CYTOTAXONOMICAL STUDIES ON BANANA CULTIVARS

By
P.K. VALSALAKUMARI

THESIS

Submitted in partial fulfilment of the requirements for the degree of Boctor of 扫hilosophy in 舁orticulture

Faculty of Agriculture
Kerala Agricultural University

Department of
Pomology \& Floriculture and Landscaping
COLLEGE OF HORTICULTURE
Vellanikkara. Trichur
1984

DECLARATION

I hereby declare that this thesis entitled "Cytotaxonomical studies on banana cultivars" is a bonafide record of research work done by me and that the thesis has not previously formed the basis for the award to me, of any degree, diploma, associateship, fellowship or other similar title of any other University or Society.

Vellanikkara,

$$
11-9-1984
$$

PRicialsalafurmain:
(P.K. VALSALAKUMARI)

CERTIFICATE

Certified that this thesis entitied "Cytotaxonomical studies on banana cultivars" is a record of research work done independently by Mrs. P.K. Valsalakumari, under my guidance and superVision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

Vellanikkara, 11-9-1984.

Chairman, Advisory Committee Director of Research Kerala Agricultural University

We the undersigned, members of the Advisory Committee of Mrs. P.K. Valsalakumari, a candidate for the degree of Doctor of Philosophy in Horticulture, agree that the thesis entitled "Cytotaxonomical studies on banana cultivars" may be submitted by Mrs.P.K. Val salakumari in partial fulfilment of the requirement for the degree.
(P.C.Sivaraman Nair)

(P.K. Gopalakrishnan)

Peak.

(K.V. Peter)

Member
(K. Kumaran)

Member
Proxtris
(P.V. Prabhakaran)

Member

ACKNOWLEDGEMENT

I wish to express my profound sense of gratitude and indebtedness to Dr.P.C. Sivaraman Nair, Director of Research, Kerala Agricultural University, Chairman of the Advisory Committee and my guide for the sagacious advice and constant help he extended throughout the investigation and in the preparation of the thesis.

I am greatly indebted to Dr. K.V. Peter, Professor and Head of the Departinent of Olericulture, member of the Advisory Committee for his keen interest, constructive criticisins and for the valuable advice he rendered for the statistical analyses of the data and the preparation of the manuscript.

I express my sincere gratitude to Sri.P.V.Prabhakaran, Professor of Agricultural Statistics and member of the Advisory Committee for his keen interest in the study, astute advice and imense help rendered for the statistical analyses of the data and the interpretation of the results. I am also grateful to Sri.V.K.G. Unnithan, Associate Professor, Agricultural statistics for his immense help in the statistical analyses.

I am grateful to Dr. P.K. Gopalakrishnan, Associate Dean, College of Horticulture and Dr.K. Kumaran, Professor (Coconut), members of the Advisory Committee for their guidance and help.

My very genuine and heart-felt thanks are due to Dr. M. Aravindakshan, Director, Centre for Advanced Studies on humid tropical Tree Crops and Environmental Horticulture,
and Head of the Department of Pomology, Floriculture and Landscaping who rendered all the help for conducting the study, and for his valuable suggestions.

I am greatly indebted to Dr.(Mrs.) S.Sulochana, Head of the Departiaent of Bacteriology, College of Veterinary and Aninal Sciences for her imuense help in the photomicrographic work.

> I would like to express my special thanks to Sri. Jayapmakash Naik, Junior Assistant Professor, Department of Agricultural Botany for his estimable help in the cytological studies.

I also enunciate my gratitude to Dr.N. Krishnan Nair, Professor (Agricultural Botany) for his keen interest in the study and the valuable suggestions rendered for the preparation of the programme of work.

Ny special thanks go to Mrs. Vijayalakshmi, Farm Supervisor, College of Horticulture for helping me in laying out the experiment in the field.

Grateful acknowledgement is due to Sri.V.P.Asokan, who showed an extiaordinary patience in neatly typing the manuscript.

I remain deeply in debt to my sisters and brothers for their encouragement and dynamic help during the course of the stuay and in the preparation of the thesis.

My greatest debt is aue to my mother and husband who sacrificed much and shouldered many domestic burdens to enable me to complete this work. But for the
encouragement and help rendered by my husoand, this work would have been incomplete. I also remember the love and affection of my late father which had always been a source of inspiration for me.
COTTEMTS
IMLRODUCTION 1
REVIEN OF LITERATURE 5
MATERTAIS AND MEIHODS 29
RESUIIS 47
DISCUSS ION 304
STMMARY 325
RDPERENCES 1-xili
APDMADICES
ABSTRACT

1 Petiole, bract and ovule characters used in the taxonomic scoring system.

2 Musa (AA Group) 'Namarai'
3 Masa (AA Group) 'Chingan'
4 Kusa (AA Group) 'Tongat'
5 Musa (AA Group) 'Matti'
6 Musa (AA Group) 'Eraichivazhai'
7 Musa (AA Group) 'Sanna chenkadali'
8 Musa (MA Group) 'Gros Michel'
9 Musa (AaA Group) 'Highgate'
10 Musa (AAA Group) 'Basrai'
11 Musa (AN Group) 'Harichal'
12 Musa (AAA Group) 'Red banana'
13 Musa (AAA Group) 'Karim kadali'
14 Musa (MAA Group) 'Bodles Altafort'
15 Musa (AAB Group) 'Thiruvananthapuram'
16 Musa (AAB Group) 'Rasthali'
17 Musa (AAB Group) 'Malakali'
18 Musa (AAB Group) 'Pacha nadan'
19 Musa (AAB Group) 'Nendra padaththi'
20 Musa (AAB Group) 'Chara padaththi'
21 Musa (AAB Group) 'Kullan'
22 Musa (AAB Group) 'Nencran'
23 Musa (AB Group) 'Krishna vazhai'
24 Musa (AB Group) 'Virupakshi'
25 Musa (AB Group) 'Sirumalai'
26 Musa (AB Group) 'Agniswar'
27 Musa (AB Group) 'Adakka kunnan'
28 Musa (AB Group) 'Thaen kunnan'
29 Musa (AB Group) 'Padali moongil'
30 Musa (AB Group) 'Kostha bontha'

31
Musa (AB Group) 'Venneettu mannan'
32 Musa (ABB Group) 'Karpooravally'
33 Musa (ABB Group) 'Pey kunnan'
34 Musa (ABB Group) 'Walha'
35 Musa (ABB Group) 'Ashy batheesa'
36 Musa (ABB Group) 'Alukehel'
37 Musa (ABB Group) 'Pacha bontha bathees'
38
Musa (ABB Group) 'Muthia'
3筑 Musa (ABB Group) 'Burrharia'
38b Musa (ABB Group) 'Chakkia'
38c Musa (ABB Group) 'Kothia'
39 Musa (ABB Group) 'Kari bontha'
40 Musa (ABB Group) 'Malai monthan'
41 Musa (AB3 Group) 'Chetti'
42 Musa (ABB Group) 'Kallu monthan'
43 Musa (ABBB Group) 'Hybrid Sawai'
44 Somatic chromosomes of banana ($2 n=22$)
45 Somatic chrogosomes of banana ($2 n=33$)
46 Somatic chromosomes of banana ($2 n=44$)
47 Pollen grains of banana $(2 n=22)$
48 Pollen grains of banana ($2 n=33$)
49 Pollen grains of banana ($2 n=44$)

LIST OF FIGURES

1 Linear growth curves of genomic groups.

2 Linear growth rates of genomic groups.
3. Scatter diagram showing the positions of 62 cultivars of banana on the basis of the canonical variates (Z_{1} and Z_{2}).

LIST OF TABLES

Page
1 Characters used in the taxonomic scoring of banana cultivars 31
2 Genomic grouping of banana cultivars 178
3 Bffect of ploidy and genome on the growth parameters of banana oultivars 186
4 Mean values of the growth parameters of 62 cultivars of banana belonging to different genomic groups 187
3 Effect of ploidy and genome on the duration of banana cultivars 198
6 Mean values of the duration of 62 cultivars of banana belonging to different genomic groups 199
7 Effect of ploidy and genome or the bunch characters of banana cultivars 205
8 Mean values of the bunch characters of 62 cultivars of banana belonging to different genomic groups 206
9 Bffect of ploidy and genome on the finger characters of banana oultivars 215
10 Mean values of the finger characters of 62 cultivars of banana belonging to different genomic groups 217
11 Effect of ploidy and genome on the quality characters of banana cultivars 236
12 Mean values of the quality characters of 62 cultivars of banana belonging to different genomic groups 228
13 Non-polleniferous banana oultivars 251
14 Effect of ploidy and genome on the pollen characters of banana cultivars 252
15 Mean values of the pollen characters of 62 cultivars of banana belonging to different genomic groups 253
16 Ranking of genomic groups on the basis of quantitative, quality and pollen characters 261
17 Growth rates, prediction equaltion and coeffioient of determination for different characters of the genomic groups of banana 267
18 Ranking of genomic groups for growth rates 271
19 Growth rates, prediction equation and coefficient of determination for plant characters of 62 cultivars of banana 273
20 Ranking of banana cultivars for growth rates 278
21 Mean, range, phenotypic and genotypic coefficients of variation (gev and ${ }_{2} \mathrm{pev}$) heritability in the broad sense (h), genetic advance and genetic gain for 26 characters of 62 cultivars of banana 281
$22 D^{2}$ values for 62 cultivars of banana con- sidering 22. characters simultaneously 284
23 Contribution of characters towards divergence 295
24 Average intra and intercluster D^{2} values 298
25 Average intra and intercluater D values 299
26 Canonical roots and their contribution towards divergence 301
27 Eigen vectors for 22 characters of banana 302
28 Z_{1} and Z_{2} values for 62 cultivars of banana 303
29 Hodifications in the genomic groups suggested by Simmonds (1966) 320

LIST OF APPENDICES

1 Analysis of variance for the growth parameters of 62 cultivars of banana.

2 Analysis of variance for the duration of 62 cultivars of banana.

3 Analysis of variance for the bunch characters of 62 cultivars of banana.

4 Ahalysis of variance for the finger characters of 62 cultivars of banana.

5 Analysis of variance for the quality characters of 62 cultivars of banana.

6 Analysis of variance for the pollen characters of 62 cultivars of banana.

7 Intercorrelations among the different characters in banana.

Introduction

INIRODUCTION

Banana is one of the most important tropical fruit crops, and its delicious fruits are favoured throughout the world. The improvement of this crop depends on a thorough understanding of the genus Musa to which it belongs. Systematic investigations on the different species of Musa have been limited by the wide variations in diagnostic characteristics used in taxonomic stuaies and by the wide range of growing conditions.

Cheesman's classification of the failly Musaceae was mainly based on chromosome number (Cheesman, 1947). Jacob (1952) classified cultivated bananas of South India, based on morphological characters. Simmonds and Shepherd (1955), considering the bispecific origin of cultivated bananas from the two wild species Masa acuminata Colla. and Musa balbisiana Colla., suggested the genomic classification based on morphological characters and ploidy level. Further research based on exhaustive descriptions of all available species of Musa arid available cultivars of banana, in the oifferent regions of the world would contribute to a precise knowledge on the crop.

The morphological variations in the cultivars of banana, which consist mainly of triploids and diploids,
are quite wide and complex, with combinations of different degrees of expression of the parental species. The cultivars grow for commercial purposes are many, and the range of productivity and quality characters are also very wide. The wide variations occurring in South Indian bananas definitely require a detailed study for proper understanding.

Two criteria, ploidy level and genone constitution, have enriched plant classification. Cheesman (1947) and Simmonds and Shepherd (1955), considered ploidy level and genome constitution as important criteria for the classification of banana. In cultivated banana it is difficult to find out the ploidy level from the morpholosical characters. In view of the complex polyploid nature of the genus Musa, it is inportant to determine the quantitative chromosome content of the cultivars.

The improvement of banana is still in its early stages, because of the three phenomena exhibited by the crop, nanely, polyploidy, parthenocarpy and female sterility. Precise information on the extent of genetic divergence is critical and essential for a breeding programue. It is useful to discriminate banana populations genetically.

The Banana Research Station of the Kerala Agricultural University at Kannara, maintains a good collection
of banana cultivars from different parts of the country. The existence of synonyms and the lack of proper varietal descriptions, complicate the nomenclature. The present investigation was taken up with an intent to describe the cultivars properly by morphological characters, and to verify their ploidy level.

The main objectives of the stuay are the following:

1. to study the morpholosical, quantitative and quality characters of the banana cultivars
2. to assess the somatic chromosome number of the cultivars, to assign the cultivars to the correct genomic status, and to classify them correctly
3. to estimase the variability for different characters, and to ascertain the influence of genomic constitution of the cultivars on the growth, quantitative and quality characters of the cultivars
4. to study the pollen fertility, the size of pollen and the pollen productivity, as influenced by the ploidy and genomic constitution in banana
5. to estimate the heritability, the genetic advance and the genetic gain of different characters, for the purpose of selection
6. to estimate the extent of genetic diversity existing among the cultivars, by applying multivariate techniques
7. to estimate the relative contribution of various characters towards total genetic diversity
8. to group the cultivars into different gene constellations (clusters), on the basis of genetic divergence, for the purpose of exploiting heterosis.

Review of Literature

REVIEN OF LITERATURE

The taxonomic status of the banana cultivars may be examined on a well merited basis. The word 'bananal includes all edible varieties eaten as ripe fruits or only as cooked food. The origin of cultivated bananas from Masa gcuminatg or as hybrids of this wild parent with wild Masa balbigiana is widely accepted (Cheesman, 1947; Dodds and simmonds, 1948; Simmonds and Shepherd, 1955).

The various degrees of axpression of the basic characters of the parental species is taken as useful data in the classification of banana. Based on this basic information the literature on the taxonomy, origin and evolution of banana along with cytological studies and genetic variability, which are also relevant to the present studies, are reviewed in this chapter.

1. Systematic position of banana

Banana belongs to the genus Musa of the family Musaceae in the order Scitaminae. The earlier classifications of this crop were based on morphological characters. Sagot (1887) divided the family Musaceae into three sections. The first section included giant banasas (Musa ensete), the second section included bananas with fleshy edible fruits (Musa sapientum) and the third section included
ornamental bananas with upright inflorescence and brightly coloured bracts.

Baker (1893) divided the genus Musa into three sub genera - Physocaulis, Eumusa and Rhodochlamys. Physocaulis included plants with bottle-shaped stem and inedible fruits. Eumusa consisted of plants with cylindrical stem and edible fruits. The tirira sub genus Rhodochlamys included plants with cylindrical stem and brightly coloured bracts with inedible fruts.
1.1. Classification by Cheesinan

The systematic classification of the femily Musaceae, based on chromosome number, was by Cheesman (1947) who divided the family into two genera - Musa with oasic chromosome number 10 and 11 and Ensete with basic chromosome number 9. The genus Musa included many species of perennial stooling and rhizomatous herbs in South Eastern Asia and the Pacific and the genus Ensete was composed of monocarpic herbs with inedibie fruits.

De Langhe (1969) summarised the classification of the genera Ensete and Musa making use of the findings of Cheesman (1947, 1949, 1950), Simmonds (1956a), De Langhe and De Vreux (1960) and Vakili (1965). The genus Musa was divided into five sections. The first two, Eumusa and Rhodochlaws, had basic chromosome number as 11, Callimusa and Australimusa 10, and the last section Incertae sedis
had 7 as the basic chromosome number. All the edible cultivated bananas were included under the section Eumusa except the Fe'i bananas which belonged to the section Australimusa. The section Eumusa consisted mainly of eight species viz., Musa acuminata with sub species malaccensis, microcarpa, burmanica, burmaniccoides, siamea, banksii and errans Allen; Mhsa flaviflorg, Musa 1tonerans, Musa basjoo, Muse nagensium, Mosa schizocarpa, Musa cheesmanil and Musa ochraceae.

Cheesman (1947, 1949 and 1950) after exhaustive studies, traced the origin of the edible cultivated parthenocarpic bananas under the Rumusa section to the two widely occurring wild species, Musa acuminata Colla and Musa balbisiana Collis, wich was later confirmed by Dodds and Simmonds (1948) and Simmonds and Shepherd (1955).

Based on the bi-mpecific origin, Cheesman (1947) divided the edible bananas of the Eumusa section into three groups. Bananas showing predominant characters of Musa acuminata were grouped to Musa x paradisiaca group; bananas showing blend characters of Masa acuminata and Musa balbisiana were grouped to Musa x sapientum group and bananas showing predominant characters of Masa belbisiana were grouped as yusa balbisiana.
1.2. Classification by Simmonds and Shephered (1955).

Following Cheeman's classification, the concept of genome was suggested by Simmonds and Shepherd (1955) as a key to the classification of bananas. Since the edible bananas of the Eumasa section were evolved either from Musa acuminata or from crosses of Masa acuminata with Kusa balbisiana, according to this system, 'A' represented a genome with 11 chromosomes from Musa acuminata and 'B' represented a genome with 11 chromosomes from Musa balbisiong.

To distinguish cultivars, Simmonds and Shepherd (1955) used a taxonomic scoring metinod to indicate the relative contribution of the two wild species, Musa acuminata and Musa balbisiena. Using 15 diagnostic morphological characters, they showed how the contributions made by the two wild species could be clearly discerned. For each character in which the cultivar agreed with wild Musa acuminata, a score of 1 was given and for each character in which the cultivar agreed with Musa balbisiana a score of 5 was given. Intermediate expressions of the character were assigned scores of 2,3 or 4 according to their intensity of expression.

The edible bananas of the Eumusa section were further divided into the diploids with genomic groups AA
and $A B$, the triploide with genomic groups $A A A, A A B$ and $A B B$ and the tetraploids with genomic groups $A B B B, A A A B$ and AABB. The genomic group $A \operatorname{included~} 60$ cultivars; AB, 2 cultivars; AM, 30 cultivars; AAB, 100 cultivars and ABB, 30 cultivars. Each of the tetraploid genomic groups, consisted of one cultivar (Siminonds and Shepherd, 1955; Simmonds, 1956 a and b, , ins. 1965).

A tetraploid hybrid banana, 'Bodles Altafort' produced at the Imperial College of Tropical Agriculture from a cross between 'Gros Michel' x 'Pisang Lilin' was released for cultivation (Osborne, 1962).

The classification was complicated by polyploidy. It was not possible to determine the ploidy of the cultivar from the external appearance without counting the chromosomes (Simmonds, 1948, 1950, 1962).

2. Evolution of cultivated banana

The essential events occurred millions of years, rather than centuries ago, in the evolution of banana (Simmonds, 1962). The various events in the evolution of edibility in the wild species and the evolution of cultivated forms from the wild parents Musa acuminata and Musa balbisiana are reviewed here.

The key to the understanding of banana evolution lies in the analysis of parthenocarpy and sterility in the edible diploids. Dodds (19+3) clearly explained the existence of vegetative parthenocarpy in the cultivated banana, where fruit formation was not disturbed even if pollen was excluded from the inflorescence. In wild diploid species, if unpollinated, the ovaries did not develop and remained immature. The fruit growth was proportional to the seed content and the growth of the pulp depended on the stimulus from the developing seeds. In edible bananas the stimulus for the fruit growth was explained to be autonomous, without pollen or fertilization (Siminonds, 1953, 1962, Shanmugavelu and Rangaswamy, 1962).

The typical edible seedless banana was proposed to be the product of two evolutionary processes - parthenocarpy and sterility due to genetic female sterility and pollen sterility (Dodds, 1943; Shepherфd, 1960; Simmonds, 1960b, 1962). Edibility first evolved in Masa acuminata by these two processes. Parthenocarpy was due to the presence of three complementary genes present in this wild species (Simmonds, 1953, 1962). But studies on the existing species and cultivars and the results of some crosses showed that edibility did not depend upon ploidy and that parthenocarpy was not related to seedlessness (De Langhe, 1969).
2.1. Evolution of edibility in Musa acuminata

The species yusa acuminata was observed to be very variable and taxonomic evidence indicated the primary centre of origin to be Malay Peninsula (Simmonds, 1953, 1962). With high probability, human selection favoured parthenocarpy and seed aterility leading to male sterility consequent upon heterozyigosity (Simmonds, 1976). There was no evidence to believe that Musa balbisiana ever evolved edibility on its own (Simmonds, 1962, 1976) but for a contrary yiew from Vakili (1967) who considered that there was natural evolution of parthenocarpy in Musa balbisiana as in the case of Musa acuminata. The hybrid groups of cultivars originated by outward migration of edible diploid, male fertile at types into areas of pasa balbisiana.
2.2. Origin of natural F_{1} hybrids

Natural hybridization between different Musa acurinata subspecies occurred (De Langhe, 1969).

Most of the edible diploids investigated in Trinidad had only nine or ten bivalents against a normal number of eleven in the metaphase of male sporogenesis (De Langhe, 1969). After these Musa acuminata hybrids came into being, the probability of sporadically occurring restitution with the resulting diploid egg nucleus imediately
increased. In crosses with haploid pollen nuclei this would have given rise to Masa acuminata triploids. This took place immediatoly after their origin when the chromosomal balance was still in a disturbed condition as a result of fragmentation of certain chromosomes.
2.3. Species hybrids

The origin of various apecies and hybrids of banana was described by Dodds and Simmonds (1948), Krishnamurthy and Seshadri (1958), Siminonds (1966) and De Langhe (1969). $A B$ diploids might have arisen as a result of a cross between Musa balbisiana and Musa acuminata diploid. In Trinidad AB diploid like Neypoovan (AB) of Indian origin was synthesised by crossing yusa balbisiana with edible Yusa acuminata diploid (Dodds and Simonds, 1948).
$A B B$ triploids might have arisen probably in two different ways viz., (i) by crossing an edible Musa acuminata diploid with Musa balbisiana which presupposed single restitution (ii) by crossing AB diploid with Musa acuminata, also with restitution. Taking into account the tendency to matrocliny, it was assumed that the first way gave Musa acuminata like $1 A B^{\prime}$'s and the gecond way tompalbisiana like AAB's with a more pronouncedybalbisiana phenotype than could be expected from the genomic ratio (De Langhe, 1969).

The ABB triploids were said to be the products of backcrossing 'AB' with Musa bolbisiana (BB) (Krishnamurthy and Seshadri, 1958; De Langhe, 1969). The possibility of Musa balbisiana (BB) x edible Musa acuminata (M) was inconceivable upto a few years age because it was assumed that no sterile Musa balbisiana existed. The discovery of a semi-sterile Musa balbisiana in India (Govindaswamy, 1962) opened up a new horizon.

Tetraploids such as 'Klue Teparod' (ABBB) were products of back crosging (De Langhe, 1969).

The evolution of the present day cultivated banana had taken place through centuries of hum an selection (Krishnamurthy and Sheshadri, 1958). Various complex factors had influenced its evolution, either singly or together. There are more than 200 cultivars in existence (De langhe, 1969). However, the evolution of cultivated bananas was suggested to be closely linked up with four factors, viz., vegetative propagation, parthenocarpy, sterility and polyploidy (Krishnamurthy and Sheshadri, 1958; De Langine, 1969):

In a nut shell, the whole range of the favourable and economically important characteristics of fruits and bunches was the result of a lucky combination of species or subspecies (De Langhe, 1969).
3. Distribution and gene centres

Taxonomical, geographical and cytogenetical knowledge of the genus Muga as a whole indicated the region Assam - Burma - Siam - Indo China as the centre of origin of not only the cultivated bananas, but all other taxonomic groups of the genus also (Cheesman, 1947; Chakravorti, 1948a and b, 1951; Chandratna, 1951; Jain, 1963, 1965; De Langhe, 1969). The range of Musa acuminata covered Malayasia, Burma, Assan, Slam, Indo China and the Philippines. Musa balbisiana extended over Ceylon, India, Java, Malaya, Burma and Siam (Chandratna, 1951). A special form of this species was. \quad discovered in Ceylon viz., a semisterile form (Govindaswaray, 1962). There were some obvious differences between the Ceylon and Indonesian forms.

It was not possible to give a complete picture of the distribution of the common edible Eumusa forms since they were in cultivation long ago and were distributed over the tropical world (De Langhe, 1969). The predominance of the following groups could be stressed.

AAA 'Gros Michel' and AM 'Lacatan' are predominant in Central and South America; 'AAA' Cavendish group in West Africa; 'AAB' Plantain group in Central Africa (De Langhe, 1969); 'AAN' Beer bananas in East Africa
(Bhepherd, 1957); 'AA' edible diploids in the Milay Archipelago and New Guinea (Simmonds, 1956a and b); and $\triangle A B$ and $A B B$ in India and South East Asia (Simmonds, 1966). 4. Nomenclature of banana cultivars

The nomenclature of banana cultivars is complicated being interspecific hybrids. The two Limaean epithets Musa sapientum L. for varieties suitable for ready consumption (dessert types) and Musa paradisiaca L. for varieties edible after cooking (Linnaeus, 1783) were misleading (Cheesman, 1948a and b). He stressed that the names should be applied to clones which resembled French Plantain' and 'Bilk Fig' respectively.

The 'Dwarf Cavendish' had received several Latin names like Musa nona Lour, Musa gavendighi1 Lambert and Musa sinensis Sweet (Moore, 1957), Chandratna and Nanayakkara (1951) referred the dwarf bananas as Musa acuminata. Jacob (1952) combined the two Linnaean species of edible Musa, viz., Musa+sapientum and Musaxparadigiaca I. into a single species, Musa x sapidigiaca. Nayar (1962) questioned Jacob (1952) for considering all banana Varieties as Musaxsapidisiaca since certain varieties like the cavendish bananas were only the cultivated forms of Masa acuminata. Similarly varieties like 'Bontha' had nearly all the characters of 保a balbisiana.

Simmonds (1966) suggested that it was botanically incorrect to refer all Eumusa cultivars by any one Latin name and that the formal reference to a cultivar could be made with the genome and common name with a prefix of the genus Musa. e g. Musa (AAA Group) Cavendish sub group 'Robusta', Musa (AAB group) 'Mysore'.

For the sake of conciseness De Langhe (1969) suggested that it was preferable to write as AAA 'Gros Michel' and AB 'Neypoovan'.
5. Classifications of Indien cultivars

Much confusion existed in Indian Botanical literature on the classification and nomenclature of the species of Musa. Roxburgh (1824) described four species indigenous to India, but only one of them, Musa \times sapientum was of economic interest.

Venkataramani (1946) gave a descriptive study of 24 benana varieties. Jacob (1952) classified 74 varieties of Madras bananas into nine groups based on morphological characters - Vamanakeli, Nendran, Kadal1, Kaali, Kuman, Peyan, Mannan, Monthan and seeded bananas. The chromosome number of some of the varieties were found out.

Gandhi (1955) described the history and botany of Bombay banana. Nayar and Phakthavatsalu (1955) described the cavendish group of banana. Shukla and Roy (1956)
described 20 varieties of Bihar bananas. The 'Nanguneri peyan' and 'Nendran' varieties of banana were described by Nayar et al. (1957a and b). Gowder and Nambisan (1959) described the 'Matti' variety of Kanyakumari District. The 'Monthan' and 'Peyan' groups were described by Rao and Nambisan (1959).

Nayar (1962) classified banana varieties into four groups. He listed out 18 diagnostic characters of Musa acuminata and Musa balbisiana. Varieties which scored over 75 per cent of the characters of Musa accuminata vere grouped into the first group, kisa acuminata group. The second, Musa \times sapientum group included banana varieties of hybrid origin which scored nearly well balanced characters of Musa acuminata and Musa balbigiana. The third group - Musa \times paradisiaca group included banana varieties of hybrid origin which showed a preponderance of the characters of Muse balbiaiana over those of Nusa acuminata. Banana varieties which nearly had all the characters of Musa belbisiana were included in the fourth group, Musa balbisiana group. Nayar (1962) had also described the taxonomic status of banana varieties 'Dwarf Cavendish' and 'Virupaksh1'.

Simmonds (1966) assigned genomic status to some of the Indian cultivars. Cultivars 'Chincan', 'Maniyilla chingan', 'Kadali', 'Surya Kadali', 'Namarai', 'Anaikomban',
'Sanna chenkadali' and 'Matti', belong to the genomic group AA; 'Amritsagar', 'Pedda pachcha arati', 'Vamanakeli', 'Chakkarakeli', 'Nalla chakkarakeli', 'Venkadali' and 'Eththa chingen', belong to the AAA group; 'Ney poovan', 'Kunrian', 'Venneettu kunnan', to the AB group; 'Rasthali', 'Poovari', 'Nendra padaththi', 'Pacha nadan', 'Vanran', 'Krishna vazhai', 'Nendran', 'Chinali', 'Karim kadali', 'Thiruvananthapuram' and 'Adakka kunnan' to the $A A B$ group; 'Peyan', 'Pey kunnan', 'Ney mannan', 'Venneettu mannan', 'Nalla bontha', 'Monthan', 'Pacha bontha oathees', 'Boothi bale', 'Thaen kunnan', 'Enra benian', 'Kuri bontha' and 'Kallu monthan' to the $A B B$ Group.

Systematic status of incividual cultivars of banana were described by several workers. Natural 'Klue Teparod' banana was described and compared with a hybrid from the cross betkeen Ney vannan x Musa balbisiana (Shakthavatsalu et. al., 1968). Nair and Nair (1969) described the performance of some introduced varieties of banana in Kerola. Azakiamanavalan et.al. (1975) described 'Wather' banana. 'Hybrid 135', a hybrid banana evolved out of multiple crosses involving 'Ladan' (AAB) as fenale parent and Musa balbisiana and 'Kadali' (AA) as male parents reserbled 'Virupakshi' phenotypically and was recommended for commercial cultivation (Azakiamanavalan and Rao, 1980).
6. Genomic classification of bananamerits and demerits

As for the hypothetical character of genomic classification, De Langhe (1969) repeated what Allard stated about Triticum genome."Genomic designations are undoubtediy over simplicications. Nevertheless they seem to come close to the true picture and they serve a useful purpose in reconstituting the polyploidy in the group* (Allard, 1960).

Some deviations in the ABB group were noted by Vakili (1967). According to the scoring scheme developed by Simmonds and Shepherd (1955) when the sum of the scores for 15 morphological characters of a triploid variety fell between 59 and 63 , the variety was considered to have secured one genome from Musa acuminata and two genomes from Musa balbisiana. Studies on the varieties by De Langhe (1969) ... indicated that scoring system besides its subjectiveness was influenced by the effect of growing conditions on the morphological characteristics of the plant. There are varieties in the ABB group eg. 'Saba' from the Philippines, which scored between 69 and 72. Actually variety 'Saba' looked like a triploid edible Musa balbisiana. Vakili (1962) developed BBB and BBBB by colchicine treatment which was similar to 'Saba' but for the parthenocarpic character. According to simmonds (1966), the varieties in the ABB group inherited their parthenocarpic
character from som ancestral Masa acuminata. The studies on polyploid Musa baibisiang and edible varieties such as 'Saba' and 'Bluggoe' suggested that the karyotypes of the varieties were $B B B$ rather than $A B B$. $11 s 0$ parthenocarpy might have evolved in Musa balbisiana... The correlation between ploidy and grouping on morphological grounds could not be considered appropriate in some of the Indian cultivars (Jacob, 1966; Raman et al., 1968, 1970, 1971). The cultivars under the 'Kumnan' group were all diploids though according to simmonds (1966) genomic classification, they were diploids and triploids. The groups 'Kaali', 'Kadali', 'Mannan' and 'Nendran' also included poth diploids and triploids and hybridity was indicated in cultivars that had been considered purely as Musa acuminata (Raman, 1976).

The concept of the origin of edible bananas from Musa acuminata and Musa bgibisiang was questioned by De Langhe (1969). Several $A A B$ hybrids like the plantains and 'Pisang Rajah' had at least one characteristic which occur neither in Musa acuminata nor in Musa balbisiana Vis., the yellow orange colour of the compound tepal. This suggested that an extraneous species might have played a role in the origin of the cultivated bananas. In this respect, Nusa flaviflorg, Musa schizocarpa and Musa gikkimongig should be further investigated because
they occurred in the areas of the whole Eumusa section and were sympatric with yusa balbisiana in areas where Musa acuminata did not occur, De Langhe (1969) also mentioned the existence of a clone in United Kingdom which was certainly a F_{1} between Musa schisocarpa and parthenocarpic Musa acuminata.

Following Simmonds and Shepherd (1955) the taxonomy and descriptions of Musg clones grown in Venezuela was given by Borges (1972). Karikari (1973) described the plantains of Ghana on the basis of the contribution of Musa acuminata and pase balbisiana to their origin.

A chemosystematic study of Musa cultivars was reported (Bonner et.g7., 1974). Peroxidases from certain Musa spp., using horizontal polyacrylamide gel electrophoresis revealed four major zones of activity and 15 separate peroxidase bands. When composite zymograms were constructed from gel data for cultivars of different ploidy groups and compared to the taxonomic classification good agreement was obtained with genomic groups. Three clones of unknown origin were genotypically classified based on the results.
7. Cytological studies in banana

Investigations on the cytogenetics of the banana complex provided information on the evolutionary mechanisms in the genus and the genetic systems operating
to bring about the characteristics associated with cultivated varieties.

Tischler (1910) found that chromosome number of some of the Java bananas were 24 and 16 , the basic number being 8. But lateron Cheesman (1932 a and b) found that the haploid number of banana is 11, the most common form among edible banana being triploids. This was confirmed again by Agharkar and Bhaduri (1935), Cheesman (1935), Cheesman and Larter (1935), Larter (1935, 1938). The cytology of five established edible triploid bananas was described by Dodds (1943). Wilson (1946 a, b and c) studied meiosis of triploids. The significance of interspecific hybridization and polyploidy in the evolution of the banana complex was emphasied by further studies (Dodds and Pittendrig, 1946; Dodds and Simmonds, 1946 , Simmonds and Dodds, 1949). Chakraverti (1951), on the basis of meiosis in triploid cultivars revealed that the respective karyotypes were variable even within the same individual. As a part of the breeding programe in Bihar, chromosome studies of important banana varieties were made and most of the varieties were found to be triploids (Roy and Sharma, 1951).

Eight hybrids between triploid edible bananas and wild Kusa acuminata were investigated for chromosome number and most of them were found to be tetraploids (Raman et.gㄹ., 1963).

Studies on chromosome numbers of cultivated South Indian bananas indicated the greater prevalence of diploid clones (Jacob, 1966). Simmonds (1966) had included the cultivars under Kunnan group (Jacob, 1952) into different genomic groups. 'Kuman' and 'Vemeettu kunnen' were assigned to the genomic group AB; and 'Adakka kunnan' and 'Thattilla kumnan' to AAB group and 'Thaen kunnan' and 'Thattilla kunnan' to the ABB group. Cytological studies revealed that all the cultivars under 'Kunnan group' were diploids and should be given the genomic status 'AB' (Jacob, 1966). Later, cultivars 'Nattu poovan', 'Sirumalai', 'Ney mannan', 'Vannan', 'Ali poovan', 'Valpari', 'Devabale', 'Rasakadali', 'Poovan kadali' and 'Ambala kadali' were added to the diploid group (Raman et.al., 1970).

The cytology and morphology of 11 varieties of Philippines banana were studied by De Leon et. 르. (1968) and all of them were found to be triploids ($n=11$).

The cytomorphological features of the progenies from the crosses of cultivated bananas with wild parents were studied (Raman et. R1., 1971). The progenies consisted mainly totraploids and triploids.
8. Genetic variability in Indian bananas

Most of the cultivated varieties of Indian bananas exhibited a vast range of genetic variability. Venkataramani
(1946) in his descriptive study of the Indian bananas recorded variationa in pseudostem colour, shape of leaves, colour and texture of the bracts, the nature of sterile axis and the number of flowers per bract. Jacob (1952) and Nayar (1957, 1962) observed variation in South Indian bananas in characters like plant height, number of leaves, weight of bunch, number of fruits, colour of pseudostem, colour and shape of bracts and flowers.

High degree of variability in morphological characters like fruit volume, peduncle hairiness, number of hands per bunch, length of pedicel, shape of fruit, width of petiolar canal and length/breadth value of bracts was reported in diploids and triploids of Indian bananas (Raman, 1968). An analysis of morphological variations in South Indian varieties showed a considerable degree of introgression of the gene complex of yinga batbisiana into them. The introgression appeared to be widely distributed in different varieties, both diploid and triploid in constitution (Raman et.al., 1968). The metroglyph analysis of the clones considered to have AA genome, showed a wide dispersion over the diáram and exhioited expression of characteristics of Musa balbisiana and characteristics of those intermediate between Musa belbisiana and Musa acuminata (Raman, 1970, 1976;
Raman et.al., 1970).

Nair et.gl. (1979) observed wide and significant variation in dessert bananas in characters like plant height, girth, number of leaves, weight of bunch and fruit, number of hands and fruits, and weight, length and breadth of fruit. High heritability combined with genetic advance were recorded for fruit weight, bunah weight and plant height. Later Mair et. al. (1980) studied the genetic variability in 32 cultivars of culinary banana for 13 morphological characters viz., height and girth of plant; number of leaves; weight of bunch, hand and finger; number of hands and fingers; fength and breadth of finger; number of fingers per hand; length of pedicel and number of roots per plant. For all the characters wide and significant variation was observed. The high heritability values recorded along with the high genetic advance for number of fruits per bunch, weight of hand and fruit and length of pedicel indicated the further improvement possible in those characters by proper selecticn.

Somatic analysis of characters like height and girth of plants, days to flowering, bunch weight and lengti and number of fruits per bunch in 12 dessert and 6 culinary bananas, indicated high heritability and genetic advance in number of fruits per bunch, weight of bunch and number of fruits (Sreerangaswamy et. al., 1980).
9. Influence of genomic constitution and ploidy on the growth, quantitative characters and poilen characters of banana.

The specific origin and the ploidy level were reported to influence the growth, development and pollen characters of banana. Triploids and tetraploids have a stronger vegetative development than diploids (De Langhe, 1969). The nutrient uptake and dry matter accumulation were influenced by the ploidy level of cultivars (Anon, 1982). The accumulation of dry matter was the highest in triploids. The triploids also accounted for the highest nitrogen uptake.

The leaf production and associated growth characters were influenced by the specific origin of banana (Nambisan and RaO, 1980a). The totaf number of leaves, leaf area and leaf duration progressively increased with Nusa balbisiana genome in the ancestry of the clones. The chlorophyll and protein contents of leaves also increased with B genome in the genetic make up of the clones (Nambisan and Rao, 1980b).

Studies on the physiological aspects of banana cultivars relating to genomic constitution and ploidy level revealed a strong relationship between pseudostem height and girth in triploids and tetraploids. Such a relationship could not be noticed in diploids (Anon, 1982). There was a wide range of pulpspeel ratio in triploids as compared to diploids and tetraploids.

Alexander (1976) studied the pollen and female fertility of banana cultivars and found that cultivars belonging to $A B$ and $A B B$ genomic groups were male sterile. Sathiamoorthy and Rao (1980) reported that clones belonging to A genome produced abundant pollen. Among the triploids, 'AAA' clones contained larger amount of pollen than clones of 'AAB' and 'ABB' genomes.
10. Multivariate analysis

The information about the extent of genetic divergence is crucial for the improvement programme of any crop. Multivariate analysis by means of Mahalanobis D^{2} statistic (Mahalanobis, 1936) was found to be a powerful tool for quantifying the degree of divergence between blological populations, to understand the trend of evolutionary pattern and to assess the relative contribution of different characters towards total divergence. In many field crops and vegetables D^{2} analysis was of ten resorted to, for estimating the genetic distance among varieties (Yadav et. al., 1974; Chaudhury and Singh, 1975;

Chandrasekhar, 1978; Asawa et. al., 1981; Mukher jee et. 요., 1981; Chauhan and Singh, 1982; Sukh1ja et.al., 1982; Varma and Gulati, 1982).

Mercy (1981) studied the genetic diversity in banana through D^{2} analysis, in 30 dessert and 56 culinary
cultivars,: : on the basis of 13 morphologimal characters and formed seven distinct clusters. In dessert bananas weight of the bunch and in culinary bananas weight of finger contributed maximum towards diversity.

Materials and Methods

The investigations were carried out at the College of Horticulture, Vellanikkara during 1981-83. 1. Materials

One hundred banana cultivars were collected from the germplasm collection of Banana Research station, Kannara, Trichur. Bight suckers of each cultivar were planted in the Orchard of the College of Horticulture in a Randomised Block Design with two replications, during February, 1981. The recommended package of practices were followed uniformy (Kerala Agricultural University, 1978).

The suckers from the first crop were planted in February, 1982 and the experiment was repeated. The following cultivars were used for the study.
'Adakka kunnan', 'Adukkan', 'Agniswar', 'Alukehel', 'Ash monthan', 'Ashy batheesa', 'Basrai', 'Beilla', 'Bluggoe', 'Bodles Altafort', 'Boodi', 'Burrharia', 'Chakkia', 'Chara padaththi', 'Chenkadali', 'Chetty', 'China', 'Chinali', 'Chingan', 'Chinia', 'Chirapunchi', 'Dakshinsagar', 'Dudhsasar', 'Elavazhai', 'Eraichivazhai', 'Galanamalu', 'Gros Michel', 'Harichal', 'Highgate', 'Hybrid Sawai', 'Jurmoney kunthali', 'Kali', 'Kallu monthan',
'Kapok', 'Kapur', 'KNR 2/75', 'Kari bontna', 'Kariin kadali', 'Karpouravally', 'Kostha bontha', 'Kothia', 'Krishna vazhai', 'Kullan', 'Lady's finger', 'Malai monthan', 'Malakali', 'Mannan', 'Manoranjithm', 'Matti', 'Mauritius', 'Muthia', 'Nalla bontha', 'Nallabontha bathees', 'Nalla chakkarakeli', 'Nenguneri peyan', 'Namarai', 'Nendran', 'Nendra kunnan', 'Nendra padathth1', 'Nencra vannan', 'Ney mannan', 'Ney poovan', 'Ney vannan', 'Neyvanna Sawai', 'IJjeli poovan', 'Pacha bontha oathees', 'Pacha chingen', 'Pacha kadali', 'Pacha nadan', 'Padali moongil', 'Padatithi ponnani', 'Palayankodan', 'Pedda pachcha', 'Peyan', 'Pey kunnan', 'Pisang ambon', 'Pisang awak', 'Pisang mas', 'Pisanit raja', 'Poocha kunnan', 'Poomkalli', 'Rastiali', 'Fied banana', 'Redjasirre', 'Sanna chenkadali', 'Sapumal anamalu', 'Sirumalai', 'Sugandhi', 'Suwandal , 'Thaen kunnan', 'Thella bontha', 'Thiruvananthapurau', 'Tongat', 'Vadakkan kadali', 'Valiya kunnan', 'Vannan', 'Venneettu mannan', 'Virupakshi', 'Walha' and 'Wather'.
2. Morphological scoring and description of cultivars

The cultivars were scored basec on the fifteen morphological characters, diagnostic of Musa acuminata and Musa balbisiana as suggested by Simmonds and Sinepherd (1955). (Table 1 and Plate I).

Table 1. Charaeters used in taxonomic scoring of banana cultivars

Characters/ Plant parts	Masa acuminata	Musa balbisiana
Pseudos tem colour	More or less heavily marked with brown or black blotches	Blotches slight or absent
Petiolar can:al	Margin erect or spreading, with scarious wings below, not clasping paeudostem	Marg in inclosed, not winged below, clasping pseuodostem
Peduncle texture	Usually downy or hairy	Glabrous
Pedicel length	Short	Long
Arrangement of ovules	Two regular rows in each loculus	Four irregular rows in each loculus
Bract shoulder	$\begin{aligned} & \text { Usually high } \\ & (\text { ratio }<0.28) \end{aligned}$	$\begin{aligned} & \text { Usually low } \\ & (\text { ratio }>3.0) \end{aligned}$
Bract curling	Bracts reflex and roll back after opening	Bracts lift up, but do not roll
Bract shape	Lanceolate or narrowly ovate tapering sharply from the shoulder	Broadly ovate, not tapering sharply
Bract apex	Acute	Obtuse
Bract eolour	Red, dull purple or yellowish outside; pink, dull purple or yellow inside	Distinctive brownish purple outside, bright crimson inside

```
Table 1. (Contd.)
```

Characters/

Masa acuminata

Musa balblsiana Plant parts

Colour fading	Inside bract colour fades to yellow towards the base	Inside bract colour continuous to base
Bract scars	Prominent	Scarcely prominent
Free tepal of		
male flower	Variably corrugated below tip	Rarely corrugated
Maleflower	Creamy white	Variably flushed colour
Stigma colour pink		

1. Score 15-23 (Musa acuminata cultivars)

$$
\begin{array}{ll}
\text { 1. Diploid } & - \\
\text { AA } \\
\text { 2. Triploid } & - \\
\text { AMA } \\
\text { 3. Tetraploid } & \text { - AMA }
\end{array}
$$

2. Score 26 or more (hybrid cultivars)
3. Score 26-46, triploid - AAB
4. Score about 49,diploid - AB
5. Score 59-63, triploid - ABB
6. Score about 67, tetraploid- ABBB
7. Score 75 - Masa balbisiana

Plate 1. Petiole, bract and ovule characters used in the taxonomic scoring system.

Muse acuminata Musa balbisiana

A petiole, B bract scars, C bract curling, D free tepal of male flower, E bract shoulder (ratio $=x / y$), F bract shape, G ovale arrangement

The cultivars were assigned to the genomic groups. Synonymous cultivars were identified and the cultivars were described based on morphological characters. Ploidy levels were confirmed by cytological studies.
3. Cytological observations

Cytological observations consisted of meking somatic chromosome counts of all the cultivars in the root tips. Squash preparations were made following Fuelgen squash method (Hillary, 1939, 1940; Battaglia, 1957; Darlington and La Cour, 1976).
3.1. Collection of material

Tips of freshly emerging roots were taken from potted young plants. For this purpose small banana suckers were planted in pots in sand. Freshly emerging root tips were collected after 15-20 days of planting. Foot tips were also taken from the field in the rainy season. The best time for taking root tips for obtaining maximum number of cells in metaphase was found to be between 9.30 - 10 a.m. Root tips were collected carefully using forceps and washed in water.
3.2. Fixation

The root tips were fixed in $1: 3$ fresh acetic alcohol for reducing the staining of the cytoplasm
(Mc Clintock, 1929). Best results were obtained when the duration of fixation was 8 to 10 hours.
3.3. Squashing

After 8 to 10 hours of fixation in acetic alcohol, the root tips were washed in water and hydrolysed in Normal Hydrochloric acid for 10 minutes, washed in several changes of water and stained in Leuco-basic fuchsin for 30 minutes. Thin slices of root tips were teased out on a slide with a drop of distilled water. The cover slip was placed in position and pressure was applied under several thickness of blotting paper, allowing no movement of the cover slip sidevays.
3.4. Permanent fixation

The slide and the coverslip were separated by turning the slide face down in a smearing dish containing 45\% acetic alcohol, until the cover slip fell off. The cover slip and slide were then passed through a series of solutions containing acetic acid and butanol in different proportions (1:3, 1:1 and 3:1), keeping two minutes in each solution, and finally through butanol. The coverslip and slide were then mounted separately in canada balsam.
4. Quantitative oharacters
4.1. Growth parameter:

Observations were recorded on plant height, girth, number of leaves, total leaf area and length of petiole at monthly intervals from the first month of planting till flowering. All the four plants in each replication were used for observations. The following were the procedures followed in taking observations.
4.1.1. Plant height (cm)

The height of the plant was measured from the ground level to the axil of the youngest leaf.
4.1.2. Plant girth (cm)

The girth of the pseudostem was measured at 20 cm above the ground level.
4.1.3. Leaves per plant

The number of fully opened functional leaves was recorded at monthly intervals.
4.1.4. Total leaf area per plant (m^{2})

The leaf area was calculated by applying the formula, Length x Breadth $\times 0.8$ (Murray, 1961). Length of the lamina was measured from the base to the tip and the breadth was measured at the broadest point in the middle.
4.1.5. Petiole length

The length of the petiole was measured from the base to the emergence of the lamina.
4.2. Duration
4.2.1.Planting to flowering interval (days)

The number of days from planting to flowering was recorded. 4.2.2. Flowering to harvest interval (days)

The number of days taken from bunch emergence to harvest was computed noting the date of bunch emergence and the date of harvest. The time of harvest was determined when the angularity of the skin disappeared, that is at the stage of 'round full' (Simmonds, 1960a).
4.3. Bunch characters 4.3.1. Bunch weight (kg)

The bunch was weighed with 10 cm length of the peduncle above the first hand and 5 cm length of the male axis below the last hand.
4.3.2. Hand weight (g)

The weight of the second hand was taken as the average weight of a hand (Gottreich et al., 1964).

4.3.3. Number of hands

The number of hands in each bunch was recorded. 4.3.4. Number of fingers

The total number of fingers in each bunch was recorded.
4.4. Finger characters

The middle fruit in the top row of the second hand was chosen as a representative finger (Gottreich et. 르., 1964) for recording the physical characters of the finger.
4.4.1. Pedicel length (cm)

The pedicel was split longitudinally and the distance from the base of the pedicel upto the pulp region was measured.
4.4.2. Finger length (am)

The length of the finger was measured from the base of pedicel to apex along the dorsal curve using a fine non-elastic thread and scale.
4.4.3. Finger girth (cm)

The circumference of the finger was measured at the middle using a non-elastic thread and scale.
4.4.4. Finger weight (g)

The weight of the finger was recorded.
4.4.5. Finger volume (∞)

The volume of the finger was recorded using water displacement method.
4.4.6. Percentage of pulp weight

After removing the peel, the weight of pulp and peel were recorded eeparately and the percentage of pulp on weight basis was calculated.
4.4.7. Percentage of pulp volume

Volume of pulp and peel were recorded separately by water displacement method and the percentage of pulp on volume basis was calculated.
4.4.8. Puip/peel ratio

Puipspeel ratio on weight basis, was obtained by dividing the weight of pulp by the weight of peel. Pulp/peel ratio was recorded on volume basis also.
5. Quality analysis of fruits

The fruits collected from well ripe bunches were used for quality analysia. The middle fruit in the top row of the second hand was selected as the representative sample. Samples were taken from each fruit from three portions viz., top, middle and bottom and those samples were then pooled and macerated in warring blender.Triplicate
samples from these were used for analysis of different constituents as described below.
5.1 Total soluble solids (per cent)

Total soluble shlids were found out by an Erma pocket refractometer and were expressed as percentage. 5.2. Sugars (per cent)

Total, reducing and non reducing sugars in the sample were determined as per the method described by Association of Official Agricultural Chemists (1960). 5.3. Acidity (per cent)

The macerated sample (10g) was mixed with distilled water and made upto a known volume. 10 ml of the filtered solution was titrated against 0.1 N NaOH using phenolphthalein as indicator. The acidity was expressed as percentage of citric acid (Association of Official Agricultural Chemists, 1960).
5.4. Sugar/acid ratio

Sugar/acid ratio was arrived at by cividing the total sugars with titrable acidity and this was reckoned as a measure of fruit quality.
6. Pollen studies

Pollen fertility, size of pollen and pollen production per anther were stucied. From a plant five samples of 10 anthers each were collected from the nodes between the

20th and 30th of the male rachis,prior to dehiscence and kept in vials.

6.1. Pollen fertility

Pollen grains were dusted in a drop of versatile stain (Alexander, 1980) on a clean microscopic slide and kept for 30 minutes for proper staining and examined under the low power of a compound microscope. Pollen fertility was estimated by counting fertile and sterile pollen graing. Pollen grains which were well stained, normal and plumpy were considered as fertile and unstained and shrivelled as sterile. Three microscopic alides were prepared and five fields from each slide were observed in each cultivar. Fertility of pollen grains was expressed as percentage of the total number observed.
6.2. Size of pollen

Diameter of 100 well developed, normal pollen grains from each slide was measured using a standardised occular micrometer under low power of the microscope. Average pollen diameter was expressed in microns.
6.3. Pollen production

The Haemocytometer me thod was used for determining the pollen production per anther (Oberle and Goertzen, 1952; Pozzi, 1953; Gangolly et. à., 1961; Rao and Khader, 1962). The procedure standardised for banana by Sathiamoorthy
and Rao (1980) was followed. From a single plant, 5 samples of 10 anthers each were collected from the 10th node prior to dehiscence in vials containing 2.5 ml of distilled water and a drop of 'teepol' for getting a good suspension of pollen. The anthers were crushed gently with a blunt glass rod. The contents were thoroughly shaken and two drops of it were pipetted and placed on each of the counting chambers of a Spencer Brightine Haemocytometer. The number of grains in each of the eight corners was recorded. Inis was repeated 5 times for each sample and was designated as 'sub sample'. The average number of grains in a square multiplied by 2500 would give the quantity of pollen in one anther. This was calculated as follows.

The counting chamber was 0.1 mm in depth and could hold $0.1 \mathrm{~mm}^{3}$ solution. The contents of 10 anthers were suspended in 2.5 ml of solution. Therefore 0.25 ml solution will have the contents of one anther. For calculation, the following formula was adopted.

If ' N ' is the average number of pollen grains per corner square and ' X ' is the number of pollen grains per anther, then

$$
\begin{aligned}
& \mathrm{N}: \mathrm{X}=0.1: 250 \\
& \text { Therefore, } 0.1 \mathrm{X}=\mathrm{N} \times 250 \\
& \text { and } \mathrm{X}=2500 \mathrm{~N} .
\end{aligned}
$$

7. Statistical analyses
7.1. Analysis of variance and covariance

Before proceeding with detailed statistical analysis the data were analysed for analysis of variance for Randomised mook Design. Total variation was partitioned into variation between genotypes, and within genotypes. Variation between genotypes was further split to that between genomic groups and within genomic group.

Analyses of variance were carried out for all the characters. Significant differences among cultivars and among genomic groups were tested using the F Test.

Analyses of covariance were carried out for different pairs of characters to obtain the common dispersion matrix which was useful in further analysis.
7.2. Growth curves and assessment of growth rates

Exponential growth curves of the form $\hat{\mathbf{y}}=a b^{t}$, where \hat{y} is the predicted value, 'a' is the intercept, ' b ' the parameter to be estimated and t, the time interval, were fitted for plant height, girth, number of leaves, total leaf area per plant and length of petiole. The growth pattern was found to deviate from the exponential law. So a linear model of the form $\hat{Y}=A+B t$,
where ' A ' is the intercept and ' B ' the slope, was chosen and the growth rates of cultivars and genomic groups were calculated (Snedecor and Cochran, 1967). 7.3. Multivariate analysis
7.3.1. Identification of characters for analysis

The following methods were employed to identify Important characters to be used in analysis.
7.3.1.1. Selection of characters on the basis of the relative magnitude of F ratios

Characters with high F ratios were selected for the analysis (Appendices 1 to 5).
7.3.1.2. Selection of characters on the basis of their heritability

Heritability in the broad sense, genotypic and phenotypic coefficients of variation, genetic advance and genetic gain were calculated. The genotypic and phenotypic variance were estimated according to the formula given by Lush (1940). Phenotypic coefficient of variation ($p c \vee$) and genotypic coefficient of variation (ger) were estimated following Burton (1952). The heritability in broad sense, genetic advance and genetic gain were derived by the method of Johnson at al. (1955). Characters with high heritability were selected for the Multivariate analysis (Table 21).

7.3.1.3. Selection of characters on the basis of correlation studies

Inter correlations among the characters were computed (Appendix 7). When two characters showed high correlation one of them was selected.

Based on the above three methods the following 22 characters were selected for Multivariate analysis.

Plant height (cm)
Plant girth (cm)
Leaves per plant
Leaf area per plant (\mathbf{m}^{2})
Petiole length (cm)
Planting to flowering interval (days)
Flowering to harvest interval (days)
Bunch weight (kg)
Hand weight (g)
Number of hands
Number of fingers
Pedicel length (cm)
Finger length (cm)
Finger weight (g)
Finger volume (cc)
Pulp/Peel ratio on weight basis
Pulp/Peel ratio on volume basis
rss (\%)

Total sugars (\%)
Non reducing sugars (\%)
Acidity (\%)
Sugar/acid ratio
7.3.2. Wilkes' Lama criterion

Winks' Lambda criterion (Walks, 1932) was used to test the overall significance of the differences among the different cultivars with regard to the mean values of all the selected characters by the method suggested by Singh and Chaudhary (1977). The significance of the computed value of Lambda criterion was tested using the chi-square test. Since the value was significant further analysis to estimate the D^{2} values were done. 7.3.3. D^{2} analysis

The genetic distance (D^{2} of Mahalanobis) among the 62 cultivars was calculated from the uncorrelated mean values of the 22 characters (Mahalanobis, 1936; Rap, 1952; Singh and Caudhury, 1977). Considering 62 cultivars, two at a time, $1891\left(62_{\mathrm{C} 2}\right)$ squares of differences (D^{2} values) were obtained. The D^{2} value obtained for a pair of population was tested against the calculated value of ch1-square for 22 degrees of freedom. 7.3.3.1. Ranking of D^{2} values

The D^{2} values for each combination were ranked in the descending order of magnitude. The ranks were
added up for each component D^{2} in all combinations to obtain the rank totals. The percentage contribution of each character towards total divergence was calculated.

7.3.3.2. Cluster formation

The D^{2} values obtained were used to group the cultivars into different groups which were heterogeneous among themselves and homogeneous within themselves. The clusters were formed in such a way that the distance between two cultivars within a cluster was lesser than the distance between two cultivars in two clusters. The average intr and intercluster distances were calculated.
7.3.4. Canonical analysis

Canonical analysis of the data was carried out for confirming the group of constellations arrived at by the D^{2} analysis (Rap, 1952). The first two canonical roots were calculated and the corresponding vectors were obtained. The canonical variates Z_{1} and Z_{2} were calculated based on the mean values of the different characters. A scatter diagram was prepared using Z_{y} and Z_{2} variates.
Results

Results

The studies on the morphological characters, taxonomic scoring and chromosome members of 100 cultivars of banana revealed that several of them were synonymous and ultimately the cultivars could be confined to 64 distinct ones.

1. Morphological description of cultivars

The 64 distinct cultivars of banana were morphlogically described. The genomic grouping of the cultivars was based on taxonomic scoring and ploidy level (2 and Table 2).

1.1 susa (AA Group)'Namarai'

The plant is $128.00 \pm 2.1 \mathrm{~cm}$ tall at flowering with a circumference of $36.25 \pm 1.2 \mathrm{~cm}$ at the base. It takes 183 ± 3.0 days from planting to flowering and 85 ± 2.5 days fran flowering to harvest.

Pseudostele: yellowish green

 heavily marked with brown to black blotches.Leaves: small and slender, petiole $37.75 \pm 0.12 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading with scarious wings below, lamina $130.00 \pm 0.5 \mathrm{~cm}$ long, $49.10 \pm 1.5 \mathrm{~cm}$ broad, base of lamina unequal, base and apex cordate, number of leaves 23 ± 0.08.

Inflorescence: with basal female and distal male flowers, female axis horisontal, male axis ageotropic, male flowers deciduouss peduncle short and hairy.

Bract: deciduous, shoulder hog, reflex and roll back after opening, narrowly ovate, apex acute, colour yellowish purple outside and inside, inside bract colour fades to yellow towards the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $3.5 \pm$ 0.04 cm long and $2.5 \pm 0.02 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute, free tepal $2 \pm 0.01 \mathrm{~cm}$ long, $1.5 \pm 0.02 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes $5,1.5 \pm 0.08 \mathrm{~cm}$ long, creany white with no anther lobes; pistil $4.5 \pm 0.05 \mathrm{~cm}$ long, stigma rich yellow with 3 lobes; ovary $2 \pm 0.01 \mathrm{~cm}$ long, $1.5 \pm 0.01 \mathrm{~cm}$ in circumference, colour greenish yellow, ovules arranged in two regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $3.6 \pm 0.06 \mathrm{~cm}$ long, $1.6 \pm 0.02 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acute, free tepal $2.5 \pm 0.05 \mathrm{~cm}$ long, $1.5 \pm 0.03 \mathrm{~cm}$ broad, dull white, below tip corrugated; stamens 5, all fertile, filament $2 \pm 0.03 \mathrm{~cm}$ long, colour creamy white, anther lobes $2.5 \pm$ 0.04 cm long, colour grey, pistillode $3.5 \pm 0.12 \mathrm{~cm}$ long, stigma rich yellow, ovary greenish yellow.

Bunch: position of mature bunch 85° to the pseudostem, bunch weight $3 \pm 0.30 \mathrm{~kg}$, mumber of fingers

PLATE 2. Mnga (M Group) 'Namarai'
87 ± 2.2 number of hands 6 ± 0.87, fingers in a hand compact.

Finger: $8.8 \pm 0.95 \mathrm{~cm}$ long and $7.13 \pm 0.84 \mathrm{~cm}$ in circumference, with two prominent sides, slightly tapering to the tip, apex distinct, finger weight $30.25 \pm 1.2 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmly attached to the hand, rind medium thick, pulp yellowish cream, medium hard, medium sweet, TSS $15.50 \% \pm 1.5$,total sugars $6.52 \% \pm 0.5$, reducing sugars 5.99 ± 0.8, non reducing sugars $0.50 \% \pm 0.01$, sugar/acid ratio 44.92 ± 1.2, keeping quality good.

1.2 Muse (AA Group) 'Chingan'

The plant is $207.50 \pm 1.8 \mathrm{~cm}$ tall with a circumference of $42.75 \pm 1.5 \mathrm{~cm}$ at the base. It takes 205 ± 2.5 days from planting to flowering and 63 ± 1.8 days from flowering to harvest.
pseudostem: pale green, more or less heavily marked with brown or black blotches.

Leaves: petiole $38.5 \pm 1.7 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole pink, spreading, winged below, lamina $181.00 \pm 3.5 \mathrm{~cm}$ long, $55.00 \pm 2.2 \mathrm{~cm}$ broad, base of lamina unequal, base cordate and apex acute, number of leaves 27 ± 0.18.

Inflorescence: with basal female and distal male flowers, female axis horizontal, male axis ageotropic, male
flowers persistent; peduncle short and hairy.
Bract: persistent, shoulder high, narrowly ovate, apex acute, colour yellowish purple outside, yellow inside, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.2 \pm 0.03 \mathrm{~cm}$ long and $1.3 \pm 0.01 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute; free tepal $2.5 \pm 0.02 \mathrm{~cm}$ long, $2.2 \pm 0.08 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes $5,2.5 \pm 0.07 \mathrm{~cm}$ long, creamy white, with no anther lobes; pistil $9.6 \pm 0.12 \mathrm{~cm}$ long, stigma rich yellow, with 3 lobes; ovary $5.5 \pm 0.08 \mathrm{~cm}$ long, $45 \pm 0.03 \mathrm{~cm}$ in circumference, colour creamy white, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.8 \pm 0.8 \mathrm{~cm}$ long, $1.3 \pm 0.3 \mathrm{am}$ broad, cramy white, lobes $3+2$, pale yellow, acute, free tepal $2.7 \pm 0.06 \mathrm{~cm}$ long, $1.7 \pm 0.08 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, all fertile, filament $1.7 \pm 0.1 \mathrm{~cm}$ long, colour creamy white, anther lobes $2.2 \pm 0.2 \mathrm{~cm}$ long, clour yellowish brown, i^{\prime} pistillode $4.1 \pm 0.5 \mathrm{~cm}$ long, stigma rich yellow, ovary greenish jellow.

Bunch: position of mature bunch 90° to the stem, bunch weight $4.25 \pm 0.5 \mathrm{~kg}$, number of fingers 61 ± 1.5; number of hands 5 ± 0.35, fingers in a hand loose.

Finger: $13.1 \pm 0.3 \mathrm{~cm}$ long and $9.63 \pm 0.5 \mathrm{~cm}$ in circumference, cylindrical with 5 indistinct sides, slightly tapering

PLATE 3. Mesa (M Group) 'Chingan'
to the tip, apex prominent, finger weight $57.5 \pm 1.08 \mathrm{~g}$. Ripe fruit: colour yellowish green, firmly attached to the hand, rind thin, pulp yellowish cream, medium hard, juicy, medium sweet, TSS $24.25 \pm 0.8 \%$, total sugars $19.27 \pm 1.25 \%$, reducing sugars $14.87 \pm 0.60 \%$, non reducing sugars $4.19 \pm$ 0.05%, sugar/acid ratio, 40.15 ± 1.5, keeping quality good.

1.3 Musa (AA Group) 'Tongat'

The plant is $179.5 \pm 2.1 \mathrm{~cm}$ tall with a circumference of $44.00 \pm 1.2 \mathrm{~cm}$ at the base. It takes 206 ± 3 days from planting to flowering and 104 ± 2.1 days from flowering to harvest.

Pseudostem: greenish yellow with dark brown blotches.

Leaves: petiole $28.28 \pm=1.5 \mathrm{~cm}$ long, not clasping pseudostern, margins of petiole pink, spreading, winged below, lamina $124.00 \pm 3.2 \mathrm{~cm}$ long, $72.00 \pm 2.1 \mathrm{~cm}$ broad, base of lamina unequal, base tuncate, apex cordate, number of leaves 26 ± 3.2.

Inflorescence: with basal female and distal male flowers, male axis very long, ageotropic, male flowers persistent, peduncle short and hairy.

Bract: persistent, shoulder high, reflex and roll back after opening, narrowly ovate, apex acute, colour yellowish purple outside and inside, inside bract colour fades to yellow
towards the base, bract scars prominent.
Female flowers arranged in two rows, united tepal $3.4 \pm$ 0.4 cm long and $1.8 \pm 0.02 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, yellow, free tepal $3+\ldots 0.03 \mathrm{~cm}$ long, $1.6 \pm 0.04 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes $5,1.6 \pm 0.01 \mathrm{~cm}$ long, creamy white with no anther lobes; pistil $9.4 \pm 1.2 \mathrm{~cm}$ long, stigma rich yellow, with 3 lobes; ovary $5.2 \pm 0.10 \mathrm{~cm}$ long, $3.5 \pm 0.08 \mathrm{~cm}$ in circumference, greenish yellow, ovules arranged in two regular rows.

Male flowers: arranged in two rows, united tepal $3.5 \pm 0.05 \mathrm{~cm}$ long, $1.7 \pm 0.07 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, pale yellow, free tepal $3 \pm 0.02 \mathrm{~cm}$ long, $1.6 \pm 0.04 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, all fertile, filament $2.3 \pm 0.02 \mathrm{~cm}$ long, light yellow, anther lobes $2.8 \pm=0.03 \mathrm{~cm}$ long, yellowish pink, pistillode $4.8 \pm 0.04 \mathrm{~cm}$ long, stigma rich yellow, ovary greenish yellow.

Bunch: position of mature bunch $35-45^{\circ}$ to the stem , bunch weight $10.25 \pm 1.5 \mathrm{~kg}$ with $231.5+5.1$ fingers, number of hands 12.5 ± 1.5, compact.

Finger: 8.8 ± 0.8 ca long and $8.8 \pm 006 \mathrm{cmin}$ circumference, slightly angular with 5 unequal sides, slightly tapering to the tip, apex straight and stout, finger weight $41.25 \pm$ 2.5 g .

PLAT: 4. Masa (MA Group) 'Tongat'

Ripe fruit: colour greenish yellow, firmly attached to the hand, rind thin, pulp yellowish gream, thick, taste medium sweet, TSS $23.01 \pm 0.8 \%$ tdtal sugars $10.85 \pm 0.18 \%$, reducing sugars $9.55 \pm 0.75 \%$, non reducing sugars $1.24 \pm$ 0.04%, sugar/acid ratio $42.56 \pm 3.2 \%$, keeping quailty good.

1.4 (AA Group) 'Matt1'

The plant 1s $230 \pm 2.5 \mathrm{~cm}$ tall at flowering with a circumference of $50.34 \pm 1.2 \mathrm{~cm}$ at the base. It takes 210 ± 3.5 days from planting to flowering and 95 ± 2.5 days from flowering to harvest.

Psoudostem: yellowish green with dark purple blotches.

Leaves ${ }^{2}$ petiole $45 \pm 0.13 \mathrm{~cm}$ long, greenish yellow, not clasping pseudostem, margins petiole erect, with scarious wings below, lamina $175 \pm 1.8 \mathrm{~cm}$ long, $80 \pm 2.1 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate, number of leaves 23 ± 1.5.

Inflorescence: female axis horizintal, male axis ageotropic, a few rows of male flowers persistent, peduncle short and hairy.

Bracti deciduous, shoulder high, reflex and roll back after opening, narrowly ovate, apex acute, colour dull purple outside, pink inside, inside bract colour alnost continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $3.5 \pm$ 0.04 cm long and $2 \pm 0.01 \mathrm{~cm}$ broad, citour creamy white, lobes $3+2$, acute, free tepal $2.8 \mathrm{~cm}_{ \pm} 0.02$ long, $2.5 \pm$ 0.02 cm broad, colour dull white, below tip corrugated; stamens not fertile, staminodes 5, $1.2 \pm 0.01 \mathrm{~cm}$ long, cream coloured with no anther lobes; pistill $8.5 \pm 0.5 \mathrm{~cm}$ long, stigma rich yellow with 3 lobes; ovary $5 \pm 1.2 \mathrm{~cm}$ long, $3 \pm 0.03 \mathrm{~cm}$ in circumference, colour greenish yellow, ovules arranged in two regular rows in each loculus.

Kale flowers: arranged in two rows, united tepal $3.6 \pm$ 0.06 cm long, $2 \pm 0.1 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute, free tepal $2.7 \pm 0.12 \mathrm{~cm}$ long, $2.2 \pm 0.2 \mathrm{~cm}$ broad, dull white, below tip corrugated; stamens 5, all fertile, filament $1.5 \pm 0.5 \mathrm{~cm}$ long, dull white, anther lobes 1.6 ± 0.05 am long, colour yellowish brown; pistillode $3.7 \pm$ 0.3 cm long, stigma rich yellow, ovary greenisk yellow.

Bunch: position of mature bunch 90° to the pseudostem, bunch weight $8 \pm 0.4 \mathrm{~kg}$, number of fingers $125 \pm$ 5.1 , number of hands $8, \pm 0.8$, fingers in a hand compact.

Finger: $6 \pm 0.6 \mathrm{~cm}$ long and $5.2 \pm 0.2 \mathrm{~cm}$ in circumference, slightly angular with 5 indistinct sides, tapering to the tip, apex distinct, finger weight $60.75 \pm 1.3 \mathrm{~g}$.
Ripe fruit: colour goden yellow, fingers firmly attached to the hand, rind thin, pulp yellowish cream, soft,juicy, taste sweet and good flavoured, TSS $21 \pm 1: 2 \%$, total sugars $9.51 \pm$ 0.5%, reducing sugars $11.28 \pm 1.2 \%$, non reducing sugars

$3.2 \pm 0.2 \%$, sugar/acid ratio 42.15 ± 2.5, keeping quality good.
1.5 Musa (AA Group) 'Eraichivazhai'

The plant is $199.00 \pm 2.8 \mathrm{~cm}$ tall at flowering with a circumference of $60.50 \pm 1.5 \mathrm{~cm}$ at the base. It takes 203 ± 3.5 days from planting to flowering and 93 ± 1.5 days from flowering to harvest.

Pseudostem: light green with purple blotches near the petiole.

Leaves: petiole $28.25 \pm 1.2 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole pink, spreading, wing ed below, lamina $146 . \pm 2.5 \mathrm{~cm}$ long $58 \pm 1.8 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate, number of leaves 27 ± 2.5.

Inflorescence: with basal female and distal male flowers, female axis horizontal, male axis geotropic, male flowers deciduous, peduncle medium long, hairy.

Bract: deciduous, shoulder low, reflex and roll back after opening, narrowly ovate, apex acute, colour browish purple outside, pink inside, colour fades towards the base, bract scars prominent.

Female flowerg: arianged in two rows, united tepal $3.3 \pm 0.03 \mathrm{~cm}$ long, $1.8 \pm 0.02 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute, free tepal $3 \pm 0.12 \mathrm{~cm}$ long, $2.5 \pm 0.02 \mathrm{~cm}$ broad,
dull white, below tip corrugated; stamens not fertile, staminodes $5,2.6 \pm 0.5 \mathrm{~cm}$ long, colour cream with no anther lobes; pistil $14.3 \pm 0.10 \mathrm{~cm}$ long, stigma rich yellow with 3 lobes, ovary $10.8 \pm 0.06 \mathrm{~cm}$ long, $6.2 \pm 0.05 \mathrm{~cm}$ in circumference, straight, colour greenish yellow, ovules arrangee in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.2 \pm 0.20 \mathrm{~cm}$ long, $1.4 \pm 0.08 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute, free tepal $2.6 \pm 0.07 \mathrm{~cm}$ long, $1.5 \pm 0.12 \mathrm{~cm}$ broad, dull white, below tip corrugated, stamens 5, all fertile, filament $2.1 \pm 0.01 \mathrm{~cm}$ long, colour creamy white, anther lobes $1.8 \pm 0.02 \mathrm{~cm}$ long, colour cream, pistillode $3.9 \pm$ 0.12 cm long, stigma rich yellok, ovary greenish yellow.

Bunch: position of mature bunch $45^{\circ}-50^{\circ}$ to the pseudostem, bunch weight $6.25 \pm 0.80 \mathrm{~kg}$, number of fingers 53.5 ± 1.5, number of hands 6 ± 0.8, hands and fingers loose.

Finger: $13.75 \pm 0.8 \mathrm{~cm}$ long and $10.38 \pm 1.2 \mathrm{~cm}$ in circumference, not angular, very slightly tapering to the tip, apex indistinct, round, finger weight $74.60 \pm 1.3 \mathrm{~g}$.

Ripe fruit: Colour greenish yellow, separate easily from the hand, rind pedium thick, pulp creamy white, soft, juicy, taste sweet with a good flavour, $\operatorname{TSS} 19.00 \pm 1.2 \%$, total sugars $6.87 \pm 0.08 \%$, reducing sugars 5.69 ± 0.05, non reducing sugars $1.07 \pm 0.03 \%$, sugar acid ratio 18.51 ± 1.5, keeping quality medium.

PLATE 6. Masa (AA Group) 'Eraichivaghai'

1.6 Husi (aA Group) 'Sanna chenkadali'

The plant 1s $202.50 \pm 3.2 \mathrm{~cm}$ tall with a circumference of $47.50 \pm 1.5 \mathrm{~cm}$ at the base. It takes $201 \pm$ 4.2 days from planting to flowering and 91 ± 3.2 days from flowering to harvest.

Pseudostem: light purple, heavily mariced with brown to black blotches.

Leaves: $46.75 \pm 0.75 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, winged below, lamina $178.00 \pm 2.8 \mathrm{~cm}$ long, $56.00 \pm 1.6 \mathrm{~cm}$ broad, base of lamina, unequal, base and apex cordate; number of leaves 22 ± 1.2.

Inflorescence: with basal female and distal male flowers, female axis horizontal till maturity, male axis ageotropic a few rows of male flowers persistent, peduncle short and hairy.

Bract: deciduous, shoulder liw, slightly reflex and roll back after opening, ovate, apex acute, bract scars prominent, bract oolour browish purple outside, dull purple inside, colour continuous to the base.

Femaleflowers: arranged in two rows, united tepal $4.3 \pm$ 0.02 cm long and $1.4 \pm 0.04 \mathrm{~cm}$ broad, colour creamy wite, lobes $3+2$, acute, free tepal $2.6 \pm 0.02 \mathrm{~cm}$ long, $2.2 \pm 0.3 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile,
staminodes $5,2.5 \pm 0.10 \mathrm{~cm}$ long, creamy white with no anther lobes; pistil $9.8 \pm 0.13 \mathrm{~cm}$ long, stigma rich yellow with 3 lobes, ovary $5.6 \pm 0.01 \mathrm{~cm}$ long, $4.3 \pm 0.03 \mathrm{~cm}$ in circumference, colour pale yellow, ovvies arranged in two regular rows in each loculus.

Male flowerg: arranged in two ros, united tepal $4.3 \pm 0.02 \mathrm{~cm}$ long, $1.5 \pm 0.01 \mathrm{~cm}$ broad, lobes $3+2$, acute, free tepal $2.7 \pm 0.05 \mathrm{~cm}$ long, 1.5 年 0.01 cm broad, below tip corrugated; stamens 5, all fertile, filament $3.2 \pm 0.02 \mathrm{~cm}$ long, dull white, anther lobes $3.3 \pm 0.1 \mathrm{~cm}$ long, colour grey, pistillode $5 \pm 0.1 \mathrm{~cm}$ long, stigma colour rluch yellow, ovary pale yellow.

Bunch: position of mature bunch 45° to the pseudostem, bunch weight $7.25 \pm 0.80 \mathrm{~kg}$, number of fingers 110 ± 3.5, number of hands 10.88 ± 1.8, fingers in a hand loose.

Finger: $13.08 \pm 0.40 \mathrm{~cm}$ lang and $9.25 \pm 0.58 \mathrm{~cm}$ in circumference, with 5 indistinct sides, tapering to the tip, apex distinct, finger weight $72.75 \pm 2.5 \mathrm{~g}$.

Rlpe fruit: colour reddish purple, firmly attached to the hand, rind thin, pulp creamy white, medium hard, juicy, taste sweet with a good flavour, TSS $24.03 \pm 1.3 \%$, total sugars $10.51 \pm 0.02 \%$, reducing sugars $9.90 \pm 0.80 \%$, non reducing sugars $0.58 \pm 0.02 \%$, sugar/acid ratio 47.77 ± 4.2, keeping quality good.

PLATE 7. Musa (AA Group) 'Sanna chenkadali'

1.7 Musa (AAA Group) 'Gros Michel'

The plant is 282.00 ± 1.2 cin tall with a circumference of $57.00 \pm 1.10 \mathrm{~cm}$ at the base. It takes 198 ± 2.1 days from planting to flowering and 107 ± 1.8 days from flowering to harvest.

Pseudostem: yellowish green with dark brown blotches.

Leaves: petiole $42 \pm 0.43 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, winged below, margins red, lamina $221.00 \pm 1.2 \mathrm{~cm}$ long, $69.00 \pm 2.1 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate, number of leaves 29 ± 0.80.

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis ageotropic, basal 3-4 rows of male flowers persistent; peduncle short and pubescent.

Bract: deciduous, shoulder hish, reflex and roll back after opening, narrowly ovate, apex acute, colour dull purple outside, pink inside, inside bract colour fades towards the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.6 \pm$ 0.4 cm long, $2.8 \pm 0.2 \mathrm{~cm}$ broad, colour creamy white, light brownish outside, lobes $3+2$, acute, free tepal 2.8 ± 0.12 am long, $2.3 \pm 0.13 \mathrm{~cm}$ broad, colour dull white, below tip corrugated; stamens not fertile, steminodes $5,3 \pm 0.05 \mathrm{~cm}$
long, creamy white with no anther lobes; pistil $15.2 \pm$ 0.07 cm long, stigma rich yellow, ovary $11.3 \pm 0.04 \mathrm{~cm}$ long, $7.4 \pm 0.12 \mathrm{~cm}$ in circumference, colour light green, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.5 \pm 0.01 \mathrm{~cm}$ long, $2.7 \pm 0.02 \mathrm{~cm}$ broad, colour creany white, lobes $3+2$, acuminate; free tepal $2.7 \pm 0.07 \mathrm{~cm}$ long, $2.1 \pm 0.02 \mathrm{~cm}$ broad, dull white, below tip corrugated; stamens 5, all fertile, filament $2 \pm 0.03 \mathrm{~cm}$ lang, colour creamy white, anther lobes $2.3 \pm 0.03 \mathrm{~cm}$ long, brownish black, pistillode $4.5 \pm 0.04 \mathrm{~cm}$ long, stigma rich yellow, oviry $3.3 \pm 0.05 \mathrm{~cm}$ long, colour yellowish green.

Bunch: Position of mature bunch 25° to 30° to the stem, bunch weight $9.75 \pm 0.80 \mathrm{~kg}$, number of fingers 97 ± 1.2, number of hands 7.45 ± 0.01, hands and fingers compact.

Finger: $14.38 \pm 0.2 \mathrm{~cm}$ long, $11.38 \pm 0.12 \mathrm{~cm}$ in circumference, slightly angular with five unequal sides, slightly tapering to the tip, apex stout. and round, finger weight $121.75 \pm 1.2 \mathrm{~g}$.

Ripe fruits: Colour yellow, separate easily from the hand, rind medium thick, pulp colour cream, sof t and melting, taste sweet with good flavour, TSS $21.00 \pm 0.5 \%$, Tetal sugars $12.90 \pm 1.2 \%$, reducing sugars $11.95 \pm 0.04 \%$, non reducing sugar $0.90 \pm 0.01 \%$, sugar/acid ratio 83.24 ± 1.2, keeping quality poor.

PLATE 8. Musa (AAA Group) 'Gros Michel'

1.8 Muse (MA Group) 'Hyghgate'

The plant is $197.50 \pm 1.2 \mathrm{~cm}$ tall and with a cirbumference of $60.50 \pm 1.5 \mathrm{~cm}$ at the base. It takes $198 \pm$ 2.8 days from planting to flowering and 109 ± 2.1 days from flowering to harvest.

Pseudostem: yellowish green with dark brown blotches.

Leaves: petiole $32.5 \pm 0.5 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, with scarious wings below, margins red, lamina $185 \pm 2.5 \mathrm{~cm}$ long, $84 \pm$ 1.3 cm broad, base of lamina unequal, base obtuse, apex acute, number of leaves 28.00 ± 1.2.

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis ageotropic, basal 3-4 rows of male flowers persistent; peduncle short and pubescent.

Bract: deciduous, shoulder high, reflex and roll back after opening, narrowly ovate, apex acute, colour dull purple outside, pink inside, inside bract colour fades towards the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.2 \pm$ 0.04 cm long, $2.4 \pm 0.02 \mathrm{~cm}$ broad, colour creamy white, light browish outside, lobes $3+2$, acute; free tepal 2.5 0.02 cm long, $2.4 \pm 0.03 \mathrm{~cm}$ broad, colour dull white, below tip corrugated; stamens not fertile, staminodes 5 ,
$2.4 \pm 0.02 \mathrm{~cm}$ long, areamy white with an anther lobes; pistil $12 \pm 0.80 \mathrm{~cm}$ long, stigma rich yellow, with 3 lobes, ovary $8.2 \pm 0.20 \mathrm{~cm}$ long, $11 \pm 0.01 \mathrm{~cm}$ in circumference, colour pale green, ovales arranged in two regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $4.6 \pm 0.03 \mathrm{~cm}$ long, $2.8 \pm 0.02 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acute, free tepal $2.8 \pm 0.12 \mathrm{am}$ long, $2.3 \pm 0.05 \mathrm{~cm}$ broad, dull white, below tip corrugated; atamens 5, all fertile, filament $2 \pm 0.01 \mathrm{~cm}$ long, colour creamy white, anther lobes $2.3 \pm$ 0.07 cm long, colour brownish black; pistillode $4.5 \pm 0.5 \mathrm{~cm}$ long, stigma rich yellow, ovary yellowish green.

Bunch: position of mature bunch 25° to 30° to the pseudostem, bunch weight 13.25 ± 0.03, number of fingers 112.5 ± 2.2, number of hands 10 ± 0.20, hands and fingers compact.

Finger: $19.75 \pm 0.10 \mathrm{~cm}$ long and $10.5 \pm 0.05 \mathrm{~cm}$ in circurference, angular with 5 sides, slightly tapering to the tip, apex short, stout and round, finger weight $112.5 \pm 3.2 \mathrm{~g}$.

Ripe fruit: colour yellow, separate easily from the hand, rind medium thick, pulp colour cream, soft and melting, taste sweet with gool flavour, TSS $18.00 \pm 0.20 \%$, to tal sugars $10.40 \pm 0.30 \%$, reducing sugars $9.37 \pm 0.02 \%$, non reducing sugars $0.99 \pm 0.01 \%$, sugar/acid ratio $60.34 \pm$ 1.2, keeping quality poor.

PLALE 9:. Mung (MA Group) 'Highgato'

1.9 (AMA Group) 'Pedda pachcha'

The plant is $158.00 \pm 3.2 \mathrm{~cm}$ tall with a circumference of $42.50 \pm 1.2 \mathrm{~cm}$ at the base. It takes 174 ± 3.0 days from planting to flowering and 105 ± 2.5 days from flowering to harvest.

Pseudostem: yellowish green with dark purple to black blotches.

Leavea: petiole $27.5 \pm 0.75 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, winged below, margins pink coloured, lamina $14.00 \pm 4.2 \mathrm{~cm}$ long $65.00 \pm$ 3.1 cm broad, base of lamina unequal, base truncate, apex cordate, number of leaves 21 ± 0.50.

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis slightly ageotropic, bracts and male flowers persistenta prduncle shont and. pulesecent.

Bract: persistent, shoulder high, slishtly reflex and roll back after opening, ovate, apex acute, bract colour dull purple outside, pale pink inside, inside bract colour fades to yellow towards the base, bract scars prominent.

Femple flowerg: arranged in two rows, united tepal $4.2 \pm$ 0.05 cm long and $1.8 \pm 0.02 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute, free tepal $3 \pm 0.06 \mathrm{~cm}$ long, $2.8 \pm 0.01 \mathrm{~cm}$ broad, dull white, below tip corrugated; stamens not fertile, staminodes 5, $2.5 \pm 0.06 \mathrm{~cm}$ long, colour creany
white, with no anther lobes; pistill 13.6 ± 0.7 cm long, stigma rich yellow with 3 lobes; ovary $10 \pm 0.9 \mathrm{~cm}$ long, $7.2 \pm 0.6 \mathrm{~cm}$ in circumference, colour greenish yellow, ovules arranged in two regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $5 \pm 0.05 \mathrm{~cm}$ long, $1.8 \pm 0.02 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute, free tepal $3 \pm 0.02 \mathrm{~cm}$ long $2.2 \pm 0.04 \mathrm{~cm}$ broad, dull white, below tip corrugated; stamens 5, all fertile, filament $2.3 \pm 0.05 \mathrm{am}$ long creany white, anther lobes $2.8 \pm$ 0.12 cm long, brownish black; pistillode $4.3 \pm 0.04 \mathrm{~cm}$ long, stigma rich yellow, ovary colour greenish yellow.

Bunch: position of mature bunch $25^{\circ} \cdot 30^{\circ}$ to the stem, bunch weight $8 \pm 0.25 \mathrm{~kg}$, number of fingers 76 ± 4.0, number of hands 6 ± 0.5, hands and fingers compact.

Finger: $14.13 \pm 0.40 \mathrm{~cm}$ long and $10.88 \pm 0.80 \mathrm{~cm}$ in circumference, angular with 5 distinct sides, apex round, finger weight $94.38 \pm 1.62 \mathrm{~g}$.

Ripe fruit : colour greenish yellow changing to yellow, do not easilly separate from the hand, rind medium thick, pulp colour cream, soft, taste sweet, TSS $22.00 \pm 0.40 \%$, total sugars 12.08 ± 0.42 reducing sugars 8.13 ± 0.44, non reducing sugars $3.76 \pm 0.26 \%$, sugar/acid ratio 89.41 ± 3.1, keeping quality poor.

1.10 Musa (aAN Group) 'Basral'

The plant is $132.00 \pm 2.2 \mathrm{~cm}$ tall at the flowering with a circumference of $47.00 \pm 1.2 \mathrm{~cm}$ at the base. It takes 188 ± 3.2 days from planting to flowering and $106 \pm$ 3.6 days from flowering to harvest.

Pseudostem: yellowish green with dark brown to black blotches.

Leaves: petiole $27.25 \pm 0.13 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, with scarious wings below, margins pink, lamina $126.00 \pm 1.5 \mathrm{~cm}$ long, $52.00 \pm 1.2 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 32 ± 0.68.

Iriflorescence: with basal female and distal male flowers, female axis pendulous, male axis geotropic, male flowers persistent, peduncie short and pubescent.

Bract: persistent, shoulder hegh, reflex and roll back after opening, ovate, apex acute, colour dull purple outside, pink inside, inside colour fades towards the base, bract scara prominent.

Female flowers arranged in two rows, united tepal $3.2 \pm 0.05 \mathrm{~cm}$ long and $1.9 \pm 0.04 \mathrm{~cm}$ broad, colour creamy white, lobles $3+2$, acuminate, free tepal $21 \pm 0.02 \mathrm{~cm}$ long, $2 \pm 0.01 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes $5,1.5 \pm 0.02 \mathrm{~cm}$ long, creamy white with a black tinge at the bottom, with no anther lobes pistil
$11 \pm 0.81 \mathrm{~cm}$ long, stigma colour rich yellow, with 3 lobes; ovary $9.5 \pm 0.75 \mathrm{~cm}$ long, $6.9 \pm 0.60 \mathrm{~cm}$ in circumference, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $3.6 \pm$ 0.02 cm long, $1.8 \pm 0.01 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acuminate, free tepal $1.9 \pm 0.12 \mathrm{~cm}$ long, $1.8 \pm$ 0.05 cm broad, creamy white, below tip corrugated; stamens 5, all fertile, filament $1.6 \pm 0.10 \mathrm{~cm}$ long , anther lobes $2.1 \pm 0.80 \mathrm{~cm}$ long; pistillode $9.5 \pm 0.15 \mathrm{~cm}$ long, stigma rich yellow, ovary greenish yellow.

Bunch: position of mature bunch $25^{\circ}-30^{\circ}$ to the pseudostem, bunch weight $5.5 \pm 0.15 \mathrm{~kg}$, number of fingers 83 ± 1.8, number of hands 6 ± 0.3, fingers and hands compact.

Finger: $13.25 \pm 0.75 \mathrm{~cm}$ long and $9.18 \pm 0.16 \mathrm{~cm}$ in circumference, slightly angular with 5 sides, tapering to the tip, apex distinct, round, finger weight $68.38 \pm 4.8 \mathrm{~g}$.

Ripe fruits: colour greenish yellow, do not easily separate from the hands, rind medium thick, pulp colour cream, juicy, taste sweet, TSS $8.50 \pm 0.30 \%$, total sugars $7.91 \pm$ 0.41%, reducing sugars $6.38 \pm 0.25 \%$ non reducing sugars $1.46 \pm 0.05 \%$, sugar acid ratio 56.47 ± 4.2, keeping quality poor.

PLATE 10. Musa (MA Group) 'Basrai'
1.11 Musa (an froup) 'Harichal'

The plant is $212.50 \pm 2.1 \mathrm{~cm}$ tall with a circumference of $44.5 \pm 1.3 \mathrm{~cm}$ at the base. It takes 185 ± 3.4 days from planting to flowering and 107 ± 2.1 days from flowering to harvest.

Pseudostem: yellowish green with purple to black blotches.

Leaves: petiole $30 \pm 0.85 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole spreading with scarious wings below, margins pink, lamina $190 \pm 3.8 \mathrm{~cm}$ long $40.00+2.9 \mathrm{~cm}$ broad, base of lamina unequal, base obtuse, apex acute, number of leaves 22\%

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis ageotropic, male flowers deciduous, peduncle ahort and pubescent.

Bract: deciduous, shoulder high, reflex and roll hack after opening, narroviy ovate, apex acute, colour dull purple outside, pink inside, inside bract colour fades towards the base, bract scars prominent.

Female flowerg: arranged in two rows, united tepal $4.3 \pm$ 0.08 cm long and $2 \pm 0.03 \mathrm{~cm}$ broad, colour creamy white, light brownish outside, lobes $3+2$, acuminate, free tepal $3.2 \pm 0.01 \mathrm{~cm}$ long, $2.7 \pm 0.02 \mathrm{~cm}$ broad, dull white, below
tip corrugated; stamens not fertile, staminodes 5, $2.2 \pm$ 0.07 cm long, creamy wite with no anther lobes; pistil $13.8 \pm 0.13 \mathrm{~cm}$ long, stigma rich yellow, with 3 lobes; ovary $10.2 \pm 0.21 \mathrm{~cm}$ long, $7.1 \pm 0.12 \mathrm{~cm}$ in circumference, yellowish green, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.8 \pm 0.12 \mathrm{~cm}$ long, $1.7 \pm 0.03 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acuminate, free tepal $3.2 \pm 0.13 \mathrm{~cm}$ long, $2.3 \pm 0.03 \mathrm{~cm}$ broad, dull white, below tip corrugated; stamens 5, fertile, filament $2.3 \pm 0.21 \mathrm{~cm}$ long, colour creamy white, anther lobes $2.7 \pm 0.32 \mathrm{~cm}$ long, brownish black; pistillode $4.5 \pm$ 0.72 cm long, stigma rich yellow in colour, ovary 2.6 cm in length , greenish mpllow.

Bunch: position of mature bunch $25^{\circ}-30^{\circ}$ to the stem, bunch weight $9.25 \pm 0.25 \mathrm{~kg}$, number of fingers $83 \pm$ 4.8 , number of hands 8 ± 0.57, hands and fingers compact.

Finger: $14.75 \mathrm{~cm} \pm 0.85 \mathrm{~cm}$ long and $12.25 \pm 0.72 \mathrm{~cm}$ in circumference, angular with 5 distinct sides, slightly tapering to the tip, apex short, round finger weight $188.02 \pm 3.6 \mathrm{~g}$.

Ripe fruitg: yellowish green, loosely attached to the hand, rind medium thick, pulp colour cream, soft, taste sweet, TSS $18.50 \pm 1.5 \%$, total sugars $13.05 \pm 0.12 \%$, reducing sugars $12.00 \pm 0.26 \%$, non reducing sugars $1.00 \pm 0.18 \%$, sugar/acid ratio 79.19 ± 3.5, keeping quality poor.

PLATE 11. Musa (AAA Group) 'Harichal'
1.12 Musa (AMA Group) 'Sapumal anamalu'

The plant is $262.50 \pm 2.6 \mathrm{~cm}$ tall with a circumference of $58.00 \pm 2.6 \mathrm{~cm}$ at the base. It takes $197 \pm$ 3.8 days from planting to flowering and 106 ± 3.7 days from flowering to harvest.

Pseudostem: yellowish green with dark brown to black blotches.

Leaves: petiole $33.25 \pm 0.82 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, winged below, margins pink, lamina $23 \pm 5.2 \mathrm{~cm}$ long $57.00 \pm 2.5 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate, number of leaves 3.2 ± 0.75.

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis ageotropic, peduncle short and pubescent.

Bract deciduous, shoulder huh, reflex and roll back after opening, narrowly ovate, apex acute, bract colour yellowish purple outside, pale pink inside, inside bract colour fades to yellow towards the base, bract scars prominent.

Female flowerg: arranged in two rows, united tepal $4.8 \pm$ 0.12 cm long and $3 \pm 0.06 \mathrm{~cm}$ broad, lobes $3+2$, acuminate, free tepal $3.2 \pm 0.12 \mathrm{~cm}$ long, $2.5 \pm 0.03 \mathrm{~cm}$ broad, below tip corrugeted; stamens not fertile, staminodes 5, $3 \pm$ 0.10 cm long, creamy white, with no anther lobes; pistil
$15.6 \pm 0.30 \mathrm{~cm}$ long, stigma rich yellow with 3 lobes; ovary $11.2 \pm 0.23 \mathrm{~cm}$ long, $7.4 \pm 0.21 \mathrm{~cm}$ in circumference, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.6 \pm 0.21 \mathrm{~cm}$ long, $2.9 \pm 0.01 \mathrm{~cm}$ broad, lobes $3+2$, acuminate, free tepal $3.2 \pm 0.03 \mathrm{~cm}$ long, $2.9 \pm 0.10 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, all fertile, filament $2.5 \pm 0.08 \mathrm{~cm}$ long, anther lobes $2.8 \pm 0.02 \mathrm{~cm}$ long, brownish black, pistillode $4.6 \pm$ 0.12 cm long; stigma rich yellow, ovary colour yellowish green.

Bunch: position of mature bunch 25° to 30° to the stem, bunch weight $6.25 \pm 0.75 \mathrm{~kg}$, number of fingers $78.5 \pm$ 3.2, number of hands 7 ± 0.25, hands loose, fingers compact. Finger: $17.98 \pm 0.22 \mathrm{~cm}$ long and $9.98 \pm 0.82 \mathrm{~cm}$ in circumference, angular with 5 sides, slightly tapering to the tip, apex short, stout and round, finger weight $133 \pm 4.2 \mathrm{~g}$.

Rlpe fruit: colour yellow, separate easily from the hand, rind medium thick, pulp colour cream, shft, juicy, taste sweet with a good flavour, TSS $19.00 \pm 0.60 \%$, total sugars $10.25 \pm 1.2 \%$, reducing sugars $7.62 \pm 0.81 \%$, non reducing sugars $2.50 \pm 0.06 \%$, sugar acid ratio 53.95 ± 1.8, keeping ${ }_{\text {r }}$ uality poor.

1.13 Muse (MA Group) 'Manoranj1thm'

The plant is $250.75 \pm 3.2 \mathrm{~cm}$ tall with a circumference of $54.00 \pm 1.5 \mathrm{~cm}$ at the base. It takes 234 ± 4 days from planting to flowering and 96 ± 3.5 days from flowering to harvest.

Pseudostem: yellowish green heavily marked with brown to black blotches.

Leaves: petiole $34.5 \pm 0.51 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, lamina $183.00 \pm$ 3.2 cm long, $71.00 \pm 2.1 \mathrm{~cm}$ broad, base of lamina unequal, base obtuse, apex truncate, number of leaves 33 ± 0.85.

Inflorescence with basal female and distal male flowers, female axis ageotropic, male axis positively geotropic, peduncle short and pubescent.

Bract: deciduous, shoulder high, reflex and roll back after opening, ovate, apex acute, bract colour dull purple outside, pink inside, inside colour continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.1 \pm$ 0.08 cm long and $2.1 \pm 0.05 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, ecu minate, free nepal $2.2 . \pm 0.03 \mathrm{~cm}$ long, $1.8 \pm 0.03 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, not fertile, staminodes $5,2.8 \pm 0.05 \mathrm{~cm}$ lang, creamy white with no anther lobes; pistil $14.5 \pm 0.60 \mathrm{~cm}$ long, stigma
rich yellow, ith 3 lobes; ovary $10.7 \pm 0.70 \mathrm{~cm}$ long, $6.8 \pm 0.08 \mathrm{~cm}$ in circumference, ovules arranged in two regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $5 \pm 0.05 \mathrm{~cm}$ long, $4.2 \pm 0.03 \mathrm{~cm}$ broad, creamy yellow, lobes $3+2$, acuminate, free tepal $2.8 \pm 0.02 \mathrm{~cm}$ long, $2.1 \pm 0.05 \mathrm{~cm}$ broad, colour dull white, below tip corrugated; stamens 5, fertile, filament $1.8 \pm 0.01 \mathrm{~cm}$ long, colour creamy white, anther lobes $2.5 \pm 0.05 \mathrm{~cm}$ long, colour grey, pistillode $4.2 \pm 0.12 \mathrm{~cm}$ long, stigma rich yellow, ovary greenish yellow.

Bunch: position of mature bunch $40^{\circ}-45^{\circ}$ to the pseudostem, bunch weight $5.75 \pm 2.1 \mathrm{~kg}$ with 57 ± 3.3 fingers, hands 7 ± 0.61 fingers and hands compact.

Finger: $12.98 \pm 0.07 \mathrm{~cm}$ lang and $10.25 \pm 0.36 \mathrm{~cm}$ in circumference almost cylindrical apex distinct, finger weight $71.08 \pm 1.5 \mathrm{~g}$.

Ripe fruit : colour dull yellow, do not easily drop off from the hand, rind medium thick, pulp colour crean, soft, juicy, taste sweet with good flavour, TSS $20.00 \pm 0.81 \%$, total sugars $7.95 \pm 0.52 \%$, reducing sugars $6.40 \pm 0.7 \%$, non reducing sugars 1.48 ± 0.50, sugar/acid ratio $37.93 \pm$ 3.2, keeping quality poor.

1.14 Musa (AM Group) 'Galanamalu'

The plant is $274.50 \pm 2.5 \mathrm{~cm}$ tall with a circumference of $71.50 \pm 1.5 \mathrm{~cm}$ at the base. It takes $238 \pm$ 4.5 days from planting to flowering and 117 ± 3.2 days from flowering to harvest.

Pseudostem: yellowish green with dark purple to black blotches.

Leaves: Petiole 59.25 cm long, not clasping pseudostem, margins of petiole spreading, winged below, lamina $221 \pm 2.5 \mathrm{~cm}$ long $54 \pm 1.5 \mathrm{~cm}$ broad, base of lamina, equal, base cordate, apex truncate, number of leaves 28 ± 0.35.

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis slightly ageotropic, basal 3-4 rows of male flowers persistent, peduncle short and pubescent.

Bract: deciduous, shoulder high, reflex and roll back after opening, ovate, apex acute, colour dull purple outside, light crimoon inside, inside bract colour almost continuous to the base.

Female flowerg: arranged in two rows, united tepal $4.5 \pm$ 0.01 cm long and $2.8 \pm 0.02 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acuminate, free tepal $3.5 \pm 0.12 \mathrm{~cm}$ long, $2.5 \pm 0.05 \mathrm{~cm}$ broad, dull white, below tip corrugated; stamens not fertile,
staminodes $5,2.6 \pm 0.03 \mathrm{~cm}$ long, creany white, with no anther lobes; pistil $14.9 \pm 0.12 \mathrm{~cm}$ long, stigma rich yellow with 3 lobes, ovary $11.1 \pm 0.13 \mathrm{~cm}$ long, $6.8 \pm 0.05 \mathrm{~cm}$ in circumference, greenish yellow, ovales arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.1 \pm 0.01 \mathrm{~cm}$ long, $1.9 \pm 0.51 \mathrm{~cm}$ broad, creany white, lobes $3+2$, acuminate, free tepal $3.9 \pm 0.02 \mathrm{~cm}$ long $2.6 \pm 0.15 \mathrm{~cm}$ broad, colour creamy white, below tip corregated; stamens 5 fertile, filament $2.5 \pm 0.05 \mathrm{~cm}$ long, calour creamy white, anther lobes $4.5 \pm 0.06 \mathrm{~cm}$ long, colour grey pistillode $5.1 \pm 0.07 \mathrm{~cm}$ long, stigma colour rich yellow, ovary greenish yellow.

Bunch: position of mature bunch $25-30^{\circ}$ to the pseudostem, bunch weight $15.25 \pm 0.13 \mathrm{~kg}$, number of fingers, 77 ± 4.2 number of hands, 5 ± 0.25 hands and fingers compact.

Finger: $11.83 \pm 0.31 \mathrm{~cm}$ long and $13.75 \pm 0.25 \mathrm{~cm}$ in circumis ference, almost cylindrical with 3 unequal indistinct sides, slightiy tapering to the apex, apex round, indistinct, finger weight $193.50 \pm 2.5 \mathrm{~g}$.

R1pe fruits: colour greenish yellow, do not easily separate from the hand, rind medium thick, pulp colour yellowish cream, juicy, taste sweet with good flavour, TSS 21.50土 0.05 郁 total sugars $13.68 \pm 0.13 \%$, reducing sugars $12.55 \pm$ 0.50%, non reducing sugars $1.07 \pm 0.27 \%$, sugar/acid ratio 82.99 ± 4.2, keeping quality poor.

1.15 Muse (AM Group) 'Red banana'

The plant is $287.00 \pm 4.5 \mathrm{~cm}$ tall with a circumference of $69.25 \pm 3.2 \mathrm{~cm}$ at the base. It takes 233 ± 4.2 days from planting to flowering and 106 ± 3.2 days from flowering to harvest.

Pseudostem: greenish purple more with dark brown blotches.

Leaves: petiole $46.50 \pm 1.5 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, winged below lamina $236 \pm 3.5 \mathrm{~cm}$ long, $86 \pm 2.2 \mathrm{~cm}$ broad, base of lamina, equal, base cordate, apex truncate, number of leaves 31 ± 0.50.

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis slightly ageotropic, basal 3-4 rows of male flowers persistent, peduncle short and pubescent.

Bract: deciduous, shoulder high, reflex and roll back after opening, ovate apex acute, colour dull, purple outside, light almost crimson inside, inside bract colour, continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.3 \pm$ 0.1 cm long and $3.1 \pm 0.20 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acuminate, free tepal $3.6 \pm 0.21 \mathrm{~cm}$ long, $2.7 \pm 0.05 \mathrm{~cm}$ broad, below tip corrugated; stamens not fertile, staminodes 5, 2.3 cm long, creany white with no anther lobes, pistil
$14.8 \pm 0.12 \mathrm{~cm}$ long, stigma rich yellow, with 3 lobes; ovary $10.7 \pm 0.22 \mathrm{~cm}$ long, $7.1 \pm 0.05 \mathrm{~cm}$ in circumference, greenish yellow with red pigmentation, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal 5.3 cm long, $1.8 \pm 0.06 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acuminate, free tepal $3.8 \pm 0.07 \mathrm{~cm}$ long $2.7 \pm 0.18 \mathrm{~cm}$ broad, colour creamy white, below tip corrugated; stamens 5, fertile, filament $2.6 \pm 0.04 \mathrm{~cm}$ long, colour creamy white, anther lobes $4.4 \pm 0.21 \mathrm{~cm}$ long colour grey, pistillode $5.6 \pm 0.11 \mathrm{~cm}$ long, stigma colour rich yellow, ovary greenish yellow with red pigmentation.

Bunch: position of mature bunch $25^{\circ}-30^{\circ}$ to the pseudostem bunch weight $12.50 \pm 0.15 \mathrm{~kg}$, number of fingers 77 ± 3.4 number of hands 6 ± 0.15, hands and fingers compact.

Finger: $12.18 \pm 0.04 \mathrm{~cm}$ long and $14.53 \pm 0.21 \mathrm{~cm}$ in circumference, almost cylindrical with 3 unequal indistinct sides, slightly tapering to the apex, apex indistinct, round, finger weight 195.60 ± 3.5.

Rlpe fruit - colour red, do not easily separate from the hand, rind mediua thick pulp colour yellowish cream, soft, juicy, taste sweet with good flavour, TSS $21.00 \pm 0.50 \%$, total sugars $13.50 \pm 0.18 \%$, reducing sugars $11.50 \pm 0.18 \%$, non reducing sugars $1.90 \pm 0.04 \%$, sugar/acid ratio $82.99 \pm$ 48 keeping quality poor.

1.16 Musa (aM Group) 'Wather'

The plant is $174 \pm 4.2 \mathrm{~cm}$ tall at flowering with a circumference of $44.5 \pm 1.2 \mathrm{~cm}$ at the base. It takes 204 ± 3.5 days from planting to flowering and 92 ± 4.2 days from flowering to harvest.

Pseudostem: pale green, heavily marked with dark purple blotches.

Leaves: petiole $31.00 \pm 1.8 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole spreading, winged below, margins pink, lamina $135.00 \pm 3.1 \mathrm{~cm}$ long, $57.00 \pm 2.5 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 26 ± 0.56.

Inflorescence with basal female and distal male flowers, female and male axis positively geotropic, male flowers deciduous, peduncle short and pubescent.

Bract: deciduous, shoulder high, reflex and roll back after opening, ayate, apei abtuse, colour dull purple outside, light crimson inside, colour fades towards the base.

Female flowers: arranged in two rows, united tepal $3.4=c$ csen long and $1.9 \pm 0.88 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute, free tepal $3.1 \pm 0.08 \mathrm{~cm}$ long, $2.5 \pm 0.05 \mathrm{~cm}$ broad, dull white, below tip corrugated; stamens not fertile, staminodes $5,2.7 \pm 0.03 \mathrm{~cm}$ long colour creamy white, with no anther lobes; pistil $14.4 \pm 0.61 \mathrm{~cm}$ long, stigma
rich yellow with 3 lobes; ovary $10.7 \pm 0.25 \mathrm{~cm}$ long, $6.00 \pm 0.13 \mathrm{~cm}$ in circumference, greenish yellow, ovules arranged in two regular rows in each loculus.

Male flovers: arranged in two rows, united tepal 4.3 cm long, $1.5 \pm 0.04 \mathrm{~cm}$ broad, colour creamy white, lobes $3+2$, acute, free tepal $2.6 \pm 0.31 \mathrm{~cm}$ long, $1.5 \pm 0.21 \mathrm{~cm}$ broad, colour dull white, below tip corrugated; stamens 5, fertile, filament $2.2 \pm 0.12 \mathrm{~cm}$ long, colour creamy white, anther lobes $1.9 \pm 0.02 \mathrm{~cm}$ long, colour grey, pistillode $1.9 \pm 0.10 \mathrm{~cm}$ long, stigma rich yellow, ovary greenish yellow.

Bunch: position of mature bunch $30^{\circ}-35^{\circ}$ to the stem bunch weight $5.75 \pm 0.21 \mathrm{~kg}$, number of fingers $57 \pm$ 2.8 number of hands, 7 ± 0.61 hands and fingers loose.

Finger: $16.83 \pm 0.13 \mathrm{~cm}$ long and $10.88 \pm 0.45 \mathrm{~cm}$ in circumference, almost cylindrical, apex distinct, short and stout, finger weight $80.25 \mathrm{~g} \pm 2.5 \mathrm{~g}$.

Ripe fruity colour yellowish green, separate easily from the hand, rind medium thick, pulp colour cream, soft juicy, taste sweet, TSS $18.00 \pm 0.56 \$ 4$ tatal sugars $5.60 \pm 0.21 \%$, reducing sugars $4.27 \pm 0.41 \Phi$, non reducing sugars $1.27 \pm$ 0.05%, sugar/acid ratio 17.76 ± 0.86, keeping quality poor.

1.17 Kuge (AM Group) 'Karim kadali'

The plant is $186.50 \pm 4.5 \mathrm{~cm}$ tall at flowering with a ctrcumference of $42.00 \pm 1.8 \mathrm{~cm}$ at the base. It takes 205 ± 3.5 days from planting to flowering and 85 ± 2.9 days from flowering to harvest.

Pseudostem: yellowish green with large dark blotches.

Leaves: petiole $28.25 \pm 0.58 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole erect with scarious wings below, lamina $158 \pm 3.1 \mathrm{~cm}$ long $61 \pm 2.6 \mathrm{~cm}$ broad, base of lamina, unequal, base ebtuse, apex truncate, number of leaves 26 ± 0.71.

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis geotropic, peduncle short and pubescent.

Bract: deciduous, shoulder low., reflex and roll back after opening, ovate, apex acute, colour dull purple outside and inside bract sears prominent.

Female flowers: arranged in two rows, united tepal $5 \pm 0.21 \mathrm{~cm}$ long and $3 \pm 0.10 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acute free tepal $3.5 \pm 0.02 \mathrm{~cm}$ long, $3.2 \pm 0.05 \mathrm{~cm}$ broad, colour creamy white, below tip corrugated; stamens not fertile, staminodes $5,3 \pm 0.21 \mathrm{~cm}$ long, creamy white with no anther lobes; pistil $14 \pm 0.26 \mathrm{~cm}$ long, stigma colour rich yellow,
with 3 lobes, ovary $9.5 \pm 0.5 \mathrm{~cm}$ long, $8 \pm 0.26 \mathrm{~cm}$ in circumference, yellowish green, ovules arranged in two regular røws in each loculus.

Male flowers: arranged in two rows, united tepal $5.2 \pm$ 0.5 cm long, $3 \pm 0.06 \mathrm{~cm}$ broad, colour cream, lobes $3+2$, acuminate, free tepal $3.6 \pm 0.06 \mathrm{~cm}$ long $3.9 \pm 0.01 \mathrm{~cm}$ broad below tip corrugated; stamens 5, all fertile, filament 2.3 ± 0.04 am long, creamy white, anther lobes $2.3 \pm 0.03 \mathrm{~cm}$ long, browish yellow, pistillode $4.6 \pm$ 0.21 cm long, stigma rich yellow, ovary yellowish green. Bunch: pesition of mature bunch $30^{\circ}-35^{\circ}$ to the stem, bunch weight $6 \pm 0.60 \mathrm{~kg}$ with 76 ± 4.2 fingers, hands, 7 迢 0.21 fingers in a hand compact.

Finger: $16.03 \pm 0.12 \mathrm{~cm}$ long and $9.80 \pm 0.07 \mathrm{~cm}$ in circumference, almost cylindrical with 3 indistinct sides, not tapering to the tip, apex short and round finger weight $74.79 \pm 3.6 \mathrm{~g}$.

Ripe fruit: colour yellowish green, do not easily separate from the hand, rind medium thick, pulp yellowish cream, thick, juicy, taste medium aweet, TSS $20 \pm 0.81 \%$, total sugars $13.87 \pm 0.50 \%$, reducing sugars $11.50 \pm$ 0.40%, non reducing sugars $1.76 \pm 0.21 \%$, sugar/acid ratio 30.49 ± 1.12, keeping quality good.

PLATE 13. Musa (MA Group) 'Karim kadali'

1.18 Muse (MMA Group) 'Bodles Altafort'

The plant is $240 \pm 4.5 \mathrm{~cm}$ tall at flowering with a circumference of $56.25 \pm 2.5 \mathrm{~cm}$ at the base. It takes 205 ± 4.9 days from planting to flowering and 100 ± 2.1 days from flowering to harvest.

Pseudostem: yellowish green with dark brow blotches.
Leaves: petiole 57 cm long, not clasping pseudostem, margins of petiole spreading, winged below, margins red lamina $211 \pm 3.8 \mathrm{~cm}$ long, $65 \pm 2.9 \mathrm{~cm}$ broad, base of lamina unequal, base and apex cordate, number of leaves 23 ± 0.50.

Inflorescence: with basal female and distal male flowers, female axis pendulous, male axis ageotropic, peduncle short and pubescent.

Bract: deciduous, shoulder high, reflex and roll, narrowly ovate, apex acute, colour dull purple \quad outside and inside, bract scars prominent.

Female flowerg: arranged in two rows, united tepal 5.5 cm long and $2.8 \pm 0.01 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acuminate, free tepal $3.7 \pm 0.20 \mathrm{~cm}$ long, $3.3 \pm 0.12 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes $4-5,2.5 \mathrm{~cm} \pm 0.10 \mathrm{~cm}$ long, oreamy white, with no anther lobes; pistil $12.4 \pm 0.95 \mathrm{~cm}$ long, stigma rich yellow, ovary $9.4 \pm 0.5 \mathrm{~cm}$ long, $7 \pm 0.75 \mathrm{~cm}$ in circumference, greenis yellow, ovules arranged in two
regular rows in each loculus.
Hale flowers: arranged in two rows, united tepal $5.6 \pm$ 0.05 cm long, $2.8 \pm 0.04 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acuminate, pale yellow, free tepal $3.5 \pm 0.03 \mathrm{~cm}$ long, $2.2 \pm 0.03 \mathrm{~cm}$ broad, dull wite, below tip corrugated; stamens 5, all fertile, filament $3 \pm 0.12 \mathrm{~cm}$ long, colour creamy white, anther lobes $3.2 \pm 0.01 \mathrm{~cm}$ long, brownish black; pistillode $4.8 \pm 0.12 \mathrm{~cm}$ long, stigma rich yellow, ovary yellowish green.

Bunch: position of mature bunch 25° to 30° to the stem, bunch weight 9.25 姜 0.23 kg , number of fingers $64 \pm$ 4.2 , number of hands 6 ± 0.50 hands and fingers compact.

Finger: $19.13 \pm 0.21 \mathrm{~cm}$ long and $11.95 \pm 0.05 \mathrm{~cm}$ in circumference, slightly angular with 5 sides, slightly tapering to the tip, apex straight, round, finger weight $166.18 \pm 2.5 \mathrm{~g}$.

Ripe fruit : Colour yellow, not firmly attached to the hand, rind medium thick, pulp colour cream, soft and melting, taste sweet with good flavour, iSS $23.00 \pm 0.75 \%$, total sugars $10.61 \pm 0.50 \%$, reducing sugars 8.37 ± 0.25, non reducing sugars $1.19 \pm 0.05 \%$, sugar/acid ratio 44.58 ± 3.2, keeping quality poor.

PLATE 14. Nusa (AMM Group) 'Bodles Altafort'

1.19 Musa (AAB Group) 'Thiruvananthapura'

The plant is $210 \pm 2.8 \mathrm{~cm}$ tall with a circumference of $48.75 \pm 1.7 \mathrm{~cm}$ at the base. It takes $207 \pm$ 4.1 days from planting to flowering and 95 ± 3.2 days from flowering to harvest.

Pseudostem: yellowish zreen with black blotches near the petiole.

Leaves: petiole 37.75 ± 1.7 cal long, not clasping pseudostem, margins of petiole inclosed, slightly winged below, lamina $146 \pm 2.8 \mathrm{~cm}$ long, $75 \pm 1.7 \mathrm{cal}$ broad, base of lamina unequal, base cordate, apex obtuse, number of leaves $24 i 0.26$.

Inflorescence: with basal female and distal male flowers, female axis horizontal till maturity, male axis positively geotropic, very long, male flowers deciduous, peduncle long and pubescent.

Bract: deciduous, shoulder low, reflex and roll back after opening, ovate, apex, acute, colour orownish purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arr nged in two rows, united tepal $4.2 \pm$ 0.07 cm long and $1.8 \pm 0.02 \mathrm{~cm}$ broad, colour pale yellow slishtly flushed with pink, loves $3+2$, acute, colour rich yellow, free tepal $2.3 \pm 0.02 \mathrm{~cm}$ long, $2.3 \pm$ 0.01 cm broad, colour pale yellow, below tip slightly
corrugated; stamens not fertile, staminodes 5, $2 \pm$ 0.03 cm long, clour pale yellow with no anther lobes; pistil $10.5 \pm 0.12 \mathrm{~cm}$ long, stigma colour pale yellow, with 3 lobes; ovary $8.5 \pm 0.15 \mathrm{~cm}$ long, $6.5 \pm 0.08 \mathrm{~cm}$ in circumference, greenish yellow with pink flushed tip, ovules arran in two regular rows in each loculus.

Male flovers arranged in two rows, united tepal $5.1 \pm$ 0.07 cm long, $1.3 \pm 0.03 \mathrm{~cm}$ broad, pale yellow flushed with pink, lobes 3+2, acute, rich yellow, free tepal $2.6 \pm 0.03 \mathrm{~cm}$ long, $1.6 \pm 0.01 \mathrm{~cm}$ broad, below tip corrugated, stamens 5, all fertile, filament $2 \pm 0.02 \mathrm{~cm}$ long, colour pale yellow, anther lobes $2.8 \pm 0.03 \mathrm{~cm}$ long, colour yellow flushed with pink; pistillode $4.8 \pm 0.13 \mathrm{~cm}$ long, stigma colour rich yellow, ovary greenish yellow flushed with pink at the tip.

Bunch: position of mature bunch $45^{\circ}-50^{\circ}$ to the stem, bunch weight $11.25 \pm 0.14 \mathrm{~kg}$, number of fingers 91 ± 1.4, number of hands 8 ± 0.08, hands and fingers loose.

Finger: $10.53 \pm 0.51 \mathrm{~cm}$ long and $8.65 \pm 0.31 \mathrm{~cm}$ in circumference, angular with 3-4 unequal sidé; slightly tapering to the tip, apex prominent, finger weight $90.63 \pm 2.5 \mathrm{~g}$. Ripe fruit: colour yellow, firmly attached to the hand, rind medium thick, pulp colour orange yellow, thick, not starchy, taste sweet, TSS $23 \pm 0.18 \%$, total sugars $8.59 \pm$ 0.21%, reducing sugars $6.78 \pm 0.18 \%$, non reducing sugars $1.49 \pm 0.06 \%,{ }_{\lambda} 23.47 \pm 0.80$, keeping quality good.
9ुVId
Musa (AAB Group) 'Thiruvananthapuram'

1.20 Hese (AAB Group) 'Pacha chingan'

The plant is $208.5 \pm 4.1 \mathrm{~cm}$ tall with a circumference of $51.5 \pm 1.2 \mathrm{~cm}$ at the base. It takes 177 ± 3.1 days from planting to flowering and 81 ± 1.2 days fram flowering to harvest.

Pseudostam: yellowish green with dark blotches near the base of the petiole.

Leaves: petiold $35 \pm 0.80 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole erect, red coloured, winged below, lamina $186 \pm 2.6 \mathrm{~cm}$ long, $68 \pm 1.8 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 21 ± 0.65.

Inflorescence: with basal female and distal male flowers, female axis almost horizontal, male axis positively geotropic, male flowers deciduous, peduncle medium long and glabrous.

Bract: deciduous, shoulder law, reflex and roll back after opening, broadly ovate, apex obtuse, colour dull purple outside, bright crimson inside, colour continuous to the base, bract scars prominent.

Female flowerg: arranged in two rows, united tepal $4.6 \pm$ 0.05 cm long and $1.8 \pm 0.02 \mathrm{~cm}$ broad, colour cream with light pink tinge towards the base, lobes $3+2$, free tepal $3 \pm 0.01 \mathrm{~cm}$ long, $2 \pm 0.01 \mathrm{~cm}$ broad, colour creamy white, below tip corrugated; stamens not fertile, staminodes 5,
2.5 cm 子png, colour cream, with no anther lobes; pistil $13.3 \pm 0.06 \mathrm{~cm}$ lang, stigma colour cream, with 3 lobes; ovary $9.5 \pm 0.08 \mathrm{~cm}$ long, $4 \pm 0.04 \mathrm{~cm}$ in circumference, colour green, oviles arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.6 \pm$ 0.07 cm long, $1.2 \pm 0.02 \mathrm{~cm}$ broad, colour cream with slight pink tinge in the middle, lobes $3+2$, acute, free tepal $2.3 \pm$ 0.61 cm long, $2 \pm 0.01 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens 5, none fertile, filament $1.8 \pm 0.03 \mathrm{~cm}$ long, colour cream, anther lobes black thred like structures, pistillode $3.8 \pm 0.02 \mathrm{~cm}$ long, stigma colour pale yellow, ovary pale yellow with pink flush towards the base.

Bunch: position of mature bunch 60° to 90° to the stem, bunch weight $6.25 \pm 0.14 \mathrm{~kg}$, number of fingers $84.5 \pm$ 2.2, number of hands 7 ± 0.15, fingers in a hand loose. Tinger: $11.9 \pm 0.14 \mathrm{~cm}$ long and $10 \pm 0.08 \mathrm{~cm}$ in circumference, angular with 5 unequal, very slightly tapering to the tip, apex straight, slightly distinct, finger weight $54.75 \pm 2.5 \mathrm{~g}$.

Ripe fruit: colour greenish yellow, loosely attached to the hand, rind thick, pulp colour cream, sart, not starchy, fit for consumption, taste sweet with good flavour, TSS $25 \pm$ 0.2%, total sugars $22.78 \pm 0.5 \%$, reducing sugars $18.72 \pm$ 0.05%, non reducing sugars $3.87 \pm 0.07 \%$, sugar/acid ratio, 60.76 ± 1.3, keeping quality medium.
1.21. Kuga (ANB Group) 'Rasthali'

The plant is $264 \pm 2.3 \mathrm{~cm}$ tall with a circumference of $66.75 \pm 1.8 \mathrm{~cm}$ at the base. It takes 225 ± 2.4 days from planting to flowering and 114 ± 1.6 days from flowering to harvest.

Pseudostem: light green with dark brown blotches.
Leaves: petiole $54 \pm 0.69 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole rict, slightly winged, red coloured, lamina $187 \pm 3.4 \mathrm{~cm}$ long, $62 \pm 1.6 \mathrm{~cm}$ broad, base of lamina unequal, base broadly obtuse, apex truncate, number of leaves $\pm 33 \pm 0.45$.

Inflorescence: with basal female and distal male flowers, female axis semipendulaus, male axis ageotropic, very long, a few rows of male flowers persistent, short and pubescent.

Bract: shoulder liw, ovate, apex, acute, reflex and roll back after opening, ovate, colour dull purple outside, reddish purple inside, inside bract colour slightly fades towards base, bract scars prominent.

Female flowerg: arranged in two rows, imtated tepal $5 \pm 0.12 \mathrm{~cm}$ long and $2.8 \pm 0.02 \mathrm{~cm}$ broad, colour cream, lobes $3+2$, acuminate, free tepal $2.5 \pm 0.03 \mathrm{~cm}$ long, $2.2 \pm 0.04 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes $5,3 \pm 0.01 \mathrm{~cm}$ long, colour cream with a slight inge. black with no anther lobes; pistil $15.4 \pm 0.21 \mathrm{~cm}$ long,
stigma colour pale yellow, with 3 lobes; ovary $11 \pm 0.30 \mathrm{~cm}$ long, $8.5 \pm 0.01 \mathrm{~cm}$ in circumference, greenish yellow with pink flush, ovules arranged in two regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $5.8 \pm 0.12 \mathrm{~cm}$ long, $1.8 \pm 0.08 \mathrm{~cm}$ broad, colour cream with pink flush, lobes $3+2$, acute, free tepal $2.8 \pm 0.03 \mathrm{~cm}$ long, $2.3 \pm 0.05 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, fertile, filament $3.2 \pm 0.01 \mathrm{~cm}$ long, colour cream, anther lobes $2.3 \pm 0.04 \mathrm{~cm}$ long, brownish black, pistillode $4.8 \pm 0.26 \mathrm{~cm}$ long, stigma pale yellow, ovary greenish jellow.

Bunch: position of mature bunch $40^{\circ}-45^{\circ}$ to the s tem, bunch weight $12.75 \pm 0.26 \mathrm{~kg}$, number of fingers 117 ± 3.3, number of hands 11 ± 0.58, hands and fingers loose. Finger: 16.95 ± 0.45 cm long and $12.13 \pm 0.09 \mathrm{~cm}$ in circumb ference, almost cylindrical at maturity, tapering to the apex, apex distinct, round, finger weight $92.92 \pm 4.2 \mathrm{~g}$.

Ripe fruit: colour yellow with tiny red spots, easily separate from the hand, rind very thin, pulp colour creany white, soft, taste sweet, TSS $23 \pm 0.81 \%$, total sugars $14.68 \pm 0.68 \%$, reducing sugars $13.50 \pm 0.56 \%$, non reducing sugars $1.13 \pm 0.20 \%$, sugar/acid ratio $3^{44.18 \pm 1.2, ~ k e e p i n g ~}$ quality poor.

PLATE TG. Nusa (AAB Group) 'Rasthali'

1.22 Yusa (AAB Group) 'Dudhsagar'

The plant is $251 \pm 4.5 \mathrm{~cm}$ when with a circumference of $55 \pm 1.25 \mathrm{~cm}$ at the base. It takes 208 ± 3.2 days from planting to flowering and 117 ± 1.2 days from flowering to harvest.

Pseudostem: yellowish green with brown to black blotches.

Leaves: petiole $63.35 \pm 2.1 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole, slightly inclosed, slightly winged below, colour pink, lamina $234 \pm 2.2 \mathrm{~cm}$ long $74 \mathrm{~cm} \pm 1$ broad, base of lamina unequal, base cordate apex truncate, number of leaves 27 ± 0.13.

Inflorescence: with basal female and distal male flowers, female and male axes pendulous, male flowers deciduous, peduncle medium long and pubescent.

Bract: deciduous, shoulder Xow, reflex and roll back after opening, ovate, apex acute, bract colour browish purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $5.2 \pm 0.05 \mathrm{~cm} k, \sin$ and $3.4 \pm 0.09 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acute, free tepal $2.7 \pm 0.05 \mathrm{~cm}$ long, $2.2 \pm 0.03 \mathrm{~cm}$ broad, below tip not corrugated, with 3 lobes; stamens not fertile, staminodes $5,2.3 \pm 0.01 \mathrm{~cm}$ long, colour cream, with no anther lobes; pistil $14.5 \pm 0.12 \mathrm{~cm}$ long, stigma colour
pale yellow, with 3 lobes; ovary $8.2 \pm 0.15 \mathrm{~cm}$ long, $7.5 \pm$ 0.08 cm in circumference, yellowish green with a slight pink flush, ovules arranged in two regular rows in each loculus.

Male flovers: arranged in two rows, unted tepal $5.6 \pm 0.08 \mathrm{~cm}$ long, $1.7 \pm 0.05 \mathrm{~cm}$ broad, creamy white, lobes $3+2$, acute, free tepal $2.7 \pm 0.02 \mathrm{~cm}$ long, $2.5 \pm 0.03 \mathrm{~cm}$ broad, below tip not corrugated; stamens 5, $2-4$ fertile, filament $2 \pm 0.01 \mathrm{~cm}$ long, colour cream, anther lobes $3.2 \pm 0.21 \mathrm{~cm}$ long, colour brownish black, pistillode $5.2 \pm 0.30 \mathrm{~cm}$ long, stigma colour pale yellow, ovary yellowish green with a slight pink flush.

Bunch: position of mature bunch 30° to the stem, bunch weight $12.75 \pm 0.16 \mathrm{~kg}$, number of fingers 178 ± 2.6, number of hands 14 ± 0.96, hands and fingers compact. Finger: $13.88 \pm 0.50 \mathrm{~cm}$ long and $13 \pm 0.25 \mathrm{~cm}$ in circumference, angular with 3-5 unequal sides, not tapering to the tip, apex distinct, short,finger weight $103.75 \pm 1.5 \mathrm{~g}$.

Ripe fruat: colour yellow, firmily attached to the hand, rind thin, pulp colour yellowish cream, not starchy, taste sweet, TSS $21.50 \pm 0.35 \%$, total sugars $15.15 \pm 0.21 \%$, reducing sugars $13.00 \pm 0.15 \%$, non reducing sugars $2.05 \pm$ 0.90%, sugar/acid ratio $45.51 \pm 1.2 \%$, keeping quality good.

1.23 Musa (AAB Group) 'Sugandhi'

The plant is 283 ± 2.24 cin tall with a circumference of $63 \pm 3.17 \mathrm{~cm}$ at the base. It takes $208 \pm$ 1.85 days from planting to flowering and 92 ± 1.42 days from flowering to harvest.

Pseudostem: yellowish green with brown to black blotches.

Leaves: petiole 48.25 cin long, not clasping pseudostem, margins of petiole slightly inclosed, slightly winged below, margins pink, lamina $189 \pm 2.7 \mathrm{~cm}$ long, $85 \pm 1.8 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex broadly obtuse, number of leaves 30 ± 0.26.

Inflorescence: with basal female and distal inale flowers, female and male axes positively geotropic, a few rows of alale flowers persistent, peduncle medium long, pubescent.

Bract: persistent in some clones, shoulder ichw, reflex and roll back after opening, ovate, acute, colour brownish purple outside, bright crimson inside, inside oract colour continuous to the base, bract scars prominent. Female filowers: arranged in two rows, united tepal $5.6 \pm$ 0.13 cm long and $2.5 \pm 0.05 \mathrm{~cm}$ broad, colour creak flushed with pink, lobes $3+2$, acute, free tepal $3.3 \pm$ 0.04 cm lons, $2.7 \pm 0.02 \mathrm{~cm}$ broad, creamy white, below
tip corrugated; stamens not fertile, staminodes 5, $2.2 \pm 0.01 \mathrm{~cm}$ long, colour cream with no anther lobes; pistil $14.2 \pm 0.05 \mathrm{~cm}$ long, $_{\text {g }}$ stigna colour creain, witi 3 lobes; ovary $8.2 \pm 0.09 \mathrm{~cm}$ long, $7.2 \pm 0.06 \mathrm{~cm}$ in circumference, yellowish green with a slight pink flush, ovules arranged in two reguler rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.6 \pm$ 0.12 cm long, $1.5 \pm 0.05 \mathrm{cin}$ broad, colour cream flushed with pink, lobes $3+2$, acuminate, free tepal $2.9 \pm 0.01 \mathrm{~cm}$ long, $2.5 \pm 0.02 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, all fertile, filament $2.1 \pm 0.03 \mathrm{~cm}$ long, colour cream, anther lobes $2.5 \pm 0.04 \mathrm{~cm}$ long $_{6}$, colour brownish black, pistillocie $4.5 \pm 0.05 \mathrm{~cm}$ lons, stigma colour pale yellow, ovary yellowish green with pink flush.

Bunch: position of mature bunch $30^{\circ}-35^{\circ}$ to the stern, bunch weight $10.25 \pm 0.15 \mathrm{~kg}$, number of fingers 125 ± 1.2 number of hands 10 ± 0.12, hands and fingers compact.

Finger: $13.38 \pm 0.12 \mathrm{~cm}$ long and $13.50 \pm 0.26 \mathrm{~cm}$ in circumference, not angular, mature fingers, plumpy, do not taper to the tip, aper prominent, round and short, finger weight $90.75 \pm 1.3 \mathrm{~g}$.

Flpe fruit: colour yellow, firmly attached to the hand, rinc thin, pulp yellowish cream, soft, not starchy, pulp taible \sim simeet, TSS $24 \pm 0.65 \%$, total sugars $12.94 \pm 0.16 \%$, reducing sugars $12.80 \pm 0.12 \%$, non reducing sugars $1.10 \pm$ 0.01%, sugar/acia ratio $43.87 \pm 12 k$ keeping quality medium.

1.24 Musa (AAB Group)'Palayankodan'

The plant is $228 \pm 1.2 \mathrm{~cm}$ tall with a circumference of $53.75 \pm 0.10 \mathrm{~cm}$ at the base. It takes $164 \pm$ 2.1 days from planting to flowering and 101 ± 1.5 days from flowering to harvest.

Pseudostem: yellowish green with brownish black blotches.

Leaves: petiole $45 \pm 0.56 \mathrm{~cm}$ long, not clasping pseudostem, mazins of petiole slightly inclosed, slightly winged below, margins pink, lamina $175 \pm 1.5 \mathrm{~cm}$ long, $96 \pm 1.7 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex obtuse, number of leaves 25 ± 0.71.

Inflorescence: with basal female and distal male flowers, female axis sempendulous, male axis positively geotropic, male flowers deciduous, peduncle medium long and pubescent.

Bract: deciduous, shoulder low, reflex and curl back arter opening, ovate, apex acute, colour brownish purple outside, brisht crimson inside, inside bract colour continuous to the base, bxact scars prominent.

Female flowers: arranged in two rows, united tepal $5.4 \pm$ 0.12 cm long and $2.3 \pm 0.04 \mathrm{~cm}$ broad, colour cream flushed with pink, lobes $3+2$, acute, free tepal $3.6 \pm$ 0.10 cm long, $2.7 \pm 0.04 \mathrm{~cm}$ broad, creany white, below tip corrugated; stamens not fertile, staminodes 5, $2.3 \pm$ 0.01 cm long, colour creain, with no anther lobes; pistil
$14.8 \pm .20 \mathrm{~cm}$ long, stigma colour cream, with 3 lobes; ovary $8.8 \pm 0.12 \mathrm{~cm}$ long, $7.6 \pm 0.09 \mathrm{~cm}$ in circunfer ence yellowisì green with a slight pink flush, ovules arranged in 2 rezular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.5 \pm$ 0.13 cm long, $1.7 \pm 0.07 \mathrm{~cm}$ broad, colour creaa flushed with pink, lobes 3+2, acuminate, free tepal $3 \pm 0.03 \mathrm{~cm}$ long, $2.6 \pm 0.02 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, all fertile, filament $2.3 \pm 0.01 \mathrm{~cm}$ long, colour cream, anther lobes $2.7 \pm 0.05 \mathrm{~cm}$ long, brownish black, pistillode $4.6 \pm 0.07 \mathrm{~cm}$ long, stigma pale yellow, ovary yellowish green with pink flush at the tip.

Bunch: position of mature bunch $35^{\circ}-40^{\circ}$ to the stem, bunch weight $13.25 \pm 0.35 \mathrm{~kg}$, nuaver of fingers 189 ± 2.1, number of hands 11 ± 0.11 hands and fingers compact.

Finger: 11.60 cm long and 10.63 cm in circumference, slightly angular with 4-5 indistinct sides, tapering to the tip, apex prominent, short, finger weight $74.25 \pm$ 0.56 g.

Ripe fruit: colour yellow, firmiy atteched to the hand, rind thin, pulp colour yellowish cream, taste sweet, TSS $21.50 \pm 0.25 \%$, total sugars $16.85 \pm 0.21 \%$, reducing sugars $13.33 \pm 0.09 \%$, non reducing sugars $3.34 \pm 0.10 \%$, sugar/acid ratio 44.93 ± 1.2, keepin quality good.

The plant is $233.5 \pm 2.8 \mathrm{~cm}$ tall with a circumference of $54.5 \pm 1.6 \mathrm{~cm}$ at the base. It takes $22.9 \pm$ 3.1 days from planting to flovering and 137 ± 1.4 days frow flowering to harvest.

Pseudostem: pale green with light olack blotches near the base of petiole.

Leaves: petiole $41.75 \pm 0.78 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole inclosed, slightly winged below, lainina $158 \pm 2.6 \mathrm{~cm}$ long $64 \pm 1.6 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex obtuse, number of leaves 33 ± 0.41.

Inflorescence: with basal female and distal male flowers, female axis semipendulous, inale axis positively geotropic, short, male flowers deciduous, peduncle medium long and pubescent.

Bract: deciciujus, shoulder low, reflex and roll back after opening, ovate, apex obtuse, colour brownish purple outside, yellowish purple inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.0 \pm$ 0.06 cm long and $1.6 \pm 0.03 \mathrm{~cm}$ broad, colour pale yellow flushed with pink, lobes 3+2, acute, colour rich yellow, free tepal $2.1 \pm 0.02 \mathrm{~cm}$ long, $2.0 \pm 0.01 \mathrm{cw}$ broad, colour pale yellow, below tip corrugated; stamens not fertile,
staminodes $5,1.8 \pm 0.02 \mathrm{~cm}$ long, colour pale yellow, with no anther lobes; pistil $10.6 \pm 0.05 \mathrm{~cm}$ long, stigua colour pale yellow, with 3 lobes, ovary $8.6 \pm 0.02 \mathrm{~cm}$ long, $6.6 \pm 0.05 \mathrm{~cm}$ in circumference, colour greenish yellow, ovules arranged in two regular sows in each loculus.

Male flowers: arranged in two rows, united tepal $5.0 \pm$ 0.05 cm long, $1.2 \pm 0.02 \mathrm{~cm}$ broad, pale yellow flushed with pink, acute, lobes $3+2$, rich yellow, free tepal $2.5 \pm$ 0.02 cm long $1.7 \pm 0.03 \mathrm{~cm}$ bsoad below tip corrugeted; stamens 5, all fertile, filament $2.1 \pm 0.02 \mathrm{~cm}$ long, colour pale yellow, anther lobes $2.6 \pm 0.01 \mathrm{~cm} 1 \mathrm{n}_{\mathrm{c}}$, colour yellow, flushed with pink, pistillode $4.6 \pm 0.12 \mathrm{~cm}$ long, stigna colour rich yellow, ovary greenish yellow flushed with pink.

Bunch: position of mature bunch $45^{\circ}-50^{\circ}$ to the stem, bunch weight $7.25 \pm 0.13 \mathrm{~kg}$, nuaber of finger $139 \pm$ 1.8, number of hands 10 ± 0.51, hands and fingers compact. Finger: $10.38 \pm 0.15 \mathrm{~cm}$ long and $9.25 \pm 0.11 \mathrm{~cm}$ in circuinm ference, slightly angular with 5 indistict sides, apex distinct, short, finger we1ght $49.25 \pm 3.5 \mathrm{~g}$.

Fipe fruit: colour yellow, firmly attached to the hand, rind thin, pulp creany white, thick, not starchy, fit for consumption, TSS $2.2 \pm 0.56 \%$, total sugars $11.53 \pm 0.21 \%$, reaucing sugars $8.55 \pm 0.76 \%$, non reducing sugars $2.35 \pm$ 0.35%, sugar acid ratio 30.20 ± 1.02, keeping quality good.

1.26 Muse (ANB Group) 'Mannan'

The plant is $212.50 \pm 3.2 \mathrm{~cm}$ tall with a circumference of $52.5 \pm 2.5 \mathrm{~cm}$ at the base. It takes 172 ± 4.1 days from planting to flowering and 86 ± 3.0 days from flowering to harvest.

Pseudostem: light green with brownish to black blotches.

Leares: petiole $19.5 \pm 0.85 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole orect, with wings below, lamina $171 \pm 3.1 \mathrm{~cm}$ long $67 \pm 1.8 \mathrm{~cm}$ broad, base of lamina, unequal, base cordate, apex truncate; number of leaves 20 ± 0.79.

Inflorescence: with basal female and distal male flowers, female axis semipendulous, male axis positively geotropic, male flowers deciduous; peduncle medium long, glabrous.

Bract: deciduous, shoulder low, reflex and rell back after opening, broadly ovate, apex obtuse, colour dark purple outside and light crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowerg: arranged in two rows, united tepal $4.6 \pm$ 0.10 cm long and $2.2 \pm 0.05 \mathrm{~cm}$ broad, colour pale yellow with pink flush towards the base, lobes $3+2$, acute, free tepal $3 \pm 0.02 \mathrm{~cm}$ long, $2.5 \pm 0.01 \mathrm{~cm}$ broad, colour creamy white, below tip corrugated; no fertile stamens, staminodes $5,2.6 \pm 0.02 \mathrm{~cm}$ long, colour creamy white, with no anther
lobes; pistil $12.8 \pm 0.3 \mathrm{~cm}$ long, stigma colour yellow, with 3 lobes, ovary $9.2 \pm 0.12 \mathrm{~cm}$ long, $7.5 \pm 0.20 \mathrm{~cm}$ in cirfumference, colour greenish yellow, ovoles arranged in two regular rows in each loculus.

Male flowers arranged in two rows, united tepal $4.6 \pm 0.30 \mathrm{~cm}$ long, $2 \pm 0.04 \mathrm{~cm}$ broad, colour cream with pink flush towards the base, lobes $3+2$,acute, free tepal $2.5 \pm 0.01 \mathrm{~cm}$ long $2 \pm 0.02 \mathrm{~cm}$ broad, colour cream, below tip corrugated; stamens 5, none fertile, filement $1.2 \pm 0.01 \mathrm{~cm}$ long, colour cream, anther lobes black thred like structures; pistillode 4.5 ± 0.12 cm long, stigma colour pale yellow, ovary pale yellow with pink band towards the base.

Bunch: position of mature bunch $50^{\circ}-55^{\circ}$ to the stem bunch weight $6.25 \pm 0.23 \mathrm{~kg}$, number of finger $73.5 \pm$ 2.2, number of hands 8 ± 0.12, fingers in a hand loosoly ar ranged.

Finger: $11.38 \pm 0.51 \mathrm{~cm}$ long and $8.75 \pm 0.42 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to the tip, apex indistinct, finger weight $58.78 \pm 1.2 \mathrm{~g}$.

Ripe fruit: colour greenish yellow, loosely attached to the hand, separate easily, rind thick, pulp colour cream, thick, not starchy, fit for consumption, TSS $21.50 \pm 0.15 \%$, total sugars $17.67 \pm 0.12 \%$, reducing sugars $16.59 \pm 0.20 \%$, non reducing sugars $1.03 \pm 0.04 \%$, sugar/acid ratio 39.10 ± 2.0, keeping quality medium.

1.27 Kusa (ABB Group) 'Malakali'

The plant is $214 \pm 3.6 \mathrm{~cm}$ tall with a circumference of $53 \pm 1.4 \mathrm{~cm}$ at the base. It takes $163 \pm 3 \times 5$ days from planting to flowering and 83 ± 2.6 days from flowering to harvest.

Pseudostem: light green with light brown to black blotches towards the base of the petiole.

Leaves: petiole $34 \pm 1.01 \mathrm{~cm}$ long, slightiy clasping pseudostem, margins of petiole slightiy inclosed, lamina $165 \pm 322 \mathrm{~cm}$ long, $65 \pm 1.8 \mathrm{~cm}$ broad, base of lamina, unequal, base and apex truncate; number of leaves 24 ± 0.68.

Inflorescence: with basal female and distal male flowers, female axis semipendulous, male axis positively gedtropic, male flowers deciduous, peduncle medium long, glabrous.

Bract: deciduous, shoulder low, reflex and roll back after opening, ovate, apex acute, colour brownish purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.8 \pm$ 0.04 cm long and $2.5 \pm 0.01 \mathrm{~cm}$ broad, pale yellow with pink flush towards the base lobes 3+2, pale yellow, acute free tepal $3.8 \pm 0.03 \mathrm{~cm}$ long, $3.4 \pm 0.06 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes
$5,2.5 \pm 0.02 \mathrm{~cm}$ long, pale yellow with no anther lobes; pistil 13.6 ± 0.12 cm long, stigma colour cream, with 3 lobes; ovary $8.9 \pm 0.12 \mathrm{~cm}$ long, $7.2 \pm 0.08 \mathrm{~cm}$ in circumference, colour greenish yellow with pink flush towards the base, ovules arranged in two regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $5.2 \pm 0.06 \mathrm{~cm}$ long, $4.1 \pm 0.03 \mathrm{~cm}$ broad, yellowish pink outside, light pink inside, lobes 3+2, acute; free tepal $3 \pm 0.01 \mathrm{~cm}$ long $2.5 \pm 0.04 \mathrm{~cm}$ broad, colour cream, below tip corrugated; stamens 5 , not fertile, filament $2.8 \pm 0.02 \mathrm{~cm}$ long, cream with pink flush, anther lobes brownish black with no pollen grains, black thread like in mome flowers; pistillode $4.6 \pm$ 0.03 cm long, stigma pale yellow, ovary greenish with light pink flush towards the base.

Bunch: position of mature bunch 45° to 50° to the stem, bunch weight $9 \mathrm{~kg} \pm 0.23 \mathrm{~kg}$, number of fingers 83 ± 4.2, number of hands 6 ± 0.12, fingers loosely arranged.

Fingex: $15.25 \pm 0.23 \mathrm{~cm}$ long and $11.44 \pm 0.13 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to the tip, apex indistinct, finger weight $99.25 \pm 3.6 \mathrm{~g}$. Ripe fruit: colour dull greenish yellow, loosely attached to the hand, separate easily rind thick, pulp colour cream, thick, not starchy fit for consumption, taste sweet, TSS $21 \pm 0.68 \%$, total sugars $16.39 \pm 0.05 \%$ reducing sugars $13.35 \pm 0.16 \%$, non reducing sugars 2.90 ± 0.18, sugar acid. ratio 35.64 ± 1.2, keeping qualitymedium.

PLatE 17. Musa (AAB Group) 'Malakali'
1.28 Musa (NB Group) 'Pacha nadan'

The plant is $202.50 \pm 4.5 \mathrm{~cm}$ tall at flowering with a circumference of $56 \pm 1.5 \mathrm{~cm}$ at the base. It takes 186 ± 4.8 days from planting to flowering and 76 ± 3.3 days from flowering to harvest.

Pseudostem: light green with light brown blotches near the base of the petiole only.

Leaves: petiole $32.75 \pm 0.89 \mathrm{~cm}$ long, margins slightly spreading, not clasping pseudostem, margins of petiole light pink in colour, lamina $149 \pm 2.9 \mathrm{~cm}$ long $64 \pm 9.8 \mathrm{~cm}$ broad, base of lamina unequal, base truncate, apex cordate, number of leaves 19 ± 0.28.

Inflorescence: with basal female and distal male flowers, female axis horizontal, male axis positively geotropic, male flowers deciduous, peduncle medium long, glabrous.

Bract: deciduous, shoulder high, ovate, apex abtuse, colour dark purple outide, light crimson inside, inside bract colour continuous to the base, reflex and roll back after opening, bract scars not prominent.

Female flowerg: arranged in two rows, united tepal $4.5 \pm$ 0.04 cm long and $2.3 \pm 0.01 \mathrm{~cm}$ broad, colour cream with light pink flush, lobes $3+2$, acute, free tepal 3.5 ± 0.01 on long, $3.2 \pm 0.01 \mathrm{~cm}$ broad, creamy white below tip corrugatec stamens not fertile, staminodes $5,3.6 \pm 0.05 \mathrm{~cm}$ long, cream with light black colour at the tip, with no anther
lobes; pistil $13.6 \pm 0.12 \mathrm{~cm}$ long, stigma colour cream, with 3 lobes; ovary $10 \pm 0.12 \mathrm{~cm}$ long, $7.2 \pm 0.3 \mathrm{ca}$ in circumference, light green with pink flush at the base, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.8 \pm$ 0.05 cm long, $2 \pm 0.02 \mathrm{~cm}$ broad, cream with pin flush, lobes $3+2$, acute, free tepal $2.3 \pm 0.02 \mathrm{~cm}$ long, $2 \pm 0.01 \mathrm{~cm}$ broad, colour cream, below tip corrugated; stamens 5, none fertile, filament, $2.3 \pm 0.02 \mathrm{~cm}$ long, colour cream, anther lobes $2.2 \pm 0.01 \mathrm{~cm}$ long, yellowish brown with no pollen grains, pistillode $4.5 \pm 0.13 \mathrm{~cm}$ long, stigina light yellow, ovary colour greenish yellow.

Bunch: position of mature bunch 55° to 60° to the stem, bunch weight $5.75 \pm 0.25 \mathrm{~kg}$, number of fingers $51 \pm$ 3.8 , number of hands 6.5 ± 0.18, fingers in a hand loose. Finger: $11.23 \pm 0.25 \mathrm{~cm}$ long anc $11.83 \pm 0.23 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to apex, apex indistinct, finger weight $68 \pm 3.3 \mathrm{~g}$.

Ripe fruit: dull greenish yellow, separate easily from the hand, rind thick, pulp colour cream, thick, not starchy, fit for consumption, pulp taste sweet, TiS $24.00 \pm$ 0.88%, total sugars $17.15 \pm 0.25 \%$, reducing sugars $14.20 \pm$ 0.12%, nor reducing sugars $1.81 \pm 0.08 \%$, sugar/acid ratio 41.43 ± 1.3, keeping quality medium.

PLATE 18. Muss ($\angle A B$ Group) 'Pacha nadan'
1.29 Musa (AAB Group) 'Nendra padaththi'

Whe plant is $222.5 \pm 3.6 \mathrm{~cm}$ tall with a circumference of $55.75 \pm 1.6 \mathrm{~cm}$ at the base. It takes $181 \pm$ 3.5 days from planting to flowering and 83 ± 2.8 days from flowering to harvest.

Pseudosteri light green with brown to black blotches near the base of petiole.

Leavest petiole $44.5 \pm 1.2 \mathrm{~cm}$ long, not claaping pseudostem, margins of petiole slightly spreading, light pink in colour, lamina $188 \pm 3.2 \mathrm{~cm}$ long $69 \pm 1.2 \mathrm{~cm}$ broad, base of lamina, mequal, base truncate, apex cordate, number of leaves 19 ± 0.26.

Inflorescence: with basal female and distal male flowers, female axis horisontal till maturity, male axis pendulous, bracts and male flowers persistent for a few days in some clones.

Bract: persistent in some clones, shoulder low, do not reflex and roll back after opening, ovate, apex obtuse, outside colour brownish purple, inside colour light crimson, bract scars not prominent.

Pemale flowers: arranged in two rows, inited tepal 4.4. \pm 0.03 cm long and $2.3 \pm 0.02 \mathrm{~cm}$ broad, colour cream with IIght pink flush, Lobes $3+2$, acute, free tepal $3.5 \pm 0.02 \mathrm{~cm}$
long, $3.2 \pm 0.01 \mathrm{~cm}$ broad, creany wite, below tip corrugated; stamens not fertile, staminodes $5,3.4 \pm$ 0.03 cm long, colour cream, with no anther lobes; pistil $13.5 \pm 0.13 \mathrm{~cm}$ long, stigma colour pale yellow, with 3 lobes; ovary $9.9 \pm 0.13 \mathrm{~cm}$ long $7 \pm 0.09 \mathrm{~cm}$ in circumference, colour light green with pink flush towards the base, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united topal $4.8 \pm$ 0.08 cm long, $2.3 \pm 0.02 \mathrm{~cm}$ broad, colour cream with pink flush, lobes $3+2$, acute, free tepal $2.2 \pm 0.01 \mathrm{~cm}$ long, $2.1 \pm 0.01 \mathrm{~cm}$ broad, colour cream, below tip corrugated; stamens 5 , none fertile, filament 2.3 cm long, colour creain, anther lobes $2.1 \pm 0.01 \mathrm{~cm}$ long, colour yellowish brown pistillode $4.6 \pm 0.09 \mathrm{~cm}$ long, stigna pale yellow.

Bunch: Position of mature bunch 55° to 60° to the stem, bunch weight $3.75 \pm 0.2 \mathrm{~kg}$, number of fingers $49 \pm$ $3.2, \ldots$ number of hands 4 ± 0.18, fingers loosely arranged.

Finger: $11.25 \pm 0.3 \mathrm{~cm}$ long and 12.08 cm in circumference, angular with 5 unequal sides, slightly tapering to the tip, straight, apex indistinct, finger weight' $64.64 \pm 2.5 \mathrm{~g}$. Rine fruit: colour dull greenish yellow, separate easily from the hand rind thick, pulp colour cream, thick, not starchy, fit for consumption, taste sweet, TSS $2.4 \pm 1.3 \%$, total sugars $16.35 \pm 0.41 \%$, redueing sugars $14.86 \pm 0.08 \%$ non reducing sugars $1.43 \pm 0.10 \%$ gugartacid ratio $39.91 \pm$ 2.1, keeping quality mediua.

PLATE 19. Muse (AAB Group) 'Nendra padatinthi'

1.30 Muse (AAB Group) 'Ghara padaththi'

The plant is $212.5 \pm 3.8 \mathrm{~cm}$ tall with a circumference of $51.25 \pm 0.75 \mathrm{~cm}$ at the base. It takes $168 \pm$ 2.1 days from planting to flowering and 74 ± 1.3 days from flowering to harvest.

Psoudostem: light green with brown to black blotches towards the base of the petiole.

Leaves: petiole $51 \pm 1.02 \mathrm{~cm}$ long, slightly clasping pseudostem, margins of petiole slightly inclosed, slight pink in colour, lamina $184 \pm 2.5 \mathrm{~cm}$ long, $67 \pm 1.8 \mathrm{~cm}$ broad, base of lamina, unequal base and apex truncate, number of leaves 27 ± 0.81.

Inflorescence: with basal female and distal male flowers, female axis semipendulous, male axis positively ageotropic, male flowers and bracts persistent, peduncle medium long and glabrous.

Bract: persistent, kow , do not reflex and roll back after opening, ovate, apex acute, colour brownish purple outside, light crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.6 \pm$ 0.05 cm long and $2.3 \pm 0.02 \mathrm{~cm}$ broad, pale yellow with slight pink flush, lobes $3+2$, obtuse, free tepal $3.5 \pm$ 0.02 cm long, $3.2 \pm 0.01 \mathrm{~cm}$ broad, cream with light pink tinge below tip corrugeted; no fertile stamens, staminodes 5,
$2 \pm 0.01 \mathrm{~cm}$ long, very small with anther lobes; pistil $13.3 \pm 0.12 \mathrm{~cm}$, bupale yellow, with 3 lobes; ovary $8.8 \pm$ 0.12 cm long, $7.5 \pm 0.14 \mathrm{~cm}$ in circumference, colour greenish yellow, ovules arranged in two regular rows.

Male flowers: arranged in two rows, united tepal $5 \pm 0.10 \mathrm{~cm}$ long, $4 \pm 0.08 \mathrm{~cm}$ broad, yellowish pink outside, light pink inside, lobes $3+2$, acute, free tepal $2.8 \pm 0.01 \mathrm{~cm}$ long $2.3 \pm 0.01 \mathrm{~cm}$ broad, cream with pink flush at the tip, below tip corrugated; stamens 5, none fertile, filament 2.5 cm long cream in colour with pink flush, anther lobes black and thread like except in one or two stamens per flower; pistillode $4.2 \pm 0.04 \mathrm{~cm}$ long, stigma colour pale yellow, ovary greenish with light pink band towards the base.

Bunch: position of mature bunch 45° to 50° to the stem, bunch weight $7.5 \pm 0.12 \mathrm{~kg}$ number of fingers $89 \pm$ 3.4, number of hands 7 ± 0.12, fingers in a hand loosely arranged.

Finger: $11.04 \pm 0.05 \mathrm{~cm}$ long and $10.73 \pm 0.06 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightiy tapering to the tip, apex indistinct, finger weight $86.25 \pm 3.3 \mathrm{~g}$. Ripe fruit: colour dull greenisk yellow, loosely attached to the hand, separate easily rind thick, pulp colour, cream, thick fit for consumption, tasce sweet, TSS $21 \pm$ 0.56%, total sugars $15.43 \pm 0.02 \%$, reducing sugars $13.80 \pm$ 0.05% non reducing sugars $1.55 \pm 0.08 \%$, sugar/acid ratio 35.51 ± 3.5, keeping quality medium.

PLATE 20. Musa (ABB Group) 'Charapadaththi'

1.31 Musa (AAB Group) 'Kullan'

The plant is $159 \pm 2.8 \mathrm{~cm}$ tall with a circumference of $53.75 \pm 0.1 \mathrm{~cm}$ at the base. It takes 173 ± 2.5 days from planting to flowering and 95 ± 2.1 days from flowering to harvest.

Paeudostem: light green with brown to black blotches towards the base of the petiole.

Leaveg: petiole $25.25 \pm 0.81 \mathrm{~cm}$ long, slightiy clasping pseudostem, margins of petiole slightly inclosed, lamina $144 \pm 1.5 \mathrm{~cm}$ long, $66 \pm 1.6 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate; number of leaves 26 ± 0.84.

Inflorescence: with basal female and distal male flowers, female axis semi pendulous, male axis positively geotropic, male flowers and bracts persistent, peduncle medium long and glabrous.

Bract: persistent, shoulder low, do not roll back after opening, ovate, apex acute, colour brownish purple outside, light crimson maside, inside bract colour continuous to the base:

Female flowers: arranged in two rows, united tepal $3.6 \pm$ 0.05 cm long and $1.3 \pm 0.03 \mathrm{~cm}$ broad, pale yellow with pink flush, lobes $3+2$, obtuse, free tepal $2.5 \pm 0.02 \mathrm{~cm}$ long, $2.2 \pm 0.01 \mathrm{~cm}$ broad, cream with light pink tinge, below tip corrugated; stamens not fertile, staminodes 5,
$2 \pm 0.02 \mathrm{~cm}$ long, with no anther lobes; pistil $9.3 \pm$ 0.13 cm long, stigma pale yellow, with 3 lobes; ovary $6.8 \pm 0.22 \mathrm{~cm}$ long, $5.5 \pm 0.24 \mathrm{~cm}$ in circumference, colour greenish yellow, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $3.1 \pm$ 0.10 cm long, $2.1 \pm 0.08 \mathrm{~cm}$ broad, yellowish pink outside, light pink inside, lobes $3+2$, acute, free tepal $1.8 \pm$ 0.01 cm long, $1.3 \pm 0.01 \mathrm{~cm}$ broad, cream with pink flush, below tip corrugated; stamens 5, not fertile, filament $1.5 \pm 0.02 \mathrm{~cm}$ long, cream, anther lobes $\underset{\substack{1,2}}{2.1} \pm 0.05 \mathrm{~cm}$ long, black thred like structures except pistillode $33 \pm 0.04 \mathrm{~cm}$ long, stigma colour pale yellow, ovary greenish yellow with pink flush.

Bunch: position of mature bunch $45^{\circ}-50^{\circ}$ to the s tem, bunch weight $3.75 \pm 0.15 \mathrm{~kg}$, number of fingers 72 ± 1.78 fingers, number of hands 7 ± 0.58, hands and fingers loose.

Finger: $9.83 \pm 0.15 \mathrm{~cm}$ long and $9.0 \pm 0.08 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, tapering to the tip, apex indistinct, finger weight 45.50 ± 1.8.

Fipe fruit: colour dull yellow, easily separate from the hand, rind thick, pulp creany wite, not atarchy, fit for consumption, taste sweet, TSS $23 \pm 1.5 \%$, total sugars $12.75 \pm 0.50 \%$, reducing sugars $10.73 \pm 0.21 \%$, non reducing sugars $1.93 \pm 0.06 \%$, sugar acid ratio $42.75 \pm$ 1.8, keping pexy matiom.

PLATE 21. Musa (AAB Group) 'Kullan'
1.32 Musa (AAB Group) 'Cainali'

The plant is $241 \pm 2.5 \mathrm{~cm}$ tall with a circumference of 63.75 cm at the base. It takes 232 ± 1.8 days from planting to flowering and 94 ± 1.2 days from flowering to harvest.

Pseudostem: yellowish green with lisht black blotches.

Leaves: petiole 58.75 cm long, not clasping pseudostem, margins of petiole inclosed, slightly winged below,lamina $215 \pm 3.1 \mathrm{~cm}$ long, $68 \pm 1.6 \mathrm{~cm}$ broad, base of lamina unequal, base broadly obtuse, apex truncate, nu:aber of leaves 25 ± 0.23.

Inflorescence: with basal female and distal aale flowers, feale and aale axis positively geotropic, male flo ers and bracts persistent, peduncle lons and pubescent. Bract: persistent, snoulder low, oroadly ovate, apex obtuse, do not roll back after opening, col ur brownish purple outside, brisht crimson inside, inside colour continuous to the base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $5.1 \pm$ 0.03 cm long and $2.0 \pm 0.03 \mathrm{~cm}$ broad, colour pale yellow flushed with pink, lobes $3+2$, acute, colour orange yellow, free tepal $2.5 \pm 0.10 \mathrm{~cm}$ long, $2.0 \pm 0.05 \mathrm{~cm}$ broad, colour pale yellow, below tip corrugated; stanens not fertile, staminodes $5,2.0 \pm 0.13 \mathrm{~cm}$ long, colour pale
yellow, with no anther lobes; pistil $11.2 \pm 0 . \$ 5 \mathrm{~cm}$ long, stigma colour rich yellow, with 3 lobes; overy $9.1 \pm 0.08 \mathrm{~cm}$ long, $7.1 \pm 0.07 \mathrm{~cm}$ in circumference, colour yellowish green flushed with pink at the tip, ovules arranged in two regular rows in each loculus. Male flowers: arranged in two rows, united tepal $43 \pm$ 0.05 cm long, $2.1 \pm 0.03 \mathrm{~cm}$ broad, colour pale yellow flushed with pink, lobes 3+2, acute, colour orange yellow, free tepal $3.2 \pm 0.01 \mathrm{~cm}$ long, $1.8 \pm 0.01 \mathrm{~cm}$ broad, below tip corrugated, stamens 5, all fertile, filanent $2.3 \pm$ 0.03 cm lons, colour pale yellow, . anther lobes $2.9 \pm 0.02 \mathrm{cin}$ long, colour yellow, pistillode $4.8 \pm 0.07 \mathrm{~cm} \mathrm{ics}^{2}$. flushed with pink, stigma colour rich yellow, ovary yellowish green flushed with pink.

Bunch: position of mature bunch 30° to the stem, bunch weight $8 \pm 0.12 \mathrm{~kg}$, number of fingers 85 ± 1.5, number of hands 9 ± 0.12, hands and fingers loose. Finger: $10.38 \mathrm{~cm} \pm 0.15 \mathrm{~cm}$ long and $9.25 \pm 0.08 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to the tip, apex distinct, very short, finger weight $107.23 \pm 2.5 \mathrm{~g}$.

Elpe frutt: colour dull yellow, firmy attached to hand, rind thick, pulp colour orange yellow, soft, tasie sweet, TSS $23 \pm 0.89 \%$, total sugars $8.56 \pm 0.13 \%$, reducing sugars $6.45 \pm 0.10 \%$, non reducing sugars $2.01 \pm 0.07 \%$, sggar/acid ratio 27.67 ± 0.98 keeping quality good.

1.33 Musa (AAB Group) 'Nendran'

The plant is $283.5 \pm 2.5 \mathrm{~cm}$ tall with a circumference of $54.85 \pm 1.2 \mathrm{~cm}$ at the base. It takes $280 \pm$ 3.6 days from planting to flowering and 95 ± 2.4 days from flowering to harvest.

Pseudostem: yellowish green with redciish tinge. and with dark brown blotches towards the bases of petioles.

Leaves: are leathery, polished, petiole 54.25 \pm 1.5 cm long, not clasping pseudostem, margins of petiole inclosed, red coloured, slightly winged below, lamina $150 \pm 2.5 \mathrm{~cm}$ long, $57 \pm 1.5 \mathrm{~cm}$ broad, base of lamina unequal, base broadly obtuse, apex truncate, number of leaves 27 ± 0.26.

Inflorescence: with basal female and distal male flowers, female axis semipendulous, male axis, positively geotropic, male flowers persistent, peduncle medium long, glabrous.

Bract: persistent, shoulder low, slightly curl after opening, ovate, obtuse, brownish purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $5.2 \pm$ 0.04 cm long and $3.5 \pm 0.02 \mathrm{~cm}$ broad, colour cream with pink blotches towards the base, lobes $3+2$, acute, free
tepal $3.8 \pm 0.01 \mathrm{~cm}$ long, $3.2 \pm 0.02 \mathrm{~cm}$ broad, below tip slichtly corrugated; colour creamy waite, stamens not fertile, staminodes $5,2.3 \pm 0.01 \mathrm{~cm}$ Iong, colour cream, with no anther lobes; pistil $16.5 \pm 0.13 \mathrm{~cm}$ long, stigma creany white, with 6 lobes; ovary $14.1 \mathrm{~cm} \pm$ 0.09 long, $10.5 \pm 0.04 \mathrm{~cm}$ in circumference, yellowish green, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.5 \pm$ 0.04 cm long, $3.2 \pm 0.03 \mathrm{~cm}$ broad, colour creamy white, slightly flushed with pink, lobes $3+2$, acute, aree tepal $3.1 \pm 0.02 \mathrm{~cm}$ long, $2.6 \pm 0.03 \mathrm{~cm}$ broad, below tip corrugated, stamens 5, all fertile, filament $2.6 \pm 0.04 \mathrm{~cm}$ long, creamy white, anther lobes $3.3 \pm 0.03 \mathrm{~cm}$ long; pistillode $5.2 \pm 0.1 \mathrm{~cm}$ long, stigma pale yellow, ovary yellowish green.

Bunch: position of mature bunch 30° to the stem, bunch weight $13.5 \pm 0.35 \mathrm{~kg}$, number of fingers 75 ± 2.4, number of hands: 6 ± 0.13, hands and fingers loose. Finger: $24.32 \pm 0.85 \mathrm{~cm}$ long and $13.31 \pm 0.41 \mathrm{~cm}$ in circumference, angular with 5 prominent ridges, slightiy tapering to the tip, apex didtinct, stout, finger weight $173.23 \pm 3.2 \mathrm{~g}$.

Ripe fruit: yellow in colour, firmiy attached to the hand, rind thick, pulp yellowish orange, thick, taste sweet, TSS $29.30 \pm 0.45 \%$ total sugars $15.94 \pm 0.75 \%$, reducing sugars $13.22 \pm 0.13 /$ non reducing sugars $1.27 \pm$ 0.08%, sugar/acid ratio 55.34 ± 2.2, keeping quality good.

1.34 Yuss (AB Group) 'Krishna vazhai'

The plant is 237 ± 3.6 on thill with a oirounference of 58 ± 2.1 om at the base. It takes 171 ± 3.2 days from planting to flowering and 71 ± 1.6 days from flowering to harvest.

Paeudoatem: light green with large black blotohes throughout.

Learea: petiole 34.25 ± 0.25 om long, not olasping pseudostem, margins of petiole ereot, red in colour, lanina $190 \pm 1.2 \mathrm{~cm}$ long, $61 \pm 1.5 \mathrm{~cm}$ broad, base of lamia unequal, base cordate, apex truncate, number of leaves 22 ± 0.52.

Inflorescence: with basal female and distal male flowers, female axis almost horizontal, male axks positively geotruple, male flowers deciduous, pedunole medium long and glabroue,

Bract: deciduous, shoulder low, reflex and roll back after ripening, ovate, apex obtuse, inside bract oolour concinuous to the bese, bract soars prominent.

Eerole hovers: arranged in two rows, united tepal $4 \pm$ 0.02 cm long and $2 \pm 0.01 \mathrm{~cm}$ broad, colour cream, pink band at the base, lobes 3+2, acurinate, free tepal $2.9 \pm$ $9.01 \mathrm{~cm} \mathrm{long} ,2.5 \pm 0.02 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staninodes 5, $2.3 \pm$ 0.12 cm long, colour cream, wita no anther lobes; pistil
$13.3 \pm 0.13 \mathrm{~cm}$ long, stigma pale yellow, with 3 lobes; ovary $9.3 \pm 0.08 \mathrm{~cm}$ long, in circumference, colour greenish yellow, ovules arranged in two regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $4.5 \pm$ 0.03 cm long, 2.2 ± 0.02 broad, colour cream with pink flush, lobes $3+2$, acuminate, free tepal $2.3 \pm 0.04 \mathrm{~cm}$ long $2 \pm 0.02 \mathrm{~cm}$ broad, colour creany white, below tip corrugated; stamens 5, none fertile, filament $2 \pm 0.05 \mathrm{~cm}$ long, colour cream, anther lobes $2.3 \pm 0.02 \mathrm{~cm}$ long, colour brownish black, pistillode $4.8 \pm 0.10 \mathrm{~cm}$ long, stigma colour cream ovary greenish yellow with pink flush.

Bunch: position of mature bunch $60-70^{\circ}$ to the stem, bunch weight $5.25 \pm 0.21 \mathrm{~kg}$, number of fingers $78 \pm$ 3.1, number of hands: 6 ± 0.10 hands and fingers loose. Finger: $13.75 \pm 0.52 \mathrm{~cm}$ long and 10.88 ± 0.46 in circumference, angular with 5 unequal sides, tapering to the tip, apex distinct, shortifinger weight $58 \pm 1.4 \mathrm{~g}$.

Ripe fruit: colour dull greenish yellow, firmly attached to the hand, rind thick, pulp colour creany white, thick, not starchy, taste sweet, ISS $24.03 \pm 0.25 \%$, total sugars $16.11 \pm 0.12 \%$, reducing sugars $15 \pm 0.18 \%$, non reducing sugars $1.05 \pm 0.05 \%$, sugar/acid ratio 31.65 ± 1.7, keeping quality good.

PLATE 23. Musa (AB Group) 'Krishna vazhai'

1.35 Kuse (AB Group) 'Vannan'

The plant is $227 \pm 1.5 \mathrm{~cm}$ tall with a circumference of 52.50 cm at the base. It takes 174 ± 2.2 days from planting to flowering and 70 ± 1.7 days from flowering to harvest.

Pseudostem: light green with dark brown to black blotches.

Leaves: petiole $32.75 \pm 0.65 \mathrm{~cm}$ long, not clasping pseudostem, margins of petiole erect, red in colour, lamina $183 \pm 1.5 \mathrm{~cm}$ long, $64 \pm 2.0 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 18 ± 0.61.

Inflorescence: with basal female and distal

 male flowers, female axis almost horizontal, male axis positively geotropic, male flovera deciduous, peduncle medium long and glabrous.Bract: deciduous, shoulder low, reflex and roll back after opening, ovate, apex obtuse, colour brownish purple outside, light crimson inside, inside colour continuous in the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.2 \pm$ 0.04 cm long and $2 \pm 0.02 \mathrm{~cm}$ broad, colour cream, pink band at the base, lobes 3+2, acuminate, free tepal $2.8 \pm$ 0.02 cm long, $2.2 \pm 0.01 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes 5, $2.3 \pm$
0.10 cm long, colour cream, with no anther lobes; pistil $12.5 \pm 0.21 \mathrm{~cm}$ long, stigma. pale yellow with 3 lobes; ovary $8.6 \pm 0.12 \mathrm{~cm}$ long, $6.3 \pm 0.09 \mathrm{~cm}$ in circumference, colour greenish yellow, ovules arranged in two regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $4.7 \pm$ long, 6.00 cm broad, colour cream with pink flush, lobes $3+2$, free tepal $1.8 \pm 0.02 \mathrm{~cm}$ long, $1.6 \pm 0.01 \mathrm{~cm}$ broad, colour creamy white, below tip corrugated; stamens 5 , none fertile, filament $2.5 \pm 0.10 \mathrm{~cm}$ long, colour cream, anther lobes $2 \pm 0.02 \mathrm{~cm}$ lon , colour brownish black; pistillode $4.5 \pm 0.22 \mathrm{~cm}$ long, stigma colour cream, ovary greenish yellow with pink flush.

Bunch: position of mature bunch $60^{\circ}-70^{\circ}$ to the stem, bunch weight $3.75 \pm 0.21 \mathrm{~kg}$, number of fingers 81 ± 3.2, number of hands, 6 ± 0.13, hands and fingers loose.

Finger: $10.48 \pm 0.32 \mathrm{~cm}$ lons and $10.25 \pm 0.25 \mathrm{~cm}$ in circumference, angular with 5 unequal sides,tapering to the tip, apex distinct, short, finger weight $45.5 \pm 2.5 \mathrm{~g}$.

Ripe frutt: Colour dull greenish yellow, firmly attached to the hand, rind thick, pulp colour creamy white, thick, not starchy, taste sweet with a good flavour, TSS $21.50 \pm 0.25 \%$, total sugars $16.91 \pm 0.16 \%$, reducing sugars $14.51 \pm 0.55 \%$, non reducing sugara $2.28 \pm 0.05 \%$, sugar/acid ratio 37.15 ± 1.5, keeping quality good.
1.36 Musa (AB Group) 'Virupakshi'

The plant is $251 \pm 2.8 \mathrm{~cm}$ tall with a circumference of $54 \pm 0.79 \mathrm{~cm}$ at the base. It takes $174 \pm$ 2.5 days from planting to flowering and 70 ± 1.5 days from flowering to harvest.

Pgeudostem: light green with dark brown to black blotches.

Leaves: slightiy yellowish green, petiole $53.75 \pm$ 0.85 cm long, not clasping pseudostem, margins of petiole red in colour, not touching, lamina $181 \pm 2.5 \mathrm{~cm}$ long, $67 \pm 1.8 \mathrm{~cm}$ broad, base of lamina unequal, cordate, apex trincate, number of leaves 19 ± 0.52.

Inflorescence: with basel female and distal male flowers, female axis horizontal till maturity, mele axis positively geotropic, male flowers deciduous, peduncle madium long and glabrous.

Bract: deciduous, shoulder low, reflex and roll back after opening, ovate, apex obtuse, colour browish purple outside, light crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4 \pm$ 0.03 cm long and $2 \pm 0.01 \mathrm{am}$ broad, cream with pink flush, lobes $3+2$, acute, free tepal $2.6 \pm 0.02 \mathrm{~cm}$ long, $2.5 \pm 0.01 \mathrm{~cm}$ broad, colour cream, below tip corrugated; stamens not fertile, staminodes $5,2.1 \pm 0.20 \mathrm{~cm}$ long, colour cream with no enther lobes; pistil $12.3 \pm 0.62 \mathrm{am}$
long, stigma. calour cream, with 3 lobes; ovary $8.5 \pm$ 0.15 cm long, $6.2 \pm 0.20 \mathrm{~cm}$ in circumference, greenish yellow with pink flush at the tip, ovules arranged in 2 regular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $4.6 \pm$ 0.2 cm long, $1.9 \pm 0.05 \mathrm{~cm}$ broad, colour pale yellow, lobes $3+2$, acute, free tepal $2 \pm 0.05 \mathrm{~cm}$ long, $1.7 \pm$ 0.02 cm broad, below tip corrugated; stamens 5, none fertile, filament $2.5 \pm 0.12 \mathrm{~cm}$ long, colour cream, anther lobes $2 \pm 0.11 \mathrm{~cm}$ long, colour brownish black, pistillode $4.6 \pm 0.26 \mathrm{~cm}$ long, stigma colour pale yellow, ovary greenish yellow with pink band.

Bunch: position of mature bunch $60-70^{\circ}$ to the stem, bunch weight $4 \pm 0.13 \mathrm{~kg}$, number of fingers $63 \pm$ 2.6, number of hands 5 ± 0.21, hands and fingers loose.

Finger: $9.88 \pm 0.26 \mathrm{~cm}$ long and $9.5 \pm 0.56 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightiy tapering to the tip, apex distinct, short, finger weight $42.58 \pm 0.72 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmly attached to the hand, rind thick, pulp creamy white, thick, not starchy, taste sweet with good flavour, TSS $22.50 \pm 0.78 \%$, total sugars $19.12 \pm 0.65 \%$, reducing sugars $17.85 \pm 0.52 \%$, non reducing sugars $1.54 \pm 0.25 \%$, sugar/acid ratio 55.43 ± 1.2, keeping quality good.

1.3.7 Muse (AB Group) 'Sirumalai'

The plant is 229 ± 2.5 an tall at flowering with a circumference of $52.50 \pm 1.6 \mathrm{~cm}$ at the base. It takes 170 ± 1.3 days from planting to flowering and 71 ± 1.2 days from flowering to harvest.

Pseudostem: light green with dark brown to black blotches.

Leaves: petiole $33.00 \pm 0.85 \mathrm{~cm}$ long, not clasping pseudostem, margin: of petiole erect, pink in colour, lamina $167 \pm 3.5 \mathrm{~cm}$ long, $63 \pm 2.1 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 21 ± 0.38.

Inflorescence: with basal female and distal male flowers, female axis horizontal till maturity, male axis positively geotropic, male flowers deciduous, peduncle medium long and glabrous.

Bract: deciduous, shoulder low, reflex and roll back ofter opening, ovate, apex obtuse, colour brownish purple outsie, light crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arranged in two rows, united tepal $4.2 \pm$ 0.04 cm long and $2.2 \pm 0.02 \mathrm{~cm}$ broad, colour cream with pink flush, lobes 3+2, acute, free tepal $2.8 \pm 0.03 \mathrm{~cm}$ long, $2.6 \pm 0.03 \mathrm{~cm}$ broad, colour creamy white, below tip corrugated; atamens not fertile, staminodes 5, $2.3 \pm$
0.20 cm long, with an anther lobes; pistil $12.5 \pm 0.52 \mathrm{~cm}$ long, stigma colour cream with 3 lobes; ovary $8.7 \pm$ 0.16 cm long, $6.4 \pm 0.20 \mathrm{~cm}$ in circumference, greenish yellow with pink flush, ovules arranged tn two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.8 \pm$ 0.12 cm long, $2.1 \pm 0.04 \mathrm{~cm}$ broad, colour pale yellow flushed with pink, lobes 3+2, acute, free tepal 2.2 long $1.8 \pm 0.03 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, none fertile, filament $2.7 \pm 0.22 \mathrm{~cm}$ long, colour cream, anther lobes $2 \pm 0.91 \mathrm{~cm}$ long, colour brownish black, pistillode $4.7 \pm 0.21 \mathrm{~cm}$ long, stigma colour pale yellow, ovary greenish yellow with pink flush.

Bunch: position of mature bunch $60^{\circ}-70^{\circ}$ to the stem, bunch weight $4 \pm 0.15 \mathrm{~kg}$, number of fingers 74 ± 1.7, number of hands 6 ± 0.12, hands and fingers loose.

Finger: $10.88 \pm 0.11 \mathrm{~cm}$ long and $9.75 \pm 0.06 \mathrm{~cm}$ in circumforence, angular with 5 unequal sides, slightly tapering to the tip, apex distinct, short, finger weight $54.38 \pm$ 1.01 g.

Rlpe frutt: colour dull yellow, firmy attached to the hand, rind thick, pulp colour oreamy white, thick, not
 total sugars $19.25 \pm 0.21 \%$, reducing sugars $18.31 \pm$ 0.09%, non reducing sugars $1.19 \pm 0.05 \%$, sugar/acid ratio 46.40 ± 1.8, keeping quality good.

1.38 Musa (AB Group) 'Agniswar'

The plant is $233 \pm 4.5 \mathrm{~cm}$ tall at flowering with a circumference of $44.5 \pm 1.5 \mathrm{~cm}$ at the base. It takes 177 ± 4.5 days from planting to flowering and 108 ± 2.8 days from flowering to harvest.

Pseudostem: is light green with slight brown to black blotches.

Leaves: petiole $37.25 \pm 0.75 \mathrm{~cm}$ long, slightly clasping pseudostem, margins of petiole erect, red coloured, with wings below, lamina $163 \pm 3.8 \mathrm{~cm}$ long $63 \pm 1.5 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 30 ± 0.78.

Inflorescence: with basal female and distal male flowers, female axis horisontal, male axis positively geotropic, ale flowers deciduous, peduncle medium long and glabrous.

Bract: deciauous, shoulder high, outside colour, dark purple, glaucous,inside colour bright crimson, inside colour continuous, broadly ovate, do not roll back after opening, apex obtuse, bract scars scarcely prominent.

Fembe flowerg: arranged in two rows, united tepal $4.2 \pm$ 0.05 cm long and $2.0 \pm 0.02 \mathrm{~cm}$ broad, cream with pink flush, lobes $3+2$, acute, free tepal $3.2 \pm 0.04 \mathrm{~cm}$ long, $2.3 \pm$ 0.02 cm broad, colour cream, below tip corrugated; stamens not fertile, staminodes $5,2.5 \pm 0.02 \mathrm{~cm}$ long, colour cream,

PLATE 25. Misa (AB Group) 'Sirumalai'

1.38 Musa (AB Group) 'Agniswar'

The plant is $233 \pm 4.5 \mathrm{~cm}$ tall at flowering with a circumference of $44.5 \pm 1.5 \mathrm{~cm}$ at the base. It takes 177 ± 4.5 days from planting to flowering and 108 ± 2.8 days from flowering to harvest.

Pseudostem: is light green with slight brown to black blotches.

Leaves: petiole $37.25 \pm 0.75 \mathrm{~cm}$ long, slightly clasping pseudostem, margins of petiole erect, red coloured, with wings below, lamina $163 \pm 3.8 \mathrm{~cm}$ long $63 \pm 1.5 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 30 ± 0.78.

Inflorescence: with basal female and distal male flowers, female axis horizontal, male axis positively geotropic, male flowers deciduous, peduncle medium long and glabrous.

Bract: deciauous, shoulder high, outside colour, dark purple, glaucous,inside colour brisht crimson, inside colour continuous, broadly ovate, do not roll back after opening, apex obtuse, bract scars scarcely prominent.

Femse flowers: arranged in two rows, united tepal $4.2 \pm$ 0.05 cm long and $2.0 \pm 0.02 \mathrm{~cm}$ broad, cream with pink flush, lobes $3+2$, acute, free tepal 3.2 ± 0.04 cm long, $2.3 \pm$ 0.02 cm broad, colour cream, below tip corrugated; stamens not fertile, staminodes $5,2.5 \pm 0.02$ cii long, colour cream,
with no anther lobes; pistil $14.2 \pm 0.15 \mathrm{~cm}$ long, stigma cream coloured, $2.2 \pm 0.01 \mathrm{~cm}$ in circumference, with 3 lobes; ovary $10.3 \pm 0.40 \mathrm{~cm}$ long, $6.3 \pm 0.03 \mathrm{~cm}$ in circum ference, colour light green, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.8 \pm$ 0.22 cm long, $1.6 \pm 0.04 \mathrm{~cm}$ broad, cream coloured with pink flush, lobes $3+2$, acute, free tepal $2.3 \pm 0.01 \mathrm{~cm}$ long, $1.8 \pm 0.02 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, none fertile, filament $1.5 \pm 0.01 \mathrm{am}$ long, colour cream, anther lobes withered black thread like structure; pistillode $4.2 \pm$ 0.12 cm lang, stigma colour yollow, ovary greenish with intense pink band at the base.

Bunch: position of mature bunch $75-80^{\circ}$ to the stem, bunch weight $5 \pm 0.15 \mathrm{~kg}$, number of fingers $74 \pm$ 3.0, hands 7 ± 0.07, fingers in a hand arranged loosely. Finger: $9.13 \mathrm{~cm} \pm 0.12 \mathrm{~cm}$ long and $7.18 \pm 0.05 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to tip, apex atraight, finger weight $54.64 \pm 2.7 \mathrm{~g}$.

Ripe fruit: dull greenish yellow, loosely attached to the hand, rind thick, pulp cream coloured, slightly starchy, fit for consumption, thick, taste sweet, TSS $23.50 \pm 0.25 \%$ total. sugars $17.18 \pm 1.0 \%$, reducing sugars $15.35 \pm 0.58 \%$, non reducing sugars $1.57 \pm 0.18 \%$, sugar/acid ratio $38.58 \pm$ 1.2, keeping quality medium.

PLATE 26. Nusa (AB Group) 'Agniswar'

1.39 Yusa (AB Group) 'Adakka kunnan'

The plant is $246 \pm 3.6 \mathrm{~cm}$ tall with a circumference of $62.25 \pm 1.3 \mathrm{~cm}$ at the base. It takes 233 ± 3.3 days from planting to flowering and 115 ± 2.1 days from flowering to harvest.

Pseudostam: yellowish green with light black blotches near the base of petiole.

Leaves: petiole $67.5 \pm 0.53 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole red coloured, inclosed, lamina $189 \pm 1.2 \mathrm{~cm}$ long, $68 \pm 1.3 \mathrm{~cm}$ broad, base of lamina unequal, base and apex cordate, number of leaves 31 ± 0.25.

Inflorescence: with basal female and distal male flowers, female axis horizontal, male axis positively geotropic, male flowers deciduous, penduncle medium long, glabrous.

Bract: deciduous, shoulder lisw , broadly ovate, apex obtuse, roll back after opening, colour dull purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars prominent.

Female flowers: arransed in two rows, united tepal $3.1 \pm$ 0.02 cm long and $1.2 \pm 0.02 \mathrm{~cm}$ broad, cream with might pink colour throughout, lobes $3+2$, acuminate, free tepal $2.6 \pm 0.03 \mathrm{~cm}$ long, $1.6 \pm 0.01 \mathrm{~cm}$, broad below tip corrugated; stamens not fertile, staminodes $5,2.0 \pm 0.01 \mathrm{~cm}$ long, colour creamy yellow with no anther lobes; pistil $8.5 \pm 0.07 \mathrm{~cm}$ long,
stigma colour cream, with 4 lobes; ovary $5.5 \pm 0.05 \mathrm{~cm}$ long, $4.2 \pm 0.04 \mathrm{~cm}$ in circumference, greenish yellow with pink flush towards the base, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united tepal $3.2 \pm$ 0.20 cm long, $1.2 \pm 0.03 \mathrm{~cm}$ broad, light pink with cream streaks, lobes $3+2$, acuminate, free tepal $2.2^{\mathbf{t}}=0.02 \mathrm{~cm}$ long, $1.3 \pm 0.01 \mathrm{~cm}$ broad, below tip corrugated; stamens 5, none fertile, filament $1.8 \pm 0.20 \mathrm{~cm}$ long, colour brownish cream, anther lobes $2.0 \pm 0.03 \mathrm{~cm}$ long, pistillode $5.2 \pm$ 0.03 cm lony, stigma colour pale yellow, ovary greenish yellow with pink streaks towards the base.

Bunch: position of mature bunch $50^{\circ}-55^{\circ}$ to the stem, bunch weight $5.5 \pm 0.12 \mathrm{~kg}$, number of fingers $1.26 \pm$ 2.6, number of hands 10 ± 0.01 fingers in a hand very compact.

Finger: $10.68 \pm 0.25 \mathrm{~cm}$ long and $8.75 \pm 0.20 \mathrm{~cm}$ in circumference, mature fingers plumpy, apex distinct, straight, finger weight $48.45 \pm 2.3 \mathrm{~g}$.

R1pe fruit: colour yellow, firmly attached to the hand, rind very thin, pulp colour white, thick, slightly starchy, fit for consumption, taste sweet, TSS $26 \pm 0.14 \%$, total sugars $13.25 \pm 0.12 \%$, reducing sugars $12.78 \pm 0.41 \%$ non reducing sugars $0.95 \pm 0.09 \%$, sugar/acid ratio 49.08 ± 3.6, keeping quality good.

PLATE 2,7. Musa (AB Group) 'Adakka kuman'
1.40 Kuge (AB Group) 'Valiya kunnan'

The plant is $234.5 \pm 3.2 \mathrm{~cm}$ tall with a circumference of $59.5 \pm 1.5 \mathrm{~cm}$ at the base. It takes 234 ± 2.4 days from planting to flowering and 100 ± 1.8 days from flovering to harvest.

Pseudosten: yellowish green with light pink colour and black blotches near the base of petiole.

Leaves: petiole $59.5 \pm 0.43 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole red coloured, inclosed, lamina $204 \pm 3.0 \mathrm{~cm}$ long. $70 \pm 2.1 \mathrm{~cm}$ broad, base of lamina unequal, base and apex obtuse, number of leaves 30 ± 0.27.

Inflorescence: with basal female and distal male flowers, female axis horizontal till naturity, male axis positively geotropic, male flowers deciduous, peduncle medium long, glabrous.

Bract: deciduous, shoulder low, broadly ovate, apex obtuse, reflex and roll back after opening, colour dull purple outside, bright crimson: inside, inside bract colour continuous to the base, bract scars prominent. Pemale flowerg: arranged in two rows, united tepal $5.1 \pm$ 0.06 cm long and $1.9 \pm 0.03 \mathrm{~cm}$ broad, cream with light pink colour throughout, lobes $3+2$, acuminate, free tepal $3.6 \pm 0.04 \mathrm{~cm}$ long, $2.6 \pm 0.05 \mathrm{~cm}$ broad, below tip corrugated; stamens not fertile, staminodes 5, $3.1 \pm 0.10 \mathrm{~cm}$ long, colour creamy yellow, with no anther lobes; pistil
$12.5 \pm 0.12 \mathrm{~cm}$ long, stigma colour cream, with lobes; ovary $7.5 \pm 0.05 \mathrm{am}$ long, $5.4 \pm 0.01 \mathrm{~cm}$ in circumference, greenish yellow with pink flush towards the base, ovules arranged in two regular rows in each loculus.

Male flowers: arranged in two rows, united topal $5.2 \pm 0.10 \mathrm{~cm}$ long, $1.4 \pm 0.04 \mathrm{~cm}$ broad, light pink with cream streaks, lobes $3+2$, acuminate, free tepal $3.5 \pm 0.02 \mathrm{~cm}$ long, $2.3 \pm$ 0.01 cm broad, creamy white, below tip corrugated; stamens 5, none fertile, filement $2.2 \pm 0.10 \mathrm{~cm}$ long, colour yellowish cream, anther lobes $2.3 . \pm 0.12 \mathrm{~cm}$ long, yellowish brown, pistillode $6.5 \pm 0.20 \mathrm{~cm}$ long, stigma colour pale yellow, ovary greenish yellow with pink streaks thvards the base.

Bunch: position of mature bunch $55^{\circ}-55^{\circ}$ to the stem, bunch weight $10.25 \pm 0.14 \mathrm{~kg}$, number of fingers $160 \pm$ $3.4 \quad$ number of hands 12 ± 0.15 hands and fingers compact.
Finger: $14.25 \pm 0.28 \mathrm{~cm}$ long and $10.18 \pm 0.21 \mathrm{~cm}$ in circumference, angular with 3-4 indistinct sides, apex distinct, straight, finger weight 77.79 ± 1.72.

Rlpe fruit: colour yellow, firmly attached to the hand, rind very thin, pulp colour white, not sterchy, taste aweet, TSS $26 \pm 0.15 \%$, total sugars $14.58 \pm 0.32 \%$, reducing sugars $12.90 \pm .35 \%$, non reducing sugars $1.60 \pm 0.40 \%$, sugar/acid ratio 51.16 ± 1.2, keeping quality good.

1.41 Musa (AB Groun) ! Thaex kunnan'

The plant is $245 \pm 3.2 \mathrm{~cm}$ tall with a cirfumforenoe of $51.50 \pm 1.5 \mathrm{~cm}$ at the base. It tades 220 ± 3.5 deys from planting to flowering and 124 ± 1.8 days irom flowering to havest.

2aedeaten: yellowish green with pink colour near the base of petioles.

Leaves: petiole $39.25 \pm 0.65 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, slightly winced below, Lamira $195 \pm .1 \mathrm{~cm}$ long, $62 \pm 2.0 \mathrm{~cm}$ broad, base of lamin twed, oase cordate, apex truncate, number ot leaves $36 \pm .96$.

Inflorescence: with basal female and distal male 3wers, female axis semipendulous, male axis positivily eotropic, male flowers deolduous, peduncle long snd slabrous.

Bract: deciduous, shoxlder low, broadly, apex acute, reflex and roll back fter opening, colour outside dull purple, inside light crimson, inside bract colour continuous to the bese, bract scare prominent.

Female flowers: arranked in two rows, anited tonal 5.1 ± 3.04 cew long und $1.7 \pm 0.03 \mathrm{~cm}$ broad, cream with light jink colour tive thoy, lobes $3+7$, anmirete, free tapal $3.1 \pm 0.0 ? \mathrm{~cm}$ long, $2 . ? \pm 0.02 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staninodes 5 , $; 20.14 \mathrm{~cm}$ long, oolour creamy yellew, with no abter lobes;
pistil $13 \pm 0.25 \mathrm{~cm}$ long, stigma colour cream, with 3 lobes; ovary $7.9 \pm 0.18 \mathrm{~cm}$ long, $5.2 \pm 0.04 \mathrm{~cm}$ in circumference, greenish yellow with pink flush towards the base, orules arranged in two regular rows in each loculus.

Kale flovers: arranged in two rows, united tepal $5.6 \pm 0.10 \mathrm{~cm}$ long, $1.6 \pm 0.07 \mathrm{~cm}$ broad, light pink with cream streaks, lobes $3+2$, acuminate, free tepal $3.5 \pm 0.02 \mathrm{~cm}$ long, $2.1 \pm$ 0.02 cm broad, creamy wite, below tip. corrugated; stamens 5, none fertile, filament $2.5 \pm 0.10 \mathrm{~cm}$ long, colour yellowish cream, pistillode $6.5 \pm 0.21 \mathrm{~cm}$ long, stigma colour pale yellow, ovary greenish yellow with pink streaks towards the base.

Bunch: position of mature bunch $40^{\circ}-45^{\circ}$ to the stem, bunch weight $7.25 \pm 0.15 \mathrm{~kg}$, number of fingers $109 \pm$ 2.4, number of hands 10 ± 0.10, hands and fingers loose.

Finger: 19.68 ± 0.21 am long and $8.23 \pm 0.10 \mathrm{~cm}$ in circumference, angular with 3-4 sides, tapering to the tip, apex distinct, long, finger veight $51.25 \pm 1.2 \mathrm{~g}$.

Ripe fruit: colour yellow, firmly attached to the hand, rind thin, pulp colour white, thick, taste sweet, TSS $29 \pm$ 1.2%, total sugars $17.65 \pm 1.5 \%$, reducing sugars $14.50 \pm$ 0.58%, non reducing sugars $3.04 \pm 0.21 \%$, sugar/acid ratio 58.04 ± 2.2, keeping quality good.

PLATE 28. Musa (AB Group) 'Thaen kuman'

1.42 Husa (AB Group) 'Padali moongil'

The plant is $232.5 \pm 2.24 \mathrm{~cm}$ tall with a circumference of $46.25 \pm 2.18 \mathrm{~cm}$ at the base. It takes $228 \pm$ 2.27 days from planting to flowering and 115 ± 2.5 days from flowering to harvest.

Pseudostem: yellowish green with light pink colour and black blotches near the base of petiole.

Leaves: petiole $60.75 \pm 0.43 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole red coloured, inclosed; lamina $176 \pm 3.0 \mathrm{~cm}$ long, $46 \pm 0.96 \mathrm{~cm}$ broad, base of lamina unequal, base and apex obtuse, number of leaves 28 ± 0.25.

Inflorescence: male axis absent, female axis horizontal; peduncle medium long, glabrous.

Bract: female flowers deciduous, shoulder low , broadly ovate, apex obtuse, roll back after opening, colour dull purple outside, bright crimson inside, inside bract colour continuous to the base, bract sears prominent.

Female flowers: arranged in two rows, united tepal $6.2 \pm$ 0.05 cm long and $2.3 \pm 0.02 \mathrm{~cm}$ broad, cream with light pink calour throughout, lobes $3+2$, acuainate, free tepal $4.1 \pm 0.03 \mathrm{~cm}$ long, $3.2 \pm 0.02 \mathrm{~cm}$ broad, below tip corrugated; stamens not fertile, staminodes $5,4.2 \pm 0.10 \mathrm{~cm}$ long, colour creamy yellow, with no anther lobes; pistil $14.5 \pm 0.21 \mathrm{~cm}$ long, stigma colour cream, with 4 lobes;
ovary $8.5 \pm 0.06 \mathrm{am}$ long, $6.1 \pm 0.04 \mathrm{~cm}$ in circumference, greenish yellow with pink flush towards the base, ovules arranged in two regular rows in each loculus.

Bunchi position of mature bunch 90° to the stem; bunch weight $2.5 \pm 0.10 \mathrm{~kg}$, number of fingers 20 ± 0.20, number of hends 4 ± 0.10, hands and fingers loose.

Finger: $15.88 \pm 0.45 \mathrm{~cm}$ long and $11.88 \pm 0.28 \mathrm{~cm}$ in circumference, angular with 3-4 indistinct sides, apex distinct, straight, finger weight $96.5 \pm 2.12 \mathrm{~g}$.

Ripe fruit: colour yellow, firmy attached to the hand, rind very thin, pulp colour wite, not starchy, taste sweet, TSS $28 \pm 0.16 \%$, total sugars $16.72 \pm 0.31 \%$, reducing sugars $13.70 \pm 0.40 \%$, non reducing sugars $2.87 \pm$ 0.81%, sugar/acici ratio 7.64 ± 2.0, keeping quality good.

In cultivar 'Padali moongil' taxonomic acoring for characters of male flowers could not be done because of the absence of male axis. The cultivar 22 chromosomes (2n:22) and has similar morphological characters of 'Vallya kuman'.

PLATE 29. Musa (AB Group) 'Padal1 moongil'

1.43 Muse (AB Group) 'Neypoovan'

The plant is $280.5 \pm 3.34 \mathrm{~cm}$ tall with a circumference of $55.5 \pm 3.17 \mathrm{~cm}$ at the base. It takes $186 \pm$ 1.27 days from planting to flowering and 110 ± 1.15 days from flowering to harvest.

Pseudostem: yellowish green with light pink colour and black blotches near the base of petioles.

Leaves: thick, glaLious below, petiole $56.75 \pm$ 0.53 cm long, clasping pseudostem, margins of petiale red coloured, inclosed, lamina $163 \pm 2.5 \mathrm{~cm}$ long, $5.5 \pm$ 1.1 cm broad, base of lamina unequal, base and apex obtuse, number of leaves 27 ± 0.30.

Tnflorescence: female axis horizontal when imature, male axis positively geotropic, with basal female and distal male flowers, male flowers deciduous, peduncle medium long, glabrous.

Bract: deciduous, shoulder low, broadly ovate, apex obtuse, reflex and roll back after opening, colour dull purple outside, bright crimson inside, inside bract colour continuous to the base, bract soars prominent.

Female flowerg: arranged in two rows, united tepal $5 \pm$ 0.05 cm Iong and $1.8 \pm 0.04 \mathrm{~cm}$ broad, cream with light pink colour throughout, lobes 3+2, acuminate, free tepal $3.5 \pm 0.03 \mathrm{~cm}$ long, $2.2 \pm 0.01 \mathrm{~cm}$ broad, creamy white, below tip corrugated; stamens not fertile, staminodes 3-5,
3.0 cm long, colour creamy yellow with no anther lobes; pistil $12.8 \pm 0.21 \mathrm{~cm}$ long, stigma colour cream, with 4 lobes; ovary $7.8 \pm 0.15 \mathrm{~cm}$ long, $5.3 \pm 0.02 \mathrm{~cm}$ in circumference, greenish yellow with pink flush towards the base, orules arranged in two regular rows in each loculus.

Yale flowerg: arranged in two rows, united tepal $5.3 \pm 0.10 \mathrm{~cm}$ long, $1.4 \pm 0.05 \mathrm{~cm}$ broad, light pink with creamy streaks, lobes $3+2$, acuminate, free tepal $3.3 \pm 0.03 \mathrm{~cm}$ long, $2.1 \pm$ 0.02 cm broad, creamy white, below tip corrugated; stamens 5, none fertile, filament $2.3 \pm 0.10 \mathrm{~cm}$ long, colour yellowish cream, anther lobes $2.5 \pm 0.12 \mathrm{~cm}$ long, yellowish brown, pistillode $6.2 \pm 0.21 \mathrm{~cm}$ long, stigma colour pale yellow, ovary greenish yellow with pink streaks towards the base.

Bunch: position of mature bunch $50^{\circ}-55^{\circ}$ to the stem, bunch weight $10 \pm 0.15 \mathrm{~kg}$, number of fingers 188 ± 4.0, number of hands 12 ± 0.10, hands compact, spirally arranged, fingers in a hand compact.

Einger: $11.13 \pm 0.28 \mathrm{~cm}$ long and $8.65 \pm 0.21 \mathrm{~cm}$ in circumference with 3-4 sides, ridges indistinct, tapering to the tip, apex distinct, straight, finger weight $62.63 \pm 1.62 \mathrm{~g}$

Ripe fruit: colour yellow, firmly attached to the hand, rind very thin, pulp colour white, thick, not starchy, taste sweet with good flavour, 2ss $28.50^{\circ} \pm 0.25 \%$, total sugars $15.65 \pm 0.42 \%$, reducing sugars $13.95 \pm 0.42 \%$, non reducing sugars $1.62 \pm 0.50 \%$ sugar/acid ratio 59.25 ± 2.67, keeping quallty good.
1.44 Musa (AB Group) 'Kostha bontha'

The plant is $315.50 \pm 3.5 \mathrm{~cm}$ tall with a circumference of $69.50 \pm 1.8 \mathrm{~cm}$ at the base. It takes 233 ± 3.1 days from planting to flowering and 108 ± 2.0 days from flowering to harvest.

Pseudostem: light green with pink colour near the base of petiole.

Leaves: petiole $54.25 \pm 1.0 \mathrm{~cm} \mathrm{lon}_{5}$, clasping pseuaostem, margins of petiole inclosed, slightly winged below, lamina $230 \pm 7.5 \mathrm{~cm}$ long, $44 \pm 0.78 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex trunc te, nu toer of leaves 36 ± 0.26.

Inflorescence: with basal female and distal male flowers, feale axis almost horizontal, aale axis positively geotropic, male flovers deciduous, peduncle short and hairy.

Bract: deciduous, shoulder low, do not roll back after opeing, broacly ovate, apex obtuse, colur brownish purple outside, bright crimson inside, oract scars not prominent.

Female flowers: arranged in two rows, united tepal $4.5 \pm$ 0.05 cm long and $1.4 \pm 0.02 \mathrm{~cm}$ broad, colour crean flushed with pink, lobes $3+2$, acute, free tepal $3.6 \pm$ 0.04 cm long, $1.7 \pm 0.03 \mathrm{~cm}$ broad, colour light pink, below tip not corrusated; stamens not fertile, staminodes 5,
$2.3 \pm 0.01 \mathrm{~cm}$ long, colour creamy white, with no anther lobes; pistil 12.1 ± 0.63 cin long, stigma colour creain, with 3 lobes; ovary $9.8 \pm 0.15 \mathrm{~cm}$ long, $8.2 \pm 0.08 \mathrm{~cm}$ in circumference, colour yellowish green with pink flush, ovules arranged in four irregular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.3 \pm$ 0.04 cm lons, $1.5 \pm 0.01 \mathrm{~cm}$ broad, colour crean flushed with pink, lobes $3+2$, free tepal $3.7 \pm 0.03 \mathrm{~cm}$ long, $2.7 \pm$ 0.02 cm broad, colour light pink, below tip slightly corrogated, stamens 5, none fertile, filament $2.6 \pm 0.02 \mathrm{~cm}$ long, colour creamy white, anther lobes $3.1 \pm 0.01 \mathrm{~cm}$ long, colour cream, pistillode $4.6 \pm 0.07 \mathrm{~cm}$ long, stigma colour crean, ovary yellowish green with pink flush.

Bunch: position of mature bunch $70^{\circ}-80^{\circ}$ to the stem, bunch weight $12.75 \pm 0.25 \mathrm{~kg}$, number of fingers 172 ± 3.4, number of hands. 12 ± 0.12, hands loose, fingers compact.

Finger: $12.63 \pm 0.10 \mathrm{~cm}$ long and $11.33 \pm 0.15 \mathrm{~cm}$ in circumference, slisintly angular with 3-4 unequal sides, apex prominent, long, finger weight $68.42 \pm 1.3 \mathrm{~g}$, finger with ashy coating.

Ripe fruit: colour dull yellow, rind thick, pulp colour white, thick, starchy, not fit for consumption, TSS $2^{\prime \prime} \pm$ $0,30 \%$, total sugars $17.54 \pm 0.25 \%$, reducing sugars $15 \pm 0.18 \%$, non reducing sugars $2.42 \pm 0.05 \%$, sugar/acid ratio $49.17 \pm$ 1.7, keeping quality good.

PLATE 30. Musa (AB Group) 'Kostha bonthe'

1.45 Musa (AB Group) 'Venneettu mannan'

The plant is $362.00 \pm 3.1 \mathrm{~cm}$ tall with a circumference of $77.50 \pm 1.4 \mathrm{~cm}$ at the base. It takes $246 \pm$ 2.6 days from planting to flowering and 105 ± 1.5 days from flowering to harvest.

Pseudostem: light green with pink colour near the base of petiole.

Leaves: petiole $66.75 \pm 1.2 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, slizatly winged below, lanina $200 \pm 1.8 \mathrm{~cm}$ long, $69 \pm 1.5 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 31.00 ± 0.36.

Inflorescence: with basal female and distal male flowers, female axis almost horizontal, male axis positively geotropic, male flowers deciduous, peduncle ghort and hairy.

Bract: deciduous, shoulder low, do not roll back after opening, broadly ovite, apex obtuse, colour brownish purple outside, bright crinson inside, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $4.7 \pm$ 0.04 cm long and $1.6 \pm 0.01 \mathrm{~cm}$ broad, colour creain flushed with pink, lobes $3+2$, acute, free tepal $3.5 \pm 0.03 \mathrm{~cm}$ long, $1.5 \pm 0.02 \mathrm{~cm}$ broad, colour light pink, below tip not corrugated; stamens not fertile, staminodes $5,2.5 \pm 0.02 \mathrm{~cm}$
long, colour creamy white, with no anther lobes; pistil $12.8 \pm 0.12 \mathrm{~cm}$ long, stigma colour creaa, with 3 lobes; ovary $10.2 \pm 0.15 \mathrm{~cm}$ long, $8.3 \pm 0.08 \mathrm{~cm}$ in circunference, colour yellowish green with pink flush, ovules arranjed in four irregular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.2 \pm$ 0.03 cm long, $1.6 \pm 0.02 \mathrm{~cm}$ broad, colour cream flushed with pink, lobes $3+2$, free tepal $3.8 \pm 0.02 \mathrm{~cm}$ long, $2.9 \pm$ 0.03 cm broad, colour light pink, below tip slightly corrugated stamens 5, none fertile,filament $2.7 \pm 0.01 \mathrm{~cm}$ long, colour crean, pistillode $4.7 \pm 0.06 \mathrm{~cm}$ long, stigma colour creai, ovary yellowish green witil pink flush. Bunch: position of mature bunch $70^{\circ}-80^{\circ}$ to the stea, bunch weight $15.25 \pm 0.26 \mathrm{~kg}$, numoer of fingers $209 \pm$ 3.2 , number of hands 13 ± 0.16, hands loose, fingers compact.

Finger: $13.63 \pm 0.13 \mathrm{~cm}$ long anci $9.48 \pm 0.06 \mathrm{~cm}$ in circumference, sligntly angular with $3-4$ unequal sides, apex prominent, long, finger weikht $78.00 \pm 1.5 \mathrm{~g}$, fingers with ashy coating.

Ripe fruit: colour dull yellow, rinc thick, pulp colour white, thick, starchy, not fit for consumption, TSis $24 \pm$ 0.32%, total sugars $16.85 \pm 0.18 \%$, recucing sujars $14.86 \pm$ 0.51%, non reducing sugars $1.32 \pm 0.07 \%$, sugar/acid ratio 46.81 ± 1.6, keeping quality mediun.

PLATE 32. Kusa (AB Group) 'Vemeettu mannan'

1.46 Muna ABB (Group) 'Karpooravally'

The plant is $286 \pm 4.5 \mathrm{~cm}$ tall with a circumference of $63 \pm 2.5 \mathrm{~cm}$ at the base. It takes 225 ± 3.0 days from planting to flowering and 117 ± 1.6 days from flowering to harvest.

Pseudostom: light green with pink colour on the bases of petioles.

Leaves: petiole $59.75 \pm 1.2 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, not winged below, lamina $196 \pm 2.2 \mathrm{~cm}$ long, $58 \pm 1.8 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate, number of leaves 30 ± 0.75.

Inflorescence: with basal female and distal male flowers, female and male axes positively geotropic, male flowers deciduous; peduncle long and glabrous.

Bract: deciduous, shoulder low:, broadly ovate, apex abtuse, do not roll back after opening, colour brownish pukple outside, crimeon inside, inside bract colour continuous to the base, bract scars not prominent.

Femple flowers: arranged in two rows, united tepal $5.2 \pm 0.2 \mathrm{cn}$ long and $2.2 \pm 0.05 \mathrm{~cm}$ broad, pale yellow with pink flush, lobes $3+2$, rich yellow; free tepal $3.3 \pm 0.02 \mathrm{~cm}$ long, $2.7 \pm 0.01 \mathrm{~cm}$ broad, colour cream, below tip slightly corrugated; stamens not fertile, staminodes $5,2.5 \pm 0.04 \mathrm{~cm}$, colour pale yellow, with no anther lobes; pistil 15.7 \pm
0.07 cm long, stigma colour cream, with 3 lobes; ovary $11 \pm 0.08 \mathrm{~cm}$ long, $7.3 \pm 0.05 \mathrm{~cm}$ in circumference, colour green with pink flush towards the base, ovules arranged in four irregular rows.

Male flowerg: arranged in two rows, united tepal $5.6 \pm$ 0.21 cm long, $2.3 \pm 0.10 \mathrm{~cm}$ broad, pale yellow with pink flush, lobes $3+2$, rich yellow, acute; free tepal $3.2 \pm 0.01 \mathrm{~cm}$ long, $2.5 \pm 0.02 \mathrm{~cm}$ broad, colour cream, below tip corrugated stamens 5, all fertile, filament $2.4 \pm 0.02 \mathrm{~cm}$ long, pale jellow, anther lobes $3.6 \pm 0.03 \mathrm{om}$ long, colour pinkish yellow, pistillode $5.6 \pm 0.01 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush towards the base.

Bunch: position of mature bunch $25^{\circ}-30^{\circ}$ to the stem, bunch weight $11.5 \pm 0.21 \mathrm{~kg}$, number of fingers 170 ± 25, number of hands 11 ± 0.60, fingers in a hand compact. Finger: $13.13 \pm 0.56 \mathrm{~cm}$ long and $11.70 \pm 0.45 \mathrm{~cm}$ in circumference, angular with 5 sides, not tapering to the tip, apex very distinct, finger veight $57.29 \pm 3.2 \mathrm{~g}$, contains a few black seeds, fingers with ashy coating.

Ripe fruit: Colour yellow, firmly attached to the hand, rind thin, pulp colour crean, soft, not starchy, fit for comsumption, TSS $24.5 \pm 0.78 \%$, total sugars $18.4 \pm 0.15 \%$, reducing sugars $16.3 \pm 0.21 \%$, non reducing sugars $2.05 \pm$ 0.05%, sugar/acid ratio 63.91 ± 2.1, keeping quality good.

PLATE "Sn Musa (ABB Group) 'Karpooravally'

1.. Musa (ABB Group) 'Cairapunchi'

The plant is $327 \pm 4.2 \mathrm{~cm}$ tall with a circumference of $85.25 \pm 2.0 \mathrm{~cm}$ at the base. It takes 233 ± 3.5 days from planting to flowering and 116 ± 2.9 days from flowering to harvest.

Pseudostem: light green with pink tinge.
Leaves: petiole $59.75 \pm 0.95 \mathrm{~cm}$ lang, clasping pseudostem, margins of petiole inclosed, not winged, lamina $227 \pm 2.6 \mathrm{~cm}$ long, $67 \pm 1.6 \mathrm{~cm}$ broad, base of lamina unequal, base cordate and apex truncate, number of leaves 38 ± 0.65.

Inflorescence: with basal female and distal male flowers, female axis and male axis positively geotropic, male flowers deciduous; peduncle long and glabrous. Bract: deciduous, shoulder low, broadly ovate, apex obtuse, do not rall back after opening, colour brownish purple outside, crimson inside, inside bract colour continuous to the base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $5.6 \pm$ 0.07 cm long and $3 \pm 0.05 \mathrm{~cm}$ broad, pale yellow with pink flush, lobes $3+2$, rich yellow, acuminate, free tepal $3.2 \pm$ 0.03 cm long, $2.9 \pm 0.03 \mathrm{~cm}$ broad, colour cream, below tip very slightly corrugated; stamens not fertile, staminodes 5 , $2.7 \pm 0.01 \mathrm{~cm}$ long, pale yellow with no anther lobes; pistil $15.8 \pm 0.07 \mathrm{~cm}$ long, stigma colour cream with 3 lobes,
ovary $11.1 \pm 0.04 \mathrm{~cm}$ long, $7.6 \pm 0.02 \mathrm{~cm}$ in circumference, colour green with pink flush towards the base, ovales arranged in four irregular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $5.7 \pm 0.20 \mathrm{~cm}$ long, $2.5 \pm 0.02 \mathrm{~cm}$ broad, pale yellow with pink flush, lobes $3+2$, rich yellow, acuminate; free tepal $3.6 \pm 0.02 \mathrm{~cm}$ long, $2.8 \pm 0.01 \mathrm{~cm}$ broad, below tip slightly corrugated; stamens 5, all fertile, filament $2.9 \pm 0.03 \mathrm{~cm}$ long, pale yellow, anther lobes $3.9 \pm 0.02 \mathrm{~cm}$ long, colour pinkish yellow, pistillode $5.8 \pm 0.02 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink fiush towards the base.

Bunch : position of mature bunch $25^{\circ}-30^{\circ}$ to the stem, bunch weight $14.25 \pm 0.15 \mathrm{~kg}$, number of fingers $190.5 \pm$ 3.2 , number of hands 12 ± 0.10, hands and fingers compact. Finger: $14 \pm 0.12 \mathrm{~cm}$ long and $9.25 \pm 0.10 \mathrm{~cm}$ in circumference, with 5 unequal sides, tapering to the tip, apex prominent, finger weight 63 生 1.3 g .

Ripe fruit: colour dull yellow, do not separate easily from the hand, rind medium thick, pulp colour cream, soft, slightly starchy, fit for consumption, pulp medium soft, TSS $23 \pm 1.3 \%$, total sugars $18.13 \pm$ reducing sugars 15.59 º. 18%, non reducing sugars $2.44^{\text {tac }}$. sugar/acid ratio. $75.52^{ \pm 1,3,}$ keeping quality good.

1.. : Masa (ABB Group) 'Pey kunnan'

The plant is $307 \pm 2.3 \mathrm{~cm}$ tall and with a circumference of $69.50 \pm 1.3 \mathrm{~cm}$ at the base. It takes $213 \pm$ 2.8 days from planting to flowering and 114 ± 1.9 days from flowering to harvest.

Pgeudostem: light green with pink tinge.
Leases: petiole $45 \pm 0.78 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, not winged, lamina $212 \pm 2.2 \mathrm{~cm}$ long, $58 \pm 0.58 \mathrm{~cm}$ broad, base of lamina unequal, base cordate and apex truncate, number of leaves 34 ± 0.79.

Inflorescence: with basal female and distal male flowers, female axis and male axis positively geotroic, male flowers deciduous, penduncle long and glabrous.

Bract: deciduous, shoulder Pow , broadly ovate, apex obtuse, do not roll back after opening, colour browish purple outside, crimson inside, inside bract colour continuous to the base, bract scars not prominent.

Female floverg: arranged in two rows, united tepal $5.1 \pm$ 0.21 cm long and $2+0.04 \mathrm{~cm}$ broad, pale yellow with pink flush, lobes $3+2$, rich yellow, acuminate, free tepal $3.2 \pm$ 0.02 cm long, $2.8 \pm 0.02 \mathrm{~cm}$ broad, colour cream, below tip very slightly corrugated; stamens not fertile, staminodes $5,2.5 \pm 0.01 \mathrm{~cm}$ long, pale yellow, with no anther lobes; pistil $15.6 \pm 0.03 \mathrm{~cm}$ long, stigma colour
cream, with 3 lobes; ovary 11.1 ± 0.03 long, $7.3 \pm 0.01 \mathrm{~cm}$ in circumference, colour green with pink flush towards the base, orules arranged in four irregular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.5 \pm$ 0.20 cm long, $2.3 \pm 0.01 \mathrm{~cm}$ broad, pale yellow with pink flush, lobes $3+2$, rich yellow, acuminate, free tepal $3.2 \pm$ 0.01 cm long, 2.8 重 0.02 cm broad, creamy white, below tip slightly corrugated; stamens 5, all fertile, filament $2.5 \pm 0.03 \mathrm{~cm}$ long, colour pale yellow, anther lobes $3.7 \pm$ 0.02 cm long, pinkish yellow; pistillode $5.7 \pm 0.93 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush towards the base.

Bunch: position of mature bunch $25^{\circ}-30^{\circ}$ to the stem, bunch weight $10.50 \pm 0.13 \mathrm{~kg}$, number of fingers 171 ± 3.5, number of hands 11 ± 0.68, fingers compact.

Finger: $12.63 \pm 0.14 \mathrm{~cm}$ long and $9.75 \pm 0.12 \mathrm{~cm}$ in circumference, angular with 5 sides, slightly tapering to the tip, apex prominent, finger weight $03.15 \pm 1.2 \mathrm{~g}$ with ashy coating, contains a number of black seeds.

Ripe fruit : colour yellow, do not separate easily from the hend, rind medium thick, pulp colour cream, soft, ift for consumption but for the seeda taste sweet, TSS $25 \pm$ 0.04%, total sugars $16.75 \pm 0.42 \%$, reducing sugars $15.09 \pm$ 0.45%, non reducing sugars $1.29 \pm 0.50 \%$, sugar acid ratio 79.76 ± 2.1, keeping quality good.

PLATE 33. Musa (ABB Group) 'Pey kumnan'

1.49 Musa (ABB Group) 'Walha'

The plant is $264 \pm 1.2 \mathrm{~cm}$ tall with a circumference of $69 \pm 1.6 \mathrm{~cm}$ at the base. It takes 181 ± 4.1 days from planting to flowering and 100 ± 2.1 days from flowering to harvest.

Psoudostem: yellowish green with very light brown blotches near the petioles.

Leaves: petiole $57.5 \pm 0.83 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, not winged, lamina $193 \pm 2.2 \mathrm{~cm}$ long, $60 \pm 2.5 \mathrm{~cm}$ broad, base of lanina unequal, base cordate, apex truncate, number of leaves 32 ± 0.23.

Inflorescence: with basal female middle male and distal female flowers, positively geotropic, male flowers deciduous, peduncle long and glabrous.

Bract: deciduous, shoulder low i, ovate, apex obtuse, slightly roll beck after opening, colour outside browish purple, inside bright crimson, inside bract colour continuous to the base, bract scars not prominent. Female flowers: arranged in two rows, united tepal $3.8 \pm$ 0.03 cm long and $2.1 \pm 0.02 \mathrm{~cm}$ broad, colour creany yellow flushed with pink, lobes $3+2$, acute, free tepal $3.4 \pm 0.03 \mathrm{~cm}$ long, $3.2 \pm 0.05 \mathrm{~cm}$ broad, colour pale pink, below tip rarely corrugated; stamens not fertile, ataminodes 5 , $2.3 \pm 0.10 \mathrm{~cm}$ long, creamy white with no anther lobes;
pistil $10.5 \pm 0.23 \mathrm{~cm}$ long, stigma colour cream with 6 lobes; ovary $7.8 \pm 0.12 \mathrm{~cm}$ long, $8.0 \pm 0.08 \mathrm{~cm}$ in circumference, greenish yellow with pink flush, ovules arranged in 4 irregular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $3.8 \pm$ 0.10 cm long, $2.4 \pm 0.09 \mathrm{~cm}$ broad, creamy yellow flushed with pink, lobes 3+2, acuminate, free tepal $3.0 \pm 0.10 \mathrm{~cm}$ long. $2.8 \pm 0.08 \mathrm{~cm}$ broad, below tip rarely corrugated; stamens one or two well developed, not fertile, filament $2.1 \pm 0.12 \mathrm{~cm}$ long, creamy white, anther lobes $2.6 \pm$ 0.09 cm long, colour yellow, pistillode $3.4 \pm 0.07 \mathrm{~cm}$ long, stigma colour cream, ovary green with pink fluah.

Bunch: position of mature bunch ${ }^{30^{\circ}}$ to the stem, bunch weight $14.75 \pm 0.16 \mathrm{~kg}$, number of fingers 203 ± 5.0, number of hands 17 ± 0.37, hands and fingers very compact.

Finger: $17.03 \pm 0.60 \mathrm{~cm}$ long and $9.93 \pm 0.21 \mathrm{~cm}$ in circumference, mature fingers almost cylindrical, tapering to the tip, apex prominent, short, . warty, finger weight $80.63 \pm 2.1 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmly attached to the hand, rind thick, pulp creany white, soft, starchy not fit for consumption, TSS $25 \pm 0.21 \%$, total sugars $6.94 \pm$ 0.14%, reducing sugars $5.66 \pm 0.09 \%$, non reducing sugars $1.22 \pm 0.04 \%$, sugar/acid ratio, 35.57 ± 1.8, keeping quality medium.

PLATE 34. Musa (ABB Group) 'Walha'
1.50 Musa (ABB Group) 'Ashy batheesa'

The plant is $301 \pm 3.2 \mathrm{~cm}$ tall with a circumference of $62 \pm 1.2 \mathrm{~cm}$ at the base. It takes 188 ± 3.6 days from planting to flowering and 101 ± 1.2 days from flowering to harvest.

Paeudostem: yellowish green with dark brown blotches near the petiole.

Leaves: petiole 63.5 cm long, clasping pseudostem, margins of petiole inclosed, not winged, lamina $186 \pm$ 2.1 cm long, $65 \pm 1.3 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 30 ± 0.38.

Inflorescence: with basal female, middle male and distal male flowers, positively geotropic, male flowers deciduous, peduncle long and glabrous.

Bract: deciduous, shoulder liw , ovate, apex obtuse, slightly roll back after opening, colour outside brownish purple, inside bright crimson, inside bract colour continuous to the base, bract sears not prominent.

Female flowers: arranged in two rows, united tepal $3.9 \pm 0.04 c$ long and 2.2 ± 0.01 broad, colour creamy yellow flushed with pink, lobes $3+2$, acute, free tepal $3.2 \pm 0.02 \mathrm{~cm}$ long, $3.1 \pm 0.01 \mathrm{~cm}$ broad, colour pale pink, below tip rarely corrugated; stamens not fertile, staminodes $5,2.1 \pm 0.05 \mathrm{~cm}$ long, creamy white, with no anther lobes; pistil $13.3 \pm 0.04 \mathrm{~cm}$ long, stigma colour cream, with 6 lobes; ovary $7.6 \pm 0.03 \mathrm{~cm}$
long, $8.3 \pm 0.02 \mathrm{~cm}$ in circumference, greenish yellow with pink flush, ovules arranged in 4 irregular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4 \pm 0.10 \mathrm{~cm}$ long, $2.2 \pm 0.08 \mathrm{~cm}$ broad, creany yellow flushed with pink, lobes $3+2$, acuminate, free tepal $3.0 \pm 0.12 \mathrm{~cm}$ long, $2.9 \pm$ 0.08 cm broad, below tip rarely corrugated; stamens 5 , one or two well developed, not fertile, filament $2.3 \pm 0.07 \mathrm{~cm}$ long, colour yellow, anther lobes $2.3 \pm 0.10 \mathrm{~cm}$ long, colour yellowish brown, pistillode $3.3 \pm 0.03 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush. Bunch: position of mature bunch 30° to the stem, bunch weight $14.75 \pm 0.18 \mathrm{~kg}$, number of fingers 201 ± 4.0, number of hands 17 ± 0.13, hands and fingers very compact. Finger: $16.75 \pm 0.50 \mathrm{~cm}$ long and $9.43 \mathrm{~cm} \pm 0.21 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, apex prominent, round, finger weight $88.75 \pm 1.3 \mathrm{~g}$, green fruits with ashy coating.

Rlpe fruits colour dull yellow, firmly attached to the hand, rind thick, pulp colour creamy wite, soft, starchy, not fit for consumption, riss $24 \pm 0.21 \%$, total sugars $9.62 \pm 0.11 \%$, reducing sugars $8.37 \pm 0.12 \%$, non reducing sugars $1.19 \pm 0.06 \%$, sugar/acid ratio, 32.08 ± 2.1, keeping quality medium.

1.5l Yuga (ABB group) 'Ney Vannan'

The plant is $225 \pm 4.1 \mathrm{~cm}$ tall with a circumference of $71 \pm 1.5 \mathrm{~cm}$ at the base. It takes 169 ± 4.8 days from planting to flowering and 105 ± 2.1 days from flowering to harvest.

Pseudostem: pale green, slightly glaucous.
Leaveg: petiole $59.25 \pm 1.2 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, not winged below, lamina $190 \pm 3.5 \mathrm{~cm}$ lang $60 \pm 1.2 \mathrm{~cm}$ broad, base of lamina unequal, auricled and apex truncate, number of leaves 35 ± 0.78.

Inflorescence: with basel female and distal mele flowers, female axis semipendulous, male axis positively geotropic, male flowers deciduous, peduncle long and glabrous.

Bract: deciduous, shoulder iows broadly ovate, apex obtuse, slightly roll back after opening, colour dull purple outside, bright crimson inside, inside colour continuous to the base, bract scars not prominent.

Femele flovers: arranged in two rows, united tepal $3.5 \pm$ 0.80 cm long and $1.8 \pm 0.04 \mathrm{~mm}$ broad, colour, with yellow tinge, lobes $3+2$, colour pale yellow, free tepal $2.5 \pm$ 0.09 cm long, $2.3 \pm 0.08 \mathrm{~cm}$ broad, colour cream with light pinkiah tinge, below tip not corrugated, stamens not fertile, staminodes $5,1.8 \pm 0.02 \mathrm{~cm}$ long, colour cream,
with no anther lobes; pistil $14.4 \pm 0.12 \mathrm{~cm}$ long, stigma colour cream, with 3 lobes; ovary $10.8 \pm 0.32 \mathrm{~cm}$ long, $6.8 \pm 0.13 \mathrm{~cm}$ in circumference, colour greenish yellow with pink flush, ovoles arranged in four irregular rows in each loculus.

Male flowerg: arranged in two rows, united tepal 5.3 cm long, $1.3 \pm 0.01 \mathrm{~cm}$ broad, inside colour pink and outside colour pale yellow, lobes $3+2$, acuminate, free tepal $3.5 \pm$ 0.02 cm long, $3.2 \pm 0.01 \mathrm{~cm}$ broad colour light pink, below tip not corrugated, stamens 5, fettile, filament $2.8 \pm$ 0.13 cm long, colour cream anther lobes $3 \pm 0.23 \mathrm{~cm}$ long, colour creamy white; pistillode $5.3 \pm 0.3 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch: position of mature bunch $40^{\circ}-45^{\circ}$ to the stem, bunch weight 6.5 ± 0.23 number of fingers $79.5 \pm$ 4.2 fingers, number of hands 4.5 ± 0.93, fingers and hands compact.

Finger: $12.38 \pm 0.12 \mathrm{~cm}$ long and $11.73 \pm 0.13 \mathrm{~cm}$ in circumference, angular with 5 ridges, alightly tapering to the tip, apex indistinct, finger weight $100.75 \pm 3.2 \mathrm{~g}$. Ripe fruit: colour dull greenish yellow do not separate easily from the hand, rind thick, pulp soft, colour white, starchy not fit for consumption, taste insipid, TsS $23 \pm$ 0.98%, total sugars $20.75 \pm 0.13 \%$, reducing sugars $18.18 \pm$ 0.58% non reducing sugars $2.45 \pm 0.83 \%$, sugar/ectd ratio 42.79 ± 1.8 keeping quality medium.
1.52 Musa (ABB Group) 'Alukohel'

The plant is $204.75 \pm 3.2 \mathrm{~cm}$ tall with a circumference of $61.75 \pm 1.5 \mathrm{~cm}$ at the base. It takes 168 ± 4.5 days from planting to flowering and 105 ± 3.2 days from flowering to harvest.

Pseudostem: pale green, slightly glaucous.
Leaves: petiole $42.75 \pm 1.5 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, not winged, lamina $151.50 \pm 4.5 \mathrm{~cm}$ long, $72 \pm 1.3 \mathrm{~cm}$ broad, base of lamina unequal, base auricled and apex truncate, number of leaves 29 ± 0.89.

Inflorescence: with basal ferale and distal male flowers, female axis semipendulous, male axis positively geotropic, male flowers deciduous, peduncle long and glaborous.

Bract: deciduous, shoulder low, broadly ovate, apex abtuse, slightly roll back after opening, colour dull purple outside, bright crimson inside, inside colour continuous to the base, bract scars not prominent.

Femate flowers: arranged in two rows, united tepal 3.6 ± 0.04 am long and 1.7 ± 0.05 broad colour with yellow tinge, lobes $3+2$, free tepal $2.6 \mathrm{~cm} \pm 0.02$ long, $2.2 \pm 0.02 \mathrm{~cm}$ broad, colour creamy white, below tip corrugated; stamens not fertile, ataminodes $5,1.7 \pm 0.10 \mathrm{~cm}$ long, colour cream, with no anther lobes; pistil 14.4 土
0.12 cm long, atigma colour cream with 3 lobes; ozary $10.6 \mathrm{~cm} \pm 0.05 \mathrm{~cm}$ long, $7.1 \pm 0.03 \mathrm{~cm}$ in circumference, colour greenish yellow with pink flush, ovales arranged in 4 irregular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $5.4 \pm$ 0.10 cm long, $1.3 \pm 0.08 \mathrm{~cm}$ broad, colour pink inside and cream outside, lobes $3+2$, acute, free topal $3.2 \pm 0.03 \mathrm{~cm}$ long, $3.1 \pm 0.02 \mathrm{~cm}$ broad, colour light pink, below tip not corrugated, stamens 5, all fertile, filament $2.7 \pm$ 0.02 cm long, colour cream, anther lobes $2.8 \pm 0.02 \mathrm{~cm}$ long colour cream, pistillode $5.2 \pm 0.80 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch: position of mature bunch $40^{\circ}-45^{\circ}$ to the stem, bunch weight $4.75 \pm 0.25 \mathrm{~kg}$, number of fingers, 87 ± 3.5, number of hands 7 ± 0.12, hands and fingers compact.

Finger: $12.63 \pm 1.2 \mathrm{~cm}$ long and $11.48 \pm 0.58 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to the tip, apex straight, finger weight $120.50 \pm 4.5 \mathrm{~g}$, green fingers are with shining ashy soating.

Elpe fruit: dull greenish yellow, firmly attached to the hand, rind thick, pulp colour crearay white, soft starchy not fit for consumption, taste insipid, TSS $23 \pm 1.2 \%$, totalsugars $20 \pm 1.05 \%$ reducing sugars $18.13 \pm 0.95 \%$, non reducing sugars $1.79 \pm 0.66 \%$ sugar acid ratio $41.67 \pm$ 2.3, keeping quality medium.

PLATE 36. Musa (ABB Group) 'Alukehel'

1.53 Musa (ABB Group) 'Kapok'

The plant is $361.5 \pm 1.5 \mathrm{~cm}$ tall with a circumPerence of $72.5 \pm 1.2 \mathrm{~cm}$ at the base. It takes $234 \pm$ 4.2 days from planting to flowering and 94 ± 2.2 days from flowering to harvest.

Pgeudostem: yellowish green with black blotches near the base of petiole.

Leaves: petiole $64.25 \pm 1.5 \mathrm{~cm}$ long, clasping pseudoztem, margins of petiole inclosed, slightly winged, margins pink coloured, lamina $262 \pm 3.1 \mathrm{~cm}$ long, $69 \pm 2.2 \mathrm{~cm}$ broad, base of lamina. unequal, base cordate, apex acute, number of leaves 26 ± 0.56.

Inflorescence: with basal female and distal male flowers, female and male axes positively geotropic, male flowers deciduous, peduncle long and glabrous.

Bract: deciduous, shoulder lew, broadly ovate, apex obtuse, do not roll back after opening, colour bromiah pruple outside, bright crimson inside, inside bract colour continuous to the base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $3.9 \pm$ 0.14 cm long and $1.7 \pm 0.02 \mathrm{~cm}$ broad, colour pink, cream near margins, lobes $3+2$, acuminate, free tepal $4.1 \pm 0.02 \mathrm{~cm}$ long, $2.3 \pm 0.03 \mathrm{~cm}$ broad, colour cream with pink flush, below tip rarely corrugated; stamens not fertile, staminodes $5,2.5 \pm 0.02 \mathrm{~cm}$ long, colour erean, with no anther lobes;
pistil 17.2 ± 0.45 cm long, stigma colour cream, with 3 lobes; ovary $10.1 \pm 0.12 \mathrm{~cm}$ long, $7.1 \pm 0.10 \mathrm{~cm}$ in circumference, yellowish green with pink flush, ovules arranged in four irregular rows in each loculus.

Male flowers: arranged in two rows, united tepal $4.1 \pm$ 0.06 cm long, $1 \hat{4} 8 \pm 0.02 \mathrm{~cm}$ broad, colour pale pink outside and inside, lobes $3+2$, acuminate, free tepal $28 \pm$ 0.02 cm long $2.0 \pm 0.03 \mathrm{~cm}$ broad, below tip rarely corrugated; stamens 5, all fertile, filament $2.3 \pm 0.01 \mathrm{~cm}$ long, colour cream with pink flush, enther lobes $3.6 \pm$ 0.04 cm long, colour cream, pistillode $4.5 \pm 0.03 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch: position of mature bunch 30° to the stem, bunch weight $8 \pm 0.22 \mathrm{~kg}$, number of fingers 113 ± 4.2, number of hands: 6 ± 0.13, hands and fingers loose.

Finger: $13.46 \pm 0.13 \mathrm{~cm}$ long and $10.88 \pm 0.25 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, apex prominent, stout, finger weight $91.00 \pm 4.5 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmly attached to the hand, rind thick, pulp creamy white, soft starchy, not fit for consumption, TSS $24 \pm 0.20 \%$, total sugars $15.75 \pm$ 0.50%, reducing sugars $13.63 \pm 0.30 \%$, non reducing sugars $2.02 \pm 0.01 \%$, sugar/acid ratio 34.61 ± 2.1, keeping quality medium.

1.54 佉sa (ABB Group) 'Jurmoney kunthali'

The plant is $338 \pm 3.8 \mathrm{~cm}$ tall with a circumference of $74.5 \pm 1.5 \mathrm{~cm}$ at the base. It takes 238 ± 3.2 days from planting to flowering and 117 ± 2.1 days from flowering to harvest.

Pseudostam: light green without blotches
Leaves: petiole $58.5 \pm 0.98 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, lamina $196 \pm 3.6 \mathrm{~cm}$ long, $68 \pm 1.2 \mathrm{~cm}$ broad, base of lamina unequal, base cardate, apex truncate; number of leaves 37 ± 0.51.

Inflorescence: with basal female and distal male flowers, female axis and male axis positively geotropic, male flowers deciduous; peduncle long and glabrous.

Bract deciduous, shoulder low., broadly ovate, apex obtuse, do not roll back after opening, colour brownish purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $5.2 \pm$ 0.08 cm lang and $2.1 \pm 0.05 \mathrm{~cm}$ broad, yellow with pink flush, lobes $3+2$, rich yellow, acuminate, free tepal $3,3 \pm$ 0.03 cm long, $2.8 \pm 0.02 \mathrm{~cm}$ broad, colour cream, below tip, slightly corrugated; stamens not fertile, staminodes 5 $2.6 \pm 0.01 \mathrm{~cm}$ long, pale yellow with no anther lobes; pistil $15.7 \pm 0.03 \mathrm{~cm}$ long, stigma colour cream, with 3 lobes; ovary $11.2 \pm 0.04 \mathrm{~cm}$ lang, $7.5 \pm 0.02 \mathrm{~cm}$ in
circumference, colour green with pink flush towards the base, oviles arranged in four irregular rows in each loculus.

Mele flowers: arranged in two rows, united tepal $5.6 \pm 0.20 \mathrm{~cm}$ long, $2.4 \pm 0.01 \mathrm{~cm}$ broad, yellow whth pink flush, lobes $3+2$, rich yellow, acuminate, free tepal 3.3 ± 0.02 long, $2.9 \pm$ 0.02 cm broad, cream with pink flush, below tip slightly. corrugated, stamens 5, none fertile, filament $2.6 \pm 0.01 \mathrm{~cm}$ long, colour yellow, anther lobes $3.5 \pm 0.02 \mathrm{~cm}$ long, black thread like, pistillode 5.8 ± 0.02 long, stigma colour cream, ovary yellowish green with pink flush tovards the base.

Bunch: position of mature bunch $25^{\circ}-30^{\circ}$ to the stem, bunch weight $14 \pm 0.2 \mathrm{~kg}$, number of fingers 181 ± 3.2, number of hands 13 ± 0.18, hands and fingers compact, fingers with ashy coating.

Finger: $14.75 \pm 0.52 \mathrm{~cm}$ long and 9.52 ± 0.81 in circumference, angular with 5 sides, slightly tapering to the tip, apex short, distinct, finger weight $63.5 \pm 2.2 \mathrm{~g}$.

Ripe fruit: colour dull yellow, do not easily separate from the hand, rind thick, pulp colour cream, soft, starchy, not fit for consumption, taste insipid, TSS $23 \pm 0.50 \%$, total sugers $16.75 \pm 0.58 \%$, reducing sugars $13.65 \pm 0.61 \%$, non reducing sugars $2.95 \pm 0.08 \%$, Sugar/acid ratio $47.86 \pm$ 4.1,keeping quality good.

1.55 Mnas (ABB Grouy) 'Peyan'

The plant is 300.5 ± 4.1 om tall with a circuaference of $62.00 \pm 1.8 \mathrm{~cm}$ at the base. It takes 234 ± 3.2 days from planting to flowering and 106 ± 2.6 days from flowering to harvest.

Eseudoatem: pale green with very light blaok blotches near the base of petioles, glancous.

Leavea: petiole $53.75 \pm 0.81 \mathrm{~cm}$ long, clasping pscudostem, marins of petiole inclosed, not winged, lamina $205 \pm 5.1 \mathrm{~cm}$ long, $63 \pm 2.1 \mathrm{~cm}$ broad, base of lanize unequi, base cordate, apex truncate, number of leaves 34 ± 0.36.

Inflorescence: with basal female and distal male rlowern, female axis semipendónous, male axia positively geotropic, male flowers deciduous, penduncle long and glabrous.

Brach: deciduous, shoulder low, ovate, apex abtuse, very slightly rollback after opening, colour brownish purple incide and bright crimson outside, inside bract colour continuous to the base, bract scars not prominent.

Pemale flowers: arranged in two rows, united tepal $4.5 \pm$ 0.06 cm long and $1.6 \pm 0.02 \mathrm{~cm}$ broad, colour pink inside, yellowish pink outsode, lobes 3+2, acute free tepal $3.6 \pm$ 0.02 cm long, $2.8 \pm 0.02 \mathrm{~cm}$ broad, colour cream with pink flush, below tip rarely corrugated; stamens not fertile, staminodes $5,2.5 \pm 0.03 \mathrm{~cm}$ long, creamy white,
with no anther lobes; pistil $18 \pm 0.13 \mathrm{~cm}$ long, stigma colour cream, with 3 lobes; ovary $10 \pm 3.12 \mathrm{~cm}$ long, $8 \pm 0.08 \mathrm{~cm}$ in circumference, colour yellowish green with pink flush, oviles arranged in four irregular rows in each loculus.

Kale flowers: arranged in two rows, united tepal $5.4 \pm$ 0.40 cm long, $1.6 \pm 0.02 \mathrm{~cm}$ broad, colour pale pink inside, yellowish pink outside, lobes $3+2$, acute, free tepal $3.2 \pm$ 0.05 cm long, $2.3 \pm 0.01 \mathrm{~cm}$ broad below tip rarely corrugated; stamens 5, all fertile, filament $2.1 \pm 0.02 \mathrm{~cm}$ long, colour cream, anther lobes $2.7 \pm 0.07 \mathrm{~cm}$ long, colour yellow; pistillode $5.0 \pm 0.04 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch: positicn of mature bunch 30° to the stem, bunch weight $6.75 \pm 0.30 \mathrm{~kg}$, number of fingers 78 ± 2.1, nuwber of hands 5 ± 0.12 hands, and fingers loose.

Ringer: $13.25 \pm 0.12 \mathrm{~cm}$ long and $11.63 \pm 0.08 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to the tip, apex distinct, stout, finger weight $65.95 \pm 1.5 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmly attached to the hend, rind thick, pulp colour creamy white, thick, starchy, not fit for consumption, TSS $23.50 \pm 0.15 \%$, total sugars $19.63 \pm 0.21 \%$, reducing sugars $18.50 \pm 0.51 \%$, non reducing sugars $1.07 \pm 0.03 \%$, sugar/acid ratio 52.41 ± 0.81 keeping quallty medium.

1.56 血sa (ABB Group) 'Pacha bontha bathees'

The plant is $247.00 \pm 2.7 \mathrm{~cm}$ tall with a circumference of $54.50 \pm 1.7 \mathrm{~cm}$ at the base. It takes $171 \pm$ 3.8 days from planting to flowering and 95 ± 3.1 days from flowering to harvest.

Pseudostem: pale green, slightly glancous

Leaves: petiole 51.50 cm long, clasping pseudosten, margins of petiole inclosed, not winged, lamina $162 \pm 2.1 \mathrm{~cm}$ long, $54 \pm 1.2 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex obtuse, number of leaves $36 \pm$ 0.21 .

Inflorescence: with basal female and distal male flowers, female axis and male axis positively geotropic, male flowers deciduous, peduncle long and glabrous.

Bract: shoulder : low, broadly ovate, apex abtuse, do not roll back after opening, colour browish purple outside, bright ctimson inside, inside bract colour continuous to the base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $4.6 \pm$ 0.06 cm long and $1.8 \pm 0.02 \mathrm{~cm}$ broad, colaur pale pink inside, yellowish pink outside, lobes 3+2, acute, free tepal $3.8 \pm 0.01 \mathrm{~cm}$ long, $2.8 \pm 0.02 \mathrm{~cm}$ broad, colour cream with pink flush, below tip rarely corrugated; stamens not fertile, staminodes 5, $2.3 \pm 0.02 \mathrm{~cm}$ long,
creamy white, with no anther lobes; pistil $18.8 \pm 0.34 \mathrm{~cm}$ long, stigma colour cream with 3 lobes; ovary $10.6 \pm 0.31 \mathrm{~cm}$ long, $8.2 \pm 0.08 \mathrm{~cm}$ in circumference, colour yellowish green with pink flush, ovules arranged in four irregular rows in each loculus.

Male floverg: arranged in two rows, united tepal $5.6 \pm$ 0.12 cm long, $1.6 \pm 0.03 \mathrm{~cm}$ broad, colour pale pink inside, yellowish pink outside, lobes $3+2$, acute, free tepal $3.5 \pm 0.03 \mathrm{~cm}$ long, $2.3 \pm 0.02 \mathrm{~cm}$ broad, below tip rarely corrugated, stamens 5, all fertile, filament $2.3 \pm 0.03 \mathrm{~cm}$ long, colour cream, anther lobes $2.6 \pm 0.05 \mathrm{~cm}$ long, colour yellow, pistiliode $5.2 \pm 0.05 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush. Bunch: position of mature bunch 30° to the stem bunch weight $9.75 \pm 0.18 \mathrm{~kg}$, number of fingers 188 ± 4.1, number of hands 12 ± 0.12, fingers and hands loose. Finger: $15.65 \pm 0.12 \mathrm{~cm}$ long and $13.08 \pm 0.08 \mathrm{~cm}$ in circumference, almost cylindrical at maturity, apex prominent, round and warty, finger weight $105.50 \pm 2.5 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmly attached to the hand, rind thick, pulp colour creamy white, soft, starchy, not fit for consumption, TsS $21 \pm 0.21 \%$, total sugars $18.77 \pm 0.09 \%$, reducing sugars $14.08 \pm 0.13 \%$, non reducing sugars $4.95 \pm 0.83 \%$, sugar/acid ratio 38.70 ± 1.5, keeping quallty medium.

PLATE 37. Nusa (ABB Group) 'Pacha bontha bathces'

1.57 Muse (ABB Group) 'Muthia'

The plant is $232.5 \pm 1.6 \mathrm{~cm}$ tall with a circumference of $56.25 \pm 1.2 \mathrm{~cm}$ at the base. It takes $174 \pm$ 3.1 days from planting to flowering and 95 ± 1.6 days from flowering to harvest.

Pgeudostem: pale green, slightly glaticous.
Leaves: petiole 42275 cm long, clasping pseudostem, margins of petiole inclosed, not winged below, lamina $165 \pm 2.1 \mathrm{~cm}$ long $81 \pm 2.0 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 27 ± 0.39.

Inflorescence: with basal female and distal male flowers, female axis and male axis positively geotropic, male flowers deciduous, peduncle long and glabrous.

Bract: shoulder ilow., broadly ovate, apex obtuse, slightiy vall back after opening, colour brownish purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars not prominent. Female flowers: arranged in two rows, united tepal $4.2 \pm$ 0.05 cm long and $1.2 \pm 0.02 \mathrm{~cm}$ broad, colour pale pink inside, yellowish pink outside, lobes $3+2$, acuminate, free tepal $3.5 \pm 0.02 \mathrm{~cm}$ long, $2.5 \pm 0.01 \mathrm{~cm}$ broad, colour pale pink, below tip rarely corragated; stamens not fertile, staminodes 5, $2 \pm 0.01 \mathrm{om}$ long, colour
creamy white, with no anther lobes; ptatil $16.8 \pm 0.30 \mathrm{~cm}$ long, stigma colour cream; with 3 lobes, ovary $11.0 \pm 0.12 \mathrm{~cm}$ long, $76 \pm 0.10 \mathrm{~cm}$ in circumference, colour yellowish green with pink flush, oviles arranged in four irregular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.3 \pm$ 0.12 cm long, $1.4 \pm 0.03 \mathrm{~cm}$ broad, colour pale pink. Inside and outside, yellow margins, lobes $3+2$, acute, free tepal $2.8 \pm 0.02 \mathrm{~cm}$ long, $3 \pm 0.04 \mathrm{~cm}$ broad, colour pale pink, below tip rarely corrugated; stamens 5, fertile, filament $2.3 \pm 0.02 \mathrm{~cm}$ long, colour creamy white, anther lobes $3.2 \pm 0.10 \mathrm{~cm}$ long, colour yellow; pistillode $5.2 \pm 0.10 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch: position of mature bunch 30° to the stem, bunch weight $9.75 \pm 0.16 \mathrm{~kg}$, number of fingers 122 ± 3.2, number of hands 9 ± 0.13, hands and fingers compact. Finger: $13.25 \pm 0.12 \mathrm{~cm}$ long and $12.28 \pm 0.09 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to the tip, apex distinct, stout, finger weight $103.50 \pm 2.5 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmily attached to the hand, rind thick, pulp colour creamy white, soft, starchy, not fit for consumption, TSS $22 \pm 0.12 \%$, total sugars $16.88 \pm 0.09 \%$, reducing sugars $14.5 \pm 0.13 \%$, non reducing sugars $2.26 \pm 0.05 \%$, sugar/acid ratio 31.57 ± 3.0, keeping quality fedium. (Muthia and identieal oultivars - Plates 38, 38a, 38b, 38e)

PLATE 38. Musa (ABB Group) 'Muthia'

Plate 38a Musa (ABB Group) 'Burrharia'

Plate 38b Musa (ABB Group) 'Chakkia'

Plate 38c Musa (ABB Group) 'Kothia'

1.58 Musa (ABB Group) 'Kari bontha'

The plant is $277 \pm 2.1 \mathrm{~cm}$ tall with a circumference of $52.75 \pm 1.4 \mathrm{~cm}$ at the base. It takes $172 \pm$ 2.6 days from planting to flowering and 86 ± 1.1 days from flowering to harvest.

Pseudostem: yellowish green with light black blotches near the petiole.

Leaves: petiole $53.75 \pm 1.2 \mathrm{~cm}$ long, clasping preudostem, margins of petiole inclosed, not winged, lamina $178 \pm 1.2 \mathrm{~cm}$ long, $56 \pm 2.1 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate; number of leaves 23 ± 0.54.

Inflorescence: with basal female and distal male flowers, female and male axis positively geotropic, male flowers deciduous; peduncle long and glabrous.

Bract: shoulder kow, broadly ovate, apex obtuge, do not curl back after opening, colour browish purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars not prominent.

Female flowerg: arranged in two rows, united tepal $3.6 \pm$ 0.2 cm long and $1.5 \pm 0.01 \mathrm{~cm}$ broad, colour pink, cream near margins, lobes $3+2$, acuminate, free tepal $4.2 \pm$ 0.02 cm long, $2.3 \pm 0.03 \mathrm{~cm}$ broad, colour cream with pink flush; below tip rarely corrugated; stamens not fertile, staminodes $5,2.2 \pm 0.01 \mathrm{~cm}$ long, colour cream with no
anther lobes; pistil $17.7 \pm 0.22 \mathrm{~cm}$ long, stigma colour cream with 3 lobes; ovary $10.2 \pm 0.20 \mathrm{~cm}$ long, $7.5 \pm 0.03 \mathrm{~cm}$ in cirtumference, colour yellowish green with pink flush, ovules arranged in four irregular rows in each loculus. Male flowers: arranged in two rows, united tepal $4.3 \pm$ 0.04 cm long, $1.9 \pm 0.05 \mathrm{~cm}$ broad, colour pale pink outside and inside, lobes $3+2$, acuminate, free tepal $2.8 \pm 0.02 \mathrm{~cm}$ long, $1.8 \pm 0.01 \mathrm{~cm}$ broad, below tip rarely corrugated; stamens 5, all fertile, filament $2.2 \pm 0.02 \mathrm{~cm}$ long, colour creany white, pistiliode $5.0 \pm 0.05 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bumch: position of mature bunch 30° to the stem, bunch weight $7.25 \pm 0.16 \mathrm{~kg}$, number of fingers, 46 ± 2.5, number of hands. 5 ± 0.12, hands and fingers loose.

Finger: $15.73 \pm 1.2 \mathrm{~cm}$ long and $12.93 \mathrm{~cm} \pm 0.81 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, tapering to the tip apex prominent, stout, finger weight $119.5 \pm 2.5 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmly attached to the hand, rind thick, pulp creamy white, soft, starchy, not fit for consumption, TSS $20 \pm 0.22 \%$, total sugars $14.60 \pm 0.48 \%$, reducing sugars $12.75 \pm 0.10 \%$, non reducing sugars $1.7 \pm$ 0.08%, sugar/acid ratio 39.91 ± 2.1, keeping quality medium.

Phass 3i9. Amen (ABB Oroup) "Ears bonthe"

1.59 Musa (ABB Group) 'Malai monthan'

The plant is $222.5 \pm 3.21 \mathrm{~cm}$ tall with a circumference of $49.00 \pm 2.7 \mathrm{~cm}$ at the base. It takes $167 \pm$ 1.27 days from planting to flowering and 86 ± 1.25 days from flowering to harvest.

Pseudostem: yellowish green with very light blek blotches near the base of petiole.

Leaves: petiole $54.75 \pm 0.53 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, not winged, lamina $170 \pm 1.87 \mathrm{~cm}$ long, $58 \pm 0.98 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex truncate, number of leaves 22 ± 0.36.

Infloreacence: with basal female and distal male flowers, female and male axes positively geotropic, male flowers deciduous, pedmele long and glabrous.

Bract: deciduous, houlder lew, broadly ovate, apax obtuse, do not roll back after opening, colour browimh purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $4_{ \pm}$ 0.03 cm long and $1.6 \pm 0.01 \mathrm{~cm}$ broad, colour cream flushed with pink, lobes $3+2$, acute, free tepal $3.6 \pm 0.02 \mathrm{am}$ long, $2.8 \pm 0.03 \mathrm{~cm}$ broad, colour. pale pink, below tip rarely corrugated; stamens not fertile, staminodes 5,
$2.5 \pm 0.02 \mathrm{~cm}$ long, creamy white, with no anther lobes; pistil $18.6 \pm 1.2 \mathrm{em}$ long, stigma colour cream, with 3 lobes; ovary $11.6 \pm 0.15 \mathrm{~cm}$ long, $7 \pm 0.08 \mathrm{~cm}$ in circumference, colour yellowish green with pink flush, ovvies arranged in four irregular rows.

Mape flowerg: arranged in two rows, mited tepal $4.8 \pm$ 0.30 cm long, $1.5 \pm 0.05 \mathrm{~cm}$ broad, colour pink inside, yellow outside, lobes $3+2$, acute, free tepal $3.5 \pm 0.05 \mathrm{~cm}$ long, $2.1 \pm 0.03 \mathrm{~cm}$ broad, below tip rarely corrugated; stamens 5, all fertile, filament $2.3 \pm 0.01 \mathrm{~cm}$ lang, colour cream, anther lobes $2.1 \pm 0.12 \mathrm{~cm}$ long, colour yellow, pistillode $48 \pm 0.21 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch: position of mature bunch 30° to the stem, bunch weight: $8.75 \pm 0.26 \mathrm{~kg}$, number of fingers 78 ± 3.4, number of hands 8 ± 0.56, hands and fingers loose.

Finger: $19.25 \pm 0.21 \mathrm{~cm}$ long and 13.75 ± 0.20 in circumference, almost cylindrical at maturity, apex, prominent, stout, warty, finger weight $124.25 \pm 2.1 \mathrm{~g}$.

Ripe fruit: colour duil yellow, firmly attached to the hand, rind thick, pulp colour creany white, thick, starchy, not fit for consumption, TSS $18 \pm 0.21 \%$, total sugars $14.64 \pm 0.41 \%$, reducing sugars $11.95 \pm 0.51 \%$, non reducing sugars $2.56 \pm 0.14 \%$, sugar/acid ratio $51.38 \pm 0.41 \%$, keeping quality medium.

PLATE 40. Musa (ABB Group) 'Mala1 monthan'

1.60 Musa (ABB Group) 'Bluggoe'

The plant is $249.25 \pm 5.2 \mathrm{~cm}$ tall with a circumference of $54 \pm 1.8 \mathrm{~cm}$ at the base. It takes 170 ± 3.2 days from $p l a n t i n g$ to flowering and $9+ \pm 1.5$ days from flowering to harvest.

Pseudostem: pale green, slightly glaucous.
Leaves: petiole $46.25 \pm 1.2 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, not winged below, lamina $165 \pm 2.3 \mathrm{~cm}$ long, $63 \pm 1.5 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate, number of leaves 29 ± 1.8.

Inflorescence: with basal female and distal male flowers, male and female axes pendulous, nale flowers deciduous, peduncle long and glabrous.

Bract: deciduous, shoulder tow, broadly ovate, apex obtuse, do not roll back after opening, colour outside brownish purple, inside bright crimson, colour continuous to base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $4.3 \pm$ 0.12 cm long and $1.3 \pm 0.05 \mathrm{~cm}$ broad, coluur pink, margins cream, lobes $3+2$, acute, free tepal $3.6 \pm 0.13 \mathrm{~cm}$ long, $2.6 \pm 0.08 \mathrm{~cm}$ broad, colour light pink, below tip corrugeted; stamens not fertile, staminodes $5,2.2 \pm 0.1 \mathrm{~cm}$ long, colour cream with no anther lobes; pistil $14.6 \pm 0.56 \mathrm{~cm}$ long, stigma colour cream, with 6 lobes; ovary $10.8_{ \pm} 0.13 \mathrm{~cm}$ long,
$6.9 \pm 0.12 \mathrm{~cm}$ in circumference, greenish yellow with pink flush at the base, orules arranged in four irregular rowe.

Male flowers: arranged in two rows, united tepal $5.2 \pm$ 0.2 cm long, $1.7 \pm 0.05 \mathrm{~cm}$ broad, pale pink outside and bright pink inside, lobes $3+2$, acuminate, free tepal $3.6 \pm 0.02 \mathrm{am}$ long $2.8+0.01 \mathrm{~cm}$ broad, colour cream with pink flush, below tip rarely corrugated; stamens 5, all fertile, filament $2.4 \pm 0.12 \mathrm{~cm}$ long, anther lobes $4.6 \pm 0.13 \mathrm{~cm}$ long, colour cream, pistillode $5.4 \pm 0.03 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush towards the base.

Bunch: position of mature bunch $25^{\circ}-30^{\circ}$ to the stem, bunch weighti $7.5 \pm 0.15 \mathrm{~kg}$, number af fingers 4.2 ± 3.4, number of hands 5 ± 0.06 hands and fingers loose. Finger: $16.25 \pm 1.2 \mathrm{~cm}$ long and $13.35 \pm 0.35 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, slightly tapering to the tip, apex distinct, ahort and stout, finger weight $133.43 \pm 5.6 \mathrm{~g}$.

Ripe fruit: : dull greenish yellow, rind very thick, pulp colour creamy white, soft, starchy not fit for consumption, TSS $26 \pm 1.2 \%$ total sugars $19.5 \pm 0.98 \%$, reducing sugars $17.88 \pm 0.3 \%$, non reducing sugars $1.55+0.09 \%$, sugar/acid ratio 36.81 ± 3.8, keeping quality medium.
1.61 Musa (ABB Group) 'Chetti'

The plant is $259 \pm 3.8 \mathrm{~cm}$ tall with a circumference of $54.25 \pm 2.2 \mathrm{~cm}$ at the base. It takes $170 \pm$ 4.2 days from planting to flowering and 100 ± 3.1 days from flowering to harvest.

Pseudostem: yellowish green with light black blotches near the base of petiole.

Leaves: petiole $46.75 \pm 1.2 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, lamina $172 \pm$ 3.1 cm long, $60 \pm 1.2 \mathrm{~cm}$ broad, base of lamina unequal, base and apex truncate, number of leaves 28 ± 0.55.

Inflorescence: with baśal female and distal male flowers, fiemale and male axes positively geotropic, male flowers. deciduous, peduncle long and glabrous.

Bract: deciduous, shoulder low., broadly ovate, apex obtuse, do not roll back after opening, colour brownish purple outside, bright crimson inside, inside bract colour continuous to the base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $3.8 \neq$ 0.2 cm long and $1.6 \pm 0.01 \mathrm{~cm}$ broad, colour pink, cream near margins, lobes $3+2$, acuminate, free tepal $4 \pm 0.12 \mathrm{~cm}$ long, $2.3 \pm 0.04 \mathrm{~cm}$ broad, cream with pink flush below tip rarely corrugated; stamens not fertile, staminodes 5, 2.2. $\pm 0.01 \mathrm{~cm}$ long, colour cream, with no anther lobes;
pistil $17.0 \pm 0.12 \mathrm{~cm}$ long, stigma colour cream, with 3 lobes; ovary $10 \pm 0.10 \mathrm{~cm}$ long, $7 \pm 0.08 \mathrm{~cm}$ in circumference, yellowish green with pink colour at the tip, ovules arranged in 4 irregular rows in each loculus. Male flowerg: arranged in two rows, united tepal $4.2 \pm$ 0.08 cm long, $1.8 \pm 0.03 \mathrm{~cm}$ broad, colour pale pink outside and inside, lobes 3+2, acuminate, free tepal $2.8 \pm$ 0.01 cm long, $1.8 \pm 0.01 \mathrm{~cm}$ broad, below tip rarely corrugated; stamens 5, all fertile, filament $2.1 \pm 0.02 \mathrm{~cm}$ long, colour cream with pink flush, anther lobes $3.8 \pm$ 0.05 cm , long, colour cream; pistillode $4.8 \pm 0.13 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch: position of mature bunch 30° to the s tem bunch weight $7.25 \pm 0.15 \mathrm{~kg}$, number of hands and fingers loose.

Finger: $19.63 \pm 0.32 \mathrm{~cm}$ long and $14.88+024 \mathrm{~cm}$ in circumference, angular with 5 mequal sides, tapering to the tip, apex prominent, stout, finger weight $91 \pm 2.6 \mathrm{~g}$, green fingers with ashy coating.

Rlpe fruit: colour dull yellow, firmly attached to the hand, rind thick, pulp creamy white, soft, atarchy, not fit for consumption, TSS $24 \pm 0.21 \%$, total sugars $18.54 \pm$ 0.58%, reducing sugars $15.59 \pm 0.11 \%$, non reducing sugars $2.83 \pm 0.05 \%$, sugar/acid ratio 58.86 ± 1.2, weeping quality medium.

PLATE 49. Musa (ABB Group) 'Chetti'

1.62 Kusa (ABB group) 'Kallu monthan'

The plant is $258.5 \pm 3.04 \mathrm{~cm}$ tall with a circumferance of $64.50 \pm 3.21 \mathrm{~cm}$ at the base. It takes $175 \pm$ 1.75 days from planting to flowering and $9+ \pm 1.05$ days from flowering to harvest.

Pseudostem: light green without blotches
Leaves: petiole $53.25 \pm 1.2 \mathrm{~cm}$ long, clasping pseudostem, margins of petiole inclosed, not winged below, lamina $188 \pm 1.2 \mathrm{~cm}$ long, $6.0 \pm 0.21 \mathrm{~cm}$ broad, base of lamina unequal, base truncate, apex cordate; number of leaves 31 ± 0.25.

Inflorescence: with basal female and distal male flowers, female and male axes positively geotropic, male flowers deciduous, male axis very long.

Bract: deciduous, shoulder eow., broadly ovate, apex obtuse, do not roll back after opening, colour brownish purple outside, bright crimson inside, inside bract colour $\quad \cdots$ continuous to the base, bract scars not prominent.

Female flowers: arrenged in two rows, united tepal $4.4 \pm$ 0.06 cm long and $2.8 \pm 0.02 \mathrm{~cm}$ broad, colour pink inside and yellowish pink outside, lobes 3+2, acute, free tepal $3.6 \pm 0.02 \mathrm{~cm}$ long, $2.6 \pm 0.02 \mathrm{~cm}$ broad, colour cream with pink flush below tip rarely corrugated; stamens not
fertile, staminodes $5,2.4 \pm 0.03 \mathrm{~cm}$ long, creamy white, with no anther lobes; pistil $18.6 \pm 0.32 \mathrm{~cm}$ long, stigma colour crears with 3 lobes; ovary $10.6 \pm 0.30 \mathrm{~cm}$ long, $8.6 \pm 0.12 \mathrm{~cm}$ in circumference, colour yellowish green with pink flush, ovules arranged in four irregular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.4 \pm$ 0.2 cm long, $1.8 \pm 0.03 \mathrm{~cm}$ broad, colour pale pink inside, yellowish pink outside, lobes $3+2$, acute, free tepal $3.6 \pm$ 0.10 cm long, $2.3 \pm 0.08 \mathrm{~cm}$ broad, below tip rarely corrugated; stamens 5, all fertile, filament $2.5 \pm 0.11 \mathrm{~cm}$ long, creamy white, anther lobes $2.7 \pm 0.09 \mathrm{~cm}$ long, colour yellow, pistillode $5.4 \pm 0.06 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch: position of mature bunch 30° to the stem, bunch weight $3 \pm 0.10 \mathrm{~kg}$, number of fingers 58 ± 2.1 number of hands 6 ± 0.10, hands and fingers loose.

Finger: $13.13 \pm 0.12 \mathrm{~cm}$ Iong and $11.30 \pm 0.09 \mathrm{~cm}$ in circumference, angular with 5 unequal sides, tapering to the tip, apex prominent, stout, finger weight $87.25 \pm 1.2 \mathrm{~g}$.

Ripe fruit : colour dull yellow, firme attached to the hands, rind thick, pulp colour creamy white, soft, starchy, not fit for consumption, TSS $23 \pm 0.23 \%$, total sugars $13.9 \pm 1.01 \%$, reducing sugars $12.54 \pm 0.05 \%$, non reducing sugars $1.30 \pm 0.8 \%$, sugar/acid ratio $30.23 \pm$ 1.7, keeping quality mediun.

PLATE 42, Musa (ABB Group) 'Kallu monthan'

1.63 Knga (ABBB Group) 'Hybrid Sawai'

The plant is $212.5 \pm 3.8 \mathrm{~cm}$ tall with a circumference 58 ± 2.5 om at the base. It takes 209 ± 4.4 days from planting to flowering and 95 ± 2.6 days from flowering to harvest.

Paendostem: pale green without brown ox black blotches.

Leaves: petiole 48 ± 0.85 om long, clasping pseudostem, margins of petiole inclosed, not winged below, 1 aina $148 \pm 1.2 \mathrm{~cm}$ long $67 \pm 0.75 \mathrm{~cm}$ broad, bese of lanian unequal, base cordate, apex truncate, number of leaves 26 ± 0.45.

Inflorescence: with basal female and distal male flowers, female exis semipendulous, male axis positively geotropic, male flowers deoiduous, peduncle long and glabrous.

Brant: deciduous, shoulder low, do not roll back after opening, ovate, apex abtuse, colour brownish purple outside, bright crimson inside, inside bract colour continuous to the base, bract soars not prominent.

Female plowera: arranged in two rows, united tepal $3.7 \pm$ 0.05 cm long and 3.6 ± 0.04 om broad, colour cream variably flushed with pinir, lobes $3+2$, free tepai 2.6 ± 0.08 cm long, 2.2 ± 0.03 am broad, cream with pink flush below tip not corrugated; stamens not fertile, staminodes 5, $1.5 \pm$
0.02 cm long, creamy white, with no anther lobes; pistil $14.4 \pm 0.12 \mathrm{~cm}$ long, stigma creamy white with 3 lobes; ovary $10.6 \pm 0.07 \mathrm{~cm}$ long, $8.1 \pm 0.09 \mathrm{~cm}$ in circumference, yellowish green flushed with pink, ovules arranged in four irregular rows in each loculus.

Male flowerg: arranged in two rows, united tepal $5.4 \pm$ 0.04 cm long, $1.3 \pm 0.01 \mathrm{~cm}$ broad, colour cream variably flushed with pink, lobes $3+2$, free tepal $3.2 \pm 0.05 \mathrm{~cm}$ long, 3.1 ± 0.04 cra broad, cream with pink flush, below tip not corrugated; stamens 5, all fertile, filament $2.7 \pm 0.06 \mathrm{~cm}$ long, colour creamy white, anther lobes $2.8 \pm 0.03 \mathrm{~cm}$ long, colour creamy, pistillode $5.3 \pm 0.05 \mathrm{~cm}$ long, stigma colour cream, ovary yellowish green with pink flush.

Bunch s position of mature bunch $40^{\circ}-45^{\circ}$ to the stem, burich weight $5.75 \pm 0.12 \mathrm{~kg}$, number of fingers, 93 ± 1.2, number of hands 6 ± 0.16, hands and fingers loose.

Finger: 9.88 cm long and 11.32 cm in circumference, with 5 indistinct sides, plumpy, apex distinct, short finger weight $72.50 \pm 1.5 \mathrm{~g}$.

Ripe fruit: colour dull yellow, firmly attached to the hand, rind thick, pulp colour white, soft, starchy, not fit for consumption, TsS $23 \pm 0.85 \%$, total sugars $14.76 \pm$ 0.26%, reducing sugars $11.81 \pm 0.25 \%$, non reducing sugars $2.87 \pm 0.51 \%$, sugar/acid ratio 38.48 ± 1.5, keeping quality medium.

PINu: 4.3. Juna (ABBB Group) 'Eybrid Savat'

1.64 Musa (BB Group) 'Elavazhai' (Musa balbisiana)

The plant is $451.5 \pm 4.8 \mathrm{~cm}$ tall at flowering with a circumference of $82 \pm 1.5 \mathrm{~cm}$ at the oase. It tokes 433 ± 3.5 days from planting to flowering and 128 ± 2.5 days from flowering to harvest.

Pseudostem: green without brown or black blotches.
Leaves: petiole $67.75 \pm 1.5 \mathrm{~cm}$ long, clasping pseudostem, martins of petiole inclosed, not winged below, lamina $175 \pm 2.2 \mathrm{~cm}$ long $61 \pm 1.0 \mathrm{~cm}$ broad, base of lamina unequal, base cordate, apex broadly obtuse; number of leaves 60 ± 1.5.

Inflorescence: with basal female and distal male flowers, male and female axes positively geotropic, male flowers deciduous, male axis very long, peduncle long and glabrous.

Bract: deciduous, shoulder low, lift but do not roll back after opening, broadly ovate, apex obtuse, colour brownish purple outside, bright crimson inside, inside colour continuous to the base, bract scars not prominent.

Female flowers: arranged in two rows, united tepal $4.1 \pm$ 0.04 cm long and $3.6 \pm 0.02 \mathrm{~cm}$ broad, cream, variably flushed with pink, lobes $3+2$, free tepal $3.0 \pm 0.01 \mathrm{~cm}$ long, $2.5 \pm 0.02 \mathrm{~cm}$ broad, colour light pink, below tip not corrugated; stamens not fertile, staminodes $5,2.0 \pm 0.01 \mathrm{~cm}$ long, with no anther lobes; pistil $14.5 \pm 0.13 \mathrm{~cm}$ long,
stigma creamy white, with 3 lobes; ovary $9.6 \pm 0.10 \mathrm{~cm}$ long, $7.9 \pm 0.05 \mathrm{~cm}$ in circumference, green flushed with pink, ovules arranged in four irregular rows in each loculus.

Male flowers: arranged in two rows, united tepal $5.2 \pm 0.03 \mathrm{~cm}$ long, $1.5 \pm 0.01 \mathrm{~cm}$ broad, colour pink with cream margins, lobes $3+2$, free tepal $2.8 \pm 0.02 \mathrm{~cm}$ long, $2.2 \pm 0.02 \mathrm{~cm}$ broad, below tip not corrugated, stabens 5, all fertile, filament $2.6 \pm 0.02 \mathrm{~cm}$ long, colour creamy white, anther lobes $3.1 \pm 0.11 \mathrm{~cm}$ long, colour cream; pistillode $4.9 \pm$ 0.13 cm long, stigma colour creany white, overy green with pink flush.

Bunch - position of mature bunch 30° to the stem, bunch weisht $7 \pm 0.13 \mathrm{~kg}$, number of fingers 53 ± 1.2, number of hands 5 ± 0.08, hands and fingers loose.

Finger: $10.88 \pm 0.12 \mathrm{~cm}$ long and $12.02 \pm 0.05 \mathrm{~cm}$ in circumference, angular with 5 indistinct sides, apex not prominent, finger weight $76.5 \pm 1.5 \mathrm{~g}$, contains well developed, black seeds.

Ripe fruit: colour dull yellow, rind thick, pulp colour white, soft, starchy, not fit for conmaption, TSS $24 \pm$ 0.075%, total sugars $13.65 \pm 0.13 \%$, reducing sugars $10.25 \pm$ 0.18%, non reducing sugars $3.24 \pm 0.06 \%$, sugar/acid ratio 48.55 ± 1.5, keeping quality medium.
2. Genomic grouping of eultivare

The cultivars were scored tazonomically and their somatic chromosome numbers were determined, based on which they were grouped into genowic groups (Table 2). The cultivars which scored 15 to 23 were Kusg anuminata aultivars, which included diploids (AA), triploids (AAA), and tetraploids (AAMA). The cultivars which ecored 26 to 46 belonged to the genomic group AAB, around 49, to $A B, 59$ to 63 to $A B B$ and around 67, to $A B B B$ according to the taxonomic acoring syatem (Table 1). me ecmets ohromenose of bahain axo precentil in Platem 44-46.

The cultivars listed below were found to be identical in all the worphological characters. The taxonomic seores and chromosome numbers of these were also similar (Table 2).
'Gros Kichel' and 'P1aang ambon'; 'Pedda pachcha' and 'Mouritius'; 'Galanamalu' and 'Pacha kadali'; 'Red banana' and 'Chenkadali'; 'Hasthali' and 'Suwandal'; 'Palayankodan' and 'Nalla ohackrakeli'; 'China' and 'Chinia'; 'Pacha nadan', 'Padaththi ponnan1', 'Lady's finger' and 'Nendra kunnan'; 'Chara padaththi', Kali', 'Nendra vannan' and 'Redjasirre';'Chinali' and 'Piaang raje';'Adakka kunan' and 'Poocha kuman'; 'Valiya kunnan'; 'Adukkan and Poomkalli'; 'Ney poovan'; 'Njali poovan' and 'Vadakkan Kadali'; 'Pey kunnan'; P1sang awak'; 'Kik 2/75' and
'Nanguneri peyan'; 'Ney vannan', 'ivey mannan' anã 'Boodi'; 'Kapok', 'Kapur' and 'Pisang mas'; 'Pacha Dontha bathees', 'Beula' and 'Dakshinsagar'; 'Muthia', 'Kothia', 'Chakkia' and 'Burrharia'; 'Bluggoe', 'Nalla bontha' and 'Nalla bontia bathees'; 'Chetti and'Ash monthan'; 'Kallu monthan' and 'Thella bontha'; 'Hybrid Sawal' and 'Neyvanna Sawaid.

Certain deviations were observed in the cultivars. 'Eraichivazhai' (AA), 'Sanna chenkadali' (AA), 'Krishna vazhai' (AB),'Vannan' (AB), 'Virupakshi' (AB), 'Sirumalai'(AB), 'Mannan' (AAB), 'Malakali' (AAB), 'Agniswar' (AAB), 'Pacha nadan' (AAB), 'Kostha bontha' (AB), 'Venneettu mannan' (AB), 'Karpooravally' (A3B), 'Chirapunchi' (A.3.3) and 'Pey kunnan' (ABB), from the characteristic behaviour of the genomic groups (Table 2).

The cultivar 'Eraichivazhai' scored 26. Unlike Musa acuminata cultivars, this cultivar had liw length/ breadth ratio of bract. The cultivar 'Sanna chenkadali' scored 28. This cultivar resembled Musa acuminata cultivars in all the other characters except in the low length/breadth ratio of bract and brownish purple bract colour which were characteristics of Musa balbisiana. The chromosome counts ($2 \mathrm{n}=22$) confirmed the diploid nature of these cultivars and they were assigned to the
genomic group AA, though the total score was higher than that puga quminate cultivars.

In taxonomic acoring, cultivara 'Krishna vashai', 'Vannan', 'Virupaksh1', 'Sirumalai', 'Mannan', (Malakai1', 'Agniswar', and 'Pacha nadan' scored 41 to 43. The total score ficr the triploid cultivars of the genonic group $A A B$ was 26 to 46 . Scmatio cell cytalogy revealed that 'Krishna vazhai', 'Vannan. 'Virupaksin', 'Sirumalai' and 'Agniswar' were diploids (2n a 2c) and 'Mannan', 'Malakali', and 'Pacha nadan' were triploids (2n $=33$). Thus the former cultivara were assigned to the genomic group AB and the latter to MAB.

Cultivara 'Kostha bontha' and 'Venneettu mannan' scored high (59) which vas characteristic of ABB cultivars. On cytological examination they were found to be diploids ($2 n=22$). Both the cultivars resembled each other, and had bunches oriented at an angle of more than 60° to the pseudostem, similar to 'Ney poovan' a typical AB cultivar.

Cultivars 'Karpooravally', 'Chirapunch1' and 'Pey kunnan' scored lower than the triplaid ass cultivara (56). The somatic chromosome number of these cultivars were $2 n=33$ and they were assigned to the ABB group.

Plate 44 Somatic chromosomes of banana ($2 n=22$) ($\times 6000$)

$$
\begin{aligned}
& \text { Plate } 45 \begin{array}{l}
\text { Somatic chromosomes of banana }(2 n=33) \\
(\times G 000)
\end{array}
\end{aligned}
$$

Plate 46 Somatic chromosomes of banana $(2 n=44)$ ($\times 6000$)
(${ }^{\text {Pquon) }}$

sxeaf7tho bueusa jo gufdnoxi ofwoued ez etaru

```
Table 2 (Contd.)
```

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\triangle A A A$																	
Bodles	1	1	1	1	1	1	1	2	2	2	2	1	1	2	1	20	44
13 tafort				1	1			2	2	2	2	1	1		1		
Pedda pachcha	2	1	1	1	1	1	1	2	2	2	2	1	1	1	1	20	33
Mauritius	2	1	1	1	1	1	1	2	2	2	2	1	1	1	1	20	33
Basrai	2	1	1	1	1	1	1	2	2	2	1	1	1	1	1	20	33
Harichal	2	1	1	1	1	1	1	2	2	2	2	1	1	1	1	20	33
Sapumal onamalu	3	1	1	1	1	1	1	2	2	2	2	1	1	1	1	21	33
Manoranjithm	1	1	1	1	1	1	1	1	1	2	5	1	2	1	1	21	33
Galanamalu	1	1	1	1	1	1	1	3	2	3	3	1	1	1	1	22	33
Pacha kadali	1	1	1	1	1	1	1	3	2	3	3	1	1	1	1	22	33
Red banana	1	1	1	1	1	1	1	3	2	3	2	1	1	2	1	22	33
Chenkadali	1	1	1	1	1	1	1	3	2	3	2	1	1	2	1	22	33
Wather	1	2	1	1	1	1	2	2	2	3	2	1	2	1	1	23	33
Karim kadali $A A B$	1	2	1	1	1	5	1	1	2	2	1	1	2	1	1	23	33
Thiruvananthapuram		3	2	1	1	5	2	3	3	3	2	1	2	2	2	35	33
Pacha chingan	3	2	4	2	1	5	1	3	3	3	4	2	1	1	1	36	33

(Contd.)

Table 2 (Contd.)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Rasthali	2	3	1	1	1	5	2	3	2	3	3	1	3	3	3	36	33
Suwandal	2	3	1	1	1	5	2	3	2	3	3	1	3	3	3	36	33
Dudhagar	2	3	2	1	1	5	2	3	2	5	5	1	1	2	2	37	33
Sugandhi	3	2	2	1	1	5	2	3	2	5	5	1	2	2	2	38	33
Palayankodan	2	3	2	1	1	5	2	3	2	5	5	1	2	2	2	38	33
Malla	2	3	2	1	1	5	2	3	2	5	5	1	2	2	2	38	33
chakkarakeli	3	3	2	1	1	5	2	3	2	5	5	1	2	2	2	39	33
China	3	3	2	1	1	5	2	3	2	5	5	1	2	2	2	39	33
Chinia	1	2	4	3	1	5	1	4	5	3	4	2	2	2	2	41	22
AB	3	2	4	2	1	5	1	4	5	3	4	2	2	2	2	42	22
Arishna varhai	3	2	3	2	1	5	1	3	3	3	5	3	1	3	4	42	22
Vaman	3	2	3	2	1	5	1	3	3	3	5	3	2	3	4	43	22
Virupak ahi	3	2	4	2	1	5	1	4	5	4	5	2	2	1	2	43	33
Sirumalai	3	3	4	3	1	5	1	2	2	5	4	2	2	3	3	43	33

(Contd.)

Table 2 (Contd.)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$A B$																	
$A g n i a v a r$	4	2	4	2	1	1	4	4	3	5	3	5	1	2	2	43	22
Pacha nadan	4	2	4	2	1	1	1	4	3	5	3	5	2	3	3	43	33
Padaththi pannani	4	2	4	2	1	1	1	4	3	5	3	5	2	3	3	43	33
Lady'a finger	4	2	4	2	1	1	1	4	3	5	3	5	2	3	3	43	33
Nendra kunan	4	2	4	2	1	1	1	4	3	5	3	5	2	3	3	43	33
Hendra padathth1	4	2	4	2	1	1	4	4	3	5	3	5	2	2	2	46	33
Chara padaththi	3	3	4	3	1	5	4	2	2	5	4	2	2	3	3	46	33
Xall	3	3	4	3	1	5	4	2	2	5	4	2	2	3	3	46	33
Mendra vannan	3	3	4	3	1	5	4	2	2	5	4	2	2	3	3	46	33
Redjasirre	3	3	4	3	1	5	4	2	2	5	4	2	2	3	3	46	33
Kullan	3	3	4	3	1	5	4	2	2	5	4	2	2	3	3	46	33
Chinali	3	2	2	2	1	5	3	5	4	3	5	3	3	3	2	46	33
Pisang raja	3	2	3	4	1	5	3	5	3	3	5	1	3	3	2	46	33
Nendran	3	2	4	3	1	5	3	4	4	4	5	2	2	2	2	46	33
$A B$																	
Adaka kumnan	3	4	4	4	1	5	1	4	5	2	5	2	1	5	3	49	22

Table 2 (Contd.)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Poocha kuman	3	4	4	4	1	5	1	4	5	2	5	2	1	5	3	49	22
Valiya kumnan	3	4	4	4	1	5	1	4	5	2	5	2	1	5	3	49	22
Adukkan	3	4	4	4	1	5	1	4	5	2	5	2	1	5	3	49	22
Poomkalli	3	4	4	4	1	5	1	4	5	2	5	2	1	5	3	49	22
Thaen kuman	4	4	4	4	1	5	1	4	5	2	5	2	1	5	3	50	22
Padali moongil	3	4	4	4	1	5	1	4	5	2	5	2	-	-	-	-	22
Hey poovan	5	4	4	4	1	5	1	4	5	2	5	2	1	5	3	51	22
Mjali poovan	5	4	4	4	1	5	1	4	5	2	5	2	1	5	3	51	22
Vadakkan kadali	5	4	4	4	1	5	1	4	5	2	5	2	1	5	3	51	22
Kostha bontha	5	3	2	2	5	5	5	4	4	4	4	5	3	4	4	59	22
Venneettumannan	5	3	2	2	5	5	5	4	4	4	4	5	4	4	4	59	22
ABB																	
Karpooravally	3	2	4	4	5	5	2	4	4	4	4	4	4	3	4	56	33
Chirapunchi	3	2	4	4	5	5	2	4	4	4	5	4	4	3	3	56	33
Pay kunnan	3	2	4	4	5	5	2	4	4	4	4	4	4	3	4	56	33
Pisang awak	3	2	4	4	5	5	2	4	4	4	4	4	4	3	4	56	33
KNR 2/75	3	2	4	4	5	5	2	4	4	4	4	4	4	3	4	56	33

Table 2 (Contd.)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Hanguneri payan	3	2	4	4	5	5	2	4	4	4	4	4	4	3	4	56	33
Walha	5	4	4	5	5	5	3	3	4	3	4	4	4	4	4	61	33
Aahy batheesa	5	4	4	5	5	5	3	3	4	3	4	4	4	4	4	61	33
Ney vannan	5	3	4	5	5	5	3	3	4	3	4	4	5	5	5	63	33
Mey mannan	5	3	4	5	5	5	3	3	4	3	4	4	5	5	5	63	33
Boodi	5	3	4	5	5	5	3	3	4	3	4	4	5	5	5	63	33
Alukehel	5	3	4	5	5	5	3	3	4	3	4	4	5	5	5	63	33
Kapok	3	3	4	4	5	5	4	4	4	5	4	4	4	5	5	63	33
Kapur	3	3	4	4	5	5	4	4	4	5	4	4	4	5	5	63	33
Pisang maa	3	3	4	4	5	5	4	4	4	5	4	4	4	5	5	63	33
Jurmoney	5	4	3	2	5	5	5	4	4	4	4	5	3	5	5	63	33
kunthali	4	4	4	5	5	5	3	3	4	3	4	4	5	5	5	63	33
Peyan	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Pacha bontha	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33

Table 2 (Contd.)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Muthia	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Kothia	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Chakkia	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Burrharia	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Kari bontha	4	4	5	4	5	5	3	4	3	5	4	4	4	4	5	63	33
Malal monthon	5	4	5	4	5	5	3	4	3	5	4	4	3	4	5	63	33
Bluggoe	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Neila bontha	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Nalla bontha bathees	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Chetti	5	4	5	4	5	5	3	3	4	5	4	4	4	4	4	63	33
Ash monthan	5	4	5	4	5	5	3	3	4	5	4	4	4	4	4	63	33
Kallu monthan	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Thella bontha $A B B B$	5	4	5	4	5	5	3	4	3	5	4	4	4	4	4	63	33
Hybrid Sawai	5	5	5	5	5	5	5	4	4	5	4	4	4	4	4	68	44
Neyvanna Sawai BE	5	5	5	5	5	5	5	4	4	5	4	4	4	4	4	68	44
Rlavazhal	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	75	22

3. Effect of ploidy and genomic constitution on quantitative characters of banana cultivars

The mean valuea of the 26 characters of the different ploidy groups, the genomic groups under each ploidy level and the cultivars under each genomic group are given in Tables 3 to 12. The analyais of variance of the characters are given in appendicesd-5.Sixty two cultivars were used for the analyais excuaing 'Matti' and 'Nenciran', since sufficient number of plants were not avallable in these two cultivars. The following comparisona were made to study the effest of ploidy level and genomic constitution on the characters.

1. The diploids were compared with the polyploids
2. Within the polyploids, the triploids were compared with the tetraploids.
3. The genouic groups within the diploids ($A A, A B$ and $B B$), the triploids (AAA, AAB and ABB) anc the tetraploids (AAAA and ABBB) were compared.
3.1. Growth parameters

The mean values of the growth parameters like the height, the girth, the nuaber of leaves, the leaf area per plent and the petiole length of the diploids, the polyploids which licluded triploids and tetraploids, and of the genowic groups under each ploidy level are presented in Table 3. The growth parameters of cultivars belonging to different genomic groups are presented in Tajle 4.

Table 3 Effect of ploidy and genome on the growth parameters of banana cultivars

Groups	Growth parameters				
	$\begin{gathered} \text { Height } \\ (\mathrm{cm}) \end{gathered}$	$\begin{gathered} \text { Girth } \\ (\mathrm{cm}) \end{gathered}$	Leaves per plant	Leaf area per plant (m2)	Petiole length (cm)
Diploids	247.81	54.72	28.47	24.12	46.78
Polyploids	241.80	57.44	27.79	26.76	45.70
C.D. (0.05)	1.81	2.39	0.22	0.04	0.34
Polyploids					
Triploids	242.54	57.45	27.96	27.02	45.39
Tetraploids	226.25	57.13	24.38	21.98	52.50
C.D. (0.05)	4.69	6.18	0.87	0.10	0.87
Diploids					
A	183.30	46.20	24.75	17.22	35.90
$A B$	257.71	56.00	27.40	24.73	49.63
BB	451.50	82.00	60.00	51.24	67.00
C.D. (0.05)	7.34	9.66	0.88	0.16	1.37
Triploids					
Aas	217.00	53.70	27.70	25.33	35.64
AAB	224.14	55.56	25.05	25.65	43.14
ABB	274.21	61.34	30.53	29.24	53.55
C.D. (0.05)	3.05	4.02	0.36	0.07	0.57
Tetraploids					
aras	240.00	56.13	22.50	21.94	57.00
ABBB	212.50	58.00	26.25	21.02	48.00
C.D. (0.05)	9.17	12.08	1.10	0.10	1.71

Table 4 Man values of the growth parameters of 62 cultivars of banana belonging to different genomic groups

Cultivars	Growth parameters				
	$\begin{gathered} \text { Height } \\ (\mathrm{cm}) \end{gathered}$	Girth (cm)	Leaves per plant	Leaf area per plant (m2)	Petiole length (cm)
1	2	3	4	5	6

As

Namarai	128.00	36.25	23.25	12.00	37.75
Chingan	207.50	42.75	26.75	21.10	38.50
Tongat	179.50	44.00	25.50	17.86	28.25
Eraichivazha1	199.00	60.50	26.50	17.61	28.25
Sanna chenkadali	202.50	47.50	21.75	17.54	46.75

AB

Krishna vazhai	237.00	58.00	21.75	19.93	34.25
Vaman	227.00	52.50	18.25	17.33	32.75
Virupakahi	251.00	54.00	19.25	17.51	53.75
Sirumalai	229.00	52.50	21.00	17.25	33.00
Agniswar	232.50	44.80	29.50	23.82	37.25
Adakka kuman	246.00	62.25	31.25	31.87	67.50
Valiya kunnan	234.50	59.50	29.50	33.13	59.50
Thaen kunnan	245.00	51.50	36.00	34.82	39.251
Padali moongil	232.50	46.25	28.25	18.14	60.75
Ney poovan	280.50	55.50	27.25	19.36	56.75
Kostha bontha	315.50	69.50	35.67	28.88	54.25
Venneettu mannan	362.00	77.50	31.00	34.22	66.75
BB					
Klavazhai	451.50	82.00	60.00	51.24	67.75
(M. balbisiana)					
AA					
Gros Michel	282.00	57.00	29.00	34.16	42.00
Highgate	197.50	60.50	28.00	34.19	32.50

Table 4 (Contd.)

1	2	3	4	5	6
Pedda pachcha	158.00	42.50	21.25	17.76	27.50
Basrai	132.00	47.00	31.75	19.69	27.25
Harichal	212.50	44.50	21.50	19.15	30.00
Sapumal anamalu	262.50	58.00	31.50	32.65	33.25
Manoranjithm	250.75	54.00	32.50	33.26	34.50
Galanamalu	274.50	71.50	28.00	26.73	59.25
Red banana	287.00	69.25	31.17	28.83	46.50
Wather	174.00	44.50	25.50	15.66	31.00
Karim kadali	186.50	42.00	24.50	18.50	28.25
AAB					
Thiruvananthapuram	210.00	48.75	23.75	26.59	37.75
China	233.50	54.50	33.00	26.70	41.75
Rasthali	264.00	66.75	32.84	30.30	54.00
Dudhsagar	251.00	55.00	26.75	36.71	63.25
Sugandhi	283.00	63.00	29.67	37.69	48.25
Palayankodan	228.00	53.75	25.00	33.60	45.00
Pacha chingan	208.50	51.50	21.25	21.25	35.00
Mannan	212.50	52.50	19.50	17.41	32.65
Malakali	214.00	53.00	23.75	20.16	34.00
Pacha nadan	202.50	56.00	19.00	14.11	32.75
Nendra padaththi	222.50	55.05	18.50	19.20	44.50
Chara padaththi	212.50	51.25	26.75	26.14	51.00
Kullan	159.00	53.75	25.75	19.40	25.25
Chinali	241.00	63.75	25.25	29.82	58.75
ABB					
Karpooravally	286.00	63.00	30.25	27.28	51.50
Chirapunchi	327.00	85.25	38.25	46.84	59.75
Pey kunnan	307.00	69.50	34.00	33.45	50.65

(Contd.)

Table 4 (Contd.)

1	2	3	4	5	6
Walha	264.00	69.00	31.75	31.61	57.50
Ashy batheesa	310.00	62.00	29.75	28.53	63.50
Ney Vannan	225.00	71.00	34.85	31.10	59.25
Alukehel	204.75	61.75	28.75	24.87	42.75
Kapok	361.50	72.50	26.00	37.60	64.25
Jurmoney kunthall	338.00	74.50	37.10	39.24	58.50
Peyan	300.50	62.00	34.00	35.13	53.75
Pacha bontha bathees	247.00	54.50	35.75	24.84	51.50
Muthia	232.50	56.25	27.25	28.87	42.75
Kari bontha	277.00	52.75	22.50	17.94	53.75
Malai monthan	225.50	49.00	22.00	17.35	54.75
Bluggoe	249.25	54.00	28.50	23.28	46.25
Chetti	259.00	54.25	27.75	21.05	46.75
Kallu monthan	258.50	64.50	30.50	28.42	53.25
AAA					
Bodles Altafort	240.00	56.25	22.50	21.94	57.00
ABBB					
Hybrid Sawai	212.50	58.00	26.25	21.02	48.00
C.D. (0.05)	9.17	120.08	1.09	0.10	1.712

The diploids were mignificantily superior to the polyploids in plant height, number of leaves per plant and petiole length while the polyploids recorded higher values in girth and leaf area per plant. Among the genomic groups 'BB' recosied the highest values in all the characters. The genomic groups and the cuitivars under each genomic group aiffered significantly in all the characters.
3.1.1. Plent height

When the diploids and the polyploids were coapared, the diploids (247.81 cm) were significently taller than the polyploids (241.80 cm). Witain the polypioids the triploids (242.54 cm) were significently taller than the totraploids (226.25 cm).

Among the genomic groups within the aiploids, variation in height was significant. Musa belbisiana (aB) was the tallest (451.50 cm) followed by the genomic groupa AB (257.71 cia) and AA (183.30 om).

Within the triploids also, the genomic groups varied significantly among themselves. The tallest ainong the three genomic groups, ABB, recorded the maximum helght (274.21 cm) followed by AAB (224.14 cm) and AAA (217.00 cm).

Within the tetraploids, the genomic group aAAA (240.00 om) was significantly superior to ABBB (212.50 cm) in plant height.

Among the 62 cultivars studied, the plant height varied from 128.00 om in 'Namarai' (AA) to 451.50 cm in 'Elarazhal' (BB).

In the genomic group \mathbb{A}, the maximum height recorded was in 'Chingan' (207.50 cm). In AB, it variod Irom 227.00 cm in 'Vannan' to 362.00 cm in 'Venncettu mannan'. In the genomic group withe variation in height was from 132.00 cm in 'Basrai' to 287.00 cm in 'Fied banana', while in AAB, plant height varied from 159.00 or in 'Kulian' to 264.00 cm in 'Rasthali'. In the group ABB, the tallest oultivar was 'Kapok' (361.50 cm) anc the dwarfest was 'Ney vannan' (225.00 cm) and 'Malai Monthan' (225.50 cm). The tetraploid 'Bodies Altafort' was 240.00 cm tall at flowering, while 'Hybrid Savai' (ABBB) was only 212.50 cm tall.
3.1.2. Plant girth

The polyploids (57.44 cm), as compared to the diploids (54.72 cm), showed significantly greater girth. Within the polyploids, the triploids and the tetraplaids were on par for plant girth.

Within the diploids, the genomic groups showed a wide and significant variation for plant girth. In yuse balbigiona (BB), the mean plant girth was 82.00 cm followed by the genomic groups $A B(56.00 \mathrm{~cm})$ and $A A$ (46.20 cm).

Within the triploids, the genoaic group A3B (61.34 cm) differed significantily fram 1 AB (55.56 cm) and AA (53.70 cm) wille AAB anc AAA were on par.

Within the totraploids the two genoaic groups did not show significant difference in plant girth.

Among the 62 cultivars, plant sirth varied from 36.25 cm in 'Namarai' (AA) to 85.25 cm in 'Chirspunchi' 6 ABC

Among the oultivars belonging to the genomic group AA, 'Eraichivazhai' recorded the maximum girth (60.50 cm). Among the cultivars of the genomic group AB, the girth varied from 44.80 cm in 'Agniswar' to 77.50 cm in 'Venneettu mamen'.

Amons the triploid kisa acuminata oultivars, the variation in girth was from 42.00 cm in 'Karim kadali' to 71.50 cm in 'Galanamalu'. In the genomic group AAB, plant sirth varied from 46.75 cm in 'Thiruvananthapura' to 66.75 orn in 'Rasthali' and anong the ABB cultivars, from 49.00 cm in 'Malai Monthan' to 85.25 cm in 'Chirapunchi'.

- Bodles Altafort' (ANA) recorded a girth of 56.25 cm and Hybrid Savai (ABBB), 58,00 am at the tial of flowering.
3.1.3. Leaves per plant

The diploids (28.47), compared to the polyploids (27.79) produced significantly more leaves per plant. Within the polgploids, the total leaf production was
significantiy lower in the tetraploids (24.38) than in the triploids (27.96).

The diploid genomic groups showed significant variation in the total number of leaves. It varied from 24.75 in AA to 60.00 in Musi balbisiana (33) wille in $A B$ the total leaves produced was 27.40.

The genomic groups within the triploids also showed significent variation in the Leaves per plant. The group abi produced the largest number of leages per plent (30.53), followed by AAA (27.70) and AAB (25.05).

Within the two tetraploid groups, АВВВ (26.25) produced significantly larger number of leaves than aida (22.50).

Among the 62 cultivars stucied, the leaves per plant varied from 18.25 in 'Vannan' (AB) to 60.00 in 'Rlavazhai' (yusa belbigions - B3).

Though the cultivars within the group A varied significantiy with respect to leaves per plant, the variation was not so wide as in the other genomic groups. The variation was from 21.75 in 'Sanna chenkadali' to 26.75 in 'Cningan'. Awong the cultivars of genomic constitution AB, 'Vansian' (18.25) produced the least number of leaves and 'Thaen kunnan' (36.00) produced the largest.

Among the cultivare in the genomic group RAA, leaves per plant varied from 21.25 in 'Pedda pachcha' to 32.50 in 'Manoranjithm', while in AAB it varied from 18.50 in 'Nendra padaththi' to 33.00 in 'China'. Awong the ABB cultivars, 'Chirapunchi' had the largest number of leaves (38.25), while the least was found in Malai monthan' (22.00). 'Hybrid Sawai' (AB3B) produced 26.25 leaves per
plant, while 'Bodles Altafort' (AMM) produced only 22.50. 3.1.4. Leaf area per plant

The polyploids ($26.76 \mathrm{~m}^{2}$) compared to the diploids (24.12 m^{2}) had aignificantly more total leaf area per plant. Within tine polyploids, there was a gignificant variation between the triploids ($27.02 \mathrm{~m}^{2}$) and the tetraploids ($21.98 \mathrm{~m}^{2}$).

The gencmic groups within the diploids showed a significent variation. The leaf area per plant was $51.24 \mathrm{~m}^{2}$ in yuge baphiname (BB) as against $24.73 \mathrm{~m}^{2}$ in $A B$ and $17.22 m^{2}$ in A.

The genomic groups within the diploids also showed a aignificant variation in leaf area per plant. The genomic group ABS recorded the largest leaf arca per plant ($29.24 \mathrm{~m}^{2}$), followed by AAB ($25.65 \mathrm{~m}^{2}$) anci AAA (25.33 m^{2}).

Within the tetraploids, the genomic group AAMA recorded signtfieantly more leaf area per plant (21. \% m^{2}) than ABBB (21.02 m^{2}).

Among the 62 cultivars belonging to the different genomic groups, the leaf exea per plant varied from $12.00 \mathbf{m}^{2}$ in 'Manarai' (A) to 51.24 m^{2} in Mavazhai' (BB). Among the cultivars of the group AA, 'Cningen' recorded the higheat leaf area (21.10 m^{2}) and among the diploid cultivars of the genomie group aB, it varied from $17.25 \mathrm{~m}^{2}$ in 'Sirumalas' to $34.82 \mathrm{~m}^{2}$ in 'Thaen kunnan'.

Among the yuse aguninata triploids (AM), leaf area per plant varied from $15.66 \mathrm{~m}^{2}$ in 'Wather' to $34.19 \mathrm{~m}^{2}$ in 'Highgate'; among the eultivars of the group ABB, it varied from $14.11 \mathrm{~m}^{2}$ in Pacha nadan' to $37.69 \mathrm{~m}^{2}$ in 'Sugandhi' and among the ABB cultivars from $17.35 \mathrm{~m}^{2}$ in 'Malai monthan' to $46.84 \mathrm{~m}^{2}$ in 'Chirapunchi'.

Bodles Altafort (AMA) recorded a total leaf area of $21.94 \mathrm{~m}^{2}$ and Hybrid Savai' (ABBB), $21.02 \mathrm{~m}^{2}$.
3.1.5. Petiole length

The diploids (46.78 em) had significantiy longer petioles than the polyploids (45.70 cm). Witnin the polyploids, the tetraploids had longer petioles (52.50 an) than the triploids (45.39 cm).

Within the diploids, the genomic groups varied significantiy in petiole length. Kusa balbisians (B3) had
the longest petioles (67.00 mm) followed by the groups AB $(49.63 \mathrm{~cm})$ and $A(35.90 \mathrm{~cm})$.

Within the triploids, the genoaic group ABB had the longest petiole (53.55 ma) and AAA the shortest (35.64 cm). The genomic group AAB recorded a mean petiole length of 43.14 cm .

Witin in the tetraploids, the two genomic groups differed significently in petiole length. Between the two, AAAA had longer petioles (57.00 cm) than ABBB (48.00 cm).

Among the 62 oultivars, petiole length varied from 25.25 cm in 'Kullon' (AAB) to 67.75 cm in 'Elavaghal' of genomic constitution BB.

Among the cultivars of the genomic group AA, petiole length varied from 28.25 ca('Tongat' and 'Eraichi vashai') to 46.75 cm ('Sanna chankadali'). among the cultivars of the genomic group AB, petiole length varied from 32.75 cm in 'Vanuan' to 67.50 cm in 'adakka kunnan'.

Among the cultivars of the genomic group ANA, petiole length varied from 27.25 cm in 'Basrai'' to 59.25 om in 'Galanamalu'. among the AAB cultivars it viried from 25.25 cm in 'Kullan' to 63.25 cm in 'Dudhsagar' and acaong the ABB cultivars from 42.75 cm 'Alukehel' and 'Muthia' to 64.25 cm in 'Kapok'.

The petiole length in Bodles Altafort' (MAA) was 57.00 and in 'Hybrid sawai" (ABBB) it was 48.00 cm . 3.2. Duration

The duration from planting to flowering (planting to flowering interval) and from flowering to harvest (flowering to harvest interval) of the diploids and the polyploids (triploids and tetraploids) and of the genomie groups under each ploidy level are presented in Table 5. The duration of incividual cultivar belonging to the different genomic groups are presented in Table 6. Wide and aignifioant variations were observed among ploidy levels, genconic groups and eultivars.
3.2.1. Planting to flowering interval

When the diploids and the polyploids were compared, the diploids took longer from planting to flowering (215.56 days) than the polyploids (196.06 days). Witinin the polyploids, the duration was aignificantiy more in the tetraploids (205.52 daya) than in the triploids (195.62 days).

Within the diploids, the genomic groups differed eignifieantly with respect to the taken to flower. The longest duration was of Muge balbigians (432.50 daya) and the shortest of AA (199.50 days), while AB recorded a mean duration of 204.17 days from planting to flowering.

Table 5 Effect of ploidy and genome on the duration of banana cultivars

Groups	Duration of the crop (days)	
	Planting to flowering interval	Flowering to harvest interval
Diploids	215.56	95.92
Polyploids	196.06	98.74
C.D. (0.05)	0.88	0.70
Polyploids		
Triploids	195.62	98.80
Tetraploids	205.52	97.50
C.D. (0.05)	2.27	1.81
Diploids		
AA	199.50	87.10
AB	204.17	96.96
BB	432.50	127.50
C.D. (0.05)	4.91	3.12
Triploids		
AAA	204.59	103.09
$A A B$	192.00	107.88
ABB	192.72	101.24
C.D. (0.05)	1.47	1.17
Tetraploids		
AAAA	205.00	100.00
ABBB	205.50	95.00
C.D. (0.05)	4.43	3.53

Table 6 Nean values of the duration of 62 cultivars of banana belonging to different genomic groups

Cultivars	Duration of the crop (days)	
	Planting to flowering interval.	Flowering to harvest interval
1	2	3
A		
Namaral	182.50	85.00
Chingan	205.00	63.00
Tongat	206.00	103.50
Eraichivazhai	203.00	93.00
Sanna chenkadali	201.00	91.00
AB		
Krishna vazhai	170.50	71.00
Vannan	174.00	70.00
Virupakshi	174.00	70.00
Sirumalai	169.50	70.50
Agniswar	176.50	107.50
Adakkaikunnan	232.50	114.50
Valiya kunnan	233.50	99.50
Thaen kunnan	227.50	123.50
Padali moongil	228.00	114.50
Hey poovan	186.00	110.00
Kostha bontha	232.50	107.50
Venneettu mannan	245.50	105.00
BB		
Elavazhai (M. balbisiana)) 432.50	127.50

Table 6 (Contd.)

1	2	3
AA		
Gros Michel	198.00	107.00
Highgate	198.00	109.00
Pedda pachaha	173.50	105.00
Basral	187.50	105.50
Harichal	185.00	106.50
Sapumal tanamalu	196.50	105.50
Manoranjithm	234.00	95.50
Galanamalu	237.50	117.00
Red banana	232.50	106.00
Wather	203.50	92.00
Karim kadali	204.50	84.50
ABE		
Thiruvananthapuram	207.00	94.50
China	229.00	137.00
Masthall	224.50	114.00
Dudhsagar	207.50	116.50
Sugandh1	207.50	92.00
Palayankodan	163.50	100.50
Pacha chingan	177.00	81.00
Mannan	171.50	86.00
Malakal1	162.50	82.50
Pacha nadan	185.50	75.50
Nendra padathth1	181.00	82.50
Chara padaththi	167.50	74.00
Kullan	172.50	95.00
Chinali	231.50	93.50

The genomic groups differed aignificantiy within the triploids. The planting to flowering interval in AAA was 204.59 days which was significantly more than that of $A B B$ (192.72 days) and $1 A B$ (192.00 days).

Within the tetraploids, the two groups did not significantly vary for time taken $\mathrm{A}_{\mathrm{pl}} \mathrm{planting}$ to flowering.

Among the 62 cultivars, duration from planting to flowering varied from 162.50 days in 'Malakali' (AAB) to 432.50 days in 'Elavachai' (B3).

Among the cultivars belonging to the group AA, the planting to flowering interval varied from 182.50 dey: in 'Namari' to 206.00 deys in 'Tongat'. In AB cultivars, it ranged from 169.50 days ('sirumalai') to 245.50 days ('Venneettu mannan').

The duration from planting to flowering varied in the genomic group AAA from 173.50 days in 'Pedda pachoha' to 237.50 days in 'Galanamalu' anc in AAB, from 162,50 days in 'Malakali' to 231.50 days in 'Chinail' while in A33 it varied from 167 days in Malal monthan' to 237.50 days 'Jurmoney kunthali'.

In 'Bodles Altafort' (AMM) planting to flowering interval was 205.00 days while in 'Hybrid Sawai' (AB3B) 1t was 208.50 days.
3.2.2. Flowering to harvest interval

The diploids and the polyploids were compared for the days taken from nowering to harvest. The polyploids took longer (98.74 days) then the diploids (95.92 days). W1thin the polyploids, flowering to harvest interval did not vary significently between the triploids and the tetraploids.

The genomic groups within the diploids showed significant variation. In yuga balbigiana (BS), the flowering to harveat interval was 127.50 day as against 96.9 days in AB and 87.10 days in AA.

The genomic groups within the triploids also differed aignificantly for the time from flowering to harvest. It was the highest in AAB (107.88 days) followed by AAA (103.09 days) and ABB (101.24 days).

Within the tetraploids, the gencmic groups varied significantly. Flowering to harvest interval was 100 daya in AAAA and 95 in ABBB.

The 62 cultivars studied ghowed a wide and simificant variation for the time taken from flowering to hervest. It varied from 63.00 daya in 'Chingan' to 137.00 days in 'China'.

Anong the cultivars belanging to the diploid Misg acuminate group (AA), the flowering to harvest

Table 7 Effect of ploidy and genome on the bunch characters of banana cultivars

Groups	Bunch weight (kg)	Hand weight (g)	Number of hands	Number of fingers
Diploids	6.86	762.43	8.07	108.08
Polyploids	8.83	1245.15	7.86	102. 34
C.D. (0.05)	0.15	54.30	0.33	2.98
Polyploids				
Triploids	8.59	1236.11	7.96	103.48
Tetraploids	7.50	1435.00	5.75	78.50
C.D. (0.05)	0.38	140.72	0.83	7.72
Diploids				
\boldsymbol{A}	6.20	743.15	8.28	108.50
$A B$	7.13	761.08	8.25	112.54
BB	7.00	875.00	5.00	52.50
C.D. (0.05)	0.60	219.98	1.30	12.07
Triploids				
AMA	8.84	1602.95	5.58	79.36
$A{ }^{\text {AB }}$	8.41	1059.29	8.04	101.71
ABB	9.32	1141.35	8.74	120.53
C.D. (0.05)	0.25	91.45	0.54	5.02
Tetraploids				
AMA	9.25	1900.00	5.50	64.00
ABBB	5.75	970.50	6.00	93.00
C.D. (0.05)	0.75	274.98	1.62	15.09

Table 8 Mean values of the bunch characters of 62 cultivars of banana belonging to different genomic groups

Cultivars	Bunch weight (kg)	Hand weight (g)	Number of hands	Number of fingers
1	2	3	4	5
A				
Namaral	3.00	70.75	6.25	86.50
Chingan	4.25	775.00	5.00	61.00
Tongat	10.25	585.00	12.75	231.50
Eraichivazhai	6.25	1025.00	6.00	53.50
Sanna chenkadali	7.25	1260.00	10.88	110.00
AB				
Krishna vazhai	5.25	835.00	5.50	77.50
Vannan	3.75	520.00	5.75	80.50
Virupaksini	4.00	475.00	5.00	63.00
Sirumalai	4.00	765.00	6.25	73.50
Agniswar	5.00	432.50	6.50	74.00
Adakka kuman	5.50	694.00	10.00	125.50
Valiya kunnan	10.25	1250.00	11.50	160.00
Thaen kunnan	7.25	675.00	9.50	108.50
Padali moongil	2.50	405.00	3.50	19.50
Ney poovan	10.00	925.00	11.50	187.50
Kostha bontha	12.75	902.50	11.50	172.00
Vemeettu mannan	15.25	1250.00	12.50	209.00

BB

Elavazhai (M, balbisiana) $7.00 \quad 875.00 \quad 5.00 \quad 52.50$

AM

Gros M1chel	9.75	1160.00	7.45	97.00
Highgate	13.25	1375.00	10.00	112.50
Pedda pachcha	8.00	1360.00	6.00	76.00

Table 8 (Contd.)

1	2	3	4	5
Basrai	5.50	825.50	6.00	83.00
Harichal	9.25	21.25	8.00	82.00
Sapumal anamalu	6.25	1500.00	7.00	78.50
Manoranjithm	5.75	1100.00	6.50	56.50
Galanamalu	15.25	2725.00	4.50	77.00
Red banana	12.50	1862.50	5.50	76.50
Wather	5.75	1100.00	6.00	58.00
Karim kadali	6.00	2500.00	6.50	76.00
$\triangle \mathrm{AB}$				
Thiruvanan thapuram	11.25	950.00	7.50	91.00
China	7.25	715.00	9.50	138.50
Rasthall	12.75	1340.00	10.50	117.00
Dudhsagar	12.75	1310.00	13.50	177.50
Sugandh 1	10.25	1275.00	9.50	125.00
Palayankodan	13.25	1300.00	10.50	188.50
Pacha chingan	6.25	740.00	6.50	84.50
Mannan	6.25	785.00	7.50	73.50
Malakali	9.00	1475.00	5.50	82.50
Pacha nadan	5.75	800.00	6.50	51.00
Nendra padaththi	3.75	990.00	3.50	49.00
Chara padathth 1	7.50	1250.00	7.00	89.00
Kullan	3.75	380.00	6.50	72.00
Chinall	8.00	1600.00	8.50	85.00
ABB				
Karpooravally	11.50	852.50	11.25	170.00
Chirapunchi	14.25	464.00	11.55	193.50
Pey kunnan	10.50	975.00	10.50	170.50
Walha	14.75	970.00	16.50	203.00

(Contd.)

Table 8 (Contd.)

1	2	3	4	5
Ashy batheesa	14.75	990.00	16.50	201.00
Ney vannan	6.50	1050.00	4.50	75.50
Alukehel	4.75	1100.00	6.50	86.50
Kapok	8.00	990.00	6.00	112.50
Jurmoney kunthali	14.00	1100.00	12.50	181.00
Peyan $\sqrt{ }$	6.75	1100.00	4.50	77.50
Pacha bontha bathees	9.75	1325.00	12.25	188.00
Muthia	9.75	1250.00	8.75	122.00
Kari bontha	7.25	1730.00	5.00	46.00
Malai monthan V	8.75	1950.00	7.50	78.00
Bluggoe	7.50	1567.50	4.50	42.00
Chetti	7.25	1104.00	4.00	40.10
Kellu monthan	3.00	450.00	6.00	57.50
AAM				
Bodles Altafort	9.25	1900.00	5.50	64.00
ABBB				
Hybrid Sawai	5.75	970.00	6.00	93.00
C.D. $(0,05)$	0.75	274.98	1.62	15.089

interval varied from 63.00 days ('Chingan') to 103.50 days (Tongat). In AB the ohortest duration was in 'Vannon' and 'Virupakah1' (70.00 days) and the longest duration in 'Thaen kunnen' (123.50 days). In 'Elavazhai' (3B) the days from flowering to harvest was the highest anong the diploids, being 127.50 days.

Anong the cultivars of the triploid yuse acuminata group (AAA), the duration from flovering to harvest varied from 84.50 days in 'Karim Kadali' to 117 days in 'Galanamalu'.
3.3. Bunch characters

The mean values of bunah weight, hand weight, the number of hands and fingers of different ploidy levels and genomic groups, under each ploidy level, are presented in Table 7. The bunch characters of oultivara belonging to the different gencmic groups are presented in Table 8. In bunch weight and hand weight the polyploids recorded significantly higher values than the diploids while in number of hands and fingers the diploids were superior to the polyploids. The genomic groupa and the cultivars differed significantiy with respect to these characters.
3.3.1. Bunch weight

When the polyploids and the diploids were compared with reapect to the bunch woight, the polyploids (8.83 kg) were significantly superior to the diploids (6.86 kg).

Within the polyploids, the triploids (8.59 kg) recorded significantly higher bunch weight than the tetraploids (7.50 kg).

Witnin the diploids, the genomic groups AB (7.13 kg) and $B B(7.00 \mathrm{~kg})$ were on par in bunch weight. The two genomic groups were significantly superior to the genomic group AA (6.20 ks). Within the triploids, the genomic groups differed significantly in bunch weight. The group $A B B$ recorded the maximum value $(9.32 \mathrm{~kg})$, followed by AAA $(8.84 \mathrm{~kg})$ and $\mathrm{AAB}(8.41 \mathrm{~kg})$. Within the tetroploids, the genomic group AAA recorded a significantly higher value for bunch weight (9.26 kg) than ABBB (5.75 kg).

The cultivars differed significantly for bunch weight, varying from 2.5 kg in 'Padali moongil' to 15.25 kg in 'Venneettu mannan' and 'Galanamalu'.

Among the cultivars of the genomic group $A A$, bunch weight varied from 3.00 kg ('Namarai') to 10.25 kg ('Tongat') and in AB from 2.50 kg ('Padali moongil') to 15.25 kg ('Venneettu mannan'). In 'Elavaznai' the buncir weight was 7 kg .

Anong the triploid Musa acuminata cultivars, the bunch weight varied from 5.5kin 'Basrai' to 15.25 in 'Galanamalu'. Among the AAB cultivers the variation in bunch weight was from 3.75 kg in 'Nendra padaththi' and 'Kullan' to 12.75 kg in 'Rasthali' and 'Dudhsagar' and
among the $A B B$ cultivars from 3 kg ('Kallu monthan') to 14.75 kg ('Waina' and 'Ashy batheesa').

Within the tetraploids 'Bodles Altafort' (aAAA) had heavier bunches (9.25 kg) than 'Hybrid Sawai' (5.75 kg) which belonged to the genomic group ABBB.
3.3.2. Hand weight

The polyploids (1245.15 g) were signiricently superior to the diploids (762.43 g) in hand weight. Within the polyploids, the tetraploids (1435 g) had a higher hand weight than the triploids (1236.11g).

Among the diploids the genomic groups did not differ significantiy in hand weight. Musa balbiaisna (BB) recorded the highest value (875 g) anong the three diploid genomic groups.

Within the triploids, the genomic groups differed significantly with respect to the hand weight.

The triploid Musa aquminate group (AMA) recorded a significantly higher value (1602.95 g) than ABB (1141.35 g) and AB (1059.29 g), winich also differed aignificentiy between themselves.

Within the tetraploids, 'Bodles Altafort' (AMAA) with an average hand weight of 1900.00 g was significantiy superior to 'hybrid Sawal' (ABBB) with an average weight of 970.50 g .

The 62 cultivara showed wide and significant Variation among themselves with respect to hand weisht, from 70.75 g in 'Namarai' (AA) to 2725.00 g in 'Galanamalu' (AAA).

Among the cultivars of the genowic group A, 'Sama chenkadali' had the heaviest hands (1260.00 g). Asong the AB cultivars, had weight varied from 405.00 g in 'Pedali moongil' to 1250.00 g in 'Vallya kunnan' and 'Venneettu mannan'. The cultivar 'Elavazhai' representing the genomic group $B B$, recorded 875.00 g as the mean hand weight.

Among the cultivara belonging to the triploid Musa acuminata group, the mean hand weight varied from 825.00 g in 'Basrai' to 2725.00 g in 'Galanamalu'; among the AAB cultivar: from 300.00 g in 'Kullan' to 1600 g in 'Chinali' and anong the ABB cultivars from 450.00 g in 'Kallu monthan' to 1950.00 g in 'Malai monthan'.

The tetraploids showed a wide and significant variation in mean hand weight from 970.00 g in Hybrid Sawai' (ABBB) to 1900.00 g in 'Bodlea Altafort' (AAAA).
3.3.3. Number of hands

When the diploids (8.07) and the poijploids (7.86) were compared, no significant difference was observed between them in the average hends per bunch. Within the
polyploids, the triploids (7.96) were significantly superior to the tetraploids (5.75).

Within the diploids, the genomic groups as anc AA aid not differ significantly for numeer of hands. But they were significantly superior to Nusa belbisiana (BB) in the number of hands (5.00).

Within the triploids the genomic groups differed significantly in hands per bunch. The group ABB recorded the highest value (8.74) followed by AAB (8.04) and AM (6.68).

Witinin the tetraploids, the genomic groupa were on par for hands per bunch.

The cultivars belonging to the different genomic groups showed a wide and significant variation in hand number ranging from 3.5 in 'Padali moongil' (AB) to 16.5 in 'Walha' and 'Ashy batheesa' (ABB).

The cultivars of the diploid Nusa aquminate group (AA) recorded significant variation in the number of hands from 5.00 in 'Chingan' to 12.75 in 'Tongat'. Among the cultivars of the genomio group AB, the nu ber of hands ∇ ried, from 3.5 in 'Padali moongil' to 12.5 in 'Venneettu mannan'. The number of hands in EDavaghai' (B3) was only 5.00.

Among the cultivars of the genomic group AAA, the number of hands varied from 4.50 in 'Galanaanlu' to 10.0 in 'ifigheste'. mong the AAB cultivars, the variation was from 3.5 in 'Hendra padaththi' to 13.5 in 'Dudinsasar' and saong the AB3 cultivars from 4.00 in 'Gnetti' to 16.50 in 'Walha' and 'Ashy batheesa'.

The tetraploids 'Boole: Altafort' (AAAA) and 'lybrid Sawai' did not ciffer siznificanty for nuber of hands.
3.3.4. Number of fingers

When the diplisis and the polyploids were compared for the wean number of fingers per buncii, the diploid bunches had significantly arofefingers (108.08) than the polyploids (102.34). Witinin the polypluids, tine triploids (103.48) were significintly superior to the tetraploids (\%0.5).

Witiln the diploids, the genomic sroups A3 (112.54) anc AA (108.50) were on par for fingers per ounch and Nusa gelbisiena (3i3) was significantly inferior to them (5 . .50).

Within the triploids, the genomic groups aiffered significantly. Among the three triploid senowic groupa, A33 group produced the maximum fingers per bunch, (120.53) followed by AAi (101.71) and AAA (79.36).

Within the tetraploids, 1833 (93.00) was significantily superior to AAAA(64.00) fingers per bunch.

Amons the 62 cultivars, the number of ingers vried from 19.5 in 'Padali moongil' (A3) to 231.50 in 'Tongat' (AA).

Among the cultivers of the genomic constitution AA, the mean firgers per bunch veriea fron 61.00 in 'Cals an' to 231.50 in 'Tongat'. Awons the cultivars af the genomic Group AB, the mean values, Faried from 19.50 in Padali moongil' to 209.00 in 'Venneettu maman'. 'blav anai'(3a) procuced only 52.5 fingers per bunch.

Among the cultivars of the triploid Musa gcuainata group (AMA), the variation in fingers per bunch was from 56.50 (Manoranjitho) t. 112.50 in "asghgate' and Aiwng the AAB cultivars from 49.00 in 'Nendra padathtai' to 186.5 in 'Palayankodan'. Wide and significant viriation was also observed anong the cultivars of the genomic eroup A33, from 40.10 in 'Chetti 'to 203.00 in Walna'.

The tetraploid Muga gominata ciltiver buales Altafort' had significontly lesser number of fingers (64.00) than 'yoric sawai' (ABBB) wilch nad 93.00 fingers jer bunch.
3.4. Finger choracters

The mean pedicel length; lenstin, irti, volume and reight of fingers, percentage of pulp weisht, percentage of pulp volume, and pulp to peel ratio by volume
and weight of fruits of the diploids and the polyploids and of the genomic zroups under each ploidy level are presentec in Table 9. Table 10 shows the aean vilues of the above paremeters in the cultivars under each seno ic group. The diploids recorded significantly higher values then the polyploids with respect to the pedicel lengtin, percentage of pulp and pulp/peel ratio, whille the polyploids had significentiy lonjer anc heavier fruits which also hed higher girth and volune tion the fingers of diploids. The genomic groups in diploids and polyploids and the cultivers under each genouic group also showed signilicant differences with respect to fineer characters.

3.4.1. Pecicel length

The ciploids (3.17 cas) wre significantiy staperior to the polyploids (2.88 cia) for pericel lengtia. Within the polyploids, the triploids (2.87 cm) anc the tetraploias (2.85 cm) were on par. Within the diploids, the triploids and the tetraploids; the genomic groups differed signilicantiy.

Witnin the diploids, the genomic sroup bis had the saximum pedicel length (4.13 cm) followed by $\mathrm{AB}(3.40 \mathrm{~cm}$) shic AA (2.4 cm). Within the triploids, AB. 4.06 cm) was followed by AAS ($2.3^{34} \mathrm{ca}$) and AAA (1.71 cra) in pedicel length.

Witain the tetraploids ABBB (3.63 cm) group had significantly lonzer pecilcel than AAAA (2.08 ca) group.

Table 9 Effect of ploidy and genome on the finger characters of banana cultivars

Groups	```Pedicel length (cm)```	Finger length (cm)	```Finger girth (cm)```	Finger weight (g)	Finger volume (cc)	Pulp weight (\%)	Pulp/ peel (wt. basis)	Pulp volume (8)	Pulp/ peel (Vol. basis)
1	2	3	4	5	6	7	8	9	10
Diploids	3.17	11.97	9.63	60.61	57.83	$\begin{gathered} 68.98 \\ (56.42) \end{gathered}$	2.57	$\begin{gathered} 69.01 \\ (56.30) \end{gathered}$	2.40
Polyploids	2.88	14.05	11.30	96.51	99.40	$\begin{gathered} 63.62 \\ (53.01) \end{gathered}$	1.90	$\begin{gathered} 63.85 \\ (52.09) \end{gathered}$	1.90
C.D. (0.05)	0.06	0.15	0.24	0.90	1.27	0.25	0.50	0.20	0.01
Polyploids									
Triploids	2.87	14.03	11.29	95.42	100.70	$\begin{gathered} 63.84+ \\ (53.14) \end{gathered}$	1.93	$\begin{gathered} 63.74 \\ (51.97) \end{gathered}$	1.89
Tetraploids	2.85	14.50	11.64	119.34	85.25	$\begin{aligned} & 58.85 \\ & (50.11) \end{aligned}$	1.41	$\begin{gathered} 66.15 \\ (54.59) \end{gathered}$	2.18
C.D. (0.05)	0.14	0.40	0.61	2.34	3.28	0.66	0.14	0.51	0.03
Diploids									
AA	2.42	11.54	9.05	55.27	47.80	$\begin{gathered} 65.43 \\ (54.14) \end{gathered}$	3.87	$\begin{aligned} & 67.97 \\ & (55.68) \end{aligned}$	2.40
$A B$	3.40	12.25	9.67	61.51	61.08	$\begin{gathered} 71.08 \\ (57.77) \end{gathered}$	2.92	$\begin{gathered} 70.16 \\ (56.69) \end{gathered}$	2.47
BB	4.13	10.88	12.02	76.50	69.00	$\begin{gathered} 61.50 \\ (51.65) \end{gathered}$	3.20	$\begin{gathered} 60.50 \\ (51.06) \end{gathered}$	1.53
C.D.(0.05)	0.23	0.62	0.96	3.66	5.13	1.02	0.23	0.80	0.05

Table 9 (Contd.)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Triploids

AAA	1.71	14.91	11.29	120.81	113.59	$\begin{gathered} 66.34 \\ (54.70) \end{gathered}$	2.17	$\begin{gathered} 65 \cdot 53 \\ (54.54) \end{gathered}$	2.05
${ }^{\text {A }}$ AB	2.34	12.32	10.92	77.57	81.89	$\begin{gathered} 68.36 \\ (55.65) \end{gathered}$	2.29	$\begin{gathered} 66.09 \\ (54.65) \end{gathered}$	2.12
ABB	4.06	14.87	11.58	93.70	106.29	$\begin{gathered} 58.51 \\ (50.07) \end{gathered}$	1.50	$\begin{gathered} 60.64 \\ (51.14) \end{gathered}$	1.58
C.D. (0.05)	0.09	0.26	0.40	1.52	2.13	0.43	0.09	0.33	0.02

Tetraploids

AAAA	2.08	19.13	11.95	166.18	99.00	$\begin{gathered} 60.13 \\ (50.86) \end{gathered}$	1.47	$\begin{gathered} 75.10 \\ (60.07) \end{gathered}$	3.02
ABBB	3.63	9.88	11.32	72.50	71.50	$\begin{gathered} 57.57 \\ (49.37) \end{gathered}$	1.36	$\begin{aligned} & 57.19 \\ & (49.11) \end{aligned}$	1.34
C.D. (0.05)	0.28	0.77	1.20	4.57	6.42	1.28	0.28	1.00	0.06

Table 10 Mean values of the finger characters of 62 cultivars of banana belonging to different genomic group:

Cultivars	$\begin{aligned} & \text { Pedicel } \\ & \text { length } \\ & (\mathrm{cm}) \end{aligned}$	Finger length (cm)	Finger girth (cm)	Finger weight (8)	$\begin{aligned} & \text { Finger } \\ & \text { volume } \\ & \text { (cc) } \end{aligned}$	Pulp weight (\%)	Pulp/ peel (wt. basis)	Pulp volume (\%)	Pulp/ peet (vol. basis)
1	2	3	4	5	6	7	8	9	10
A ${ }^{\text {A }}$									
Namarai	1.80	8.88	7.13	30.25	25.50	$\begin{gathered} 60.88 \\ (51.40) \end{gathered}$	1.56	$\begin{gathered} 60.25 \\ (50.92) \end{gathered}$	1.52
Chingan	3.05	13.10	9.63	57.50	49.50		0.79	$\begin{aligned} & 59.75 \\ & (50.63) \end{aligned}$	1.49
Tongat	2.28	8.88	8.88	41.25	34.50	(51.36) 64.00	1.78	$\begin{aligned} & 65.00 \\ & (53.73) \end{aligned}$	1.86
Eraichivazhai	2.50	13.75	10.38	74.60	75.50	(53.65)			2.75
						(51.65)	1.60	73.29	2.75
Sanna chenkadali	2.47	13.08	9.25	72.75	54.00	$\begin{aligned} & 79.75 \\ & (63.26) \end{aligned}$	3.94	$\begin{aligned} & .81 .50 \\ & (64.53) \end{aligned}$	4.41
AB									
Krishna vazhai	2.00	13.75	10.88	58.00	66.50	(56.72	1.31	$\begin{gathered} (1.77 \\ (51.80) \end{gathered}$	1.62
Vannan	3.00	10.48	10.25	45.50	53.50	62.88	1.70	56.85	1.32
Virupakshi	3.13	9.88	9.50	42.58	31.00	(52.45) 65.66	1.86	(48.94)	2.01
Sirumalai	3.63	10.88	9.75	54.38	61.00	(54.12) 55.78	1.26	$\begin{aligned} & 75.25 \\ & (60.17) \end{aligned}$	3.04
						(48.34)			
Agniswar	2.08	9.13	7.18	54.64	56.00	74.80	2.97	72.62	2.66
Adakka kumnan	3.98	10.68	8.75	48.45	45.50	74.50	2.93	75.38	2.90
						(59.61)		(59.67)	
Valiya kumnan	4.40	14.25	10.18	77.79	71.00	$\begin{aligned} & 79.75 \\ & (63.26) \end{aligned}$	3. 94	$\begin{aligned} & 76.25 \\ & (60.84) \end{aligned}$	3.22

Table 10 (Cantd.)

1	2	3	4	5	6	7	8	9	10
Thaen kunnan	3.75	19.68	8.23	51.25	69.00	$\begin{gathered} 81.26 \\ (64.38) \end{gathered}$	4.34	$\begin{aligned} & 75.28 \\ & (60.20) \end{aligned}$	3.05
Padali moongil	4.13	15.88	11.88	96.50	41.50	$\begin{aligned} & 87.75 \\ & (69.30) \end{aligned}$	7.17	$\begin{aligned} & 72.22 \\ & (58.18) \end{aligned}$	2.60
Ney poovan	4.58	11.13	8.65	62.63	70.50	$\begin{aligned} & 72.87 \\ & (58.60) \end{aligned}$	2.69	$\begin{aligned} & 74.98 \\ & (60.00) \end{aligned}$	3.00
Kostha bontha	2.55	12.63	11.33	68.42	64.50	$\begin{aligned} & 7+.67 \\ & (59.81) \end{aligned}$	2.95	$\begin{gathered} 65.57 \\ (54.09) \end{gathered}$	1.71
Venneettu mannan	3.63	13.63	9.48	78.00	53.00	$\begin{aligned} & 66.33 \\ & (54.55) \end{aligned}$	1.97	$\begin{gathered} 70.09 \\ (56.85) \end{gathered}$	2.34
BB (M. balbisiana)	4.13	10.88	12.02	76.50	69.00	$\begin{gathered} 61.50 \\ (51.65) \end{gathered}$	1.60	$\begin{gathered} 60.50 \\ (51.06) \end{gathered}$	1.53
AM	1.38	14.38	11.38	123.75	162.55	$\begin{gathered} 61.75 \\ (51.83) \end{gathered}$	1.61	$\begin{gathered} 65.13 \\ (53.83) \end{gathered}$	1.87
Highgate	2.13	19.75	10.50	111.25	113.00	$\begin{aligned} & 59.95 \\ & (50.74) \end{aligned}$	1.50	$\begin{array}{r} 60.49 \\ (51.07) \end{array}$	1.54
Pedda pachcha	1.38	14.13	10.88	94.38	120.00	$\begin{gathered} 61.40 \\ (51.59) \end{gathered}$	1.59	$\begin{gathered} 63.00 \\ (52.54) \end{gathered}$	1.71
Basrai	1.78	13.25	9.98	68.38	72.50	$\begin{aligned} & 63.38 \\ & (52.74) \end{aligned}$	1.73	$\begin{array}{r} 64.75 \\ (53.58) \end{array}$	1.84
Harichal	1.48	14.75	12.25	188.02	184.00	$\begin{array}{r} 62.25 \\ (52.09) \end{array}$	1.65	$\begin{aligned} & 63.55 \\ & (52.91) \end{aligned}$	1.75
Sapumal anamalu	2.47	17.38	9.38	133.00	131.00	$\begin{array}{r} 60.81 \\ (51.27) \end{array}$	1.56	$\begin{aligned} & 69.21 \\ & (56.29) \end{aligned}$	2.25
Manoranjithm	2.33	12.98	10.25	71.08	76.50	$\begin{array}{r} 65.00 \\ (53.73) \end{array}$	1.86	$\begin{gathered} 61.00 \\ (51.36) \end{gathered}$	1.57
Galanamalu	1.28	11.83	13.75	193.50	120.50	$\begin{array}{r} 81.35 \\ (64.45) \end{array}$	4.37	$\begin{gathered} 79.18 \\ (62.87) \end{gathered}$	3.80

Table 10 (Contd.)

1	2	3	4	5	6	7	8	9	10
Red banana	1.38	12.18	14.53	195.60	131.00	80.18	4. 4.05	65.30	2.99
Wather	1.63	16.83	10.88	80.25	97.50	(63.58) 66.94	2.01		1.72
Karim kadali	1.59	16.03	9.80	74.79	91.00	$\begin{aligned} & (55.00) \\ & 66.41 \end{aligned}$	1.98	$\begin{array}{r} 52.63) \\ 61.06 \end{array}$	1.57
$A B B$									
Thiruvananthapuram	2.62	10.53	8.65	90.63	83.00	$\begin{gathered} 65.79 \\ (54.07) \end{gathered}$	1.93	$\begin{gathered} 60.00 \\ (50.77) \end{gathered}$	1.50
China	2.35	10.38	9.25	49.25	61.00	$\begin{array}{r} 67.09 \\ (55.00) \end{array}$	2.04		1.94
Rasthali	2.63	16.95	12.13	92.92	132.00		3.15	$\begin{aligned} & 65.30 \\ & (53.41) \end{aligned}$	1.88
Dudhsagar	2.50	13.88	13.00	103.75	102.50	$\begin{array}{r} 75.88 \\ (60.62) \end{array}$	2.61		2.86
Sugandhi	2.23	13.38	13.50	90.75	121.50	$\begin{aligned} & 72.25 \\ & (58.21) \end{aligned}$	2.98	$\begin{aligned} & 64.25 \\ & (53.28) \end{aligned}$	1.80
Sugandi						$\begin{aligned} & 74.90 \\ & (59.94) \end{aligned}$			
Palayankodan	3.00	11.60	10.63	74.25	74.50	$\begin{aligned} & 79.18 \\ & (63.44) \end{aligned}$	4.00	$\begin{aligned} & 79.93 \\ & (63.40) \end{aligned}$	3.98
Pacha chingan	2.21	11.88	10.00	54.75	51.50		1.68		1.49
Mannan	2.15	11.38	8.75	58.73	61.00	$\begin{array}{r} 62.69 \\ (52.36) \end{array}$		$\begin{aligned} & 59.88 \\ & (50.71) \end{aligned}$	1.40
Mannan	2.15	11.38	8.75	58.73	61.00	$\begin{gathered} 60.23 \\ (50.92) \end{gathered}$	1.52	$\begin{aligned} & 58.23 \\ & (50.01) \end{aligned}$	
Malakali	2.33	15.25	11.14	99.25	91.50	$\begin{gathered} 62.89 \\ (52.48) \end{gathered}$	1.69	61.06	1.59
Pacha nadan	2.43	11.23	11.83	68.00	64.00		1.82	(64.72)	1.83
Nendra padaththi	2.25	11.25	12.08	64.64	64.00	$\begin{gathered} 65.55 \\ (54.00) \end{gathered}$	1.91	$\begin{gathered} 65.50 \\ (54.07) \end{gathered}$	1.90

(Contd.)

Table 10 (Contd.)

1	2	3	4	5	6	7	8	9	10
Chara padaththi	1.88	11.04	10.73	86.25	85.50	$\begin{gathered} 64.54 \\ (53.40) \end{gathered}$	4.82	$\begin{array}{r} 70.59 \\ (57.26) \end{array}$	2.40
Kullan	2.08	9.83	9.00	45.50	53.00	74.75	2.96	79.83	3.98
Chinali	2.13	10.38	9.25	107.23	101.50	$\begin{aligned} & (59.84) \\ & 66.10 \\ & (55.00) \end{aligned}$	2.04	$\begin{aligned} & (63.35) \\ & (58.85 \\ & (49.87) \end{aligned}$	1.94
ABB									
Karpooravally	3.00	13.13	11.70	67.29	55.50	$\begin{gathered} 68.63 \\ (55.93) \\ 64.13 \\ (55.03) \\ 63.04 \\ (52.57) \end{gathered}$	2.19	$\begin{gathered} 65 \cdot 50 \\ (54.15) \end{gathered}$	1.91
Chirapunchi	2.50	14.00	9.25	63.00	63.50		$\begin{aligned} & 2.05 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 62.15 \\ & (52.03) \end{aligned}$	1.64
Pey kunnan	3.63	12.63	9.75	63.15	61.50			$\begin{aligned} & 60.63 \\ & (51.15) \end{aligned}$	1.54
Walha	5.13	17.03	9.93	80.63	128.50		1.00	$\begin{gathered} 61.90 \\ (51.89) \end{gathered}$	1.63
Ashy batheesa	5.13	16.75	9.43	88.75	84.00	$\begin{aligned} & 50.88 \\ & (45.52) \end{aligned}$	1.04	$\begin{gathered} 60.48 \\ (51.07) \end{gathered}$	1.53
Ney Vannan	3.58	12.38	11.73	100.75	95.00	$\begin{aligned} & 55.78 \\ & (4 \mathrm{C} .34) \end{aligned}$	1.26	$\begin{gathered} 60.25 \\ (50.92) \end{gathered}$	1.52
Alukehel	3.63	12.63	11.48	120.50	98.50	55.61	1.25	61.35	1.59
Kapok	4.23	13.46	10.88	91.00	64.00	$\begin{aligned} & 50.00 \\ & (45.00) \end{aligned}$	1.00	$\begin{aligned} & 58.29 \\ & (49.78) \end{aligned}$	1.40
Jurmoney kunthali	4.93	14.75	9.52	63.50	62.50	64.63 (53.52)	1.83	61.62	1.61
Peyan	4.43	13.25	11.63	65.95	62.50	$\begin{aligned} & 50.00 \\ & (45.00) \end{aligned}$	1.00	$\begin{aligned} & 54.80 \\ & (47.80) \end{aligned}$	1.21

Table 10 (Contd.)

1	2	3	4	5	6	7	8	9	10
Pacha bontha bathees	3.25	15.65	13.08	105.50	205.50	$\begin{aligned} & 59.88 \\ & (50.71) \end{aligned}$	0.99	$\begin{gathered} 61.12 \\ (51.44) \end{gathered}$	1.57
Muthia	4.00	13.25	12.28	103.50	110.50		1.62		1.66
Kari bontha	4.63	15.73	12.93	119.50	155.00	$\begin{array}{r} 58.67 \\ (49.98) \end{array}$	1.42	$\begin{aligned} & 46.76 \\ & (43.17) \end{aligned}$	0.88
Malai monthan	3.38	19.25	13.75	124.25	206.50	$\begin{aligned} & 73.97 \\ & (59.31) \end{aligned}$	2.85	$\begin{aligned} & 73.22 \\ & (58.80) \end{aligned}$	2.74
Bluggoe	3.63	16.25	13.35	133.43	109.50	$\begin{aligned} & 54.01 \\ & (47.23) \end{aligned}$	1.18	$\begin{array}{r} 63.58 \\ (52.92) \end{array}$	1.71
Chetti	5.55	19.63	14.88	125.00	162.50	$\begin{aligned} & 58.40 \\ & (49.84) \\ & 55.50 \\ & (48.19) \end{aligned}$	1.41	$\begin{aligned} & 60.24 \\ & (50.89) \\ & 56.60 \\ & (48.80) \end{aligned}$	$\begin{aligned} & 1.62 \\ & 1.31 \end{aligned}$
Kallu monthan	4.43	13.13	11.30	87.25	82.00		1.25		
AMS									
Bodles Altafort	2.08	19.13	11.95	116.18	99.00	$\begin{gathered} 60.13 \\ (50.86) \end{gathered}$	1.47	$\begin{aligned} & 75.10 \\ & (60.01) \end{aligned}$	3.02
ABBB									
Hybrid Sawai	3.63	9.88	11.32	72.50	71.50	$\begin{gathered} 57.57 \\ (49.37) \end{gathered}$	1.36	$\begin{aligned} & 57.19 \\ & (49.11) \end{aligned}$	1.34
C.D. (0.05)	0.28	0.77	1.20	4.57	6.42	1.28	0.28	1.00	0.06

Husa acuminata groups had the shortest pedicels. bitiln each ploidy level, pedicel lensth increased with increase in '3' genome.

Pedicel lensth varied from 1.28 cm in 'Galanawalu' (AAA) to 5.55 cm in 'Chetti' (AB3). All the ciltivars oelonging to yusa mauminata groups (AA, AAA anc AAAA) had shorter pedicels than cultivars of the other genowic sroups.

Arong the cultivars of the genomic group $A A$, the pedicel length V ried from 1.80 cm in 'lamarai' to 3.05 c. in 'Chingon', anc adong the cultivar of As group from 2.00 czi in 'Krisinna vazhai' to 4.58 cm in Dileypoovin'. In 'Glavazhai' the fruits hac pedicels of mean lerigth 4.13 cw.

Anioncs the triploid aquainata (AAA) cultivers, pedicel length varied significantly froa 1.28 cm in 'Galanamalu' to 2.47 cm in 'Sapumal anamalu'. Amon; the triploids of AAB group, cultivar 'Chara padaththi' had the shortest pedicels (1.88 cm) and 'Palayankudan' the longest (3.00 cra). Aroong the caltivars of ABB group, 'Cinir punchil' hed the shortest pedicel (2.50 cin) while 'Chetti' hat the longest (5.56 cm).

In the tetraploids, the pecicel lensth varied significatitiy from 2.08 cm in 'Bodies Altafort' (aAaA) to 3.63 cm in 'ilybrid Sawai' (ABB3).
3.4.2. Finger iength

The polyploids with a mean finger length of 14.05 cm was significantiy superior to the diploids (11.97 cm). Within the polyploids, the tetraploids (14.50 cm), were significantiy superior to the triploids (14.03 cm).

Within the diploids the genomic groups AB (12.25 cm) and AA (11.54 cm) were on par with respect to the finger length and both the groups were significantly superior to B3 (10.88 cm).

Within the triploids, the genomic groups aMA (14.91 cm) and 133 (14.87 mm) were on par while 143 (12.32 cm) had significintly shorter fruits than these two groups.

Within the tetraploids the genomic group AAAA (19.13 cm) had significantily longer fruits than AB3B (9.88 cm).

The finger length varied significantly, among the 62 cultivars stuxied, cultivars 'Namarai' (AA) and 'Tongat' (AA)(8.88 cm) having the shortest fingers and 'Highgate' (AAA) having the longest (19.75). Among the diploid husa acuminata cultivars fruit lengtin varied from 8.88 cm (Namarai and Tongat) to 13.75 in 'Eraichivazhai' and among the ciploids of 'A3' group from 9.13 in 'Agniswar' to 19.68 in 'Thaen kunnan'. 'Klavazhai' (33) recorded a mean finjer length of 10.88 cm .

Among the Mun acquinate triploids (aAA), the finger length varied from 11.83 cm in 'Galanamalu' to 19.75 in 'Highgate'; among the cultivars of the AAB group from 9.83 cm in 'kullan' to 16.95 cm in 'Fasthall' and avoong the ABB cultivars, from 12.38 cm in 'Hey vannan' to 19.63 cm in 'Chetti'.
'Bodles Altafort' recorded a mean finger length of 19.13 cm and 'Hybrid Sawai' (ABBB), 9.88 cm .
3.4.3. Finger girth

When the diploids and the polyploids were compared on the basis of finger zirth, the mean value of the polyploids (11.30 cm) was significantly higher than that of diploids (9.63 cm). Within the polyploids, the triploids and the tetraploids did not differ significantiy.

Within the diploids, usa baloisiana (33) had the maximum finger girth (12.02 cm), followed by $A 3$ (9.67 cm) ond AA (9.05 cm) which were on par.

Within the triploids, the genoaic groups AAA (11.29 cm) and $A B B$ (11.58 cm) were on par in finger girth while the AAB group recorded a significantly lower value than the former two groupe (10.92 cm).
within the tetraploids, the genomic groups were on par with respect to finger girth.

Among the 62 cultivars, the finger girth varied significentily from 7.13 cm in 'Namarai' (A) to 14.88 cm in 'Chett1' (AB8).

Amons the cultivars of the genomic group AA, the finger girth veried from 7.13 cm , to 10.38 cm in 'Eraichivazhai' and among the AB cultivars it varied from 7.18 in 'Agniswar' to 11.88 in 'Padali moongil'. In Elavazhai (B3) the mean finger girth was 12.02 cm.

Anong the cultivars of the genomic constitution AM, the finger girth varied from 9.38 cm in 'Sapumal anamalu' to 14.53 cm in 'Red banana'; among the cuitivars of the genomic constitution AB , from 8.65 cw in 'Thiruvananthapuram' to 13.5 cm in 'Sugandii' and among the ABB cultivars, from 9.25 cm in 'Chirapunch1' to 14.88 cm in 'Gnetti'.

The finger girth in 'Bodles Altafort' (AAN) and 'Hybrid Sawai' (ABBB) did not differ significentiy, being 11.95 cm in the former and 11.32 cm in the latter.
3.4.4. Finger weight

The mean finger weight in the polyploids was significantly higher (96.51 g) than that of the diploids (60.61 g). Within the polyploids, the tetraploids recorded higher finger weight (119.34 g) than the triploids (95.42 g).

Vithin the diploidis, the triploids end the tetraploids, the genomic groups differed significantly in finger weight. Within the dipluids, Musa balbisiane (3B) recorded the highest value (76.50 g) followed by $A \mathrm{~A}(61.51 \mathrm{~g}$)
and $A A(55.27 \mathrm{~g})$. Within the triploids, the genomic group MAA recorded the highest value (120.81 g) followed by ABB (93.70 g) and $A \mathrm{AB}(77.57 \mathrm{~g})$. Within the tetraploids, the genomic group alM differed significantly in finger weight from ABBB group (166.18 g and 72.50 g respectively).

The cultivars ahowed a significant variation among thomselves with reapect to finger weight from 30.25 g in 'Namaral' (AA) to 195.60 g in 'Red banana' (AAA). Witinin the genomic groups also the cultivars showed a significent variation.

In the genomic group M, cultivar 'grachivamial' had the heaviest fruits (74.60 g). Among the cultivars of the group AB, the finger weight varied from 42.58 g in 'Virupakshi' to 96.50 g in 'Padali moongil'. 'Klavazhai'(Bg) produced fingers of mean weight 76.50 g .

The finger weight varied significantly anong the cultivars belanging to each of the three triploid groups. In the genomic group adi it varied from 68.38 g in '3asrai' to 195.60 g in 'Red banana'; in AAB, from 49.25 g in 'China' to $1, \% \mathrm{~K}_{\mathrm{y}} \mathrm{g}$ in 'chinali' and in ABB, fram 57.29 g in 'Karpooravally' to 133.43 g in 'Blugeos'.

The Musa acuminata tetraploid (AAAA)hed significantiy heavier fruits (116.18 g) tinan 'Hybrid Sawai' (ABBB - 72.50 g).
3.4.5. Finger volume

When the ploidy levels were compared with respect to the finger volume, the polyploids (99.40 cc) were simific ntly superior to the diploids (57.83 cc). Witinin the polyploids, the triploids (100.70 cc) were significantly superior to the tef traploids (85.25 cc).

Within the diploids, the genomic groups aiffered significently in finger volume. The group $B B$ had the maximum mean value for volume (69.00 cc) followed by AB (61.08 cc) and at (47.80 cc).

Within the triploids, the genomic groups differed significantly in mean finger volume. The group aiA recorded the maximum value in finger volume (113.59 cc), followed by ABB (106.29 cc) anć AAB (81.89 cc).

Within the tetraploids, the group AAMA with a mean volure of 99.00 ce for finger, was significantily superior to $А В В$ (71.50 cc).

The finger volume varied significantily among the 62 cultivars from 25.50 cc in 'Namara'' (AA) to 206.50 cc in 'Malal :3onthan'. Among the cultivars of the group AA the highest fruit volume was recorded by 'Eraichivazhai' (75.50 cc).

Among the cultivars of the AB group, the volume of finger varied from 31.00 cc in 'Virupakshi' to 71.00 ce

In 'Valiya kuman'. 'Rlavaehai' (BB) fruits recorded a mean voluae of 69.00 ec.

Among the triploids of Musa gocuminata group (AM), the wean finger volume varied from 72.50 cc in 'Basrai' to 184.00 cc in 'Harichal', among the AA3 cultivars, from 51.50 cc in 'Pacha ohingan' to 132.00 cc in 'rasthali' and among the ABB cultivars from 55.50 cc in 'Karpooravally' to 206.50 cc in 'Malai wonthan'.

Within the tetraploids, Bodles Altafort' (AAAA) recorded a significantiy higher vaiue (99.00 cc) for finger volume than 'Hybrid Sawai' (ABBB, 71.50 cC)
3.4.6. Percentase of pulp weight

When the diploids and the polyploids were compared, the diploids (68.98%) were found significently guperior to the polyploids (63.62\%) in percentage of pulp weight. The triploids (63.84%) were aignificantiy superior to the tetraploics (58.85%) within the polyploids.

Within the diploids the genowic groups differed significentiy. The 43 roup had the highest mean percentage of pulp (71.08\%), followed by $14(65.43 \%)$ and 33 (61.50%).

Within the triploids, the genomic groups differed significantly. The group AAB had the highest percentage of pulp (68.36%), followed by AAA (66.34%) and A3B (58.51%).

Within the totraploids, the genomic group AAAA (60.13%) was significantiy superior to ABBB (57.57\%).

The percentage of pulp varied significantiy among the 62 cultivars from 49.88 in "Walha' (ABB) to 87.75 in 'Padali moongil' (AB).

Among the cultivars of the diploid kusa acuminate group (AA) the percentage of pulp weight varied from 60.79 in 'Chingan' to 79.75 in 'Sama chenkadali', ainong the cultivars of the genomic group AB, from 55.78 in 'Sirumalai' to 87.75 in 'Padali moongil'. In 'Glavaahai' (BB) the percentage of pulp weight was 61.50 .

Among the triploid puna acuminata cultivars (AAA), the percentage of pulp varied from 59.95 in Highgate' to 81.36 in 'Galanamalu', among the AAB cultivars from 59.53 in 'Pacha nadan' to 79.18 in 'Palayankodan' and among the ABB cultivars from 49.88 in 'Walha' to 73.97 in 'Nalai nonthan'.

In the tetraploids the percentage of pulp weight varied significantly, being 57.57 in 'Lybrid Sawai' (ABBB) and 60.13 in 'Boales Altafort' (AMA).
3.4.7. Pulp/Peel ratio on weight besis

The diploids (2.57) were significantly superior to the polyploids (1.90) anc within the polyploids, the triploids (1.93) were significantiy superior to the
tetraploids (1.41) in pulp/peel ratio of the fruit on weight basis.

Witnin the diploids, the genomic groups differed significantiy. The group aA (3.87) recorded the highest value for pulp/peel ratio followed by 83 (3.20) anc as (2.92).

Within the triploids, the genomic group AAB recorded the highest value (2.29) followed by AAA (2.17) anci ABB (1.50) and the groups differed significantly.

Within the tetraploids, the genomic group aAMA (1.47) was on par witi ABi3B (1.36),

Among the cultivars the pulp/peel ratio of fruits varied from 0.79 in 'Chingan' (AA) to 7.17 in 'Padall moongil' (A3).

Among the cultivers of the genomic group aA the hishest value for pulp/peel ratio was recorded by 'Sanna chenkadali' (3.94). miong the cultivars of the AS group it varied from 1.26 in 'sirumalai' to 7.71 in 'Padali moongil'. The Musa balbistana (Bi) recorcied a pulp/peel ratap of 1.60 on weight basds.

Among the cultivars of the genomic group AAA, the variation was from 1.50 in 'Highgate' to 4.37 in 'Galanamalu'; among the AAB cultivars, from 1.52 in 'Mannan' to 4.00 in 'Palayankocan' and among the AB3 cultivars from 0.99 in 'Pacha bontha bathees' to 2.85 in 'Malai Lonthan'.

The tetraploid 'Bodies Altafort' (AAAA) recorded a value of 1.47 and Hybrid Sawai (ABBB), 1.36 for pulp/ peel ratio on weight basis.
3.4.8. Percentage of pulp volume

The diploids had significantly higher value (69.01\%) for percentage of pulp volume than the polyploids (63.85%). Within the polyploids, the tetraploids (66.15%) were significantly superior to the triploids (63.74%).

Within the diploids, the genomic groups differed significantly in percentage of pulp volume. The genomic group $A B$ recorded the highest value (70.16%) followed by AA ($6 \% .96 \%$) and BB (60.50%).

Within the triploids, among the three genomic groups, the group AAB recorded the highest percentage of pulp volume (66.09%) which was on par with AAA (65.53%). The group ABB recorded the lowest value among the triploids (60.64%) and was significantly inferior to the other two groups.

Within the tetraploids, AAMA (75.10\%) was significently superior to ABBB (57.19\%).

The percentage of pulp volume varied from 46.76 in 'Kari bontha' (ABB) to 81.50 in 'Sanna chenkadali' (AA).

Among the cultivars belonging to the diploid Musa acuminata group, the percentage of pulp rolume
varied from 59.75 in 'Chingan' to 81.50 in 'Sanna chenkadali'; anong the at cultivars from 56.85 in 'Vannan' to 76.25 in 'Valiya kuman'. 'Elavashai' (B3) recorded a vaiue of 60.50 per cent.

Among the cultivars belonging to the triploid Masa acuminata group, the percentage of pulp volume varied frow 60.49 in 'ifighgate' to 79.18 in 'Galanamalu'; among the AAB cultivars from 58.23 in 'Mannan' to 79.93 in 'Palayankoden' and among the ABB cultivars from 46.76 in 'Kari bontha' to 73.22 in 'Malai monthen'.
'Bodles Altafort' (AMA) recorded 75.10 as percentage of pulp volume while the hybrid tetraploid, 'Hybrid Sawal' (ABBB) recorded a lower value, 57.19.
3.4.9. Pulp/Peel ratio on volume basis

The behaviour of the diploids, triploids and tetraploids and the different genomic groups under each ploidy level was almost similar to that in the case of percentage of pulp volune. The diploids recorded significantly higher value (2.40 A thas polyploids (1.90) and within the polyploids, the tetraploids (2.18) were auperior to the triploids (1.89).

When the diploid genomic groups were compared, significant variation was observed among them. The pulp peel ratio was the highest in AB group (2.47) followed by the group AA (2.40) and the BB (1.53).

Within the triploids the genomic group AAB had tine highest pulp/peel ratio (2.12) which wigniticentiy Lower than that of the group aAA (2.05) and A3.j (1.58).

When the two tetraploid groups were comparec, the group MAAA recorcied a pulp/peel ratio of 3.02 widch was significantly higher than that of the group ABBB (1.34).

Among the 62 cultivars, the pulp/peel ratio on volume basis varied significantly, from 1.21 in 'Peyan' (ABB) to 4.41 in 'Sama chenkadali' (AA).

Among the cultivars of the genomic group AA, the lowest value for pulp/peel ratio was recorcied by 'Chingan' (1.49). In tine genouic grrup AB, the pulp/peel ratio varied from 1.32 in 'Vannan' to 3.05 in 'Thaen kunnan' waile nusa balbisitana (B3) recorded a value of 1.53.

Among the cultivars of the genowic group AAA, the pulp/peel ratio of fruito an volume baais varied from 1.54 in 'Highgate' to 3.80 in 'Galanamalu'; among the AAB cultivars from 1.40 in 'Mannan' to 3.98 in 'Palayankodan' and anong the ABB cultivers frow 1.21 in 'pegan' to 2.74 in 'Malai wonthan'.

The tetraploid 'Bodles Altafort' recorded a value of 3.02 and 'Hyorid Sawai' (A3BB), 1.34.

Table $11 \quad \begin{aligned} & \text { Effect of ploidy and genome on the quality } \\ & \text { characters of banana cultivars }\end{aligned}$

Groups	$\begin{aligned} & \text { TSS } \end{aligned}$	Total sugars (\%)	Reducing sugars (\%)	Nonreducing sugar: (\%)	$\underset{(\%)}{\text { Acidity }}$	Sugar acid ratio
1	2	3	4	5	6	7
Diploids	$\begin{gathered} 24.10 \\ (29.23) \end{gathered}$	$\begin{gathered} 14.92 \\ (22.25) \end{gathered}$	$\begin{gathered} 13.53 \\ (20.69) \end{gathered}$	$\begin{gathered} 1.76 \\ (7.38) \end{gathered}$	$\begin{gathered} 0.34 \\ (3.29) \end{gathered}$	45.71
Polyploids	$\begin{gathered} 22.14 \\ (28.04) \end{gathered}$	$\begin{gathered} 14.38 \\ (22.10) \end{gathered}$	$\begin{aligned} & 12.46 \\ & (20.26) \end{aligned}$	$\begin{gathered} 1.95 \\ (7.85) \end{gathered}$	$\begin{gathered} 0.32 \\ (3.22) \end{gathered}$	47.22
C.D. (0.05)	0.16	0.23	0.35	0.29	0.08	1.48
Polyploids						
Triploids	$\begin{gathered} 22.07 \\ (28.01) \end{gathered}$	$\begin{gathered} 14.47 \\ (22.16) \end{gathered}$	$\begin{gathered} 12.57 \\ (20.35) \end{gathered}$	$\begin{gathered} 1.95 \\ (7.85) \end{gathered}$	$\begin{gathered} 0.33 \\ (3.23) \end{gathered}$	47.49
Tetraploids	$\begin{array}{r} 23.06 \\ (28.66) \end{array}$	$\begin{aligned} & 12.69 \\ & (20.80) \end{aligned}$	$\begin{gathered} 10.09 \\ (18.43) \end{gathered}$	$\begin{gathered} 2.03 \\ (7.89) \end{gathered}$	$\begin{gathered} 0.25 \\ (2.86) \end{gathered}$	41.53
C.D. (0.05)	0.42	0.61	0.90	0.76	0.20	3.84
Diploids						
AA	$\begin{gathered} 21.15 \\ (27.30) \end{gathered}$	$\begin{gathered} 10.80 \\ (18.83) \end{gathered}$	$\begin{gathered} 9.20 \\ (16.63) \end{gathered}$	$\begin{aligned} & 1.52 \\ & (6.49) \end{aligned}$	$\begin{gathered} 0.29 \\ (3.05) \end{gathered}$	38.74
AB	$\begin{gathered} 25.33 \\ (30.03) \end{gathered}$	$\begin{gathered} 16.73 \\ (24.17) \end{gathered}$	$\left(\begin{array}{l} 15.57 \\ (22.56) \end{array}\right.$	$\begin{gathered} 1.74 \\ (7.50) \end{gathered}$	$\begin{gathered} 0.36 \\ (3.40) \end{gathered}$	48.38
BB	$\begin{gathered} 21.63 \\ (29.33) \end{gathered}$	$\begin{aligned} & 13.65 \\ & (21.74) \end{aligned}$	$\begin{gathered} 10.25 \\ (18.68) \end{gathered}$	$\begin{aligned} & 3.24 \\ & (10.31) \end{aligned}$	$\begin{gathered} 0.30 \\ (3.14) \end{gathered}$	48.55
C.D. (0.05)	0.66	0.95	1.41	1.19	0.32	6.01

Table 11 (Contd.)

1	2	3	4	5	6	7

Triploids

AM	19.77	11.02	9.24	1.64	0.21	59.64
	(26.42)	(19.18)	(17.47)	(7.40)	(2.56)	
AAB	22.68	14.77	13.14	2.00	0.38	38.92
	(28.43)	(22.53)	(20.58)	(7.97)	(3.51)	
ABB	23.06	16.44	14.26	2.10	0.37	46.68
	(28.68)	(23.78)	(22.02)	(8.14)	(3.44)	
C.D. (0.05)	0.27	0.39	0.59	0.49	0.13	2.50

Tetraploids

AAM	23.06	10.61	8.37	1.19	0.21	44.58
	(28.66)	(19.00)	(16.78)	(6.20)	(2.60)	
ABBB	23.06	14.76	11.81	2.87	0.30	38.48
	(28.66)	(25.59)	(20.08)	(9.58)	(3.13)	
C.D. (0.05)	0.82	1.18	1.77	1.48	0.40	7.51

Enters in parantheges represent the metne of

Table 12 Mean values of the quelity characters of 62 cultivars of banana belonging to different genomic groups

Cultivars	$\begin{aligned} & \text { TSS } \\ & (\%) \end{aligned}$	Total sugar: (\%)	Reducing sugar: (\%)	Nonreducing sugars (\%)	$\underset{(\%)}{\operatorname{Acidity}}$	Sugar acid ratio
1	2	3	4	5	6	7
A						
Namarai	$\begin{gathered} 15.50 \\ (23.19) \end{gathered}$	$\begin{gathered} 6.52 \\ (14.83) \end{gathered}$	$\begin{gathered} 5.99 \\ (14.18) \end{gathered}$	$\begin{gathered} 0.50 \\ (4.05) \end{gathered}$	$\begin{gathered} 0.15 \\ (2.18) \end{gathered}$	44.92
Chingan	$\begin{array}{r} 24.25 \\ (29.80) \end{array}$	$\begin{aligned} & 19.27 \\ & (26.03) \end{aligned}$	$\begin{gathered} 14.87 \\ (22.62) \end{gathered}$	$\begin{array}{r} 4.19 \\ (11.82) \end{array}$	$\begin{gathered} 0.48 \\ (3.97) \end{gathered}$	40.15
Tongat	$\begin{gathered} 23.01 \\ (28.66) \end{gathered}$	$\begin{gathered} 10.85 \\ (19.24) \end{gathered}$	$\begin{gathered} 9.55 \\ (1806) \end{gathered}$	$\begin{aligned} & 1.24 \\ & (6.29) \end{aligned}$	$\begin{gathered} 0.26 \\ (2.90) \end{gathered}$	42.56
Eraichivazhai	$\begin{aligned} & 19.00 \\ & (25.84) \end{aligned}$	$\begin{gathered} 6.87 \\ (15.18) \end{gathered}$	$\begin{gathered} 5.69 \\ (13.81) \end{gathered}$	$\begin{aligned} & 1.07 \\ & (5.94) \end{aligned}$	$\begin{gathered} 0.38 \\ (3.51) \end{gathered}$	18.51
Sanna Chenkadali	$\begin{gathered} 24.03 \\ (29.33) \end{gathered}$	$\begin{gathered} 10.51 \\ (18.91) \end{gathered}$	$\begin{gathered} 9.90 \\ (14.54) \end{gathered}$	$\begin{gathered} 0.58 \\ (4.37) \end{gathered}$	$\begin{gathered} 0.22 \\ (2.69) \end{gathered}$	47.77
AB						
Krishna vazhai	$\begin{gathered} 24.03 \\ (29.33) \end{gathered}$	$\begin{gathered} 16.11 \\ (23.70) \end{gathered}$	$\begin{gathered} 15.00 \\ (22.79) \end{gathered}$	$\begin{aligned} & 1.05 \\ & (5.81) \end{aligned}$	$\begin{gathered} 0.52 \\ (4.11) \end{gathered}$	31.65
Vannan	$\begin{gathered} 21.50 \\ (27.63) \end{gathered}$	$\begin{gathered} 16.91 \\ (24.27) \end{gathered}$	$\begin{aligned} & 14.51 \\ & (22.38) \end{aligned}$	$\begin{gathered} 2.28 \\ (8.72) \end{gathered}$	$\begin{gathered} 0.46 \\ (3.87) \end{gathered}$	37.15
Virupakshi	$\begin{gathered} 22.50 \\ (27.97) \end{gathered}$	$\begin{gathered} 19.12 \\ (25.92) \end{gathered}$	$\begin{aligned} & 17.85 \\ & (25.11) \end{aligned}$	$\begin{aligned} & 1.54 \\ & (6.55) \end{aligned}$	$\begin{gathered} 0.35 \\ (3.37) \end{gathered}$	55.43
Sirumalai	$\begin{gathered} 24.00 \\ (29.33) \end{gathered}$	$\begin{gathered} 19.25 \\ (26.03) \end{gathered}$	$\begin{gathered} 18.31 \\ (25.10) \end{gathered}$	$\begin{aligned} & 1.19 \\ & (6.20) \end{aligned}$	$\begin{gathered} 0.42 \\ (3.70) \end{gathered}$	46.40
Agniswar	$\begin{gathered} 23.50 \\ (29.00) \end{gathered}$	$\begin{gathered} 17.18 \\ (24.50) \end{gathered}$	$\begin{aligned} & 15.35 \\ & (23.07) \end{aligned}$	$\begin{gathered} 1.57 \\ (7.16) \end{gathered}$	$\begin{gathered} 0.40 \\ (3.63) \end{gathered}$	38.58
Adakka kunnan	$\begin{gathered} 26.00 \\ (30.66) \end{gathered}$	$\begin{gathered} 13.25 \\ (21.35) \end{gathered}$	$\begin{gathered} 12.78 \\ (20.83) \end{gathered}$	$\begin{gathered} 0.95 \\ (5.59) \end{gathered}$	$\begin{gathered} 0.27 \\ (2.98) \end{gathered}$	49.08
Valiya kunnan	$\begin{gathered} 26.00 \\ (30.66) \end{gathered}$	$\begin{gathered} 14.58 \\ (22.47) \end{gathered}$	$\begin{gathered} 12.90 \\ (21.05) \end{gathered}$	$\begin{gathered} 1.60 \\ (7.26) \end{gathered}$	$\begin{gathered} 0.29 \\ (3.06) \end{gathered}$	51.16
Thaen kunnan	$\begin{gathered} 29.00 \\ (32.58) \end{gathered}$	$\begin{aligned} & 17.65 \\ & (24.89) \end{aligned}$	$\begin{gathered} 14.50 \\ (21.38) \end{gathered}$	$\begin{aligned} & 3.04 \\ & (9.98) \end{aligned}$	$\begin{gathered} 0.31 \\ (3.17) \end{gathered}$	58.04
Padali moongil	$\begin{gathered} 28.00 \\ (31.95) \end{gathered}$	$\begin{gathered} 16.72 \\ (24.16) \end{gathered}$	$\begin{gathered} 13.70 \\ (21.93) \end{gathered}$	$\begin{gathered} 2.87 \\ (9.90) \end{gathered}$	$\begin{gathered} 0.29 \\ (3.09) \end{gathered}$	57.64

Table 12 (Contd.)

1	2	3	4	5	6	7
Ney joovan	$\begin{gathered} 28.50 \\ (30.62) \end{gathered}$	$\begin{aligned} & 15.65 \\ & (23.34) \end{aligned}$	$\begin{gathered} 13.95 \\ (21.93) \end{gathered}$	$\begin{gathered} 1.62 \\ (7.38) \end{gathered}$	$\begin{gathered} 0.27 \\ (2.95) \end{gathered}$	59.25
Kostha bontha	$\begin{gathered} 27.00 \\ (31.31) \end{gathered}$	$\begin{gathered} 17.54 \\ (25.27) \end{gathered}$	$\begin{gathered} 15.00 \\ (22.79) \end{gathered}$	$\begin{gathered} 2.42 \\ (8.97) \end{gathered}$	$\begin{gathered} 0.36 \\ (3.42) \end{gathered}$	49.17
Venneettu mannan	$\begin{gathered} 24.00 \\ (29.33) \end{gathered}$	$\begin{gathered} 16.85 \\ (24.24) \end{gathered}$	$\begin{gathered} 14.86 \\ (22.56) \end{gathered}$	$\begin{aligned} & 1.32 \\ & (6.55) \end{aligned}$	$\begin{gathered} 0.36 \\ (3.44) \end{gathered}$	46.81
BB						
Blavazhai (M. balbisiana)	$\begin{gathered} 24.00 \\ (29.33) \end{gathered}$	$\begin{gathered} 13.65 \\ (21.69) \end{gathered}$	$\begin{aligned} & 10.25 \\ & (18.68) \end{aligned}$	$\begin{gathered} 3.24 \\ 10.31) \end{gathered}$	$\begin{gathered} 0.30 \\ (3.14) \end{gathered}$	48.55
AM						
Gros Michel	$\begin{gathered} 21.00 \\ (27.28) \end{gathered}$	$\begin{gathered} 12.90 \\ (21.05) \end{gathered}$	$\begin{aligned} & 11.95 \\ & (20.23) \end{aligned}$	$\begin{gathered} 0.90 \\ (5.50) \end{gathered}$	$\begin{gathered} 0.16 \\ (2.26) \end{gathered}$	83. 24
Highgate	$\begin{gathered} 18.00 \\ (25.10) \end{gathered}$	$\begin{aligned} & 10.40 \\ & (18.82) \end{aligned}$	$\begin{gathered} 9.37 \\ (17.80) \end{gathered}$	$\begin{gathered} 0.99 \\ (5.67) \end{gathered}$	$\begin{gathered} 0.18 \\ (2.39) \end{gathered}$	60.34
pedda pachcha	$\begin{gathered} 22.00 \\ (27.97) \end{gathered}$	$\begin{gathered} 12.08 \\ (20.34) \end{gathered}$	$\begin{gathered} 8.13 \\ (16.58) \end{gathered}$	$\begin{gathered} 3.76 \\ (11.17) \end{gathered}$	$\begin{gathered} 0.14 \\ (2.11) \end{gathered}$	89.41
Basrad	$\begin{gathered} 8.50 \\ (25.47) \end{gathered}$	$\begin{gathered} 7.91 \\ (16.23) \end{gathered}$	$\begin{gathered} 6.38 \\ (14.65) \end{gathered}$	$\begin{gathered} 1.46 \\ (6.92) \end{gathered}$	$\begin{gathered} 0.14 \\ (2.14) \end{gathered}$	56.47
Harichal	$\begin{gathered} 18.50 \\ (25.47) \end{gathered}$	$\begin{aligned} & 13.05 \\ & (20.68) \end{aligned}$	$\begin{aligned} & 12.00 \\ & (20.27) \end{aligned}$	$\begin{aligned} & 1.00 \\ & (5.67) \end{aligned}$	$\begin{gathered} 0.17 \\ (2.33) \end{gathered}$	79.19
Sapumal anamalu	$\begin{gathered} 19.00 \\ (25.84) \end{gathered}$	$\begin{gathered} 10.25 \\ (16.68) \end{gathered}$	$\begin{gathered} 7.62 \\ (16.00) \end{gathered}$	$\begin{gathered} 2.50 \\ (9.09) \end{gathered}$	$\begin{gathered} 0.19 \\ (2.50) \end{gathered}$	53.95
Manoranj1 thm	$\begin{gathered} 20.00 \\ (26.56) \end{gathered}$	$\begin{gathered} 7.95 \\ (16.38) \end{gathered}$	$\begin{gathered} 6.40 \\ (14.65) \end{gathered}$	$\begin{gathered} 1.48 \\ (6.92) \end{gathered}$	$\begin{gathered} 0.21 \\ (2.63) \end{gathered}$	37.93
Galanamalu	$\begin{gathered} 21.50 \\ (27.63) \end{gathered}$	$\begin{gathered} 13.68 \\ (21.73) \end{gathered}$	$\begin{aligned} & 12.55 \\ & (20.75) \end{aligned}$	$\begin{aligned} & 1.07 \\ & (5.94) \end{aligned}$	$\begin{gathered} 0.17 \\ (2.33) \end{gathered}$	82.99
Red banana	$\begin{gathered} 21.00 \\ (27.28) \end{gathered}$	$\begin{gathered} 13.50 \\ (21.56) \end{gathered}$	$\begin{aligned} & 11.50 \\ & (19.92) \end{aligned}$	$\begin{gathered} 1.90 \\ (7.92) \end{gathered}$	$\begin{gathered} 0.19 \\ (2.46) \end{gathered}$	64.29
Wather	$\begin{gathered} 18.00 \\ (25.10) \end{gathered}$	$\begin{gathered} 5.60 \\ (13.68) \end{gathered}$	$\begin{gathered} 4.27 \\ (11.81) \end{gathered}$	$\begin{aligned} & 1.27 \\ & (6.31) \end{aligned}$	$\begin{gathered} 0.32 \\ (3.19) \end{gathered}$	17.76
Karim kadali	$\begin{gathered} 20.00 \\ (26.92) \end{gathered}$	$\begin{aligned} & 13.87 \\ & (21.85) \end{aligned}$	$\begin{gathered} 11.50 \\ (19.92) \end{gathered}$	$\begin{gathered} 1.76 \\ (8.62) \end{gathered}$	$\begin{gathered} 0.46 \\ (3.87) \end{gathered}$	30.49

Table 12 (Contd.)

1	2	3	4	5	6	7
$A B B$						
Thiruvananthapuram	$\begin{gathered} 23.00 \\ (28.66) \end{gathered}$	$\begin{array}{r} 8.59 \\ (17.06) \end{array}$	$\begin{array}{r} 6.78 \\ (15.12 \end{array}$	$\begin{gathered} 1.49 \\ (7.98) \end{gathered}$	$\begin{gathered} 0.35 \\ (3.37) \end{gathered}$	23.47
China	$\begin{gathered} 22.00 \\ (27.97) \end{gathered}$	$\begin{array}{r} 11.58 \\ (19.42) \end{array}$	$\begin{array}{r} 8.55 \\ (16.95) \end{array}$	$\begin{aligned} & 2.35 \\ & (8.82) \end{aligned}$	$\begin{gathered} 0.37 \\ (3.47) \end{gathered}$	30.20
Rasthali	$\begin{gathered} 23.00 \\ (28.66) \end{gathered}$	$\begin{gathered} 14.68 \\ (22.50) \end{gathered}$	$\begin{gathered} 13.50 \\ (21.56) \end{gathered}$	$\begin{gathered} 1.13 \\ (6.00) \end{gathered}$	$\begin{gathered} 0.43 \\ (3.76) \end{gathered}$	34.18
Dudhsagar	$\begin{gathered} 21.50 \\ (27.63) \end{gathered}$	$\begin{gathered} 15.15 \\ (22.90) \end{gathered}$	$\begin{gathered} 13.00 \\ (21.13) \end{gathered}$	$\begin{gathered} 2.05 \\ (8.23) \end{gathered}$	$\begin{gathered} 0.34 \\ (30.32) \end{gathered}$	45.51
Sugandh1	$\begin{aligned} & 24.00 \\ & (29.33) \end{aligned}$	$\begin{aligned} & 12.94 \\ & (21.09) \end{aligned}$	$\begin{aligned} & 12.80 \\ & (20.14) \end{aligned}$	$\begin{gathered} 1.10 \\ (5.80) \end{gathered}$	$\begin{gathered} 0.30 \\ (3.07) \end{gathered}$	43.87
Palayankodan	$\begin{gathered} 21.50 \\ (27.63) \end{gathered}$	$\begin{gathered} 16.85 \\ (24.24) \end{gathered}$	$\begin{gathered} 13.33 \\ (21.40) \end{gathered}$	$\begin{aligned} & 3.34 \\ & (10.55) \end{aligned}$	$\begin{gathered} 0.38 \\ (3.51) \end{gathered}$	44.93
Pacha chingan	$\begin{gathered} 25.00 \\ (30.00) \end{gathered}$	$\begin{gathered} 22.78 \\ (28.49) \end{gathered}$	$\begin{gathered} 18.72 \\ (25.71) \end{gathered}$	$\begin{gathered} 3.87 \\ (11.29) \end{gathered}$	$\begin{gathered} 0.38 \\ (3.50) \end{gathered}$	60.76
Mannan	$\begin{aligned} & 21.50 \\ & (27.63) \end{aligned}$	$\begin{aligned} & 17.67 \\ & (24.89) \end{aligned}$	$\begin{gathered} 16.59 \\ (24.05) \end{gathered}$	$\begin{aligned} & 1.03 \\ & (5.88) \end{aligned}$	$\begin{gathered} 0.45 \\ (3.83) \end{gathered}$	39.10
Malakali	$\begin{gathered} 21.00 \\ (27.28) \end{gathered}$	$\begin{gathered} 16.39 \\ (23.89) \end{gathered}$	$\begin{gathered} 13.35 \\ (21.43) \end{gathered}$	$\begin{aligned} & 2.90 \\ & (9.81) \end{aligned}$	$\begin{gathered} 0.46 \\ (3.89) \end{gathered}$	35.64
Pacha nadan	$\begin{gathered} 24.00 \\ (29.33) \end{gathered}$	$\begin{gathered} 17.15 \\ (24.46) \end{gathered}$	$\begin{gathered} 14.20 \\ (22.14) \end{gathered}$	$\begin{gathered} 1.81 \\ (7.67) \end{gathered}$	$\begin{gathered} 0.41 \\ (3.67) \end{gathered}$	41.43
	a	\cdots		-1.2	- 0	30 an

wara padathth1

	(28.6\%)	(18.55)	$(74.71)(8.11)$	(3.19)	crov
ABB					
Karpooravally	$\begin{gathered} 24.50 \\ (29.67) \end{gathered}$	$\begin{gathered} 18.40 \\ (25.41) \end{gathered}$	$\begin{array}{cc} 16.30 & 2.05 \\ (23.78)(8.23) \end{array}$	$\begin{gathered} 0.25 \\ (2.84) \end{gathered}$	63.91
Cnirapunchi	$\begin{gathered} 23.00 \\ (28.65) \end{gathered}$	$\begin{gathered} 18.13 \\ (25.22) \end{gathered}$	$\begin{array}{ll} 15.59 & 2.44 \\ (23.25) & (8.97) \end{array}$	$\begin{gathered} 0.24 \\ (2.81) \end{gathered}$	75.52
Pey kunnan	$\begin{gathered} 25.00 \\ (30.00) \end{gathered}$	$\begin{gathered} 16.78 \\ (24.26) \end{gathered}$	$\begin{array}{ll} 15.09 & 1.29 \\ (22.87) & (6.53) \end{array}$	$\begin{gathered} 0.21 \\ (2.63) \end{gathered}$	79.76

Table 12 (Contd.)

1	2	3	4	5	6	7
Walha	$\begin{gathered} 25.00 \\ (30.00) \end{gathered}$	$\begin{gathered} 6.94 \\ (15.79) \end{gathered}$	$\begin{gathered} 5.66 \\ (13.75) \end{gathered}$	$\begin{gathered} 1.22 \\ (6.29) \end{gathered}$	$\begin{gathered} 0.20 \\ (2.53) \end{gathered}$	35.57
Ashy batheesa	$\begin{gathered} 24.00 \\ (29.33) \end{gathered}$	$\begin{gathered} 9.62 \\ (18.10) \end{gathered}$	$\begin{gathered} 8.37 \\ (16.80) \end{gathered}$	$\begin{aligned} & 1.19 \\ & (6.27) \end{aligned}$	$\begin{gathered} 0.24 \\ (3.14) \end{gathered}$	32.08
Ney Vaman	$\begin{gathered} 23.00 \\ (28.66) \end{gathered}$	$\begin{gathered} 20.75 \\ (27.10) \end{gathered}$	$\begin{gathered} 18.18 \\ (25.25) \end{gathered}$	$\begin{gathered} 2.45 \\ (8.97) \end{gathered}$	$\begin{gathered} 0.49 \\ (3.99) \end{gathered}$	42.79
Alukehel	$\begin{gathered} 23.00 \\ (28.66) \end{gathered}$	$\begin{gathered} 20.00 \\ (26.57) \end{gathered}$	$\begin{gathered} 18.13 \\ (25.22) \end{gathered}$	$\begin{gathered} 1.79 \\ (7.57) \end{gathered}$	$\begin{gathered} 0.48 \\ (3.97) \end{gathered}$	41.67
Kapok	$\begin{gathered} 24.00 \\ (29.33) \end{gathered}$	$\begin{gathered} 15.75 \\ (23.39) \end{gathered}$	$\begin{gathered} 13.63 \\ (21.69) \end{gathered}$	$\begin{gathered} 2.02 \\ (8.03) \end{gathered}$	$\begin{gathered} 0.46 \\ (3.87) \end{gathered}$	34.61
Jurmoney kunthall	$\begin{gathered} 23.00 \\ (28.66) \end{gathered}$	$\begin{gathered} 16.75 \\ (24.16) \end{gathered}$	$\begin{gathered} 13.65 \\ (21.69) \end{gathered}$	$\begin{gathered} 2.95 \\ (9.90) \end{gathered}$	$\begin{gathered} 0.35 \\ (3.39) \end{gathered}$	47.86
Peyan	$\begin{gathered} 23.50 \\ (29.00) \end{gathered}$	$\begin{gathered} 19.63 \\ (26.32) \end{gathered}$	$\begin{gathered} 18.50 \\ (25.77) \end{gathered}$	$\begin{gathered} 1.07 \\ (5.94) \end{gathered}$	$\begin{gathered} 0.38 \\ (3.51) \end{gathered}$	52.41
Pacha bontha bathees	$\begin{gathered} 21.00 \\ (27.28) \end{gathered}$	$\begin{gathered} 18.77 \\ (25.60) \end{gathered}$	$\begin{gathered} 14.08 \\ (22.05) \end{gathered}$	$\begin{aligned} & 4.95 \\ & (12.85) \end{aligned}$	$\begin{aligned} & 0.49 \\ & (3.99) \end{aligned}$	38.70
Muthia	$\begin{gathered} 22.00 \\ (27.97) \end{gathered}$	$\begin{gathered} 16.88 \\ (24.27) \end{gathered}$	$\begin{gathered} 14.50 \\ (22.38) \end{gathered}$	$\begin{gathered} 2.26 \\ (8.63) \end{gathered}$	$\begin{aligned} & 0.54 \\ & (4.19) \end{aligned}$	31.57
Kari bontha	$\begin{gathered} 20.00 \\ (26.56) \end{gathered}$	$\begin{gathered} 14.60 \\ (22.47) \end{gathered}$	$\begin{gathered} 12.75 \\ (20.92) \end{gathered}$	$\begin{gathered} 1.76 \\ (7.60) \end{gathered}$	$\begin{gathered} 0.33 \\ (3.29) \end{gathered}$	39.91
Malai monthan	$\begin{gathered} 18.00 \\ (25.10) \end{gathered}$	$\begin{gathered} 14.64 \\ (22.55) \end{gathered}$	$\begin{aligned} & 11.95 \\ & (20.23) \end{aligned}$	$\begin{gathered} 2.56 \\ (9.19) \end{gathered}$	$\begin{gathered} 0.29 \\ (3.06) \end{gathered}$	51.38
Bluggoe	$\begin{gathered} 26.00 \\ (30.66) \end{gathered}$	$\begin{gathered} 19.50 \\ (26.20) \end{gathered}$	$\begin{gathered} 17.88 \\ (25.03) \end{gathered}$	$\begin{aligned} & 1.55 \\ & (7.15) \end{aligned}$	$\begin{gathered} 0.53 \\ (4.17) \end{gathered}$	36.81
Chetti	$\begin{gathered} 24.00 \\ (29.33) \end{gathered}$	$\begin{gathered} 18.54 \\ (25.48) \end{gathered}$	$\begin{gathered} 15.57 \\ (23.23) \end{gathered}$	$\begin{gathered} 2.83 \\ (9.72) \end{gathered}$	$\begin{gathered} 0.32 \\ (3.22) \end{gathered}$	58.86
Kallu monthan	$\begin{gathered} 23.00 \\ (28.66) \end{gathered}$	$\begin{gathered} 13.90 \\ (21.69) \end{gathered}$	$\begin{gathered} 12.54 \\ (20.75) \end{gathered}$	$\begin{aligned} & 1.30 \\ & (6.55) \end{aligned}$	$\begin{gathered} 0.46 \\ (3.87) \end{gathered}$	30.23
MAA						
Bodles Altafort	$\begin{gathered} 23.00 \\ (28.66) \end{gathered}$	$\begin{gathered} 10.61 \\ (19.00) \end{gathered}$	$\begin{gathered} 8.37 \\ (16.78) \end{gathered}$	$\begin{aligned} & 1.19 \\ & (6.20) \end{aligned}$	$\begin{aligned} & 0.21 \\ & (2.60) \end{aligned}$	44.58
ABBB						
Hybrid Sawai	$\begin{gathered} 23.00 \\ (28.66) \end{gathered}$	$\left.\begin{array}{c} 14.76 \\ 9.58 \end{array}\right)$	$\begin{gathered} 11.81 \\ (20.00) \end{gathered}$	$\begin{gathered} 2.87 \\ (9.58) \end{gathered}$	$\begin{gathered} 0.30 \\ (3.13) \end{gathered}$	38.48
C.D. (0.05)	0.82	1.18	1.77	1.48	0.40	7.51

4. Effect of ploidy and genomic constitution on quality characters of banana cultivars

Data pertaining to the quality characters of fruits of different ploidy groups and the genomic groups under each ploicy level are presented in Table 11. The mean values of the quality characters of cultivars belonging to different genomic groups are presented in Table 12.

The diploids, and within the diploids, the genomic group AB, recorded significantly higher values than the polyploids in all the quality characters except in the percentage of non reducing sugars and sugar/acid ratio. Within the triploids, the genomic group Ass recorded higher values in m_{ll} the characters except in these two. The cultivars within each genomic group diff red signilicentiy in all the characters.
4.1. Total soluble solids

The diploids (24.10%) compared to the polyploids (22.14\%) showed significantly higher Ts content. Within. the polyploids TSS content was significantly higher in the tetraploids (23.06\%) than in the triploids (22.07\%).

Within the diploids, the genomic groups differed significantly in TSS. The highest TES content was in AB (25.33%) and the lowest in AA (21.15\%), while Bs recorded a Ts s content of 21.63\%.

Within the triploids also, significant variat on was ooserved aiong the genomic groups for Tis content. The genomic group A3B had the highest Tis content (23.06\%) followed by $A A B(2,68, \%)$ and AAA (19.77\%). Between the two genomic groups in the tetraploids, AAAA and ABBB, no variation was observed in TSi content.

Tre percentage of total soluble solius varied from 15.50 in 'Namarai' (AA) to 29.00 in 'Thaen kunnan'(AB).

Arnong the cultivars belonging to the aiploic
Musa acuminata group the percentage to total soluble solids V..ried from 15.50 to 24.25 in 'Gisingan'; aioong the AB cultivars from 21.50 in 'Vansan' to 29.00 in (Thaen kuman' while 'thavazhai' (33) recorded a TSS content of 24.00%.

Among the cultivara belonging to the triploid Muse acuminata eroup the percentase of total soluble solids Varied from 18.00 in 'Wather' to 2.00 in 'Pedda pachcha'; among the AAB cultivars, froa 21.00 in 'Chara padatinthi' to 25.00 in 'Pacha cinntan' and among the A33 cultivers fron 18.00 in 'Malai monthan' to 26.00 in 'Bluggoe'.
'Bociles altafort' (aAAA) recorded 23.00 per cent total soluble solids. The hyoria tetrailoid, 'Ayurid sawai' (AB3B) also recorcied the same vaive.
4.2. Total susars

The diploid and the polyploids did not show ariy significant variation for total sugax content. When the
variation was observed. The total sugar content was significantily higher in the triploids (94. 27%) than in t.e tetraploids (20.62%).

The genomic groups in the diploids showed significantly aifferent totel sugar contenta; the highest being in tile group A3 (16.73\%) followed by 33 (13.65%) and AA (10.80\%).

The genomic groups within the triploids also differed significently for total sugar content. The genomic group ABB had the highest sugar content (16.44%) followed by AAB (14.77\%) anci AAA (1.1.02 0).

Witinin tetraploids the genomic group ABBB recorded - total sugar content of 14.76% which was significantly hisner than that of AMAA (10.61\%).

The percentage of total sugara varied from 5.60 . in 'Wather' to 22.78, in 'Pacha ohingan'.

Among the cultivars belonging to the diploid Musa acuilnata group, the total sugars varied from 6.52 per cent is 'Namarai' to 19.27 per cent in 'Chinsan'; among the A3 cultivars froia 13.25 per cent in 'Adakka kunnan' to 19.21 per cent in 'Sirumalai'. In 'Elavezhai' (33) tine percentage of total sugars was 13.65.

Anong the cultivars belonging to the triploid Musa acuminata group, the percentage of total sugars

Varied from 5.60 in 'Wather' to 13.87 in 'Karim kadali', anong the Aas cultivers from 8.59 in 'Thiruvananthapures" to 22.78 in 'Pacha ciningan' anci amons the A33 cultivars, from 6.94 in 'Walha' to 20.75 in 'Wey vannan'.

The tetraploid 'Bodles Altafort' (AAAA) recorded 10.61 per cent of total sugars, while the nybric tetraploid 'ilyorid Sawé' (ABBB) recorded a higner value of 14.76\%. 4.3. Feducing sugar:

The reducing sugar content was significentiy lower in the polyploids (12.46%) compared to the diploids (13.53\%). Within the polyploids, the triploids (12.51\%) anc the tetraploids (10.09%) also showed simnificont variation.

Within the diploids, the genoinic groups differec signilicantly. The highest reducing sugar conterit was in the group Ais (15.59\%) followed by $B 3$ (10.25\%) and AA (9.20\%).

Within the triploids, the genomic groups siowed significant variation for reducing sugar content. Tre genomic group ABi siowec the highest reducing sugar content (14.26) followed by AAB (13.14%) and AAA (9.24%).

The tetr ploid 'Bodles Altafort' (AAAA) recorded a reducing sugar content of 8.37% wilchnesinificantly lower than that of Mybrid Sawai' (17.81\%).

The reducing sugar content of the genomic groups followed a seneral pattern of distrioution similar to that of total sugars.

The percentage of reducing sugars varied from 4.27 in 'wather' (AAA) to 18.72 in 'Pacha ciningan' (AAB).

Among the cultivars belonging t the diploid Musa acuminata group ($A A$), the percentage of reducing sugars variec from 5.69 in 'braichivaziai'ts 14.87 in 'Chir:gan'; among the aid cultivar., from 12.78 in 'Adakka kuman' to 18.31 in 'Sirumalai'. Elavazhai (3.3) was having 10.25 per cent of reducing sugars.

Anong the cultivars belonging to the triploid Nasa acuminata group, the percentage of reducing sugars vsried from 4.27 in 'Wather' to 12.55 in 'Galananalu'; among the AAB cultivars, from 6.45 in 'Chinali' to 16.72 in 'Pacha chingan' and in the $13 B$ cultivars, from 5.66 in 'Walia' to 18.50 in 'Peyan'.

The tetraploid 'Bodles Altafort' (AAA) recorded 8.37 per cent of reducing sugars, whereas the hybrid tetraploid, Hybrid Sawai (ABBB) recorded a aigher vilue of 11.81 per cent.
4.4. Non reducing sugars

The non reducing suger content of fruits differed significantily between the polyploids (1.25\%) and the
diploids (1.76\%). Within the polyploids the triploids and the tetraploids were on par.

Among the diploid genomic groups, the group BB had the highest non reducing sugar content (3.24%) followed by $A B$ (1.74%) and $A(1.52 \%$).

Among the triploid genomic groups, ABB had the highest non reducing sugar content (2.10%) and was significantly superior to AAB (2.00%) and AAA (1.64\%) which did not differ significantly.

Among the tetraploid genomic groups, ABBB group recorded a non reducing sugar content of 2.8% which was significantly higher than that of AMAA group (1.19\%).

The percentage of non reducing sugars showed a wide variation from 0.50 in 'Namarai'(AA) to 4.95 in 'Pacha bontha bathees' (ABB).

Among the cultivars belonging to the diploid Nusa acuminata group, the percentage of non reducing sugars varied from 0.50 in 'Namari' to 4.19 in 'Chingan' and among the $A B$ cultivars from 1.05 in 'Krishna vazhai' to 3.04 in 'Thaen kunnan'. Elavazhai (BB) had a non reducing sugar content of 3.24 per cent.

Among the cultivars belonging to the triploid Musa acuminate group, the percentage of non reaucing susars, varied from 0.90 in 'Gros Michel' to 3.76 in

Abstract

'Pedda Pachaha' and among the AAB cultivars, from 1.10 in 'Sugandhi' to 3.87 in 'Pacha chingan' and in ABB cultivars from 1.07 in 'Peyan' to 4.95 in 'Pacha bontha bathees'.

The tetraploid of Musa acuminata group (ANA) Bodles Altafort, recorded 1.19 per cent of non reducing sugars, while the hybrid tetraploid 'Hybrid Sawai' (ABBB) recorded 2.87 per cent. 4.5. Acidity

The diploids and polyploids did not show significant difference in the acidity of fruits. Between triploids and tetraploids the acidity varied significantly being 0.33 per cent in the triploids and 0.25 per cent in the tetraploids.

Within the diploids the genomic group $A B$ showed an aciaity of 0.36 per cent which was significantly higher to that of BB 0.30 per cent and AA 0.29 per cent. The genomic groups AA and BB did not show any significant difference.

Within the triploids, the genomic groups AAB and ABB were on par with respect to acidity, being 0.38 per cent in AAB and 0.37 per cent in ABB. The acidity in the genomic group aAA 0.21 per cent was significantly lower to those of the other two groups.

Within the tetraploids, ABBB recorded a significantly higher acidity of 0.30 per cent as against that of 0.21 per cent in AAM.

The percentage of acidity ranged from 0.14 in'Pedda pacha' and 'Baszai' (MA) to 0.54 in 'Muthia' (ABB).

Among the cultivars of the diploid Musa acuminata group, the percentage of acidity varied from 0.15 in 'Namarai' to 0.48 in 'Chingan'; among the AB cultivars, from 0.27 in 'Ney poovan' to 0.52 in 'Krishna vazhai'. In Musa balbisiana (Elavazhai) the acidity percentage was 0.30 .

Among the triploid Musa acuminata cultivars, the percentage of acidity varied from 0.14 in 'Pedda pachcha' and 'Basrai' to 0.46 in 'Karim Kadali', among the AAB cultivars, from 0.30 in 'Sugandhi' to 0.46 in 'Malakali' and in the ABB cultivars, from 0.20 in 'Walha' to 0.54 in 'Muthia'.
'Bodles Altafort', of the tetraploid Musa acuminata. (AAAA) group, recorded an acidity percentage of 0.21 wille the tetraploid, 'Hybrid Sawai' (ABBB) recorded 0.30 per cent. 4.6. Sugar acid ratio

When the sugar/acid ratio of the polyploids and diploids was compared it was found that the polyploids (47.22) had significangly higher sugar/acid ratio than the diploids.

Within the polyploids the triploids recorded higher sugar/ acid ratio (47.49) than the tetraploids (41.53).

Within the diploids, the genomic groups BB (48.55) and $A B(48.38)$ did not show significant variation in respect of sugar/acid ratio while it was significently lower in AA (38.74).

Within the triploids, the three genomic groups differed significantly in sugar/acid ratio, the highest value was in AAA (59.64) followed by ABB (46.88) and AAB (38.92).

Between the genomic groups in the tetraploids, the sugar/acid ratio did not vary significantly, thłough the genomic group AAM recorded a higher value (44.58) than ABBB (38.48).

The sugar acid ratio among the different cultivars showed a wide range of variation from 17.76 per cent from 'Wather' to 89.41 in 'Pedda pachcha'.

Among the cultivars belonging to the diploid yuss acuminata group (AA), the sugar acid ratio varied from 18. 31 in 'Eraichivazhai' to 47.77 in 'Sanna chenkadali', among the AB cultivars, from 31.65 in 'Krishna vazhai' to 59.25 in "Ney poovan' and in "Elaashai" (BB) the ratio was 48.55.

Among the cultivars belonging to the triploid Musa acuminata group (AAA) the sugar acid ratio varied from 17.76 in 'Wather' to 89.41 in 'Pedda pachcha'. Among the $A A B$ cultivars, the range was from 23.47 in 'Thiruvananthapuran' to 60.76 in 'Pacha chingan'. In the ABB group, sugar/ació ratio varied from $30 \cdot 23$ in 'Kallu monthan' to 79.76 in 'Pey kunnan'.

The cultivar belonging to the tetraploid Musa acuminata group (ANA), 'Bodles Altafort' recorded a sucar acid ratio of 44.58 , whereas in the tetraploid hybrid ($A B B B$), 'Hybrid Sawai', the ratio was slightly lower (38.48).
5. Effect of ploidy and genomic constitution on pollen characters of banana cultivars

Among the 62 cultivars, 22 cultivars were non-polleniferous. All the cultivars belonging to the genomic group AB; 'Pacha chingan', 'Mannan', 'Malakali', 'Pacha nadan', 'Nendra padaththi', 'Chara padaththi' and 'Kullan' belonging to the genowic group AAB; and 'Waiha', 'Ashy batheesa' and 'Jurmoney kunthali' belonsing to the genomic group ABB, did not produce pollen grains. The list of non polleniferous cultivars are given in Table 13.
Pollen viability, size of the pollen grains and the pollen production per anther, as influenced by the ploidy and the genome are presented in Table 14 (P1ate 47-49). The pollen characters of cultivars under each genomic group are pres-nted in Table 15.

Table 13. Non polleniferous banana cultivars

Table 14 Effect of ploidy and genome on pollen characters of banana cultivars

Groups	Size of pollen (micron)	Pollen viability (\%)	Pollen production per anther
Diploids	175.28	67.67	7129.78 (56.18)
Polyploids	207.67	51.37 (45.48)	5431.77 (3.68)
C.D. (0.05)	2.396	0.369	0.026

Polyploids

Triploids
Tetraploids

Diploids

AA	178.20	62.51	5129.09
		(52.47)	(3.66)
$A B$	-	-	-
$B B$	160.67	93.10	17133.33
		(74.80)	(4.23)
C.D. (0.05)	5.928	0.914	0.064

Triploids

AAA	224.55	62.89	5452.12
	220.86	(51.21)	(3.70)
AAB	220.86	$\begin{aligned} & 43.80 \\ & (4+44) \end{aligned}$	(3.47)
ABB	192.40	$\begin{aligned} & 42.64 \\ & (40.76) \end{aligned}$	$\begin{array}{r} 5612.14 \\ (3.73) \end{array}$
C.D. (0.05)	192.99	0.461	0.032

Tetraploids

AMA	186.67	86.80	11546.67
ABBB	164.33	(68.70)	(4.06)
C.D. (0.05)	7.65	(53.55)	$124(16.67)$
(4.09)			
	1.18	0.082	

A

8

```
Plate 47 Pollen grains of banana ( }2\textrm{n}=22\mathrm{ )
    A Musa (aA Group) 'Namaral'
    B Musa (BB Group) 'Elavazhai' (Musa balbisiana)
        (A, B - x 500)
```


A

C

$$
\begin{aligned}
& \text { Plate } 48 \text { Pollen grains of banana }(2 n=33) \\
& \text { A Musa (AM Group) 'Gros Michel' } \\
& \text { B Musa (ANB Group) 'Dudhsagar' } \\
& \text { C Musa (ABB Group) 'Pacha bontha bathees' } \\
& \text { (A, B, C }-\times 500 \text {) }
\end{aligned}
$$

Plate 49 Pollen grains of banana ($2 n=44$)
A Kusa (AMM Group) (Bodles Allafort'
B Muga (ABBB Group) 'Hybrid Sawal' ($A, B-\times 500$)

Table 15 Mean values of the pollen characters of 40 cultivars of banana belonging to different genomic groups

Cultivars	Pollen characters		
	$\begin{aligned} & \text { Pollen } \\ & \text { viability } \\ & (\%) \end{aligned}$	Size of pollen (micron)	Pollen production per anther
1	2	3	4
As			
Namarai	$\begin{gathered} 71.92 \\ (57.99) \end{gathered}$	172.70	$\begin{array}{r} 4552.00 \\ \quad(3.658) \end{array}$
Chingan	$\begin{aligned} & 72.30 \\ & (58.27) \end{aligned}$	177.67	$\begin{aligned} & 3530.00 \\ & (3.551) \end{aligned}$
Tongat	$\begin{gathered} 74.23 \\ (59.49) \end{gathered}$	160.67	$\begin{gathered} 4680.00 \\ (3.67) \end{gathered}$
Eraichivazhai	$\begin{gathered} 41.96 \\ (40.38) \end{gathered}$	200.00	$\begin{array}{r} 10310.00 \\ (4.04) \end{array}$
Sanna chenkadali	$\begin{aligned} & 52.12 \\ & (46.19) \end{aligned}$	180.00	$\begin{array}{r} 2573.33 \\ (3.410) \end{array}$
BB			
Elavazhai (Musa balbisiana)	$\begin{gathered} 93.10 \\ (74.80) \end{gathered}$	161.00	$\begin{gathered} 17133.33 \\ (4.234) \end{gathered}$
AAA			
Gros Michel	$\begin{gathered} 78.02 \\ (62.03) \end{gathered}$	242.00	$\begin{array}{r} 7806.67 \\ (3.892) \end{array}$
Highgate	$\begin{gathered} 56.00 \\ (45.46) \end{gathered}$	218.00	$\begin{aligned} & 5513.33 \\ & (3.741) \end{aligned}$
Pedda pachcha	$\begin{gathered} 80.45 \\ (63.77) \end{gathered}$	221.00	$\begin{aligned} & 4510.00 \\ & (3.654) \end{aligned}$
Basral	$\begin{gathered} 35.28 \\ (36.57) \end{gathered}$	241.00	$\begin{aligned} & 3526.67 \\ & (3.544) \end{aligned}$
Harichal	$\begin{gathered} 80.38 \\ (63.12) \end{gathered}$	201.00	$\begin{aligned} & 4520.00 \\ & (3.653) \end{aligned}$
Sapumal anamalu	$\begin{aligned} & 79.80 \\ & (63.29) \end{aligned}$	240.00	$\begin{array}{r} 7516.67 \\ (3.876) \end{array}$
Manoranjithm	$\begin{aligned} & 77.26 \\ & (24.52) \end{aligned}$	200.00	$\begin{array}{r} 5023.33 \\ (3.701) \end{array}$
Gal anamalu	$\begin{gathered} 78.85 \\ (62.49) \end{gathered}$	242.33	$\begin{gathered} 5916.67 \\ (3.772) \end{gathered}$

Table 15 (Contd.)

1	2	3	4
Red banana	$\begin{gathered} 69.11 \\ (56.25) \end{gathered}$	235.00	$\begin{gathered} 5283.33 \\ (3.723 i \end{gathered}$
Wather	$\begin{gathered} 45.91 \\ (42.65) \end{gathered}$	210.00	$\begin{array}{r} 5906.67 \\ (3.771) \end{array}$
Karim kadali	$\begin{gathered} 40.67 \\ (39.62) \end{gathered}$	220.00	$\begin{aligned} & 4450.00 \\ & (3.648) \end{aligned}$
$\triangle A B$			
Thiruvananthapuram	$\begin{gathered} 47.50 \\ (43.57) \end{gathered}$	212.00	$\begin{aligned} & 3730.00 \\ & (3.572) \end{aligned}$
China	$\begin{gathered} 33.39 \\ (35.30) \end{gathered}$	244.00	$\begin{aligned} & 3+06.67 \\ & (3.532) \end{aligned}$
Rasthali	$\begin{gathered} 43.69 \\ (41.38) \end{gathered}$	216.00	$\begin{aligned} & 3120.00 \\ & (3.494) \end{aligned}$
Dudhsagar	$\begin{gathered} 45.55 \\ (42.48) \end{gathered}$	204.00	$\begin{aligned} & 4283.33 \\ & (3.6317) \end{aligned}$
Sugandhi	$\begin{gathered} 41.07 \\ (39.84) \end{gathered}$	218.00	$\begin{gathered} 3110.00 \\ (3.493) \end{gathered}$
palay ankodan	$\begin{gathered} 46.87 \\ (43.22) \end{gathered}$	215.00	$\begin{aligned} & 1110.00 \\ & (3.045) \end{aligned}$
Chinali	$\begin{gathered} 48.50 \\ (44.23) \end{gathered}$	238.00	$\begin{array}{r} 3413.33 \\ (3.533) \end{array}$
ABB			
Karpooravally	$\begin{aligned} & 55.30 \\ & (48.06) \end{aligned}$	260.00	$\begin{gathered} 3110.00 \\ \quad(3.493) \end{gathered}$
Chirapunchi	$\begin{gathered} 41.73 \\ (40.24) \end{gathered}$	256.00	$\begin{aligned} & 3610.00 \\ & (3.080) \end{aligned}$
Pey kunnan	$\begin{gathered} 65.72 \\ (54.17) \end{gathered}$	275.00	$\begin{aligned} & 3030.00 \\ & (3.481) \end{aligned}$
Ney Vannan	$\begin{gathered} 45.20 \\ (42.26) \end{gathered}$	160.00	$\begin{array}{r} 7806.67 \\ (3.893) \end{array}$
Alukehel	$\begin{gathered} 41.95 \\ (40.38) \end{gathered}$	160.00	$\begin{array}{r} 6816.67 \\ \quad(3.834) \end{array}$
Kapok	$\begin{gathered} 38.69 \\ (38.57) \end{gathered}$	182.00	$\begin{aligned} & 6503.33 \\ & (3.813) \end{aligned}$
Peyan	$\begin{gathered} 31.90 \\ (34.39) \end{gathered}$	150.00	$\begin{aligned} & 6006.67 \\ & (3.785) \end{aligned}$

Table 15 (Contd.)

1	2	3	4
Pacha bontha bathees	$\begin{gathered} 39.80 \\ (39.11) \end{gathered}$	180.00	$\begin{aligned} & 6216.67 \\ & (3.793) \end{aligned}$
Muthia	$\begin{gathered} 44.17 \\ (41.65) \end{gathered}$	178.00	$\begin{array}{r} 7033.33 \\ (3.849) \end{array}$
Kari bontha	$\begin{aligned} & 32.15 \\ & (34.55) \end{aligned}$	200.00	$\begin{array}{r} 5506.67 \\ (3.741) \end{array}$
Malai monthan	$\begin{gathered} 37.15 \\ (37.56) \end{gathered}$	163.00	$\begin{aligned} & 4506.67 \\ & (3.654) \end{aligned}$
Bluggoe	$\begin{gathered} 45.25 \\ (42.42) \end{gathered}$	160.00	$\begin{gathered} 6003.33 \\ (3.778) \end{gathered}$
Chetti	$\begin{gathered} 46.61 \\ (43.07) \end{gathered}$	163.00	$\begin{aligned} & 6210.00 \\ & (3.793) \end{aligned}$
Kallu monthan	$\begin{gathered} 31.58 \\ (34.18) \end{gathered}$	207.00	$\begin{aligned} & 6210.00 \\ & \quad(3.792) \end{aligned}$
MMA			
Bodles Altafort	$\begin{gathered} 86.80 \\ (68.70) \end{gathered}$	186.67	$\begin{array}{r} 11546.67 \\ (4.063) \end{array}$
$\triangle B B B$			
Hybrid Sawai	$\begin{gathered} 64.69 \\ (53.55) \end{gathered}$	164.33	$\begin{gathered} 12+16.69 \\ (4.094) \end{gathered}$
C.D. (0.05)	1.18	7.65	0.082

Letters in parenthesis denote mean of transformed values (Angular and legarithmic)
5.1. Pollen viability

When the diploids and the polyploids were compared with respect to pollen viability, the diplo1ds (67.67\%) were significantly superior to the polyploids (51.37\%). Within the polyploids, the triploids were found to have significantly lower pollen viability (49.85%) than the tetraploids (75.75\%).

Within the diploids, Musa balbisiana (BB) recorded 93.10 per cent pollen viability as a ainst 62.51 per cent in the group AA, the former being significantly higher than the latter.

Within the triploids, the groups differed significantly. Pollen viability was the highest in AAA (62.89\%) followed by $A A B(43.80 \%)$ and $A B B(42.64 \%)$.

Within the tetraploids, the genomic group AAM recorded 86.80 per cent pollen viability, which was significantly higher than that of $A B B B$ (64.69%).

Among the 40 cultivars the pollen viability varied from 17.26 per cent in 'Manoranjithm' to 93.10 per cent in 'Elavazhai' (Musa balbisiana).

Among the diploids of the genomic group AA, it varied from 41.96 per cent in 'Eraichivazhai' to 74.23 per cent in 'Tongat'.
mong the triploids of the genomic group AAA, the viability of pollen grains was generally high except in
'Manoranjithm' which recorded the lowest value, 17.26 per cent. The percentage pollen viability was the highest in 'Pedda pachcha' (80.45). Among the cultivars of the genomic group AAB, pollen viability varied from 33.39 per cent in 'China' to 48.50 per cent in 'Chinali'; among the ABB cultivars, from 31.58 per cent in 'Kallu monthan' to 65.72 per cent in 'Pey kunnan'. The pollen viability was below 50 per cent in cultivars of ABB group, except in 'Karpooravally' (55.30%) and 'Peykunnan (65.72%).

The tetraploid 'Bodles Altafort (AAAA) recorded a pollen viability of 86.80 per cent while it was 64.69 per cent in 'Hyorid Sawai' (ABBB).
5.2. Size of pollen

The polyploids recorded a mean size of 207.67 and the diploids, $175.28 u$ which was significantly lower than that of the former. Within the polyploids, the mean size of pollen egrains in the triploid was 209.68μ as against 175.50μ in the tetraplo1ds.

Within the ciploids, the groups differed significantiy with respect to the size of pollen grains. In AA it was 178.2μ which was significantly higher than that of BB (160.67μ) .

Within the triploids also, the genomic groups differed significantly. The largest pollen grains were produted by AAA group (224.55μ) followed by AAB (220.86μ) and ABB (192.40 μ).

Within the tetraploids, the genomic group AAAA (186.67μ) had longer pollen grains than ABBB (164.33μ).

The mean size of pollen grains varied significantiy among the 40 cultivars from 150μ in 'Peyan' (ABB) to 295μ in 'Pey kunnan' (ABB).

Among the cultivars of the genomic group AA the size of pollen grains $\begin{gathered}\text { aried from } 160.67 \mathrm{u} \text { in 'Tongat' to } 200 \mathrm{~m}, ~\end{gathered}$ in 'Eraichivazhai'. In 'Elavazhai' Musa balbisiana the pollen size was 161μ.

The triploid Musa acuminata group produced pollen grains varying in size from 200μ in 'Menoranjithm' to 242.23μ in 'Galanamalu'. In the genomic group $A A B$ the size of pollen grains varied from 204μ in 'Dudh sagar' to 244μ in 'China' and among the ABB cultivars from 150μ in 'Peyan' to 275μ in 'Pey kunnan'.

The tetraploid, 'Bodles Altafort' (AAAA), produced pollen grains of mean size 186.67μ and Hybrid Sawai' (ABBB) 164.33μ.
5.3. Pollen production

When the diploids and the triploids were compared, the diploids produced 7129.78 pollen grains per anther and the polyploids, 5431.77 per anther. The two differed significantly. Within the polyploids the tetraploids (11981.67)
produced significantly higher number of pollen grins per anther than the triploids (5022.40).

Within the diploids the pollen production per anther in Muse halbisiona (BB) was 17133.33 and this was significantly higher than that of the genomic group AA (5129.09).

Within the triploids the number of pollen grains produced per anther was the highest in the group $\mathrm{ABB}(5612.14)$ followed by AAA (5452.12) and AAB (3167.62). The groups AAA and $A B B$ were on par, while group AAB differed significantly from the two.

The two tetraploid groups did not show significant difference with respect to pollen production.

Among the 40 polleniferous cultivars, the pollen production per anther varied from 2573.33 in 'Sanna chenkadali' (AA) to 17133.33 in 'Elavazhai' (BB). Among the cultivars of the diploid Musa acuminata group (AA) 'Eraichivazhai' produced the largest number of pollen gr ins per anther (10310).

Among the cultivars belonging to the genomic group AAA, the pollen production per anther ranged from 3526.67 in 'Harichal' to 7806.67 in 'Gros Michel'; among the AAB cultivars from 1110 in 'Palayankodan' to 4283.33 in 'Dudh sagar' and among the ABB cultivars from 3030 per anther in 'Pey kunnan' to 7806.67 per anther in 'Ney vannan'.

The tetraploid 'Bodles Altafort' (AAAA) produced 11546.67 pollen grains per anther and 'Hybrid Sawai' (ABBB) 12416.69 pollen grains per anther.
6. Ranking of cultivars on the basis of quantitative, quality and pollen characters

In Table 16, the ranks given to genomic groups and the rank totels are siven when they are arranged in descending order with respect to each of the characters. In each character rank 1 denotes the genomic group having the highest value and rank 8 denotes the group having the lowest value.
6.1. Growth parameters

Plant height, plant girth, leaves per plant, leaf area per plant and petiole length were influenced by the genomic constitution of the cultivars. In all the characters, Musa balbisiana (BB) recorded the highest Values while the lowest values were recorded by the Musa acuminata groups. Within the triploids, the genomic group $A B B$ recorded the highest values and the group AAA recorded the lowest values in all the characters except in the number of leaves.

6.2. Duration

The duration of the crop was not influenced by the genomic constitution and ploidy level.

Table 16 Ranking of genomic groups on the basis of quantitative, quality and pollen characters of banana cultivars

Characters	AA	$A B$	BB	AAA	AAB	ABB	AAMA	ABBB
1	2	3	4	5	6	7	8	9
Growth parameters								
Plant height (cm)	8	3	1	6	5	2	4	7
Plant girth (cm)	8	5	1	7	6	2	4	3
Leaves per plant	7	4	1	3	6	2	8	5
Leaf area per plant (m^{2})	8	5	1	4	3	2	6	7
Petiole length (cm)	7	4	1	8	6	3	2	5
Rank Total	38	21	5	28	26	11	24	27
Duration (days)								
Planting to flowering interval	6	5	1	4	8	7	3	2
Flowering to harvest interval	8	6	1	3	2	4	5	7
Rank Total	14	11	2	7	10	11	8	9

(Bontd.)

Table 16 (Contd.)

1	2	3	4	5	6	7	8	9
Bunch characters								
Bunch weight (kg)	7	5	6	3	4	2	1	8
Hand weight ($: 8$)	8	7	6	2	4	3	1	5
Number of hands	3	4	8	5	2	1	7	6
Number of fingers	3	2	8	6	4	1	7	5
Rank Total	21	18	28	16	14	7	16	24
Finger characters								
Pedicel length (cm)	6	4	1	8	5	2	7	3
Finger length (cm)	6	5	7	2	4	3	1	8
Finger girth (cm)	8	7	1	5	6	3	2	4
Finger weight (g)	8	7	5	2	4	3	1	6
Finger volume (cc)	7	6	8	1	4	2	3	5
Per cent puip weight (4	5	1	3	2	7	6	8
Pulp/peel ratio on weight basis	1	3	2	5	4	6	7	8
Per cent pulp volume	3	2	7	4	5	6	1	8
Pulp/peel ratio on volume basis	3	2	7	5	4	6	1	8
Rank Total	45	14	19	34	25	16	37	26

Table 16 (Contd.)

1	2	3	4	5	6	7	8	9
cuality characters								
TSS (\%)	8	1	2	7	6	3	4	5
Total sugars (\%)	8	1	5	6	4	2	7	3
Reducing sugars (\%)	8	1	5	6	4	2	7	3
Non reducing sugars (\%)	8	5	1	6	4	3	7	2
Acidity (\%)	6	3	4	8	1	2	7	5
Sugar/acid ratio	7	3	2	1	6	4	5	8
Rank Total	45	14	19	34	25	16	37	26
Pollen characters								
Pollen viability (\%)	4	-	1	5	6	7	2	3
Slze of pollen (μ)	5	-	7	1	2	3	4	6
Pollen production per anther	6	-	1	5	7	4	3	2
Rank Total	15	-	9	11	15	14	9	11

Musa balbisiana (BB) took the longest duration from planting to flowering and from flowering to harvest. Planting to flowering interval was the least in the genomic group AAB while the flowering to harvest interval was the least in AA. The other two Musa acurainata genomic groups, AAA and AAM took longer time than the genomic groups having both Musa acuminata and Musa baloisiana genomes.
6.3. Bunch characters

The characters bunch weight, hand weight, number of hands and number of fingers were influenced by the ploidy and genomic constitution of the cultivars. The triploids were superior to the diploids and tetraploids in bunch characters as indicated by their lower total scores. Within the diploids, the genomic group $A B$ and within the triploids, the genomic groups $A B$ and $A B B$ were superior to Musa acuminata groups (AA and AAA) and Musa balbisiana (BB).
6.4. Finger characters

The length of pedicel was influenced by the genomic constitution of the cultivars. Musa baloisiana (3B) and the genomic groups $A B{ }^{B}$ and ABBB had longer pedicels than Musa acuminata groups (AA, MA and AAAA), Genomic groups $A B$ and $A A B$ were intermediate between predominantly Musa balbisiana groups (ABB and ABBB) and Musa acuminata group (AA, AAA and AAAA).

The length, girth, weight, volume, percentage of pulp and pulp/peel ratio were influenced by the ploidy, and the genomic constitution of the cultivars. The triploids and the tetraploid (AMA) were superior to the diploids in finger characters. Among the genomic groups Musa acuminata groups obtained the first two ranks (AAAA and AAA) followed by predominantly Musa acuminata group (AAB). Musa balbisiana (BB) and predominently Musa balbisiana sroups (ABB and ABBB) were inferior in finger characters.
6.5. Quality characters

The quality characters the percentages of TSS, total sugars, reducing sugars, non reducing sugars, acidity and sugar/acid ratio were influenced by the genomic constitution of the cultivars. The genomic groups with both Musa acuminata and Musa balbisiana genomes ($A B, A A B, A B B$ and $A B B B$) recorded higher values for total sugars, reducing sugars, non reducing sugars and acidity than Musa acuminata groups (AA, AMA ano AAAA). The genomic group AAA recorded the highest value for sugar/acid ratio.
6.6. Pollen characters

Musa balbisiana (BB) and the tetraploids recorded higher values for pollen viability and pollen production. Within the triploids and the tetraploids, the genomic groups AAA and AAAA recorded the highest values for pollen viability. The triploids had larger pollen grains than the
diploids and the tetraploids. Within each ploidy Musa acuminata groups had the largest pollen grains. Within the diploids, Musa balbisiana (BB), within the triploids, the genomic group ABB, and within the tetraploids, the genomic group ABBB, produced larger number of pollen grains per anther than the other genomic groups.
7. Growth functions and assessment of growth rates

The linear functions gave a better fit for the genomic groups and cultivars than the exponential function, the coefficients of determination being higher in linear function. The linear growth curves of the genomic groups for plant height, plant girth, leaves per plant, leaf area per plant and petiole length are presented in Fig.d
7.1. Influence of ploidy and genomic constitution on growth rate

The growth rates, the regression equation and the coefficients of determination for plant heifht, girth, leaves per plant, leaf area per plant and petiole lengtin, for the genomic groups are presented in Taole 17. The linear functions were having higher coefficients of determination, ranging from 0.8817 to 0.9982 , than the exponential function.

The genomic groups were ranked according to the growth rates (linear) for different characters (Table 18). The growth rates of the genomic groups are presented in Fig.2.

Fig. 1
LINEAR GROWTH CURVES OF GENOMIC GROUPS

$$
\hat{y}=A+B t
$$

-1-1-1-	AA
- k- ${ }^{\text {- }}$ - k -	$A B$
--L--.-L-	$B B$
- M-M-M-	AAA
--O-O-O-	$A A B$
- $\mathrm{H}^{\text {- }}$ - H - ${ }^{\text {- }}$	$A B B$
- s-s-s-	AAAA
- 2 - 2 - 2 -	$\triangle B B B$

NUMBER OF LEAVES

Table 17. Growth rate, prediction equation and coefficient of determination for different characters of the genomic groups of benana

Character	Growth rate		Prediction equation		Coefficient of determination	
	Relative	Linear	Exponential	Linear	Exponential	Linear
1	2	3	4	5	6	7
M						
Plant height (cm)	42.90	31.76	$29.14(1.429)^{t}$	$7.76+(31.76) t$	0.8686	0.9506
Plant girth (cm)	10.22	6.56	$1.12(1.102)^{t}$	$9.49+(6.56) t$	0.8714	0.9312
Leaves per plant	42.72	4.20	$3.51(1.427)^{t}$	$-0.29+(4.20) *$	0.9285	0.9982
Leaf area per plant (m2)	150.84	3.34	$1.22(2.508)^{t}$	$-4.98+(3.34) t$	0.8482	$0.94+38$
Petiole length (cm)) 23.25	4.92	$12.12(1.233)^{t}$	$9.65+(4.92) t$	0.8853	0.9589
AB						
Plant height (cm)	34.03	37.30	$44.03(1.34+0)^{t}$	$17.91+(37.30) t$	0.8409	0.9526
Plant girth (cm)	10.07	7.28	$1.16(1.100)^{t}$	$11.74+(7.28) t$	0.7961	0.8817
Leaves per plant	34.15	3.99	$4.61(1.34+2)^{t}$	$1.61+(3.99) t$	0.8608	0.9504
Leaf area per plant $\left(m^{2}\right)$	103.33	5.18	$0.42(2.033){ }^{t}$	$-6.67+(5.18) t$	0.8172	0.9883
Petiole length (cm)) 24.39	7.64	14.34 (1.244) ${ }^{t}$	$7.90+(7.64) t$	0.8409	0.9667

(Contd.)

Table 17. (Contd.)

1	2	3	4	4	5	6	7
BB							
Plant height (cm)	25.00	32.85	19.58	$(1.250)^{t}$	-8.35 + (32.85)t	0.8172	0.9883
Plant girth (cm)	16.50	5.44	9.66	$(1.165)^{t}$	$5.81+(5.44) t$	0.8935	0.9315
Leaves per plant	23.80	4.33	3.03	$(1.238)^{t}$	$-0.58+(4.33) t$	0.8415	0.8915
Leaf area per plant (m^{2})	59.00	4.36	0.76	$(1.590)^{t}$	$-3.81+(3.93) t$	0.8718	0.8816
Petiole length (cm)	15.10	3.93	9.34	$(1.151)^{t}$	$6.39+(4.36) t$	0.8215	0.9519
M							
Plant height (cm)	47.47	34.80	24.15	$(1.475)^{t}$	-7.09 + (34.80)t	0.9035	0.9982
Plant girth (cm)	34.96	8.23	10.44	$(1.350)^{t}$	$4.96+(8.23) t$	0.8742	-. 9730
Leaves per plant	46.86	4.55	3.14	$(1.469)^{t}$	-1.29 + (4.54) t	0.9413	0.9982
Leaf area pae plant (m^{2})	165.95	5.30	0.13	$(2.659)^{t}$	$-8.37+(5.30) t$	0.9370	0.9370
Petiole length (cm)	31.46	5.58	8.63	$(1.315)^{t}$	$5.48+(5.58) t$	0.8601	0.9602

Table 17. (Contd.)

1	2	3		4	5	6	7
AAB							
Plant height (cm)	43.15	38.98	33.15	$(1.432)^{t}$	$1.38+(38.99) t$	0.8879	0.9793
Plant girth (cm)	31.31	8.43	13.41	$(1.313)^{t}$	$9.28+(8.43) t$	0.8208	0.9151
Leaves per plant	43.62	4.56	3.61	$(1.436)^{t}$	$-0.69+(4.55) t$	0.9368	0.9942
Leaf area per plant (m²)	134.21	5.21	0.29	$(2.342)^{t}$	$-6.54+(5.21) t$	0.8495	0.9797
Petiole length (cm)	25.72	6.97	13.52	$(1.257)^{t}$	$8.92+(6.97) t$	0.8497	0.9520
$\triangle \mathrm{BB}$							
Plant height (cm)	49.62	47.31	30.95	$(1.496)^{t}$	$-7.65+(47.31) t$	0.8664	0.9588
Plant girth (cm)	37.25	10.34	11.81	$(1.373)^{t}$	$4.90+(10.34) t$	0.8619	0.9573
Leaves per plant	42.59	5.07	4.30	$(1.426)^{t}$	$-0.15+(5.07) t$	0.9120	0.9974
Leaf area per plant (m^{2})	108.45	5.96	0.53	$(2.085)^{t}$	$-8.31+(5.96) t$	0.9178	0.9778
Petiole length (cm)	32.86	8.20	11.43	$(1.329)^{t}$	$5.94+(8.20) t$	0.8976	0.9809

Table 17. (Contd.)

1	2	3	4	5	6	7
MM						
Plant height (cm)	28.03	33.98	30.95 (1.496) ${ }^{t}$	$-7.65+(43.31) t$	0.8664	0.9588
Plant girth (cm)	24.48	7.96	$11.81(1.373)^{t}$	-6.99 + (10.34)t	0.8619	0.9573
Leaves per plant	38.36	3.71	$4.30(1.426)^{t}$	-0.15 + (5.07)t	0.9120	0.9974
Ldaf area per plant (m)	144.12	4.91	$0.53(2.085)^{t}$	-8.31 + (5.96$) t$	0.9178	0.9728
Petiole length (cm)	27.15	8.36	11.49 (1.329) ${ }^{\text {t }}$	$5.94+(8.20) t$	0.8976	0.9809
ABBB						
Plant height (cm)	51.46	37.93	$23.83(1.515)^{t}$	-4.00 $+(37.93) t$	0.8270	0.9126
Plant girth (cm)	28.20	8.41	14.99 (1.2820 ${ }^{\text {t }}$	$9.62+(8.71) t$	0.9657	0.9069
Leaves per plant	49.76	4.74	$3.04(1.498)^{t}$	$-1.18+(4.74) t$	0.8925	0.9888
Leaf area per plant (m^{2})	150.00	4.72	$0.21(2.500)^{t}$	$-5.08+(4.72) t$	0.7960	0.9512
Petible length (cm)	38.10	7.94	$8.20(1.381)^{t}$	$1.46+(7.94) t$	0.9249	0.9817

Table 18 Ranking of genomic groups for growth rates

Genomic groups	Fanks assigned to genomic groups for growth rates					Rank Total
	Plant height	$\begin{aligned} & \text { Plant } \\ & \text { girth } \end{aligned}$	Leaves per plant	Leaf area per plant	$\begin{aligned} & \text { Petiole } \\ & \text { length } \end{aligned}$	
AA	8	7	6	8	7	36
$A B$	4	6	7	4	4	35
BB	7	8	5	7	8	35
AM	5	4	4	2	6	21
AAB	2	2	3	3	5	15
ABB	1	1	1	1	2	6
AMM	6	5	8	5	1	25
ABBB	3	3	2	6	3	17

fig 2 LINEAR GROWTH RATES OF GENOMIC GROUPS

HEIGHT

GIRTH

NUMBER OF LEAVES

LEAF AREA PER PLANT

The triploids had higher growth rates than the diploids and the tetraploids. The genomic group ABB had the highest growth rates in all the characters except for petiole length. The genomic group AA recorded the lowest growth rates in plant height and leaf area per plant while tiie group $B B$ recorded the lowest growth rates in plant girth and length of petiole. Within each ploidy level, the genomic groups having both Musa acuminata and Nusa balbisiana genomes ($A B, A A B, A B B$ and $A B B B$) had hisher growth rates than Musa acuminata (AA, AAA and AAAA) or Musa baloisiana (BB) groups.

The growth rates, prediction equation and coefficients of determination for cultivars under the different genomic groups are presented in Table 19. The ciltivars uncer each genomic group were ranked based on the growth rates (Table 20).

The cultivar 'Chingan' was the most vigorous one in the genomic group AA, while 'Namarai' was the least vigorous cultivar as indicated by the growth rates (Table 20). In the genomic group A3, 'Vanneettu Mannan' was the most vigorous cultivar wille the least vigorous one was 'Padali moongil'. In the group AAA 'Galanamalu' and 'red banana' were more vigorous than the other cultivars. 'Wather' was the least vigorous cultivar in AAA. In the group ABB 'Charapadaththi' ranked first in vigour while 'Thiruvananthapuram' and 'Kullan' were the least vigorous.

Table 19. Growthratos prediction equation and coefficients of determination for plant characters of 62 cultivars of banana

Cultivar	Charncter	Growth rate	Prediction equation		Coerficient of determination (r^{2})	
		Linear	Exponential	Linear		
					$\begin{aligned} & \text { Exponen. } \\ & \text { tial } \end{aligned}$	Linear
1	23	4	5	6	7	8
A						
Namaral	Plant height (cm) 31.20	19.68	32.23 (1.312) ${ }^{t}$	$24.46+(19.68) t$		
	Plant girth (ca) 24.40	$\begin{aligned} & 4.89 \\ & 4.88 \end{aligned}$	9.87 (1.274 ${ }^{\text {a }}$	$24.46+(19.68) t$ $8.08+(4.89) t$	$\begin{aligned} & 0.7857 \\ & 0.7781 \end{aligned}$	$\begin{aligned} & 0.8608 \\ & 0.8731 \end{aligned}$
	Leaves per plant $\quad 16.10$	4.08	2. $24(1.461)_{t}^{t}$	$0.90+(4.08)_{t}$	0.9260	$\begin{aligned} & 0.8731 \\ & 0.9996 \end{aligned}$
	Laf area per plant (m) 131.10 Petiole leng th $(\mathrm{cm}) \quad 23.74$	$\begin{aligned} & 2.45 \\ & 4.80 \end{aligned}$	0.14 $(2.311)^{t}$	$-3.48+(2.45) t$	0.9353	$\begin{aligned} & 0.9996 \\ & 0.9736 \end{aligned}$
Chinga			$12.08(1.237){ }^{\text {t }}$	$10.16+(4.89) t$	0.8179	0.9268
	Plant helght (cm) 61.40 Plant girth (cm) 41.10	39.39 7.07	16.63 6.74 .614$)^{t}$	$-78.50+(39.39) t$	0.8497	0.9467
	$\begin{array}{ll}\text { Leaves per plant } & 46.150\end{array}$	7.07 4.59	6.74 3.16	1.69 + (7.07)t	0.8595	0.9604
	Leaf area per plant (mim) 240.96	4.59 4.02	3.16 $0.03\left\{\begin{array}{l}1.465 \\ 3.409\end{array}\right\}$	$-1.52+\left(\begin{array}{l}4.59 \\ -7.17 \\ 4.02\end{array}\right) t$	0. 9.85	0.9960 0.9158
	Petiole length (cm) 42.23	6.22	$5.68(1.422) t$	$-1.38+(4.22)_{t}^{t}$	0.8258 0.8398	$\begin{aligned} & 0.9158 \\ & 0.9791 \end{aligned}$
Tongat	Plant height (cm) 48.20	36.54	$15.54(1.482)_{t}^{t}$	$6.99+(36.54) t$		
	Plant girth (cm) 35.70	7.48	5.85 (1.357)t	$7.85+(36.48) t$	0.848	0.9018 0.9717
	Leaves per plant (2) 38.20	4.31	$2.14(1.382)^{t}$	$1.04+(4.31) t$	0.9496	0.9858
	Leaf area per plant (m^{2}) 183.40 Petiole length (cm) 25.80	3.48 4.25	$4.038\left(\begin{array}{l}2.834 \\ 4.258\end{array}\right\} t$	$-5.18+(3.48) t$	0.8358	0.9351
Eraich1- Farhai	Plant height (cm) 35.10	32.76	33.56 (1.351) ${ }_{\text {t }}$	$6.92+(32.76) t$	0.9155	0.9554 0.9958
	Plant girth (cm). 35.90	9.51	13.04 (1.349) ${ }_{\text {t }}$	$8.88+\left(\begin{array}{l}\text { 9 }\end{array}\right.$	0.9155 0.7850	0.9958 0.8656
	Leaves per plant (${ }^{2}$) 137.80	4.21	4.46 (1.378) ${ }^{\text {t }}$	$1.01+(4.20)_{t}$	0.9203	0.9984
	Leaf area per plant (me ${ }^{2}$) 131.30	3.91	. 0.23 (2.313) ${ }_{t}^{\text {t }}$	$-4.91+(3.90) t$	$0.84+93$	0.9628
	Petiole length (cm) 21.06	3.57	$10.28(1.211){ }^{t}$	$8.71+(3.57) t$	0.8752	0.9355
Sanna chenka- dall	Plant height (cm) 39.70	35.36	37.35 (1.397) ${ }_{\text {t }}$	$17.30+(35.36) t$	0.8160	
	Plant girth (cm) 34.60	35.61	$10.16(1.34+6)_{t}^{t}$	$6.00+(7.61) t$	0.8314	0.9332
	feaves per plant (${ }^{2}$) 42.00	3.90	$3.44(1.420)^{t}$	$0.20+(3.90) t$	0.9082	0.9781
	lisar aree per plant(m) 258.43	4.03	$0.02(3.584)^{t}$	$-7.42+(4.03) t$	0.9522	0.8229
	Fetiole length (cm) 15.85	4.97	$20.08(1.159)^{t}$	$18.62+(4.97)_{t}$	0.9330	0.9690
$A B$ Krishna vazhal						
	Plant height (cm) 42.20	42.08	38.25 (1.422) ${ }^{t}$	$7.93+(42.08) t$	0.8656	0.9510
	Plant girth (cm) 28.40	8.81	16.11 (1.284t ${ }^{\text {c }}$	$13.51+\{8.81\}_{t}$	0.6615	0.7487
	Leaves per plant ${ }^{2}$, 36.90	3.46	$4.55(1.359){ }^{t}$	$2.05+(3.46) t$	0.9057	0.9807
	Leaf area per plant(me 107.50	4.00	$0.40(2.076)^{t}$	$-4.49+(4.00) t$	0.8645	0.9793
	Potiole length (cm) 20.53	4.33	$12.58(1.205)^{t}$	$10.29+(4.33) t$	0.9308	0.9783
Vannan	Plant height (cm) 50.80	46.38	35.05 (1.508) ${ }_{\text {t }}$	$1.08+(46.38) t$	0.8930	0.9553
	Plant girth (cm) $\quad 37.60$	9.45	13.08 (1.376) ${ }^{t}$	$9.45+(9.45) t$	0.7735	$\begin{aligned} & 0.9553 \\ & 0.8136 \end{aligned}$
		3.65 4.36	3.31 (1.451)t	$0.55+(3.65) t$	0.9380	0.9780
	Lear area per plant (${ }^{\text {² }}$) 166.30	4.36	0.21 (2.663) ${ }_{\text {t }}$	$-5.20+(4.36) t$	0.8864	0.4803
	Petiole length (em) 21.61	4.61	$13.18(1.217)^{t}$	$10.14+(4.65) t$	0.9025	0.9031
Virupakshi	Plant height (cm) 41.80	41.53	$37.10(1.418){ }^{t}$	$2.45+(41.53) t$	0.8989	
	Plant girth (cm) 29.90	7.59	13.36 (1.299) ${ }^{\text {t }}$	$10.48+(7.58) t$	0.7742	0.8586
	Leaves per plant (2) 32.90	3.03	$4.02(1.329)_{t}^{t}$	$1.55+(3.04+t$	0.9303	0.9805
	Leaf area per plant (m) 126.30	3.80	Q. 24 (2.263)t	$-5.30+\{3.80) t$	0.8727	0.9628
	Petiole length (cm) 29.99	7.51	$12.29(1.299)$ t	$7.77+\{7.51\}_{t}$	0.8562	0.9432
Strumal			32.90 (1.523) ${ }^{t}$			
	Plant girth (cm)	10.28	10.30 (1.437 ${ }^{\text {c }}$	$3.83+(10.28) t$	0.8870	0.9679
	Leaves per plant (${ }^{2}$, 51.50	4.23	$2.99(1.515)_{t}^{t}$	$0.48+(0.18) t$	0.9403	0.9990
	Leaf arma per plant(\mathbf{m}^{2}) 172.00	4.32	0.19 (2.720)t	$-5.28+(4.32) t$	0.8847	0.9771
	Petiole length (cm) 26.53	4.77	11.02 (1.265) ${ }^{\text {t }}$	$9.38+(4.77) t$	0.8100	0.9067
Agniswar	Plant halght (cm) 51.20	50.48	38.79 (4.512$)_{t}^{t}$	$3.83+(50.47) t$	0.8508	0.8978
	Plant girth (cm) 38.00	8.35	11.19 (1.380) ${ }_{\text {t }}$	$7.80+(8.35) t$	0.7946	0.8449
	Leaves per plant ${ }^{2}$) 58.20	6.40 6.36	3.72 (1.582$)^{t}$	$-1.35+(6.40) t$	0.8997	0.9604
	Leaf area per plant(m^{2}) 189.20 Petiole length (cm) 23.31	6.36 5.05	0.23 $14.74(1.892)$	$\left.\begin{array}{l}-6.96+\left(\begin{array}{l}6.35\end{array}\right) t \\ 13.95 \\ 5.95\end{array}\right) t$	0.8462 0.7184	0.9567 0.7989
	Petiole length (cm) 23.31	5.05	14.74 (1.233)	$13.95+(5.95) t$		0.7989
Adakka kunnan	Plant height (am) 32.30	34.32	$43.08(1.328)^{t}$		0.8840	0.9716
	Plant girth (cm) 28.60	8.19	$13.30(1.286)_{t}^{t}$	$8.77+(8.19) t$	0.8080	0.9080
	Leaves per plant 2, 39.40	4.65	4.64 (1.394) ${ }^{\text {t }}$	$0.39+(4.65) t$	0.9040	0.9843
	Leaf area per plant (m) 153.50	5.76	$0.24(2.535){ }^{t}$	$-8.31+(5.71) t$	0.8512	$0.972{ }^{4}$
	Petiole length (cm) 32.10	9.02	11.14 (1.321) ${ }^{t}$	$3.10+(9.10) t$	0.9109	
Valiya kunnan	Plant helght (cm) 37.40	34.37	33.58 (1.374) ${ }_{\text {t }}$	$7.00+(3+30) t$	0.8380	0.9528
	Plant girth, (cm) 33.00	8.52	7.68 (1.330) ${ }^{\text {t }}$	$4.61+(8,52) t$	0.3870	0.9561
	Leaves per plant 39.70	4.30	3.55 (1.397) ${ }_{t}$	-0.71 + (4.30)t	0.9040	0.9964
	Lear area per plant (m) 161.20	3.18	0.13 (2.162) ${ }_{\text {t }}$	$-6.05+(3.18) t$	0.8604	0.9752
	Petiole length (cm) 29.20	17.25	$13.35(1.292)^{t}$	$10.46+(7.25) t$	0.8214	$0.95{ }^{4}$

Table 19. (Contd.)

1	2	3	4	5	6	7	8
Thaen kunn an	Plant inelght (cm)	37.60	34.02	30.48 (1.376)t		0	
	Plant girth (cm)	25.60	5.19	11.76 (1.25,6)t	$7.57+(6.19) t$	0.8718	$\begin{aligned} & 0.9902 \\ & 0.97+6 \end{aligned}$
	Leavea per plant ${ }^{2}$	35.20	5.15	5.61 (1.352)t	$1.57+(5.15) t$	0.8614	0.9722
	Leaf ares per plant $\left(\mathrm{m}^{2}\right)$ Petiole jen; th (cm)	$121 \cdot 30$	6.22 3.97	0.28 ${ }_{1}$ (2.213)t		$\begin{aligned} & 0.8614 \\ & 0.8499 \end{aligned}$	$\begin{aligned} & 0.9722 \\ & 0.9637 \end{aligned}$
	Petiole lenisth (cm)	17.41	3.97	$14.36(1.174) t$	$13.07+\left\{3.97{ }^{\text {c }}\right.$	0.7869	0.903
$\begin{aligned} & \text { Padali } \\ & \text { moong } 21 \end{aligned}$	Plant hoight (cm)	33.90	32.21	$34.85(1.339){ }_{t}^{t}$	$2.00+(32.21) t$	0.9384	0.9958
	Plant girth (cm)	24.70	5.86	10.19 (1.24 ${ }^{\text {a }}$ (${ }^{t}$	$9.28+\{5.86) t$	0.8263	0.9293
	Leaves per plant ${ }^{2}$,	38.80 116.80	4.22	$3.46\{1.388\} t$	$-1.29+\left\{4.21{ }^{+}\right.$	0.9508	$\begin{aligned} & 0.9293 \\ & 0.9920 \end{aligned}$
	Lear area pernant (m^{2})	116.20	3.18	0.13 (2.162) ${ }^{t}$	$-6.05+(3.18) t$	0.9364	$\begin{aligned} & 0.9920 \\ & 0.8610 \end{aligned}$
	Petiole lensth (cm)	23.57	6.81	$13.99(1.236)^{t}$	$-7.63+(6.81) t$	0.8424	0.9557
Ney pooran	Plant height (cm)	52.00	58.18	$43.58(1.520)^{t}$	$1.03+(58.75) t$	0.8978)	0.9698
	Plant girth (cm)	46.10	11.25	$10.38(1.461)_{t}^{t}$	$3.35+(11.25) t$	0.8709	0.9384
	Leavea per plant ${ }^{2}$	50.20	5.55	4.13 (1.502) ${ }_{t}^{t}$	$0.40+(5.55) t$	0.9444	0.9960
	Lear area per plant (m^{2})	159.20	4.95	0.29 (2.592)t	$-5.41+(4.95) t$	0.8606	0.9845
	Petiole length (Cm)	41.40	9.48	$16.69(1.394)^{t}$	$12.73+(9.48) t$	0.8414	0.9380
Kostha bonthe	Plant height (cm)	39.40	47.42	$41.51(1.394)_{t}^{t}$	$2.28+(47.42) t$	0.8479	0.9690
	Plant girth (cm)	27.40	9.00	$16.50(1.217)_{t}^{t}$	$12.68+(9.00) t$	0.7735	0.8859
	Leaves per plant	43.40	5.56	$3.96(1.434)_{t}$	$-1.14+(5.56) t$	0.8653	0.9791
	Leaf area per plant (m)	91.65	5.49	$0.74(1.917)_{t}$	$-3.61+(5.49) t$	0.7247	0.8976
	Petiole length (cm)	26.30	7.49	16.53 (1.263)	$14.66+(7.49) t$	0.7441	0.8223
		25.00	32.85	$19.58(1.250)^{2}$	$-8.35+(32.85) t$	0.8172	
	Plant girth (cm)	16.50	5.44	9.66 (1.165) ${ }^{\text {t }}$	$5.81+(5.44) t$	0.8935	0.9315
	Leaves per plant ${ }^{2}$	23.80	4.33	$3.03(1.238){ }^{\text {t }}$	$-0.58+(4.33) t$	0.8415	0.8915
	Leaf area per plant (m)	59.00	4.36	0.76 (1.590) ${ }_{\text {t }}$	$-3.81+(3.93) t$	0.8718	0.8816
	Petiole length (cm)	15.10	3.93	$9.34(1.151){ }^{\text {c }}$	$6.39+(4.36) t$	0.8215	0.9519
418 Gros Michel	P) ant height (cm)						
	Plant height (Cm)	36.80	37.14	${ }^{34.76}(1.368)_{t}^{t}$	$-3.57+(37.14) t$	0.9266	0.9878
	Plant girth (cm)	2.60	7.17	13.37 (1.360) ${ }_{\text {t }}$	$8.57+(7.17) t$	0.8740	0.9769
	Leaves per plant	38.70	4.29	3.69 (1.387) ${ }_{\text {t }}$	$0.57+(4.29) t$	0.9153	0.9908
	Leaf area per plant(me	127.24	6.24	0.23 (2.272) ${ }^{\text {ct }}$	$10.11+(6.24) t$	0.8627	0.9403
	Petiole length (cm)	24.28	5.37	$11.59(1.243)^{t}$	$8.94+(5.37) t$	0.8169	0.9132
$\begin{aligned} & \text { High- } \\ & \text { gate } \end{aligned}$	Plant hoight (cm)	54.70	35.09	17.74 (1.547) ${ }_{\text {t }}$	$-18.15+(35.09) t$	0.9101	0.9771
	Plant girth (cm)	43.30	10.16	$8.32(1.433)_{t}^{t}$	$-0.63+(10.16) t$	0.9151	0.9880
	Leaves per plant	47.40	4.83	$3.10(1.474)_{t}$	$-2.16+(4.83) t$	0.9663	0.9860
	Lear area per plant (m)	138.85	6.31	$0.91(2.389)_{t}^{t}$	$-41.73+(6.32) t$	0.8223	0.8123
	Petiole length (cm)	28.62	4.42	$7.31(1.286)^{t}$	$4.99+(4.42) t$	0.8121	0.1)121
Pedda pachcha	Plant height (cm)	60.40	31.64	$13.75\left(1.60{ }^{4}\right)^{t}$	$-15.00 .+(31.64) t$	0.8666	0.452
	Plant girth (om)	34. 20	7.11	$9.92(1.3+2)^{t}$	$6.67+(7.11) t$	0.7971	0.8904
	Leaves per plant	4.60	3.69	2.61 (1.446) ${ }_{\text {t }}$	$-1.47+(3.69) t$	0.9685	0.9698
	Leaf area per plant (m)	112.23	3.46	$0.23\{2.122\}^{t}$	$-5.53+(3.46) t$	0.7705	0.9224
	Petiole length (cm)	45.31	8.11	$6.58(1.453)^{t}$	$1.10+(8.11) t$	0.8325	0.9220
Basra1			20.73	$16.64(1.397)_{t}^{t}$	$-5.4 t *(20.73) t$	0.9268	0.9928
	Plant girth (cm)	24.70	6.00	$12.47(1.247)^{t}$	$9.14+(6.00) t$	0.6409	$0.9+61$
	Leaves per plant ${ }^{2}$	37.00	4.60	4.35 (1.370) ${ }^{\text {t }}$	$-0.14+(4.60) t$	0.9141	0.9986
	Lear area per plant (a ${ }^{2}$)	93.06	3.57	0.29 (1.931) ${ }^{\text {t }}$	$6.13+(3.57) t$	0.7907	0.9308
	Petiole length (cm)	26.53	3.09	$7.36(1.265)^{t}$	$7.16+(3.09) t$	0.7785	0.8787
Harichal	Plant height (cm)	59.40	33.54	14.75 (1.5944 ${ }^{t}$	$-16.25+(31.33) t$	0.8355	0.9588
	Plant girth (cm)	33.50	7.22	2.81 (1.335) ${ }^{t}$	$5.89+(7.22) t$	0.7658	0.8955
	Leaves per plant	45.60	3.82	$5.85(1.456)_{t}^{t}$	$-1.48+(3.82) t$	0.9213	0.9984
	Lear area per plant (m)	3.42	0.25	2.20 (1.342) ${ }^{\text {t }}$	- $4.48+(3.42)_{t}$	0.8552	0.9455
	Petiole length (cm)	38.56	3.92	$9.58(1.385)^{t}$	$1.80+(3.92) t$	0.8453	0.9729
Sapumel anamalu	Plant height (cm)	49.60	43.18	21.32 (1.496) ${ }^{t}$	$-31.43+(43.18) t$	0.9274	0.9855
	Plant girth (cm)	35.00	8.48	8.91t $(1.350)^{t}$	$1.00+(8.48) t$	0.9017	0.9874
	Loaves per plant ${ }^{2}$	37.00	4.58	$4.20(1.370)_{t}^{t}$	$-0.29+(4.58) t$	0.9210	0.9972
	Leaf area per plant (m)	130.99	5.94	0.19 (2.309) ${ }_{\text {t }}$	$-10.48+(5.94) t$	0.8955	0.9170
	Petiole length (cm)	34.62	5.35	$6.74(1.346)^{t}$	$1.87+(5.35) t$	0.8845	0.9528
Menoranj1thm		45.90	38.35	$22.17(1.459)_{t}^{t}$	$-24.57+(38.35) t$	0.9376	$0.985 ?$
	Plant girth (cm)	29.50	6.76	$9.58(1.295) t_{t}$	$3.50+(6.76) t$	0.9044	0.964%
	Leaves per plent ${ }^{2}$	43.30	4.96	$3.33(1.433)_{t}$	$-2.14+(4.96) t$	0.9233	0.9930
	Leal area per plant (m)	135.50	5.95	0.16 (2.355 $)_{t}$	$-10.93+(5.95) t$	0.8095	0.9212
	Petiole length (cm)	27.46	5.22	$7.90(1.275) t$	$-3.34+(5.22) t$	0.8545	0.9855
Galanamalu	Plant height (cm)	38.90	40.87	37.19 (1.389) $\hat{\tau}$	$7.00+(40.87) t$	0.8422	0.9604
	Plant girth (cm)	33.50	10.07	$12.77(1.335){ }^{\text {c }}$	$7.36+(10.07) t$	0.7884	0.9178
	Leares per plant ${ }^{2}$	37.50	4.05	3.57 (1.375) t	$-0.86+(4.05) t$	0.9440	0.9940
	Leaf area per plant (m^{2})	320.73	6.83	$0.05(4.207)_{t}^{t}$	$-9.73+(6.84) t$	0.9181	0.9508
	Petiole leagth (cm)	30.62	8.10	$11.44(1.306)$	$5.77+(8.10 . t$	0.9492	0.9584
Red banana	Plant height (cm)	33.20	37.22	40.42 (1.332)t	$12.31+(37.22) t$	0.8152	0.9550
	Plant girth (am)	${ }^{4}+50$	8.11	15.80 (1.245) ${ }_{\text {t }}$	$11.41+(8.11) t$	0.8062	0.9322
	Leaves per plant	34.80	4.66	$4.59(1.348){ }^{\text {t }}$	$0.68+(4.66) t$	0.8317	0.9681
	Lear area per plant (m)	97.68	9.20	0.62 (1.977) ${ }^{\text {t }}$	$-12.24+(9.20) t$	0.7776	0.9642
	Petiole iength ${ }^{\text {(cm) }}$)	21.59	5.31	$14.70{ }^{\text {c }}$ (1.216)t	$14.00+(5.31) t$	0.7083	$0 . e^{1} 10$
Wather			20.96	42.07 (1.290) ${ }_{\text {t }}^{\text {t }}$	$0.41+(26.96) t$	0.8210	$0.67+0$
	Plant girth (cm)	26.00	26.19	13.14 (1.260)t	$10.20+(66.19) t$	0.8495	0.9430
	Leaves per plant		4.34	2.66 (1.490)t	$-1.97+(4.34) t$	0.9549	0.9914
	Leaf area per plant (m)	149.00	3.37	1.11 (2.490)t	$-5.53+\{3.37)^{t}$	0.9333	0.9420
	Petiole jength (cm)	19.10	3.46	11.42 (1.191)	$10.04+(3.46) t$	0.8599	0.7917

Table 19. (Contd.)

1	23	4	5	6	7	8
$\operatorname{Karim}_{\operatorname{kadal}}$	Plant hoight (cm) $\quad 48.10$	34.46	$24.33(1.481)_{t}^{t}$	-2.42 + (34.46)t	0.8612	0.9444
	Plant girth (mm) ${ }^{\text {P4.20 }}$	7.33	$9.98(1.342)^{t}$	$6.02+(7.33) t$	0.8319	0.9214
	Leaves per plant ${ }^{2}$, 44.40	4.28	3. 32 (1.444)	$-0.60+(4.27) t$	0.9291	0.9904
	Leaf area par plant (m) ${ }^{2} 150.00$	3.90	0.15 (2.500) ${ }^{t}$	$-5.31+(3.89) t$	0.8608	0.9791
AB	Petiole length (cm) 24.85	. 86	9.01 (1.249)	$7.60+(3.86) t$	0.7973	0.9004
miruva-nanthapuram	Plant hoight (cm) 44.30	32.97	25.22 (1.443) ${ }^{\text {t }}$	$-6.46+(32.97) t$	0.9324	0.9860
	Plant 8irth (cm) 29.50	6.91	12.16 (1.295 $)_{t}^{t}$	$9.05+(6.91) t$	0.8077	0.8849
	Leaves per plant (${ }^{2}$, $\begin{array}{r}44.50 \\ 153.80\end{array}$	4.07	$3.07(1.445) t^{t}$	$-0.92+(4.07) t$	$0.4+91$	0.9952
		4.29	0.15 $12.48(2.538)$	$-5.05+(4.29) t$	0.8593	0.9779
	P					
China	Plant height (cm) $\quad 43.30$	37.80	23.36 (1.433) ${ }_{\text {t }}$	-26.50 + (37.80)t	0.9688	
	Plant girth (cm) $\quad 26.90$	7.16	13.18 (1.269) ${ }^{\text {t }}$	$9.50+(7.16) t$	0.8192	0.9103
	Leaves per plant ${ }^{2}$ 2) 38.10	4.92	4.39 (1.381) ${ }^{\text {t }}$	$-0.28+(4.91)_{t}$	0.8942	0.9779
	Leaf area per plant(m) ${ }^{2}$) 102.70	4.71	$0.38(2.027)^{t}$	$-6.18+(4.71)$	0.8381	0.9884
	Petiol length (cm) 26.42	5.51	$11.65(1.264)^{t}$	$-9.15+(5.51) t$	0.8308	0.9378
Rasthuli	Plant helght (cm) 29.70	36.14	58.76 (1.297) ${ }_{\text {t }}$	46.86 + (36.14)t	0.7430	0.8464
	$\begin{array}{ll}\text { Plant girth (cm) } & 26.00\end{array}$	8.38	17.04 (1.260) ${ }_{\text {t }}$	$14.57+(8.39) t$	0.7436	0.8497
	Loaves per plant ($2, ~ 44.00$	5.22	3.76 (1.440) ${ }^{t}$	$-0.43+(5.22)$	0.8294	0.9559
	Leaf area per plant (m²) 100.00	5.55	$0.54(2.000)_{t}^{t}$	$-5.38+(5.55) t$	0.7602	0.9614
	Patiol length (cm) 19.61	6.33	$20.78(1.196){ }^{t}$	$18.76+(6.325 t$	0.8026	0.9063
Dudhsagar	Plant height (cm) 53.10	43.88	22.28 (1.531) ${ }_{\text {t }}$	-22.25 + (43.88)t	0.9297	0.9847
	Plant girth (cm) $\quad 30.70$	7.72	11.57 (1.307) ${ }^{\text {t }}$	$5.68+(7.72) \mathrm{t}$	0.9122	0.9659
	Leaves per plant ${ }^{\text {a }}$, ${ }^{\text {a }}$, 52.20	4.85	2.79 (1.522 t	$-1.77+(4.85) t$	0.8995	0.9807
		7.33 9.06	${ }_{0}^{0.085}(2.748)^{t}$	$-10.85+(7.33) t$	0.8673	0.9577
	Petiole lepgth (cm) 22.65			$2.50+(9.06) t$	0.9497	0.9523
Sugandh1	Plant hoight (cm) $\quad 34.72$	43.28	$53.90(1.247)_{t}^{t}$	25.12 (43.28) t	0.8554	0.9320
	Plant girth (cm) $\quad 30.00$	9.14	15.70 (1.3000 ${ }^{\text {t }}$	$1.17+\left(9.14{ }^{\text {t }}\right.$	0.8019	0.8789
	Lraves per plant ${ }^{2}$ 2, 50.80	5.43	$3.38(1.508)_{t}^{t}$	$-1.26+(5.43) t$	0.8778	0.965
		8.91	0.40 (2.433)t	$-10.15+\{8.41\}^{\text {t }}$	0.8297	0.9685
	Petiole length (cm) 29.98	6.32	4	$-10.61+(6.32) t$	0.9239	0.9882
Palayankodan	Pl ent height (cm) $\quad 48.70$	39.49	27.93 (1.487) ${ }_{t}^{t}$	$0.90+(39.43) t$	0.8199	-0.9065
	Plant girth (cm) 34.70	8.39	11.15 (1.347) ${ }_{t}$	$6.50+(8.39) t$	0.8308	0.9326
	Leaves per plant (2) 49.40	4.71	3.11 (1.494) ${ }_{\text {t }}$	$-0.83+(4.71)^{\mathrm{t}}$	0.8099	0.9162
	Lear area per plant (m^{2}) 162.00	7.17	0.19 2.677t	$-10.43+(7.17) \mathrm{t}$	0.8742	0.9622
	Potiole 1ongth (cm) 28.26	6:53	12.49 (1.283)t	$9.90+(6.53) t$	0.7978	0.9004
Pacha chingen	P1ant height (cm) $\quad 38.95$	46.18	$45.52(1.388)^{t}$	$20.55+(46.18) t$	0.8819	18
	Plant girth (cm) 33.10	10.75	15.42 (1.331	$8.15+(10.75) t$	0.8321	0.8949
	Leaves per plant ${ }^{2}$) 42.10	3.75	$5.18(1.421)_{t}^{t}$	$-1.12+\left\{2.75{ }^{\text {t }}\right.$	0.9264	0.9952
	Le ar area per plant (m) ${ }^{2}$) 135.80	4.45	0.58 (2.358) ${ }_{t}$	$-5.18+(4.45) t$		
	Petiole lengty (en) 22.12	5.48	$11.58(1.221)^{t}$	$11.18+(5.48){ }_{t}$	0.8234	885
Mannan	Plant hoight (om) . $\quad 39.60$	39.85	$47.68(1.396) t$	$23.35+(39.85)^{t}$	0.8709	
	Plant girth (cm) 32.10	6.91	15.38 (1.321)t	$9.05+(6.91) t$	0.8221	0.8849
	Leaves per plant ${ }^{2}{ }^{2}{ }^{40.30}$	4.07	$4.09(1.403)_{t}^{t}$	-0.92 + (4.07)t	0.8164	0.9952
	Leaf area per plent $\left(\mathrm{m}^{2}\right) 14.70$	4.29	0.44 (2.347)t	$-5.96+(4.29) \mathrm{t}$	0.8234	0.9779
	Petiole length (om) 23.65	4.68	12.48 (1.237)t	$12.18+(4.67) t$	0.7500	0.9357
Malakall			24.59 (1.639) ${ }^{\text {t }}$	11.		
	Flant girth (cm)	10.25	11.26 (1.429 ${ }^{24}$	$-11.45+\left\{\begin{array}{l}\text { 2 } \\ 5.75 .105 \\ 10.25\end{array}{ }_{t}\right.$	0.8544	0.9035 0.9084
	Leaves por plant ${ }^{2}$, 40.20	4.43	4.69 (1.402 ${ }^{\text {t }}$	1.68 + 4.43) 4	0.9526	0.9974
	Lear area per plant (02) 166.10	4.92	0.23 (2.661) ${ }^{\text {t }}$	$-6.37+(4.92) t$	0.9124	0.9549
	Petiole length (cm) 31.40	5.53	$8.53(1.314)^{t}$	$4.28+(5.53) t$	0.9409	0.9649
Pacha naden	Plant height (cm) 55.43	42.48	27.02 (1:54) ${ }_{\text {t }}$	$-5.78+(42.48) t$		
	Plant girth (cm) $\quad 45.40$	11.40	10.86 (1.454	$4.10+\{11.40) t$	0.8575	0.9153
	Leaves por plant ($2,42.90$	3.58	3.53 (1.429 ${ }^{\text {a }}$	0.88 + 3.588 t	0.419	0.9880
	Lear area por plant (m^{2}) 155.00	3.59		$4.00+33.58) t$	0.8690	0.9888
	Petiole length (am) 26.71	5.01	$14.51(1.267)^{t}$	$-8.88+(5.00) t$	0.8889	$0.951,5$.
Mendra padaththi	Plant helght (cm) 39.50	40.88	$46.96(1.395)_{t}^{t}$	$19.03+(40.87) t$	0.9320	0.9962
	Plant girth (om) . 41.50	11.00	12.54 (1.415) ${ }_{\text {t }}$	$7.05+(11.00) t$	0.8276	0.8830
	Leaves per plant ${ }^{2}{ }^{2} 46.50$	3.63	3.06 (1.465 $)_{t}^{t}$	0.13 + 3.63$) t$		0.9904
	Loar area per plant (mer ${ }^{2} 150.30^{\circ}$	4.47 7.38	${ }_{14.51}^{0.26}\left(\begin{array}{l}2.503 \\ 1.301\end{array} \mathrm{t}_{\mathrm{t}}\right.$		0.9063 0.7760	$\begin{aligned} & 0.9128 \\ & 0.8505 \end{aligned}$
Chara pade th thi						
	Plent hoight (cm) 69.50 Plant girth (cm) 43.20	50.65 10.23	19.728 ${ }^{1}$	$\underline{-30.15}+1.49+(50.85)^{t}$	0.8101	0. 8765
	Laves per plant $2,47.00$	5.33	4.38 (1.470)	$-0.02+(5.33) \mathrm{t}$	0.9608	0.9948
	Lear area per plant (m^{2}) 195.20	6.61	0.19 (2.952) ${ }^{\text {t }}$	$-8.89+\left(6.61{ }^{\text {ct }}\right.$	0.9772	0.9596
	Potiole length (am) ${ }_{\text {a }}$	9.38	$9.77(1.412)$ t	2.68 + 9.388$)_{t}$	0.9456	0.9898
Kullen	Plant haight (cm) $\quad \mathbf{4 0 . 1 0}$	26.07	25.99 (1.401) ${ }_{\text {t }}$	$7.50+(26.07) t$	0.8653	
	Plant girth (cm) $\quad 25.70$	7.3	16.30 (1.257 $)_{t}^{t}$	$16.30+\{2.34\}$	0.792	0.9021
	Leares per plant ${ }^{2}$ 2, ${ }^{46.10}$	4.50	3.38 1.461 ${ }^{\text {t }}$		0.8824	0.9864
		4.40 2.76	$\left.\begin{array}{l}0.20 \\ 4.45 \\ (2.460 \\ 1.188\end{array}\right) t$		$0: 8296$ 0.863	0.9584
Cris	Plant haight (cm) $\quad 56.80$		15.25 (1.568) ${ }^{\text {t }}$			
		8. ${ }^{4}$	10.66 (1.328)	$-35.93+\left\{\begin{array}{l}\text { 8. } \\ 2.92 \\ \text { 2 }\end{array}\right.$	0.8887	0.9877
	Leares per plant ${ }^{\text {cos }}$ (${ }^{2}$) 38.30	3.83	3.08 ${ }^{16}\left(1.3833^{\text {a }}\right.$		0.9226	0.9738
		\%.816	0.16 7.4 .12 .309 (1.401)		0.8655 0.8551	

Table 19. (Contd.)

Table 19. (Contd.)

1	2	3	4	5		6	7	8
Bluggot	Plant height (cm)	62.10	56.05	29.27	$(1.621)^{t}$	$-12.75+(56.05) t$	0.8643	C. 9097
	Plant girth (cm)	43.20	10.30	-10.57	$(1.432\}_{t}$	$4.20+(10.30) t$	0.8812	0.1612
	Leaves per plant ${ }^{\text {a }}$	56.00	6.10		(1.560) ${ }_{t}$	$-0.75+(6.10) t$	0.8932	0.9614
	Leaf area per plant (m)	223.07	6.35	0.14	$(3.230)_{t}^{t}$	$-7.11+(6.35) t$	0.8425	0.9328
	Petiole ler th (cm)	31.16		13.81	$(1.311)^{t}$	$9.38+(8.08) \mathrm{t}$	0.8966	0.9231
Chetti	Plant height (cm)	61.40	48.63	19.82	(1.614) \ddagger	-29.20+(48.63)t	0.8915	0.9797
	Plant girth (cm)	34.80	8.49	11.34	(1.348) ${ }_{\text {t }}$	$6.95+(8.49) t$	0.8132	0.9000
	Leaves per plant ${ }^{2}$	37.00	4.17	4.49	(1.370) ${ }_{\text {t }}$	$-0.85+(4.17) t$	0.9440	0.9942
	Leaf area per plant (m)	169.70	4.42	0.11	(2.697) ${ }_{\text {t }}$	$-6.71+(4.42) t$	0.8894	0.3580
	Petiole length (cm)	31.58	C. 87	10.46	$(1.316)^{t}$	$6.42+(6.87) t$	0.8532	0.9509
$\begin{aligned} & \text { Kallu } \\ & \text { monthan } \end{aligned}$	Plant height (cm)	47.70	46.68	33.82	(1.477) ${ }_{\text {t }}$	$-0.08+(46.68) \mathrm{t}$	0.8369	0.9172
	Plant girth (cm)	37.40	10.66	12.60	(1.374 $)^{t}$	$6.95+(10.66) t$	0.8096	0.8949
	Leaves per plant ${ }^{2}$	42.70	5.56	4.88	(1.427) ${ }^{\text {t }}$	$0.57+(5.56) t$	0.8838	0.9667
	Leaf area per piant (m)	158.00	6.30	0.22	(2.580) ${ }^{t}$	$-7.68+(6.30) t$	0.8246	0.9692
	Petiole length (cm)	34.68	8.55	11.64	$(1.346){ }^{\text {(}}$	$7.65+(8.55) t$	0.7966	0.8834
Hybrid Sawal	Plant height (cm)				(1.515 ${ }^{\text {t }}$	$-4.00+(37.93) t$		
	Plant girth (cm)	51.46 28.20	38.93 8.41	14.90	(1.282 t	-4.62 $+(8.41) t$	0.9657	0.9069
	Leaves per plant	49.76	4.74	3.04	(1.498) ${ }_{\text {t }}$	$-1.18+(4.74) t$	0.8925	0.9888
	Leaf area per plant(m^{2})	150.00	4.72	0.21	(2.500 ${ }^{\text {t }}$	$-5.08+(4.72) t$	0.7360	0.9512
	Petiole length (cm)	38.10	7.94	8.20	$(1.381){ }^{\text {c }}$	$1.46+(7.94) t$	0.9249	0.9817
Bodles Al tafort	Plant height (cm)	28.03	33.98	30.95	$(1.496){ }^{t}$	$-7.65+(43.31) t$	0.8664	0.9588
	Plant girth (cm)	28.03 24.48	$\begin{array}{r}33.98 \\ 7.96 \\ \hline\end{array}$	11.81	(1.373) ${ }^{\text {t }}$	$-4.90+(10.34) t$	0.8619	0.9573
	Leaves per plant ${ }^{2}$	38.36	3.71	4.30	$(1.426)^{t}$	$-0.15+(5.07) t$	0.9120	0.9974
	Leaf area per plant (m)	144.12	4.91	0.53	(2.085) ${ }^{t}$	$-8.31+(5.96) t$	0.9178	0.9728
	Petiole length (cm)	27.15	8.36	11.4	$(1.329)^{t}$	$5.94+(8.20) t$	0.8976	0.9809

Table 20. Ranking of banana cultivars for growth rates

Cultivar	Ranks assigned to cultivars					Rank total
	Plant height	$\begin{aligned} & \text { Plant } \\ & \text { girth } \end{aligned}$	Leaves per plant	Leaf area per plant	$\begin{aligned} & \text { Petiole } \\ & \text { length } \end{aligned}$	
1	2	3	4	5	6	7
M						
Namarai	5	5	4	5	3	22
Chingan	1	4	1	2	1	9
Tongat	2	3	2	4	4	15
Eraichivashal	4	1	3	3	5	14
Sanna chenkadali	3	2	5	1	2	13
AB						
Krishna vashai	7	6	11	9	11	44
Vannan	6	4	10	7	10	37
Virupaksh1	8	10	12	10	4	44
Sirumalai	4	3	8	8	9	32
Agniswar	3	8	1	2	8	22
Adakka kuman	10	9	6	4	3	32
Valiya kunnan	9	7	7	11	6	40
Thaen kunnon	12	11	5	3	12	43
Padali moongil	11	12	9	11	7	50
Ney poovan	2	2	4	6	2	16
Kostha bontha	5	5	3	5	5	23
Venneettu mannon	1	1	2	1	1	6
M						
Gros Michel	5	7	7	4	3	26
Highgate	6	1	2	3	7	19
Pedda pachcha	9	8	11	9	1	38
Basrai	11	11	4	8	11	45
Harichal	8	6	10	10	8	42
Sapumal anamalu	1	3	5	6	4	19
Manoranj1thm	3	9	1	5	6	24
Galanamalu	2	2	9	2	2	17

Table 20. (Contd.)

1	2	3	4	5	6	7
Fed banana	4	4	3	1	5	17
Wathe r	10	10	6	11	10	47
Karim kadalı	7	5	8	7	9	36
MBIruvananthapuram	13	13	9	12	11	58
China	11	12	4	9	8	44
Rasthal 1	12	9	3	5	6	35
Dudhsagar	4	10	5	2	2	23
Sugandhi	5	6	1	1	7	20
Palayankodan	10	8	6	3	5	32
Pacha chingen	3	3	11	10	10	37
Mannan	9	13	9	12	13	56
Malakalı	2	4	7	7	8	28
Pacha nadan	6	1	13	13	12	45
Nendra padathth1	8	2	12	9	4	35
Chara padathth1	1	5	2	4	1	13
nullan	14	11	8	11	14	58
Chinali	7	7	10	6	3	33
$\frac{A B B}{\text { Karpooravally }}$	14	14	12	14	10	64
Chirapunchi	5	1	4	1	7	18
Pey kunnan	13	11	6	10	9	49
Walha	9	2	8	3	9	31
Ashy batheesa	2	5	10	11	2	30
Ney Vaman	16	3	8	9	4	40
Alukehel	15	12	5	8	12	52
Kapois	6	9	16	7	11	49
Jurmoney kunthall	4	6	3	2	8	23
Peyan	8	15	9	4	14	48
Pacha bontha bathees	17	16	1	12	13	59
Nathia	12	10	11	13	15	61
Kari bontha	1	6	13	15	3	38
Malai montha	7	8	14	16	1	46
Bluggoe	3	7	2	5	6	23
Chetti	10	13	15	17	16	71
Kallu monthen	11	4	7	6	5	33

In the group ABB 'Chirapunchi' was the most vigorous cultivar while 'Chetti' was the least vigorous one, as shown by the total ranks for their growth rates.
8. Estimation of genetic variability

The genotypic and phenotypic coefficients of variation, heritability in broad sense, genetic advance and genetic gain for 26 characters of banana are presented in Table 21.

Characters-leaf area per plant (0.9998), petiole length (0.9995) pulp/peel ratio on volume basis (0.9983) weight of fruit (0.9960) and volume of fruit (0.9932) showed higher heritability values combined with high genotypic coefficients of variation, except in leaf area per plant in which the genotypic coefficient of variation was 31.6.9.

Among the 26 characters, petiole length recorded the highest value for genetic gain (171.23) combined with high heritability. Weight of fruit (86.21), volume of fruit (85.51), pulp/peel ratio on volume basis (77.56) and leaf area per plant (64.64) also showed high genetic gain combined with high heritability vaiues.
9. Multivariate analysis 9.1. D^{2} Analysis

The significance of Lamda Statistic indicated the overall significant difference among the cultivars with regard to the 22 selected characters.

Table 21. Mean, range, genotypic and phenotypic coefficients of variation (gcv and pcv), heritability in the broad sense (h^{2}), genetic advance and genetic gain for 26 characters of 62 cultivara of banana

Character	Mean	Range	gev	pct	n^{2}	Genetic advance	$\begin{aligned} & \text { genetic } \\ & \text { gain } \end{aligned}$
1	2	3	4	5	6	7	8
Plant height (cm)	243.54 ± 3.24	128.00-451.50	22.59	22.68	0.9931	26.59	10.91
Plant girth (cm)	56.65 ± 4.27	$36.25-85.25$	23.05	25.39	0.8237	24.41	43.09
Leaves per plant	27.99 ± 0.39	18.25-60.00	23.14	23.22	0.9930	13.30	47.52
Leaf area per plant (m)	25.99 ± 0.10	$12.00-51.24$	31.69	31.69	0.9998	16.80	64.64
Petiole length (cm)	46.02 ± 0.43	25.25-67.75	83.15	83.16	0.9995	78.80	171.23
Planting to flowering : interval (days)	201.68 ± 1.57	162.50-432.50	19.36	19.39	0.9968	79.97	39.65
Flovering to harvest interval (days)	97.92 ± 1.25	63.00-137.00	20.77	20.85	0.9925	41.74	42.63
Bunch weight (kg)	8.26 ± 0.26	2.50-15.25	41.65	41.89	0.9883	7.05	85.35
Hand weight (g)	1105.00 ± 97.22	70.75-2725.00	40.84	42.70	0.9151	281.22	25.45
Number of hands	7.92 ± 0.57	$3.50-16.50$	38.36	39.70	0.9333	6.37	80.43
Number of fingers	104.01 ± 5.33	19.50-231.50	49.19	49.73	0.9787	104.27	100.25
Pedicel length (cm)	2.96 ± 0.10	1.28-5.55	36.70	37.01	0.9833	2.22	75,00
Finger length (cm)	13.45 ± 0.28	$8.88-19.75$	19.85	20.06	0.9794	5.44	40.45
Finger girth (cm)	10.81 ± 0.39	$7.13-14.88$	15.71	16.16	0.8820	3.17	29.32
Finger weight (g)	86.14 ± 1.62	30.25-195.06	41.94	42.02	0.9960	74.26	86.21
Finger volume (cc)	87.33 ± 2.27	25.50-206.50	44.39	44.54	0.9932	74.68	85.51

Table 21. (Contd.)

1	2	3	4	5	6	7	8
Per cent pulp weight	65.18 ± 0.46	49.88-87.75	9.98	10.05	0.9861	11.02	20.41
Pulp/peel ratio on weight basis	2.10 ± 0.10	0.79-7.17	51.97	52.40	0.9835	2.23	106.19
Per cent pulp volume	61.66 ± 0.36	46.76-81.50	8.18	8.23	0.9874.	9.07	16.75
Pulp/peel ratio on volume basis	2.05 ± 0.01	1.21-4.41	37.61	37.64	0.9983	1.59	77.56
TSS (\%)	32.71 ± 0.30	15.50-29.00	4.77	4.90	0,9467	3.48	9.55
Total sugars (X)	20.02 ± 0.42	5.60-22.78	15.11	15.28	0.9699	6.82	30.68
Reducing sugars (\%)	12.77 ± 0.44	4.27-18.72	16.72	17.28	0.9365	6.76	33.32
Hon reducing sugars ($)^{\text {) }}$	1.89 ± 0.53	0.50-4.95	23.09	25.02	0.8522	3.39	43.97
leidity (\%)	0.33 ± 0.14	0.14-0.54	17.05	18.13	0.8841	1.07	33.02
Sugar/acidratio	46.78 ± 2.66	17.76-89.41	32.80	33.76	0.9431	30.70	65.63

9.1.1. D^{2} values

Considering 62 cultivars, 2 at a time $1891\left({ }^{62} C_{2}\right)$ squares of difference (D^{2} values) were obtained. The D^{2} values are presented in Table 22. For the presentation of the data in a simple and concise form serial numbers 1 to 62 were assigned to the cultivars.

The tabulated value of chi-square for 22 degrees of freedom being, was lower than the calculated values of D^{2} in all cases, which showed that all the D^{2} values were significant. The minimum genetic distance (226.74) was between cultivars 'Pacha chingan' (AAB) and 'Mannan' (AAB) (No. 35 and No.37) and the maximum genetic distance (38402.74) was between the cultivars 'Elavashai' (BB) and 'Harichal' (AAA) (No. 6 and No.22) (Table 22).
9.1.2. Contribution of characters towards divergence

The character pulp/peel ratio on volume basis (34.06%) followed by weight of fruit (20.57%), total sugars (19.46\%) and lengti of petiole (7.93\%) contributed the maximum towards divergence (Table 23). These four characters along with the volume of fruit (4.81%), pulp/peel ratio on weight basis (3.54%), Height of the plant (2.75\%) girth of the plant (1.43%), planting to flowering interval (2.27%) contributed to 96.82 per cent of the total divergence. The contribution of other characters were either negligible or zero.

Table $22 \mathrm{D}^{2}$ values for 62 cultivars of banana considering 22 characters simultaneously

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0	7713.05	2536.55	1472.67	3983.29	21362.32	2788.43	4126.15	3726.07	4215.63	3578.80	5675.10	5816.52	5788.70	7399.06	4103.91
2		0	9446.40	5719.40	3175.76	23381.40	3463.22	8670.30	7356.19	3598.54	9451.14	3162.29	5246.42	2279.45	5871.93	2955.31
3			0	3732.13	4073.27	22216.60	3299.35	775.28	1448.63	2515.21	762.08	5432.04	7362.47	6192.55	6465.88	6692.40
4				0	3031.09	20239.78	1903.49	4319.50	4447.89	3542.96	4085.67	3739.21	4685.80	4002.72	7612.93	2597.06
5					-	19981.75	1788.85	3701.39	4360.37	1543.50	3941.78	4065.39	5454.29	3310.34	5902.23	2939.81
6						0	16722.79	24588.08	18769.79	23458.48	23303.51	16446.41	9451.14	14340.87	16197.22	14627.09
7							0	3107.11	2532.47	1734.99	3182.30	1979.76	2829.47	2283.51	3615.72	1451.57
8								0	1379.49	1752.59	390.50	5045.26	8077.94	6293.56	6627.45	7123.12
9									0	1018.58	1094.90	2734.87	4279.33	3889.16	4242.04	5421.30
10							.			0	1018.12	2916.90	5885.31	3542.39	5668.77	4745.56
11											0	5194.61	7612.99	6471.80	6437.79	6844.54
12												0	1791.81	831.42	3168.86	2449.37
13													0	3961.56	2223.40	2223.40
14														0	2802.09	1813.16
15															0	3889.55
16																0

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
1	6326.94	9996.11	9778.19	4165.63	1369.27	6832.29	7090.67	9420.11	2516.98	5515.26	7999.87	2631.63	2768.99	5832.10	7661.53	4096.85
2	7649.09	7633.82	9619.51	8819.02	6798.14	16096.34	8572.16	7793.48	5710.11	8366.58	11034.50	6850.57	6628.89	9172.97	3377.09	5902.36
3	5288.37	8030.27	16975.12	2953.06	3170.90	11197.79	4184.73	8632.48	1919.34	3817.30	13717.38	2016.00	1193.68	1841.96	6680.66	2157.85
4	4419.91	7355.31	16848.83	4328.99	1549.04	15481.48	5505.99	8333.23	2862.68	4441.66	15349.95	2478.50	2836.03	5649.07	5279.59	3783.05
5	5052.97	6820.83	10452.96	3908.24	2102.65	11168.06	4318.82	3848.50	1266.78	2974.11	9190.80	1935.14	1840.65	3695.36	4100.67	3031.84
6	10047.36	10254.55	23429.48	29304.80	21122.99	38402.74	20553.06	22963.37	23032.11	23578.37	23696.13	14206.94	23737.19	26349.25	17301.16	18392.50
7	2964.17	5063.18	12040.07	4553.17	2466.92	13182.61	4248.18	5216.62	2339.83	4512.39	10865.06	1441.98	2333.54	4367.12	3018.61	2160.24
8	5075.18	7380.86	15386.56	2805.21	4080.87	9247.03	3292.65	4448.39	1895.98	3216.22	11977.24	2290.84	975.67	993.65	5957.46	2165.30
9	3103.61	4460.31	14175.53	4877.80	4948.06	12792.07	4175.35	5785.76	3422.65	5227.50	12218.89	2372.86	2798.53	2960.25	4577.74	1926.21
10	5334.66	6522.46	12315.16	3848.59	3862.90	10880.31	4380.47	4158.89	2162.27	4247.24	10687.46	2786.39	1832.12	2759.82	4102.27	2414.78
11	4958.22	7578.32	16901.89	3211.57	4070.24	11061.57	4209.76	5516.81	2309.87	4050.86	13431.89	2212.88	1375.96	1679.30	6882.73	2909.40
12	2322.04	2290.69	9391.53	6636.13	5658.39	13528.69	4686.73	5827.47	4966.50	6003.90	9528.46	3820.52	5127.43	5804.47	1243.72	2920.56
13	1780.28	2251.65	4175.62	1445.12	6269.53	20109.57	7258.75	9366.98	7131.12	8458.06	2873.33	3937.02	7599.31	9581.82	3046.10	4347.90
14	2386.72	2412.39	8212.18	1563.33	5210.60	14705.24	5221.79	6127.73	4808.48	5811.72	8881.98	3640.05	5302.99	6695.33	1230.21	3046.89
15	4564.42	1643.94	9182.33	7406.46	7191.53	13256.04	5994.15	6028.09	5357.62	7625.56	8999.87	4762.48	5710.49	6672.69	3723.04	5009.93
16	3815.47	5764.32	13538.70	7684.51	3820.88	18742.42	7220.67	8466.76	4431.39	7088.13	13773.80	3373.73	5085.04	8541.93	4128.75	5233.41

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
1	2236.94	3394.93	5343.26	5946.14	4497.78	6728.81	7788.79	6252.21	6099.22	3976.64	3390.98	4180.06	9074.56	5836.38	8236.29	7515.27
2	7307.94	7743.13	9070.18	1919.82	9137.04	8801.87	1588.95	7889.29	6248.41	7302.77	7464.03	6210.58	11616.55	9574.03	12865.39	13133.06
3	2908.44	1267.27	2937.18	8723.31	2131.88	3497.82	8552.95	3332.74	4331.21	1197.78	976.44	4186.16	8391.60	4574.88	4458.83	4232.71
4	1608.36	3210.72	4618.88	4197.92	4069.65	6360.28	4896.79	5128.15	4661.14	4328.98	3571.38	2642.64	6899.19	4296.48	8089.08	6537.52
5	3251.52	2812.84	3690.94	1934.78	3939.26	4534.58	3210.92	3984.07	3277.48	3004.53	2275.04	3893.38	8021.42	5747.02	7130.51	8013.37
6	12345.65	20329.29	20696.89	22512.71	20342.88	16237.76	22958.41	15765.16	13932.00	20170.56	22823.53	11690.64	8905.91	11846.07	16662.10	21315.97
7	1468.71	2433.37	3432.31	2819.11	3226.92	4318.37	2881.33	3050.64	2714.92	2346.07	2607.73	1881.08	5972.70	3496.45	5947.68	6963.99
8	3633.58	1228.73	1790.03	8265.06	1519.77	3200.08	7548.57	2368.43	3668.50	688.22	531.72	4269.16	8365.52	4578.88	4500.83	3950.38
9	2664.61	2083.94	2760.13	7913.92	2127.18	2670.19	6467.85	2095.83	2940.53	646.82	1517.79	2457.69	5780.51	2842.37	3700.08	3773.96
10	4035.04	2549.14	3238.07	3486.07	3081.28	4604.18	3059.95	3593.54	4034.68	1648.62	1464.65	4073.36	8904.37	5465.06	6702.99	6845.67
11	3135.67	1385.33	1978.47	8349.78	1544.59	3515.89	8263.85	2667.55	4024.40	620.26	458.40	4042.64	8027.33	4248.06	4627.90	4197.51
12	3180.41	3961.79	5585.07	5402.97	5151.02	3952.25	2177.28	3204.89	2411.67	3460.27	4613.11	1498.09	5039.45	2963.97	5775.46	5341.12
13	2363.72	6155.83	6928.16	6005.11	6400.80	5125.75	4704.36	4487.25	3033.21	5469.34	7033.33	1346.14	2994.72	2777.48	6355.64	7462.47
14	3179.12	4584.00	6098.98	4184.76	5750.27	4059.85	1761.91	3498.19	2118.26	4321.66	5229.62	1821.59	4695.44	3739.45	6345.29	6682.89
15	5003.59	4750.64	7326.76	8415.05	7091.18	4320.45	5612.15	4215.96	3206.92	4160.63	5668.15	4082.33	1200.73	5769.89	6567.96	8471.52
16.	2515.03	5622.49	7114.67	2674.31	6915.18	7223.83	2902.05	5852.14	4006.46	5704.73	5913.76	2479.75	1631.79	1041.22	9665.57	980s.62

(Contd.)

	49	50	51	52	53	54	55	56	57	58	59	60	61	62
1	5242.00	7532.26	7897.91	4483.47	6298.46	1480.08	2211. 25	6748.17	1392.95	6534.76	8036.26	7074.29	6501.27	3326.93
2	10928.18	11110.29	9220.17	13019.92	8668.36	6859.00	16449.30	13559.07	12991.38	11858.67	10323.31	9172.32	8790.05	9367.79
3	2850.51	3377.38	3539.81	4376.29	2302.46	6936.79	5290.96	4675.26	5603.42	2241.37	4456.17	5864.36	9011.87	1443.30
4	5362.73	7048.77	6577.73	10299.97	5395.73	10761.49	13053.82	11162.02	10232.50	6956.19	6587.81	5250.54	12341.73	3725.06
5	6013.81	5670.70	5660.21	7406.78	4093.30	6205.70	10632.72	8304.04	8678.60	6415.20	7321.62	6194.91	7058.11	4110.89
6	11608.82	23253.31	23201.92	26472.13	22413.86	31395.08	$2-9389.87$	29245.54	14319.34	18943.00	19283.89	9116.28	27313.79	16524.09
7	3609.02	5166.05	4933.56	7503.94	3811.25	7343.57	10177.79	8520.98	6872.09	4648.68	5714.38	4013.97	8863.31	2198.96
8	3446.39	2910.99	2584.61	3390.04	1574.80	5324.25	4291.77	3871.77	4933.25	2136.09	3909.23	6062.07	7755.41	2086.11
9	1935.95	4080.73	3259.19	4973.72	2524.55	5990.55	5214.42	5153.09	3220.32	1937.66	3117.66	3628.17	8469.18	1422.14
10	5206.66	4846.61	4184.89	5951.98	2945.99	4578.94	7911.54	6262.80	6830.37	4697.75	5707.89	6325.57	7165.77	3620.58
11	3173.72	3590.49	3443.34	4527.65	2141.10	6647.01	4915.21	4656.29	4986.11	2339.77	4569.43	5757.82	9587.42	1644.44
12	3893.86	5913.44	3971.00	7629.79	4065.92	5709.51	9223.51	784:2.72	5066.72	4964.48	3292.69	2780.87	7223.78	3720.14
13	3621.52	8898.09	7639.55	1723.76	7255.25	1241.45	3996.22	2804.80	6260.00	6782.24	5807.93	1875.99	1656.33	4558.19
14	4622.59	6972.03	5222.08	8915.10	5034.16	6469.74	11374.64	9571.35	6282.27	6341.66	4771.33	2940.37	7351.81	4420.79
15	1869.00	6525.92	5708.28	7701.10	5435.57	5697.71	8449.75	7228.88	6196.26	5485.03	6593.45	5491.86	7694.94	4633.14
16	1989.81	9679.72	8582.67	12633.71	7625.14	10376.85	15570.41	12973.13	10323.00	8814.35	8364.77	4561.74	12239.37	5768.56

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
17	0	939.59	10818.34	8071.27	5638.83	15064.98	3984.36	6592.30	5623.11	5235.91	9667.40	2254.18	5470.44	5849.49	2972.94	2758.82
18		0	8923.92	11073.59	9192.44	15997.43	5226.16	7263.75	8394.11	7373.49	8772.99	4726.14	8312.39	7868.24	2534.77	4100.72
19			0	12835.22	14555.35	8177.63	6660.78	5498.68	12486.55	9793.76	933.51	12193.52	13648.70	11141.69	5407.50	9399.59
20				0	2330.48	1413.92	2612.59	2505.06	1537.01	1672.74	10059.28	3626.43	1502.99	1587.98	6213.44	3992.98
21					0	1026.78	4140.49	1654.03	1396.72	2320.78	12550.75	1693.89	1909.82	4005.68	5999.34	3178.12
22						0	4127.65	3584.98	8601.34	1580.93	4812.42	11265.02	8480.48	4831.23	9691.15	9091.35
23							0	1359.74	3273.13	1163.75	4267.44	2618.08	3148.22	1604.49	3042.96	1908.08
24								0	3542.32	2431.46	2244.85	3995.67	3754.86	2219.49	4071.24	3543.15
25			.						0	1797.88	9165.50	1573.46	283.48	1761.28	4880.60	2591.55
26										0	7155.22	2418.17	1974.63	1536.02	4479.37	2748.16
27											0	9772.87	10814.70	7750.24	5652.36	7583.54
28												0	1572.01	2886.83	4229.73	1782.41
29													0	1235.20	5245.78	2410.08
30														0	5227.81	2098.16
31															0	2608.07
32																0

	33	34	35	36	37	38	39	40	31	42	43	44	45	46	47	48
17	1477.74	3670.02	3822.94	8017.00	3523.49	2438.96	6202.54	1486.87	1057.80	3409.53	4519.20	453.67	978.81	884.32	3237.26	3645.50
18	4069.92	5935.22	6061.64	9768.22	5920.49	3249.51	6132.68	2579.04	1960.42	5156.29	6918.74	1693.27	1789.24	1866.76	4488.43	4844.24
19	14687.46	10926.70	13585.15	13851.66	14160.40	7584.01	8946.67	8782.93	7853.07	11831.01	13076.11	11573.82	13246.70	12359.34	10253.93	14502.10
20	5411.43	1619.76	4415.34	8407.69	3893.33	4409.00	7931.62	4687.71	5204.90	2860.84	1963.27	6084.39	11368.79	6859.99	6103.93	5695.52
21	2292.89	2371.27	4229.65	4540.31	3738.62	5208.96	6465.97	4856.69	4454.78	3760.06	2713.12	3838.49	7765.00	5025.25	6352.11	6654.45
22	15376.19	6703.25	10361.79	18545.60	10754.02	1249.61	14517.43	8511.73	10011.37	8883.00	8460.37	14454.15	18867.06	13912.78	9093.97	10556.93
23	4473.00	1475.83	3142.24	9312.21	3046.33	1340.87	7081.18	1379.30	2139.62	2424.06	2697.27	3678.56	5758.09	3197.07	2151.27	3309.31
24	6971.43	2815.49	4950.79	8720.56	5066.79	2826.51	6757.86	3148.08	3707.21	3404.47	3657.56	6134.11	9372.43	6229.09	4379.87	6587.49
25	3041.14	1195.92	3074.37	5049.11	2992.87	3474.41	5627.07	3385.62	3199.60	1911.21	1142.81	4199.81.	9145.50	5685.53	5983.45	5827.39
26	4292.20	1626.77	3219.69	7870.48	3173.25	2655.54	7165.48	2577.21	2709.06	3055.13	2276.14	4316.55	6979.55	4389.65	3929.84	3655.68
27	12875.38	8069.33	10628.55	14120.57	11239.91	5533.72	9882.51	6485.72	6599.73	9332.37	10106.30	10635.46	12156.94	10570.97	7604.69	11596.37
28	793.71	1184.43	2071.63	5397.73	1852.70	2318.33	6207.29	1602.15	8026.29	1623.37	1580.22	1625.68	4192.09	2135.92	3622.49	4459.72
29	2980.19	917.01	2287.48	5754.52	2108.78	3412.52	6109.19	2980.05	3306.09	1375.09	641.18	4190.20	9017.13	5334.85	5607.13	5398.68
30	4966.00	839.59	2388.38	9306.97	2234.55	2186.67	7779.68	2215.34	3306.01	1208.44	834.35	5223.98	8982.03	5142.61	3328.73	3485.16
31	4370.63	3802.25	5721.55	6186.15	5536.17	2796.75	2304.06	2770.64	1798.56	4146.21	5254.99	2510.73	5386.20	3897.38	5027.48	5581.98
32	2567.30	1418.02	2506.21	6417.44	2173.82	1758.61	4886.22	1585.90	2047.85	1608.01	1988.57	2552.80	5030.34	2792.58	2408.88	3574.20

	49	50	51	52	53	54	55	56	57	58	59	60	61	62
17	1652.59	5488.82	4253.84	7283.80	4067.97	9616.22	9277.74	8887.77	2919.32	3716.12	2774.84	387.41	9222.34	2569.40
18	3175.78	7137.19	5008.78	8314.22	3363.98	9197.48	10096.13	9828.93	2625.47	5261.62	2932.23	970.72	8366.91	4656.60
19	13701.03	9229.98	9154.47	9369.12	9386.36	7213.87	13008.67	11194.50	10811.10	12538.18	11434.52	12474.37	3235.37	12413.01
20	6523.23	2865.46	3586.36	4118.58	2595.40	4820.76	5676.62	3829.14	9166.30	4689.79	6315.66	9282.72	1061.00	3235.87
21	6266.42	5092.56	6194.64	7873.20	4531.75	935.2.54	11054.53	8703.10	10343.86	5899.53	7378.22	6569.21	1624.29	3045.58
22	13418.45	4076.85	5398.75	3368.19	5180.35	4885.04	5239.43	3997.95	11469.14	8492.44	9985.86	16780.99	3069.33	9871.63
23	3526.14	1977.69	1532.01	1753.98	1076.92	4388.35	4050.09	3030.62	3870.35	2290.89	2947.93	4917.49	2867.18	2347.92
24	5867.84	2113.68	2834.37	2267.84	2136.92	3073.57	4714.57	2914.27	5409.40	4031.15	5534.16	7595.49	1793.81	4336.88
25	4969.93	3790.29	3894.20	5030.68	2626.97	4956.69	7003.61	5314.90	7960.45	4358.37	5825.43	6810.59	6473.84	2655.60
26	4980.04	2292.64	2766.24	3374.12	1866.32	5381.64	6078.68	4261.41	6840.52	3960.66	4280.41	6063.13	4660.76	2947.77
27	11347.87	6001.32	6624.85	6847.06	6503.35	6155.75	9194.85	7653.25	8428.13	9269.06	9387.57	11352.33	2172.94	9852.55
28	1806.83	3574.78	4017.64	5435.38	2670.56	7899.95	7669.92	6597.47	4778.22	2853.87	4401.71	2912.96	8013.18	1316.03
29	4468.41	3304.74	3347.58	4427.76	2127.98	5101.25	6210.33	4847.47	7208.53	3673.46	5466.39	6695.80	7065.50	2376.44
30	4357.47	1181.71	1446.03	1322.06	1576.12	3463.85	2702.90	1877.33	4929.58	1999.30	3606.26	6927.35	4340.05	2144.74
31	4918.55	4639.17	2994.06	6034.62	3437.38	4232.93	8558.17	7084.92	5122.75	5188.31	3375.42	3700.33	3993.93	4381.19
32	2591. 54	2206.71	2225.38	3265.63	1516.93	5430.02	5962.79	5154.82	4087.55	2033.45	2695.80	3681.68	5052.08	1694.80

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
33	0	2260.44	3076.91	5821.95	2627.74	3343.50	6366.68	2502.07	2128.64	2660.86	2910.21	804.62	3103.78	1598.46	4294.01	4571.33
34		0	2054.12	7576.46	1789.88	1418.45	6573.28	1449.35	2109.29	830.85	702.91	2893.50	6536.16	3217.38	2717.61	3025.26
35			0	7242.56	226.74	2810.63	7931.13	1895.35	2929.62	1572.76	1546.40	3608.70	5762.13	3433.08	3836.59	4541.74
36				0	7389.15	10011.67	2321.76	8497.79	7196.01	7218.44	6546.76	6368.28	11023.92	9353.34	12996.71	14370.68
37					0	2669.13	7655.81	1891.69	2976.28	1272.11	1321.41	3132.40	5329.14	2920.57	3422.38	3985.67
38						0	7620.45	718.94	1018.90	1584.57	2455.05	2670.99	4249.51	2472.27	1245.52	2404.38
39							0	6383.59	5108.13	6322.69	6584.22	4996.85	9666.91	7749.30	10742.86	10868.64
40								0	1674.58	1322.17	2052.79	1796.89	3196.66	1492.75	1824.72	2421.34
41									0	2148.94	2904.67	1198.11	2786.73	1655.41	2516.36	3045.16
42										0	423.97	2794.51	6188.43	3094.73	2814.78	3539.21
43											0	3650.72	7510.08	4101.74	3934.28	4067.25
44				.								0	1714.99	620.05	3719.28	3541.17
45													0	971.04	3857.38	4675.01
46														0	2290.53	2410.62
47															0	2297.76
48																0

	49	50	51	52	53	54	55	56	57	58	59	60	61	62
33	1773.13	5277.41	6063.70	7979.81	4062.84	10467.59	10125.18	9235.16	5490.48	3839.07	4513.83	1935.83	11060.90	1604.25
34	2491.75	1286.86	1660.48	2496.30	1714.03	4777.19	3937.21	3219.44	4193.27	1549.09	3030.86	4531.19	5368.00	1739.08
35	3524.44	3513.19	3631.15	4734.54	2491.79	7687.44	6608.85	6486.12	4919.33	3163.78	4710.38	4978.58	8483.72	2458.83
36	10815.79	11620.11	11208.54	14670.68	9458.46	10957.28	19165.93	15926.03	14840.91	12501.87	12941. 22	9588.91	12621.66	8949.64
37	2917.06	3315.84	3408.21	4654.85	2334.49	7727.27	6340.29	6102.97	4650.37	2733.04	4308.17	4538.22	. 8681.76	1833.45
38	2073.77	1713.41	1382.62	2266.39	1242.25	4575.09	3432.51	3387.35	1747.84	1424.92	1943.79	3079.92	3785.44	1230.57
39	9423.01	9198.14	7203.06	11173.86	6828.48	6219.15	14614.87	11845.93	10585.04	10097.26	8323.60	7452.51	805.66	8040.53
40	1691.73	2254.31	1608.77	3064.03	1267.82	5323.53	4439.55	4314.14	1852.01	1577.88	1954.14	2241.66	5427.52	1505.71
41	2143.85	3328.42	2236.50	4412.76	2128.59	5384.20	6257.57	5469.88	2876.80	2786.35	2311.75	1683.36	5431.07	2042.19
42	2214.45	2263.92	2087.75	3033.66	1185.10	4431.33	3806.96	3442.70	3174.81	1436.20	3270.55	4281.08	6196.89	1951.20
43	3440.53	2885.26	2712.40	3511.47	1318.18	5006.92	4834.84	3967.77	5095.35	2412.11	4326.93	5585.39	6888.02	1414.36
44	1567.79	5175.55	4081.85	7351.64	3737.27	8703.40	9196.12	8264.24	3820.25	3688.95	2826.38	679.32	1042.45	1981.55
45	2830.62	7854.55	6927.75	10144.51	6708.02	14995.78	12647.05	12271.16	4258.70	5815.96	4527.38	850.87	12453.47	4433.03
46	985.15	4363.78	3826.79	6282.21	3428.11	10011.88	8009.28	7554.48	2649.23	2707.46	2236.19	564.24	9456.68	1839.02
47	1830.16	1535.42	2282.51	2459.68	1862.50	1797.61	4102.67	4036.00	1986.29	1028.42	2464.19	3372.44	6119.93	1547.65
48	2882.55	3224.25	2009.38	3856.66	2299.23	1762.26	4227.45	4280.20	3266.72	2050.52	720.92	3401.59	7991.01	2280.72

	49	50	51	52	53	54	55	56	57	58	59	60	61	62
49	0	3504.70	3598.77	4895.89	2890.27	9241.25	5875.72	5780.41	1825.79	1294.41	2543.63	1395.65	9182.97	1051.01
50		0	1142.88	652.03	508.02	4656.19	2468.04	1773.94	3797.66	1166.57	3081.16	5165.77	3704.97	1944.57
51			0	1364.83	502.95	2972.37	2326.83	1908.68	2961.74	1551.00	1430.92	4882.39	3609.12	2283.63
52				0	999.05	3735.89	1154.68	821.86	3726.03	1641.16	3409.85	8008.29	2968.14	3456.34
53					0	3457.16	2421.60	1760.55	3019.55	1030.65	1983.44	4704.84	3833.44	1442.47
54						0	4180.94	2854.06	1208.32	4092.27	5935.77	10814.94	2174.89	6750.88
55							0	647.39	3859.24	2254.17	3999.30	9700.25	5217.18	4380.01
56								0	4683.46	2405.00	4012.43	9209.46	3759.36	4039.63
57									0	1723.35	2128.83	2778.57	4694.37	2896.79
58										0	1854.45	3879.36	6268.84	1015.43
59											0	2825.03	5199.70	2521.02
60												0	10366.74	2856.30
61													0	7145.04
62														0

1. Namarai
2. Sanna chentadali
3. Chingan
4. Tongat
5. Eraichivazhai
6. Elavazhai
7. Agniswar
8. Krishna vazhai
9. Virupakshi
10. Sirumalai
11. Vannan
12. Ney poovan
13. Adakka kumnan
14. Valiya kunnan
15. Padali moongil
16. Thaen kunnan
17. Kostha bontha
18. Venneettu mannan
19. Gal anamalu
20. Pedda pachcha
21. Basrai
22. Haricinal
23. Gros Michel
24. Sapumal ananalu
25. Wather
26. Hishgate
27. Red banana
28. Manoranjithm
29. Karim kadali
30. Malakali
31. Dudhsagar
32. Chara padaththi
33. China
34. Thiruvananthapuram
35. Mannan
36. Kullan
37. Pacha chingan
38. Chinali
39. Palay ankodan
40. Sugandhi
41. Rasthali
42. Nendra padaththi
43. Pacha nadan
44. Karpooravally
45. Chirapunchi
46. Pey kunnan
47. Ney vannan
48. Walha
49. Peyan
50. Alukehel
51. Pacha bontha bathees
52. Bluggoe
53. Muthia
54. Malai monthan
55. Kari bontha
56. Chetti
57. Kapok
58. Kallu monthan
59. Ashy batheesa
60. Jurmoney kunthali
61. Bodles Altafort
62. Hybrid Sawai

Table 23. Contribution of characters towards divergence

Character	Per cent contribution
Plant height (cm)	2.75
Plant girth (cm)	1.43
Leaves per plant	0
Leaf area per plant (m ${ }^{2}$)	0
Petiole length (cm)	7.93
Planting to flowering interval (days)	2.27
Flowering to harvest interval (days)	0.58
Bunch weight (kg)	0.42
Hand weight (g)	0.79
Number of hands	0.05
Number of fingers	0.11
Pedicel length (cm)	0.16
Finger length (cm)	0.37
Finger weight (g)	20.57
Finger volume (cc)	4.81
Pulp/peel ratio on volume basis	34.06
Pulp/peel ratio on weight basis	3.54
Tss (\%)	0
Total sugars (\%)	19.46
Non reducing sugars (\%)	0.37
Acidity (\%)	0
Sugar/acid ratio	0.32

9.1.3. Cluster formation

Using the D^{2} values, the 62 cultivars were grouped into 8 clusters as detailed below. Cluster I (19 cultivars)
'Pacha chingan'; 'Maman'; 'Nendra padaththi';
'Krishna vazhai'; 'Vaman'; 'Thiruvananthapuram';
'Manoranjithm'; 'Sugandhi'; 'Karim kadali'; 'Virupakshi'; 'Chingan'; 'Charapadaththi'; 'Malakali'; 'Pacha nadan'; 'China'; 'Chinali'; 'Agniswar'; 'Wather' and 'Sirumalai'. Cluster II (14 chativars)
'Kostha bontha'; 'Jumoney kunthali'; 'Karpoorav lly';
'Pey kunnan'; 'Venneettu mannan'; 'Chirapunchid; 'Rasthali';
'Payan'; 'Adakka kunnan'; 'Ney poovan'; 'Valiya kunran'; 'Dudh ${ }_{v}$ sagar'; 'Thaen kunnan' and 'Padali moonsil'.

Cluster III (13 cultivars)

'Muthia'; Pacha bontha bathees'; 'Alukehel';
'Bluggoe'; 'Kallu monthan'; 'Chetti'; 'Ney poovan';
'Walha'; 'Malai monthan'; 'Kari bontha'; 'Hybrid Sawai';
'Kapok' and 'Ashy batheesa'.
Cluster IV (3 cultivars)
'Palayankodan'; 'Kullan' and 'Sanna chenkadali'.
Gluster V (2 cultivars)
'Galanamalu' and 'Red banana'.

Gluster VI (7 cultivars)

'Boales Altafort'; 'Harichal'; 'Gros Michel';
'Sapumal anamalu'; 'Highgate'; 'Pedda pachcha' and 'Basrai'. Cluster VII (3 cultivars)

'Namarai'; 'Tongat' and 'Eraichivazhai'.
Cluster VIII (1 cultivar)
Elavazhai (Musa baluisiana)
9.1.4. Intra and intercluster D^{2} and D values

The intra and intercluster D^{2} values ano D values were calculated (Tables 24 and 25) which snowed that the intracluster D^{2} values were lesser than the intercluster D^{2} values of that cluster with other clusters. So the clusters can be considered to be more or less homoseneous within themselves and heterogeneous among thenselves. The maximum average intracluster distance was in cluster 5 (9303.51) and the minimum in cluster 4 (1610.18).

The maximum intercluster distance was between cluster 6 and cluster 8 (26177.03) and the minimuin between cluster 1 and 7 (3512.24).
9.2. Canonical analysis

The first two canonical roots λ_{1} and $\lambda 2$, and their relative contribution towards divergence are oiven

Table 24. Average intra and inter-cluster D^{2} values

Cluster No.	1	2	3	4	5	6	7	8	
1	2035.30	4761.77	3974.05	6848.26	11085.21	4821.27	3612.24	23167.36	
2		2521.72	5721.90	6389.94	9702.20	7623.05	5474.99	12557.59	
3			2568.10	11642.95	9439.56	4868.88	8986.31	22493.85	
4					1610.18	11242.57	9201.28	4264.41	22277.81
5						9303.51	6622.79	11603.43	23562,81
6							2324.95	6107.48	26177.03
7								2829.02	20527.95
8									0

Table 25. Average intra and inter-cluster distance (D values)

Cluster Ho.	1	2	3	4	5	6	7	8
1	45.11	69.01	63.04	82.75	105.29	69.44	60.11	152.21
2		50.22	75.64	79.94	98.50	87.31	73.99	112.06
3			50.68	105.56	97.16	69.78	94.80	149.98
4								

in Table 26. The first principal component contribute to 78.41 per cent of the total variability. The first two components together contributed to 99.82 per cent of the total variability.

The eigen vectors for the 22 characters are given in Table 27. The highest numerical value was recorded by the pulp/peel ratio on volume basis folloved by weight of finger and total sugars.

The values of the eigen vectors corresponding to the mean v. ues of the characters (z_{1} and z_{2}) were worked out for different cultivars and are given in Table 28. A scatter diagram showing the position of the 62 cultivars of banana on the basis of the mean values of the canonical variates (Z_{1} and Z_{2}) is ahown in Fig.3. The 62 cultivars were grouped into eight clusters which were similar to those formed by the D^{2} analyais.

Table 26. Canomical roots and their contribution towards divergence

| Canonical root | λ_{1} | λ_{2} | Others |
| :--- | :---: | :---: | :---: | :---: |

Table 27 Eigen vectors for 22 characters of banana

Character	Vector I	Vector II
Plant height (cm)	0.0251	-0.0138
Plant girth (cm)	-0.0132	-0.0015
Leaves per plant	-0.0014	0.0132
Leaf area per plant (m^{2})	-0.0026	-0.0014
Petiole length (cm)	-0.0628	0.0528
Planting to flowering interval (days)	-0.0218	-0.0114
Flowering to harvest interval (days)	-0.0052	0.0132
Bunch weight (kg)	-0.0019	-0.0044
Hand weight (g).	0.0132	0.0124
Number of hands	-0.0007	0.0014
Mumber of fingers	-0.0012	-0.0013
Pedicel length (cm)	0.0046	-0.0041
Finger length (cm)	0.0037	0.0035
Finger weight (g $)$	0.0778	-0.0614
Finger volume (cc)	0.0495	-0.0394
Pulp/peel ratio on volume basis	-0.2252	0.2138
Pulp/peel ratio on weight basis	-0.0364	-0.0148
TSS (\$)	0.0048	-0.0018
Total sugars (\%)	0.0769	0.0789
Non reducing sugars (\%)	0.0035	0.0031
Acidity (\%)	0.0015	0.0014
Sugar/acid ratio	-0.0028	-0.0026

Table 28. z_{1} and z_{2} values for 62 cultivars* of banana

Sl.No.	z_{1}	Z_{2}	S2. No.	2	z_{2}
1	-28.21	26.18	32	-14.02	13.12
2	30.51	29.18	33	- 9.18	14.28
3	- 9.96	11.11	34	-13.44	10.32
4	-26.22	26.00	35	-14.38	13.21
5	-30.02	29.48	36	33.35	32.48
6	39.92	39.18	37	-14.62	13.41
7	- 7.51	14.20	38	-14.00	13.96
8	-12.91	11.50	39	-31.18	31.49
9	-14.06	12.01	40	-14,56	12.12
10	-14.48	12.50	41	19.58	19.78
11	-11.45	9.80	42	-13.10	12.57
12	22.51	20.58	43	-14.21	9.50
13	22.31	20.51	44	22.26	21.15
14	22.52	21.26	45	19.48	20.10
15	23.02	22.08	46	18.79	19.81
16	22.58	21.28	47	- 5.65	5.38
17	21.20	19.50	48	- 3.18	3.54
18	22.19	20.18	49	18.80	19.10
19	-30.19	29.18	50	- 4.75	5.23
20	-14.50	-14.00	51	- 5.56	-4.16
21	-15.58	-14.56	52	- 2.72	1.35
22	-16.18	-15.54	53	-8.17	5.16
23	-15.59	-14.38	54	- 5.73	-5.63
24	-15.61	-14.96	55	- 4.79	-5.31
25	- 9.50	10.30	56	- 0.57	-3.68
26	-15.04	-14.94	57	3.18	-2.20
29	-31.10	-30.08	58	- 6.03	5.82
28	-10.18	10.52	59	- 5.00	2.50
29	-13.39	13.26	60	18.24	17.80
30	- 7.18	15.00	61	-17.50	-17.50
31	20.12	19.88	62	- 8.18	7.00

Fig.3. Scatter diafjram showing the positions of 62 cultivars of banana on the basis of the mean values of the canonical variates (Z_{1} and Z_{2}).

Discustion

DISCUSSION

Based on morphological description, chromosome number and taxonomic scoring, 64 cultivars were icientified, eliminating synonyms. The quantitative, quality and pollen characters were recorded and analysed statistically to estimate the extent of variation as influenced by polyploidy and the genomic constitution. Linear grovth curves were fitted for cultivars and different genomic groups. Rate of growth was deterimined considering characters plant height, plant girth, leaf number, leaf area jer plant and petiole length. The coefilicients of variation, heritability (in broad sense), genetic advance and genetic gain were estimated for the observed characters. The genetic diversity among the cultivars were estimated using Mahalanobis D^{2} statistic and the cultivars were grouped into 8 clusters. The groups formed by the D^{2} analysis were further confirmed by canonical analysis. The contribution of various characters towards divergence was also estimated.

1. Variation in quantitative, quality and pollen characters

Studies on the quantitative, quality and pollen characters of 62 cultivars of banana revealed wide and significant variation among ther. The ploidy level and the genomic constitution of cultivars were found to influence the characters at varying degrees.

The morphological characters - plant height, plant girth, leaves per plant, total leaf area per plant and petiole length were influenced more by the genomic constitution than by the ploidy level. The presence of 'B' genome in the constitution of the cultivar increased the magnitude of these characters. Musa balbisiana recorded maximum values and Musa acuminata (AN/AAA), the minimum for the above morphological characters. Within the triploids the maximum values were recorded by the genomic group ABB. Within each ploidy level, except tetraploids, plant height, plant girth, leaf area per plant and petiole length increased with the increase in 'B' genome in the genoinic constitution. Within tetraploids, 'Bodles Altafort' (AAAA) recorded higher values than 'Hybrid Sawai' (ABBB), for plant height, leaf area per plant and petiole length. 'Hybrid Sawai' is a synthetic tetraploid banana intermediate in characteristics between the parents 'Ney vannan' (AB3) and Musa balbisiana (BB) (Raman et-al., 1970). Its behaviour could not be taken as that of a typical tetraploid of ABBB group.

When the rates of growth for plant height, plant girth, leaves per plant, leaf area per plant and petiole length were compared, it was found that the triploids had higher growth rates than the diploids and the tetraploids. The presence of '3' genome in the cultivars of hybrid
origin, increased the growth rates. Similar results were reported by Nambisan and Rao (1980a).

The duration from planting to flower and flowering to harvest was the maximum in Musa balbisiana. The influence of ' 3 ' genome to increase the crop duration was not evident in genomic groups of $A A B$ to $A B B B$. The data indicated that the duration is not basically controlled by the genome constitution and polyploidy in banana. Summerville (1944) opined that the environmental factors may influence the duration to a greater or lesser degree than the other factors.

The triploids recorded higher values than the diploids for bunch weight and hand weight. This holds good within Musa acuminata groups and in groups of hybrid origin. This is evident from the prevalence of the aoove characters in commercial triploid cultivars since human selection might have preferred these characters of the triploids. An enhancement of the commercial attributes over the diploids was reported in the triploids and the tetraploids (Simionds, 1966; De Langhe, 1969). Simonds (1976) reported that the breeding of the triploids was all the more important in the hybridization of banana. Among the triploids, triploids of hybrid origin ($A B B$ and $A A B$) were found better than pure Musa acuminata triploids (AAA) for bunch characters suggesting that a comisination of 'A' and 'B' genomes contribute to bunch characters.

In finger characters, the triploids and the tetraploids recorded higher values than the diploids conforming to the earlier reports (Simmonds, 1966 and De Langhe, 1969). Triploids are more vigorous than diploids and hence their fruits grow larger than the diploids (Simands, 1976). There was an increase in the comercial characters of the finger in pure Musa gcuminata groups (AAA and AAAA) over Musa balbisiana (B3) and the groups of hybrid origin ($A B, A A B, A B B$ and $A B B B$).

The Musa acuminata groups (AA, AAA and AAAA) recorded lower values for pedicel length compared to other groups. When the Musa gcuminata genome was substituted by the Musa baibisiana genome in cultivars of hybrid origin tiere was a corresponding increase in pedicel length. The short pedicel is a characteristic feature of Masa acuminata (Simmonds and Shepherd, 1955). The quantitative expression of this character in genomic groups substantiates its selection as a character in the taxonomic scoring method. It may also be noted that in pure Mosa acurainata groups, the pedicel length decreased with the increase in 'A' genome upto triploidy.

The quality characters were influenced nore by the genomic constitution than by the ploidy level. The genoaic groups of hybric origin ($A B, A A B, A B B$ and $A B B B$) had higher content of total sugars, reducing sugars, non reducing sugars, and acidity then the Musa acuminata groups (AA,

AAA and AAAA). The group AAA had the highest value for sugar acid ratio. Though the hybrid cultivars, especially of the genomic group ABB, has a higher sugar content, the disappearance of acidity at ripening proceeds at a lower rate and they have a lower sugar/acid ratio which contributes to their inferior fruit quality (Simonds, 1966). The studies substantiated the need for inclusion of 'B' genome in the banana hybridization programe which enhances plant vigour and improves the bunch characters and fruit quality.

The studies o. pollen size, viability and production point out the possibility of utilising the knowledse in banana classification. Significant variations were observed in pollen characters among the cultivars, oifferent ploidy levels and genomic groups. Out of the 62 cultivars studied, 22 were male sterile. 171 the cultivars of the senomic group $A B$ did not produce viable pollen grains.

Cultivars 'Pacha chingan', 'Mannan', 'Malakali', 'Pacha nadan', 'Nendra padaththi', 'Chara padaththi' and 'Kullan' belonging to the genomic group AAB, 'Walna', 'Ashy batheesa' and 'Jurmoney kunthali' belonging to the genomic group ABB did not produce viable pollen grairs. The non polleniferous cultivars belonged to two groups, one having well developed an ther lobes and the other with black thread like anther labes. The non polleniferous character of some of the cultivars of $A B$ group like
'Adakka kunnan', 'Krishna vazhai' and 'Sirumalai' were reported by Alexander (1976).

The cultivars 'Virupakshi' and 'Krishna vazhai' which were found to be non polleniferous were reported to produce pollen grains in the hills (Sathiamoorthy and Rao, 1980). 'Virupakshi' and 'Krishna vazhai' ar bud sports of 'Vannan', a non pollen producing cultivar and their cultivation in the plains is reported to revert them to 'Vannan' (Jacoì, 1952).

In the present study it was also ooserved that the cultivars belonging to the ABB group, 'Jurmoney kuntinali', 'Walha' and 'Ashy batheesa' did not produce pollen. In 'Jurmoney kunthali' the anther lobes were black and thread like. 'Walha' and 'Ashy batheesa' produced a very few number of male flowers with one or two well developed stamens which also did not contain any pollen grains.

The pollen size increased with ploidy level, the diploids having the sinallest and the polyploids the largest. Within the diploids the genomic group AA had larger pollen than BB. Within the triploids and the tetraploids the pollen size liscreased with increase in the level of 'A' genome. In the case of triploids, the genomic group AM had larger sized pollen grains than $A A B$ or $A B B$, and in tetraploids 'AAA' had larger pollen grains than ABBB. It was demonstrated that in autopolyploid series cell volume
varied directly with the increase in the chromosome number (Jorgersen, 1928; Muntzing, 1928, Lindstrom and Humphery,1933). The genomic constitution and the level of ploidy seemed to exert a combined influence on pollen size which, therefore, appears to be a useful character to determine the ploidy and the contribution of Musa acuminata or Musa balbisiana genome to the constitution of a cultivar.

Pollen viability was the highest in the tetraploids followed by the diploids and the triploids. In cultivars of hybrid origin, it was lesser than in pure Musa acuminata or Musa balbisiana (BB) cultivars. Meiotic abnormalities in hybrid cultivars result in the production of more of sterile pollen (Simionds, 1962). The variations in polien stainability in cultivars are mainly attributed to genetic causes which operate to bring about either a degradation of pollen mother cells or the microspores at different stages of development. Chromosomal irregularities also contribute to the sterility met with, but relativelythey seem to be of lesser importance.

Pollen production was the highest in the tetraploids followed by the aiploids and the triploids. Ainong the diploids, the genomic group BB, among the triploids the group ABB anc within the tetraploids the group ABBB produced the largest number of pollen grains per anther. The higner
pollen productivity of the genomic groups $B 3$ and ABBB were earlier observed by Sathiamoorthy and Rao (1980). Though the pollen productivity was higher in the triploid genomic group ABB, the viability was the least in this group.

The lower pollen productivity of the triploids, compared to the diploids and the tetraploids is due to meiotic abnorinalities (Dodas, 1943; Simmonds, 1962). In banana, parthenocarpy and sterility arose as gene mutations in edible fertile diploids and the resultant types were taken into cultivation. Man selected and propagated those producing the fewest seeds and in the course of time parthenocarpy was completely established and vegetative propagation became obligatory (Dodos, 194). At the same tiae the structural changes in the somatic chromosomes occurred and they were maintained. Nearly complete male sterility was adied to meiotic anomalies, which were also controlled by morphological and physiolozical factors (Dodds, 1943; Simmonds, 1962; De Langhe, 1969).

There are reports that in the male flowers of edible banana types a few or no pollen grains are foriaed (Siminonds, 1966; De Langhe, 1969). In banana breeding, wild diploid clones and a few edible diploids are used as male parents. The use of wild parents in banana breeding programe in early years produced a few undesirable results, like horizontal bunches and seed fertility of the
progenies which they inherited from the wild male parent (Simmonds, 1966). In recent years several cultivated diploids and triploids have also been utilised as male parents (Sathiamoorthy and Rao, 1980, Anon, 1982). The utility of these cultivars depends on the viability and quantity of pollen produced. In the present investigation many cultivars belonging to the genomic groups AA, AMA, $A A B, A B B, A A A A$ and $A B B B$ were found to produce viable pollen grains indicating their potentiality as male parents. Many cultivers of the AAA group like 'Basrai' could not be used in the hybridization programme as female parent due to high female sterility (Simmonds, 1962, 1966).

The present study pointed out the possibility of inclusion of the highly desirable Cavendish gene in the banana breeding programme as male parent. The other desirable polleniferus cultivars can also be used as male parents eventhough they are female sterile.
2. Coefficients of variation, heritability, genetic advance and genetic gain for morphological characters

More than the observed variation, a knowledge on the extent and nature of the genetic variability is all the more important for the improvement of any crop. The values estimated for phenotypic and genotypic coefficients of variation for 26 characters were high suggesting the
high degree of variability in the cultivars which can be exploited for crop inprovement programme.

Accoriing to Gundhi et.al. (1964) the magnitude of the genotypic coefficient of variation alone will not help the breeder to determine the amount of variation that is heritable. Heritability estimates will give an incex of that portion of the variation tr namissible to the progeny. Accoraing to Burton (1952) the genotypic coefficient of variation together with the heritability estinates woula give a true picture of the anount of progress to be expected by selection. Characters like petiole length, pulp/peel ratio on volume basis, weight and volume of fruit showed very high heritability coupled with high genotypic coefiicients of variation. These characters can be improved by selection since high heritability indicates the effectiveness with which selection of genotypes can be based on phenotypic performance (Johnson et. al. . 1955). The maximum genetic advance was obtained for petiole length, followed by pulp/ peel ratio on volume basis and finger weight.

The present study revealed that the cultivars 'Sanna chenkadali' (4.41), 'Galanamalu' (3.80), 'Palayankodan' (3.98), 'Kullan' (3.98) have higher pulp/peel ratio than the other cultivars. The cultivars belonging to the adA group like 'Red banana' (195.60 g), 'Galanamalu' (193.50 g), 'Harichal' (188.02 g) were superior to other cultivars with
regards to the weight of fruit. Regarding the volune of fruit cultivars 'Malai monthan' (206.80 cc), 'Pacha bontha bathees' (205.50 cc), 'Harichal (184.00 cc) and 'Chetti' (162.50°), were superior to other cultivars. 'Rasthali' (132.00 cc), 'Red banana' (131.00 cc) and 'Galananalu' (120.50 cc) also recorded hisher values in volume of finger. Musa balbisiana ($51.24 \mathrm{~m}^{2}$) and cultivars of ABB group viz., 'Chirapunchi' ($46.84 \mathrm{~m}^{2}$) and 'Jurmoney kunthali' ($39.24 \mathrm{~m}^{2}$) recorded higher values in leaf area per plant than other cultivars. These cultivars were also superior in bunch weight, hand weight, number of fingers, length of finger except 'Kullan!. Cultivars 'Red banana', 'Galanamalu', 'Harichal' and 'Rasthali' are superior quality bananas and their role in the banana hybridization programue had been emphasised by earlier workers (Jacob, 1952) Nayıx 1962). 'Mala1 monthan', 'Pacha bontha bathees' and 'Chetti' are excellent culinary bananas and would prove useful in banana breeding programe as suggested earlier by Naimer (1962) and Ramen (1976).
3. Taxonomic scoring and chromosome studies

The taxonoaic scoring method suggested by Simmonds and Shepherd (1955) is widely accepted as a useful tool to identify the genomic status of banana cultivars. This system was found to be inappropriate in a few of the South Indian cultivars like 'Eroichivazhai' (AA), 'Sanna chenkadali' (AA),
'Agniswar' ($A B$), 'Krishna Vazhai' ($A B$), 'Vanıan ($A B$), 'Virupakshi' ($A B$), 'Sirumalai' ($A B$), 'Kostha bontha' (AB) and 'Venneettu mannani (AB), 'Karpooravally' (AB3), 'Chirapunchi' (ABB) and 'Pey kunnan' (ABB). The genomic formulae suggested by Simmonds (1966) to the cultivars 'Adakka kunnan' (AB), 'Thaen kunnan' (AB) and 'Padali moonsil' (AB) were also found to be inappropriate.

The cultivars 'Eraichivaziai' anc 'Sanna chenkadali' scored 26 and 28 respectively which were in the r ange of AAB cultivar. These cultivars had high length/breadth ratio of bracts unlike a cultivar belonging to the AA group. The outside bract colour was brownish purple. Both these characters are characteristics of Musa balbisiana. For all the other characters they resembled Musa acuminata. Raman et.21. (1968, 1970) showed an introgression of the gene complex of Musa baloisiana in South Indian varieties. The metroglyph analysis showed that cultivars at present considered to have AA genome showed a wide dispersion over the diagram and exhibited expression of characteristics of those intermediate between Musa acuminata and Musa balbisiana. Tinis feature is considered as a factor which has favoured their success both under the dry and humid conditions and also tineir sueceptioility, to diseases. The general observations in the cultivar 'Sanna chenkadali' are that it is comparatively free from diseases, especially the bunchy top disease, and tolerant to drought compared to the other cultivars belonging to the MA group.

Cultivars 'Krishna vazhai', 'Vannan', 'Virupakshi' 'Sirumalai' and 'Agniswar' were diploids and belonged to the $A B$ group, though the genomic formulae suggested by Simmonds (1966) to 'Krishna vazhai', 'Vannan', 'Virupakshi' and 'Sirumalai' were AAB. Raman et.an. (1970) reported that cultivars 'Sirumalai' and 'Vanrian' were diploids and exhioited expression of characters of those intermediate between Musa acumprita and Musa balbisiona and nature of pairing of the chromosomes also indicated their hybrio nature.

The cultivars grouped under 'kunnan' by Jacoi (1952) viz., 'Aakka kunnan', 'Valiya kunnan' and 'Thaen kunnan' were found to be diploids confirming the earlier reports (Jacob, 1966 and Ranan et.al., 1970). Simmonds (1966) included theif uncer three aifferent genomic groups namely, AB (Kunnan), AAB (Adakka kunnan) and ABB (Thaen kunrian). The cultivar 'Padali moongil' belonging to the 'Kuman' group was found to be an allodiploid (AB) though simmonds (1966) had included it under the AAB group.

The cultivars 'Kostha Dontha' and 'Venneettu mannan' had a high expression of Musa balbisiona characters and high score. They were grouped to the genonic group 'AB.s' by Sinaionds (1966). Counting of the somatic chromosomes revealed the dipluid nature of these cultivars and they were grouped under the genomic group 'AB' in the present study. The orientation of the bunch would help in the identification
of the ploidy level of these cultivars. All the cultivars belonging to the $A B$ group had bunches oriented at an angle $60^{\circ}-90^{\circ}$ to the pseudostem, while in all the triploid cultivars the bunches were oriented at less than 30° to the pseudostem. These cultivars did not produce viable pollen grains. It nay be noted that the morpholozical criteria used by Jacob (1952) are indicetive of the high ploidy level of these cultivars since he included these cultivars under the 'Kunnan' group.

The cultivars 'Karpooravally', 'Cairapunchi' and 'Pey kunnan' had lower scores (56) than the typical ABB cultivars. These three cultivars were found to be triploids and considering the predominance of Musa balbisiana characteristics in the morphology of the plants, they were iven the genomic formula ABB. 'Karpooravally' and 'Pey kunnan' are female fertile and the fruits contain a number of black seeds. In fruit shape and quality, they, especially 'Karpooravally' reseabled 'Palayankodan' anci could be used as dessert banana. Jacob (1952) included 'Pey kunnan' under the 'Kunnan' group and Simmonds (1966), under the genomic group ABB. These cultivars were grouped into the second cluster which also included the other cultivars of the 'Kunnan' group of Jacob (1952).

The studies on morphological characters, taxonomic scoring and chromosome numbers of South Indian cultivars
revealed that the cultivars within each genomic group were highly variable. The cultivar 'Sanna chenkadali' which was supposed to have AA genome only, had cinaracters of Musa balbisiana. Liploid clones occurred more frequently than those suggested by Siminonds (1966). Cultivars 'Krisnna Vazhai', 'Vannan', 'Virupakshi', 'Sirumalai', 'Agniswar', 'Padali moong11', 'Kostha bontha' and 'Venneettu mannan' were added to the $A B$ group in the present stuoy. In genomic groups $A A B$ and $A B B$, cultivars exnibited expression of characters of Musa acuminata and Musa balbisiana to varying degrees. The genomic groups $A B, A A B$ and $A B B$ are wore common in the cultivated bananas of India. These variations in Indian bananas are possible bacause of their centre of origin i:: India (Simmonds, 1966).

Cheesman (1948a) reported that the number of cultivars showing characters of Musa acuminata and Musa balbisiana are relatively small. The group representing the cultivars of hybrid origin was classified as Musa x sapientum and was the largest sroup. Examining the grouping with regard to the Indian cultivars, it nas to be aentioned that the cultivars representing hybrid origin is of the largest group and tinat cultivars like 'Gros Michel', which have all the characters of Nusa acuminata are rather rare. Wide variability was reported in the Musa baloisiana of South India and this variability in the 'B' genome may be responsible for introducing wide variation even in

South Indian cultivars of hybrid origin involving ' B ' genome (Raman et.al., 1968). In cultivars, especialiy of South Indian origin the genomic formulae assigned by Simmonds (1966) are inappropriate and not useful in some of the cultivars as stated in Table 29.
4. Estimation of genetic divergence

Information on genetic divergence is of great importance in many of the crop improvement programmes. The cultivars on the whole when considered on the basis of 22 selected characters simultaneously were significantiy different. The estimates on relative contribution of each character towards divergence showed that pulp/peel ratio contributed maximum (34.06%) towards divergence followed by fruit weight (20.57%) and total sugars (19.46%). All the 22 characters showed high heritability values and hence could be utilised for selection with advantage.

Using D^{2} values eight clusters were formed. The intercluster distance was greater than the intracluster distance showing that the clusters are more or less homogeneous within themselves and heterogeneous anong themselves. The canonical analysis of the data confirmed the groups formed by D^{2} analysis. The cultivars 'Pacha chingan' and 'Mannan' with the minimum genetic distance belonged to the same genomic group AAB while 'Elavazhai' and 'Harical' with the maximum genetic distance

Table 29. Modifications in the genomic groups suggested by Simmonds (1966).

Cultivar	Genomic group suggested by Simmonds (1966)	Genomic group suggested in the present stucies
Krishnavazhai	$A A B$	$A B$
Vannan	$A A B$	$A B$
Virupakshi	$A A B$	$A B$
Sirumalai	$A A B$	$A B$
Agniswar	$A A B$	$A B$
Padali moongil	$A B B$	$A B$
Kostha bontha	$A B B$	$A B$

belonged to the genomic groups $B B$ and AAA resp ctively.

The first cluster included 19 cultivars belonging to the genomic groups $A A B, A B, A A$ and AAA. Some of the clusters contained diploids and triploids. Cultivars 'Pacha chingan', 'Mannan', 'Nendra padatitini', 'Chara padathi', 'Malakali' and cultivars 'Krishna vazhai', 'Vannan', 'Virupakshi' and 'Agniswar' though belonged to genomic groups $A A B$ and $A B$ had morphological characters of sinilar magnitude. In taxonomic scoring also they had more or less similar scores. None of these cultivars produced pollen grains. The inclusion of cultivars belonging to AA and AAA group may be because of the reason given by Raman et.al. (1970) viz., in cultivars belonging to Musa acuminata groups, there is introgression of the Musa balbisiana genome. Similarly cultivars belongin's to $A A B$ group showing varying degrees of expression of the Musa balbisiana characteristics are also included in the group.

The second cluster included 14 cultivars belonging to $A B, A A B$ and $A B B$ groups. It included diploids of the genomic group AB,'Adakka kunnan', 'Valiya kuman', 'Ney poovan', 'Kốtha bontha' and 'Venneettu mannan', along with 'Karpooravally', 'Chirapunchi' and 'Pey kunnan' which scored almost similar to $A B$ cultivars but belonged to cifferent genomic groups because of the difference in ploidy level.

The third cluster included 13 cultivars all of which were typical ABB cultivars but for 'Hybrid Sawai' which though belonged to $A B B B$ group was a hybrid tetraploid intermeoiate in characteristics between the parents 'ivey vannan' (ABB) and Musa balbisiana (Bi3) (Kaman, 1976).

The fourth cluster included 3 cultivars 'Palayankodan' and 'Kullen' belonging to the $A A B$ group and 'Sanna chenkadali' (AA). 'Sanna chenkadali' though belonsed to the AA group was found to exhibit some of the characters of Musa belbisiana and had a hith score (28), typical of AAB cultivar.

The fifth eluster included two cultivars only, 'Galanamalu' (AAA) and 'Red banana' (AAA), the former being a bud sport of the latter. The sixth ciuster contained cultivars all belonging to Musa acuminata groups (AAMA and AAA). It is noteworthy that this group included none of the Indian cultivars of Musa acuminata group. The seventh cluster had three cultivars - 'Namarai', 'Tongat' anà 'Eravichivazhai' all belonging to the AA group. The eighth cluster included only one - 'Elavazhai' (Musa balbisiana-BB).

Of the eight clusters formed, Cluster III and VI included cultivers which had a predominance of the characters of Musa balbisiana and cultivars which had a predominance of the characters of Musa acuminata, respectively. Cluster No.VIII included only Musa balbisiana (BB) and cluster V included 'Galanamalu' and 'Red banana' which
belonged to the genomic group AAA. In the case of clusters which included cultivars belonging to genomic groups $A A B, A B$ and $A B B$ there was no uniformity in distalbution. This may be because these clusters included mainly cultivars of Indian origin which included cultivars showing different degrees of expression of the characters of Musa acuminata and Musa balbisiana. In the case of these cultivars, simonds and Shepherds (1955) taxonomic scoring system seems to be inappropriate since the cultivars included within a genomic group are highly variable and genetically divergent.

The present studies on cytological and morpholosical aspects of banana cultivars revealed that the cultivars could be grouped into 3 groups, viz., cultivars showing predominant characters of Musa acuminata cultivars representing a mixture of characteristics of Musa acuininata and Musa balbisiana and cultivars showing predominant characters of Musa balbisiana. The second group is the largest group and the cultivars included are highly variable genetically.

The present study also indicated the possibility of improving the banana cultivars by selection to meet
the location specific requirements. The results also indicated that several desirsble cultivars had viable pollen which could be utilised for the hybridization programiae. The classification based on genetic divergence suggested the groups from which the parents could be conveniently selected for exploiting the wide variability to improve the crop.

Summary

sUMMARY

Cytotaxonomical studies on 100 cultivars of banana were conducted at the College of Horticulture, Kerala Agricultural University, Vellanikkara during 1981-83. Based on the morphological characters, taxonomic scoring and chromosome numbers, fynonymous cultivars were identified. Out of the 100 , there were only 64 distinct cultivars.

The cultivars were assioned to eight genomic groups on the basis of taxonomic scoring and ploidy level. The cultivars 'Agniswar' included under the genomic group AAA, 'Krishna vazhai', 'Vannan', 'Virupakshi', 'Sirunalai' and 'Padali moongil' under the genomic group AA3 and 'Kostha bontha' and 'Venneettu mannan' under the genomic group ABB, by Simonds (1966) were identified to de diploids of the genomic constitution 'AB'.

Studies on the quantitative, quality and pollen characters of 62 cultivars of banana revealed a significant variation among them. The genomic constitution and the ploidy of the cultivars influenced the characters.

The growth parameters like plant height, plant girth, leaves per plant, leaf area per plant and petiole
length were influenced by the genomic constitution of the cultivars. The presence of 'B' genome in the genomic constitution increased the magnitude of these characters. In all the characters, the highest values were recorded by Musa balbisiana (BB) followed by the genomic group ABB and the lowest by Musa acuminata groups.

Musa balbisiana took the longest duration from planting to flower (433 days) and from flowering to harvest (128 days). The planting to flower interval was the shortest in the genomic group ABB (192 days) while the flowering to harvest interval was the shortest in the group an (88 days).

The triploids recorded higher values than the diploids for bunch characters, bunch weight, hand weisht, nuaber of hands and fingers. Within the diploids the genomic group $A B$ and within the triploids the genomic groups ABB and AAB recorded higher values than Musa acuminata groups (AA and AAA) and Musa balbisiana (BB).

Musa balbisiana (BB) and genomic groups $A B B$ and ABBB had longer pedicels than Musa acuminata groups (AA, $A A A$ and $A A A A)$. The genomic groups $A B$ and $A B B$ were intermediate for pedicel length between these two above groups.

The triploids and the tetraploid genomic group ANAA recorded significantly higher values than the diploids
for finger characters-length, girth, volume, weight, percentage of pulp weight and pulp/peel ratio. The Musa acuminata groups, AAA and AAAA recorded higher values than Musa balbisiana (BB), ABB and ABBB groups.

The quality characters - total soluble solids, sugars, acids and sugar/acid ratio were more influenced by the genomic constitution of the cultivars than the ploidy level. The genomic groups of hybria origin recorded higher values for these characters except for the sugar/acid ratio of fruits, than the Musa acuminata and Musa balbisiana groups. The genomic group AAA had the highest value (59.64) for sugar/acid ratio.

The studies on pollen viability, size and production revealed the possibility of utilising the cultivars in banana hybridization programe as male parents. None of the cultivars belonging to the genomic group $A B$ produced pollen grains. Also cultivars-'Pacha chingan', 'Mannan', 'Malakali', 'Pacha nadan', 'Nendra padaththi', 'Chara padaththi', and 'Kullan' belonging to the genomic group $A A B$; and 'Walha', 'Ashy batheesa' and 'Juriaoney kunthali' of the genomic group $43 B$, did not produce pollen.

Pollen viaoility was the hignest in Musa balbisiana (93.10%), followed by the tetraploids (75.75%). In genomic groups of hybrid origin pollen viability was lesser than in Musa acuminata or Musa balbisiana groups.

Pollen production was the highest in Musa baloisiana (17133.33) followed by the tetraploids (11981.67). Within the triploids, the genomic group ABB (5612.14) and within the tetraploid the genomic group ABBB (12416.67) procuced larger number of pollen than the other groups.

The growth pattern of banana cultivars from planting to flower was linear. The rates of growth with respect to plant heizht, plant girth, leaves per plant and leaf area per plant were influenced by the ploidy level and the genomic constitution of the cultivars. The triploids were more vigorous than the diploids and the tetraploids as evidenced fron their higher rates of growth. The genomic groups of hybrid origin recorded higher growth rates than Musa acurinata or Musa balbisiana groups.

The genotypic and phenotypic coefficients of variation, heritability in broad sense, genetic acivance and genetic gain were estimated for the ooserved 26 characters. The characters, petiole lensth (0.9995) pulp/peel ratio on volume basis (0.9983), finger weight (0.9960) and finger volume (0.9932) showed higher heritability values comoined with higher genotypic coefficients of variation. The characters, fruit weight (86.21), fruit volume (85.51), pulp/peel ratio on volume basis (77.56) and leaf area per plant (64.64) recorded higher values for genetic gain than the other characters.

The genetic divergence among the cultivars estimated by the Mahalanobis D^{2} analysis revealed that the minimum distance (226.74) was between the cultivars 'Pacha chingan' ($A A B$) and 'Mannan' ($A A B$) and the maximum (38402.74) between Harichal (AAA) and Musa balbisiana (BB).

The relative contribution of each character towards divergence was calculated which showed that the pulp/peel ratio on volume basis contributed the maximum towards divergence (34.06%) followed by fruit weight (20.57\%) and total sugars (19.46\%).

Using the D^{2} values eight more or less homogeneous clusters were formed. The intracluster distance was lesser than the intercluster distance, showing that the clusters were homogeneous within themselves and heterogeneous between themselves. The first cluster included 19 cultivars, the second cluster 14 cultivars, the third cluster 13 cultivars, the fourth cluster 3 cultivars, the fifth cluster 2 cultivars, the sixth cluster 7 cultivars and the seventh, 3 cultivars. The eighth cluster included only one, Musa balbisiana. The clusters formed were differing from the genomic groups.

Eight clusters similar to those formed by the D^{2} analysis were formed by the canonical analysis of the data. The eigen vectors were calculated for the characters.

The highest numerical values was recorded by pulp/peel ratio on volume basis ($-0.2353,0.2138$) followed by finger weight ($0.0789,-0.0614$) and total sugars (0.0769 , 0.0789).

The present study clearly indicated the possibility of improving the banana cultivars by selection. The results also indicated that several cultivars like "Basrai', 'Rasthali', 'Red banana' and 'Palayankodan' had viable pollen. The clustering based on genetic divergence suggested the groups from which parents could be conveniently selected for exploiting the wide variability for improving the crop.

References

REFERENCES

Anonymous, 1982. Report for evaluation committee, Faculty of Horticulture. pp.5-7. Tamil Nadu agric. Univ., Coimbatore. India.

Agharkar, S.P. and Bhaduri, P.N. 1935. Variation of chromosome number in Musaceae. Cur. Sci. 3: 615-617.

Alexander, M.P. 1976. Mega and microgametophyte fertility of some banana varieties. (In) Chadha, K.L.(Ed.) Third Internat. Symp. trip. subtrop. Hort. Proc. pp.27-28. Today and Tomorrow Publishers and Printers, New Delhi.

Alexander, M.P. 1980. A versatile stain for pollen, fungi, yeast and bacteria. Stain Tech. SE (1): 15-18.

Allard, R.W. 1960. Principles of Plant Breeding. Ed. 2 pp. 94. John Wiley and Sons. Inc., New York.

Asama, B.M., Chandra, R.K. and Panday, R.L. 1981. Character correlations and divergence in pigeon pea. Indian I. agric. Sci. 51: 12-17.

Association of Official Agricultural Chemists, 1968. Official method of analysis. pp.225-226. Washing ton DC.

Azakiamanavalan, R.S., Balakrishnan, R. and Raman, K.R. 1975. 'Wather' - a new word in banana. Indian Hort. 18: $4-5$.

Azakiamanavalan, R.S. and Rap, V.N.M. 1980. A comparative study of hybrid -135 and Virupakshi banana. Natl. Seminar banana prod, tech. proc. pp.62-64. Tamil Nad agric. Univ. Coimbatore. India.
*Baker, R.E.D. 1893. Bananas in East Africa. (In) Simmonds, N.W., 1966. Bananas Ed.2. pp.26. Longman, London.

Battaglia, E. 1957. A simplified Feulgen method usina cold hydrolysis. Caryologia. 2: 372-373.

Bhakthavatsalu, C.M., Manickvasagam, P., Kalia Perumal, T.T. et al. 1968. Comparative studies on "Klue Teparod", a natural tetraploia banana and a synthetic tetraploid hybrid. S. Indian Hort. 16: 58-62.

Bonner, J.W., Warner, R.M. and Brewbaker, J. L. 1974. A comparative study of Musa cultivars. Hort Science. 2 (4): 325-328.

Borges, F.O.L. 1972. Taxonomy and description of Musa clones (Bananas and plantadns) grown in Venezuela. Revista de la Faeultud de Agronomia (German). 6417-63.

争Burton, G.W. 1952. Quantitative inheritance in grasses (In) Rangaswany, S.R.S., Sambamoorthy, S. and Murugesan, M. 1980. Genetic analysis in banana. Natl. Seminar banana prod. tech. proc. pp.50-56. Tamil Nadu agric. Univ., Coimbatore, India.

Chakravorti, A. K. 1948a. Theory of fragmentation of chromosomes and evolution of species. Sci.Cult. 13: 309-312.

Chakravorti, A.K. 1948 b . On the occurrence of a nonstoloniferous species of Musa agharkarii in the Chittagong Hill tracts (Bengai). J. Indian bot. Soc. 27: 84-90.

Chakravorti, A.K. 1951. Origin of cultiveted bananas of S.E.Asia. Indian J. Genet. 11: $34-46$.

Chandrasekhar, A. 1978. Genetic divergence for morpholoical anc quality determinants of yielc in chick pea. Indian J. agric. Sci. 48: 451-458.

111

Chandratna, M.F. 1951. Origin of cultivated races of banana. Indian J. Genet. 11: 29-33.

Chandratna, M.F. and Nanayakkara, K.D.S. 1951. Cultivated species of banana in Ceylon. Trop. agric. 107: 70-91.

Chaudihury, B.D. and Singh, V.P. 1975. Genetic diverjence in some indigenous and exotic Barley varieties and their hybrids. Indian J. Genet. 35: 409-413.

Chauhan, V.S. and Singh, B.B. 1982. Heterosis and genetic variability in relation to genetic divergence in soybeans. Indian J. Hort. 42: 324-328.

Cheesman, E.E. 1932a. Genetic and cytological studies of Musa I. Certain hyirids of Gros Michel banana. I. Genet., 26: 291-312.

Cheesman, E.E. 1932b. Genetic and cytolosical studies of Musa II. Hybrids of the Mysore Banana. J. Genet., 26:313-316.

Cheesmank .1935 . Principle of Banana breeding. Trop. agric.ll: 132-137, 176-181, 203-209.

Cheesman, E.E. 1947. The classification of the bananas. Kew. Bul1. a: 97-117.

Cheesman, E.E. 1948a. On the nomenclature of ediole bananas. J. Genet. 48: 293-296.

Cheesman, E.E. 1948 b. Classification of the bananas III. Critical notes on species. Kew Bull. 2: 145-153.

Cheesman, E.E. 1و49. Classification of the bananas. Critical notes on species - Musa laterita, Musa textiles. Kew Bul1. 3: 265-272.

Cheesman, E.E. 1950. Classification of the bananas III. Critical notes on species - Musa maclayi and Musa coccinea, Kew Bul1. 4: 27-31.

Cheesman, E.E. and Larter, L.N.H. 1935. Genetical and cytological studies of Musa III. Chromosome number in the musaceae J. Genet. 30: 31-52.

Darlington, C.D. and La Cour, L.F. 1976. The handling of chromosomes. Ed.6.pp.36-39. George Allen and Unwin Ltd., London.

De Langhe, E. 1969. Bananas (Musa spp.) (In) Ferweda, F.P. and Wit, F.H. (Ed.). Outilines of perennial crop breeding in the tropics. pp.63-65. Veerman and Zone, Wageningen.
*De Langhe, E. and De Vreux, M. 1960. Une Sous - expece nauvelle de Musa acuminata Colla. (In) De Langhe, E. 1969. Bananas (Musa spp.) (In) Ferweda, F.P. and Wit, F.H. (Ed.). Qutlines of perennials crop breeding in the tropics. pp.63. Veerman and Zone, Wageningen.

De Leon, B.B., Ramirez, D.A. and Valmayor, R.V. 1968. The cytology and morphology of eleven varieties of Philippine bananas. Philippines agric. $52:$ 119-132.

Dodds, K.S. 1943. Genetical and cytological studies of
 113-138.

Dodis, K.S. and Pittendrig, N.W. 1946. Genetical and cytological studies of Musa VII. Certain aspects of polyploidy. J. Genet. 47: 162-177.

Dodds, K.S. anc Simmonds, N.W. 1946. Genetical and cytological studies of Musa VIII. The formation of polyploid spores. J. Genet. 47: 223-241.

Dodds, K.S. and Simmonds, N.W. 1948. Genetical and cytological studies of Musa IX. The origin of an edible diploid and the significance of interspecific hybridization in the banana complex. I. Genet. 48: 285-296.

Gandhi, S.M., Sangh1, A.K., Nathawat, K.S. and Bhatnagar, M.P. 1964. Genotypic variability and correlation coefficients relating to growth, yield and a few other quantitative characters in Indian wheats. Indian J. Genet. $24: 1-8$.

Gandhi, S.R. 1955. Bombay bananas, their history, botany and nomenclature. Poona agric. Cell. Mag.46: 27-64.

Gangolly, S.R., Kamal akaran, A.K. and Balakrishnan, T.K. and Pandalai, K. M. 1961. Studies on the pollen in the coconut. I. Its importance, out-put in different varieties and composition in the still air. Indian Coconut J. $14(2): 49-66$.
*Gottreich, M., Bradu, D. and Halevy, 1964. A simple method for determining average banana fruit weight. Ktavim. 14: 161-162.

Govindaswarny, S. 1962. Cytogenetical studies on a nonparthenocarpic wild diploid Eumusa Var. Kadubalai. Indian J. Genet. 22: 145-153.

Gowder, R.B. and Namoisan, K.M.P. 1959. A note on the banana var. Matti of Kanyakumari District. s. Indian Hort. Z: 20-21.

Hillary, B. B. 1939. Improvements in the permanent root tip squash technique. Stain Tech.14: 97-99.

Hillary, B.B. 1940. Use of the Feulgen reaction in cytology II Bot.Gaz. 102: 225-235.

Jacob, K.C. 1952. Madras Bananas - A Monograph. pp.21-36. Superintendent, Govt.Press, Madras.

Jacob, K.C. 1966. Note on classification of bananas. Madras agric. J. 53 (5): 220.

Jain, R.K. 1963. Studies in Musaceae.1. Musa cardiosperma, a fossil banana from the Deccan Intertrappean series, India. Paleobotanist., 12: 45-58.

Jain, R.K. 1965. Studies in Musaceae. III. Fossil records oi Musaceae and the origin of bananas. Indian Acad. Sci. Sect. B. Proc. 61: 170-179.

Johnson, H.W., Robinson, H.F. and Comstock, R.E. 1955. Estimation of genetic and environment variability in soybean. Agron. I. $47=314-318$.

Jorgensen, C.A. 1928. The experimental formation of heteroploid plants in the genus Solapum. J.Genet. 19: 133-211.

Karikari, S.F. 1973. Some taxonomic assessment of contribution of Musa acuminata and Musa balbisiana to the origins of plantains and banana in Ghana. Ghana J. agric. Sci. 6: 9-19.

Kerala Agricultural University, 1978. Package of Practices Recommendations. pp.157-164. Director of Extension, Kerala Agricultural University, Vellanikkars, India.

Krishnamurthy, S. and Seshadri, V.S. 1958. Origin and evolution of cultivated bananas. Indian J.Hort. 15 (3 \& 4): $135-145$.

Larter, L.N.H. 1935. Hyoridism in Musa I. Somatic cytology of certain Jamaican seedings. J. Genet. 31: 297-315.

Larter, L.N.H. 1938. Banana varieties in Jamaica. J.Jamaice agric. Soc. 42: 460-468.

Lindstorm, E.W. and Humphery, L.M. 1933. Comparative cytogenetic studies of tetraploid tomatoes from aifferent sources. Genetics. 18: 193-209.
*Linnaeus, C. 1783. Philosophia Botanica. (In) Simmonds, . . NoW.1966. Bananas. Ed.2.pp.53-54. Longman, Landon.

Lush, J.L. 1940. Intra-sire correlation and regression of offspring on dams as a method of estimating heritability characters. Amer. Soc. Ani. Prod. Proc. 33: 290-301.

Mahalanobis, P.C. 1936. On the generalised distance in statistics. Nati. Inst. Sci. Proc. (India) 12: 49-55.

Mc Clintock, B. 1929. A method for making acetocarmine stains permanent. Stain Tech. 4: 53-56.

Mercy, K A. 1981. A study of genetic diversity in dessert and culinary types of banana varieties. M. Sc. Thesis in Agricultural Statistics subiatted to the Kerala Agricultural University.
*Moore, H.E. 1957. Musa and Ensete- The cultivated bananas. (In) Simmonds, N.W. 1966. Bananas. Ed. 2 pp.27. Longman, London.

Mukherjee, P., Buived, S.L., Singh, B.D. et al. 1981. Genetic divergence and character associations in pearl millet. Indian I. agric. Sci. 51: 69-72.

Muntzing, A. 1928. Ciromosome number, nuclear volume and pollen grain size in Galeopsin. Hereditas. 10: 241-260.

Murray, D.B. 1961. The effect of deficiencies of the major elements on the growth and leaf analysis of banana. Trop. agric. Trinidad. 32(2): 97-106.

Nair, N.K., Mathew, V. and Lyla, K.R. 1980. Estimation of genetic variability for quantitative traits in certain culinary bananas. Natl. Seminar banana prod. tech. pp.57-61. Tamil Nadu agric. Univ., Coimbatore, India.

Nair, P.C.S. and Nair, M.K.C. 1969. On the performance of some introduced varieties of banana in Kerala. Agric. Res. J. Kerala. 2 (1): 48 .

Nambisan, K.M.P. and Fao, V.N.M. 1980a. The influence of specific origin and associated growth characters in South Indian bananas. Natl. Seminar banana prodn. tech. proc. pp.33-40.

Nambisan, K. M.P. and Rao V.N.M. 1980b. The influence of specific origin on the chlorophyll and protein contents of leaf lamina in South Indian banana clones. Natl. Seminar banana prod. tech. pp.41-45. Tamil Nadu agric. Univ. Coimbatore, India.

Nayar, T.G. 1957. Genetic variability and the scope for improvement of the banana in India. Incian J. Hort. 15: 215-219.

Nayar, T.G. 1962. Banana in India. pp.63-104. The Fact Technical Society, Jdyogamandal, Kerala, India.

Nayar, T.G. and Bhakthavatsalu, C.M. 1955. Cavendish banana their culture and systematic status. Indian Hort. 12: 22-28.

Nayar, T.G., Sundararaj, J.S. and Seshadri, V.S. 1957a. Nonguneri Peyan var. of banana - its culture and taxonoincal status. Indian J. Hort. 14:24-29.

Nayar, T.G., Sundararaj, J.S. and Seshadri, V.S. 1957 b. Nendran banana - its culture and taxonomiaal status. Indian J. Hort. 14: 69-76.

Oberle, G.D. and Geortzen, K.L. 1952. A method for evaluating pollen production of fruit varieties. Amer. Soc. Hort. Sci. Proc. 59: 263-265.
*Osborne, R.E. 1962. Boules Altafort a new banana for jamaica. (In) Simionds, N.W. 1966. Bananas. Ed.2. pp. 274. Longman, London.

> *Pozzi, A. 1953 . A rapid method of determining the amount of pollen proauced per fruit tree varieties. A. (In)Rao V. $V . M$ and Khader, J. B. M. Md.A. 1962. Estimation of pollen production in fruit crops. Madras agric. J. 49 (5): $152-156$.

Raman, V.S. 1968. Final Report (1963-68) of the scheme for cytogenetic investigation on banana, annona, guava, and pomegranate. pp.12-15. Indian Council of agric. Res., New Delhi.

Raman, V.S. 1970. Breeding new varieties of bananas. Souvenir. All India banana and miscellaneous fruit show held at Madras. Part B: 9-10.

Raman, V.S. 1976. Problems and prospects in breeding Indian bananas. (In) Chadha, K....(Ed.). Third Internatil. Symp. trop. subtrop. Hort. Proc. pp. 15-26. Today and Tomorrow Printers and Publishers, New Delhi.

Raman, V.S., Alikhan, V.M., Manimekalai, G. and Bhakthavatsalu, C.M. 1971. A study of the cytomorphology of bananas. Madras agric. J. 58 (2): 55-62.

Raman, V.S., Kesavan, P.C., Manimekalai, G. et al., 1963. Cytological studies in some tropical fruit plants - banana, annona, guava and pomegranate. S. Indian Hort. 11 ($3 \& 4$): 27-33.

Raman, V.S., Rangaswany, S.R.S. and Alikham, V.M. 1968. Metroglyph analysis of South Indian varieties in the Banana Complex. J. Indian bot. Soc. 42: 210-219.

Rao, C.R. 1952. Advanced statistical method in Bionetric Research. pp. 246-250. John Wiley and Sions, New York.

Rao, V.N.M. and Khader, J.B.M. Md.A. 1962. Estimation of pollen production in fruit crops. Madras agric. … $\underset{=}{=}$ (5): 152-156.

Rao, V.N.M. and Nambisan, K.M.P. 1959. Descriptive studies of banana. The Monthan and Peyan groups. Indian J. agric. Sci. 29: 164-171.

Richardson, D.L., Hamilton, K.S. and Hutchinson, D.J. 1965. Note on bananas. 1. Natural ediole tetraploids. Tros. Agric. Trinidad. 42 : 125-137.
*Roxburgh, W. 1824. Flora Inaica. (IN) Shukla, K.C. and Roy, R.S. 1956. Varietal stuaies of bananas under Bihar conditions. Indian J. Hort. 13 (1): 1-10.

Roy, R.S. and Sharma, C. 1951. Chromosome study of Bihar bananas. Indian I. Genet. 11: 210-214.
*Sagot, 1887. (In) Simmonos, N.W. 1966. Bananas Ed.2. pp. 53. Longman London.

Sathiamoorthy, S. and Rao, V.N.M. 1980. Pollen production in relation to genome and ploidy in banana clones. Natl. Seminar banana prod.tech.proc. pp.46-49. Tamil Nadu agric. Univ., Coimbatore, India.

Shanmugavelu, K.S. and Rangaswamy, G. 1962. Try ptophan and indole compounds in banana varieties. Nature. 194: 715-716.
Shepherd, K. 1957. Banana cultivars in East Afric. Trop. agric. Trinidad. ${ }^{3}=\mathbf{2}$ 211-221.

Shepherd, K. 1960. Seed fertility of edible banana. J. Hort. Sci. 35: 6-20.

Shukla, K.C. and Roy, R.S. 1956. Varietal studies of bananas under Bihar conditions. Indian J. Hort. 13(1): 1-10.

Simmonds, N.W. 1948. Genetical and cytological studies of Musa X. Stomatal size and plant vigour in relation to polyploidy. J. Genet. $4 \frac{4}{2}$: pp.10-15.

Simmonds, N.W. 1950. Polyploidy in bananas. Internati. bot. Congr. Proc. pp.335. Stockholm.

Simmonds, N.W. 1953. Segregation in some diploid bananas. J. Genet. 51 (3才: 458-469.

Simmonds, N.W. 1956a. Botanical results of the banana collecting expedition, 1954-55. Kew Bull. 11: 463-489.

Simmonds, N.W. 1956b. A banana collecting expedition to South East Asia and the Pacific. Trop. agric. Trinidad. 33: 251-271.

Simmonds, N.W. 1960a. Experiments on banana fruit development. Ann. Bot. 24: 212-222.

Simmonds, N.W. 1960b. Megasporogenesis and female fertility in three edible diploid bananas. J. Genet. 57: 269-278.

Simmonds, N.W. 1962. The evolution of the bananas. pp.13-25. Longman, London.

Simmonds, N.W. 1966. Bananas. Ed.2. pp.15-148. Longman, London.

Simmonds, N.W. 1976. Bananas (In) Evolution of Crop Planta. Simmonds, N.W. (Ed.) pp.211-215. Longman, London.

Simmonds, M.W. and Dodds, K.S. 1949. Me10sis in meeded diploids of phes I. Genet. 49: 221-225.

Simmonds, N.W. and Shepherd, K. 1955. The taxonomy and origin of the cultivated bananas. I. Limn. Soc. Lond, 55: 302-312.

Singh, R.K. and Chaudhary, B.D. 1977. Biometrical methods in quantitative genetic analysis. pp.211-238. Kalyani Publishers, Hew Delhi.

Snedecor, G.W. and Cochran, W.G. 1967. Statistical methodg. Ed. 6 pp. $447-471$. Oxford \& IBH Publishing Co., Calcutta.

Sreerangaswamy, S.R., Sambamurthy, S. and Murugesan, M. 1980. Genetic analyais in banana. (In). Nath. seminar benens prod. tech. pp.50-56. Tamil Nadu agric. Univ., Coimbatore, India.

Sukhija, B. S., Brar, J.G. and Sidhu, A.S. 1982. Genetic divergence in watermalon. I. Res. Pumiab. agric. Univ. 12 (4): $334-338$.

Summervilis, W.A.T. 1944. Studies on nutrition as qualified by development in Musa cavendishii Lambert. Queesland I. agric. Sci. 1:1-127.

* Tischler, G. 1910. Untersuchungen uber die Entuncklug des Bananen. (In) Roy, R.S. and Sharma, C. 1951. Chromosome studies of Bihar bananas. Indian I. Genet. 11: 210-214.

Vakili, N.G. 1962. Colchicine induced polyploidy in Musa. Mature. 194:453-454.

Fakili, N.G. 1965. Fusarium wilt resistance in seedings and mature plants of hases spectes. phytopathalogy 55: 135-140.

Vakili, N.G., 1967. The experimental formation of phiyploidy and its effects in the genus Musa. Amer.I.Bot. 54. 24-36.

Varma, N.S. and Gulati, S.C. 1982. Genetic divergence in two-rowed and six-rowed Barley. Indian I. Genet. 42: 314-318.

```
Venkataramani, K.S. 1946. Studies of Indian bananas. A descriptive study of 24 varieties. Indian Acad. Sci. Proc. 23: 113-128.
Wilks, S.S. 1932. Certain generalisations in the analysis of variance. Biometrics. \(24: 471449\).
Wilson, G.B. 1946a. Cytological studies in the Musaceae I. Genetics. 31: 241-258.
Wilson, G.B. 1946b. Cytological studies of the Musa II. Metcsis of some diploid clones. Genetics. 31: 473-482.
Wilson, G.B. 1946c. Cytological studies of the Musa III. Neiosis in some seeding clones. Genetics. 31: 483-493.
Yadav, S.P., Sharma, J.R., Roy, M.N. and Jain, O.P. 1974. Note on divergence in some varieties of wheat gram under rainfed conditions. Indian J. agric. Sci. 4 : 778 -780.
```

Appendices

Appendix 1. Analysis of variance for growth parameters of 62 cultivare of banana

Source	df	Mean suth of squares				
		Height (cm)	$\begin{aligned} & \text { Girth } \\ & (\mathrm{cm}) \end{aligned}$	Number of leaves	Leaf area per plant (m2)	Length of petiole
Total 1	123					
Replications	1	29.52	6.33	5.91	0.02	17.66
Genotypes	61	6074.21	206.94**	84.21**	135.65**	293.56**
Diploids Vr.Polyploids	1	921.10	187.58**	11.46**	183.04**	31.01**
Diploids	17	10215.48	295.42**	176.35**	189.39**	390.53**
A	4	2136.65**	643.85**	9.44**	21.48**	122.48**
AB	11	3470.04**	30.89	73.22**	107.18**	359.40**
BB	-	-	-	-		
Among diploids	2	$63473.04 * *$	1126.81**	1077.36**	977.38**	1097.85**
Polyploids	43	$4556.80 * *$	172.41***	49.46**	113.30**	261.33**
Triploids	41	4735.92**	180.74**	50.34**	115.95**	267.39**
Ma	10	5305.26**	222.17**	32.58**	117.78**	195.46**
$A A B$	13	1796.80**	54.32**	43.01**	108.12**	242.78**
ABB	16	3741.71**	223.14**	44.81**	117.98**	84.47**
Among triploids	2	28947.19**	456.15**	231.00**	141.59**	50.39**
Tetraploids	1	750.25**	3.07 MS	14.07**	0.85**	81.00**
Tetraploids Vs.Triploids	1	1013.42**	0.39 NS	49.10**	117.02**	193.12
Error	61	21.03*	36.48	0.29995	0.01	0.73

** Significant at 1\% level
NS Not significant

Appendix 2. Analysis of variance for duration of 62 cultivars of banana

Source	dif	Mean sum of squares	
		```Planting flowering interval (days)```	Flowering to harvest interval (days)
Total	123		
Replications	1	15.61	5.04
Genotypes	61	30144.72**	415.31**
Diploids Vr.Polyploids	1	9770.21**	215.40**
Reploids	17	7155.76**	813.43**
AA	4	188.00**	602.80**
AB	11	1915.94**	838.31**
BB	-	-	-
Among diploids	2	49910.28**	1399.20**
Polyploids	43	1263.02**	262.57**
Triploids	41	1315.88**	274.61**
AMA	10	90\% ${ }^{\text {. }}$ 58**	261.48**
AAB	13	1255.77**	358.42**
ABB	16	1633.92**	203.38**
Among triploids	2	1218.81**	865.33**
Tetraploids	1	0.25 NS	25.00
Tetraploids Vr.Triploids	1	358.55**	6.43**
Error	61	4.91	3.12

* Slgnificant at 1\% level

MS Not significant

Appendix 3. Analysis of variance for bunch characters of 62 cultivars of banana

Source	df	Mean sum of squares			
		Bunch weight (kg)	Hand weight (g)	Number of hands	Mumber of fingers
Total	123				
Replications	1	3.73	191304.60	0.43	2556.20
Genotypes	61	23.81	426285.88**	19.12**	5292.93**
Diploids Ve.Polyploids 1		98.99	2398153.77**	1.13**	842.87**
Diploids	17	25.09	206548.67**	19.23**	7234.78**
AA	4	15.78	$412360.48 * *$	22.38**	10448.25**
$A B$	11	32.49	166616.44**	19.76**	6776.41**
BB	-	-	-	-	-
Among diploids	2	3.05	14552.37**	10.01**	3328.90**
Polyploids	43	21.99	467301.34 ***	19.50**	4628.72**
Triploids	41	22.59	$465317.48 * *$	22.64**	4775.90**
AMA	10	24.13	766502.05**	4.21**	489.11**
$A A B$	13	20.78	3407785.71**	12.65**	3639.29**
$A B B$	16	25.11	242677.05**	39.75**	7552.78**
Among triploids	2	6.44	2061188.81**	16.08**	11382.84**
Tetraploids	1	12.25	864900.00**	0.25 NS	84+1.10**
Tetraploids Vs. Triploids	1	7.40	151041.04**	18.72**	2381.82冓*
Error	61	0.14	18902. 86	0.66	56.92

* Significant at 1\% level

NS Not significant

Appendix 4. Analysis of variance for finger characters of 62 cultivars of banana

Source df	Mean sqm of squares								
	$\begin{aligned} & \text { Pedicel } \\ & \text { leng th } \\ & (\mathrm{cm}) \end{aligned}$	Finger   length   (cm)	Finger   girth   (cm)	Finger weight (g)	Finger volume (cc)	\% pulp weight	$\begin{aligned} & \text { Pulp/peel } \\ & \text { ratio on } \\ & \text { weight } b \\ & \text { basis } \end{aligned}$	\% Pulp volume	$\begin{aligned} & \text { Pulp/ } \\ & \text { peel } \\ & \text { ratio } \\ & \text { volume } \\ & \text { basta } \end{aligned}$
Total 123									
Replications 1	0.18	0.69	0.47	0.05	75.88	0.23	0.02	2.27	0.001
Genotypes 61	2.38**	14.41**	5.74**	2615.02**	3015.54**	58.45**	2.40**	39.52**	1.19**
$\begin{aligned} & \text { Diploids Vz. } \\ & \text { Polyploids } \end{aligned}$	2.29**	110.45**	71.23**	33055.84**	44137.36**	298.06**	9.96**	232.41**	6.33**
Diploids 17	1.57**	9.23**	3.90**	555.62**	558.85**	72.51**	4.71**	39.25**	1.32**
AA 4	0.41**	11.94**	2.93**	753.37**	741.50**	53.07**	2.81**	69.38**	3.03**
$A B \quad 11$	1.48**	9.36**	3.62**	511.13**	456.80**	79.94**	5.45**	29.04**	0.79**
BB					-			-	-
among diploids 2	4.40**	3.06**	7.39**	404.80**	754.79**	70.45**	4.46**	35.11**	0.82**
Polyploids 43	1.32**	14.22**	4.94**	2721.27**	3030.48**	47.33**	1.31**	35.14**	1.02**
Triploids 41	2.78**	12.80**	5.16**	2587.03**	3139.41**	48.72**	1.35**	34.45**	0.99**
AM 10	$0.34{ }^{* * *}$	12.43**	5.04**	5064.71**	1897.48**	46.21**	2.10**	27.15**	1.02**
$A A B$	0.21**	8.43**	5.09**	871.42**	1280.24**	24.79**	1.06**	43.46**	1.58**
ABB 16	1.42**	10.47**	5.53**	1286.03**	4906.69**	35.21**	0.53**	19.63**	0.28**
Among triploids 2	42.84***	61.76**	3. 34***	11757.99**	419.38**	275.03**	6.03**	116.73**	2.67**
Tetraploids 1	2.40**	85.56**	0.40 NS	8775.94+**	756.25**	2.21**	0.01 NS	120.01**	2.82**
$\begin{aligned} & \text { Tetraploids Vs. } 1 \\ & \text { Triploids } \end{aligned}$	NS	0.85**	0.48 NS	2170.76**	838.76**	35.07**	1.02**	7.16**	0.31**
Error 61	0.02	0.15	0.36	5.23	10.29	0.41	0.02	0.25	0.001

Appendix 5. Analysis of variance for quality characters of 62 cultivars of banana

Source	df	Mean sum of squares					
		Total soluble (\%)	Total   sugars   (\%)	$\begin{aligned} & \text { Reducing } \\ & \text { suggrs } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Non reducing } \\ & \text { sugars } \\ & (\%) \end{aligned}$	$\underset{(\%)}{\substack{\text { Acidity }}}$	Sugar/ acid ratio
Total	123						
Replications	1	0.95	0.62	0.16	0.13	0.0002	1.36
Genotypes	61	6.21**	22.93**	23.80**	6.89**	0.65**	484.84**
Diploids Vs. Polyploids	1	36.17**	5.28 Ns	4.65**	5.73**	0.52m	57.86**
Diploids	17	9.61**	23.84**	24.18**	9.14**	0.46**	206.43**
M	4	14.94**	40.65**	28.02**	19.61**	0.99**	276.84**
${ }^{\text {AB }}$	11	4.64**	3.65**	3.84**	4.68**	0.30**	157.16**
BB	-	-	-	-	-	-	-
Among diploids	2	26.56**	101.32**	128.41**	12.68**	0.45**	336.56**
Polyploids	43	4.16**	22.98**	24.10**	6.03**	0.73**	604.84**
Triploids	41	4.32**	23.61**	24.67**	6.04**	0.75**	630.13**
MA	10	2.25**	14.71**	17.84**	6.39**	0.55**	1101.9 ${ }^{\text {+** }}$
AAB	13	1.52**	17.23**	19.85**	5.73**	0.14**	167.53**
ABB	16	3.69**	19.28**	18.82**	6.12**	0.61**	457.05**
Among triploids	2	37.88**	144.23**	137.01**	5.67**	0.27**	2662.70**
Tetraploids	1	NS	12.89**	10.89**	11.42**	0.28**	37.21ms
Tetraploids Vs.Triploids	1	1.64**	7.09**	14.16**	0.01**	0.53**	135.58**
Error	61	0.17	0.35	0.78	0.55	0.04	14.11

** Significant at 1\% level
NS Not significant

Appendix 6. Analysis of variance for pollen characters of 40 banana cultivars

Source	$d \mathrm{~T}$	Mean sum of quares		
		$\begin{aligned} & \text { Pollen } \\ & \text { viability } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Pollen size } \\ & \text { (micron) } \end{aligned}$	Pollen production per anther
Total	119			
Genotypes	39	44.99**	3317.59**	* 0.1537**
Diploids $\nabla$.   Polyploids	1	1754.51**	16050.29**	0.11**
Diploids	5	428.79**	643.79**	0.24**
AA	4	224.31**	612.65**	* 0.15**
BB	-	-	-	-
Among diploids	1	1246.72**	768.34**	- 0.82 **
Polyploids	33	336.93**	3336.87**	0.144**
Triploids	31	297.20**	3315.24**	0.12**
ama	10	561.56**	805.62**	0.03**
AAB	6	28.36**	623.55**	0.13**
ABB	18	88.98**	5271.14**	* 0.14**
Among Triploids	2	1136.30**	11225.05**	0.475**
Tetraploids	1	3443.40 *	748.17**	0.001 NS
$\begin{aligned} & \text { Tetraploids Vs. } \\ & \text { Triploids } \end{aligned}$	1	1560.99**	6596.20**	0.999**
Error	80	0.528	22.21	0.0026

** Significant at $1 \%$ level
Ns Not significant

Appendix 7. Intercorrelations anong different characters*in banana

1	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	-0.0753	0.6280	0.6721	0.6745	0.6548	0.40009	0.4644	0.0259	0.2311	0.3759	0.4731	0.0491
2		1	-0.03522	-0.6202	-0.0684	0.02122	-0.2935	-0.0139	-0.0779	$\bigcirc 0.0569$	-0.1010	0.0162	-0.0156
3			1	0.7128	0.4384	0.7407	0.66320	0.2838	-0.0915	0.1148	0.2611	0.3098	0.0839
4				1	0.5017	0.5995	0.5593	0.5258	0.4171	0.1332	0.3399	0.1691	0.0709
5					1	0.4229	0.3571	0.4067	0.0999	0.2216	0.3414	0.5545	0.1231
6						1	0.5279	0.2042	-0.0178	-0.0102	0.0852	0.1055	-0.0869
7							1	0.4505	0.0508	0.15086	0.3748	0.1244	0.1051
8								1	0.3682	0.4357	0.7157	0.0745	0.2971
9									1	-0.0837	-0.0271	-0.5091	0.5249
10										1	0.5388	0.2944	0.1886
11											1	0.2230	-0.4763
12												1	0.1893
13													1


	14	15	16	17	18	19	20	21	22	23	24	25	26
1	0.7823	-0.0819	-0.0229	-0.0495	-0.0162	-0.1231	-0.1225	0.4083	0.2582	0.2628	0.0938	0.0590	0.1238
2	-0.0869	-0.0997	-0.2620	-0.0631	$\bigcirc .1538$	-0.0103	-0.0944	0.08743	0.1473	0.0863	0.2874	0.1651	-0.0521
3	0.04168	0.0120	0.0143	0.0194	0.4545	-0.0865	-0.1065	0.2259	0.01311	-0.0137	0.2365	-0.0302	0.1113
4	0.1755	0.2214	0.0525	0.1297	0.1206	0.0307	0.0154	0.1942	c. 0732	0.0729	0.1137	-0.1360	0.2030
5	0.2465	0.1536	0.0645	0.1230	0.1885	0.0642	0.6964	0.4124	0.2343	0.2921	0.0333	0.0343	0.0748
6	0.0686	-0.0186	0.1887	0.1976	0.1912	0.0148	-0.0023	0.2214	-0.1087	-0.1519	0.0796	$\bigcirc .2022$	0.1090
7	0.0256	0.1767	0.0891	0.3142	0.3367	0.1481	0.1352	0.1871	-0.1123	-0.1203	0.0554	-0.4029	0.3729
8	0.1705	0.3328	0.2614	0.1504	0.1006	0.1354	0.1208	0.0648	-0.0583	$-0.0627$	$-.0152$	-0.2640	0.2558
9	0.4393	0.6027	0.5762	-0.0091	-0.0483	0.0771	0.0683	-0.2448	-0.0650	-0.0749	-0.0006	-0.0792	0.1270
10	0.1869	-0.0621	-0.0109	-0.1222	-0.0851	-0.0180	0.0260	0.1264	-0.1798	-0.1698	-0.1074	-0.0816	-0.0943
11	-0.2632	-0.2243	-0.1126	0.0901	0.0089	0.1129	0.0901	0.2079	0.0108	0.0009	0.0262	-0.1190	0.1002
12	0.0410	-0.1492	0.0193	-0.2409	0.0996	-0.2101	-0.1537	0.4749	0.2867	0.2752	0.1788	-0.1292	-0.144
:3	0.4329	0.5059	0.6614	-0.1167	-0.0501	-0.0708	-0.0984	$\bigcirc 0.1302$	$\sim 0.1516$	-0.1714	0.0908	0.0727	0.0544


	14	15	16	17	18	19	20	21	22	23	24	25	26
14	1	0.7041	0.8937	-0.0074	0.0468	$\bigcirc 0.0817$	-0.734	-0.0641	0.2079	0.1933	0.1848	0.0727	0.1242
15		1	0.7469	0.0377	-0.0380	0.1140	0.1155	-0. 2409	-0.0887	-0.0669	-0.0222	-0.2485	0.2822
16			1	-0.0288	0.0201	-0.0666	-0.0703	$\bigcirc .3131$	-0.0783	-0.0899	0.1886	-0.1221	0.1425
17				1	0.9359	0.6066	0.6898	0.1968	0.0149	-0.0377	-. 0671	-0.2294	0.2403
18					1	0.6552	0.6588	0.2939	0.0343	-0.0683	0.0359	-0.2197	0.2448
19						1	0.9726	0.1567	$\bigcirc .0588$	-0.0749	0.1299	-0.2282	. 1968
20							1	0.0587	0.087	0.0878	-0.1354	-0.2330	0.18992
21								1	0.5102	0.4477	0.1984	0.2769	0.0644
22									1	0.9668	0.4257	0.5679	0.2189
23										1	0.25134	0.5679	0.2189
24											1	0.2768	0.0814
25												1	-0.6348
26													

* Characters

1. Plant height (cm)
2. Plant girth (cm)
3. Leaves per plant
4. Leaf area per plant ( $\mathrm{m}^{2}$ )
5. Petiole length ( cm )
6. Planting to flowering interval (days)
7. Flowering to harvest interval (days)
8. Bunch weight ( kg )
9. Hand weight (g)
10. Number of hands
11. Numoer of fingers
12. Pedicel lengtin (cm)
13. Finjer lengty (cm)
14. Finser girth (cm)
15. Finger weisht (g)
16. Finger volume ( cc )
17. Per cent pulp weight
18. Pulp/peel ratio on weight basis
19. Per cent pulp volume
20. Pulp/peel ratio on volume basis
21. Tis (鿊)
22. Total sugars (\%)
23. Reducing sugars (\%)
24. Non reducin\% sugars (\%)
25. Acicity (\%)
26. Sugar/acid ratio

# CYTOTAXONOMICAL STUDIES ON BANANA CULTIVARS 

By<br>P. K. VALSALAKUMARI

## ABSTRACT OF THE THESIS

Submitted in partial fulfilment of the requirements for the degree of Boctor of 挑ilosophy in 鼠ortitulture

Faculty of Agriculture
Kerala Agricultural University

Department of<br>Pomology \& Floriculture and Landscaping<br>COLLEGE OF HORTICULTURE<br>Vellanikkara, Trichur

## ABSTRACT

Variability in banana are wide and complex with different degrees of expression of the characters of the parental species, Musa acuminata and Musa balbisiana. Commercial cultivars are many, ranging in levels of productivity and quality characters. Investigations were conducted at the College of Horticulture, Kersla Agricultural University, Vellanikkara, Trichur during 1981-83 on 100 cultivars of banana to study the cytotaxonomical aspects.

Studies on morphological characters, taxonomic scoring and chromosome number revealed that many of the cultivars were identical and ultimately the cultivars were confined to 64 distinct ones. The taxonomic scoring did not incicate the ploidy. Eight cultivars with the scores of triploids, were identified as diploids.

The quantitative, quality and pollen characters showed a significant variation among the cultivars. The characters were influenced by the ploidy and the genomic constitution. The presence of ' $3^{\prime}$ ' genome increased plant height anc sirth, leaves per plant, leaf area per plant and petiole lensth. Musa balbisiana ( $3 B$ ) recorded the hignest values for all the above characters.

The triploids were more vigorous than the diploids and the tetraploids as incicated by their higher growth rates. The triploids were also better than the other groups for bunch and finger characters. Among them, the triploids of hybrid orisin were oetter for bunch characters, while the Musa acuminata triploid group (AAA) was superior to the other groups for finger characters. Longer pedicel was a characteristic feature of Musa baloisiana (3B).

The genomic constitution of the cultivars influenced the contents of total soluble solids, sugars and acids in fruits, nore then the ploidy. Musa acuminata group aAA, had the highest sugar/acid ratio.

Studies on pollen viability, size and production in cultivars revealed the possibility of including a few of them as male parents in the banana hyoriaization programe. Forty of the cultivars studied were polleniferous. Pollen viability and production were more in pure Musa acuminata and Musa balbisiana groups than in groups of hybrid orisin. Musa acuminata cultivars had larger pollen grains than cultivars belonging to the other genomic groups.

Estimates of genotypic and phenotypic coefficients of variation, heritability in the broad sense, genetic advance and genetic gain for the 26 characters incicated the scope for selection among the cultivars. Petiole
length, pulp/peel ratio on volume basis, weight and volume of fruit showed higher neritability values combined with high genetic gain.

Estination of genetic divergence among the cultivars showed that the cultivars 'Mannan' and 'Pacha chingan', belongins to the genomic group AAB, were the closest and a Musa acuminata cultivar, 'Harichal' (AAA) and Musa balbisiana (33) were the farthest. The 62 cultivars were grouped into eight homogeneous clusters. Similar clustering pattern was obtained in the canonical analysis also.

The study revealed the predominance of the cultivars of the hybrid origin, with different degrees of expressioh of the characters of the parental species, in the South Indian bananas. The taxonomic scoring system was not always appropriate to find out the ploidy of the cultivars. The study also indicated the scope for selection among the cultivars and the possibility of inclusion of the cultivars witi viable polien as male parents in the hybridization programive.

