258	00534	1418956	C 1753
28	32	56	39.4716	400381	241028	80.0	100720	2553664	07048	04304	00571	1699590	02095
29	33	56	39.8188	40.1421	247264	825	104407	2666863	07111	0.4415	00577	1759986	02176
30	28	56	40.3129	407107	227454	70.0	91116	2159309	07199	04062	00551	1527315	01790
31	29	56	370677	374664	21.5145	725	79928	1802464	06619	03842	00444	1385038	01605
32	54	50	35.3806	359008	20 2828	1350	136653	276.3345	07076	04057	00409	2408774	02626
33	68	50	36.5740	370963	206681	170.0	18.3733	381.6245	07315	04134	00449	319.6498	03517
34	30	50	36.6067	38.0125	234217	75.0	85112	219.6003	07321	0.4684	00580	1466358	01852
35	44	50	37.7787	39.1648	269664	1100	132514	394.3340	0.7556	05393	0.0717	225.5911	0.3109
36	37	50	33.8537	356992	23.1192	925	92584	2507930	06771	04624	00542	1635651	02170
37	43	50	36.2366	37.7970	228674	1075	120615	319.4783	07247	04573	00594	2082749	- 2681
38	30	50	37.4556	385027	223923	750	87321	2192740	07491	04478	00585	1496728	01850
39	40	50	41.0075	41.9752	247873	1000	13.8376	376.0778	08201	04957	00752	2291311	02918
40	37	50	410804	419178	244159	925	127648	3387822	08210	04883	00733	2114825	02052

APPENDIX I
Data for stand characteristics for teak plancations.

Plot No. of Age no. trees (yr)	$\begin{gathered} \text { DBH } \\ (\mathrm{cm}) \end{gathered}$	$\begin{array}{r} \mathrm{Dq} \\ (\mathrm{~cm}) \end{array}$	$\begin{gathered} H L \\ (m) \end{gathered}$	$\begin{aligned} & \text { Den } \\ & \text { (TPH) } \end{aligned}$	$\begin{array}{r} B A \\ (s f r m) \end{array}$	Volume (cu.m)	UPAI (cmi/ ac/yr)		GVPAI (cu.m/ ac/yr)	SDI	ρ_{r}

41	30	50	41.0950	420326	20.1143	750	10.4066	279.1344	08219	05223	0.0798	1722244	02275
42	55	45	39.4484	399202	226613	1375	172146	3885583	08766	05036	00628	2908114	03316
43	58	45'	401137	40.6388	226200	145.0	188074	425.1893	08914	05027	00652	315.4788	03584
44	52	45	371270	374951	240650	1300	143539	3518459	08250	05348	00601	2486562	03046
45	60	45	390843	39.4513	224252	1500	18.3354	4234539	08605	0.4983	00627	3112325	0.3615
46	60	45	29.6037	300640	196920	1500	106479	2134027	06579	04376	00316	2014941	02289
47	69	45	30.4249	30.8329	199609	1725	128794	2647871	00761	0.4436	00341	2412726	$027{ }^{\circ} 0$
48	65	45	29.9024	302497	195355	162.5	11.6781	234.0011	06645	04341	00320	2204469	02500
49	69	45	27.9429	28.4009	207954	172.5	10.9278	236.3427	0.6210	0.4666	0.0304	2115520	02567
50	65	45	30.9161	31.5115	19.6346	1625	12.6727	2571061	06870	04363	00352	2353426	02662
51	60	45	27.5347	29.8742	188612	150.0	10.5138	204.3938	06563	0.4191	0.0303	1994625	02224
52	59	40	35.3604	363097	199517	1475	152727	3108536	08840	04988	00527	2679939	02925
53	78	40	30.6525	31.2740	198482	1950	14.9789	3019818	0.7663	0.4962	00387	2790133	03149
54	83	40	27.1835	274445	180092	1575	93168	172.5253	06796	04517	00274	1828539	02019
55	60	40	26.7070	27.0199	18.5920	1500	86007	1626373	06677	04648	0.0271	1698562	0.1910
56	65	40	27.6595	27.9568	183226	1625	99749	1864488	06915	04581	0.0287	1943257	02149
57	68	40	27.0712	27.5004	186556	170.0	100973	192.9783	06768	04664	0.0284	198.0106	0.2232
58	60	40	27.3330	27.6528	187693	1500	90084	1724578	06833	04692	00287	1762668	01986
59	55	40	27.8385	28.1165	187140	137.5	85369	1625840	0.6960	04678	0.0296	165.9343	01855
60	63	40	26.4660	267990	183194	1575	8.8837	165.9126	06616	0.4580	0.0263	1760220	01967
61	60	40	26.6858	27.0145	185682	1500	8.5973	162.1903	06671	04642	00270	169.8015	01907
62	99	35	30.4397	30.9596	23.1606	2475	18.6313	437.4484	08697	0.6617	00505	3484531	04365
63	100	35	30.2149	307545	22.7344	250.0	18.5709	430.3113	0.8633	06496	0.0492	348.2482	0.4332
64	77	35	20.9223	21.7487	143340	172.5	71511	111.7747	05978	04095	00106	1540355	01617
65	93	35	22.2584	228047	15.8360	2325	9.4962	160.7889	06360	0.4525	00198	200.7046	0.2194
66	66	35	28.3063	295655	154858	1650	113275	1774688	08088	04425	00307	2157928	02090
67	54	35	31.7199	32.5457	223546	1350	112305	2674435	09063	06387	00560	2058827	02569
68	55	35	271034	277362	184764	1375	83076	1654167	07744	05279	00344	1623579	01877
69	73	35	252780	25.7145	171016	1825	94776	1720748	0722 c	04886	0.0269	1909171	02117
70	60	35	23.3540	245779	14.9845	150.0	7.1163	115.6216	06673	04281	00220	1459682	01521
71	56	35	26.3637	27.2495	175334	1400	8.1643	157.2577	07532	0.5010	0.0321	1606928	01825
72	146	30	26.7475	273709	218436	3650	21.4758	4811997	08916	07281	00439	4219411	05295
73	103	30	24.0254	24.7706	182266	257.5	12.4087	240.7718	0.8008	06076	00312	2537298	0.2971
74	100	30	23.5620	24.0646	181271	250.0	11.3704	2114189	07854	0.6042	00282	235.2031	02697
75	97	30	24.5598	25.0469	18.5044	242.5	11.9863	2263710	08187	0.6168	00311	2438507	0.2795
76	80	30	22.9986	235394	10.8507	200.0	B 7036	1551739	07666	0.5617	00259	1816350	02037
77	56	30	20.0996	20.8088	13.5923	140.0	4.7610	68.3520	0.6700	0.4531	0.0163	1043807	01047
78	115	30	21.6319	21.9754	$16<410$	287.5	10.9041	1846459	07211	05414	00214	233 9016	$0 \leq 582$
79	64	30	24.4061	249782	15.5867	1600	7.8520	1291662	08135	05196	0.0209	159.9812	01674
80	60	30	246804	251506	148345	1500	7.4519	1107159	08227	04945	00259	1514488	01531

APPENDIX I
Data for stand sharactersstics for teah plantations.

81	60	30	24.0013	24.5969	14.8483	1500	7. 1274	112.3356	08000	04949	00250	1461490	01493
82	138	25	17.5168	17.9660	132256	3450	87458	1239638	07007	05290	00144	2033467	02104
83	133	25	20.8008	2136 记	149941	3325	119157	1847189	0.8320	0.5998	$0.022 ¢$	258.5173	02711
84	120	25	184227	188753	140206	3000	83943	1244637	07369	05611	00166	1913577	02013
85	135	25	19.4882	20.0184	142588	337.5	10.6221	161.5427	0.7795	0.5704	00191	236.5142	02492
86	127	25	18.5302	19.0608	14.2421	3175	9.0595	1384070	07412	05697	00174	2057153	02202
87	78	25	27.4775	28.1886	226541	195.0	12.1691	287.9020	10991	09062	0.0591	2362918	03051
88	75	25	19.2477	197728	216655	1875	57572	1326891	07699	08666	00283	1288264	01797
89	80	25	25.5053	261736	229389	200.0	10.7005	261.6330	10202	09176	00523	2152325	02887
90	71	25	24.5285	255017	217893	1775	90060	212.6410	09811	08716	00479	1832334	02416
91	78	25	25.3472	26.2315	223527	1950	10.5380	2511547	10139	0.8941	00515	2105945	02785
92	233	20	17.7453	18.3845	179862	5825	15.4624	302.1463	08873	08993	00259	356.2177	$\cup 4537$
93	232	20	17.8176	18.3858	171286	5800	15.3982	286. 1837	U. 8909	0.8564	00247	354.7286	$045^{7} 0$
94	229	20	17.3088	17.8162	176880	5725	142720	2752627	08654	08844	00240	3399480	04239
95	232	20	18. 1771	18.8279	17.2947	5800	16.1476	303.1533	0.9089	0.8647	0.0261	3684740	04541
96	220	20	17.8042	18.4677	167156	550	147322	2670663	08902	08358	00243	3387817	04100
97	233	20	17.9201	18.5905	17.5150	5825	15.8108	3001187	0.8960	0.8758	00258	3626245	04517
98	203	20	179529	18.5709	176335	5075	13.7461	2640853	08976	08817	00260	3154022	03961
99	213	20	178752	184815	180020	5325	142847	280.3003	08938	09001	00263	3283942	04189
100	176	17	20.5895	21.1610	203474	4400	15.4740	3222316	12111	11969	00431	3369824	04313
101	196	15	11.8200	129203	10.3133	4900	64242	89. 1816	07880	06876	00121	1/U 2224	01899
102	260	15	121023	13.2420	91001	6500	89516	1098689	08068	06067	00113	2351450	02098
103	214	15	12.9990	13.8661	9.4464	535.0	8.0787	96.2685	08666	0.6298	0.0120	208.3424	02057
104	196	15	127799	13.6085	93813	4900	7. 1268	85.1890	08520	0.6254	00116	1851777	01842
105	187	15	12.5540	13.6096	94511	467.5	6.8006	84.4919	0.8369	0.6301	00120	176.6974	01803
106	245	15	11.0307	12.2192	81607	612.5	7. 1824	84.0947	0.7354	05446	00092	1948368	01967
107	243	15	11.5250	12.6154	8.0602	607.5	7.5931	90.0792	0.7683	05773	0.0099	203.3673	02053
108	180	15	12.2854	13.3474	90097	450.0	0.2963	75.1814	08190	06006	00111	1648712	01647
109	298	10	13.5414	14.0557	11.7053	745.0	11.5594	151.0473	1.3541	11705	00203	2964931	03102
110	303	10	12.3651	129478	104367	7575	9.9736	119.9723	12365	1.0437	00158	2643575	02675
111	300	10	12.3253	12.9231	10.8820	750.0	9.8371	126.4366	1.2325	1.0882	00169	2609406	0.2761
112	300	10	12.4495	13.0950	10.5842	750.0	101007	129.7552	1.2449	10584	00173	2665184	02810
113	304	10	12.4375	13.0182	101544	7600	10.1156	123.5655	1.2437	1.0154	0.0163	2675416	02732
114	294	10	12.4448	130104	101283	7350	97712	118.8211	12445	10128	00162	2584939	02602
115	298	10	12.5811	131277	10.3427	7450	10.0835	125.5163	1.2581	1.0343	00168	2658002	02742
116	296	10	12.3005	129175	96568	7400	9.6976	114.6324	12300	0.9657	00155	2572835	02575

APPENDIX II

Analysis of variance for Equation I	
Dependent variable	In Mvol
Independent variables	(1) ln Den
	(2) In Ht
Multiple R	098290
R Square	096610
Adjusted R Square	096550
Standard error	019835

Analysis of variance

$F=161024546 \quad$ Signif $F=00$
Variables in the equation

Variable	1	B		SEB		Data	T	S1g		T
ln Den	1-0	467161	0	027801	-0	425581	-16	805		0000
$\ln \mathrm{Ht}$	12	234241	0	090051	-0	628331	24	810		0000
Constant(a)	\| -3	952481	0	376761		1	-10	491	1	0000

APPENDIX III

Analysis of variance for the Equation II

Dependent variable	\ln
Independent varıables	(1) \ln
	(2) $\ln \mathrm{M}$
Multiple R	099615
R Square	099232
Adjusted R Square	099218
Standard Error	003738

Analysis of Variance

APPENDIX IV

Predicted quadratic diameter ($D \mathfrak{f}$) values (cm) for different combinations of density and stand density index (SDI) values

APPENDIX V
$3-1$
Predicted livol (ar tree) values for different combinations of density (DEN) and heazht (Ht) values.

APPENDIX VI

Predicted fuadratic diameter (Dq)(cm) values for different combinations of density (DEN) and height (Ht) values

APFENDIx VII

Predıcted quadratic diameter (cmi) values for different combinations of density (DEN) and volume (Vol) values

Stand Density Regulation in Even Aged Teak Plantations

BY
PRASOON KUMAR

ABSTRACT OF A
 THESIS

SUBMITTED IH PARTIAL FULFILMENT OF THE REQUIREMEHT FUA THE DEGREE

MASTER OF SCIENCE IN FORESTAY kERALA agRicultural university

FACULTY OF AGRIGULTURE

$$
\begin{aligned}
& \text { COLLEGE OF FORESTRY } \\
& \text { VELLANIKKARA - THWISUR } \\
& 1590
\end{aligned}
$$

Abstract

A teak density management diagram was constructed using the stand inventory data on teak collected from Parambikulam, Thrissur and Chalakudy areas Density management diagram is a graphical representation of the stand growth through time, in terms of density and quadratic diameter, volume, herght and Reineke's stand density index A size-density based index such as Reineke's stand density index incidentally provides a good biological basis for the translation of management objectives into levels of growing stock Stand density index (SDI) incidentally is also independent of site quality and age The data-set also revealed that Parambikulam $1 s$ a better site for teak followed by Thrissur and Chalakudy The maximum SDI for teak was found to be 600 which probably covers all possible combinations of size and density included in the data-set The use of diagram for designing two alternate density management regimes for a hypothetical stand is illustrated Designing a density management regime requires the translation of management objectives into appropriate levels of growing stock Maximization of volume production and maximization of individual tree giowth are the two alternate but contrasting gilvicultural strategies in this context For maximization of volume per unit area the level of the growing stock shouldfallin the zone II of the langsaeter's

curve. On the other hand, if the land management objective is to maximize individual tree growth, then trees should not experiance much competition (preferably in zone I of the Langsaeter's curve) So, in the former case the levels of growing stock will be naturally higher than that of latter

After fixing the appropriate upper and lower levels of size - density relations the stand is allowed to grow till it reaches upper limit and then thinned down to the lower limit This process $1 s$ repeated as many times as necessary The diagram has diverse utility from designing alternate density management regimes to comparing the results of optimization analyses However, it suffers from some shortcomings such as lack of memory, prediction of same rotation age irrespective to the path taken by stand, rotation ending before culmination of periodic annual increment, the assumption of single maximum size-density relationship and slight bias of the model with respect to the independent variables outaide the range of the data base However, with more work many of thege defects rould be over come

[^0]: 2.3.1. Percentage height approach: Some workers have related the percentage of height with the space left after thinning

[^1]: Abbreviation used:
 PCT - Precommercial thanning
 CT - Commercial thanning
 FH - Final harvest
 SDI - Stand Density Index
 TPH - Tree per hectare
 cin - Centimeter
 m - Meter
 ha - Hectare
 PAI - Periodic annual increment

