EVALUATION OF FEEDING VALUE OF RUBBER SEED CAKE FOR PROMOTING GROWTH IN CALVES

Ву

T V. VISWANATHAN, B V Sc.

THESIS

Submitted in partial fulfilment of the requirements for the degree

MASTER OF VETERINARY SCIENCE

Faculty of Veterinary and Animal Sciences

Kerala Agricultural University

Department of Nutrition

COLLEGE OF VETERINARY & ANIMAL SCIENCES

MANNUTHY - TRICHUR

1977

DECLARATION

I hereby declare that this thesis entitled "EVALUATION OF FEEDING VALUE OF RUBBER SEED CAKE FOR PROMOTING GROWTH IN CALVES" is a bona fide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship, or other similar title, of any other University or Society.

T.V. VISWANATHAN

Mannuthy,

12 -8-1977.

CERTIFICATE

Certified that this thesis, entitled "EVALUATION OF FEEDING VALUE OF RUBBER SEED CAKE FOR PROMOTING GROWTH IN CALVES" is a record of research work done independently by Shri T.V. Viswanathan under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship, or associateship to him.

rig. santingonhare

Dr. C.R. Ananthasubramaniam (Chairman, Advisery Board)

Associate Professor.

Mannuthy,

/2 -8-1977.

CONTENTS

		Page
Introduction	••	1
Review of Literature	••	5
Materials and Methods	••	13
Results	••	16
Discussion	••	28
Summary	••	34
References	••	36
Appendices		
Abstract		

INTRODUCTION

In the field of livestock wealth India occupies a unique position, possessing the largest cattle population of the world. Indian cattle are held in high esteem all over the world for their special attributes such as draft ability, heat tolerance, resistance to diseases and ability for converting the coarse forages into protein rich products.

According to the eleventh Livestock Census, there were 179 million cattle and 58 million buffaloes in India (Bhattacharya, 1976), Kerala State accounting for 2.86 million and 0.47 million respectively (Farm Information Bureau, 1977). Although the cattle and buffaloe population has almost reached a point of saturation at present, it will continue to increase at a slow rate upto 1980 (National Commission on Agriculture, 1976).

The present per capita availability of milk in India is estimated to be around 110 g against the recommended level of 200 g for adults per day (Ranga-Rau, 1975). While the average annual milk yields of the Indian cow and buffaloe are only 157 and 504 g respectively, the milk yields of improved cows in Denmark, U.S.A., U.K., Switzerland and Israel are more than 20 times than that of the Indian cow and over seven times than that of the buffalo (Bhattacharya, 1976). This disparity in the productivity of animals has largely been attributed to the

extent of application of science and technology in the field of Animal Husbandry. Wright (1937) has stated that milk production can be increased by at least 60 per cent by better feeding and management alone. Kay (1946) stated that even 300 per cent increase in milk production is possible by better feeding and management alone.

India is short to the extent of 40 per cent in roughages and 70 per cent in concentrates to meet the livestock needs (Venkatachalar, 1976). Only about 4 per cent of the cultivated area is under fodder crops in contrast to about 25 per cent in U.K. and nearly 60 per cent in U.S.A. (Venkatachalar, loc cit). It has been reported that of the available sources of cattle feed, about 80 per cent is from agro-industrial by-products and the rest is from cultivated fodder (Ulhas, 1976).

The present population of 4000 million in the world is expected to increase to 7000 million by the year 2000 and nearly 500 million people now face dietary protein and energy shortages (National Academy of Sciences, 1971). In this situation, it is essential to formulate rations for animals by minimising or even avoiding the incorporation of items that are use in human diets. The utilisation of agro-industrial by-products in the rations of animals, thus, assumes paramount importance.

It is an accepted fact that the object in designing ratio

for livestock is to maximise the returns over the feed costs. To achieve this object, one of the possible methods is to supply digestible nutrients to the animal at a lower cost. The utility of any feed stuff will, thus, have to be judged by its ability to supply the digestible protein and energy at a competetive price. It, therefore, becomes imperative to explore the possibility of utilising agricultural and industrial by-products which hitherto go as waste.

The Indian Council of Agricultural Research have initiated extensive investigations on the feeding value of the various agricultural wastes and industrial by-products available in the country for different species of animals. Of the several such unconventional feeds, rubber seed cake - a by-product of rubber plantation - has attracted the attention of the scientists and farmers in the State of Kerala.

In India, rubber is grown over an area of approximately 224,428 hectares (Rubber Research Institute of India, 1977) of which 202,320 hectares are in Kerala (Farm Information Bureau, 1977). The world production of rubber seed cake has been estimated as 150,000 tons (British Rubber Development Board, 1948). It has been estimated that about 46,965 tonnes of rubber seed is now wasted in Kerala (Varghese, 1972).

Though there are few reports on the feeding value of rubber seed cake to animals and birds (Sen, 1952; Morrison, 1957 Buvanendran and Siriwardene, 1970 and Nadarajah et al. 1975),

detailed information on its suitability as an ingredient in the rations of calves is lacking. A detailed investigation was, therefore, carried out to assess the suitability and feeding value of rubber seed cake as an ingredient in the concentrate mixture for growing calves.

REVIEW OF LITERATURE

The common rubber tree (Hevea brasiliensis) belongs to the family Euphorbiacea (Encyclopaedia Britannica, 1957). This tree grows well in almost all types of soil and in areas having a rainfall upto 100 inches. The optimum temperature for growth of this tree is from 70-90°F at an altitude below 2000 feet. It is a large tree growing upto 125 feet in height and reaching a circumference of 12 feet under natural conditions. The tree has a well developed and very thick bark, which is its most important part as it yields the latex from which the natural rubber is pro duced. The flowers appear in the form of a big inflorescence with pale green colour and have an abundant content of nectar. The fruit is green till fully mature and appears as a lobulated oval capsule divided into three compartments, each containing a single, oval hard seed. The seeds are mottled brown in colour. When fully ripe, the capsule explodes and ejects the seeds. The seeds are formed during summer and mature seeds are dispersed from June onwards till September. The secondary seed fall which occurs at the commencement of the winter season is of less importance as compared with that of the main crop (Anon, 1969).

Varghese (1972) reported that the total cost of rubber seed oil and cake produced annually from Kerala comes to the tune of Rs. 1.4 crore of which the cost of cake alone amounts to Rs.48.9 lakhs. According to him, rubber seed which now fetch no price to the cultivator is estimated to cost Rs.200/- per ton

and that it is possible to collect one ton of rubber seed from four hectares of land under cultivation.

A rubber tree will bear approximately 300 fruits each having three to four seeds in it weighing four to six g each. A minimum of 350 trees can be planted in a hectare (Anon, 1969). Of the total weight of the seeds, the shell and kernel form 37 and 63 per cent respectively (Anon, loc cit). After extraction of oil, the cake accounts for 55 per cent of the kernel (Rubber Research Institute of India, 1977). From the above information and taking into consideration that on an average, only 85 per cent of the trees of the plantation would be able to produce seeds (Nadarajah, 1969). It has been calculated that about 37,500 tonnes of rubber seed cake will be available annually in Kerala.

Studied by many workers. The shelling percentage (Kernels as a percentage of undecorticated seeds) of rubber seed has been reported as 57 per cent, the shells making up 43 per cent of the whole seed (Orok and Bowland, 1974). Figures ranging from 45.0-69.7 per cent have also been reported (Anon, 1948; Nobori and Takehara, 1948 and Rubber Research Institute of India, 1977). Rubber seed oil which forms 35-52 per cent of the kernel (Nobori and Takehara, 1948; Siqueira et al. 1956; Azeemoddin and Rao, 1962 and Rubber Research Institute of India, 1977), is used mainly in soap manufacture, paint industry, production of factice, epoxidised vegetable oil and as a lubricating oil (Rubber Research Institute of India, 1977). Also, it has been used effectively against flies.

lice and similar pests (Medical Research Institute, Ceylon, 1950).

Rubber seed cake contains 23.6 to 29.9 per cent of crude protein (Buvanendran and Siriwardene, 1970; Hyder Ali, 1970 and Siriwardene and Nugara, 1972). Morrison (1957) has reported a crude protein value of 28.8 per cent for rubber seed oil meal. Reported values for crude protein in rubber seed kernel range from 16.87-22.10 per cent (Siqueira et al. 1956; Azeemoddin and Rao, 1962; FAO, 1972 and Orok and Bowland, 1974).

Rajaguru and Vohra (1975) reported the amino acid composition of decorticated rubber seed expressed as weight percentage of protein as: isoleucine 3.1-4.2, leucine 4.8-5.9, lysine 2.8-4.2, methionine 1.1-2.2, cystine 1.4-2.0, phenylalanine 2.8-3.8, threonine 2.8-3.1, tyrosine 2.6-2.8, tryptophan 1.2-1.4 and valine 4.2-6.5. Fatty acid composition of decorticated rubber seed as weight percentage has been reported to be: myristic 0.1, palmitic 8.1, stearic 10.5, arachidonic 0.3, (FAO, 1972). Siqueira et al. (1956) recorded a figure of 450 micro gram for thiamine, 2500 micro gram for nicotinic acid and 250 micro gram for carotene for 100 g of untreated rubber seed kernel.

Pope (1930) claimed that rubber seeds are edible. Lauw Tjin Giok et al. (1967) reported that rubber seed is used by people living in or near the plantations in Nigeria and that there was no evidence of toxicity when rubber seed was fed to animals. No saponin or alkaloid was detected in rubber seed oil

cake when fed as cattle feed (Anon, 1929). Sankumny et al. (1964) found no toxic symptom in rats on feeding rubber seed at a level of 29.6 per cent in their diet.

Earlier. Gorter (1912) reported that rubber seed kernel contains a cyanogenetic glucoside ie. a compound which decomposes as a result of enzyme action in a very slightly acid medium. vielding hydrocyanic acid as one of the products. This cyanogenetic glucoside has been claimed to be similar to that present in manioc viz.. linamarin, which is the glucoside of acetone cyanohydrin. The mild smell of hydrocyanic acid in moist kernel especially when dried in the copra kiln or in the smoke house is an evidence of the presence of this compound. It is reported that the hydrocyanic acid content diminishes rapidly during the first eight weeks of storage and thereafter the decrease is much more gradual (George et al. 1932). Hydrocyanic acid concentration is found to be 20 mg/100 g in rubber seed products (Bredemann. 1931), 200 mg, 8.9 mg and 3.4 mg per 100 g in fresh seeds, cooked dried materials and defated dried pressed cake respectively (Lauw Tjin Glok et al. 1967) and 9 mg/100 g of rubber seed cake (ICAR Report. 1976).

Feeding trials carried out on weanling rats fed on synthetic as well as milk based diets incorporating rubber seed cake at 30 per cent level showed no significant change in body weight gain, nutritional status or feed intake of animals when compared with those of the control. It was, however, observed that animals

receiving rubber seed cake evinced black foetid diarrhoea. Though no mortality was observed during the course of the study, histopathological examination of the internal organs of animals receiving rubber seed cake, when slaughtered at the termination of the experiment showed necrotic enteritis (ICAR Report, 1971).

Lauw Tjin Giok et al. (1967) studied the nutritive value of rubber seed protein in rats and reported that rubber seed cake would be a potential source of high protein feed for cattle and sheep. The quantity of sulphur containing amino acids particularly that of methionine was found to be 1.1-2.2 g/100 g of protein (Lauw Tjin Giok et al. 1967; Orok and Bowland, 1974 and Rajaguru and Vohra, 1975). The other essential amino acids were also reported to be present in acceptable levels. Lauw Tjin Giok et al. (1967) claimed that the higher levels of lysine and tryptophan would make rubber seed cake a useful supplementary protein to maize. They also reported that at 20 per cent dietary level of protein (about 60% dried rubber seed in the diet), food intake, protein efficiency ratio and growth rate of rats were comparable with those obtained on rats fed diets with casein at the same level.

Orok and Bowland (1974) reported that a level of 7 to 12 per cent of rubber seed cake prepared from fresh or autoclaved decorticated rubber seed could be utilised efficiently in either soybean meal or peanut meal supplemented diet for rats. Rubber

seed meal was particularly useful as a supplement to peanut meal diets which were generally inferior to diets containing soybean meal (Orok and Bowland, 1974a). Rats fed rubber seed cake supplemented diets consumed less when compared to those receiving other diets which has been attributed to higher digestible energy and metabolizable energy contents of the rubber seed meal supplemented diets. Gross energy per g of rubber seed cake was reported to be 6.5 K cal (Orok and Bowland, 1974). Oluyemi et al. (1976) reported gross energy values of 7.11, 6.99, 4.48 K cal/g for raw rubber seed, autoclaved rubber seed meal and defatted rubber seed meal respectively.

meal could be successfully incorporated upto a level of 20 to 25 per cent in broiler and layer rations (Buvanendran and Siriwardene, 1970). Rajaguru (1971) observed that when pullets were raised on diets with different levels of rubber seed meal (10-40) from third month of age, though matured late, the egg production was normal in all the groups. Increasing the percentage of rubber seed meal in the diets lowered egg size, shell thickness, hatchability of incubated eggs and weights of chicks hatched out. Buvanendran (1971) reported that rubber seed meal at a level of 20 per cent in the ration caused embryonic mortality and suggested that cyanogenetic glycosides could not be responsible for this effect. Rajaguru (1971) and Rajaguru and Wettimuny (1971) have also observed embryonic mortality in chicks and have attributed this to the amino acid imbalance of rubber

seed meal lowering the biological value of proteins in diets. Rajaguru (1971) suggested that rubber seed cake contained an unidentified antifertility factor, though it had no effect on the quality of semen of the cocks used for artificial insemination.

Growth studies in pigs using rubber seed cake replacing 10 per cent of the coconut oil cake in the ration showed that the material can profitably be used without any deleterious effect on the rate of growth, feed efficiency and on carcass characteristics of the animals (ICAR Report, 1972). Nadarajah et al. (1975) observed that when breeding sows were fed on a ration containing 10 per cent rubber seed meal the fertility of the herd was drastically affected. On the other hand, diets containing 50 per cent rubber seed meal showed excellent results in terms of weight gain and quality of flesh in porkers.

Rubber seed meal has been reported as a possible cattle feed supplement (Ellett et al. 1931; Dawson and Messenger, 1932; Sen, 1952; Morrison, 1957 and Lauw Tjin Giok, 1967). On the other hand, it was suggested that the use of rubber seed cake as animal feed may be unwise because of poisoning from prussic acid (Anon, 1948). Rubber seed cake was found to be unsatisfactory as a feed for calves (Bredemann, 1931). It was suggested that a large part of its oil has to be extracted to make rubber seed meal a suitable cattle feed (Dawson and Messenger, 1932; Sen, 1952 and Nadarajah et al. 1975). Bhushan (1958) claimed

that rubber seed meal is one of the most digestible concentrated cattle feeds available.

Ellett et al. (1931) reported that though rubber seed meal is less palatable, it is an efficient medium protein concentrate for milch cows, closely comparable with linseed meal for milk production. Lactation studies involving eight cows, in a seven week switch over trial, incorporating rubber seed cake at 20 per cent level replacing the entire portion of gingelly cake (20%) in the concentrate mixture failed to produce any significant difference in either milk production (FCM) or in the characteristics of butter fat (ICAR Report, 1976).

Morrison (1957) reported values of 20.4 and 63.4 for DCP and TDN respectively in rubber seed oil meal. Hyder Ali (1970) recorded values of 18.5 and 53.8 for DCP and TDN respectively for rubber seed cake. DCP and TDN of rubber seed cake for swine were found to be 16.65 and 78.86 respectively (George, 1970).

MATERIALS AND METHODS

Twenty four cross-bred calves (Sindhi x Jersey) of 8-14 months of age, from the University Livestock Farm, Mammuthy, were randomly distributed under three dietary treatments (T₁, T₂ and T₃) as uniformly as possible in regard to age, sex and weight. The three groups of animals were fed on concentrate rations containing 0, 15 and 30 per cent levels respectively of rubber seed cake. Calves were protected against common contageous diseases and were also dewormed periodically. All animals were fed according to Feeding Standards prescribed by Sen and Ray (1971). Paddy straw formed the sole roughage.

Records of daily feed consumption and fortnightly body weights of animals were maintained throughout the period of the experiment. Linear body measurements like length, girth and height were taken at the beginning, third and sixth month of the study as detailed by Russel (1975). Haematological values namely, RBC, haemoglobin, plasma protein, calcium and inorganic phosphorus were determined at the beginning, third and sixth month of the study as per the methods detailed by Omer (1965) and Swenson (1970).

A digestion-cum-metabolism trial involving five day's collection period was conducted at the end of the study (Hattan and Cwen, 1970). Known quantities of the feed were taken everyday for dry matter determination. Composite samples were taken

after pooling the samples collected during the five days of the trial for the determination of the rest of the proximate principles.

Table 1. Percentage composition and cost of concentrate mixtures.

Items	^T 1	^T 2	^Т з	Cost (Rs/quintal)
Rubber seed cake	-	1 5	30	8 5.00
Cotton seed cake	3 0	15	_	133.00
Groundnut cake	22	22	22	147.50
Rice bran	20	14	5	44.40
Maize bran	20	23	26	119.00
Marze	5	8	14	110.00
Mineral mixture	1	4	1	650.00
(Dicalcium phosphate)	•	1	•	6 50 . 00
Salt	2	2	2	15.00
Vitamin A, B2, D3 (Rovimix)	12.5 g	12.5 g	12. 5 g	11,955.00
DCP (Calculated value)	16.1	16.1	16.0	
TDN (")	69.8	69•3	69.6	
Cost in Rs./quintal	118. 83	115.84	114.81	

All precautions were taken to ensure the collection of dung quantitatively, uncontaminated by urine, any feed residue or dirt. The dung was collected manually at 10 a.m. everyday. The dung voided during the previous 24 hours was weighed accurately and representative samples were taken after thorough mixing. Dry matter content of dung for each animal was determined everyday

separately. A representative sample of dung collected from each animal was preserved in a refrigerator. A known quantity of dung was taken from the pooled samples for protein estimation. Dried dung of each animal was preserved in labelled air-tight containers for further analysis. The process of collection, weighing, sampling and drying of dung was continued till the end of the trial.

The urine from males was collected by urine collection bags whereas that from females was collected manually and preserved in polythene cans containing 100 ml of 25 per cent of sulphuric acid. The quantity of urine voided was measured daily and 1/1000th of the volume was taken for the estimation of nitrogen. Another sample was preserved for estimation of calcium and phosphorus.

The analyses of the feeds and faeces were carried out as per the standard methods described in A.O.A.C. (1970).

For the statistical analyses of the results obtained during the course of the present study, methods described by Snedecor and Cochran (1969) were followed.

One animal each from the control and the 30 per cent group was slaughtered at the end of the experiment for histopathological studies.

RESULTS

RESULTS

The results of the chemical analysis of the experimental rations (T₁, T₂ and T₃) are presented in Table 2. Mean values of body weights of the animals taken at fortnightly intervals are shown in Table 3 and represented in Fig. 1. Statistical analysis of the data on the body weight gain is presented in Table 4. The mean values of linear body measurements of the calves are set out in Table 5 and in Figs. 2 to 4 and statistically analysed in Tables 6 to 8. In Table 9 data on haematological values of calves determined during the experimental period are presented. The results of digestion-cum-metabolism trial conducted at the termination of the experiment are shown in Table 10, and statistically analysed in Table 11. The average value of feed consumption, feed efficiency and the economics involved are detailed in Table 12 and presented in Figs. 5 and 6.

Table 2. Chemical composition of the experimental rations. (Percentage on dry matter basis)

	Conc	entrate		Roughage	Rubber seed	
	T ₁ T ₂ T ₃		т ₃	Paddy straw	cake	
Dry matter	91•4	92.0	91•4	93.8	92•9	
Crude protein	22.4	23.2	22.6	3.9	24.6	
Ether extract	7. 5	8.2	6.3	1.9	12.0	
Crude fibre	16.8	11•3	6.8	31•2	2•9	
Nitrogen-free extract	43.8	47•9	55.8	47.1	53.0	
Total ash	9•5	9•4	8•5	15.9	7.5	
Acid insoluble ash	3.1	3•9	2.5	12.5	0.16	
Calcium	0.72	0 .7 5	0.82	0.63	0.35	
Phosphorous	0.95	0.94	0.87	0.18	0.62	
Hydrocyanic acid mg/100 g	-	-	-	-	8.7	

Table 3. Summarised data on fortnightly average body weights (kg) of calves maintained on the experimental rations.

Treat-	Number	سه شده دي مي شوه _{اس} ه ا	Fortnights										Overall		
ments animal		0	1	2	3	4	5	6	7	8	9	10	11	12	average daily gain per animal
^T 1	8	85 ±4•4	89 <u>+</u> 4•5	92 <u>+</u> 6•5	100 ±5•4	108 ±5•3	112 <u>+</u> 7•2	119 <u>+</u> 7•4	129 <u>+</u> 7•5	135 <u>+</u> 5•6	139 <u>+</u> 7•2	143 <u>+</u> 7•7	±4.2	161 <u>+</u> 7•2	422 g
^T 2	7	85 ± 1•1	90 <u>+</u> 1•4	91 ±3•4	99 1 3•4	108 ±2•7	113 ±2.7	121 ±2.0	131 ±3•1	138 <u>+</u> 4•0	141 <u>+</u> 4•1	148 ±5•6	156 <u>+</u> 2•5	161 <u>+</u> 2•6	422 g
^T 3	8	85 <u>+</u> 3•5	89 <u>+</u> 4•1	91 <u>+</u> 6•2	100 ±6•8	108 <u>+</u> 6•6	115 <u>+</u> 6•5	125 <u>+</u> 6•6	135 <u>+</u> 6•1	144 ±8•0	151 <u>+</u> 7•8	160 <u>+</u> 8•1	166 <u>+</u> 9•6	174 ±8•6	4 94 g

Table 4. Analysis of variance. Weight gain.

	oc oc	Maa	 F
UI	35 	1172	r
11	1003.71	91.25	10.24**
2	65.00	32.50	3.65*
1	63.83	63.83	7.16**
249	2217.72	8.91	
263	3350.26		
	2 1 249	11 1003.71 2 65.00 1 63.83 249 2217.72	11 1003.71 91.25 2 65.00 32.50 1 63.83 63.83 249 2217.72 8.91

^{*} Significant at 5% level.

Pairwise comparison.

Treatments	T ₁	T ₂	\mathbf{T}_{3}	C.D. for	T,	and To	-	2.17
Mean	•	76	-			and T ₃		
Hean	10	,0	0,5	Ħ		and Tz		

^{**} Significant at 1% level.

Table 5. Average linear body measurements of calves maintained on the experimental rations.

	Height (cm)	Length (cm)	Girth (cm)
<u>Initial</u>			
T ₁	90 <u>+</u> 2.6	95 <u>+</u> 3.1	109 + 2.7
T2	90 ± 3•2	95 <u>+</u> 2.3	108 ± 3.7
^Т 3	89 ± 3.3	94 ± 1.8	107 + 2.3
3rd month			
T ₁	95 <u>+</u> 3•3	102 <u>+</u> 1.0	121 ± 2.0
^T 2	96 <u>+</u> 3•9	103 ± 3.4	121 <u>+</u> 3•7
^Т з̀	96 <u>+</u> 4•1	104 ± 4.2	122 ± 5.5
6th month			
^T 1	100 ± 2.7	110 <u>+</u> 2.0	130 <u>+</u> 1.5
^T 2	101 <u>+</u> 3.7	113 ± 1.6	130 <u>+</u> 2.3
^T 3	102 + 1.8	114 <u>+</u> 2.4	133 <u>+</u> 4.6

Table 6. Analysis of variance. Height

Source	df	S S	MSS	F
Period	1	272.70	272.70	37 •88 **
Treatment	2	63.92	31.96	4 • 44 *
Error	42	302.34	7.20	
Total	45	638.96		

^{*} Significant at 5% level.

Pairwise comparison.

Treatments	T ₁	т ₂	T3	C.D. for	T 1	and	T2	-	2.08
Mean	7.06	8.21	7.88	11	T ₁	and	T3	-	2.01
	,		,	11	T	and	T.	_	2.08

^{**} Significant at 1% level.

Table 7. Analysis of variance - Length.

Source	đf	SS	MSS	F
Period	1	986•28	986.28	21.54**
Treatment	2	91 • 57	45•79	2.61
Error	42	736•95	17.55	
Total	45	1814.80		

^{**} Significant at 1% level.

Table 8. Analysis of variance - Girth.

Source	Source df		SS		MSS F			
Period Treatment Error		1 2 42	1071.39 226.56 429.40	;	1071.39 113.28 10.22	3 1	04.8 11.0	-
Total		45	1726.96	-				
** Significan Pairwise compa	-	level.						
Treatments Mean		^T 2 17•64	^T 3 21•31	C.D.	•	and T ₂ and T ₃ and T ₃	-	

Table 9. Summarised data on haematological values of calves maintained on the three experimental rations.

(Average with standard error)

	T ₁				T ₂	T ₃		
	Initial	3rd month	6th month	Initial	3rd month 6th month	Initial 3rd month	16th mont	
RBC million/mm3	8.08 <u>+</u> 0.6	7•99 <u>+</u> 0•3	7.87 <u>+</u> 0.2	7.68 <u>+</u> 0.4	6.98±0.4 7.60±0.2	7.44±0.5 7.30±0.2	7.02±0.3	
Haemoglobin g/ 100 ml of blood	9.0± 0.1	10.2 ±0.4	9.2 +0.4	8 -4 ±0.5	9.9 ±1.1 9.6 ±0.4	8.3 ±0.2 9.9 ±0.3	8•7 <u>+</u> 0•1	
Plasma protein g/100 ml.	8.4 ±0.2	9•8 <u>+</u> 0•4	8.4 ±0.3	9•1 <u>+</u> 0•3	9.5 <u>+</u> 1.0 8.5 <u>+</u> 0.4	9.1 ±0.3 10.1 ±0.2	8.7 ±0.4	
Plasma calcium mg/100 ml.	12.4 ±0.2	12.7 ±0.4	10.4 ±0.2	12.8 <u>+</u> 0.4	11.8 ±0.4 11.3 ±0.3	12.4 ±0.4 12.8 ±0.4	10.9 ±0.3	
Plasma inorganic phosphorous mg/100 ml.	7.8 ±0.2	7•4 ±0•3	7.7 ±0.4	7•7 ±0•3	7.8 ±0.1 7.8 ±0.3	7.4 ±0.8 7.6 ±0.3	7•9 <u>+</u> 0•4	

Table 10. Average digestibility coefficients, digestible nutrients and nitrogen and mineral balances.

Treat- ments	Digestibility coefficient of the exptl. rations							TDN intake	Nitrogen balance	Mineral balance g/day/animal		
	Dry matter	Organic matter	Crude protein	Ether extract	Crude fibre	N.F.E.	intake g/day/ animal	g/day/ animal	g/day/	Calcium	Phospho- rous	
^T 1	49.6	53.4	57•7	70•4	62.2	45.1	347	2412	16.5	10.1	6.4	
	<u>+</u> 2.1	± 2.0	<u>+</u> 2•1	± 1•7	± 1.7	± 2.8	<u>+</u> 15•8	<u>+</u> 102.7	± 1.4	± 0.4	± 0.5	
¹ 2	51.2	54•5	56.2	77.1	60.1	49.7	359	2625	17.2	9•7	6.3	
	± 2.4	± 2•5	± 1.1	± 1.9	± 2.2	± 3.4	± 8.5	<u>+</u> 104•6	± 2.3	<u>+</u> 1•2	± 0.6	
^Т 3	55 • 1	58•4	58•7	69.9	66.0	52.8	375	2694	19.2	11.2	7.0	
	± 2 • 6	<u>+</u> 3•1	± 2•4	+ 2.5	± 2.1	± 3.9	±16.6	<u>+</u> 153•8	± 2.6	± 1.0	± 0.8	

Table 11. Analyses of variance of digestibility coefficients, nitrogen and mineral balances.

		Dry matter	Organic matter	Crude protein	Ether extract	Crude fibre	N.F.E. N	itrogen	Calcium	Phos- phorous
	î d£	2	2	2	2	2	2	2	2	2
Treatment	0 ន ន	127.20	108.76	24.40	242.12	121.30	235.95	31.36	9.17	2.09
) Mss	63.60	54 •3 8	12.20	121.06	60.70	117.98	15.68	4•58	1.05
	Q df	20	20	20	20	20	20	20	20	20
Error	∦ ss	972.79	954.20	640.80	730.40	1027.00	1469.70	709.02	138.41	80.65
	≬ Mss	48.63	47.71	32.04	36.52	51.30	7 3 • 49	35•45	6.92	4.03
	0 df	22	22	22	22	22	22	22	22	22
Total	§ \$S	1099.90	1062.96	665.20	972.52	1148.30	1705.65	740.38	129.24	78•56
F		1.31	1.14	0.38	3.32	1.18	1.61	0.44	0.66	0.26

Table 12. Average feed consumption, feed efficiency and economics.

Treat- ments	Total feed intake		Total	Feed efficiency		Cost of raising a year old calf for a period			Cost/kg gain			Cost for 100 kg gain		
	Concen- trate	Paddy straw	weight gain	Kg conc. per kg gain	Kg total ration per kg		ix months	3	Conc.	Paddy straw	Total		Paddy straw	
	(kg)	(kg)	(kg)		gain	trate (Rs)	straw (Rs)	Total (%)	(Rs)	(Rs)	(k)	(Rs)	(Rs)	(Rs)
^Т 1	384	441	7 6	5.05	10•85	456 • 46	101.22	557.68	6.01	1.35	7.36	601	135	7 36
T ₂	378	435	76	4•97	10•69	437.88	99.62	537•50	5 •77	1.31	7.08	577	131	708
Tz	388	440	89	4.36	9•30	445.00	100.76	545•76	4.99	1.24	6.23	499	124	623

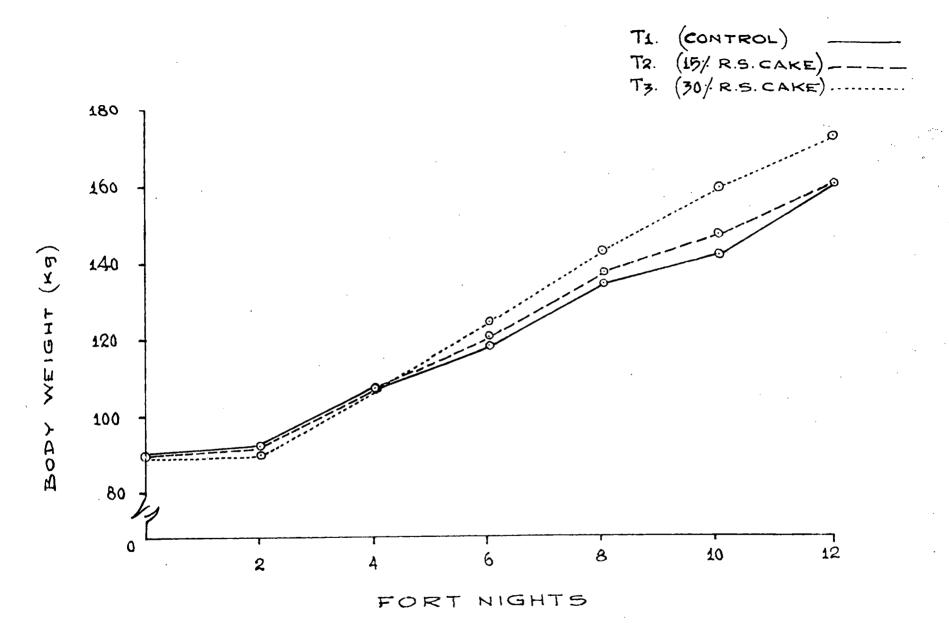


FIG. I. AVERAGE BODY WEIGHT OF CALVES

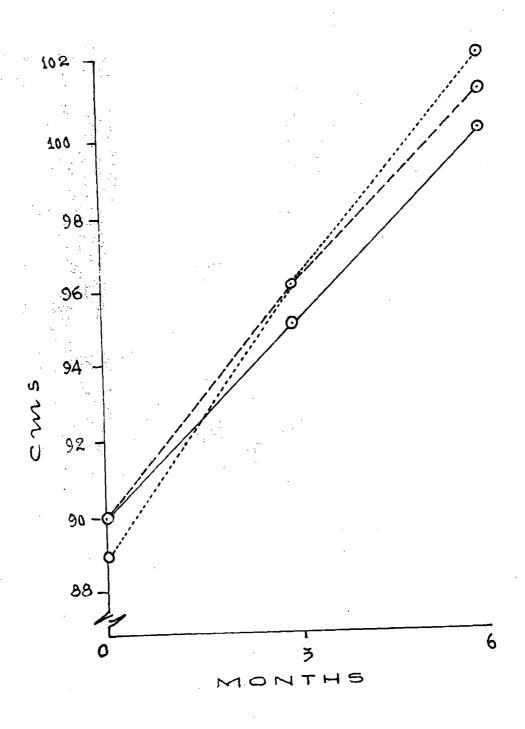


FIG. II. AVERAGE HEIGHT OF CALVES

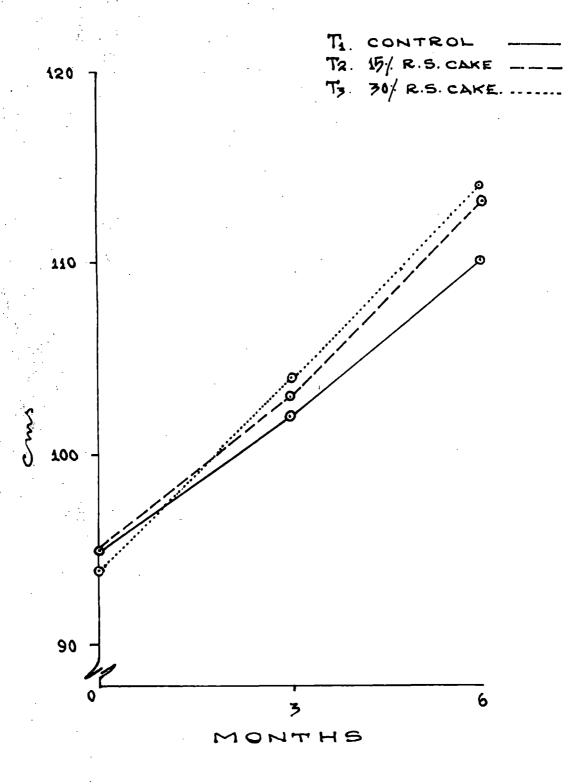


FIG.III. AVERAGE LENGTH OF CALVES

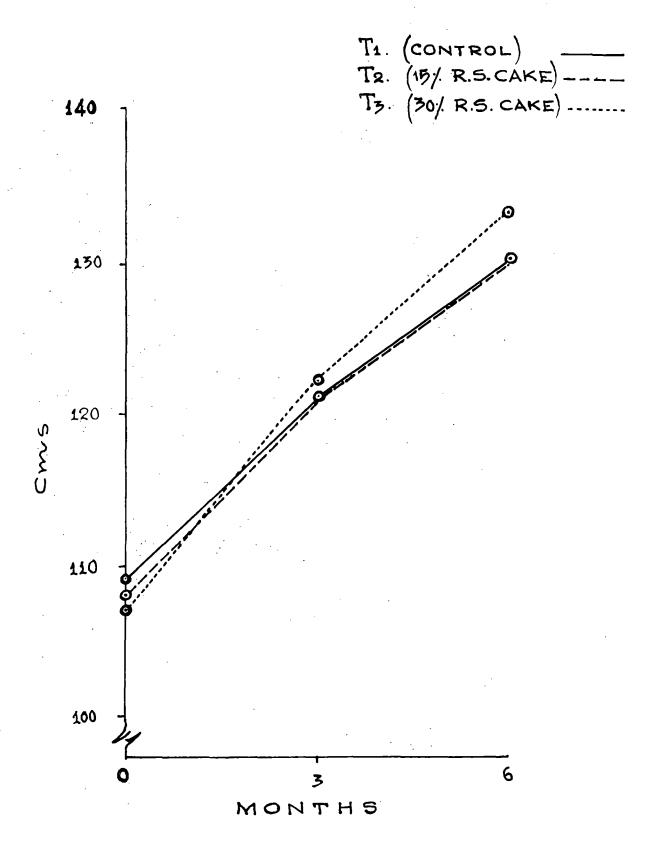


FIG.IV. AVERAGE GIRTH OF CALVES

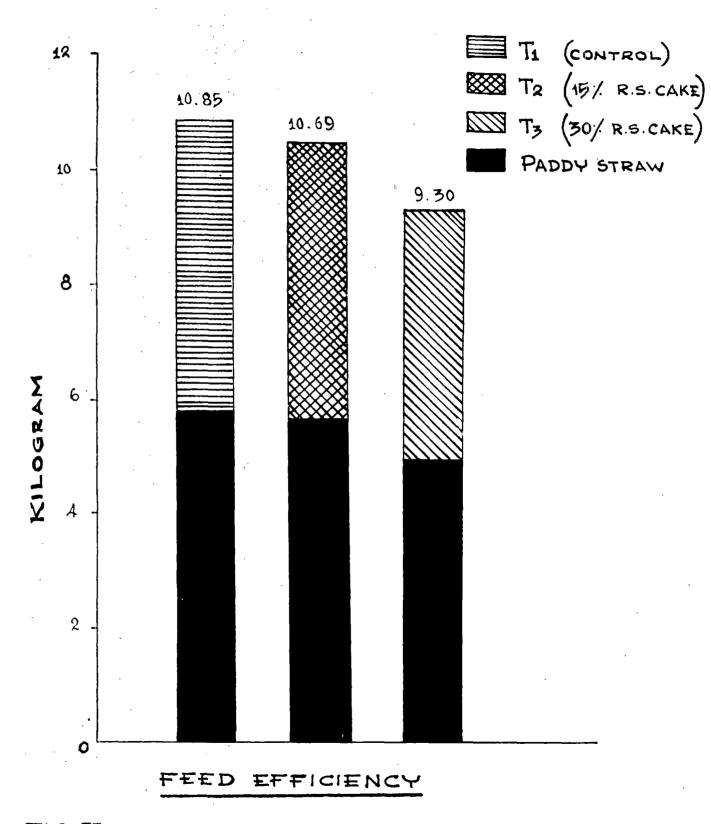


FIG. V. FEED REQUIRED PER KILOGRAM
BODY WEIGHT GAIN

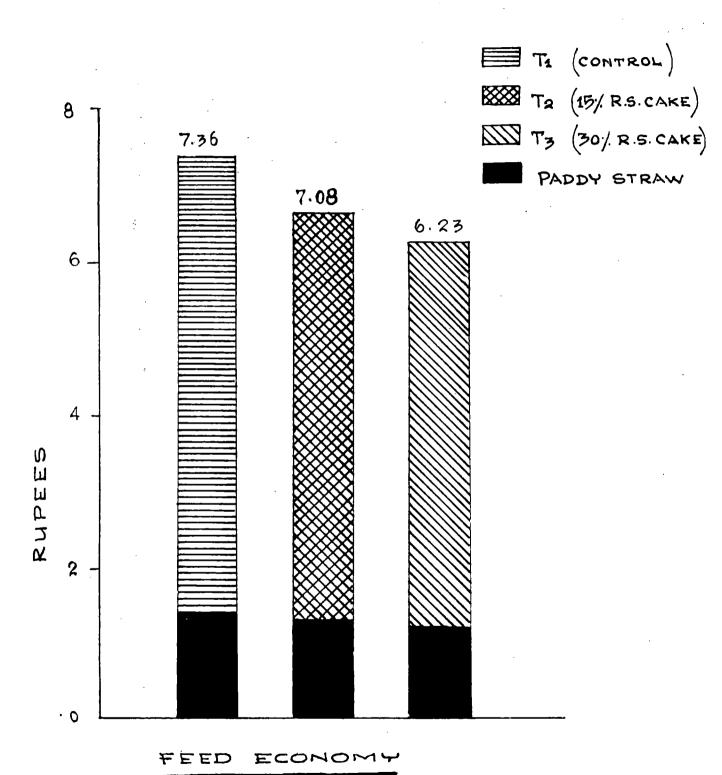
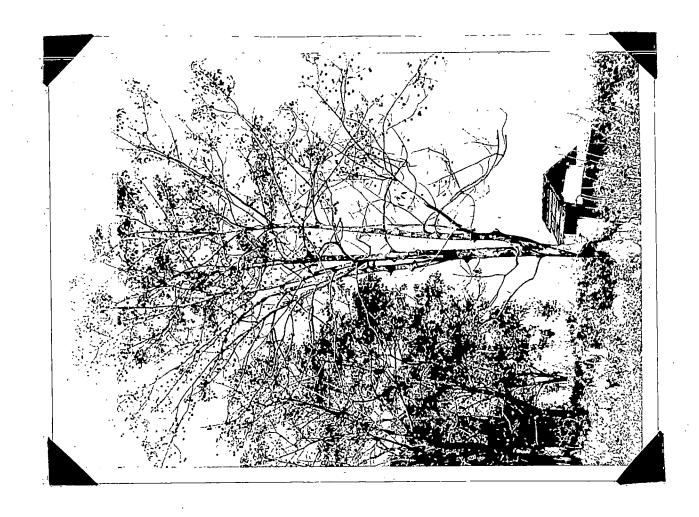
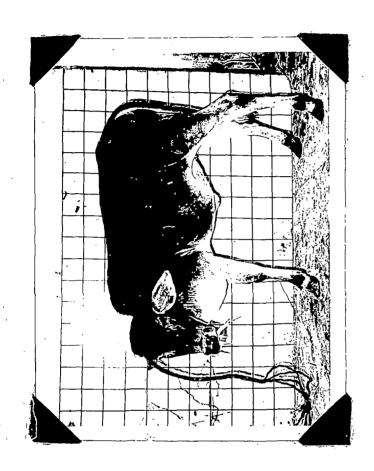
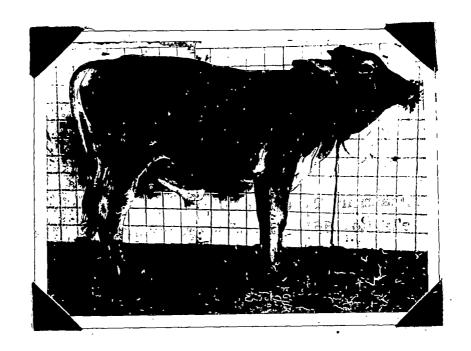
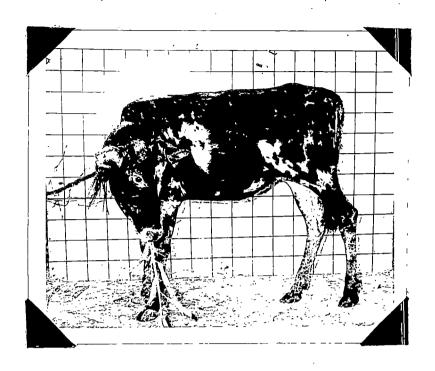
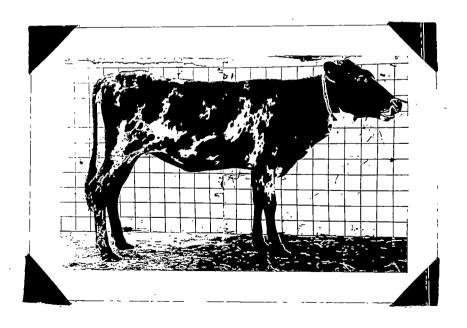
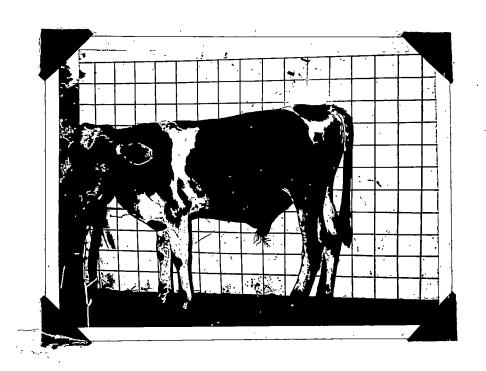




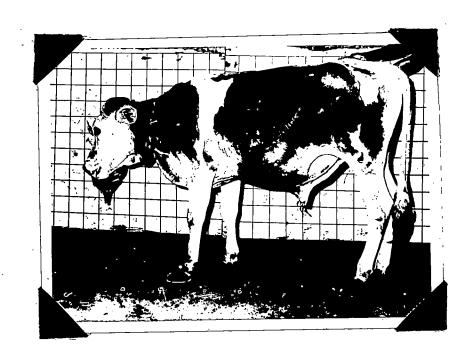

FIG. VI. COST OF FEED PER KILOGRAM
BODY WEIGHT GAIN

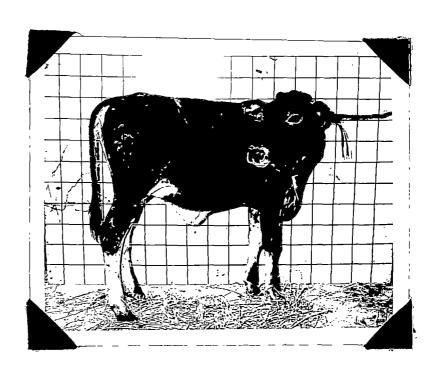


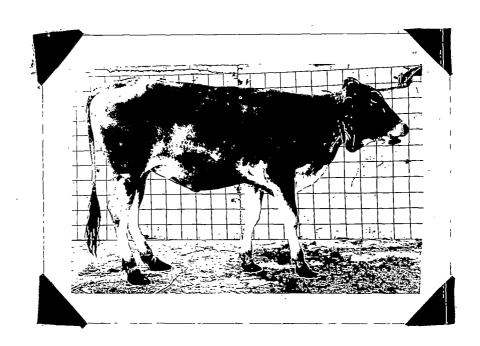

.

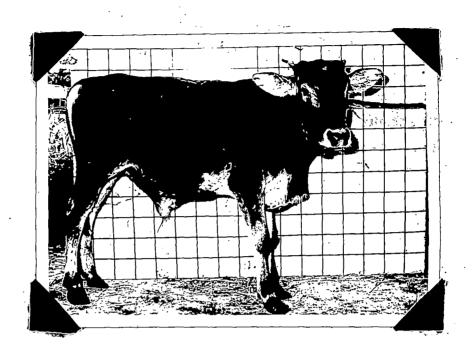


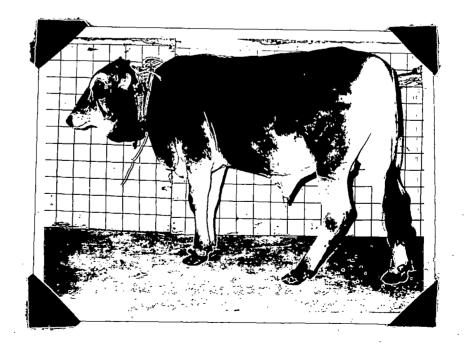












DISCUSSION

From the chemical composition of the concentrate mixtures presented in Table 2 it can be seen that they are almost identical in respect of the nutritional monthes except for crude fibre and nitrogen-free extract and conform to the standards specified by ISI for compounded cattle feeds (ISI, 1968). The higher levels of rubber seed cake used in the mixtures T2 and T3 replacing equal amounts of cotton seed cake of higher fibre content evidently diminishes the crude fibre content of these mixtures. It can be observed that (Table 2) rubber seed cake is fairly rich in crude protein (24.6) and low in crude fibre (2.9). From the point of view of chemical composition it can be considered as a protein supplement comparable to coconut cake. The results also indicate that the hydrocyanic acid content of rubber seed cake used for the study was 8.7 mg/100 g as against the value of 9.5 mg/100 g reported previously (ICAR Report, 1976). Further, the animals receiving rations containing rubber seed cake at both 15 and 30 per cent levels did not exhibit any toxic symptoms during the period of the experiment. This is in agreement with the report of Radeleff (1970) that any plant material containing less than 20 mg of hydrocyanic acid per 100 g is not toxic to animals.

Growth

From the summarised data presented in Table 3, represented in Fig. 1 and statistically analysed in Table 4, it will be seen

that the animals under treatment Tz showed significantly higher overall weight gains (P \angle 0.05) than those under treatments T₄ and T_2 , the average cumulative weight gains of the three groups during the experimental period of six months being 76 kg each for T_1 and T_2 and 89 kg for T_3 . The average daily gains obtained for animals under the dietary treatments T, and T, were found to be 422 g each while that for T_3 was 494 g. Almost similar values have been obtained by Ranjhan (1977) for Jersey x Haryana cross-bred calves of 3-12 months of age. Average daily gains of 222 g for Sindhi calves of 6-12 months (Bhoreskar, 1966), 270 g for Sahiwal (Mudgal, 1965b), 238 g for Tharparkar (Mudgal, 1965a), 420 g for Jersey calves of 6-12 months (Rajagopalan, 1974) and 386 g for Sahiwal x Brown Swiss cross-bred calves (Bhatnagar et al. 1966) have been reported. The results obtained during the course of the present study also indicate that irrespective of the treatment differences, males gained significantly more weight than females (P / 0.01), the daily gains for males and females being 427 and 409 g for T_1 , 435 and 405 g for T_2 and 543 and 442 g for T_3 respectively. The superior performance of male over female calves has been recorded by other workers (Mudgal, 1965b and Brody, 1965).

From the Tables 5-8, Figs. 2-4 and Plates 2-13, it can be seen that animals under the dietary treatment T_3 recorded significantly higher height (P \angle 0.05) and girth (P \angle 0.01) as compared to those under treatments T_1 and T_2 . However, there was no significant difference in body length of animals on the three treatments.

Average increase in height, length and girth of the animals under the three treatments, T₁, T₂ and T₃ were found to be 10, 11 and 13 cm; 15, 18 and 20 cm and 21, 22 and 26 cm respectively. Higher body measurements recorded for animals under T₃ are commensurate with their increased body weights. Correlation between the increase in body size and mass has already been reported by Brody (1965).

Blood values

From the data presented in Table 9, it is evident that all the animals under the three dietary regimes maintained normal levels of haematological constituents such as RBC, haemoglobin, plasma protein, calcium and inorganic phosphorus suggesting that incorporation of rubber seed cake at 15 and 30 per cent level in the rations of growing calves appears to have no deleterious effect on the physiological well being and nutritional status of the animals.

Digestibilities of nutrients

Data given in Table 10 indicate that while the coefficients of digestibilities of the nutrients were almost similar in respect of treatments \mathbf{T}_1 and \mathbf{T}_2 and those for \mathbf{T}_3 , though not significant, were higher. When Red Sindhi calves of 18 months of age were fed on concentrate mixture along with paddy straw, a ration similar to the control (\mathbf{T}_1) used in the present study,

Gupta and Saha (1977) obtained digestibility coefficients of 48.0, 50.9, 55.4, 65.9, 54.9 and 47.5 per cent for dry matter, organic matter, crude protein, ether extract, crude fibre and nitrogen-free extract respectively. When calculated indirectly, the DCP and TDN values of the three concentrate mixtures T_1 , T_2 and T_3 containing rubber seed cake at 0, 15 and 30 per cent levels were found to be 15.5 and 66.7, 15.6 and 71.8 and 16.2 and 73.7 respectively. The markedly higher TDN value of the concentrate mixture T_3 may be responsible for the significantly higher weight gains obtained for the animals under the treatment T_3 . Further it can be seen that with all the three rations the requirements of the animals in terms of DCP and TDN were met as per the standards prescribed by Sen and Ray (1971). The nutritive ratio for the treatments T_1 , T_2 and T_3 were found to be 1: 3.3; 3.6 and 3.55 respectively.

Nitrogen and mineral balances

From the results presented in Table 10 it is observed that all animals maintained a positive balance for nitrogen, calcium and phosphorus. Further, there is a progressive increase in the balance of nitrogen in the treatment T_1 , T_2 and T_3 respectively as the level of rubber seed cake increased from 0 to 30 per cent in the concentrate rations, the values being 16.5, 17.2 and 19.2 g of nitrogen per day respectively.

Calcium and phosphorus balances also showed almost a

similar trend without having any significant differences among the treatments. The respective values for T_1 , T_2 and T_3 for calcium balance were 10.1, 9.7 and 11.2 g per day while those for phosphorus being 6.4, 6.3 and 7.0 g per day respectively.

Histopathological studies

Histopathological examination of internal organs such as liver, thyroid, pancreas, kidney, heart, spleen and adrenal of animals slaughtered at the end of the trial did not reveal any pathological changes suggesting that rubber seed cake can be safely incorporated in the rations of growing calves upto a level of 30 per cent. Garner (1961) has reported that hydrocyanic acid can be detected from muscles and tissues of animals showing symptoms of hydrocyanic acid toxicity. In the present study, muscle and liver tissues of the animals slaughtered were not found to contain any hydrocyanic acid toxicity.

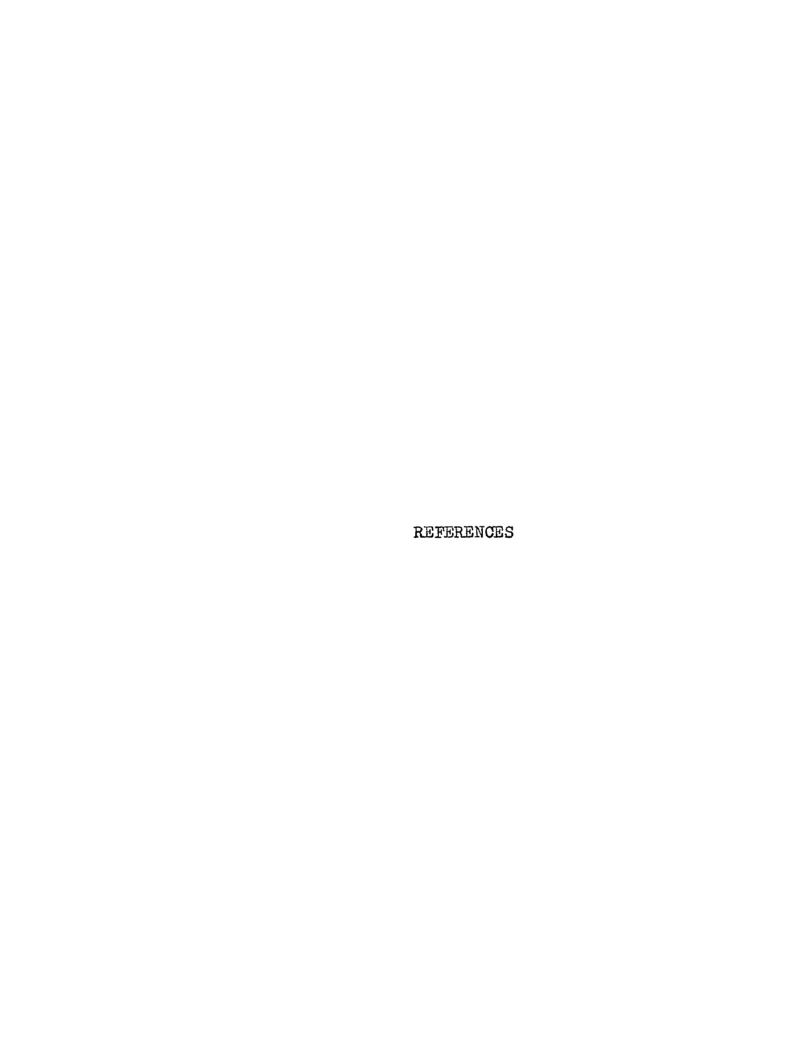
Feed efficiency and economics

From Table 12 and Figs. 5 and 6, it can be seen that the feed efficiency values expressed in terms of kg concentrate required per unit gain in body weight were found to be 5.05, 4.97 and 4.36 for treatments T₁, T₂ and T₃ respectively, while the respective figures for total ration being 10.85, 10.69 and 9.30. Further, the results presented in Table 12 and Fig. 6 indicate that the cost of ration per unit gain was Rs. 7.36,

Rs. 7.08 and Rs. 6.23, the concentrate alone amounting to Rs. 6.01, Rs.5.77 and Rs.4.99 respectively for the treatments T_1 , T_2 and T_3 . The differences obtained between the treatments in respect of biological and economic efficiency can be attributed to their difference in body weight gains and to the differences in the cost of rations. It can also be seen that even if the cost of concentrates is assumed to be the same, the treatment T_3 stands out as the most efficient ration to promote growth in calves.

From a critical evaluation of the results obtained during the course of the present investigation, it can be concluded that rubber seed cake can beneficially and economically be incorporated at 30 per cent level in the concentrate mixture for growing calves.

SUMMARY


SUMMARY

An investigation spread over a period of six months was carried out to evaluate the feeding value of rubber seed cake, using 24 Jersey x Sindhi cross-bred calves of 8-14 months of age, divided and distributed under three dietary treatments $(\mathbb{T}_1, \mathbb{T}_2 \text{ and } \mathbb{T}_3)$, the animals on the different treatments being fed concentrate mixtures containing 0, 15 and 30 per cent levels of rubber seed cake respectively. The criteria for evaluation were growth rate, nutriture, digestibility coefficients of nutrients, toxic effects, feed efficiency and economics of rearing.

The salient observations made during the course of the investigation and the inferences drawn from the results obtained are given below:

- Calves receiving concentrate mixture containing 30
 per cent rubber seed cake showed significantly better
 overall weight gains than those fed mixtures containing
 0 and 15 per cent rubber seed cake respectively.
- 2. Concentrate mixture incorporating rubber seed cake at 30 per cent level, on feeding, brought about significantly higher increase in height, length and girth in calves.
- 3. The physiological well being of the animals, as adjudged from their haematological values, is not influenced by

- feeding rubber seed cake in the concentrate mixture even at a level of 30 per cent.
- 4. The digestibility coefficients of nutrients were found to be higher in animals receiving concentrate mixture with 30 per cent rubber seed cake.
- 5. Nitrogen, calcium and phosphorus balances of animals increased progressively as the level of rubber seed cake in the concentrate mixture increased from 0-30 per cent.
- 6. Rubber seed cake when incorporated at 30 per cent level in concentrate mixture did not exert any toxic effect on the animal, in as much as neither any pathological changes could be detected on histopathological examination of internal organs nor any hydrocyanic acid could be detected in any of the tissues.
- 7. Animals receiving concentrate mixture containing 30 per cent rubber seed cake had better feed efficiency values than those receiving 15 per cent and 0 per cent rubber seed cake in their concentrate mixture.
- 8. The cost of ration per kilogram gain was found to be highest in animals receiving the control ration, less in animals receiving 15 per cent rubber seed cake, and least in those receiving 30 per cent rubber seed cake in the concentrate mixture.

REFERENCES

- Anon (1929). Production of rubber seed oil. <u>Ind. Eng. Chem.</u>
 <u>News Edn.</u> Jan. 20: p. 9 (Rubber Research Institute of Malaysia, 1974. Bibliography on rubber seed oil. Number 10. Abstr. No. 12).
- Anon (1948). Oil from rubber seeds. <u>India Rubb. J. 115</u>: 553-554. (Rubber Research Institute of Malaysia, 1974. Bibliography on rubber seed oil. Number 10. Abstr. No. 7).
- Anon (1969). Rubber Cultivation Theory and Practice. Rubber Board, Kottayam, Kerala State. pp. 14.
- A.O.A.C. (1970). Official Methods of Analysis. Association of Agricultural Chemists, Washington, D.C.
- Azeemoddin, G. and Rao, S.D.T. (1962). Rubber seed and oil, Studies on Indian rubber seed oil. Rubb. Bd. Bull. 6 (2): 67-68. (Rubber Research Institute of Malaysia, 1974. Bibliography on rubber seed oil. Number 10. Abstr. No. 28).
- Ehatnagar, D.S., Mudgal, V.D., Razdan, M.N. and Nair, F.G. (1966). Seminar on Animal Breeding. Haringhatta. Dec. 1966. ICAR, New Delhi (Cited by Rajagopalan, 1974).
- Bhattacharya, P. (1976). New strategy in Animal Husbandry. Indian Dairyman. 28 (2): 47-60.
- Ehoreskar, M.R., Daniel, S.J. and Mullick, D.N. (1966). The growth rate of Red Sindhi, Sahiwal and Tharparkar female calves maintained under experimental feeding schedule.

 <u>Indian J. Dairy Sci. 20</u>: 57.
- Bhushan, D. (1958). Rubber seed and its oil. <u>Indian Oil Seeds J.</u> 2: 35 (Cited by Nadarajah, 1969).
- Bredemann, G. (1931). Danger of hydrocyanic acid content of
 Hevea seed products used for fodder. <u>Tropenflanzer</u>.

 34: 249. (Rubber Research Institute of Malaysia, 1974.
 Bibliography on rubber seed oil. Number 10. Abstr. No. 32).
- British Rubber Development Board (1948). New oil cake from rubber seed. Farmer and Stock Breeder. Dec. 14 (Rubber Research Institute of Malaysia. Bibliography on rubber seed oil. Number 10. Abstr. No. 33).

- Brody, S. (1968). Bioenergetics and Growth. Hafner Publishing Co. Inc. New York. pp. 632.
- Buvanendran, V. (1971). Effects of rubber seed meal on hatchability of hen's eggs. <u>Trop</u>. <u>Agric</u>. <u>77</u> (1&2): 111-115.
- Buvanendran, V. and Siriwardene, J.A. des. (1970). Rubber seed meal in poultry diets. Ceylon Vet. J. 18: 33-38.
- Dawson, T.R. and Messenger, T.H. (1932). Produce from rubber seed 1. Preparation and properties 2. Application and Economics. R.A.B.R.M. Journal. 1: 33-53. (Rubber Research Institute of Malaysia, 1974. Bibliography on rubber seed oil. Number 10. Abstr. No. 41).
- Ellett, W.B., Holdaway, C.W., Eheart, J.F. and Lasting, L.D. (1930). Feeding Hevea rubber seed meal for milk production.

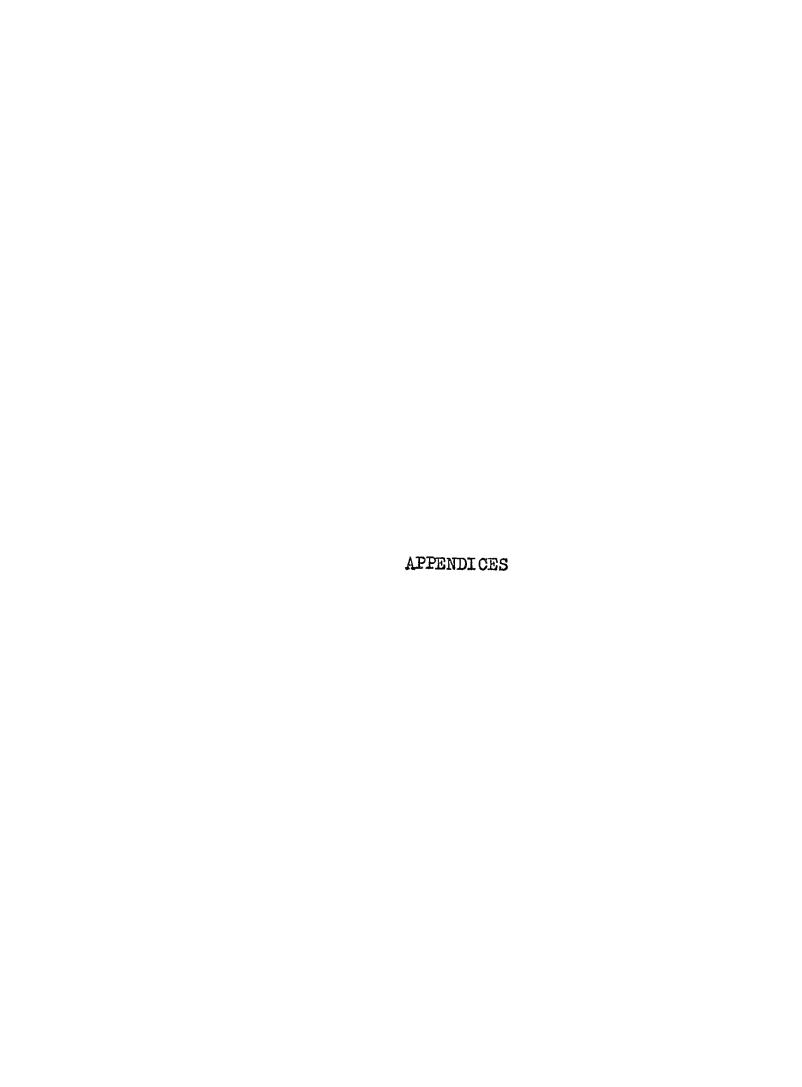
 <u>Virginia Agric. Exp. Sta. Tech. Bull. 41</u> (3): 12 (Cited by Morrison, 1957).
- Encyclopaedia Britannica, Ltd. London (1957). 19: 602-604.
- Farm Information Bureau (1977). Farm Guide. Government of Kerala. pp. 59.
- Food and Agricultural Organisation of the U.N. and U.S. Department of Health, Education and Welfare. Food composition taken for use in East Asia (1972). Food Policy and Nutrition Division. FAO of U.N. 00100, Rome, Italy. (Cited by Orok and Bowland, 1974).
- Garner, R.J. (1961). <u>Veterinary Toxicology</u>. Bailliere, Tindall and Cox. London. 2nd Ed. pp. 78.
- George, J. (1970). Studies on the utilisation of rubber seed cake in swine ration. A dissertation. Submitted to Kerala Veterinary College and Research Institute, Mannuthy.
- George, C.D.V., Greenstreet, V.R. and Gunn Lay Teik (1932).
 Storage of rubber seeds. Malay. Agric. J. 20: 164-176.
 (Cited by Nadarajah, 1969).
- Gorter, K. (1912). The glucoside of the seed of Hevea brasiliensis. Rec. Tror. Chim. 31: 264. (Cited by Nair, P.G. 1969 A dissertation submitted to Kerala Veterinary College and Research Institute, Mannuthy).

- Gupta, B.N. and Saha, R.C. (1977). Jute (<u>Corchorous olitorius</u>) leaf hay as a partial growth production feed substitute for Sindhi cattle. <u>Indian J. Dairy Sci. 30</u>: 44-47.
- Hattan, G.L. and Owen, F.G. (1970). Efficiency of total collection and chromic oxide techniques in short-term digestion trials. <u>J. Dairy Sci. 53</u> (3): 325-329.
- Hyder Ali, M. (1970). Studies on the utilization of unconventional feeds/fodders in ruminant rations. M.3c. Thesis. Submitted to the University of Calicut, Kerala.
- I.C.A.R. Report (1971). Annual progress report on "All India Co-ordinated research project for investigation on agricultural by-products and industrial waste materials for evolving economic rations for livestock". Department of Nutrition, College of Veterinary and Animal Sciences, Mannuthy, for the year 1970-71.
- I.C.A.R. Report (1972). Annual progress report on 'All India Co-ordinated research project for investigation on agricultural by-products and industrial waste materials for evolving economic rations for livestock'. Department of Nutrition, College of Veterinary and Animal Sciences, Hannuthy, for the year 1971-72.
- I.C.A.R. Report (1976). Annual progress report on 'All India Co-ordinated research project for investigation on agricultural by-products and industrial waste materials for evolving economic rations for livestock'. Department of Nutrition, College of Veterinary and Animal Sciences, Mammuthy, for the year 1975-76.
- Indian Standards Institute (1968). Indian standard specification for compounded feed for cattle. IS: 2052. 1st Revision. Manak Bhavan, 9, Bahadur Shah, Zafar Marg, New Delhi-6.
- Kay, H.D. (1946). Report on Dairy Research, Dairy Education and Dairy Development in India. Government of India, Department of Agriculture, New Delhi. (Cited by Muniyappa M. 1972. Studies on silk cotton seed cake as a component of concentrate ration for milk production. M.Sc. Thesis. submitted to the Calicut University, Kerala).
- Lauw Tjin Glok, M.D., Samsudin, M.D., Husaini, B.S. and Ignatius Tar Wotjo, M.S. (1967). Nutritional value of rubber seed protein. Am. J. Clin. Nutr. 20 (2): 1300-1303.

- Medical Research Institute, Ceylon (1950). <u>Indian Rubb. J.</u>
 119: 263. (Rubber Research Institute of Malaysia, 1974. Bibliography on rubber seed oil. Number 10. Abstr. No. 39).
- Morrison, F.B. (1957). <u>Feeds and Feeding</u>. The Morrison Publishing Co., Ithaca, New York. 22nd Ed. pp. 501.
- Mudgal, V.D. and Ray, S.N. (1965a). Growth studies in Indian breeds of cattle. 1. Studies on growth of Tharparkar cattle. <u>Indian J. Dairy Sci. 18</u>: 14.
- Mudgal, V.D. and Ray, S.N. (1965b). Growth studies in Indian breeds of cattle. II. Studies on growth of Sahiwal cattle. Indian J. Dairy Sci. 18: 65.
- Nadarajah, M. (1969). The collection and utilisation of rubber seed in Ceylon. Rubb. Res. Inst. Ceylon Bull. 4 (3): 23-32.
- Nadarajah, M., Abeysinghe, A., Dayaratne, W.C. and Tharmalingam, R. (1975). The potentialities of rubber seed collection and its utilisation in Sri Lanka. (Rubber Research Institute of Ceylon).
- National Academy of Sciences (1971). Rapid population growth.

 Baltimore, Md, Johns Hopkins Press. 2 Vols. (Cited by

 Krummel, C. and Dritchilo, 1977. Resource costs of animal
 protein production. World Animal Review No. 21: 6-10).
- National Commission on Agriculture (1976). Section 2, Chapter 28 Part VII (Animal Husbandry). (Cited in <u>Indian Dairyman</u>. 1976. 28 (9): 423-432.
- Nobori, H. and Takehara, M. (1948). Vegetable oils produced in the tropics VII. Oil of rubber seeds. Chem. Absts. 42: 6139. (Rubber Research Institute of Malaysia, 1974. Bibliography on rubber seed oil. Number 10. Abstr. No. 78).
- Oluyem, J.A., Fetuga, B.L. and Endely, H.N.L. (1976). The metabolizable energy value of some feed ingredients for young chicks. <u>Poult</u>. <u>Sci</u>. <u>55</u> (2): 611-618.
- Orok, E.J. and Bowland, J.B. (1974). Nigerian para rubber seed meal as an energy and protein source for rats fed soyabean meal or peanut meal supplemented diets. <u>Can. J. Anim. Sci.</u> 54 (2): 239-246.


- Orok, E.J. and Bowland, J.P (1974a). Composition of Nigerian yellow corn, sorghum and peanut meal (groundnut cake) with Canadian corn and soybean meal. Can. J. Anim. Sci. 54: 217-218.
- Oser, B.L. (1965). Hawks Physiological Chemistry. Tata McGraw-Hill Publishing Company Ltd. New Delhi. 14th Ed.
- Pope, F.T. (1930). Use of rubber seed cake as a feed stuff.

 <u>Comm. Rep. Sept. 8: 617. (Rubber Research Institute of Malaysia, 1974.</u> Bibliography on rubber seed oil. Number 10. Abstr. No. 83).
- Radeleff, R.D. (1970). <u>Veterinary Toxicology</u>. Lea & Febiger, Philadelphia, pp. 51.
- Rajagopalan, T.G. (1974). Study of some aspects of the performance of Jersey cattle. M.Sc. (A.H.) Thesis. Submitted to the Gujarat Agricultural University.
- Rajaguru, A.S.B. (1971). Effects of rubber seed meal on the performance of mature chicken. <u>J. National Agri. Soc. of Ceylon</u>. <u>8</u>: 38-47.
- Rajaguru, A.S.B. and Vohra, P. (1975). Rubber seed meal as a potential feed ingredient for poultry. <u>Indian Poult</u>. <u>Rev.</u> 7 (1): 73-74.
- Rajaguru, A.S.B. and Wettimuny, S.G. deS. (1971). Rubber seed meal as a protein supplement in poultry feeding. J.

 National Agri. Soc. of Geylon. 8: 1-12.
- Ranga-Rau, D.S. (1975). Report on review of livestock statistics in Asia. Current status and future needs. A regiona study. Food and Agricultural Organisation of the United Nations, Bangkok, Thailand. pp. 3.
- Ranjhan, S.K. (1977). Animal Nutrition and Feeding Practices in India. Vikas Publishing Home. Pvt. Ltd. New Delhi. pp.210.
- Rubber Research Institute of India (1977). Rubber Board, Kottayam, Kerala State (Personal communication).
- Russell, W.S. (1975). The growth of Ayreshire cattle: An analysis of linear body measurements. Anim. Prod. 21: 217-226.

- Sankunny, T.R., Ramakrishnan, A. and Kunjukutty, N. (1964). Studies on the nutritive value of certain unconventional feeds of special importance to Kerala. 2. Rubber seed and tapioca leaf. Kerala Vet. 3 (2): 33-37.
- Sen, K.C. (1952). Rubber seed kernel as cattle food. <u>Indian</u> Rubb. <u>Bd</u>. <u>Bull</u>. 3: 36-37.
- Sen, K.C. and Ray, S.N. (1971). <u>Nutritive values of Indian</u>
 <u>Cattle feeds and the Feeding of Animals</u>. Indian Council
 of Agricultural Research, New Delhi. 6th Ed. pp. 11.
- Siqueira, R. de., Pechnik, E. and Guernelli, O. (1955). Investigation in applied biochemistry. Quimica. 9: 13-19 (Cited by Lauw Tjin Glok et al. 1967).
- Siriwardene, J.A. deS. and Nugara, D. (1972). Metabolizable energy of rubber seed meal in poultry diets. <u>Ceylon Vet</u>. <u>J. 20</u> (3): 61-63.
- Snedecor, G.W. and Cochran, W.G. (1969). Statistical Methods. Oxford and I.B.H. Publishing Co., New Delhi. 6th Ed.
- Swenson, M.J. (1970). <u>Dukes Physiology of Domestic Animals</u>. Comstock Publishing Associates. A division of Cornell University Press. Ithaca and London. 8th Ed.
- Ulhas, P.H. (1976). Utilization of by-products to meet the feed needs of livestock. Proceedings of the Summer Institute on "Waste Management by Recycling". National Dairy Research Institute. Bombay Part II pp. 57.
- Venkatachalar, M.C. (1976). Recycling of fodder waste and other poor quality materials as a nutritious cattle feed.

 Proceedings of the Summer Institute on "Waste Management by Recycling". National Dairy Research Institute. Bombay Part II. pp. 20.
- Varghese, T.V. (1972). Kerala Khadı and Village Industries Board, Trivandrum (Personal communication).
- Wright, N.C. (1937). Report on the Development of the Cattle and Dairy Industries in India. Manager of Publications, Delhi. (Cited by Hyder Ali, 1970).

APPENDIX I a

Data on fortnightly body weights (Kg) of calves maintained on the experimental rations.

Treatment T₁ (Control)

Animal	Sex	Age							For	ctnights					
number 	****	(days)	0	1	2	3	4	5	6	7	8	9	10	11	12
667	Male	381	108	115	122	133	143	151	157	172	17 6	186	186	200	211
551	11	283	79	82	84	90	98	100	104	113	120	123	124	132	138
666M	11	384	80	84	90	96	105	109	118	127	132	137	141	153	158
566	11	234	74	77	80	84	90	92	102	115	118	120	127	138	142
664	Female	428	85	88	92	100	105	109	115	125	132	133	13 5	148	155
540	#	337	83	86	90	98	105	110	117	125	130	134	146	157	162
533	**	368	76	80	83	90	95	100	103	112	117	122	1 23	131	140
547	**	359	96	100	101	109	121	127	138	144	151	15 5	162	172	178
Mean <u>+</u>	SE	 347 + 21•2	85 +4•4	89 +4•4	92 +6•5			112 +7•2	119 ± 7•4	129 + 7•5	135 ± 5•6	139 <u>+</u> 7•2	143 ± 7•7	155 ± 4•2	161 ± 7.2

APPENDIX I b Treatment T2 (15% Rubber seed cake)

Animal number		Age					Fort	nights							
Hombel		(days)	0	1	2	3	4	5	6	7	8	9	10	11	12
670*	Male	225	84	84	84	91	10 0	Died	on 4-	11 -1 9'	76				
555	H	279	83	85	86	96	106	111	122	133	139	145	156	165	174
659	u u	404	88	92	93	102	112	114	123	132	140	143	146	151	156
663	11	394	85	91	94	102	111	115	124	139	144	145	162	166	166
52 7	Female	409	89	96	96	103	112	117	123	131	140	142	150	156	157
537	19	35 5	86	92	94	100	109	115	122	132	140	141	146	15 7	16 0
541	n	304	82	88	88	91	103	113	116	125	133	135	141	150	160
518	41	442	82	85	90	96	104	107	116	126	132	133	138	145	154
Mean +	SE**	359 ± 20•4	85 + 1•1	90 ± 1•4	92 <u>+</u> 3•4	99 ± 3•4	108 ± 2.7	113 <u>+</u> 2.6	121 ± 2.0	131 <u>+</u> 3•1	138 <u>+</u> 4•0		148 <u>+</u> 5•6	156 ±2•5	

^{*} Died on 4-11-1976.
** Average of seven animals only.

APPENDIX I c
Treatment T3 (30% Rubber seed cake)

Animal	Sex	Age	,					Fo	rtnigh	ts					
number		(days)	0	1	2	3	4	5	6	7	8	9	10	11	12
668	Male	366	102	110	120	136	141	150	159	175	187	197	206	218	223
535	Ħ	366	95	100	102	110	118	123	140	146	151	163	170	181	187
565	н	235	73	78	80	89	100	106	117	130	139	145	156	166	176
553	tf	275	76	7 6	79	89	98	101	110	121	130	134	146	150	151
666 F	Female	406	80	84	85	90	95	103	112	118	129	135	141	141	146
544	17	354	84	88	90	97	106	113	118	129	137	141	143	150	158
669	11	384	74	7 7	78	82	89	99	110	112	123	127	137	138	147
672	11	33 3	95	98	98	109	119	126	135	146	158	165	180	184	200
Mean ±	SE	340 ± 20•1	85 ± 3•5	89 ± 4•1	91 ± 6.3	100 ± 6.8	108 ± 6.6	115 ± 6.5	125 ± 6.6	135 ± 6.1	144 ± 8.0	151 ± 7.8	160 ± 8.1	166 ± 9.6	174 ± 8.6

Animal number	T S 1	Initial		At	3rd month	ı	At 6th month			
	Height (cm)	Length (cm)	Girth (cm)	Height (cm)	Length (cm)	Girth (cm)	Height (cm)	Length (cm)	Girth (cm)	
667	96	105	119	101	114	130	107	123	142	
666M	86	93	105	95	96	118	99	110	125	
566	85	90	103	91	9 7	114	96	108	122	
551	87	88	108	94	97	115	97	105	124	
664	88	99	111	93	106	123	98	109	130	
533	86	90	105	87	101	115	92	10 8	123	
5 47	97	98	112	98	104	129	102	109	137	
540	96	93	110	97	100	122	106	106	135	
Mean ± S	E 90 + 2.6	95 + 3 . 1	109 ± 2•7	95 ± 3•3	102 <u>+</u> 1.0	121 ± 1.9	100 ± 2.7	110 ± 2.0	130 ± 1.5	

APPENDIX II b Treatment T2 (15% Rubber seed cake)

Animal	ļ !	Initial		A	t 3rd month	At 6th month			
number	Height (cm)	Length (cm)	Girth (cm)	Height (cm)	Length (cm)	Girth (cm)	Height (cm)	Length (cm)	Girth (cm)
537	90	96	113	96	100	129	100	109	132
52 7	9 5	98	108	102	104	119	105	114	129
541	92	98	108	99	105	119	103	115	128
518	90	94	104	92	99	115	97	108	125
65 9	91	94	108	97	105	126	100	111	133
663	89	91	109	94	101	120	9 9	112	131
670*	87	91	106	Died on	4-11-1976				
555	8 5	95	103	95	109	116	100	121	131
Mean + SE	** 90 + 3.2	95 ± 2•3	108 ± 3•7	96 ± 3•9	103 ± 3•4	121 ± 3•7	101 ± 3.7	113 <u>+</u> 1.6	130 <u>+</u> 2•3

^{*} Died on 4-11-1976. ** Average of seven calves only.

APPENDIX II c
Treatment T₃ (30% Rubber seed cake)

Animal		Initial		At	3rd mont	h	At 6th month			
number	Height (cm)	Length (cm)	Girth (cm)	Height (cm)	Length (cm)	Girth (cm)	Height (cm)	Length (cm)	Girth (cm)	
668	93	100	115	103	101	133	110	128	147	
565	90	89	103	100	101	121	107	114	135	
535	93	96	110	102	108	125	105	113	136	
553	88	93	103	93	105	117	100	111	128	
672	92	9 7	110	97	103	126	103	119	139	
669	88	85	105	97	103	126	98	104	131	
666F	85	98	103	89	102	116	95	110	123	
544	86	94	105	91	106	118	98	110	128	
Mean + SE	89 ± 3•3	94 <u>+</u> 1•8	107 ± 2•3	96 <u>+</u> 4•1	104 ± 4•2	122 ± 5•5	102 ± 1.8	114 <u>+</u> 2•4	133 ± 4•6	

APPENDIX III a (i)
Haematological values of the calves maintained on the experimental rations.

Initial values Treatment T₁

Animal number	RBC mill/ mm ²	Haemaglobin g/100 ml of blood	Plasma protein g/100 ml	Plasma calcium mg/100 ml	Plasma inorganic phosphorous mg/100 ml
66 7	6.97	8.6	9•2	11.9	7.3
551	7.11	9.0	8.4	12•9	9•2
666M	8•47	9•4	8•4	12.9	7 • 4
566	8.10	9•0	7.6	13•9	7.8
664	8.78	9.6	8.8	11.9	7.7
540	9.05	9•2	8.8	12.1	7.2
533	8•22	8.8	8.0	10.3	8.0
547	7•92	8•4	8.0	13.1	7•4
Mean + S	E 8.08 ± 0.6	9.0 ± 0.1	8.4 ± 0.2	12.4 ± 0.2	7.6 + 0.2

APPENDIX III a (ii)

Treatment T₂ (15% Rubber seed cake)

Animal number	RBC mill/mm ³	Haemaglobin g/100 ml of blood	Plasma protein g/100 ml	Plasma calcium mg/100 ml	Plasma in- organic phos- phorous mg/100 ml
670	6.14	7•4	8.0	12.1	7 . 7
555	8.04	8•2	9•6	12•7	7.7
659	6.75	9•2	11•2	12•1	6.4
663	5 •76	8.0	8•8	12.9	9.6
527	6.87	9.0	9•2	13 • 3	7.2
537	8.33	8•2	8.8	13•1	7.3
54 1	10.17	8•2	8•4	13•1	7.7
5 1 8	7 •86	8.0	8.0	12•7	8.0
Mean + SE	7.68 ± 0.4	8.4 ± 0.5	9.1 ± 0.3	12.8 ± 0.4	7•7 ± 0•3

APPENDIX III a (iii)
Treatment T₃ (30% Rubber seed cake)

Animal number	RBC mill/mm ³	Haemaglobin g/100 ml of blood	Plasma protein g/100 ml			
668	8•56	8•6	10 •0	11•9	8•3	
535	7.15	9.0	9.6	11.3	7•4	
565	8.67	8.6	8.8	12•3	6.9	
553	7.19	7.6	8.8	13.9	10.9	
666F	5•35	7•4	8•4	11.9	6.9	
544	6.18	7•2	10.0	13.3	4.2	
669	9•14	9.6	8•4	12.1	6.9	
672	7•35	8•2	8•4	12.7	8.0	
Mean + SE	7•44 ± 0•5	8.3 ± 0.2	9.1 ± 0.3	12.4 ± 0.4	7•4 ± 0.8	

APPENDIX III b (i)

At 3rd month

Treatment T₁ (Control)

Animal number	RBC mill/mm ³	Haemaglobin g/100 ml of blood	Plasma protein g/100 ml	Plasma calcium mg/100 ml	Plasma inorganic phosphorous mg/100 ml
667	8•19	9•8	10•2	12•5	5•5
551	6.41	9•8	10.7	12.8	6.4
666M	9•50	10.4	8.4	12.6	8.0
566	8•36	10•6	8•9	12.2	8.3
664	7•93	10.6	10.7	12.4	8.7
540	8.58	9•8	9•8	12.6	7•4
533	7.08	10•2	10•2	12.5	7.2
5 47	7.88	10.0	9.8	14•3	7•5
Mean + SE	7•99 ± 0•3	10.2 ± 0.4	9.8 ± 0.4	12.7 + 0.4	7•4 ± 0•3

APPENDIX III b (ii)
Treatment T₂ (15% Rubber seed cake)

Animal number	RBC mill/mm ³	Haem e globin g/100 ml of blood	Plasma protein g/100 ml	Plasma calcium mg/100 ml	Plasma inorganic phosphorous mg/100 ml
670*					
555	5.80	9•8	9•8	11.2	8.0
659	5 •7 3	11.8	8.9	12.0	7.5
663	6.99	10.0	9•8	12•4	9.0
527	7•74	11.8	11.1	13.0	7.0
537	7 •86	9.8	9•3	11.4	7•4
541	6•6 6	8•4	10.2	11.0	8.0
518	8.12	10.0	9•3	11.8	7.5
Mean + SE	6.98 ± 0.4	9•9 ± 1•1	9.5 ± 1.0	11.8 ± 0.4	7.8 ± 0.1

^{*} Died on 4-11-1976.

APPENDIX III b (iii)
Treatment T₃ (30% Rubber seed cake)

Animal number	RBC mill/mm ³	Haemoglobin g/100 ml of blood	Plasma protein g/100 ml	Plasma calcium mg/100 ml	Plasma inorganic phosphorous mg/100 ml
668	6.69	10.0	10•2	12•5	8•6
5 35	7•55	10.0	9.8	12•4	6.7
565	8.19	10•4	9•8	13.6	8.8
553	6.60	10.4	11.1	12.8	7.0
666F	6.24	9•2	10.2	12.6	6 .1
544	6.96	9•6	10 . 7	12.9	7.2
669	7.76	10.0	9•3	12.8	8.0
672	8.01	9.8	9•3	12•4	8•3
Mean + SE	7.30 ± 0.2	9•9 ± 0•3	10.05 ± 0.2	12.8 + 0.4	7.6 ± 0.3

APPENDIX III c (i)

At 6th month

Treatment T₁ (Control)

Animal number	RBC mill/mm ³	Haemoglobin g/100 ml of blood	Plasma protein g/100 ml	Plasma calcium mg/100 ml	Plasma inorganic phosphorous mg/100 ml
667	7•61	9•4	8•9	10•4	8.1
551	7•45	8.8	8.2	10.4	7•5
666M	7.29	8.6	8.5	11.2	7•3
566	8.34	10.4	7•4	9.0	7•5
664	7.68	10.4	8•9	10.5	8.0
540	8.02	7.6	8 .9	9•6	8.7
533	8.66	8.0	8.5	11.0	7•4
547	7.94	10.4	8•2	11.0	7•6
Mean ± SE	7.87 ± 0.2	9•2 ± 0•4	8•4 ± 0•3	10.4 ± 0.2	7•7 + 0•4

APPENDIX III c (ii)
Treatment T₂ (15% Rubber seed cake)

Animal number	RBC mill/mm ³	Haemoglobin g/100 ml of blood	Plasma protein g/100 ml	Plasma calcium mg/100 ml	Plasma inorganic phosphorous mg/100 ml
555	6,32	7.8	7.8	11.2	8•2
659	7.03	9.8	8.5	10.6	7.1
663	7•29	10•2	9.6	11.0	7•9
527	7•79	7.6	8.5	11.8	6•2
537	7.98	9•6	8.9	12.2	7•1
541	8•22	10.6	8•2	10.8	7•7
518	8,25	11•4	8.2	11-2	8.1
Mean + SE	7.60 ± 0.2	9•6 ± 0•4	8.5 ± 0.4	11.3 ± 0.3	7.8 ± 0.3

APPENDIX III c (iii)
Treatment T₃ (30% Rubber seed cake)

Animal number	RRC M1 1 / MM		Plasma protein g/100 ml	Plasma calcium mg/100 ml	Plasma inorganic phosphorous mg/100 ml	
668	7•28	8.2	9•3	11•4	8•2	
535	6.18	7•6	7.8	10•4	7•8	
565	8.18	8•2	8•2	10•4	8•2	
55 3	6.63	8.8	8•2	10.2	8.0	
666F	6.38	8.8	8.8	11.6	8•2	
544	6.79	7.8	9.8	9.8	6.6	
669	8.07	10.8	9•3	11.8	7.5	
672	6.68	9.0	8•5	11•2	8•5	
Mean + SE	7.02 ± 0.3	8•7 <u>+</u> 0•1	8.7 ± 0.4	10.9 0.3	7.9 ± 0.4	

APPENDIX IV a Percentage chemical composition of dung collected during the metabolism trial. Treatment \mathbf{T}_1

Nutritional moiety	Ì			Ani	mal numbe	r		
	667	551	666M	566	664	540	533	547
Dry matter	21.0	23.2	22.2	22.1	22.8	23•7	22.6	21.9
Organic matter	81•4	81 • 1	81.6	82.5	81.6	81.2	82•1	82.1
Crude protein	9•6	10.8	11.6	11.1	12.5	10-4	12.8	11.4
Ether extract	2.5	1.7	2.8	1•9	2.6	3.3	2.9	3.2
Crude fibre	21.4	17•4	17.6	19•6	19•1	16•1	18•9	17.3
N.F.E.	47•9	51.2	49•6	49.9	47•4	51 • 4	47.5	51•2
Fotal ash	18•6	18•9	18•4	17.5	18•4	18.8	17.9	17.9
Acid insoluble ash	14•4	14.3	14.0	14.8	14.2	13.7	13.8	13.9
Calcium	0.76	0.68	0.72	0.88	0.81	0.76	0.78	0.98
Phosphorous	0.55	0.55	0.74	0.74	0.68	0.61	0.79	0.78

APPENDIX IV b
Treatment T₂ (15% Rubber seed cake)

Wateriet one I mainte			Ani	nal number			
Nutritional moiety	555	659	663	527	537	541	518
Dry matter	20.2	23.3	23.3	24.0	24•9	21.6	25.8
Organic matter	82.5	81.1	81 • 1	81.0	81.2	80.5	80.4
Crude protein	10.4	12.9	12.2	13.0	12.4	11.0	12.3
Ether extract	1.7	2.0	2.2	2.3	3.3	2.0	2.5
Crude fibre	15.8	17.5	19•3	17.2	17•3	19•2	20.2
N.F.E.	54•6	58 .7	47•4	48•5	48.2	48•3	45•4
Total ash	17.5	18•9	18•9	19.0	18.8	19•5	19•6
Acid insoluble ash	14•1	14•3	15•1	14•2	14.2	15•8	14•7
Calcium	0.50	0.68	0.78	0.92	0.91	0.88	1.02
Phosphorous	0.42	0.56	0.44	0.91	0.89	0.67	0.82

APPENDIX IV c Treatment T_3 (30% Rubber seed cake)

Martinital and a made day			A	nimal num	ber			
Nutritional moiety	668	535	565	553	666F	544	669	672
Dry matter	23.5	21.9	21•3	23•9	23.1	25.8	22.9	22.2
Organic matter	82 • 4	81.0	80.6	81 •8	81•9	81. 9	80.3	82.3
Crude protein	13.0	11.3	11.0	13.6	10•6	11.1	12.2	10.5
Ether extract	2.3	2.2	3.1	2.6	3.2	2.4	2.2	2.9
Crude fibre	17•5	14•4	14•9	13.9	14.7	15.9	15.0	15.0
N.F.E.	49.6	53•1	51.6	51.7	53•4	52•5	51.1	5 3 • 9
Total ash	17.6	19•0	19•4	18•2	18.1	18•1	19.7	17.7
Acid insoluble ash	13.9	14.4	14.7	14•3	14•9	12.7	14.6	14.0
Calcium	1.10	0.67	0.78	0.97	1•18	1.25	1 •1 9	0.77
Phosphorous	0.59	0.58	0.64	0.34	0.81	0.89	0.77	0.61

APPENDIX V a Digestibility coefficients of the nutrients in the three experimental rations. Treatment \mathbf{T}_1 (Control)

Dry matter

~~~~							~	
				Anima	al number			
	667	551	666M	566	664	540	533	547
Outgo in dung g	3283 5797 3185 2612	2057 2720 4777 2786 1991 41•6	2285 2626 4911 2474 2437 49•6	2057 2533 4590 1814 2750 59•9	2285 2251 4536 2224 2312 50•9	2285 2157 4442 2533 1909 42•9	2057 2345 4402 2192 2210 50•2	2285 2814 5099 2224 2875 56•3
Mean + SE				49.6	± 2.1			
2000022204223452426	=====		=======================================		_4=0=646	\$22 <b>8</b> 23222	.========	
		<u>Or</u>	ganic mat	<u>ter</u>				
گ سے بہار شواف ہے سام سا خو شاہ نہیں ہے کہ آگ جو ش جو ساز نہا ہیں ہے کہ شا								
Outgo in dung g	2761 5036 2593 2443	1862 2288 4150 2259 1891 45•5	2068 2208 4276 2019 2257 52•8	1862 2130 3992 1518 2474 61•9	2068 1893 3961 1815 2146 54•1	2068 1814 3882 2057 2056 52•9	1862 1972 3834 1800 2034 53.0	2068 2366 4434 1824 2610 58•8
Mean + SE				53 • 4	<u>+</u> 2.0			

## APPENDIX V a (Contd.)

Crude protein

					Animal	number			
		667	551	666M	566	664	540	533	547
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	8 8 8 8 8 8	563 128 691 308 383 55•4	461 106 567 251 316 55•7	512 102 614 287 427 69•5	461 99 560 205 355 63•4	512 88 600 278 322 53•7	512 85 597 265 332 55•6	461 90 517 281 270 49•0	512 110 622 254 368 59•1
Mean + SE					57 <b>•</b> 7	± 2•1			
_									
# 14 2 # 2 # # # # # # # # # # # # # # # #	-==	======	=======				<b>4</b>		******
# <b># # # # # #</b> # # # # # # # # # # # #		======	Ether e	ktraet		****	# 4 n # # # # # # # #	<b></b> -	******
		******							
Intake from paddy straw	 g	188	154 51	171 49	154 47	171 42	171 41	154 43	171 51
Intake from paddy straw Total intake		60 <b>24</b> 8	154 51 205	171 49 220	47 201	42 213	41 212	43 197	51 22 <b>2</b>
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested	g g g	60 <b>24</b> 8 81	154 51 205 47	171 49 220 66	47 201 44	42 213 57	41 212 83	43 197 63	51 22 <b>2</b> 70
Intake from paddy straw Total intake		60 <b>24</b> 8	154 51 205	171 49 220	47 201	42 213	41 212	43 197	51 22 <b>2</b>

## APPENDIX V a (Contd.)

## Crude fibre

					Animal	number			
		667	551	666M	566	664	540	533	547
Intake from concentrate Intake from paddy straw Intake intake Outgo in dung Digested Digestibility coefficient  Mean + SE	88888	422 1024 1446 682 764 52•8	346 849 1195 485 710 59•4	384 819 1203 435 768 63•8	346 790 1136 361 775 68•2	384 702 1086 425 661 60•8	384 673 1057 408 649 61•4	346 732 1078 414 664 61•5	384 878 1262 384 8 <b>7</b> 8 69•5
Mean + SE					62.2	± 1.7			
			Nitrogen	-free ex	tract				
		667	551	666M	566	664	540	533	547
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	80 80 80 80	1101 1546 2647 1526 1121 42•3	901 1281 2182 1426 756 34•6	1001 1237 2238 1227 1011 45•2	901 1193 2094 918 1176 56•1	1001 1060 2061 1054 1007 48.8	1001 1016 2017 1301 716 35•4	901 1104 2005 1041 964 48.0	1001 1325 2326 1138 1188 51•0
Mean + SE					53 • 4	+ 2.0			

(Concl.)

APPENDIX V  $_{\rm b}$  Treatment T $_{\rm 2}$  (15% Rubber seek cake)

## Dry matter

######################################			*****	Anir	mal number	 :		
		555	<b>6</b> 59	663	527	537	541	518
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient Mean ± SE	8 8 8 8	2300 2626 4926 2771 2155 43.7	2300 2814 5114 2313 2801 54•7	2300 2814 5114 3006 2108 41•2	2300 2814 5114 2282 2832 55•3 	2300 2814 5114 2195 2919 57.0	2300 2814 5114 2630 2484 48•5	2300 2345 4625 1961 2684 57.8
			Organie ma	atter				
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	8 8 8 8 8 8 8 8	2084 2208 4292 2286 2006 46•7	2084 2367 4451 1876 2575 57•8	2084 2367 4451 2438 2013 45•2	2084 2367 4451 1848 2603 58•4	2084 2367 4451 1782 2669 59•9	2084 2367 4451 2117 2334 52•4	2084 1972 4056 1577 2479 61•1
Mean + SE					54.5 <u>+</u> 2.5	5		

# APPENDIX V b (Contd.)

Crude protein

					Animal 1	number		
		555	659	663	527	537	541	518
ntake from concentrate intake from paddy straw cotal intake outgo in dung digested digestibility coefficient	89 89 89 89 89 89	534 99 633 289 344 54•3	534 106 640 298 342 53•4	534 106 640 306 334 52•2	534 106 640 247 393 61•4	534 106 640 271 369 57•7	534 106 640 291 349 54•5	534 9: 62! 243 382 59•
.,					56.2	+ 1.1		
Mean + SE			========		========			
Mean + SE	12222		Ether	extract		• • • • • • • • • • • • • • • • • • • •		2020322
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Intake from concentrate	 g	190	190	<b>1</b> 90	190	190	190	190
Intake from concentrate Intake from paddy straw	 g g	47	190 51	190 51	190 51	190 51	51	44
Intake from concentrate Intake from paddy straw Total intake	 g g	47 237	190 51 241	190 51 241	190 51 241	190 51 241	51 241	44 234
Intake from concentrate Intake from paddy straw Total intake Outgo in dung	g	47 237 48	190 51 241 45	190 51 241 66	190 51 241 51	190 51 241 72	51 241 53	44 234 48
Intake from concentrate Intake from paddy straw Total intake		47 237	190 51 241	190 51 241	190 51 241	190 51 241	51 241	44 234

# APPENDIX V b (Contd.)

## Crude fibre

w the To 424 if the scae and a scae a scae		*****		Anima	al number		·*== == == =	
		555	659	663	527	537	541	518
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	88 88 88 89	260 819 1079 438 641 59•4	260 878 1138 405 733 64•4	260 878 1138 580 558 49•0	260 878 1138 393 745 65•4	260 878 1138 380 758 66.6	260 878 1138 505 633 55•6	260 732 992 396 596 60•1
Mean + SE	*====			60.	1 <u>+</u> 2.2		=======	:=====
		Nitr	ogen-free	extract				
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	න න න න	1102 1237 2339 1513 826 35•3	1102 1325 2427 1126 1301 53•6	1102 1325 2427 1425 1002 41•2	1102 1325 2427 1107 1320 54•3	1102 1325 2427 1058 1369 56•4	1102 1325 2427 1270 1157 47•6	1102 1104 2206 890 1316 59•7
Mean + SE				49	7 ± 3.4			

(Concl.)

APPENDIX V c
Treatment T₃ (30% Rubber seed cake)

# Dry matter

				Anim	al number			
	668	535	565	55 <b>3</b>	666F	544	669	672
න න භ භ න	2514 3283 5797 2286 3511 60.6	2285 2814 5099 2921 2178 42•7	2285 2814 5099 2399 2700 53.0	2285 2814 5099 1877 3222 63•1	2285 2345 4630 2072 2558 55•2	2285 2345 4630 1988 2642 57•1	2285 2814 5099 1882 3217 63•1	2285 2814 5099 2768 2331 45• <b>7</b>
				55	•1 ± 2•6			
:====:	252222	:======	=======		######################################	<b>173782</b> 5		22222
		Organi	Lc matte	<u>er</u>				
								~~~~
8 8 8 8 8	2300 2761 5061 1884 3177 62•8	2091 2367 4458 2366 2092 46•9	2091 2367 4458 1934 2524 56•6	2091 2367 4458 1555 2923 65.6	2091 2367 4458 1697 2761 61.9	2091 2367 4458 1628 2830 63•5	2091 2367 4458 1511 2947 66•1	2091 1972 4063 2278 1785 43•9
				48	•4 ± 3.1			
	80 80 80 80 80 80 80 80 80 80 80 80 80 8	g 2514 g 3283 g 5797 g 2286 g 3511 60.6 g 2300 g 2761 g 5061 g 5061 g 3177	g 2514 2285 g 3283 2814 g 5797 5099 g 2286 2921 g 3511 2178 60.6 42.7 ————————————————————————————————————	g 2514 2285 2285 g 3283 2814 2814 g 5797 5099 5099 g 2286 2921 2399 g 3511 2178 2700 60.6 42.7 53.0 Organic matter g 2300 2091 2091 g 2761 2367 2367 g 5061 4458 4458 g 1884 2366 1934 g 3177 2092 2524	668 535 565 553 g 2514 2285 2285 2285 g 3283 2814 2814 2814 g 5797 5099 5099 5099 g 2286 2921 2399 1877 g 3511 2178 2700 3222 60.6 42.7 53.0 63.1 55 Organic matter g 2300 2091 2091 2091 g 2761 2367 2367 g 5061 4458 4458 g 1884 2366 1934 1555 g 3177 2092 2524 2923 62.8 46.9 56.6 65.6	g 2514 2285 2285 2285 2285 g 3283 2814 2814 2814 2345 g 5797 5099 5099 5099 4630 g 2286 2921 2399 1877 2072 g 3511 2178 2700 3222 2558 60.6 42.7 53.0 63.1 55.2	668 535 565 553 666F 544 g 2514 2285 2285 2285 2285 2285 g 3283 2814 2814 2814 2345 2345 g 5797 5099 5099 5099 4630 4630 g 2286 2921 2399 1877 2072 1988 g 3511 2178 2700 3222 2558 2642 60.6 42.7 53.0 63.1 55.2 57.1 55.1 ± 2.6 Organic matter g 2300 2091 2091 2091 2091 2091 g 2761 2367 2367 2367 2367 g 5061 4458 4458 4458 4458 g 1884 2366 1934 1555 1697 1628 g 3177 2092 2524 2923 2761 2830 62.8 46.9 56.6 65.6 61.9 63.5	G68 535 565 553 666F 544 669 g 2514 2285 2285 2285 2285 2285 2345 2814 g 5797 5099 5099 5099 4630 4630 5099 g 2286 2921 2399 1877 2072 1988 1882 g 3511 2178 2700 3222 2558 2642 3217 60.6 42.7 53.0 63.1 55.2 57.1 63.1 55.1 ± 2.6 Organic matter g 2300 2091 2091 2091 2091 2091 2091 g 2761 2367 2367 2367 2367 2367 g 5061 4458 4458 4458 4458 4458 4458 g 1884 2366 1934 1555 1697 1628 1511 g 3177 2092 2524 2923 2761 2830 2947 62.8 46.9 56.6 65.6 61.9 63.5 66.1

APPENDIX V c (Contd.)

Crude protein

ay # 40 en en en # 40 en	an an an ar an			, <u>199</u> 2 and 1972 and 497 and 4	Animal n	umber		P = 4 = 4 = 4	
		668	535	565	553	666F	544	669	672
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	00 00 00 00 00 00 00 00	568 128 696 295 401 5 7 •6	516 110 626 331 295 47•1	516 110 626 264 362 57•8	516 110 626 256 370 59•1	516 91 607 219 388 63•9	516 91 607 221 386 63.6	516 110 686 224 462 67•3	516 110 626 292 334 53•4
Mean + SE	=====		• • • • • • • • • • • • • • • •		58.7	+ 2.4			
			Ether	extract		,			
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	5	158 61 219 53 166 75•8	143 52 195 64 131 6 7• 2	143 52 195 75 120 61•5	143 52 195 48 147 75•4	143 44 187 67 120 64.2	143 44 187 48 139 74•3	143 52 195 38 157 80•5	143 52 195 78 117 60•0

Mean + SE

(Contd.....)

69.9 ± 2.5

APPENDIX V c (Contd.)

Crude fibre

**************************************	 -			· • • • • • • • • • • • • • • • • • • •	Animal	number			
		668	535	565	553	666F	544	669	672
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	8 8 8 8 8 8	171 1024 1195 400 795 66•5	155 878 1033 421 612 59•2	155 878 1033 357 676 65•4	155 878 1033 261 772 74•7	155 732 887 305 582 65•6	155 732 8 87 316 571 64•4	155 878 1033 288 751 72•7	155 878 1033 415 618 59•8
Mean + SE					66.0	± 2.1			• = =
		<u>Nit</u>	rogen-fr	ee extra	<u>ict</u>				
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Digested Digestibility coefficient	80 80 80 80 80 80 80 80	1403 1546 2949 1134 1815 61•5	1275 1325 2500 1551 949 38•0	1275 1325 2500 1239 1261 50•4	1275 1325 2500 970 1530 61•2	1275 1104 2379 1106 1273 53•5	1275 1104 2379 1044 1335 56•1	1275 1325 2500 962 1538 61•5	1275 1325 2500 1492 1008 40•3
Mean + SE					52.8	± 3.9			

(Concl.)

APPENDIX VI

Data on intake of digestible crude protein and total digestible nutrients.

	<u>T</u> 1			T ₂	 		T ₃	
Animal number	DCP (g)	TDN (g)	Animal number	DCP (g)	TDN (g)	Animal number	DCP (g)	TDN (g)
667	383	2645	55 5	344	2236	668	401	3 3 85
551 ·	3 1 6	2138	659	342	2817	535	295	2151
666M	427	2553	663	334	2287	565	362	2569
566	355	2659	527	393	2836	553	37 0	3003
6 64	322	2341	537	369	2876	666F	388	2513
540	332	1987	541	349	2562	669	462	3104
533	270	2200	51 8	382	2713	544	386	2605
547	368	2776		-	-	67 2	334	2223
Mean + SE	347 <u>+</u> 15•8	2412+102.6		359 <u>+</u> 8•5	2625 <u>+</u> 104.6	5	375 <u>+</u> 16.6	2694 <u>+</u> 153.

APPENDIX VII a
Nitrogen balance g/day
Treatment T₁ (Control)

Nitrogen		, ,		Animal	number			
(g)	667	551	666M	566	664	540	533	547
Intake from concentrate	90.1	73.8	81•9	73.8	81.9	81.9	73.8	81.9
Intake from paddy straw	20.3	17.0	16.3	15.8	14.1	13.6	14.4	17.3
Total intake	110.4	90•8	98•2	89.6	96.0	95•5	88•2	99•2
Outgo in dung	49•1	40•2	45•9	32.8	44•5	42•4	45.0	40.6
Outgo in urine	44•6	37•4	37.8	40.6	36.8	27.4	30.5	40.4
Total outgo	93.7	77.6	83.7	73•4	81.3	69.8	75.5	81.0
Balance	16.7	13.2	14.5	16.2	14.7	25 .7	12.7	18.2
Mean + SE				16.5	± 1•4	to page when made	م مدم جے مدب	

APPENDIX VII b
Treatment T₂ (15% Rubber seed cake)

Nitrogen	Animal number									
(g)	555	659	663	527	537	541	518			
Intake from concentrate	85•4	85•4	85•4	85•4	85•4	85•4	85•4			
Intake from paddy straw	15. 8	17.0	17.0	17.0	17.0	17.0	14.6			
Total intake	101.2	102.4	102.4	102•4	102.4	102.4	100.0			
Outgo in dung	46 • 2	47•7	48•6	3 9•5	43.4	46 •6	38. 9			
Outgo in urine	40.6	43.6	45•6	38.5	36.1	36.6	40.8			
Total outgo	86.8	91•3	94•2	78.0	7 9•5	83.2	79.7			
Balance	14.4	11.1	8.2	24•4	22.9	19.2	20.3			

APPENDIX VII c

Treatment T₃ (30% Rubber seed cake)

Nitrogen	Animal number									
(g)	668	535	565	553	666F	544	669	672		
Intake from concentrate	90.9	82.6	82.6	82.6	82.6	82.6	82.6	82.6		
Intake from paddy straw	20.5	17.6	17.6	17.6	14.7	14.6	17.6	17.6		
Total intake	111-4	100.2	100.2	100.2	97.2	97.2	100.2	100.2		
Outgo in dung	47.2	53.0	42.0	41.0	35.0	35 • 4	35.8	46.7		
Outgo in urine	49•4	32.2	44•9	48.6	32.9	35•4	38.9	34.6		
Total outgo	96.6	86 •2	87.1	89.6	67.9	70.8	74•7	81.3		
Balance	14.8	14.0	13•1	10.6	29•3	26.4	26.5	18.9		
Mean + SE				19.2 ± 2						

APPENDIX VIII a

Mineral balance g/day

Treatment T₁ (Control)

Calcium					Animal n	umber		· · · · · · · · · · · · · · · · · · ·		
CSTCTAM		667	551	666M	566	664	540	533	547	
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Outgo in urine Total outgo Balance	ත යා යා යා යා යා	18.1 20.7 38.8 24.2 5.2 29.4 9.4	14.8 17.1 31.9 18.9 2.7 21.6 10.3	16.5 16.5 33.0 17.8 4.8 22.6 10.4	14.8 16.0 30.8 16.2 3.6 19.8 11.0	16.5 16.4 32.9 18.0 3.2 21.2	16.5 13.6 30.1 19.3 2.3 21.6	14.8 14.8 29.6 17.1 2.9 20.0 9.6	16.5 17.7 34.2 21.8 2.3 24.1	
Mean ± SE	1				10.1 +	10.1 + 0.4				
Phosphorous				•						
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Outgo in urine Total outgo Balance	9 9 9 9 9 9 9 9 9 9	23.9 5.9 29.8 17.5 6.3 23.8 6.0	19.5 4.9 24.4 15.3 2.0 17.3 7.1	21.7 4.7 26.4 18.3 3.7 22.0 4.4	19.5 4.6 24.1 13.6 5.8 19.4 4.7	21.7 4.1 25.8 15.1 3.2 18.3 7.5	21.7 3.9 25.6 15.5 0.9 16.4 9.2	19.5 4.2 23.7 17.3 1.3 18.6 5.1	21.7 5.1 26.8 17.3 2.6 19.9 6.9	
Mean ± SE					6.4 <u>+</u>	0.5		·		

APPENDIX VIII b

Treatment T₂ (15% Rubber seed cake)

Calcium		Animal number								
CSTCT MIN	555	659	663	527	537	541	518			
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Outgo in urine Total outgo Balance	ත න න න න න න	17.3 16.5 29.8 13.9 10.3 24.2 5.6	17.3 17.7 35.0 15.7 6.8 22.5 12.5	17.3 17.7 35.0 23.4 6.0 29.4 5.6	17.3 17.7 35.0 21.2 2.1 23.3	17.3 17.7 35.0 20.0 2.5 22.5 12.5	17.3 17.7 35.0 21.0 3.1 24.1 10.9	17.3 14.8 32.1 20.0 2.9 22.9		
Mean <u>+</u> SE				- - 9 -	•7 <u>+</u> 1•2					
Phosphorous										
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Outgo in urine Total outgo Balance	8 8 8 8 8 8 8 8	21.6 4.7 26.3 11.6 8.8 20.4 5.9	21.6 5.1 26.7 13.0 2.9 15.9	21.6 5.1 26.7 13.2 4.4 17.6 9.1	21.6 5.1 26.7 20.8 1.4 22.2 4.5	21.6 5.1 26.7 19.5 1.9 21.4 5.3	21.6 5.1 26.7 17.6 2.7 20.3 6.4	21.6 4.2 25.8 17.3 1.8 19.1		
Mean <u>+</u> SE				 6	.3 ± 0.6					

APPENDIX VIII c

Treatment T₃ (30% Rubber seed cake)

Calcium		Animal number								
Caician		668	535	565	553	666F	544	669	672	
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Outgo in urine Total outgo Balance		20.6 20.7 41.3 25.1 3.4 28.5 12.8	18.7 17.7 36.4 19.6 5.0 24.6 11.8	18.7 17.7 36.4 18.7 3.1 21.8 14.6	18•7 17•7 36•4 18•2 5•8 23•6 12•8	18.7 14.8 33.5 25.1 1.0 26.1 7.4	18.7 14.8 33.5 24.9 2.2 27.1 6.4	18.7 17.7 36.4 22.3 3.3 25.6 10.8	18.7 17.7 36.4 21.3 2.0 23.3 13.1	
Mean + SE		11.2 ± 1.0								
Phosphorous	•					•				
Intake from concentrate Intake from paddy straw Total intake Outgo in dung Outgo in urine Total outgo Balance	\$ \$ \$ \$ \$ \$ \$ \$ \$	21.9 5.9 27.8 13.5 7.5 20.0 7.8	19.9 5.1 25.0 16.9 3.2 20.1	19.9 5.1 25.0 10.4 4.9 15.3 9.7	19.9 5.1 25.0 6.4 8.6 15.0	19.9 4.2 24.1 16.8 2.1 18.9 5.2	19.9 4.2 24.1 17.7 1.1 18.8 5.3	19.9 5.1 25.0 14.5 3.3 17.8 7.2	19.9 5.1 25.0 16.9 2.0 18.9	
Mean + SE					7.0 ±	 0 . 8				

APPENDIX IX a Data on feed consumption, efficiency and economy. Treatment \mathbf{T}_1 (Control)

Animal	Total fee	ed intake	Total	Feed efficiency	Cost of con-	Cost of con-	Cost of con- centrate for	
number	Concentrate mixture (kg)			(kg conc./kg gain)	centrate for raising a year old calf for a period of six	centrate per kg gain	100 kg gain	
		خو منه 40° 40° منه جنه جي اد	(kg)	. —	months (Rs)	(Rs)	(Rs)	
667	437	532	103	4•24	519•29	5.04	501.00	
551	371	442	59	6.28	440.86	7 • 47	747.00	
666M	37 8	439	78	4.84	449.18	. ,5•76	576.00	
56 6	371	437	68	5•45	440.86	6.48	648.00	
664	378	403	70	5•40	449•18	6 • 42	642.00	
540	37 8	437	79	4.78	449•18	5•69	569.00	
533	37 1	407	64	5•79	440.86	6 •89	689.00	
547	389	437	82	4.74	462•25	5.64	564.00	
Average	384	441	76	5.05	456 • 46	6.01	601.00	

APPENDIX IX b

Treatment T₂ (15% Rubber seed cake)

	Total feed i	ntake	Total	The 2 - 001 - 4	Cost of concen-	Cost of con-	Cost of con-	
Animal number	Concentrate mixture	Paddy straw	weight gain	Feed efficiency (kg conc./kg gain)	g gain) a year old calf kg gain for a period of kg gain six months (Rs) 437.88 437.88 6.44	centrate per kg gain	centrate for 100 kg gain	
	(kg)	(kg)	(kg)			(Rs)	(Rs)	
555	37 8	440	91	4.15	437 • 88	4.81	481.00	
659	378	440	68	5 •55	437.88	6 • 44	644.00	
663	378	441	81	4.66	437.88	5•41	541.00	
527	37 8	436	68	5•55	437•88	6.44	644.00	
537	378	441	7 4	5•10	437.88	5•9 2	592.00	
541	37 8	443	7 8 .	4.84	437.88	5.61	561.00	
518	378	40 1	7 2	5 • 25	43 7 • 88	6.08	608.00	
Average	378	435	76	4.97	437.88	5•77	577.00	

APPENDIX IX c
Treatment T₃ (30% Rubber seed cake)

Animal number	Total feed i	ntake	Total		Cost of concen-		Cost of con-	
	Concentrate mixture	Paddy straw	weight gain	Feed efficiency (kg conc./kg gain)	trate for raising a year old calf for a period of	Cost of con- centrate per kg gain	centrate for 100 kg gain	
	(kg)	(kg)	(kg)		six months (Rs)	(Rs)	(Rs)	
668	437	432	121	3.61	446.61	4•32	432.00	
535	389	440	92	4.23	433 • 98	5 • 119	519.00	
565	378	436	103	3.67	433•98	4.66	466.00	
553	378	436	75	5.04	433•98	. 5.86	586.00	
666F	378	403	66	5 •7 3	433•98	7.11	711.00	
544	378	400	72	5•25	433•98	6 • 57	657.00	
669	378	437	7 3	5 .1 8	433•98	6.77	67 7. 00	
672	389	533	105	3.70	446.61	5.02	50 2. 00	
Average	388	440	89	4.36	445•46	4.99	499.00	

EVALUATION OF FEEDING VALUE OF RUBBER SEED CAKE FOR PROMOTING GROWTH IN CALVES

By
T.V. VISWANATHAN

ABSTRACT OF A THESIS
Submitted in partial fulfilment of
the requirements for the degree

MASTER OF VETERINARY SCIENCE

Faculty of Veterinary and Animal Sciences

Kerala Agricultural University

Department of Nutrition

College of Veterinary and Animal Sciences

Mannuthy - Trichur

1977

ABSTRACT

A detailed investigation was carried out to assess the value of rubber seed cake as an ingredient in the concentrate mixture of calves to study the growth rate, nutriture, feed efficiency and economics of rearing. Twenty four, Jersey x Sindhi cross-bred calves of 8-14 months of age belonging to the University Livestock Farm, Mannuthy were divided into three equal groups and distributed under three dietary treatments, \mathbf{T}_1 , T_2 and T_3 , the animals being fed concentrate mixtures containing 0, 15 and 30 per cent levels of rubber seed cake respectively for a period of six months. Paddy straw served as the sole roughage. Rubber seed cake at 30 per cent level promoted better weight gains, body size and feed efficiency. Incorporation of rubber seed cake in the concentrate mixture improved the digestibility coefficients of nutrients as also the balance of nitrogen, calcium and phosphorus in the animals. Animals fed rubber seed cake maintained perfect health as evidenced from their haematological values and were free from any toxic effect as adjudged from the histopathological examination of the internal organs and their carcass quality.

The cost of feed was found to be 14 per cent lower for kg body weight gain when rubber seed cake was incorporated at 30 per cent level in the concentrate mixture of growing calves. The overall results obtained during the course of the present investigation indicate that rubber seed cake can be incorporated in the concentrate mixture for growing calves at 30 per cent level to achieve both biological and economic efficiency.