COMPARATIVE PERFORMANCE OF SOYBEAN (Clycine max (L.) Merrill) VARIETIES

BΥ

PUSHPAKUMARI, R.

THESIS

Submitted in partial fulfilment of the requirement for the degree of

Master of Science in Agriculture

Faculty of Agriculture Kerala Agricultural University

Department of Agronomy COLLEGE OF HORTICULTURE Vellanikkara - Trichur KERALA - INDIA

DECLARATION

I hereby declare that this thesis antitled "Comparative performance of soybean (<u>Olycine max</u> (L.) Herrill) varieties" is a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the award to me of any degree, diploma, associateship, fellowship or other similar title, of any other University or Society.

(PUS PAKTALI, 2)

Vellaniikara,

October, 1901.

CERCIFICATE

Certified that this thesis entitled

"Comparative performance of soybean (<u>Glycine max</u> (L.) Herrill) varieties" is a record of research work done independently by Hios. Pushpakumari, H. under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship or associateship to her.

L.L.

Vellanikkora.

10-10 8,

(Dr. R. VIKRAIAN HAIR) Chairman, Advisory Conmittee Head of the Department of Agronomy

CHEIFICARE

Se, the undersigned, members of the Advisory Counittee of Liss. Rushpalamari, S., a candidate for the Degree of Master of Science in Agriculture with major in Agronomy, agree that the thesis entitled "Comparative performance of soybean (<u>Glycine max</u> (T_{*}) Corrill) varieties" may be submitted by Miss. Fushpalamari, R. in partial fulfilment of the requirements for the degree.

b killisi

(Dr. R. VIKRAMAN MAIR) Chairman Advisory Committee

Bimme (Dr.P. BALAKRISHMA PILLAI) Comber

1º

(Dr. V. SASIDDAR) Nember

(Dr. A.I. J/3E) Nember

(Shri.P.V. PRACHARA AC) Nomber

ACKINALEDGEMENT

It is my pleasant duty to express my profound (ratitude and deep cense of indebtodness to Dr.A. Vikroman Mair, Associate Professor and Head of the Department of Apronomy, for his sincere guidance, critical suggestions and constant encouragement as Chairman of the advisory committee, during the whole course of this investigation.

I as grateful to the members of the advisory condition, Dr.P.Balakrishna Pillai, Frofessor and Heed of the Department of Agrometeorology, Dr.V.E.Sauidhar, Professor of Agronomy, Command Area Research Centre and Dr.A.I.Jose, Accordate Professor and Head of the Department of Spil Science and Agricultural Chemistry for their inspiring suggestions and keen interest shown throughout the course of this study.

I an thankful to Sri. 2.V. Prabhskoran, Associate Professor of Agricultural Statistics for the helps rendered in the legat of the experiment and enclysis of the data.

I remember with thanks, the help readered to no by Sri.H.Abdul Salas, Assistant Professor of Agronomy by way of his sustained interest in the study and creative critician.

It is my pleasure to admowledge the efforts of Sri. N.Asokan, Assistant Professor of Agronomy and Sri.V.K.G.Unnithan, Assistant Professor of Agricultural Statistics, who have shown active interest in this study and have given me valuable suggestions.

A word of gratitule is expressed to all my colleagues and student friends, who have put in a helping hard, and whose efforts are, needless to say, beyond the limits of verbal acknowledgement.

I express my thanks to Dr.1.C.diversion Nair, Director of Research, Kerola Agricultural University, and to Dr.2.C.Copalakrishnan, Associate Dean i/c, College of Horticulture, for providing necessary facilities for the conduct of this experiment.

The award of Research followship by the Kerala Agricultural University is gratefully acknowledged.

Budys:

CONTENTS

Page No.

I.	INTRODUCTI (M	• • •	1
II.	NUVIES OF LITERATURE	•••	3
111.	HARERIALS AND HERIODS	* • *	21
IV.	aizull'is	• • •	37
٧.	DI GEFESI (C	* # *	97
VI .	SURMARY	* * 4	106
		* • *	i - xi
	APCENDICES	• • •	1 - 29

LIGE OF TANKS

- 1. Rechanical composition and chemical properties of soil.
- 2. oather data (weakly average) for the first sesson (June to October 1980).
- 3. Jeather data (Jeekly average) for the second season (October 1900 to January 1981).
- . 4. Height of plant and number of branches per plant at different growth stages of soybean varieties in the two seasons.
 - 5. Total number of nodules per plant at different growth stages of soybean varieties in the two seasons.
 - 6. Further of effective nodules and weight of nodules per plant at different growth stages of soybean variaties in the two seasons.
 - 7. Total phytomass production per plant of soybean varieties in the two seasons.
 - 8. Leaf area index and not assimilation rate of coybean varieties in the two seasons.
 - Sumber of days to flowering and number of days to naturity of soybean varieties in the two seasons.
 - 10. Unaber of bearing nodes par plant, number of pode for bearing node, number of seeds per pod and 1000-seed weight of soybean varieties in the two peasons.
 - 11. Funder of pods per plant, weight of pods per plant, shelling percentage and number of seeds per plant of soybean varieties in the two seasons.
 - 12. Seed yield, stover yield and harvest index of soybean varieties in the two seasons.
 - 12(a) Simple linear correlation coefficient of field per plant with different quantitative characters.
 - 12(b) Correlation matrix of number of jods per bearing node and number of bearing nodes per plant and seed weight per plant.

LIGT OF TABLES

- 13. Uitrogen content of stem at different growth stages of so/bean varieties in the two seasons.
- 14. Citrogen content of leaves at different growth stages of soybean variaties in the two seasons.
- 15. Hitrogen content of pods, shells and seeds of soybean varieties in the two seasons.
- 16. Ditrogen uptake by sten at different growth stages of soybean variaties in the two sessons.
- 17. Ditrogen uptake by leaves at different growth stages of soybean variables in the two seasons.
- 10. Ditrogen uptake by pods, shells and seeds of soybean varieties in the two seasons.
- 19. Total nitrogen uptake by plants at different growth stages of soybean varieties in the two seasons.
- 20. Phosphorus content of stem at different growth stages of soybean varieties in the two seasons.
- 21. Thosphorus content of leaves at different growth stages of soybeen varieties in the two seasons.
- 22. Shoophorus content of pods, shells and seeds of soybean varieties in the two seasons.
- 23. Shosphorus uptake by stem at different growth stages of soybean varieties in the two seasons.
- 24. shosphorus uptake by leaves at different provth stages of soybean varieties in the two seasons.
- 25. Thosphorus uptake by pods, shells and seeds of soybean varieties in the two seasons.
- 20. Total phosphorus uptake by plants at different growth stages of soybean varieties in the two sessons.
- 27. Potassium content of stem at different prowth stages of soybean varieties in the two seasons.
- 20. Potassium content of leaves at different growth stages of soybean varieties in the two seasons.

LIST OF TADL'S

- 29. Fotassium content of pods, shells and seeds of soybean voricties in the two seasons.
- 30. Jotasaium uptake by ston at different growth stages of soybean varieties in the two seasons.
- 31. Cotassium uptake by leaves at different prowth stages of soybean varieties in the two seasons.
- 32. Fotassium uptake by pods, shells and seeds of soybean varieties in the two seesons.
- 53. Sotassium uptake by plants at different growth stages of soybean varieties in the two seasons.
- 34. Protein content, protein jield, cil content and cil jield of poybean varieties in the two sessons.

LIST OF FIGURES

- 1. Neether data for the period from June 1980 to January 1981.
- 2. Layout plan
- 5. Variation on total drymatter production per plant at harvest.
- 4. Varietal variation on number of pode per bearing node.
- 5. Varietal variation on number of seeds per pod.
- 6. Variatal variation on number of pods per plant.
- 7. Verietal variation on weight of pode per plant.
- 3. Variatal variation on number of soudd per plant.
- 9. Varietal variation on seed yield.
- 10. Variatal variation on stover yield.
- 11. Variatal variation on total nitrogen uptake by plants at harvest.
- 12. Varietal variation on total phosphorus uptake by plants at harvest.
- 13. Varietal variation on total potageium u take by plants at hervest.
- 14. Varietal variation on protein contant of soybean Beads.
- 15. Varietal variation on protein yield.
- 16. Varietal variation on oil content of coybean seedu.
- 17. Varietal veriation on oil yield.

INTRODUCTION

IURRODUCTI OF

Soybean is considered to be an important source of edible plant protein and vegetable oil in many countries, especially as it contains about 40 per cont protein and 20 per cent oil. Though it had been accepted for large scale cultivation in many countries and though etter to were node to introduce this crop into India since long, its cultivation had not so far been taken up on a large scale in India. The main reasons for the poor acceptance of aybean as a connercially important crop in this country are considered to be the poor consuler acceptability of the crop produce and the non-availability of suitable varieties and production technology. To get over these difficulties, large scale exprimental work was done in several research centres in India as part of the All India Co-ordinated Soybean Improvement Project from the 1960's. In a similar work done at the IAPI Sub Contre, Coimbatore with the primary objective of selecting variaties suitable for South India, a large geruplana material of over 1000 types were screened. This work indicated that acveral varieties came up well in South Indian conditions and about 25 varieties were found to be most promising. The parformance of these variaties ves tested at the College of Horticulture for three years since

1976. This initial screening work indicated uide difference in the performance of these soybean variaties both within a beasen and also between seasons. With a view to study the performance of the initially screened superior variaties further in relatively large plots, the present investigation was taken up. There were 13 variaties included in this trial during the first season (June to October) and 14 in the second season (October to January).

The primary objectives of the study were

- (1) To study the performance of soybean variaties and to select superior variaties suited to Karala.
- (2) To study the contarative performance of the variation in the south west and north east mussion second of Kerala.
- (3) To study the matricent uptake pattern of the variatios.

REVIEW OF LITERATURE

REVICE OF LICELAIVEE

Vield potential is considered to be the most haportant parameter for the selection of a crop variety. Towever this character is the end result of the interaction of a number of other, often interrelated characters.

ide variations in the seed yield and associated characters in soybean varieties have been reported by wany workers. A brief review of the work done on the performance of different varieties of soybean in India and abroad is given below.

I. Growth characters

A. Jarietal comparison on growth characters

(a) Scint of plant

Naw and Lenon (1971) reported that plant height veried from 12.6 cm to 49.6 cm in their stud, with 37 soybean cultivers at Colubatore. The same authors in 1970 observed variations in height (15.00 to 57.75 cm) abong placebean cultivers tested at the same centre. Significant differences in plant height of soybean variation under the same maturity group was reported by Decma (1979). Singh and Framed (1979) reported signifleant variation in plant height abong seven acybean variation tested and he observed that the canada height uss recorded by the variaty of 39624, which was at par with 00 53290, but superior to all other variation vid., 0 7034, 0 39021, 00 14437, Improved selican and Drag. Similar significant variatal variation in plant height were reported by Rajasekharen et al., 1900 and Vilioli, 1901.

Veeraswany and Hatimaswany (1975), Cosea et al. (1979) and Pajasekharan et al. (1960), observed positive correlation between plant height at paturity and need yield plant⁻¹. Flant height at first flower anthosis was significantly correlated with yield (AV300, 1976). Corcher (1976) reported that tell varieties like Vada, Supiter, Inproved editors, Colombus and Calland were the Highest yielders.

Gilioli (1901) in a field experiment found that in the early growth stages plant height was related to seed size.

To positive correlation between plant neight and grain yield was observed by Choudhary et al. (1977).

Latel et al. (1976) observed that the number of branches and leaves plant⁻¹ were higher in late Laturing cultivars and they were the highest yielders also. Payo (1977) reported significant variation in number of branches plant⁻¹ among three soybean cultivars tosted. Similar significant variation in number of branches plant⁻¹ was reported by Singh and Irased (1975). They also observed that the number of branches lant⁻¹ was unsimus (5.50) in the variety 70 59521 which was similicantly superior to 70 14437 and Bragg, but on par with all other variation tented vin., 10 7034, 70 63296, 70 39624 and Improved chican. But Bajasekharen et al. (1968) did not observe any significant difference in number of branches per glant about the 60 variables tested.

Shanshidin and about (1970) observed jositive correlation between number of branches plant⁻¹ and weight of seed plant⁻¹ in cultivors Brags, with the 71 and beside. "Suber of branches should positive correlation with days to flowering, number of pode plant⁻¹ and cost yield; negative correlation with 100 weed weight and number of seeds pod⁻¹ (Sajasekharan et al., 1900).

(c) "under and weight of nodules per plant

"eiss (1949) reported genetic differences in nodulation of soybean lines. Tober et al. (1971) observed that in tixed <u>Whisebium jaconicum</u> opulations, the competitive ability of strains in forthing nodules is influenced by the host genetype, planting date, temperature and their relative numerical strength.

(d) Prowth anol, dis

According to ever et al. (1,00) and Buttery (1,00), soybeans did not exhibit an optimum lear area index. Hencey and Heber (1971a) observed variation in cropprowth rate ranging from 0.0 to 14.9 ${\rm gm}^{-2}$ day⁻¹ in soybeen varieties.

According to Shibles et al. (1975), cultivors differed in photosynthesis independently of leaf area index. Tiveri et al. (1977) observed positive correlation between LAI and yield plant⁻¹.

To relationship between leaf area and seed yield was reported by AVECO, 1976. Sentos Filho et al. (1979) also observed similar results. The same authors again observed varietal differences in the leaf area index (SAT) and not assimilation rate (TAR). The varieties fiel selection 8 and Fol selection 5 exhibited the highest leaf area indices on 90th day and the values were 4.79 and 4.25 respectively. But highest NAT was noticed on 20th day in the CAT decreased to zero at 76th day after everyence in both the eases.

enchulov et al. (1900) reported that one late cultiver WTTS -1 had a maximum leaf area of $0.400 \text{ m}^2 \text{ ha}^1$, NAT of 1.79 g m² and seed yield of 0.62 t ha⁻¹. Respective values for another late cultivar, 'Romeonolka' were 75,000 m² ha⁻¹, 2.45 g m⁻² and 1.75 t ha⁻¹ and for a mid late cultiver were 72,700 m² ha⁻¹, 2.09 g m⁻² and 1.5 t ha⁻¹.

(c) Dry metter production

Forst and Eintcher (1951) observed that the increase in dry weight of soybean was slow during initial stages of growth and ragid thereafter. Vegetative growth of soybean cessed with the commencement of need development (Sowell, 1955). Drager et al. (1969) observed algorithment difference in the photosynthetic ability of soybean variatios. The rate of photosynthesis for seedlings of 36 variaties or soybean ranged from 12 mg of 00_2 dm⁻² hr⁻¹ in matterson to 24 mg of 00_2 dm⁻² hr⁻¹ in Richland et enturated light intensity (Curtie et al., 1969). The highest variated difference in photosynthesis observed by Jeffers and Shibles (1967) was a mg 00_2 dm⁻² hr⁻¹ while Hansen (1972) reported differences upto 2 g 00_2 m⁻² hr⁻¹ in soybean coltivars.

Ashley (1977) noticed positive correlation between a_{a} parent photosynthetic rates of loss complete and yield. The study involving three soybean cultivers, significant varietal difference in dry patter yield was reported by Dryant et al. (1979). According to Johnson and Sajor (1979), the above ground yield was positively correlated with goed yield.

(f) Turbor of days to flowering

Funder of days required for first flowering in soybeen varieties ranged from 27.0 to 90.5 days and for 50 per cent flowering the range was 20.5 to 50.7 days (New and Conon, 1971). They had classified the variaties 70 39-21, Ingroved Selican and ANO-15 as early paturing. (3) Days to maturity

Eaw and Henon (1971) observed a varietal variation of 70.3 to 120.7 days for naturity, among 37 soybeen varieties tested under Coimbatore condition (11°10). The varieties TO 39024, -O 39021, Devis, Improved (elicar, onetta, and Prage took 91.3, 04.2, 1.7, 05.6, 70.3 and 72.2 days respectively, for maturity. In another varietal trial involving 51 varieties, the case authors in 1970 observed a varietal variation of 02.17 to 109.76 days for maturity. Saxona and andey (1971) also reported varietal difference in the maturity of 16 soybean varieties at antnagar.

(i) Sumber of nodes per plant

Saw and Lenon (1971) reported that the number of nodes per plant varied from 6.8 to 17.4 among 37 soybean varieties tested and the varieties SC 39800 and C 7034 recorded the highest values. In another trial involving 31 genotypes the same authors in 1976 confirmed the superiority of the above varieties with respect to this character.

Eiwari et al. (1977) reported that the number of nodes remained almost the case in all the variaties studied except in cultivare Sb-1 and Seconds.

3. Seasonal offects on growth characters

In general, aid season sowing gave tellor glants congaled to early and late sowing ones (feise et al., 1950; folor and fartter, 1954; fartwig, 1954; Abel, 1961; and forfiel, 1961).

Byth (1965) observed an increase in plant height, node number, intermode longth, days to flowering and days to maturity when day longth is changed from 5 to 16 hours. higher (1976) reported that when day longth is increased by maif-on hour, the number of days to flower and days to enturity were also increased.

Solution and Jobehlar-Sonarnejed (1970) observed a decrease in the length of vejetative place with decrease in temperature, in all the 10 cultivare tested. They further noticed that the rate of growth and plant height were preater in high temperature and long photoperiods.

Graves and Le Cutchen (1970) in a trial at lian with eight poybean cultivers and three dates of powing (15th Lay, 30th my and 15th July) noticed decreased liant height due to deleged sowing.

oduar and Pegg (1)70) observed that the total dry volght of glant tops, dry weight of steps and matter of nodes glant⁻¹ were reduced in low headdit, environment. Invironmental factors such as altitude, latitude, day longth, mailuan tongorature and minimum temperature and no

similicant effect on plant height or number of days from flowering to caturity (Thigham et al., 1970). Funnah and Cark (1900) observed significant genotype x environment interaction on plant height at maturity and number of nodes plant⁻¹.

highen and Hinor (1973) reported that optimum air temperature for photosynthesis in soybean was 25 to 50°C. They also reported that uplature deficiency during vegetative phase resulted in reduced plant prowth.

To seasonal difference in LAI was noted in three cultivars tested by Tishirl et al. (1950). Tecrease in that height, loaf dry weight, step dry weight and leaf area per thank due to delayed sowing from 15th hay to 30th any was reported by repeate et al. (1951) in Egypt.

Singh et al. (1.73) observed seasonal variation in flowering and naturity of 10 soybean cultivars tested in Paralregion of Sthar Fradesh. All the variaties grown from Setober to Pecember took longer periods to flower and nature while the same variaties, when planted during Se tember-Setober took minimum time. Se attributed low temperature to be the reason for delayed flowering and maturity in the former season.

In an experiment at continuous involving six varieties and different dates of sowing in two seasons (arch to may and June to November), candey et al. (1977)

observed that the number of days to flowering was influenced by sowing dates in both the seasons. The effect was more carked in late than in early caturing genotypes. arly varieties were more sensitive to temperature than to length of dark period and in late maturing types the reverse was true.

II. Yield and yield attributes

/. Verietal comparison

(a) Tield attributes

Now and Henon (1971) observed significant varietal differences in number of pods plant⁻¹, number of seeds lant⁻¹ and weight of seed plant⁻¹ in 37 soybean varieties tested and the respective values ranged between 7.9 to 7.1, 11.1 to 159.9 and 1.42 g to 10.70 g. In all these characters 30 7034 was superior. The same authors in 1970 confirmed the superiority of this variety with regard to the above characters.

Oslor and Cartter (1959) and Sajasekharan et al. (1980) also reported varietal variation in seed weight glant⁷¹ soybean.

(b) Hold

In an experiment involving 16 varieties, Jaxena and Pandey (1971) observed that the variety Pragg was consistently superior to the other varieties tested, with regard to yield. remainer (1975) observed no significant varietal difference in field among 36 varieties tested. But the highest yield of 975 hg hs⁻¹ was recorded by JD 2750 followed by UD 39624.

Sigli et al. (1975) observed an yield variation of 1500 kg ha⁻¹ to 1660 kg ha⁻¹ among three boybban cultivers tested. Condite et al. (1975) reported variation in seed yield ranging from 09 to 2440 kg ha⁻¹ among 10 variation tested. Agerual and Tarang (1975) obtained maximum seed yield of 1720 kg ha⁻¹ with cultivar Bragg followed by C_{0} Fo.1 and Clark 63.

In a varietal trial with six cultivars enger (1976) observed the variety Julitar as the highest yielder with an yield of 001 kg ha⁻¹. In the same trial, the cultivers 2 = 2 = 3 and Febroved elican also gave high yields but they sere found to be susceptible to diseases. (atel et al. (1974) in a trial with 12 soybean cultivars observed that the cultivar dataton 266 was the highest yielder.

Sinch and Frasce (1979) observed an field variatin of (0) kg to 1950 kg ha⁻¹ along seven soybean cultivers tested, the highest fielder being cultiver 0.05290. Seed field variation of 362 to 1145 kg ha⁻¹ was observed with eight soybean cultivers under Srazil conditions (Bahlan, 1975).

Pifforences in seed yield with soll type was reported by urtas and Spann (1979). They observed variation in sood gield renging from 2600 kg ha⁻¹ in cultiver Columbus to 4630 kg ha⁻¹ in cultiver Codgeon on a calcareous soil and 500 kg ha⁻¹ in cultiver Steele to 3490 kg ha⁻¹ in cultiver Summes on a clay soil.

Dejaschharan et al. (1900) obteined an yield of 5640 hg ha⁻¹ under Coimbatore conditions for the variety 500-13.

According to Judy (1981) the most stable variaties with regard to yield at 0 to 10° latitude were Davis and Forrest. But for 10 to 20° latitude the variaties were Bossier, Davis and Juditer. He also reported that stability of cultivary varied from continent to continent than from second to person.

(c) Correlation between field and field components

đ

Somena and landey (1971) reported that seed field use associated with characters like number of pods plant⁻¹, 1000 seed weight, and number of days to maturity and they account for p0 per cent variation in seed yield of sepsean. Vectowary and intimaswary (1975) observed that the number of pods plant⁻¹ had the greatest direct effect on seed field than any other associated character. They further reported that the number of pods plant⁻¹ will serve as measured to compare of jield in soybean.

Choudear, et al. (1977) reported that grain field not notually influenced only by the number of pode last-1

and test weight of seeds. A significant positive correlation between the weight of seeds lant⁻¹ and the number of pode plant⁻¹ was reported by Shansuddin and Salman (1970).

Success and Obabola (1979) in a field experiment with 10 lines of soybean observed that the seed yield was weakly correlated with pod and seed number plant⁻¹. They also reported that the seed yield was inversely correlated with number of seeds pod^{-1} .

In an experiment with 56 boybean cultivars, from different countries, it was reported by hoses of al. (1979) that the seed yield plant⁻¹ was correlated with lateness of naturity, plant height, 1990 seed weight, number of pods plant⁻¹ and protein yield plant⁻¹.

Cajasoliharan et al. (1900) noticed negative correlation between 100 seed weight and number of pois plant⁻¹ and yield and positive correlation with number of seeds pod^{-1} .

3. Seasonal effects on yield and yield attributes

According to Cartter and Hopper (1942) seasonal conditions play an important role in modifying the size of soybean seeds. Osler and Cartter (1954) found that seed weight use not appreciably affected by delay in planting, elthough there use a difference in varieties in this respect.

higher (1976) reported that number of jods plant-1

was considerably higher for all the cultivars under long day conditions.

Invironmental factors such as altitude, latitude, day length, maximum temperature, and minimum temperature had no significant effect on seed yield, seed weight and mumber of gods glant⁻¹ in 10 soybean varieties (mights et al., 1970).

Funch and Early (1900) observed significant genetype : environment interaction on number of pode node⁻¹, test weight and pool yield in poybean.

occrs (1900) reported that extremely early planting use not desirable but late may or June planting would give best yields. Similar results were reported by Cartwig (1954), Gray (1959), Geviness and Smith (1955), Abel (1961) and beffel (1961).

In an experiment at maharashtra, Lad and Jadhav (1977) observed varietal difference in seed yield due to sowing dates. The variety Clark 05 gave highest used yield when glanting was done between 25th June and 20th August while sowing dates between 11th June and 20th August were best for Bragg. They also observed that the lowest gields were obtained from crops sown on 12th Bovember.

Decreased seed yield due to delay in soving from 15th may was reported by Graves and De Outcher (1970) in a study involving eight soybean cultivers in filen.

Vield of soybean is most affected by moisture stress during the pod filling period (Dusek et al., 1971 and Doss et al., 1974). Decrease in the number of pods plant⁻¹ and reduction in seed yield due to moisture stress during flowering were reported by Dusek et al. (1971). They also reported that the number of seeds pod⁻¹ remained unaffected due to moisture stress during flowering.

Thighan and Minor (1978) reported that in Fuerto Rico, poybean yields were highest when plantings were done in Nay or June and lowest when planted in December and January.

III. Contant and uptake of fertilizer nutrients

Parcentages of N, P and K in the soybean plant parts at macessive stages of plant development ware determined by Hanway and Veber (1971b) and it was observed that the composition of plant parts from different verifies was usually similar. They also found a decline in nitrogen content in plant parts with age. Bateglia et al. (1977) reported that there were significant variated differences in the content of all elements in soybean seeds, particularly for phosphorus.

According to Bighan and Ninor (1978) potassium contant of poybeans increased with increase in temperature upto 32°C. They also reported that nitrogen content in

plant tissue and seeds of uninoculated plants increased by increasing soil temperature from 19° to 30°.

Latimell and Svans (1951) indicated that the yield of poybeen was closely appociated with the amount of nitrogon that accuralated within the plant. Geed yield use significantly correlated with nitrogen content 71 days after planting while there was no correlation with nitrogen content 50 days after planting (AVHDC, 1976). Reana (1901) in a study with soybean variety 30 39821 observed that the nitrogen content of stem and highest in the initial stages and it doclined markedly with advancement of crop growth. She also found that there was a slight increase in the nitrogen content of leaves from 30th day to 60th day and a sharp decline thereafte . Hitrogen utake by stan and leaves should a conspicuous increase between 30th and 50th day cash a reduction in the advanced stage of ore; growth. A gradual decrease in phosphorus and stassium contents of the step and leaves with maturity was also observed by her. Uptakes of phosphorus and potessium by sten and leaves increased upto 60th day, after which there was a decline. She further observed a steady and conspicatous increase in the total uptake of phosphorus and potensium by plants upto 90th day and after that there was a weduel reduction.

IV. malit/ asports

A. (a) Varietal comparison on oil content

Shibles et al. (1975) reported that the seeds of modern cultivers of soybeen contain about 21 per cent fat. In an experiment with three soybeen cultivers, Agerval and Nerrog (1975) obtained the highest seed oil content of 24.02 per cent in cultiver Bragg.

Albert (1975) found that oil content of good was highest in mid early and mid late cultivars (21.8 to 21.75) and lowest in late cultivars (17.75). Similar result was obtained by Sood et al. (1977). Albert et al. (1976) in a study involving 10 cultivars, observed that the seed contents of protein and lipids depended more on the biological characteristics of a cultivar then an soil, climate and weather conditions.

Tang et al. (1977) in a study involving 12 soybern cultivers at six sites observed verifiend in seed oil content between variaties and sites. A variatel variation of 10.44 to 27.30° of oil was observed by Good et al.(1900). (b) Variatel variation in protein content

Souds of modern cultivers were reported to contain about 41 per cont protein (Shibles et al., 1975). Approal and Marcag (1975) in a trial involving three soybean cultivers reported that cultiver Bragg had the highest protein content of 41.02 per cent. Variation in seed protein content of soybean seeds ranging from 29.5 to 53.3 per cent was observed by Taira et al. (1975).

Lee (1977) found that the protein content of 06 obybeen verietics from Morea, Japan and U.S.A. varied from 54.4 to 50.6 per sent and was negatively correlated with oil content. Someter and Poscolt (1977) also reported negative correlation between protein and oil content of seeds. Thirm (1970) reported that early varieties had higher protein and lower oil content than late varieties.

Schuster and Sospelt (1977) in a veriated trial at three different sites observed that site had preater influence on motein content then veriaties.

Soul at al. (1953) in a study involving 30 providing soybean lines in Horyans observed a variatal variation of 29.07 to 40.07 per cent of protein. They also found that genetypes Ankur, 1K 75-92, 20 73-94 and 30 73-94 were superior based on yield and quality.

3. Second offects on oil and rotein content of soybean seed

Viljoen (1957) and Seiss et al.(1955) have reported a decrease in oil content and a olight increase in protein content due to delayed glanting. Houell and Cartter (1953) observed correlation between oil percentage and maximum temperature and oil percentage and minimum temperature. They obtained highest correlation coefficient values between oil percentage and temperature during 20 to 30 and 30 to 40 days before maturity.

highen and Hinor (1.7.) did not observe any variation in protein contant ad all contant of pophean seeds due to different planting dates. Decline in all content due to delayed souin, was reported by Valdivia (1979).

MATERIALS AND METHODS

inseries about never term

HAT DEALS AND ENTERS

The present investigation was undertaken at the College of Corticulture, Vellanikkers, with a view to select soybean variatics suitable for the agroelizatic conditions of Serela.

The experiment was conducted in the Instructional Farm attached to the College of Morticulture, Vellanishare. The experimental site is situated at 10° 52° I latitude. 76° 10° - longitude and at an altitude of 22.25 metric showe mean son lovel.

Cropping history of the experimental field

Julk eroy of turneric was prown in the provious year before which the area was occupied by rubber trees.

The soil of the experimental area is deep well drained sand, clay loca.

Sata on physical and chemical characteristics of the soil are jiven in Jable 1.

leb10 1

echanical composition and chemical properties of soil

A. cohenical comosition

clay		29.75
1220	-	01.20
ine oand	-	22 .1 01
foor o acad	-	20.33

). Chemical properties

Constituent	Content in Seil	Cating	ethods used for estilation
otal nitrojan	0.050	edian	icrohjoldani
Available mosphorus	2.00 102	Ton	In Dray-1 extract, chlorostannos roduced solybdo- phosphoric blue colour method
Available Jotapsium	140 بينين	المرا	In neutral normal amonium acctate extract - Plame photometric
X	4.5	Acid	1:2.5 soil:water suspension using a grader

Jeason and alignete

The area onjoys a hulid trojical elicate.

The experiment was conducted in two beasons coinciding with the south wost and north each consoons of 1960. The first erop was raised between June 10th and October 15th and second erop was taken between Scheber 35th and January 27th. The secondopical date for the first and second secons are presented in Table 2 and 3 respectively and Fig. 1.

A summy of the in ortant climatic persuadors during the crass second creaters below.

articulars	Jeason I	Geason (1
1. Bakly average of daily caxican tooperature (*3) (range)	20 . 33 - 32.40	5 1. 50 - 34.03
2. Sockly everage of daily cinicum tooperature (*3) (renge)	21.17 - 23.00	23.49 - 25.03
(). (elative insidity formon ()) (renje)	J9.JU - 97.14	62 .1 0 - 92.20
4. Delative hugidity afternoon () (range)	61.43 - 94.29	45.4 - 76.30
5. Cotal rainfall received (am)	31.0.20	1.0.10
6. echly average Day length (hours) (range)	11.45 - 12. 39	11.21 - 11.41

Even shough the distribution of roinfall less satisfactory during the first erop season, a good account of the reinfall was received during the first 10 weeks after sowing and for the relating period the reinfall was low. During the second erop season the total puntity and distribution of rainfall was low and undetisfactory and as such the erop suffered a lot due to soluture stress is the halor part of the growth mass.

The secle of the variation used for the trial were originally obtained from the state of centre.

			Centrer.	ature °0	clativ	e muidity	ാമ്യ
Lonth	Standard ueek	Coinfall (a)	ADD STOL		Forenoo:	Afternoon	length (hours)
June	25	45.40	31.1G	23.34	94 .25	ു.ം	12 .3 8
June	24	14.50	32.20	22.94	95.00	76.0	12.39
June	29	40.76	29.50	23.21	95.33	94.29	12.39
June	26	36.17	2J .3 0	22.66	94.29	93.57	12.59
July	27	43.29	20.03	22 .2 6	94.00		12.30
July	2 6	55.97	29.06	22.30	95.00	91.29	12.37
Ju l y	29	35.66	29 .7 9	22.05	95.43	93.57	12.35
July	30	29.14	29.93	22.10	95.71	2.71	12.33
August	31	7.54	29.03	22.33	95.00	SO.14	12.30
August	32	12.03	30.19	22.51	95.29	06.43	12.27
August	3 5	50 .57	30.47	22.14	97.14	82.29	12.24
August	34	12.90	29.70	22.56	93 .1 4	84.14	12.19
Aucust	3 5	11.11	30.44	22.24	95.00	73.43	12.15
Jepte ber	3 6	2.09	30.69	22.37	95.71	67.43	12.10
പ്പോന്നു. പ്രൂൂന്നും പ്രംഗം പ്രംഗം പ്രൂപ്പോണ് പ്രംഗം പ്	37	0.03	51.64	23.36	95.71	61.43	12.05
estonier	5 0	2.9	32.43	22.79	J9.J5	ő2 . 70	12.02
Coptember	3 9	13.40	32.1 0	23.17	95.3	74.50	11.63
ctober	40	12.00	31.00	23.0	92.25	74.00	11.54
ctober	41	7.71	32.41	23.51	95 .7 0	69.70	11.49
ctober	42	10.36	32.21	21.17	97.70	72.0	11.45

Table 2. eather data (weekly average) for the first season (June to October 1960)

			Comporaturo •0		colotive hundity		Day
lonth	tanlard veek	lainfall (121)	: axiran	intan	"orenoon	Afternoon	length (hours)
October	45	4.71	3 1. 50	23.05	90.90	65 .7 0	11.41
ം:ംം	44	3.23	32.00	29.57	ി.30	49.03	11.37
Tovolber	49	4.03	32.75	83 .05	90.50	62.3	11.33
loveuber	46	12.74	32.00	2.97	J2 ₊2 0	70.90	11.29
Covellber	47	14.23	31.00	23.11	് ച.1 0	76.36	11.26
november	40	0.00	31.79	21.90	JG.10	69.90	11.24
December	49	0 0. C	32.07	20.03	37.60	67.40	11.22
Deceliber	50	0.00	33.04	22.64	09.90	63.70	11.21
locesber	51	0.00	32.29	22.54	4.70	62.40	11.21
Deceuber	52	0.00	31.90	21.30	35.20	65 .1 0	11.21
January	1	0.00	33.53	20.40	32.70	96 .1 0	11.24
January	2	0.00	32.00	20.47	2.10	40.00	11.26
January	3	0.00	33.14	22.09	02 . 96	45.40	11.28
January	4	0.00	34.03	22.00	22 . (x)	49.10	11.20

التاري بيان الدين عامر بالنام المرجمين بالأل بالمراقع بالمرجمين فسيره

Table 3. eather data (weakly avarage) for the second season (October 1980 to January 1981)

Coimbatore during 1976. They were subjected to initial selection at the College of Forticulture. Vellanitaara. From this trial 14 varieties were found provising and were used for the present trial.

The secie were tested for visibility and were found to give satisfactory germination.

<u>Irectanto</u>

The treatments consisted of the following 14 variables.

- 1. 139021
- 14437
- 3. 70 26691
- 4. Inproved colicon
- 5. 20 92814
- 6. Anlan
- 7. :730-10
- J. mail
- 10. 7 39/24
- 11. Devic
- 12. 30 2750
- 13. 2 03290
- 14. 0 2506

During the first season the variety 10 25.6 could not be included for the trial.

Field culture

The experimental plot was ploughed with tractor, stubbles were removed, clods were broken and levelled. The field was then laid out into blocks and plots as par the experimental design. Beds of size 4.5 x 1.0 m were laid out in the plots with channels of 20 on width in between. rowision for proper drainage was also made in the plots.

Licing and fortilizer a plication

Line at the rate of 500 kJ $\operatorname{Ga}(M)_2$ for hectare was broadcast on each bed and raised in 10 days prior to sould. In addition, all the plots received a uniform dose of 20 kJ T. O kJ P₂O₅ and OO kJ H₂O for hectare. The entire quantity of nitrogenous, phosphatic and potessic fortilizors was a field as bocal dressing.

Cortilizero usoù

Pertilizors with the following analysis were used for the experiment.

Assonius sulphate		200 N
Superphosphate	495	16, P ₂ 0 ₅
huriate of potesh	-	60 K ₂ 0

Deci, n and lay out

The experiment was hold out in readounsed block design with 5 reglications. The procedure followed for the allocation of treatments to different glots was in accordance with readou number tables (Fisher and ates, 1965). The details of the lay out are as follows -

Sunder of Slocks		3
Cumber of plots per block	-	13 for a crop and 14 for B crop
Cumber of bedg per plot	•	3
cross lot also	-	5 x 4 m
Tet plot cize	-	4.5 g x 3.0 m
The le cost of		namena teo Oto O

The lay out plan is aboun in Pig. 2.

owing

Souings of the first and second crops were done respectively on 19th June and 20th October, 1900.

Thirty poeds were dibbled in each row of 1.0 a width at a distance of 45 cm between rows. Realings were thinned out a usek after sowing to saintain a population of 20 plants per row, thus giving an average spacing of 5 cm between plants. The total number of plants in a bod was fixed as 200.

After oultivation

Candboeding and corthing up were done one conthe after sowing.

lant arotection

A wild attack of loaf eating caterullars was notleed during the proflemening period which was affectively controlled by spraying s.2 Sevin.

Darvesting

Laturity of the crop was decided by complete shedding of leaves. Servesting was done by cutting the plants at the base with sickles. The varieties took 125 - 130 days for maturity in the first season while in the second season they could be hervested in 03 - 05 days.

Observations recorded

1. Prouth characters

No plants were solected at rendom after eliminating the border rows and all the blocktric observations were recorded from these plants at various growth stages. A separate sampling area was marked for destructive sampling to record the number and weight of root nodules and for growth analysis. From the sample plants collected from this area, the different plant parts such as stem, leaves, shells and seeds were separated and used for chemical analysis subsequently.

(a) Point of plants

From the observation plants the hoight was monsured from the base to the terminal buds and the average height worked out. This observation was taken at different growth stages.

(b) Turbor of branches per dant

Tenber of branches and control on the observation plants at different growth stages and the averages calculated. (c) Unuber of nodules per plant

This observation was taken at different growth stages connencing from 40th day. Insta were pulled out carefully after loosening the soll around thes. Ath the help of a hand fork. The total number of root nodules was counted and the average worked out.

(d) Cumber of effective nodules per plant

From the total number of root nodules, those with pink colour in the centre were counted separately and the averages were recorded as number of offective modules per plant.

(c) eight of nodules per plant

Prosh volght of the total mader of nodules was taken and from this the average weight of nodules ger glant was calculated.

(f) Bry natur production

After eliminating the border room, five glants each vero collected at different growth stages from the area warked for destructive scapling. The plant parts such as lanves, stems, shells and seeds were soparated and their dry weights recorded separately. The total dry weight in such stage was veried out by adding the dry weight of the individual couponents.

(3) Leaf area index (341)

Least area was worked out by following the 'gravillatric lathod' (duck and olas, 1956). Pive plants were apposed

and their leaves were separated. Ion leaves were selected at rendom and their outlines were traced accurately with pepcil on quality bond paper of known area per unit weight. The traced portions were cut out corefully and wel, hed. Prop this, the actual area of the sample leaf was calculated.

The leaves were then dried in a hot air oven at 70 to 10 to constant weights and the dry weights of tan leaves and the remaining leaves were recorded separately. Loaf area was then calculated usin; the area weight relationship and total dry weight of leaves.

IAI was calculated as follows:

(<u>1+A</u>)

(h) Pot appiliation rate (TAL)

The procedure given by fatson (1950) as medified by "uttory (1970) and followed for calculating the me following formula was used to arrive at the not essimilation rate.

whore.

= lotal dry selent of plants n⁻² at time to 2 - Potal dry weight of plants m⁻² at time t₁ 1 t-t1 = 'ine interval in days

Ap = 3.82 at the to

A, = GAI at time t,

(i) Dega to 50 per cent flowering

The total number of plants flowered was sounded daily from five rous in each plot and the date on which 50 per cent of the plants flowered was taken as the date of flowering.

(j) have to saturity

The number of days from sowing to hervist use teach as days to maturity.

11. ont-hervest observations

(c) Furber of pod bearing nodes per plant

The motion of pole bourbant and any solution of the second bill the second of the state of the second of the second of the second of the solution of the second second solution of the second s

Pron the number of pode per plant and number of pod bearing nodes, the number of pode per pod bearing node was calculated.

to, the total of the second to the total (c)

Fuenty pods were selected at random from the observation plants, the total number of seeds counted and everage worked out.

(d) 1000 seed weight

Pron each plot 100 seeds were taken at rando., end their dry weight recorded. From tids 1000 sood weight was calculated. (c) Sumber of pode per plant

Average number of pods per plant was worked out by counting the total number of pods from the observation plants at harvest.

(f) cight of pode per plant

Average weight of pode per plant was calculated by recording the weight of total number of pode from the observation plants.

(g) Shelling percentage

Shelling percentage was calculated at harvest using the following formula.

Shelling percentage = Dry weight of seeds x 100

(h) Jumber of seeds per plant

The total number of seels produced in the observation plants was counted and the average worked out.

(i) Tield of seeis

The pods horvested from the det area were sandried for three days, threshed, winnowed, cleaned and the weight of clean seeds recorded. Wield was expressed as $n_{\rm C}$ ha⁻¹. (j) Wield of stover

Stover obtained from each net plot was conduied for three days and total weight was recorded. Ticld was expressed in up ha⁻¹.

(i:) Harvost index

Harvest index was calculated as follows.

Horvest index = 7 econ

hore.

Tecon = Pry weight of seed

T blol - Total dry weight of plants

III. Jontent and untake of cajor nutrients

A. Extrogen, phosphorus and potessium contents of plants Plant samples collected for recording dry weights

were used for chemical analysis. The nitrogen, prospherus and potassium contents of stem, leaves, pods, chells and woold at different stages of plant growth were determined by using Auto analyser, Spectrophotometer (Spectronic 20) and CE Flame Chotometer (Jackson, 1996).

5. Sptake of nutrients

The total uptake of nitrogen, phosphorus and potabolus by the plant and individual flast parts were calculated at different stages of growth from the nutrient content and dry weights of plant parts.

W. mality characters

(n) rotain content of seeds

The protein content of mode was calculated by multiplying the altrogen content of seeds with the factor 0.25 (f.t.t.c., 1990).

(b) rotain sield

The protein yield use calculated from the protein

content of seeds and total seed yield and expressed in kg ha-1.

(c) 011 content of geods

The oil content of oven dried seeds was estimated by using Soxhlet apparatus (A.O.C.S., 1971) and expressed as percentage.

(d) 0il yield

The oil yield was estimated from the oil content of seeds and total yield of seeds and expressed as kg ha".

V. Statistical enalysis

Data were enalyged statistically by employing the analysis of variance technique as suggested by Cochran and Cox (1965). Simple and multiple linear correlation coefficients between yield and growth characters and yield and yield contributing characters were worked out as per the techniques suggested by Snedecor and Cochran (1967).

The characters which were significantly correlated with yield, were selected for forming the multiple linear repression equation (selection index) as a basis for selecting superior variaties. It was of the form

number of quantitative characters n **4** b a constant . Y

yield per plant -

b_i • the partial regression coefficient of Y on x_i

x, = the mean value of the ith obsrecter

The coefficient of determination was also calculated to know the percentage variation explained by the regression equation. The partial regression coefficients were tested for significance using the Student's 't' test.

The independent variates of the regression function were replaced by their mean values for each variety to get an index score. This index score was used to assess the genetic worth of the material. The varieties were ranked according to these indices in the order of their magnitude and the promising varieties were identified.

Another method of selecting superior genotypes for further propagation was adopted on the assumption that the distribution of yield plot⁻¹ was normal.

According to this criterion these variaties which fell in the upper 5 per cent parties of the fitted normal curve were designated as superior.

RESULTS

.

RESULTS

Results of the experiment "Comparative performance of soybeen varieties" are presented below.

A. Growth characters

(a) Height of plant

The data on mean height of plants at various growth stages are presented in Table 4 and the analysis of variance in Appendix 1.

There was no significant varietal difference in plant height at any of the stages of plant growth in both the seasons. All the 14 varieties tried in this experiment showed more or less comparable plant height.

Plant height in the second season was considerably lower in all the varieties. For example the variety JN 2750 which recorded the highest plant height of 70.27 cm during the first essaon could record a plant height of 24.21 cm only during the second season.

(b) Number of branches per plant

The data on the number of branches per plant at various growth stages are presented in Table 4 and the analysis of variance in Appendix 1.

This observation was taken only in the first season and there was no significant difference in the number of branches per plant between varieties.

		liei.gh	t of plant	B (CEL)		Number of b plant	ranches p
	Pire	t season		Second e	66600	First	<u>aceson</u>
Freeteents	40th day after goving	60th day after souing	90th day after goving	40th day after soving	60th day after southa	40th day after souing	60th any after soving
1. BC 39821	28.94	41.88	62.63	11.18	20.01	1.66	4.90
2. BC 14437	28.10	39.37	57.61	12.16	19.42	1.86	4.48
3. EC 26691	26.02	44.63	66.20	12.78	20.03	1.80	5.67
4. Improved Pelicen	31.42	36.23	59,53	13.88	22.89	1.20	4.57
5. DC 92814	28.18	40.65	62.73	11.90	20.73	1.80	4.33
6. Ankur	31-37	40.87	59.81	11.47	19.40	1.53	4.83
7. PL90-18	28.70	36.72	58.96	11.77	19.92	0.60	4.48
8. Nonette	26.78	39 •93	66.88	11.57	20.79	1.06	4-37
9. Brogg	29.19	43.80	64.31	12.90	22.41	1.40	4.20
0. BC 39824	26.03	39-03	60.09	12.33	23,00	0.93	3.67
1. Devis	27.14	40.37	58.45	12.08	18.45	1.01	4 - 43
2. JN 2750	30.01	48.30	70.27	14.63	24.21	2.46	5.10
3. DC 63298	26.62	38.20	59 .95	13.84	24.26	1.46	4.17
4. BC 2586				12.33	24.65		
F test	115	NB	18	ns	NS	118	NS
SIPn ±	2.534	3.694	5.070	1.025	1.672	0.403	0.597
C.D. 5%	-		-	-	**	-	-

Table 4. Height of plant and number of branches per plant at different growth stages of soybeen varieties in the two secsons

(c) Number of root nodules per plant

The data on the number of root nodules per plant at various stages of plant growth are presented in Table 5 and the analysis of variance in Appendix 2.

The number of root nodules per plant did not differ significantly between varieties in both the seasons.

Comparison between stages in the first season indicated a gradual increase in the number of root nodules per plant upto 90th day. It was also noticed that the rate of production of root nodule was highest between 60th and 90th day. No consistent variation in the number of root nodules per plant between stages was noticed in the second season.

The number of root nodules per plant in the second season was considerably lower.

(d) Number of effective nodules per plant

The data on the number of effective nodules per plant are presented in Table 6 and the analysis of variance in Appendix 2.

The data revealed that there was no significant difference in the number of effective nodules per plant among varieties in both the seasons.

The number of effective nodules per plant was markedly less in the second season as compared to the first season.

		Rusbe	r of nodules per	plant			
		irst season	an a	Second sesson			
Treatments	40th day after soving	60th day after soving	90th day after souing	40th day after soving	60th day after soving		
1. 00 39621	0.522(1.900)	0 .979(2.428)	20.106(10.076)	1.007(3.327)	0.277(1.943)		
2. 30 14437	0.326(1.6212)	2.006(3.321)	18.399(9.643)	0.0993(1.412)	0.173(1.047)		
3. BC 26691	0.182(1.382)	2.352(3.572)	12.26517.895)	0.265(1.911)	0.144(1.715)		
4. Improved Felicen	0 •496(2•865)	3.779(4.460)	10.173(7.202)	0.458(2.364)	0 .728(2. 876)		
5. 10 92814	0.759(2.190)	2.009(3.323)	10.293(7.243)	0.461(2.370)	0.536(2.523)		
6. Ankur	0.844(2.285)	2 .440(3.633)	5.199(5.196)	0.428(2.298)	0.899(3.160)		
7. PLS0-18	0.298(1.577)	1.081(2.531)	26.829(11.624)	0.776(2.961)	0.916(3.139)		
8. Monetta	2.719(3.820)	4.087(4.629)	6.630(5.844)	0.892(3.150)	0.416(2.270)		
9. Bragg	1.596(2.996)	4.310(4.748)	26.079(11.463)	0.116(1.471)	0.300(2.000)		
10. EC 39824	0,979(2,428)	5.900(5.413)	27.589(11.7 88)	0 .672(2.77 5)	0.549(2.548)		
11. Davis	0.854(2.296)	8.378(6.549)	6.640(5.848)	0.149(1.577)	0.333(2.081)		
12. JII 2750	2.511(3.681)	3.619(4.50)	22.349(10.618)	0.284(1.959)	0.198(1.727)		
13. EC 63298	1.188(2.634)	5 .956(5.548)	12.505(7.970)	1.362(3.823)	0.519(2.490)		
14. 100 2586				0.003(1.130)	0.177(1.607)		
F test	TIS	TS	115	113	ns		
Simt	0.121	0.362	0.377	0.140	0.164		
C.D. at 5	-	-	-	-	-		

Table 5. Total number of nodules per plant at different growth stages of soybeen variaties in the two seasons.

Figures in parenthesis indicate $\sqrt{(x+1)}$ transformed value

Growth Table 6. Number of effective nodules and weight of nodules per plant at different stages of soybean varieties in the two seasons

•

	Number of	effective nodu	ules		Seight of 1	nodules per p	lent (g)
	First sesson	Second S	ocond seeson	F	irst seeson		Second seeson
Treatments	60th day after sowing	90th day after souing	60th day after sowing	40th day after sowing	60th day after sowing	90th day after eowing	60th day after soving
, 30 39821	0.329(1.626)	4.020(4.595)	0.000(1.000)	0.023(1.057)	0.052(1.125)	0.517(1.093)	0.001 (1.006)
, DC 14437	0.491(1.859)	4.943(5.071)	0.000(1.000)	0.033(1.080)	0.059(1.139)	0.229(1.464)	0.0002(1.001)
. EC 26691	0.771(2.203)	6 .688(5.869)	0.000(1.000)	0.013(1.083)	0 .1 55(1.333)	0.483(1.849)	0.0001(1.001)
. Inproved pelican	2.044(3.350)	6.859(5.941)	0.055(1.244)	0.028(1.067)	0.165(1.352)	0.187(1.391)	0.003(1.012)
. EC 92814	0.600(2.000)	4.156(4.667)	0.198(1.727)	0.068(1.158)	0.103(1.231)	0.383(1.707)	0.001(1.006)
. Anicur	0.498(1.869)	3.644(4.384)	0.607(2.661)	0.067(1.155)	0.065(1.152)	0.170(1.360)	0.008(1.058)
. PLS0-18	0.199(1.412)	8.379(6.550)	0.091(1.382)	0.014(1.034)	0.036(1.087)	0.456(1.811)	0.006(1.029)
. Popetta	0.617(2.021)	3.197(4.121)	0.100(1.414)	0.134(1.293)	0.113(1.252)	0.383(1.707)	0.0007(1.003)
Bragg	1.457(2.879)	6.154(5.637)	0.055(1.244)	0.115(1.254)	0.280(1.549)	0.654(2.067)	0.001(1.006)
D.SC 39824	1.944(3.274)	0.992(2.441)	0.233(1.824)	0.836(1.191)	0.376(1.697)	0.781(2.215)	0.002(1.009)
1.Devis	1.839(3.193)	3.988(4.576)	0.185(1.687)	0.046(1.110)	0.186(1.389)	0.129(1.283)	0.005(1.008)
2.JN 2750	1.498(2.914)	5 .927(5.535)	0.099(1.412)	0.128(1.282)	0.316(1.606)	0.641(2.050)	0.001(1.006)
3. 10 63298	1.448(2.871)	5.994(5.565)	0.222(1.794)	0.064(1.148)	0.286(1.559)	0.162(1.345)	0.003(1.013)
≸. ℃ 2586			0.055(1.244)				0.0003(1.001)
P test	1.15	11S	113	NB	NS	MB	ns
SEnt	0.175	0.374	0.047	0.015	0.037	0.045	0.0014
.D. at 50	-	-	-		-	-	-

Sigures in parenthesis indicate $\sqrt{(x+1)}$ transformed value

(e) Weight of root nodules per plant

Data on the weight of root nodules per plant at different growth stages are presented in Table 6 and the analysis of variance in Appendix 2.

The varieties did not show any significant difference in the weight of root nodules per plant in both the seasons.

Comparison between stages in the first season indicated a gradual increase in the weight of root nodules per plant upto 90th day.

As in the case of number of root nodules per plant, weight of root nodule per plant was also drastically less in second season as compared to first season in all the varieties.

(f) Total phytomass production per plant

The data on total phy tomass production per plant at different growth stages are presented in Table 7.

The analysis of variance is given in Appendix 3.

Varieties did not show any significant difference in the total phytomass production per plant in both the seasons.

It was also noticed that there was a gradual increase in the total phytomass production upto 90th day and a decline thereafter in all the varieties in the first season. But during the second season a steady increase in phytomass production was noticed throughout the crop growth period.

			phytomose season	production	per plent (Sec	e) and eeseor	
Tresteente	40th day after souing	ioth day after souths	90th day after souing	lisrvest	40th day after sowing	60th dey after sowing	Harvest
1. BC 39821	1.771	3.587	17.503	14.533	0.358	0.721	1.031.
2. BC 14437	1.603	4.785	17.917	10.500	0.364	0.873	1.150
3. 30 26691	1.133	5.090	18.439	18,200	0.423	0.950	1.126
4. Improved Pelicen	2.104	6.224	22.315	19.047	0.403	1.154	1.394
5. BC 92814	1.925	5.893	16.756	14.860	0.369	1.401	1.334
6. Ankur	2.132	3.618	17.533	10.833	0.291	0.933	1.174
7. PLSO-18	2.085	3.577	14.557	11.867	0.469	1.084	1.419
8. Monetta	1.635	4.779	16.039	16.033	0.581	0.709	1.186
9. Bregg	1.541	5 .237	24.758	21.633	0.430	0_830	1.181
10. BC 39824	1.847	4-837	22.148	16.047	0 -404	0.953	1.034
1. Devis	1.380	5.804	18.558	15.147	0.474	0.939	0.933
12. JT 2750	1.233	6.217	21,621	21.333	0.305	1.051	1.566
13. DC 63298	1.868	4.760	14.092	12.540	0.386	1.158	1.265
14.º BC 2586					0.555	0.775	1.852
F test	NS	NB	NS	NS	115	TIS	TIS .
SPat	0.391	1.450	3.130	3-243	0.0877	0.2433	0.169
C.D. at 5%	-	-	-	-	-	-	

Table 7.	Total phytomass	production per	plant at	different growth	a stages of soybean
	varieties in th	e tvo seasons.		•	

.

A dreatic decline in total phytomass production was noticed in the second season compared to first in all the varieties studied. For example the variety Bragg which recorded the highest dry weight value of 21.633g plant⁻¹ during first season could produce only a total phytomass of 1.181g plant⁻¹ during second season. (g) Leaf area index

The results on the leaf area index at various stages of plant growth are presented in Table 8 and the analysis of variance in Appendix 4.

The data revealed that the varieties did not differ significantly with respect to leaf area index on 40th and 60th days in both the seasons. But in the first season, there was significant difference in LAI on 90th day after sowing. At this stage the variety JN 2750 recorded the highest LAI of 8.094 which was on par with Improved Pelicen, FC 39824, Bragg, FC 26691, Davis, EC 39821, EC 92814 and Ankur. All the varieties except EC 14457 recorded highest LAI values on 90th day after sowing during this season. It was also noticed that the varieties in general recorded the highest LAI values on 90th day in the first season and on 60th day in the second season.

A comparison between seasons showed that the LAI of all the varieties was less in the second season.

			Leaf area	Lndex	ng yana dilika dikana Madila yang da ku ana ana ana ang		gm ⁻² day	
	Pirat	800000		Second s	<u>eazon</u>	First season		Second geoso
Prestments	40th day after bowing	60th day after sowing	90th day alter sowing	40th day after sowing	60th day after sowing	Between 40th & 60th day after gowing	Between 60th & 90th day after soving	40%h and Wth day after sowing
1. EC 39821 2. EC 14437 3. EC 26691	1.604 1.279 0.324	2.877 2.785 3.842	5.842 2.317 6.054	0•419 0•481 0•613	0.677 0.776 0.900	2 •30 8 4 •25 9 3•599	4 •293 2 •526 4 •475	1.278 1.632 1.523
4. Improved Pelican	1.774	3.531	8.076	0-493	1.144	5.441	3.092	2.407
5. EC 92814 6. Ankur 7. PLSO-18 8. Monetta 9. Bregg 0. EC 39824 1. Davis 2. JN 2750 3. EC 63298 4. EC 2586	1.556 1.631 1.478 1.335 1.247 1.593 1.161 1.152 1.325	4.071 2.460 2.386 3.111 4.286 3.861 4.304 5.024 3.214	5.336 5.211 4.152 4.144 7.767 7.792 5.874 8.094 4.115	0.471 0.366 0.623 0.798 0.550 0.550 0.580 0.461 0.506 0.458	1.053 0.857 0.957 0.658 0.766 0.925 0.744 0.980 0.960 0.960 0.866	4.242 2.583 4.180 3.165 2.961 3.951 4.523 3.920	3.815 4.401 5.445 4.510 4.729 3.727 5.225 3.877 2.843	2.942 1.971 1.616 0.823 1.412 1.962 1.402 2.036 2.326 1.543
F test	NS	1.5	S	NG	TIS	NS	NS	NS
SFm±	0.315	1.012	1.069	0.125	0.228	4.11 8	1.013	0.506
C.D. at 5%		-	3.120		-	-	-	-

Table 8. Leaf area index and not assimilation rate at different growth stages of soybeen varieties in the two seasons

(h) Net assimilation rate

The data on not assimilation rate between growth stages are presented in Table 8 and the analysis of variance in Appendix 4.

It can be seen from the Table 8 that there was no significant difference in not assimilation rate between varieties at any of the stages of plant growth in both the seasons.

A comparison of the trend in NAR between 40th and 60th day and 60th and 90th day showed an increase in NAR in 8 of the varieties under test, while the remaining ones showed a decreasing trend.

As in the case of LAI and other characters, a considerable reduction in NAR was also observed in the second season compared to first.

(1) Number of days to flowering

Data on number of days to flowering are given in Table 9.

The varieties took 56 to 62 days for flowering in the first season and 45 to 53 days in the second season. (j) Number of days to maturity

The data on the number of days to maturity are given in Table 9.

The varieties took 125 to 130 days for maturity in the first season and 33 to 85 days in the second season.

	Days to 50 flowering	per cent	Days to maturity		
Proctumes	First 968900	Second season	Pirst 290200	Second Second	
1. BC 39621	60	52	129.5	83.5	
2. BC 14437	62	52	128.5	84.0	
3. 20 26691	58	48	126.5	84.5	
4. Improved Pelicen	57	47	126.5	85.0	
5. BC 92814	58	53	128.0	84.0	
6. Ankur	59	50	129.5	84.0	
7. PL90-18	58	50	129.5	85.0	
8. Nonette	57	50	126.5	85.0	
9. Bragg	56	47	125.0	85.0	
0. BC 39824	58	50	130.0	83.0	
1. Davis	58	50	129.5	83.5	
2. JN 2750	58	48	126.0	84.5	
3. BC 63298	58	45	126.5	83.0	
4. BC 2586		50		83.0	

Table 9. Number of days to flowering and number of days to maturity of soybeen varieties in the two seesons

II. Observations at hervest

(a) Number of bearing nodes per plant

The data on the number of bearing nodes per plant at harvest are presented in Table 10 and the analysis of variance in Appendix 5.

Varieties did not show any significant difference on the number of bearing nodes per plant in both the seasons.

The number of bearing nodes per plant was much less in the second season.

(b) Number of pode per bearing node

The data on the number of pods per bearing node are given in Table 10 and Fig.4. The analysis of variance is given in Appendix 5.

There was significant varietal difference in the mumber of pods per bearing node in the first season. The variety Bragg recorded the highest mumber of pods per bearing node (3.68) which was on per with Improved Pelican but superior to all other varieties.

The number of pods per bearing node also was considerably less in second season.

(c) Number of seeds per pod

The mean values on the number of seeds per pod are presented in Table 10 and Fig.5. The analysis of variance is in Appendix 5.

The varieties did not show any significant variation in the number of seeds per pod in both the seasons.

T	restorts	Number of bearing nodes per plant		Number of pods per bearing node		Number of seeds per pod		1000 seed weight	
		First Season	Second season	Pirst season	Second season	First sea s on	Second season	Pirst seeson	Second Second
1.	IC 39821	19.20	4.67	2.36	1.28	1.78	0.82	86.67	66.73
2.	BC 14437	18.27	3.60	1.90	1.41	1.75	1.19	79.96	65.12
5.	DC 26691	24.20	4.07	2.50	1.14	1.71	1.10	85.40	70.90
4.	Improved pelican	20.27	4.60	2.90	1.28	1.62	1.00	87.21	70.30
5.	DC 92814	18.53	3.67	2.44	1.36	1.88	1.93	89.59	68.10
6.	Anicur	17.60	3.87	1.85	1.91	1.71	1.07	84.84	70.57
7.	PLSO-18	15.60	4.00	1.99	1.39	1.94	1.73	85.90	72.29
8.	Monetta	20.47	4.07	2.45	1.13	1.82	1.42	84.05	68.53
9.	Bragg	19.00	4.13	3.68	1.34	1.77	1.39	84.36	65.77
10.	EC 39824	19.40	3.93	2.67	1.08	1.65	1.57	82.71	61.00
11.	Devie	18.67	3.80	1.96	1.21	1.83	0.87	89.23	64.37
12.	JN 2750	25-47	5.33	2.50	1.23	1.67	1.66	86.07	67.68
13.	BC 63298	16.93	4.80	2.35	1.26	1.67	1.18	83.60	66.61
14.	NC 2586		4.27		1.16		2.02		70.30
	F Test	TIS	RS	5	NS	NS	NS	NS	NS
	SBat	3.344	0.570	0.287	0.171	0.105	0.293	0.207	0.272
	C.D. at 5%	-		0.836	***	-	-		•

Table 10. Number of bearing nodes per plant, number of pods per bearing node, number of seeds per pod and 1000-seed weight of soybean varieties in the two seasons.

Like other growth and yield characters, the number of seeds per pod also was less in the second season.

(d) 1000-seed weight

Data on 1000 seed weight are presented in Table 10 and the analysis of variance in Appendix 5.

There was no significant varietal difference in 1000seed weight among the varieties tested in both the seasons.

But a considerable reduction in test weight was noticed between seasons.

(e) Number of pode per plant

The data on the number of pods per plant are presented in Table 11 and Fig.6. The analysis of variance is given in Appendix 6.

There was no significant difference in number of pois per plant between varieties in both the sessons.

But there was a very heavy decline in the number of plds in the second secon.

(f) Weight of pods per plant

The data on the weight of pods per plant are presented in Table 11 and Fig.7. The analysis of variance in Appendix 6.

It can be seen from the table that the varieties did not show any significant difference in the weight of pods per plant.

As in the case of number of pods per plant the mean

	Hunder of pods per plant		Neight of pode per plant (g)		Shelling percentage		Number of seeds	
Treatments	First seeson	Second Second	First 998900	Second geason	First seeson	Second secar	First seeson	Second season
1. 30 39821	46.33	6.07	10.85	0.61	6 2.7 8	54.10	82.90	4.30
2. EC 14437	35.0 6	4.93	7.17	0.73	57.73	54.92	62.34	5.87
3. DC 26691	60.73	5.80	13.10	0.73	58,92	53.03	107.97	6.40
4. Improved Pelicen	58.90	5 .67	12 .93	0.84	58¥51	5 7.32	96.87	5.80
5. EC 92814	44.67	4.40	10.66	99	61.88	53.17	84.27	8.67
6. Ankar	33.73	6.50	7.00	0.82	64.06	55.14	56.00	6.90
7. FLSO-18	30.67	5.60	7.90	1.05	58.17	58 .30	59 •93	8.37
8. Monetta	49.87	4.60	11.23	0.77	61.79	53 •53	90.87	6.53
9. Bragg	68.47	5.73	14.56	0.69	61.69	53 .19	121.73	6.50
10. AC 39824	51.33	4.23	11.00	0.57	62.05	52 .24	85.53	6 .03
11. Devis	36.80	4.60	9.38	0.61	65.97	52.10	67.13	3.93
12. JN 2750	60.73	6.53	14.10	1.08	61.63	5 4 • 55	117.67	10.67
13. DC 63298	39.73	6.07	8.81	0.80	61.2	53 .93	67.67	7.13
14. 10 2586		5 •3 0		1.36		56.86		10.50
F test	TS	MS	135	教育会 す 夏日氏者	\$	3	IIS	S
Sent	9.910	0 .7 85	2.291	0.163	1.413	1.065	18.466	1.186
C.D. at 50	-	•	-	-	4.123	3.096	-	3.448

Table 11. Number of pods per plant, weight of pods per plant, shelling percentage and number of seeds per plant of soybean variaties in the two seasons

weight of pode per plant was markedly lower during the second season.

(g) Shelling percentage

Data on shelling percentage are presented in Table 11 and the analysis of variance in Appendix 6.

There was significant varietal difference on shelling percentage in both the seasons. The variety Davis recorded highest shelling percentage of 65.97 during the first season and this was on par with Ankur, 50 39821, 00 39824 and 20 92814.

During the second season cultivar PLSO-18 gave the highest shelling percentage (58.30) which was on par with Improved Pelicen and SC 2586 but superior to all other varieties.

A general decline in shelling percentage was also noticed in the second season compared to the first. (h) Number of seeds per plant

Data on the number of seeds per plant are presented in Table 11 and Fig.8. The analysis of variance is given in Appendix 6.

There was significant varietal difference in the number of seeds per plant only in the second season and the variety JN 2750 recorded the highest value. It was on par with DC 2586, EC 92814 and PLSO-18. The number of seeds per plant again was less during second season than the first.

(1) Yield of seed

Date on yield of seeds are presented in Table 12 and Fig.9 and analysis of variance in Appendix 7.

There was significant varietal difference with respect to this character.

During the first season, the variety Bragg, recorded the highest yield of 2319.49 kg ha⁻¹ and it was on par with the varieties EC 26691, JN 2750, EC 63298, Honetta, Improved Pelican, EC 39824, EC 39821, Davis and Ankur, but superior to EC 92814, EC 14437 and ELSO 18.

For selecting out a few superior variaties a critical value of discrimination at 95 per cent confidence was determined assuming the normality of plot fields and this was found to be 2096.66. Using this critical level the variaties Bragg, 50 26691, JN 2750, 50 63298 and Honetta ware selected as promising in the relative order of magnitude.

Correlation between yield and yield contributing and prowth obersoters

The simple correlation coefficients of different (rowth and yield components with yield are presented in Table 12(a). It was observed that the yield contributing factors such as number of seeds per plant, number of pods per plant, weight of pods per plant, number of bearing nodes per plant and number of pods per bearing node showed significant positive correlation with seed yield.

	Yield of as	ed (kg ha ⁻¹)	Yield of st	Barvest inder		
Treatments	First season	Second season	Pirst season	Second Beason	First 990.900	Second secon
1. EC 39621	2072.57	107.57	2974-20	195.36	0.384	0.367
2. DC 14437	1412.22	109.08	2095 .03	178.01	0.382	0.370
3. DC 26691	2244 .67	78.63	3217.37	154.60	0.410	0.383
4. Improved Pelicen	2080.52	123.28	3616.45	198.13	0.403	0.364
5. 50 92814	1853.14	6G .0 5	2543.97	152.56	0.418	0.292
6. Ankur	1915.45	97.71	2674.91	172.08	0.416	0.382
7. PLS0-18	1338.02	129.00	2250.69	169.70	0.382	0.455
B. Nonetta	2121.21	111.98	2731.03	206.80	0.439	0.372
9. Bragg	2319.49	74.65	3477-93	173.90	0.400	0.320
B. DC 39824	2080.06	63.90	3329.61	161.58	0.383	0.501
1. Davia	1922.93	75.62	2731.62	163.20	0.415	0.344
2. JN 2750	2222.22	115.50	3497.96	197.00	0.388	0.353
3. DC 63298	2169.85	115.95	2974.20	184.93	0.412	0.355
4. EC 2586		128.93		201.73		0.376
F test	\$ ¹ 8 *3	s 4	S	5	NS	NS
SEnt	147.400	11.760	183.640	9.583	0.014	0.028
C.D. at 5%	430.470	35.168	535.228	40.018		-

Table 12. Yield of seeds, yield of stover and harvest index of soybean variaties in the two seasons

¥

.

Table 12(a). Simple linear correlation coefficients of yield per plant with different quantitative characters.

1.	Number of seeds par plant	0.9714**
2.	Number of pods per plant	0.9321**
3.	Neight of pois per plant	0.9943**
4.	Rumber of seeds per pod	0.2474
5.	Number of bearing nodes per plant	0.043**
6.	Number of pods per node	0.5679**
7.	1000 seed weight	0.2486
8.	Height at 40th day	0.06013
9.	lieight at 60th day	0+3074
10.	Height at 90th day	0.2400
11.	Number of branches per plant at 40th day	0 .0 5 75
12.	Number of branches per plant at 60th day after sowing	-0.0264

** Significant at 1% level

Table	12(b).	Correlation	matrix of	manber of	pods per
		bearing nod	e, maber	of bearing	nodes per
		plant and s	eed weight	per plant.	•

7 1.000	
K. 0.568 1	•000
x ₁ 0.568 1 x ₂ 0.004 0	.1270 1.00

× ₁	-	Dumber	oſ	pods per bearing node	
×2	D	Dumber	of	bearing nodes per plant	1

It was also found that of the four independent factors viz., number of bearing nodes per plant, number of pods per node, number of seeds per pod, and teot weight the simple correlation coefficients between yield and yield contributing factors was significant only for the number of bearing nodes per plant and number of pods per bearing node. Hence the seed weight per plant (Y) was defined in terms of number of bearing nodes per plant (x_1) and number of pods per bearing node (x_2) and a multiple regression equation in the form $Y = a * b_1 x_1 * b_2 x_2$ was fitted for estimating the relative contribution of these characters on yield. The results further revealed that the above two characters were responsible for 36.73 per cent of variations in seed yield. The correlation matrix for these two characters are given in Table 12(b).

Selection index

Using the multiple regression equation the following selection indices were worked out for each variety and are presented below.

<u>31</u> . No.	Variety	Selection indices	Renk
1.	Bregg	19.980	1
2.	JN 2750	19.562	2
3.	PD 26691	19.501	3
4.	Improved Pelican	18,866	4

5.	DC 39824	18.079	5
6.	Monetta	18.027	6
7.	DC 39821	17.377	7
8.	PC 92814	17.202	8
9.	DC 63298	16.521	9
10.	Devis	16.345	10
11.	DC 14437	16.102	11
12.	Ankur	15.765	12
13.	2 150-1 8	15.302	13

It can be seen from the above data that the varieties Bragg, JN 2750 and BC 26691 ranked first, second and third according to selection index. These varieties were the top rankers based on mean yield ha⁻¹ also. Hence it was concluded that the varieties Bragg, JN 2750 and EC 26691 were the most promising varieties among the 13 varieties tried in the experiment for the first season.

During the second season, the variety PLSO-18 recorded the highest yield of 129 kg ha⁻¹ and was on par with EC 2586, Improved Pelicen, EC 63298, JN 2750, Monetta, EC 14437, EC 39821 and Ankur. This variety was superior to EC 26691, Davis, Bragg, EC 92814 and EC 39824.

Seed yield of all the variaties was markedly less in the second season than the first.

(j) Yield of stover

The data on yield of stover are presented in Table 12

and Fig. 10 and the analysis of variance in Appendix 7.

Significant difference in stover yield was noticed between varieties in both the seasons. In the first season, variety Improved Pelican recorded the highest stover yield of 3616.45 kg ha⁻¹ which was on par with JN 2750, Bragg, EC 39824 and EC 26691 but superior to EC 39821, EC 63298, Devis. Monetta, Ankur, EC 92814, PLSO-18, and EC 14437.

During the second season, variety Monette gave the highest stover yield of 206.8 kg ha⁻¹ which was superior to EC 26691, EC 92814, EO 39824 and Davis but on par with all other varieties.

As in the case of seed yield and other growth and yield characters, the stover yield also was lesser in the second season in all the varieties tested.

(k) Harvest index

Date on harvest index are given in Table 12 and the analysis of variance in Appandix 7.

There was no significant varietal difference in the harvest index during both the seasons.

Comparison between seasons should a lower harvest index in the second season compared to the first.

" Content and uptake of fertiliser putrients

A. 1. Nitrogen content

(a) Mitrogen content of stem

The data on nitrogen content of stem at various

growth stages are presented in Table 13 and the analysis of variance in Appendix 8.

There was significent varietal difference in the nitrogen content of stem, at all the stages of plant growth except 40th day after sowing in both the seasons.

Comparison between stages indicated an increase in nitrogen content of stem from 40th to 60th day and decline thereafter in the first season. But a gradual decrease in nitrogen content was noticed between stages in the second season.

Higher nitrogen content of the stem was noticed in the second season as compared to the first.

(b) Nitrogen content of leaves

The data on nitrogen content of leaves at different growth stages are presented in Table 14 and the analysis of variance in Appendix 9.

Varietal variation in the nitrogen content of leaves was significant at all the stages in both the seasons.

Comparison between stages showed an increase in nitrogen content of leaves from 40th day to 60th day and a decline thereafter.

There was no consistent variation in the $\frac{1}{2}$ content of leaves between seasons.

(c) Nitrogen content of pods

Data on nitrogen content of pods are presented in

	Nitrogen content (5)								
		Piret	898 .801 .		Second season				
Treatments	40th day after souing	60th day after souing	90th day after soving	Hervest	40th day after south	60th day after gowing	liarves		
1. 30 39821	0.918	1.003	0.816	0.463	1.727	1.627	1.553		
2. 00 14437	1.003	1.196	0.720	0.613	1.927	1.567	1.920		
3. DC 26691	0.926	1.156	0.876	0.426	1.670	1.603	0.820		
4. Improved Pelican	1.060	1.120	0.760	0•456	1.560	1.580	0 .720		
5. BC 92814	0.982	1.163	0.686	0.463	1.673	1.607	1.187		
6. Ankur	0,880	0.830	0.736	0.453	1.700	1.213	1.427		
7. PLS0-18	1.010	0.860	0.586	0.436	1.500	1.533	0.987		
8. lionetta	0.942	0.700	0.773	0.390	1.747	1.627	0.893		
9. Bragg	0.951	1.106	0.793	0.266	1.597	1.587	1.073		
10. X 39824	0.971	1.000	0.973	0.273	1.587	1.687	1.247		
1. Davis	1.026	1.043	0.653	0.456	1.323	1.513	0.960		
2. JN 2750	0.953	1.043	0.980	0.413	1.820	1.007	1.687		
3. 10 62298	1.006	0.926	0.746	0.406	1.603	1.760	1,200		
4. DC 2506					1.613	1.050	1.180		
F test	ng	3	5	~~. ₩.9	13	\$	S		
SEn±	0.101	0.0412	2.0801	0.0265	0.1381	0.0961	0.119		
C.D. at 55	-	0.119	0.093	0 .07 9	-	0.200	0.345		

Table 13. Nitrogen content of stem at different growth stages of soybean varieties in the two seasons

		Nitrogen content (5)						
			Second	Second season				
in	atoenta	40th day after soving	60th day after souing	90th day after gowing	40th day after soving	60th day after souing		
1.	BC 39821	2.920	3.610	2.970	2.793	3.227		
2.	EC 14437	3.206	3.726	1.946	2.980	3.407		
3.	EC 26693	3.016	3.713	3.056	3.173	3-477		
4.	Improved Pelican	3.396	3.426	2 .736	3.080	3.293		
5.	EC 92714	3.050	3.683	2.880	3.147	3.347		
6.	Ankur	2.793	3.186	3.103	3-497	3.230		
7.	PLS0-18	2.980	3.240	2.313	3.240	3.427		
8.	Monetta	3.036	3.300	2.673	3.540	3.647		
9.	Bregg	3.060	3.680	3.200	3.190	3 •347		
10.	ISC 39624	3.113	3.180	3.320	3.287	3.373		
11.	Devie	3.126	3.020	2.233	3.220	3.260		
12.	JN 2750	2.906	4.053	3.070	2.640	3.190		
13.	EC 63296	3.823	3.873	3.312	2.680	3.160		
14.	EC 2586				3.010	2.940		
	P test	3	2199 Q.)	2 8, 4	à à	- 196 - 197 - 197		
	SPat	1.740	1.414	1.336	0.171	0 .096		
	C.D. at 5%	0.252	0.370	0.546	0.489	0.278		

.

Table 14. Nitrogen content of leaves at different growth stages of soybean varieties in the two seesons

.

Table 15 and the analysis of variance in Appendix 10.

The data revealed that there was significant variatel difference in the nitrogen content of green pode in the first season only.

There was no consistent variation in the nitrogen content of green pois between seasons.

(d) Mitrogen content of shells

The data on nitrogen content of shells are given in Table 15 and the analysis of variance in Appendix 10.

There was significant varietal difference in the nitrogen content of shells in both the sessons.

In general the nitrogen content of shells was less in the second season as compared to the first.

(e) Nitrogan content of seeds

Data on the nitrogen content of seeds are presented in Table 15 and the analysis of variance in Appendix 10.

The varieties showed significant difference in the nitrogen content of seeds only in the first season.

No consistent variation in the nitrogen content of seeds was noticed between seasons.

A. 2. Nitrogen uptake

(a) Nitrogen uptake by stem

Data on nitrogen uptake by stem at different stages of plant growth are presented in Table 16 and the analysis of variance in Appendix 11.

	Nitrogen content (%)							
	Po		Shel	la	Seed	a		
Trectoents	First season	Second season	First season	Second 2023 cn	First acagon	Second season		
1. BC 39821	0.806 (1.344)	1.811(1.676)	0.855	0.667	5.061	5.062		
2. BC 14437	1.899 (1.702)	3.068 (2.022)	0.800	0.703	4.896	5.220		
3. BC 26691	2.434 (1.853)	2.421 (1.849)	0.560	0.583	4.755	4.850		
4. Improved Pelicen	2.323 (1.823)	2.504 (1.872)	0.774	0.553	5 .031	5.140		
5. BC 92814	2.309 (1.819)	2.349 (1.830)	0.693	0.617	5.047	5.067		
6. Ankar	2.760 (1.939)	1.350 (1.533)	0.707	C.630	4.865	5.067		
7. PLSO-18	2.557 (1.886)	2.576 (1.891)	0,728	0.670	5.160	5.030		
8. Monetta	2.652 (1.911)	2.399 (1.844)	0.726	0.690	5.760	4.916		
9. Bradg	2.561 (1.887	2.033 (1.742)	0.651	0.617	5.711	4.930		
10. DC 39824	2.434 (1.853)	2,498 (1,870)	0.700	0.777	5,160	4.455		
11. Devis	2.713 (1.927)	2.752 (1.938)	0.616	0.713	5.116	5 .05 0		
12. JN 2750	2,606 (1,899)	1.653 (1.629)	0.659	0.680	5.551	5.100		
13. BC 63298	2.471 (1.863)	2.449 (1.857)	0.673	0.593	4.960	4.860		
14. BC 2586		2.228 (1.797)		0.607		5.027		
F test	8	NS	3	S	S	NS		
SEa ±	0.057	0.145	0.010	0.032	0.127	0.134		
C.D. at 5%	0.168	G #-	0.035	0.074	0.369			

Table 15. Nitrogen content of pods, shells and seeds of soybean varieties in the two seasons

Figures in parenthesis indicate $\sqrt{(x+1)}$ transformed value

	Uptake of nitrogen (kg ha-1)									
		Firs			Second seeson					
freetmente	40th day aîter souing	60th day after coving	90th day after souding	Harvest	40th day after sowing	60th day after sowing	Hervest after southe			
1. BC 39821	3.197	7.542	35.79 8	8.026	1.366	2.570	2.921			
2. BC 14437	3.441	13.998	12.087	9.202	1.382	2.707	1.895			
3. BC 26691	2.319	13.807	32.126	9.367	1.410	2.783	1.236			
4. Improved Pelican	4.826	17.845	34.846	12.159	1.349	3.763	1.662			
5. DC 92814	4.030	16,861	23.529	9.007	1.296	4.459	1.709			
6. Ankur	4.163	6.796	26.758	7.695	1.189	2.193	2.576			
7. PL90-1 8	4.498	7.252	15.554	7.637	1.540	2.913	1.609			
B. Monetta	3.317	8.298	23.373	8,328	2.131	3.467	1.664			
9. Brogg	3.703	13.307	41.376	8.271	1.428	2.614	2,284			
0. BC 39824	4.532	10.997	48.285	6.186	1.390	6.140	2.567			
1. Dervis	3.040	14.497	26.767	15.838	1.369	3.915	1.154			
2. JN 2750	2.655	14.991	48.907	13.118	1.213	3.856	3.073			
3. BC 63298	4.362	10.772	23.419	8.082	1.299	4.322	2.029			
4. 10 2566					1.508	2.206	2.225			
F test	175	MS	9	WS	NS	115	S			
SIAn±	1.002	4.162	5.770	2.173	0.313	0.832	0.176			
C.D. at 5%			16.841	-	-	-	0.819			

Table 16. Nitrogen uptake by stem at different growth stages of soybeen variaties in the two seasons

There was significant varietal difference oin nitrogen uptake by stem only on 90th day after sowing in the first season and at hervest in the second season.

Comparison between stages indicated a higher nitrogen uptake by stem upto the pod forming stage and a decline thereafter in both the seasons.

(b) Mitrogen uptake by leaves

Data on nitrogen uptake by leaves at different growth stages are presented in Table 17 and the analysis of variance in Appendix 12.

Significant varietal difference in the nitrogen uptake by leaves was noticed only on 90th day after sowing during the first season.

A steady increase in nitrogen uptake by leaves was noticed upto the pod forming stage in both the seasons.

Nitrogen uptake by leaves was conspicuously less in the second season compared to first in all the varieties. (c) Nitrogen uptake by pois

Data on the uptake of nitrogen by pods are presented in Table 18 and the analysis of variance in Appendix 13.

There was significant difference in the nitrogen uptake by pods in the first season only.

Nitrogen uptake by pois during the second season was considerably less than that of the first season.

(d) Nitrogen uptake by shells

Data on the nitrogen uptake by shells are presented

	Uptake of nitrosan (kg ha-1)							
		First seaso		Secon	l season			
Trectments	40th day after soving	60 th da y aîtar goving	90th day after soving	40th day after sowing	60th day after sowing			
1. BC 39821	12.020	29.909	79.794	2.216	5.074			
2. EC 14437	11.758	35.263	21.266	2.847	6.009			
3. 00 26691	7.837	41.397	89 .59 8	3.281	6.646			
4. Improved Pelicen	16.245	41.190	81.746	2.869	6.927			
5. BC 92814	14.055	43.666	65.088	2.736	9.502			
6. Ankur	13.186	25.089	72.139	2.329	6.020			
7. PL30-18	10.791	25.369	44.372	3.675	7.490			
8. Monetta	11.306	32.989	55.122	4.807	5.060			
9. Bragg	11.873	41.972	110.741	3.089	5.587			
0. NC 39824	11.725	34+158	111.350	2.987	6.242			
1. Devis	9.676	37.619	54.933	3.436	5.888			
2. JN 2750	8.484	54.827	96.543	2.007	6.796			
13. EC 63298	10.347	38.653	64.879	2.731	8.064			
4. BC 2586				2.292	4.499			
F test	W6	NG	S	NS	NS			
SPat	2.173	10.182	13.416	0.725	1.652			
C.D. at 5%			39.161	-	-			

Table 17. Nitrogen uptake by leaves at different growth stages of soybean varieties in the two seesons

in Table 18 and the analysis of variance in Appendix 13.

Varieties did not show any significant difference in the nitrogen uptake by shells in both the seasons.

Comparison between seasons showed that the nitrogen uptake by shells was markedly less during the second season.

(e) Nitrogen uptake by seeds

Data on nitrogen uptake by seeds are presented in Table 18 and the enalysis of variance in Appendix 13.

Significant varietal variation on nitrogan uptake by seeds was noticed only in second season.

The uptake of nitrogen by seeds was less during the second season.

(f) Nitrogan uptake by plants

Data on total uptake of nitrogen by plants are presented in Table 19 and the analysis of variance in Appendix 14. Total uptake of nitrogen at harvest is shown in Fig. 11.

Varietal difference in the total nitrogen uptake by plants was significant only on 90th day of the first season and at harvest stage of the second season.

A steady increase in the total nitrogen uptake was noticed upto harvest in the first season while a decline in uptake was observed after 60th day in the second season.

Comparison between seasons also showed that the total nitrogen upteks by plants in the second season was

		Ĭ	ptake of nit	trogen (kg ha	-1)	
Treatments	Pod		Shell		Seed	8
	Pirst season	Second season	Piret eeagon	Second concord	Pirst 200000	Second aceson
1. BC 39821	12.647(3.694)	0.646(1.283)	14.653	0.981	154.852	11.044
2. BC 14437	14.297 (3.911)	1.088(1.445)	11.551	1.043	90-455	10.923
3. BC 26691	42.364(6.585)	0.693(1.301)	13.050	0.898	168 . 616	7+642
4. Improved Pelicen	46 .082(6. 862)	1.449(1.565)	18,184	1.090	176.320	12.128
5. DC 92814	43.724(6.688)	1.105(1.451)	12.491	1.183	149.160	6.582
6. Anicur	53 .849(7.406)	0.997(1.413)	7.758	0.984	97.886	10.120
7. PL80-18	41.913(6.551)	1.589(1.609)	10.834	1.379	104.928	13.706
8. Monetta	54.205(7.430)	0.575(1.255)	16,118	0.951	177.750	13.914
9. Bragg	66.355(8.207)	0.748(1.322)	16.196	0.834	227.933	8.567
0. 192 39824	39.696(6.379)	0.685(1.298)	12.879	0.824	153.834	5.720
1. Devia	43.885(6.699)	1.100(1.449)	9-036	0.979	138,460	7.660
2. JN 2750	39 .851(6.395)	0.713(1.309)	15.954	1,298	222,994	10.751
3. BC 63298	24.341(5.034)	0.812(1.346)	11.051	0.864	119,565	10.090
4. 10 2586		0.471(1.216)		1.650		11.526
F test	8	NS	NS	NS	ns	NS
SEnt	0.753	0.176	2.837	0.208	0.978	1.420
C.D. at 5%	2.197	•	-	-	•	4.128

Table 18. Nitrogan uptake by pods, shells and seeds of soybean varieties in the two seasons

Pigures in parenthesis indicate /x+1 transformed value

مرین میں بین این میں دار میں دارد بری میں ایک ایک ہوتا ہیں کا ایک ایک ایک ایک ایک ایک ایک ایک ایک		Tot	al uptake of	f nitrogen	(kg ha 1)		
		Piret eea	Second secson				
Treatments	40th day after soving	60th day after gowing	90th day after sowing	Hervest	40th day after south	60th day after souing	Herves
1. EC 39821	15.218	37.472	131.96	177.532	3.582	25 .25 8	15.309
2. EC 14437	15.207	49.262	48.01	111.211	4.228	29.444	13.052
3. DC 26691	10.156	55.262	163.24	195.034	4.691	30.474	9.777
4. Improved Pelicen	21.071	58 .976	163.50	206.65 8	4.218	36.438	14.895
5. BC 92814	18.085	60.528	132.16	170.658	3.697	45.444	9.475
6. Anicur	17.343	31.886	156.20	113.340	3.305	27.895	13.681
7. PLS0-18	18.625	33.276	103.24	122.815	5.216	36.036	16.695
8. Monetta	13.826	41.193	134.20	202.205	6.938	29.409	14.605
9. Bragg	14.976	55.343	198.55	252.401	4.517	28.574	11.708
to. BC 39824	16,258	45.155	200 .02	172.899	4.376	34.228	9.113
11. Devis	12.718	52.117	127.09	163.334	4.805	33.158	9.794
12. JN 2750	11.139	68.819	186.36	252.066	3.20 8	37.289	15.216
13. BC 63298	14.710	49.426	115.39	139.497	5.697	39.606	12.984
14. BC 2586					5.600	21.556	15.735
F test	NS	NS	S	NS	NS	ns	3
Spat	2.829	14.128	25.52	38.969	1.058	2.522	1.496
C.D. at 5%	-		52.67		-	-	4.350

Table 19. Total nitrogen uptake by plants at different growth stages of soybeen varieties in the two seasons

considerably less compared to first in all the varieties.

.

B.1. Phosphorus content

(a) Phosphorus content of stem

The data on the phosphorus content of stem at various growth stages are presented in Table 20 and the analysis of variance in Appendix 15.

There was significant varietal difference in the phosphorus content of stem at all the growth stages except at the harvest stage of the second secon.

A steady decrease in the phosphorus content of stem was noticed with age of the crop in the first season. But in the second season, there was an initial increase upto 60th day and a decline thereafter.

The phosphorus content of stem in the second season was less compared to first in all the varieties.

(b) Phosphorus content of leaves

The data on the phosphorus content of leaves at different stages of plant growth are presented in Table 21 and the analysis of variance in Appendix 16.

Significant varietal difference in the phosphorus content of leaves was noticed at all the growth stages in both seasons.

A steady decline in phosphorus content of leaves was noticed with advancement of crop growth in all the varieties.

			Phospi	borue content	b (S)		
		First	888300	Second season			
Trestments	40th day after souths	60th day after sowing	90th day after souing	Harvest	40th day after souing	60th day after souths	Harvest
1. BC 39821	0.566	0.336	0.032	0.017	0.071	0.082	0.022
. 90 144 3 7	0.468	0.312	0.066	0.028	0=048	0.072	0.058
3. BC 2669\$	0.457	0.202	0.037	0.020	0.042	186.0	0.044
4. Improved Pelicen	0 ,382	0.246	0.026	0.025	0.022	0.071	0.017
5. BC 92814	0.397	0.242	0.035	0.019	0.061	0.071	0.029
6. Anicur	0,462	0 .501	0 .03 5	0,028	0.088	0.130	0.021
7. PLSO-18	0.307	0,202	0,058	0.030	0+074	0 .134	0.026
8. Monetta	G +440	0.215	0.013	0.011	0.056	0.056	0.025
9. Brogg	0,298	0.206	0.044	0.016	0.060	0.103	0.027
0. NC 39824	0.302	0.206	0.024	0.011	0.036	0 .05 8	0.027
1. Davis	0.469	0.215	0 .033	0.029	0.044	0.077	0.026
2. JN 2750	0.298	0.266	0 .03 5	0.017	0.052	0.075	0.029
3. BC 63298	0.312	0.206	0 •035	0.015	0.091	0.085	0.029
4. DC 2586					0,086	8 80, 0	0.023
P test	8	S	S	S	S	S	NS
SEnt	0.224	0.014	0.003	0.003	0.008	800+0	0.0130
C.D. at 5%	0.064	0.042	0.0095	0.007	0.025	0,022	

Table 20. Phosphorus content of stem at different growth stages of soybean variaties in the two seasons

			Phoephorus o	ontent (%)		
	1	irst seeson		Second peagon		
Trestants	40th day after soning	60th day after soving	90th day after sowing	40th day after south	60th day after soving	
1. EC 39621	0.883	0,588	0.202	0.191	0.112	
2. BC 14437	0.706	0.598	0.527	0.213	0.124	
3. BC 26691	0.572	0-457	0.202	0.147	0.001	
4. Improved Pelicen	0.420	0.418	0.204	0.137	0.115	
5. BC 92814	0.474	0.572	0.212	0.151	0.108	
6. Ankur	0.620	0.549	0.276	0.226	0.165	
7. PL90-18	0.591	0.336	0.186	0.137	0 .163	
8. Monetta	0.519	0.446	0.190	0,182	0.120	
9. Bragg	0.467	0-344	0.392	0.153	0.077	
0. DC 39824	0.392	0.378	0.172	0.146	0 -093	
1. Devis	0.416	0.367	0.163	0.144	0.093	
2. JN 2750	0.416	0.317	0.197	0.111	0.113	
3. 10 63298	0.480	0.340	0.202	0.155	0.101	
4. DC 2586				0.129	0.123	
P tost	3	3	S	G.	8	
SEn±	0.018	0.014	0.054	0 .00 6	0 .006	
C.D. at 5%	0.054	0.041	0.158	0.018	0 .020	

Table 21. Phosphorus content of leaves at different growth stages of soybean variaties in the two seasons

Comparison between seasons also showed lower contents in the second season compared to first in all the cultivers. (c) Phosphorus content of pods

Data on phosphorus content of pods are presented in Table 22 and the analysis of variance in Appendix 17.

There was significant varietal variation in phosphorus content of pois in the first season only.

Phosphorus content of pods was also less in the second season compared to first.

(d) Phosphorus content of shells

The data on phosphorus content of shells are given in Table 22 and the analysis of variance in Appendix 17.

There was significant varietal difference in phosphorus content of shalls in both seasons.

Phosphorus content of shells was considerably higher in the second season compared to first in all cultivars. (e) Phosphorus content of seeds

Data on phosphorus content of seeds are presented in Table 22 and the analysis of variance in Appendix 17.

The variaties showed significant differences in the phosphorus content of seeds only in the first sesson.

Phosphorus content of seeds was conspicuously less in the second season sompared to first in all the varieties.

		Phosp	horus cont	tent ()		
	Pods		She	11	Seed	8
Treatments	Pirst season	Second Secon	Pirst season	Second season	Pirst scason	Second geogon
1. 00 39821	0.216(1.103)	0.108(1.092)	0.031	0.114	0.539	0 •26 2
2. DC 14437	0.416 (1.190)	0.211(1.1005)	0.118	0.162	0.534	0.279
3. 30 26691	0.329(1.158)	0.181(1.087)	0.042	0.079	0.374	0.247
4. Improved Pelicen	0.322 (1.150)	0.143(1.069)	0 .034	0.108	0.374	0.293
5. 00 92814	0.350(1.462)	0.175(1.084)	0.029	0.111	0-476	0.271
6. Ankur	0.442(1.201)	0.149(1.073)	0.057	0.119	0 .506	0.303
7. PLSO-18	0.315(1.147)	0.173(1.084)	0.070	0.037	0.531	0.286
8. lionetta	0.304(1.142)	0.151(1.074)	0.040	0.093	0 .460	0.238
9. Brogg	0.308(1.144)	0.193(1.092)	0.044	0.132	0.457	0.242
10.50 39824	0.320(1.149)	0.164(1.079)	0.036	0.088	0.519	0.233
11 Devis	0.338(1.157)	0.151(1.073)	0.041	0 .087	0.454	0.25
12.JU 2750	0.354(1.164)	0.133(1.064)	0.032	0.083	0 .2 98	0.238
13.00 63298	0.336(1.156)	0.174(1.064)	0.063	0 .07 9	0.481	0.300
14.10 2586		0.228(1.108)		0.071		0.267
P test	S	₩1945 ÷ 		S	3	IIS
san±	0.015	0.014%	0.006	0.0140	0.024	0.018
C.D. at 5	0.044	-	0.015	0.041	0.070	

Table 22. Phosphorus content of pods, shells and seeds of soybean varieties in the two seasons

Figures in parenthesis indicate $\sqrt{x+1}$ transformed value

B.2. Phosphorus uptake

(a) Phosphorus uptake by stan

Data on phosphorus uptake by stam at different stages of plant growth are presented in Table 23 and the analysis of variance in Appendix 18.

There was significant varietal difference in phosphorus uptake by stan only on 90th day in the first season and on 40th day in the second season.

Comparison between stages indicated an increase in the phosphorus uptake upto 60th day and a decline thereafter in all the varieties in both the seasons.

Phosphorus uptake by stem was drastically less in the second season compared to first in all the cultivars.

(b) Phosphorus uptake by leaves

Data on phosphorus uptake by leaves are presented in Table 24 and the analysis of variance in Appendix 19.

Varietal difference in phosphorus uptake by leaves was significant on 40th day of the first season only.

A steady increase in phosphorus uptake by leaves was noticed with age of the crop in both the seasons.

Phosphorus uptake by leaves was considerably less in the second season compared to first in all the varieties tested.

(c) Phosphorus uptake by pods

Data on the phosphorus uptake by pods are presented

		Piret ees	stem (kg ha ⁻¹) Second season				
Treatments	40th day after yoying	60th day after goving	90th day after sowing	Harvost	40th day after souing	60th day after soulds	Harves
1. 30 39821	2.111	2.605	1.325	0.307	0.056	0.121	0.040
2. BC 14437	1.618	3.655	1.157	0.416	0.054	0.129	0.050
3. NC 26691	1.098	2.527	1.357	0.493	0.034	0.160	0.035
4. Improved Pelican	1.771	3.908	1.691	0 .691	0.020	0.172	0.039
5. BC 92814	1.598	3.422	0.750	0-349	0.048	0.183	0.044
6. Ankur	2.180	4.117	1.311	0-497	0.054	0.238	0.033
7. PLSO-1 8	1.396	1.630	0.827	0.530	0.073	0.260	0.042
6. Monette	1.605	2.417	0.421	0-236	0.070	0.809	0.052
9. Bregg	0.971	2.447	2.259	0.518	0 .051	0 .164	0.057
0. BC 39824	1.230	2.283	1.225	0,264	0 . 0 30	0.118	0.054
1. Devio	1,404	2.930	1.362	0.761	0.047	0.144	0.037
2. JN 2750	0.773	4.231	1.774	0.518	0.042	0.167	0.042
3. BC 63298	1.360	2.311	1.124	0 .261	0.074	0.208	0.039
6. BC 2586					0 .05 8	0 .144	0.050
P test	IS	MS	S	NS	3	NS	MS
SEnt	0.358	0 .946	0.234	0.116	0.012	0.044	0.008
C.D. at 5%	-	-	0.683	-	0.003	-	-

Table 23. Phosphorus uptake by sten at different growth stages of soybeen varieties in the two escapes

	Upte	ice of phosph First sea		Second Second sec	SOB.
Trectuents	40th day after souther	60th day after sond ng	90th day after swing	40th day after goving	60th da After south as
1. 20 39821	3.650	4.865	5 . 195	0.151	0.176
2. 20 14437	2.615	6.240	5.786	0.192	0.220
3. BC 26691	1.489	5.171	5.870	0.154	0.148
4. Improved Palican	2.087	4.920	6 .086	0.127	0.242
5. DC 92814	2.094 *	4.480	4 .637	0.132	0-307
6. Ankur	2.948	4-343	6.411	0.150	0.305
7. PL90-18	2.763	2.637	3.964	0.154	0.357
8. Monetta	1.935	4 • 465	4.172	0.249	0.156
9. Breeg	1.679	3.956	5.850	0.148	0.130
0. BC 39824	1.474	3.758	5.196	0.128	0.180
1. Davis	1.318	4.625	4.350	0.157	0.163
2. JN 2750	1.219	4.382	5.863	0.087	0.249
3. DC 63298	1.802	3.471	3.933	0.140	0.233
4. BC 2586				0.103	0,206
P test	8	118	INS .	NS	NS
SPat	0.401	1.317	0.978	0.032	0.071
C.D. at 5%	1.171	-	-	-	

Table 24. Phosphorus uptake by leaves at different growth stages of soybean variaties in the two seasons

in Table 25 and the analysis of variance in Appendix 20.

There was no significant varietal difference in phosphorus uptake by pods in both the seasons.

Phosphorus uptake by pods was less in the second season compared to first in all the varieties tried.

(d) Phosphorus uptake by shells

Data on the phosphorus uptake by shalls are presented in Table 25 and the analysis of variance in Appendix 20.

Varieties did not show any significant variation in phosphorus uptake by shells in both the seasons.

Comparison between seasons showed that the phosphorus uptake by shells was considerably less during the second season in all the cultivare tosted.

(e) Phosphorus uptake by seeds

Data on phosphorus uptake by seeds are presented in Table 25 and the analysis of variance in Appendix 20.

There was no significant varietal difference in phosphorus uptake by seeds in both the seasons.

Phosphorus uptake by seeds was markedly less during second season compared to first in all the varieties.

(f) Phosphorus uptake by plants

Data on the total phosphorus uptake by plants at different growth stages are presented in Table 26. The total uptake of phosphorus by plants at hervest 15 shown in Fig.12. The analysis of variance is given in Appendix 21.

		Phoenhor	us uptake (ka ha)		
	Pod	8	Sha	115	Se	ela
Prestments	First seeson	Second Beason	First 808800	Second Second	Pirst season	Second
1. EC 39821	3.541 (2.131)	0.022 (1.011)	0.560	0.180	17,528	0.314
2. BC 14437	3.169 (2.042)	0.075 (1.037)	1.604	0 .239	9.342	0.482
3. BC 26691	5.724 (2.593)	0.047 (1.023)	0.953	0.123	13.234	0.422
4. Improved Pelicen	6.409 (2.722)	0.095 (1.047)	0 .80 6	0.220	13.233	0.508
5. BC 92814	6.656 (2.767)	0.097 (1.048)	0 .503	0.214	14.336	0.774
6. Ankur	8.610 (3.100)	0.112 (1.054)	0.661	0.180	10.044	0.646
7. PL90-18	5.175 (2.485)	0.122 (1.054)	1.079	0.158	10.842	0.744
8.Monetta	6.279 (2.698)	0.044 (1.022)	0.739	0.140	14.264	0.456
9. Brogg	7.523 (2.885)	0.072 (1.036)	1.098	0.179	17.825	0.413
0. ISC 39024	7.680 (2.946)	0.047 (1.023)	0.675	0.302	15.782	0.341
1. Davis	6.006 (2.647)	0.068 (1.033)	0.582	0.120	12.987	0.308
2. JN 2750	5.472 (2.544)	0.055 (1.027)	0.731	0.154	10.893	0.679
3. BC 63298	4.269 (2.295)	0.077 (1.038)	0.955	0.114	10.845	0.626
4. BC 2586		0.050 (1.025)		0.193		1.013
F test	NS	MS	NS	NS	NS.	NS
SEn ±	1.918	0 .0164	0.207	0.060	2.967	0.129
C.D. at 5%	-	-				-

Table 25. Thosphorus uptake by pods, shalls and seeds of soybean variaties in the two seasons

Figures in parenthesis indicate / x+1 transformed value

			Uptake of	phosphorus	by plants (kg ha ⁻¹)	
		First sess	Second Besson				
Freatments	40th day ufter soving	60th day after souing	90th day after eowing	Hervest	40th day after aowing	60th day after soving	Herves
1. BC 39821	5.764	7.470	10.595	18.396	0.206	0.520	0.534
2. BC 14437	4.233	9.895	10.187	11.363	0.226	0.425	0.772
3. BC 26691	2.587	7.696	12.970	14.681	0,188	0.356	0.581
4. Improved Pelicen	3.856	8.829	14.267	14.730	0.142	0 .509	0.768
5. BC 92814	3.693	7.902	12.060	15.189	0,179	0.589	0.835
6. Ankor	5.129	8.459	15 .56 8	11.200	0.204	0.651	0,858
7. 7130-18	4.160	4.268	10.088	12.452	0.227	0-741	0.944
8. Monetta	3.541	6.882	11.052	15.238	0.319	0.282	0.648
9. Brags	2.651	6.403	15.561	19.442	0.200	0.365	0.649
0. EC 39824	2.709	6.041	14.236	16.724	0.151	0.346	0.491
1. Devis	2.390	7 • 555	11.908	14.331	0-204	0.376	0.465
2. JN 2750	1.993	8.614	13.173	12.142	0.157	0.471	0.875
3. X 63298	3.162	5.782	9.328	12.062	0.214	0.499	0.778
4. BC 2586					0.162	0.380	0.785
F test	TIS	NS	N8	27	NS	NS	ns
SBn±	0.763	2.199	2,216	3.197	0.412	0.137	0.127
C.D. at 5%	5 -	-	-	-	-	-	-

Table 26. Total phosphorus uptake by plants at different growth stages of soybean variaties in the two seasons

Varietal difference in the total uptake of phosphorus by plants was not marked at any of the growth stages of both the seasons.

A steady increase in the total phosphorus uptake with age of the crop was noticed in both seasons in almost all the varieties tested.

Comparison between seasons showed that total uptake of phosphorus by plants was less in the second season.

C. 1. Potassium contant

(a) Potassium content of stem

The mean values on potassium content of stem at different growth stages are presented in Table 27 and the snalysis of variance in Appendix 22.

Varieties showed significant difference in the potassium content of stem at all stages of plant growth in both the seasons.

A steady decline in petassium content of stem with advancement of growth was noticed in both the seasons.

Comparison between seasons showed that the potassium content of stem in the second season was less in all the varieties tested, except at harvest.

(b) Potassium content of leaves

Data on potassium content of leaves are presented in Table 28 and the analysis of variance in Appendix 23.

There was significant varietal difference in

			Potegaiu	a content	(\$)			
		First see		Second season				
Treatments	40th day after soving	60th day after soving	90th day after sowing	Harvest	40th day after sowing	60th day after souing	Harvest	
1. EC 39821	2.733	2,283	1.700	6.508	1.917	1.317	0.967	
2. EC 14437	2.633	2.083	1.450	0.675	2.100	1.450	1.033	
3. BC 26691	2.000	2.166	1.300	0.466	1.650	1.383	0.850	
4. Improved Pelicen	2.533	2.433	1.500	0 .76 6	1.750	0.983	0800	
5. 20 92814	2.233	2 .633	1.416	0.266	1.750	1-433	0.900	
6. Ankor	1.416	2.250	1.433	0-491	2.017	1.000	0.867	
7. PL30-18	2.216	2.016	1.350	0.883	1.333	1.417	0.,900	
8. Nonette	2.466	2.083	1.083	0 .250	1.433	1.317	1.000	
9. Bragg	2.090	2.585	1.383	0.600	1.883	1.000	0.883	
0. 10 39824	2.285	2.400	1.500	0.333	1.800	1.185	0.900	
1. Devie	2.400	2.250	1.216	0 .750	1.600	1.150	0.867	
2. JN 2750	2.216	2.050	1.350	0.316	1.880	1.233	0.883	
3. EC 63298	2.316	2.450	1.466	0.416	1.600	1.250	0.767	
4. EC 2586					2.060	1.517	0.750	
F test	S	S	S	3	S		S	
SEn±	0.122	0.050	0.146	0.020	0.006	0.071	0.028	
C.D. at 5%	0.358	0.147	0.146	0.059	0.192	0.207	0.080.	

Table	27.	Potassium content	of	stem	at	different	growth	stages	of	soybean	varieties	in	the
		two seasons						-		-			

		Potass First seaso	lum content (%)	Second	
Treatments	40th day after souther	both day after soving	90th day after gowing	40th day after sowing	60th day after sowing
1. 30 39821	2.083	1.233	1,283	1,700	1.533
2. DC 14437	2.066	1.516	1.400	2.050	1.750
3. 🕅 26691	1.866	1.300	1.133	1.617	1.650
4. Improved Pelican	0.933	1.450	1.266	2.050	2.500
5. BC 92814	1.083	1.383	1.300	1.167	1.533
5. Ankur	1.566	1.516	1.650	1.767	1.533
7. PL90-18	1.783	1.435	1.363	1.933	1.567
3. Monette	1.953	1.066	1.133	1.350	1.567
. Brogg	1.700	1.450	1.450	1.767	1.550
. SC 39824	1.466	1.283	1.516	1,330	1.733
. Davis	1.933	1.383	1,000	1.600	1.583
2. JN 2750	1.466	1.033	1.266	1.483	1.433
3. DC 63298	2.200	1.333	1.533	1.767	1.500
. DC 2586		•		1.700	1.500
F test	3	S	3	8	ns
SBat	0.115	0.075	0.038	0.1165	0.0632
C.D. at 5%	0.336	0.219	0.104	0.339	

Table 28. Potassium content of leaves at different growth stages of soybean varieties in the two seasons

potassium content of leaves in all the growth stages of both the seasons except 60th day of the second season.

A decrease in potessium content of leaves was noticed with age of the crop in almost all varieties tried in both the seasons.

Comparison between seasons in general showed higher contents in the second season.

(c) Potassium content of pods

Data on potassium content of pods are presented in Table 29 and the analysis of variance in Appendix 24.

Varieties showed significant difference in potassium content of pods in the second season only.

The potassium content of pois was considerably less in the second season compared to first in all the varieties tested.

(d) Potessium content of shells

Data on potassium content of shells are presented in Table 29 and the analysis of variance in Appendix 24.

Marked varietal variation in the potassium content of shells was noticed in both the seasons.

In general, the potentium content was less in the second season compared to first.

(f) Potassium content of seeds

Data on potassium content of seeds are presented in Table 29 and the analysis of variance in Appendix 24.

		Potestun	content (%)			
	Po	le	Shel	Le	See	ia
Treatments	First season	Second see.son	First season	Second Beacon	Pirst season	Second season
1. BC 39821	1.129(1.459)	0.507(1.228)	1.300	1.250	1.700	1.133
2. DC 14437	2.013(1.736)	1.161(1.470)	1,016	1.600	1.650	0.950
3. DC 26691	2.048(1.746)	0.999(1.414)	1.283	1.250	1.716	1.417
4. Improved Pelicen	2.013(1.736)	0.568(1.252)	1.400	1,400	1.650	1.450
5. EC 92814	1.819(1.679)	1.362(1.537)	1.000	1.300	1.600	1.385
6. Ankur	1.948(1.717)	1.250(1.500)	1.333	1.467	1.633	1.350
7. FL30-18	1.752(1.659)	1.250(1.500)	1,550	1,517	1.683	1.433
8. Nonetta	1.855(1.684)	1.283(1.511)	1.216	1.317	1.683	1.400
9. Bragg	2.015(1.736)	1.515(1.586)	2.000	1.517	1.750	1.300
0. BC 39824	2.097(1.750)	1.333(1.528)	1.816	1.283	1.416	1.350
1. Davis	1.965(1.722)	1.233(1.494)	1.500	1.450	1.350	1.533
2. JN 2750	1.815(1.678)	0.851(1.361)	1.333	1.500	1.563	1.383
5. EC 6329 8	1.852(1.689)	1.215(1.488)	2.083	1.600	1.683	1.450
4. 30 2586		1.450(1.565)		1.483		1.462
F test	ns	S	3	S	S	S
SBnt	0.065	0.070	0.074	0.066	0.040	0.062
C.D. at 5%	•	0.203	0.216	0.190	0.111	0.182

Table 29. Potassium content of pods, shells and seeds of soybeen varieties in the two seasons

Figures in parenthesis indicate /(x+1) transformed value

There was significant variatal variation in the potagoium content of seeds in both the seasons.

Comparison between seasons showed lower potassium content of seeds in the second season.

C.2. Potossium uptake

(a) Potessium uptake by stem

Data on potassium uptake by stem are presented in Table 30 and the analysis of variance in Appendix 25.

Data revealed significant variatel variation in potassium uptake by stan on 90th day and at harvest of the first season only.

Comparison between stages showed a steady increase in potassium uptake upto the pod forming stage and a decline in the maturity phase in both the seasons.

All the variaties showed lower potassium uptake by stem in the second season compared to first.

(b) Potassium uptake by leaves

Data on the potensium uptake by leaves are presented in Table 31 and the analysis of variance in Appendix 26.

There was no significent difference in potessium uptake by leaves in any of the growth stages studied, except 90th day of the first sesson.

A steady increase in potessium uptake by leaves was noticed throughout the growth period in both the seasons.

Potassium uptake by leaves was also considerably less

Creatmon to	Uptake of potassium (kg ha")								
		Pirst see		Second season					
	40th day after south	60th day after sowing	90th day after sowing	Harvest	40th day after sowing	60th day after souing	Harves		
1. EC 39821	10.177	17.607	70.511	8.969	1.537	1.967	1.815		
2. BC 14437	9 .06 8	24.619	24.518	10.114	1.494	2.547	1.917		
3. BC 26691	4.829	25.141	47.394	10.266	1.405	2.805	1.565		
4. Improved Pelicen	11.332	38.659	69.027	18,492	1.482	2 .390	2,068		
5. BC 92814	9.344	37 -474	\$7.667	4.983	1.354	4.095	1.535		
6. Ankar	6,823	18.464	52.024	8.361	1.257	1.782	1.575		
7. PLSO-18	10.155	15.008	36.366	15 •465	1.283	2.727	1.463		
8. Monetta	8.450	24.553	32.873	5 - 333	1.735	1.751	1.848		
9. Brogg	7.146	30.819	72.333	16.028	1.737	1.066	1.928		
•. NC 39824	9.747	26.379	68.882	8.038	1.573	2.555	1.908		
1. Davis	7.121	30.463	50.024	19.420	1.658	2.205	1.260		
2. JN 2750	5.718	33.148	67.296	10.369	1.097	2.673	1.913		
3. BC 63298	10.239	27.859	46.202	6.932	1,298	3.073	1.593		
4. EC 2586					1.457	2.563	1.656		
F test	NS	NS .	S	3	NS	MS	NS		
SBR±	2.331	8.326	10.294	3.129	0.293	0.538	0.224		
C.D. at 5%		-	30.046	9.133	-	-	-		

Table 30. Potassium uptake by stam at different growth stages of soybean variaties in the two seasons

	Uptake of potassium by leaves (kg ha ⁻¹) First season Second season							
Tractonia	40th day after sceing	60th day after soving	90th day after sowing	40th day after sound	60th day after sound			
1. BC 59821	8.592	10.303	3 2.469	1.416	2.405			
2. BC 14437	7.714	14.455	15.329	1.858	3.122			
. EC 26691	4.891	13.714	32.976	1.880	3.203			
4. Improved Pelicen	4.296	16.911	39-211	1.610	3.115			
5. BC 92814	4.939	16.118	29.848	1.017	4.371			
6. Ankur	7.554	11.863	35.520	1.176	2,860			
7. PLSO-18	8.353	11.023	28.376	2.292	3.445			
8. Monette	8.864	10.531	23.578	1.868	2.126			
9. Brags	S.151	16.653	50,285	1.740	2.658			
0. BC 39624	5.485	13.538	50.431	1.190	3.350			
1. Devis	6.130	16.472	25 .057	1.711	2.890			
2. JN 2750	4.315	18.136	39-937	1.098	3.000			
3. DC 63298	8.334	12.917	30.142	1.583	3.519			
4. 10 2586				1.320	2.331			
F test	NS	ns	3	NS .	NS			
STREET	1,690	3.779	5.819	0.3996	0.7772			
C.D. at 5%	-	-	16.986		-			

Table 31. Potassium uptake by leaves at different growth stages of soybeen varieties in the two sessons

in the second season compared to first in all the varieties tested.

(c) Potassium uptake by pod

Data on the potassium uptake by pods are presented in Table 32 and the analysis of variance in Appendix 27.

No marked varietal difference in the potassium uptake by pods was noticed in either of the seasons.

Potassium uptake by pods was markedly less in the second season compared to first in all the variaties.

(d) Potassium uptake by shells

Data on the potassium uptake by shells are presented in Table 32 and the analysis of variance in Appendix 27.

Significant variatal variation in potassium uptake by shells was noticed in both the seasons.

Potassium uptake by shells in the second season was less compared to the first season.

(e) Potassium uptake by seeds

Data on the potassium uptake by seeds are presented in Table 32 and the analysis of variance in Appendix 27.

There was significant varietal difference in potassium uptake by seeds only in the second season.

All the cultivers under test showed conspicuously lower potassium uptake by seeds in the second season compared to first.

Treatoents	Uptake of potasaium (kg ha)								
	Po	<u>ås</u>	She	1	Seeda				
	First season	Second season	First season	Second 900.800	First scason	Second Bessen			
1. 50 39821	18.120 (4.372)	0.105 (1.051)	23.701	1.800	49.625	1.364			
2. E 14437	15.467 (4.058)	0.424 (1.193)	13.895	2.150	29.953	1.657			
3. BC 26691	35.323 (6.027)	0.578 (1.125)	29.775	1.910	59.994	2.461			
4. Improved Pelicen	40.648 (6.454)	0.821 (1.349)	31.923	2.801	56 .67 6	2.498			
5. BC 92814	34.409(5.951)	0.891 (1.375)	18.072	2.500	47.403	3.758			
\$. Anicur	37.848 (6.233)	0.573 (1.254)	14.695	2.445	29.627	2.719			
7. PLS0-18	28.712 (5.451)	0.883 (1.374)	22.740	3.211	34.439	3.682			
8. Monette	37.425 (6.199)	0.334 (1.155)	25.886	1.932	51.876	2,689			
9. Bragg	47.595 (6.971)	0.560 (1.249)	49.733	2.050	68 .896	2.220			
10. RC 39824	34.294 (5.941)	0.375 (1.172)	31.811	1.370	42.914	1.983			
1. Devis	31.565 (5.707)	0.525 (1.235)	21.968	1.981	36.469	1.811			
12. JN 2750	27.724 (5.360)	0.360 (1.166)	30.568	2.852	61.589	4.002			
13. BC 63298	23.567 (4.957)	0.408 (1.187)	31.449	2.341	40.489	3.028			
14. DC 2586		0.512 (1.145)		4.060		4.823			
F test	NS	NS	S	5	NS	8			
SBa±	0.733	0.103	5.593	0.450	10.697	0.591			
C.D. at 5%	•	•	16.325	0.131		1.717			

Table 32. Potassium uptake by pods, shells and seeds of soybean varieties in the two sessons

Figures in perenthesis indicate / x+1 transformed value

(f) Potassium uptake by plants

Data on potassium uptake by plants at various growth stages are presented in Table 33 and the analysis of variance in Appendix 28. Total uptake of potassium by plants at harvest is shown in Fig. 13.

No marked varietal difference in the potassium uptake by plants was noticed at any of the growth stages of the two seasons studied except at the harvest stage of the second season.

Comparison between stages showed a steady increase in the potassium uptake upto 90th day and a decline thereafter in the first season. But during second season, a steady increase in potassium uptake was noticed upto harvest in many of the varieties tested.

Total potassium uptake by plants was conspicuously less in the second season compared to first in all the verifies tested.

IV. Quality aspects

(a) Protein content of seed

Data on protein content of seeds are presented in Table 34 and Fig.14. The analysis of variance is given in Appendix 29.

Significant varietal difference in protein content of seed was noticed in the first season only and the variety Monetta recorded the highest protein content of

				e of potess			
		Pirst see			Sec	ond seeson	
Treatments	40th day after soving	60th day after acwing	90th day after sowing	Hervest a	40th day after soving	60th day after aowing	liarvest
1. BC 39821	18.768	27.911	126.370	82,296	2.683	4.484	4.978
2. BC 14437	16.783	39.075	55 .617	53.961	3.352	6.100	5.722
3. BC 26691	9.720	38.719	115.789	100.042	3.286	6.282	5.934
4. Improved Pelican	15.629	55.571	149.599	107.090	3.092	5.355	7.478
5. BC 92814	14.276	53+593	112.017	70-458	2.37%	9-406	7.588
6. Anicze	14-377	30.327	126.558	52 .702	2.433	5.248	6,812
7. PISO-18	15.508	26.032	94-475	71.652	3.978	7.147	9.198
8. Nanette	17.314	35.085	94.848	83,095	3.605	4.239	6.466
9. Bragg	13.298	47.272	171.133	135.364	3.476	4.890	6,200
10. BC 39824	15.233	39.916	154.288	84.096	2.764	6.147	5.263
11. Devis	13.251	46.936	107.938	77.854	3 -37 0	5.663	5.263
12. JN 2750	10.033	51 .2 62	135.631	104.192	2.195	6.049	8.760
13. EC 63298	15.573	40.776	100.031	78.870	2,887	7.005	6 .956
14. EC 2586					2 . 7 77	5.212	10.535
P test	NS	NS	NS	NS	ING .	s Ng	S
SIm ±	3.756	11.673	22.060	18,098	0 .692	1.493	0.968
C.D. at 5%			-	-		-	2.814

Table 33. Potassium uptake by plants at different growth stages of soybeen varieties in the two seasons

36 per cent, which was on per with Brogg and JE 2750 and higher than all other variaties.

There was no seasonal difference in the protein content of the variety EC 39821. But the varieties EC 14437, EC 26691, Improved Palican, EC 92814 and Ankur recorded higher seed protein content in the second season while the remaining ones gave lower values.

Among the variaties tested, the protein content ranged from 29.72 per cent to 36 per cent in first season and from 28.46 per cent to 32.63 per cent in second season. (b) Protein yield of seed

Data on the protein yield per hectare are presented in Table 34 and Fig.15 and the analysis of variance in Appendix 29.

Significant varietal difference in protein yield was observed in both the seasons. During the first season, the variety Bragg recorded the highest protein yield of 825.65 kg ha⁻¹ while in the second season the variety ED 2506 gave the highest protein yield of 41.64 kg ha⁻¹. The ranges of protein yield for the first and second seasons were 431.53 kg ha⁻¹ to 825.65 kg ha⁻¹ and 18.47 kg ha⁻¹ to 41.64 kg ha⁻¹ respectively.

Protein yield was considerably less in the second season compared to first.

Protei First Treatments season	Protein	n content (%) Protein yield (kg ha 1)			011 con	011 content (%)		011 yield (kg ha ⁻¹	
		Second geneon	First Seeson	Second 998.60n	First seeson	Second seeson	Pirst seeson	Second season	
1. EC39821	31.64	31.64	656.12	32.80	15.79	15.33	327.08	16.49	
2. EC 14437	30.60	32.63	431.54	34.35	18.45	19 .93	259.96	21.74	
3. EC 26691	29.72	50.51	667.43	24.59	14.09	18.36	3\$6.60	14.43	
4. Improved Pelicen	31.44	32.12	673.41	41.30	21.09	17.98	438.90	22.16	
5. EC 92814	31.55	31.66	580.67	21.26	21.22	16.07	390.20	10.93	
6. Ankur	30.40	31,67	582.50	29.46	21.30	17.41	407.04	17.01	
7. PLS0-18	32.25	31.44	431.81	39.55	17.77	17.59	237-03	22 .69	
8. Monetta	36.00	30.74	763.53	32.48	16.44	16.02	348.44	17.94	
9. Bragg	35.69	30.81	825.65	22 ,2 6	18.49	15.92	428.87	11.68	
0. BC 39824	32.25	28.46	670.66	18.48	20.31	17.09	421.37	10.92	
1. Devis	31.98	31.56	614.79	21.63	20.59	16.54	395.57	12.51	
2. JN 2750	34.70	31.87	772.26	38 .79	18,86	15.93	417.20	18.40	
3. EC 63298	30.99	30.37	673.41	37.67	15.10	17.13	370.29	19.86	
4. DC 2586		31.41		41.64		17.61		22.70	
F test	S	NB	5	S	S	с. Э	3	8	
SEmt	0.789	0.831	56.467	3.781	1.057	0.030	38.331	2.014	
C.D. at 5%	2.305	-	164.824	9.789	3.087	1.200	111.855	4.257	

Table 34. Protein content, protein yield, oil content and oil yield of soybean varieties in the two seasons

(c) 011 content of seeds

Data on the oil content of seeds are presented in Table 34 and Fig.16. The analysis of variance is given in Appendix 29.

There was significant variatal variation in the oil content of seed in both the seasons.

In the first season, variety Ankur recorded the highest oil content of 21.30 per cent which was on per with those of varieties EC 92814, Improved Pelican, Davis, EC 39824, JN 2750, Bragg and EC 14437 but higher than all the varieties. But during second season, variety EC 14437 gave the highest oil content of 19.93, and was higher than the contents of all other varieties.

The range in the oil contents among the varieties were 14.09 to 21.30 per cent and 15.33 to 19.93 per cent in the first and second season respectively.

Comparison between season indicated that the oil content in the second season in all the varieties was less except EC 14437 and EC 26691.

(d) Oil yield

Data on oil yield per hectare are presented in Table 34 and Fig.17 and the analysis of variance is given in Appendix 29.

Marked varietal variation in the oil yield was noticed in both the seasons.

In first season, variety Improved Pelican recorded the highest oil yield of 438.90 kg ha⁻¹ which was on par with Bragg, EC 39824, JN 2750, Ankur, Davis, EC 92814, EC 63298, Monetta and EC 39821 but superior to all other varieties.

But in the second season variety EC 2586 recorded the highest oil yield of 22.70 kg ha⁻¹ which was on par with FLSO-18, Improved Pelican, EC 14437 and EC 63298, But superior to all other varieties.

The ranges in oil yield among the variaties tested ware 237.02 kg ha⁻¹ (PLSO-18) to 438.90 kg ha⁻¹ (Improved Palicon) and 10.92 kg ha⁻¹ (PC 39824) to 22.70 kg ha⁻¹ (PC 2586) in the first and second season respectively.

Comparison between seasons showed that oil yield in second season was markedly less in all the varieties tested.

DISCUSSION

DI SCUSSI OF

The results of the present studies showed wide differences in the performance of soybeen in the two seasons. The general growth of the crop was good during the first season and the yield levels were high. During the second season, the growth was very much restricted and the yield was also very low. The reasons for the poor performance of the crop during the second season will be discussed in detail afterwards. As the yield levels are satisfactory only for the first crop, detailed discussion is attempted only for the results of this season.

The results of the first season indicated little difference in the vegetative growth between variaties as indicated by the observations on height of plant, number of branches per plant, number of nodules per plant, number of effective nodules per plant, weight of nodules per plant, total phy_tomass production per plant and not assimilation rate. Leaf area index also did not differ significantly between variaties except on 90th day. The yield of the erop, on the contrary, showed statistically significant differences and the variety Bragg recorded the highest mean yield of 2319.49 kg/s⁻¹Among the independent yield contributing characters, viz., number of bearing nodes per plant, number of pole per bearing node, number of seeds per pod and test weight, there was significant varietal

difference only in the case of number of pods per bearing node. Simple correlation coefficients between these yield components and the final yield were significant in the case of number of bearing nodes per plant and number of pods per bearing node. The fact that the other two yield components. viz., mumber of seeds per pod and test weight did not show either statistically significant varietal differences or a significant correlation with yield. may be taken to indicate that these two characters might not have been affected by either varietal or environmental differences. In the case of number of bearing nodes per plant, there was a high positive correlation with seed yield. But the difference in this character between the varieties was not significant. It may be concluded from these results that this character showed wide environmental variations only. Number of pods per bearing node, on the contropy, showed both significant variatal differences and correlation with yield. Thus, the only primary growth component that had significant influence on seed yield was the number of pods per bearing node. Positive correlation between number of pode per plant and sold yield were reported by Saxana and Pandey (1971). Veengewany and Rathmaswany (1975) and Choudhary et el. (1977).

Among the dependent growth contributing characters, shelling percentage showed significant varietal difference. The varietal variations in musber of pode per plant and

weight of pode per plant were not significant, though these gave significant correlation with grain yield.

As would be evident from the results on seed yield (Table 12) the yield of the variety Bragg was statistically at par with the yield of all the other varieties excepting EC 92814, EC 14437 and PLSO-18. The range in yield between varieties was from 1338.02 to 2319.49 kg ha". As the mean yields of a large number of varieties were statistically at per, an attempt was made to select a few varieties as superior. This was done by selecting the varieties whose yields exceeded the critical level of discrimination. Such a selection showed the superiority of the varieties Brags. BC 26691. JN 2750. TC 63298 and Nonetta. To estimate the genetic potential of the varieties. a selection index based on number of pods per bearing node and number of bearing nodes per plant was calculated and based on this selection index, the varieties were ranked. The variety Braze came out as superior based on this criterion also. Among the varieties that were selected as superior based on mean yield, the three varieties Brage, JN 2750 and DC 26691 ranked first, second and third respectively in selection index. These three varieties may therefore be considered as most superior in terms of their genetic potential.

Superiority of the variety Bragg on seed yield had been reported by Saxens and Pandey (1971) among 16 varieties tested and Agarwal and Marong (1975) among three varieties tried. Premsekhar (1973) reported JN 2750 as the highest yielder among 36 varieties.

A study of the comparative growth performance of these three superior varieties may be made by ranking the varieties for each of the growth characters and identifying those in which these three varieties occupy positions within the first five ranks. Such a comparison indicated that Bragg was superior in terms of height, total number of nodules, number of effective nodules, weight of nodules, leaf area index and net assimilation rate. The variety JN 2750 ranked first in height and leaf area index and was superior in number of branches, total number of nodules and weight of nodules. EC 26691 came out as first in number of branches, and was superior in height of plant, number of effective nodules per plant, weight of nodules per plant, leaf area index and net assimilation rate.

As had been indicated earlier, the general growth of all the varieties was good during the first season, and in the case of these superior varieties the highest values of plant height and number of branches ranged from 64.31 to 70.27 cm and 4.20 to 5.67 respectively. Nodules were noticed from the first stage of observation (40 days after sowing) in all the varieties and the highest mean values

on total number of nodules, number of effective nodules and weight of nodules per plant for these superior variaties ranged from 12.255 to 26.079, 5.927 to 6.668 and 0.483 to 0.654 g respectively. The leaf canopies were also dense and the respective LAI values for Bragg, JN 2750 and 50 26691 were 7.767, 8.094 and 6.054 on 90th day after sowing.

Comparison of the contents of fertilizer nutrients in plant parts showed wide variations between variaties and it was difficult to draw any conclusion of the superiority of any of the variaties. Similar significant variatal variation in the content of these nutrients had been reported by Bataglia et al. (1977). But Hanway and Weber (1977) reported nonsignificant variatal difference in the content of nitrogen, phosphorus and potash in soybeen plant parts.

In the case of uptake of mutrients, an indication of higher uptake by superior varieties was evident and the variety Bragg recorded the highest uptake of all the three nutrients at harvest. Variety JN 2750 was second in nitrogen uptake and third in potessium uptake at harvest. Nitrogen and potessium uptake values of EC 26691 were comparatively high. The uptake of nitrogen at harvest by the three superior varieties ranged from 195.034 to 252.401 kg ha⁻¹ and those by phosphorus and potassium from 12.142 to 19.44 2 and 100.042 to 135.364 kg ha⁻¹ respectively. These uptake values of phosphorus compare reasonably with the fertilizer

> THRISSUR 680 654

recommendation for this crop. In the case of potassium, on the contrery, the uptake values are far higher than the present recommendation.

It may also be worthwhile studying the pattern of accumulation of mutrients in the different plant parts. Upteke of the nutrients on 90th day (prior to leaf shedding) indicated concentration of 52 to 56 per cent of the total nitrogen in the leaves in these 3 superior varieties. The comparable figures for stem and pode were 20 to 26 per cent and 21 to 33 per cent respectively. At hervest, the quantities of this nutrient in seeds, shalls and stemsranged from 86 to 90 per cent. 6 to 7 per cent and 3 to 5 per cent. respectively. It would appear from these figures that the bulk of nitrogen in plants gets concentrated in seeds and the plant components in the decreasing order of nutrient accumulation were good, shell and stem at hervest, and leaves, pode and stem on 90th day after planting. A similar comparison made for the phosphorus uptake would indicate the highest accumulation of the matricent in pode and leaves on 90th day after planting followed by stem. At harvest, the plant components in the decreasing order of importance were seed, shell and stem. In the case of potassium, the bulk of the nutrient was concentrated in stem on the 90th day after sowing. The other components in the decreasing order were leaves and pods and the ranking at harvest was in the sequence, seed, shell and stem.

The protein and eil contents of seeds showed significant varietal differences. Of the three superior verieties, Bragg and JN 2750 recorded relatively high protein contents and the respective values were 35.69 per cent and 34.70 per cent. The protein content of EC 26691 was comparatively low (29.72 per cent). The content of oil in seeds in the varieties tested ranged from 14.09 to 21.30. Percentage of oil in seeds of the superior variaties were comparatively low. The yields of protein and oil, on the controry, were relatively high in the superior varieties especially in the case of Bragg and JN 2750. The protein yield of the three varieties Bragg. JN 2750 and EC 26691 were respectively 325.65. 772.26 and 667.43 kg ha⁻¹. The corresponding values for oil yield were 428.87, 417.20 and 316.60 kg ha 1. The fact that the high yielding varieties showed higher oil yield also indicates that the total seed yield rather than the content of oil had a dominant influence in deciding the total oil yield.

As had been indicated earlier, the yield of all the varieties during the second season (October 28th to January 27th) was comparatively low. The range in yield was only between 63.90 to 129.00 kg ha⁻¹. A comparison with the observations on growth parameters would show that the plants were much shorter and had less number of branches. Nodulation was also poorer. Unlike in the first season, the leaf canopies were sparse and the mean LAI ranged from 0.658 to 1.144. Such a poor growth performance of the plant was reflected on the poor expression of yield contributing characters also.

The explanation for poor growth and yield of all the soybeen varieties during the second season can be given from a study of the meteorological data of the two seasons. The total rainfall received during the second season was only 180.1 mm as against 3180.2 mm during the first season. The weekly average temperature ranged from 21.17 to 32.4°C for the first season and from 20.40 to 34.030 in the second season. Renges in the weekly average relative humidity in the first and second sessons were 61.43to 97.14 per cent and 45.4 to 92.2 per cent. respectively. Among all the above weather parameters, the most glaring difference appears to be that of the amount of rainfall received. In addition to the conspicuously lower rainfall received during second season, the distribution was also highly uneven and the rains were restricted almost completely to the initial growth phase of the grop. It appears therefore that the intensity and the distribution of rainfall were probably predominantly responsible for the restricted growth of the crop during the second season.

Another major difference in the performence of the

varieties during this sesson was that the total crop duration was markedly less during the second season. It took about 125 to 130 days for the varieties to come to maturity during first season, whereas these could be harvested in 63 to 85 days in the second season. The study of the days to flowering (Table 9) would also indicate that both the time required for appearance of flower and the time taken from flowering to maturity were less during the second season. The earlier appearance of flowers during the second season might have been at least partly induced by the shorter day length during this season. Similar results of enhanced flowering in shorter days in soybeen have been reported by Byth (1968). Eventhough the decrease in day length might have influenced the period from flowering to maturity as had been reported by Byth (1968) and whigham (1976), the other environmental restrictions also might be involved in this. Though the yields were comparatively low during the second season. there were significant varietal differences and varieties PLSO-18, EC 2586 and Improved Pelicen were ranked first. second and third. The performance of the superior variaties of the first season was comparatively poor during the second season.

SUMMARY

SUMMARY

A field experiment was conducted in the Instructional Farm attached to the College of Horticulture, Vellanikkara during the period from June 1960 to January 1981, to study the performance of soybean varieties during south west and north east monsoon seasons of Kerela. The treatments consisted of 14 soybean varieties viz., EC 39821, EC 14437, EC 26691, Improved Pelican, EC 92814, Ankur, FLSO-18, Nonetta, Bragg, EC 39824, Davis, JN 2750, EC 63298 and EC 2586. The experiment was laid out in a randomised block design with three replications. The results are summarised below.

1. There was no significant varietal difference in height of plants, number of branches per plant, number of nodules per plant, number of effective nodules per plant, weight of nodules per plant, total phytomass production per plant and net assimilation rate at any of the growth stages in both the seasons. The varietal effect on leaf area index was significant only on 90th day of first season and the variety JN 2750 recorded the highest LAI value of 0.094. A drastic reduction in the expression of all the growth characters was noticed in the second season compared to the first.

2. Vield contributing factors like number of bearing nodes per plant, number of pods per plant, weight of

pods per plant, number of seeds per pod, 1000 seed weight and harvest index did not show any significant variation between varieties in both the seasons.

3. Varieties showed significant differences in shelling percentage in both the seasons, in number of pods per bearing node in the first season and number of seeds per plant in the second season.

4. Significant varietal difference in seed yield and stover yield were observed in both the seasons. The variety Bragg recorded highest seed yield of 2319.49 kg hs⁻¹ in the first season and it was on par with varieties DC 26691, JN 2750, BC 63298, Monetta, Improved Pelican, BC 39824, BC 39821, Davis and Ankur but superior to other varieties. A selection technique based on the normal distribution and selection index could identify the varieties Bragg, JN 2750 and EC 26691 as most promising.

5. Marked varietal difference in stover yield was noticed in both the seasons and the highest stover yield of 3616.45 kg ha⁻¹ was recorded by the variety Improved Pelican which was on par with JN 2750, Bragg, EC 39824 and EC 26691 but superior to all other varieties in the first season. All the varieties showed extremely poor performance with regard to yield and yield contributing characters in the second season.

6. There was significant varietal difference in the content of fertilizer nutrients in different plant parts in almost all growth stages. But the uptake of these nutrients did not differ such between varieties. The uptake of the nutrients was conspicuously less in the second season compared to first in all the varieties.

7. Varietal difference in protein content was significant only in the first season and the variety Nonetta recorded the highest protein content of 36 per cent. Protein yield, oil content and oil yield differed significantly between varieties in both the seasons. During the first season the varieties Bragg, Ankur and Improved Pelican recorded the highest values of protein yield, oil content and oil yield respectively.

REFERENCES

REFERENCES

- Abel, U.H., Jr. (1961). Response of soybeans to dates of planting in the imperial valley of California. <u>Agron. J. 53</u>(2): 95-98.
- Agarwal, S.K. and Narang, R.S. (1975). Effect of levels of phosphorus and nitrogen on soybeen varieties. J. Res. Harvana acric. Univ. Hisser. 5(4): 303-305.
- *Al*bert, V.E. (1975). Studies on quantity and quality of oil in seeds of biologically different soybean cultivars. <u>Byull</u>. <u>Yses</u>. <u>Inst</u>. <u>Rasteniev</u>. No. 53: 56-59.
- *Albert, V.E., Krasilnikov, V.N., Kyuz, E.P., Gorshkova, E.I. and Stoikova, V. VA. (1976). Chemical composition of seeds of some soybean cultivars and changes in it under the influence of weather, soil and climatic conditions. <u>Prikl. Biokh. Mikr.</u> 12(2): 186-191.
- A.O.A.C. (1950). <u>Official methods of analysis</u>. Association of Official Agricultural Chemists 7th Ed. pp. 1-343. Association of Official Agricultural Chemists, Washington. D.C.
- A.O.C.S. (1971). Official and Tentative Methods of the American Oil Chemists' Society Volume 1. 3rd 2d. American Oil Chemists' Society 508. South Sixth Street Chempeign, Illinois 61820.
- * Ashley, D.A., Boerma, H.R. and Sohnise, L.L. (1977). Leaf and canopy apparent photosynthesis comparisons and the relation of each to soybeen cultivar yield. In Acron. Abst. 20 Maison, U.S.A.

- AVEDC (1976). Asian vegetable Research and Development Centre. AVEDC soybean Report. Varietal development and germplasm utilization in soybeans. <u>Tech. Bull</u>. 13(78-102).
- "Bateglia, O.C., Mascaenhas, H.A.A. and Tisselli Filho, O. (1977). Mineral composition of the seeds of nine cultivars of soybeen. <u>Bragentia</u>. <u>36</u>(1): XLVII-L.
- Boerma, H.R. (1979). Comparison of past and recently developed soybeen cultivers in maturity groups VI, VII and VIII. <u>Crop Sci. 19</u>(5): 611-613.
- *Borst, H.L. and Thatcher, L.E. (1931). Life history and composition of the soybeen plant. <u>Ohio Agric</u>. <u>Expt. Sta. Stu. Bull.</u> 491.
- * Bryant, M.T., Blaster, R.F. and Hames, R.C., Jr. (1978). Effect of plant maturity on yield and chemical composition of three soybeans. <u>In Agron. Abst. 92</u>. Madison, U.S.A. 92.
 - Buttery, B.R. (1969). Analysis of the growth of soybeans as affected by plant population and fertilizer. <u>Con</u>. J. <u>Pl. Soi. 49</u>: 675-684.
 - Buttery, B.R. (1970). Effects of variation in leaf area index on growth of maise and soybeans. <u>Grop Sqi</u>. <u>10(1): 9-13.</u>
 - Byth, D.C. (1968). In: Norman, A.G. (ed.) (1978). <u>Soybeen</u> <u>Physiology</u>. <u>Agronomy and Utilisation</u>. 1st Ed. pp. 82. Academic Press. New York.
 - *Candilo, D.I., Faonsa, P. and Ciafardini, G. (1975). Trial on cultivation of soybean. <u>Annali dello stituto</u> <u>aperimentale perle colture industraali</u>. 7(1): 117-118.

- Cartter, J.L. and Hopper, T.H. (1942). In: Norman, A.G. (ed.) (1963). <u>The Soybean</u>. 1st Ed. pp. 179. Academic Press, New York.
- Cevinese, C.E. and Smith, D.E. (1959). <u>In</u>:Norman, A.G. (ed.) (1963). <u>The Soybean</u>. 1st Ed. pp. 160. Academic Press, New York.
- Choudhary, N.K., Thakur, C., Jha, K.N. and Singh, Y.P. (1977). Correlation and regression in soybeen. <u>Proc. Bibar Aced. acric. Sci. 25(1)</u>:
- Cochran, U.G. and Cox, G.M. (1965). <u>Experimental Designs</u>. Asia Publication House, pp. 610.
- Curtis, P.E., Organ, M.L. and Hagaman, R.H. (1969). Varietal effects in soybean photosynthesis and photorespiration. <u>Crop Sci.</u> 9(3): 323-327.
- Drager, R.H., Brun, M.A. and Cooper, R.L. (1969). Effect of genotype on the photosynthetic rate of soybeen. <u>Crop Sci.</u> 9(4): 429-431.
- Doss, B.D., Pearson, R.V. and Rugers, H.T. (1974). Effect of soil water stress at various growth stages on soybean yield. <u>Agron. J. 66</u>(2): 297-299.
- Dusek, D.A., Musick, J.J. and Porter, K.B. (1971). In: Norman, A.G. (ed.) (1978). <u>Sovbean Physiology</u>, <u>Agronomy and Utilisation</u>. 1st Ed. pp. 100. Academic Press, New York.
- *Egli, D.B., Tutt, C., Wood, J.M. and Reicosky, D. (1975). Kentucky soybeen performance tests, 1975. <u>Prog</u>. <u>Rep. agric. Exp. Stn.</u> No. 219. pp. 14.

- Fisher, R.A. and Yates, F. (1963). <u>Statistical tables for</u> <u>biological. agricultural and medical research</u>. Oliver and Boyd. Edinburgh Tweeddale Court.
- Funnah, S.N. and Mark, C. (1980). Genotype x environment interactions on grain yield and other characters of soybean. Expl. Agric. 16(3): 269-273.
- *Gilioli, J.L. (1981). Influence of seed size on some auronomic characteristics of soybean. <u>Anais</u> 2: 309-315.
- *Graves, C.R. and Mc Outohan, T. (1978). Soybean variety date of planting study at Milan from 1974-76. <u>Tenn. Farm and Home Science</u>. No. 105: 27-29.
- Gray, J. (1959). In: Norman, A.G. (ed.) (1963). The Soybean 1st Ed. pp. 160. Academic Press, New York.
- *Hansen, J.R. (1972). 'Net photogynthesis and evapotranspiration of field grown soybean canopies'. Ph.D. Thesis, Iowa State University Library, Ames.
- Henway, J.J. and Weber, C.R. (1971a). Dry matter accumulation in eight soybean (<u>Glyoine max</u> (L.) Merrill) varieties. <u>Agron. J. 63</u>: 227-230.
- Hanway, J.J. and Seber, C.R. (1971b). N. P and K percentages in soybean plant parts. Agron. J. 15(2): 286-290.
- Hertwig, E.E. (1954). In: Norman, A.G. (ed.) (1963). <u>The Soybeen</u>. 1st Ed. pp. 178. Academic Press, New York.
- Howell, R.W. and Carther, J.L. (1953). Physiological factors affecting composition of soybeans. 1. Correlation of temperatures during certain portions of the pod filling stage with oil percentage in mature beans. <u>Agron. J. 45</u>(10): 525-526.

Fdinburgh EH IYI pp. 146.

- Howell, R.M. (1963). Physiology of soybean. <u>In:</u> Norman, A.G. (ed.) (1963). <u>The Soybean</u>. 1st Ed. pp. 75-115. Academic Press, New York.
- Jackson, M.L. (1958). Soil Chemical Analysis. Prentice Hall. Inc., U.S.A. pp. 498.
- Jeffers, D.L. and Shibles, R.M. (1969). Some effects of leaf area, colar radiation, air temperature and variety on not photosynthesis in field grown soybeen. <u>Crop Sci.</u> 9(6): 762-764.
- Johnson, D.R. and Major, D.J. (1979). Hervest index of soybeens as affected by plenting date and maturity ratings. <u>Agron. J. 71</u>(4): 538-541.
- * Judy, U.R. (1981). Yield stability of soybean variaties across veriable environmental conditions. In <u>Agron. Abst. American Society of Agronomy 45</u> Madison, U.S.A.
 - Kaw, R.N. and Madhawa Manon, P. (1971). Variability of agronomic characters in soybean (<u>Glyoine max</u> (L.) Merril) at Coimbatore, S. India. <u>Medres serie</u>. J. 58(4): 281-290.
 - Kew, R.N. and Madhava Manon, P. (1978). Evaluation of soybean genetopes at Coimbatore. <u>Madras Actio</u>. <u>J. 65(12): 779-786</u>.
 - Led, S.L. and Jadhav, S.B. (1977). Effects of sowing dates on the yield of two soybeen varieties <u>viz</u>. Clark-63 and Bragg, <u>J. Meharochtra auric</u>. <u>Univ</u>. <u>3</u>: 264-266.
- * Lercher, J. (1976). Results of the INTSOX Soybeen trial. <u>Inst. Rech. Acron. TTrop. pp. 8.</u>
 - Lathwell, D.J. and Evans, E.E. (1951). Nitrogen uptake from solutions by soybeans at successive stages of growth. <u>Agron. J.</u> 43(4): 264-279.

- *Lee, J.S. (1977). Studies on the biochemical features of soybean seeds in breeding a high protein variety, with emphasis on accumulation during maturation and electrophoretic patterns of protein. J. Kor. Soc. Crop Sci. 22(1): 135-166.
- Leffel, R.C. (1961). In: Norman, A.G. (ed.) (1963). <u>The Movbean</u> 1st Ed. pp. 178. Academic Press, New York.
- Mocers, C.A. (1908). In: Norman, A.G. (ed.) (1963). The Soybeen 1st Ed. pp. 180. Academic Press, New York.
- Mosca, G., Parrini, P. and Toniolo, L. (1979). Relationships between yield, morphological and biologic observeteristics in soybean from different countries. <u>Riv. Agron. 13</u>(1): 157-168.
- *Murtas, A. and Spanu, A. (1979). Yield possibilities of some soybean cultivars. Results of 3 years of experiment carried out in Sardinia. <u>Riv. Accron</u>. (1979). <u>13</u>(1): 137-145.
- *Nishiri, K., Matsui, S. and Izumiyama, Y. (1980). Effect of sowing date on the yield of soybean in Hokkaido. 1. Growth and yield of soybean sown on different dates. <u>Res. Bull. Hokkaido nath. Expt. Stn</u>. No.126. 105-121.
- Osler, R.D. and Cartter, J.L. (1954). Effect of planting date on chemical composition and growth characteristics of soybeens. <u>Agron. J. 46</u>(6): 267-269.
- Pendey, R.K., Leng, B.R. and Jackobs, J.A. (1977). Pathcoefficient analysis of flowering time in diverse genotypes of soybean as influenced by temperature and day length. Indian J. Seric. Sci. 47(10): 498-502.

- Patel, C.J., Patel, U.R. and Patel, P.G. (1978). Comparative performance of certain variaties of soybeen in kharif season. <u>Guiarat Acricultural</u> <u>University Research Journal</u>, 5(2): 56-58.
- * Patil, V.D., Makne, V.G. and Salunke, M.R. (1976). Performance of soybean genotypes in Marathwada region of Maharashtra, India. <u>Trop. Grain Leguna</u> Bull. No.5. 33-35.
- * Penchukov, V.H., Medyannikov, N.V. and Kappushev, A. (1980). Photosynthesis and productivity of soybean cultivars. <u>Sclekteive i Semenovodstoo</u> No.3. 15-17.
 - Premsekhar, (1973). Evaluation of promising soybean varieties at Coimbatore. <u>Madras acric. J. 60</u>(6): 393-395.
- * Rahman, F. (1979), Performance of eight soybeen varieties on the island of Paciencia in the valley of the Solimoes River during the 1975-1977 season. Instituto Nacional de Pesquisas de Amazona, Mensus, Amazonas, Brazil. <u>Acta Amazonica</u> (Brazil). 9(1): 5-7.
 - Rejesekheren, S., Premseker, S. and Hemmonthe Reo, H.K. (1980). Selection and evaluation of the relative influence of the morphological characters and yield components on yield in soybean (<u>Glycine Bax</u>. (L.) Merrill). <u>Madres expic. J. 67</u>(2): 71-76.
 - Reena, G.P. (1981). Effect of levels of potassium and rhisobial culture inoculation on the growth and yield of soybean (<u>Glycins max</u> (L.) Herrill). H.Sc. Thesis. Kerala Agricultural University, Trichur (Unpublished).

- *Ruck, H.C. and Bolas, B.D. (1956). Studies in the comparative physiology of apple root stocks. I. The effect of nitrogen on the growth and assimiletion of Malling apple root stocks. <u>Ann. Bot</u>. N.S. 20: 57-68.
- *Russon, 2. and Obasola, C.O. (1979). Varietal yield differences and relationship of yield with variability in seed per pod at successive nodes in soybeen. <u>Olessingux</u> (France). <u>34</u>(6): 295-299.
- *Sentos Filho, B.G., Madruga, LAN; Peterc, J.A. and Farias, C.A. (1979). Growth analysis of two soybean (<u>Glyoine max</u> (L.) Merrill) lines in pelotas, <u>Rs. Centro Nacional de Pesquisa de Soia</u>. 347-361.
- Saxana, M.C. and Pandey, R.E. (1971). Characteristics and performance of some promising variaties of soybean at Pantnegar. <u>Indian J. agric. Sci.</u> 41(4): 355-360.
- *Schuster, 3. and Jobehdar-Honarnejad, R. (1976). The response of several soybean cultivar to photoperiod and temperature. Z. <u>Acker-Y</u>. <u>PflBen</u>, Berlin. <u>142</u>(1): 1-19.
- *Sohnster, W. and Posselt, U. (1977). Protein content and protein quality of some soybean variaties on different locations. In: <u>Protein quality from</u> <u>leguminous grops</u>. Kirchberg, Luxenberg; Commission of the European Communities. pp. 324-538.
- *Shemeuddin, A.K.M. and Rahman, L. (1978). Correlation studies in soybean (<u>Glyains max</u> (L.) Merrill) <u>Bangladesh</u> J. of <u>3ci. ind. Res. 13(+)</u>: 14-20.

- Shibles, R.M., Anderson, I.C. and Hibson, H.H. (1975). <u>Soybean. In: Evens. L.T. (ed.) (1975). Crop</u> <u>Physiology. 1st Ed. pp. 151-190. Cambridge</u> University Press, Cambridge, Great Britain.
- Singh, J.N., Joshi, K.C., Negi, P.S. and Tripathi, S.K. (1973). A note on the seed quality of soybean as influenced by planting dates in Tarai Region of U.P. Seed Research 1: 86-90.
- Singh, K.N. and Prased, R.D. (1979). Performance of soybeen varieties in terms of forege and grain production under sub-temperate regions of South India. Indian J. Aaron. 24(4): 451-452.
- Snedecor, G.N. and Cochran, N.G. (1967). <u>Statistical Methods.</u> Oxford and IEM Publishing Co., Calcutta, Bombay, New Delhi.
- Sood, D.R., Kudlip Singh Dhindsa, Sarlapopli and Bagle, D.S. (1980), Compositional variation in different strains of soybeens. J. Res. Harvana sario. Univ. <u>Bisser. 10</u>(2): 198-203.
- *Taira, Hanne, Taira, Hirokadau, Kaisuma, N., Fukui, J. and Matsumoto, S. (1976). Varietal differences of osed weight, protein and sulphur containing aminoacid content of soybean seeds. <u>Proc. Grop</u> <u>Sci. Soc. Japan. 45</u>(3): 381-393. <u>F.A. 32</u>(1): 245.
- "Tang, S.T., Chen, M.C. and Tsai, S.F. (1977). Varietal and regional effects on the oil content and fatty acid composition of soybean. J. <u>Asric. Ass. China.</u> No. 97: 5-9.
- *Tayo, T.O. (1977). Comparative analysis of the growth, development and yield of three soybean varieties (<u>Glycing max</u> (L.) Merrill). <u>J. seric. Sci.</u>, U.K. <u>BB</u>(1): 151-157.

- Tiweri, D.K., Shrivesteve, S.K. and Verma, G.P. (1977). Physiological effects of date of sowing on yield determinants of soybean. <u>JNKVV Res</u>. J. <u>11</u>(1) and (2): 91-94.
- * Valdivia, B; VA (1979). Effect of sowing dates on yield and grain oil and protein contents in soybean (<u>Glycine max</u> (L.) Merrill). <u>Apriculture Togonica</u>. 39(1): 11-16.
 - Veeraswany, R. and Rathnesweny, R. (1975). Character association analysis in soybean. <u>Madras serio. J.</u> 62(9): 534-536.
 - Viljoen, N.J. (1937). In: Norman, A.G. (ed.) (1963). The Soybeen 1st Ed. pp. 180. Academic Press, New York.
- * Watson, D.J. (1958). The dependence of net assimilation rate on leaf area index. <u>Ann. Bot. 23</u>: 431-439.
 - Seber, C.R., Shibles, R.H. and Byth, D.S. (1966). Effect of plant population and row spacing on soybean development and production. <u>Agron. J. 58</u>: 99-102.
 - *Neber, D.F., Caldwell, B.E., Sloger, R.C. and Vest, H.G. (1971). Some USDA studies on the soybeen -Rhizobium symbiosis. In <u>Biological Nitrogen</u> <u>Fixation in Natural and Agricultural Habitats</u>, eds. E.G. Nulders and T.A. Lie. Martinus Bijjhoff, The Hague, pp. 297-304.
 - Meiss, M.G. (1949). Soybeens. <u>Advances in Agronomy</u>, Vol.I. pp. 78-152. Academic Press, New York.
 - Weiss, U.G., Meber, C.R., Williems, L.F. and Probst, A.R. (1950). In: Norman, A.G. (Ed.) (1963). <u>The</u> <u>Soybean</u>. 1st Ed. pp. 180. Academic Press, New York.
 - "Wenger, O.E. (1976). Performance of some soybean varieties in Liberia. Trop. Grain Leaune Dull. 2: 8-9.

- Whigham, D.K. (1976). <u>In: Norman, A.G. (ed.) (1978).</u>
 <u>Soybean Physiology. Acronomy and Utilization</u>. 1st
 Ed. pp. 85. Academic Press, New York.
- Chigham, D.K. and Minor, H.C. (1978). Agronomic characteristics and environmental stress. In: Norman, A.G. (ed.) (1978). <u>Sovbeen Physiology</u>. <u>Agronomy and Utilisation</u>. 1st Ed. pp. 92. Academic Press, New York.
- Migham, D.K., Minor, H.C. and Carmer, S.G. (1978). Effects of environment and management on soybeen performance in the tropics. <u>Agron. J. 70</u>(4): 587-592.
- New Nork.
- *Zeyada, A.E., El-Baroun, E.S. and Abdel-eal, S.A. (1981). Effect of sowing date and population density on the growth and yield of some soybean varieties, <u>Research Bulletin</u>, Faculty of Agriculture, Air Shame University, No. 1245: 1-20 pp.

"Originals not seen

APPENDICES

.

Analysis of variance for height of plant and musber of branches per plant

			First	88080n				8	lecond seaso	3	
	adalah yang berkena dalam da kara		Mean	Bquares		an a shine a sa an			Mean squares		
Source df	A #	Height of plant		No	of branch	nee bez	Source	15	Height of	plents	
	u .	40th day after sowing	60th day after sowing	90th day after sowing	40th day after sowing	60th day after souing			40th day after sowing	60th day after sowing	
Block	2	207 .350**	350.660**	201.180	0.720	3.150	Block	2	1.700	14.600	
Treat-	12	10.620	32 .880	42.730	0.710	0.730	Treat-	13	3.160	12.910	
Serve	24	19.260	40.940	77.110	0.490	1.460	Brror.	26	3.150	8.390	

Analysis of variance for number of total root nodules per plant, number of effective nodules per plant and weight of total root nodules per plant.

					Meen squar	68			
Source	af		ber of root per plant	t	Number of nodules p	effective er plant		of total r	
		40th day after soving	60th day after soving	90th day after soving	60th day after sowing	90th day after sowing	40th day after sowing	60th day after soving	90th day after soving
First a	agaon.								
Block	2	4.191*	11.303	351.3 86* *	1.328	129.277**	0.066*	0.037	1.293**
Treat- ment	12	1.743	4.403	16. 565	1.374	3.303	0.024	0.124	0.290
Figrar	24	1.103	9 .829	10.686	2.304	10.513	0.015	0.100	0.154
Second	100000	•							
Block	2	2.346	0.297		0.840			0.00013	
Treat-	13	1.933	0.862		0 .59 8			0.00036	
STTOP	26	1.471	2.020		0.666			0.00052	

Analysis of variance for the total phytomass production per plant at various growth stages

			Pir	st season			Second se	0.900	
			Meen equ	a res			Mean	8quore8	
Source	đſ	Phytomes	production pe	r plant		25	Phytomas p	roduction p	er plont
		40th day after sowing	60th day after soving	90th day after sowing	Harvest		40th day after soving	60th day after soving	Hervest
Block	2	2.211**	13.154	63.597	75 .570	2	0.0160	0.040	0.002
	12	0.320	2.641	57 • 309	40.544	13	0.017	0.109	0.173
eror	24	0.459	6.306	29.383	31.540	26	0.023	0.177	0.086

Analysis of variance for leaf area index and net assimilation rate

		1	F irst Boe	607.				Second se	880 <u>1</u>	
			Mean squ	laros			#2144782.0+9 ¹ 104664 1 046214	Mean squ	18 768	
		Leaf ar	en index		Net assimi	lation		Leaf area	index	Net essimi- lation rate
Source	25	40th day after sowing	60th day after soving	90th day after sowing	Between 40th and 60th day after sowing	Botween 60th and 90th day after sowing	å£	40th day after sowing	60th day after sowing	Between 40th and 60th day after soving
Block	2	0.826	4.991	11.578*	0.061	0.650	2	0 .025	0 .089	0.712
Treat-	12	0.198	1.906	9 .826 *	2.807	1.946	13	0.034	0.059	0.923
ment										

Analysis of variance for number of bearing nodes per plant, number of pods per bearing node, number of seeds per pod and 1000 seed weight.

			First ceeso	a			Second	800.90n		
			Mean equ	2 766			Mean a	1uo ree		
Source	đf	Number of bearing nodes per plant	Number of pois per beering node	Humber of seeds per pod	1000 seed weight	âſ	Number of bearing noies per plant	Number of pode per bearing node	Number of seeds per pod	1000 seed weight
Block	2	18.5 75	0.041	0.051	0.820*	2	1,480	0:080:0	0.431	0.500
Treat- nent	12	22.030	0 .72 6**	0.044	0.210	13	0.880	0.124**	0.440	0.270
Beror	24	33.55	0.247	0.030	0.130	26	0.970	0.080.0	0.262	0.220

* Significant at 5 per cent level

** Significant at 1 per cent level

•

Analysis of variance for number of pods per plant, weight of pods per plant, shelling percentage and number of seeds per plant.

			Pirst s	eson			Second	908.80n		
			Mean equ	14 795			Nean s	luerce		
Jourse	df	Number of pods per plant	Veight of pode per plant	Shelling percentiage	Number of seeds per plant	16	Number of pods per plant	Weight of pods per plant	Shelling percen- tage	Number of seeds per plant
Block	2	2 34 .123	36.985	10.795	1553.546	2	3.265	0.002	27.979**	0 .180
Treat-	12	436.267	19.254	17.223*	1428.906	13	1.563	0.173	10.724*	11.893*
Bergr	24	294 .629	15.745	5.987	1022.958	26	1.847	0.086	3.403	4.219

* Significant at 5 per cent level

APPENDIX - 7

Analysis of variance for seed yield, stover yield and harvest index

			First seaso	n		Secon	à season	
			Meen square	8		Moon	aquarea	
Source	df	Seed yield	Stover yield	Harvest index	16	Seed yield	Stover yield	Harvest index
B lo ck	2	182866 .970	279987 • 353	0.0001	2	1852.51**	1414.710	0.013+
croat-	12	279200 . 150**	627891.231**	0 .0009	13	1124.820*	3180.080*	0 .005
10202	24	57676.64	100867.367	0.0005	26	300.73	564.50	0.002

* Significant at 5 per cent level

Analysis of variance for nitrogen content of stem at different growth stages

			Pire	t season			Second	990.900	
			Me	an squares			Mea	a squares	
	đſ		Nitrogen co	atent of st	68		Nitrog	en content of	eten.
ource		40th day after sowing	60th day after soving	90th day after sowing	Hervest	1 5	40th day after sowing	60th day after sowing	Bervert
look	2	0.030	0.003	0 .005	0.002	2	0.050	0.020	0 .07 9
reat-	12	0.027	0.065**	0.039**	0 .023**	13	0.062	0.118*	0.254**
arror .	24	0.030	0.005	0.003	0.002	26	0.057	0.027	0.042

* Significant at 5 per cent level

Analysis of variance for nitrogen content of leaves at different growth stages

		Fire	t seeso			Second sease	•
		Meen	squares			Mean equares	
	•	Nitrogen	content of les	196		Nitrogen conte	nt of leaves
Source	25	40th day after sowing	60th day after sowing	90th day after sowing	âf	40th day after sowing	60th day after sowing
Block	2	0.002	0+140	0.102	2	0.071	0.008
Treat-	12	0.204**	0.290**	0.563**	13	0.213*	0.865*
Feror	24	0.022	0.048	0.105	26	0.085	0.027

* Significant at 5 per cent level

Analysis of variance for nitrogen content of pods, shells and seeds

		1	leen equeres			Mee	n guares	
Source	đſ	1	Sitrogen contes	nt of	25	NLI	rogen content	of
		Pods	Shells	Secás		Pods	Shells	3 eeds
3 loek	2	0.002	0.0001	0.049	2	0.098	0.0026	0.006
Crost-	12	0.073**	0.020**	0 -304 **	13	0.049	0.011**	0.102
1000 C	24	0.010	0.0009	0.048	26	0.063	0.0019	0.053

Analysis of wariance for nitrogen uptake by stem at different growth stages

-

			First	. 30330 n			Second			
			Mean	squa res			Meen eq	16799		
]	Vitrogen upt	cice by sten		-	Nitroge	n uptake by	at en	
Jource	15	40th day after sowing	60th day after sowing	90th day after sowing	Harvest	- 4f	40th day after sowing	60th day after sowing	Harvest	
llook	2	13.762*	124.024	179.550	18.510	2	0.150	4.936	0.0005	
breat-	12	1.897	41.938	390 .46 8*	21.351	13	0 .154	3.961	1.047	
TOP	24	3.012	51 .96 9	99.870	14.160	26	0.295	2.075	0.238	

Analysis of	variance	for nitroge	1 uptake	by leave	es at	different
•		growth a	lages	-		

			Pirst season		Second geagon				
			Neen equares			Mean squares Nitrogen uptake by leaves			
Source	1b	Nitrogen u	ptake by leave	8	ðf B				
		40th day after sowing	60th day after sowing	90th day after soving		40th day after soying	60th day after soving		
Block	2	33.790	925 .500	211.783	2	0.510	3.082		
Treat-	12	15 .029	195.562	2021.544*	13	1.548	5,188		
Expor	24	14.170	311.026	\$39.989	26	1.577	8.190		

Analysis of variance for nitrogen uptake by pods, shells and seeds

			Piret sea		Second season					
Source	4.0		Meen equa	101	ar	Kee				
	đſ	Pods	Shells	Seeds	· 41	Pods	Shells	Seeds		
look	2	1.804	69.147	7390.194	2	0.018	0.007	19.005		
ireat-	12	5.253*	27.410	5630.035	13	0.041	0.160	16.0834		
TOP	24	1.700	24.148	3614.917	26	0.092	0.129	6.048		

Analysis of variance for total nitrogan uptake by plant at different growth stages

			Pirot se	2 901 .			Sec	nd season		
			Meen equ	1208			Mean squares			
Source	đſ	Nibrogen uptake by plant					Nitrogen uptake by plant			
	41	40th day after sowing	60th day after sowing	90th day after sowing	Harvest	đſ	40th day after sowing	60th day after sowing	Harvest	
Block	2	127 .277*	1752 .289	2582.370	9705 - 8 3 8	2	3.952	18.310	18 .8 57	
breat-	12	27.569	375 -8 25	5297.63*	6487 .489	13	3.079	12.930	20.434*	
TTOT	24	24.004	598.804	1953.17	4555.642	26	3.358	19.000	6.713	

Analysis of variance for phosphorus content of stem at different growth stages

			Pir	st season			Second	980.800			
			Mean squares					Mean squares			
		Phosphorus content of stem					Phosphorus content of ster				
Source df	dI	40th day after soving	60th day after sowing	90th day after soving	Har vect	15 ·	40th day after sowing	60th day after sowing	Harvest		
Block	2	0.0002	0.00004	0 .00005	0.0001*	2	0.000014	0.0001	0.0005		
Troat-	12	0.023**	0.0217**	0 .0084 **	0.0001**	13	0 .0001 3**	0.0017**	0.004		
Brror	24	0.0014	0 000 6	0.00003	0.00002	26	0 .0002	0.0002	0.0005		

* Significant at 5 per cent level

Analysis of variance for phosphorus content in leaves at different growth stages

		First	389.90 1		Second seeson				
		Neon a	ringler		Mean equares				
Source	đſ	Phosphorus	content of leav	đſ	Phosphorus content of leaves				
		40th day after cowing	60th day after sowing	90th day after sowing	19-11 - 19-19-19-19-19-19-19-19-19-19-19-19-19-1	40th day after sowing	60th day after sowing		
Block	2	0.0002	0.003	0.010	2	0.0002	0.0001		
Treat-	12	Q •0589* *	0 .0239 **	0.0320**	13	0.0030**	0.0020**		
Feror	24	0.0010	0.0006	0.008	26	0.0001	0.0001		

Analysis of variance for phosphorus content in pods, shells and seeds

		Pire	t season		Second season					
		Meen	equares		Meen aquares					
Jource	đſ	Phospi	horus content	đſ	Phosphorus content					
		Poäs	Shells	Seeds		Pods	Shells	Seeds		
look	2	0.0006	0.00001	0 .023 6**	2	0.0006	0.0002	0.00005		
reat-	12	0.0016*	0.0018**	0.0184**	13	0.0006	0 .0019**	0.0020		
Fror	24	0.0007	0.0001	0.0017	26	0.0007	0.0006	0.0010		

* Significant at 5 per cent level

Analysis of variance for phosphorus uptake by stem at different growth stages

			Pirst	860.80N	Second season				
		Meen squares					Neen squaree		
Source	15	Phos	Phosphorus uptake by stem			. af	Phosphorus uptake by		y et en
	0.1	40th day after soving	60th day after sowing	90th day after souing	Harvest		40th day after soving	60th day after soving	Harvest
Block	2	1.575*	6.588	0.161	0.051	2	0 •0005	0.0012	0.00004
Treat-	12	0 -503	2.017	0.663**	0.080	13	••0008 *	0.0069	0.0002
Brtor	24	0.583	2,686	0.164	0.040	26	0.0004	0.0057	0.0002

* Significant at 5 per cent level

Analysis of variance for phosphorus uptake by leaves at different growth stages

			First sea	9023.		Second sec	1601	
			Meen equa	-08		Meen sque	607	
Source	đſ	Phosphorus uptake by leaves				Phosphorus uptake by leave		
		40th day after sowing	60th day after souin	90th day s after sowing	25	40th day after sowing	60th day after sowing	
Block	2	1.886*	9 .965	1.283	2	0.002	0.005	
Treat-	12	1.569**	2.278	1.281	13	0.004	0.014	
Beror	24	0.484	5.210	2.868	26	0.003	0.014	

• Significant at 5 per cent level

Analysis of variance for phosphorus uptake by pods, shells and seeds

			Pirst seas	on	Second season					
			Mean aquar		Mean aquaree					
Source	đſ	Phosp	horus uptake	take		Phoephorus uptake				
		Pods	Sbells	Seeds	.	Pods	Shella	Seeds		
Blook	2	13.955	0.262	90.432*	2	0 -0005	0.016	0.010		
creat-	12	12.194	0.268	22 .62 8	13	0.0006	800.0	0.12		
Stror	24	11.036	0.127	26.395	26	0.0008	0.0108	0.050		

Analysis of warience for phosphorus uptake by plant at different growth stages

			F1	rst sesson	,	Second secson				
			Me	en squares		Meen squares				
A		Phosphorus uptake by plant					Phosphorus uptake by plant			
Source: d1	15	40th day after powing	60th day after soving	90th day after sowing	Harvest	· df	40th day after sowing	60th day after souing	Barvest	
Block	2	5.644*	32.247	16.540	101 .925	2	0.004	0.011	0.031	
Treat- ment	12	3.676	6.690	15.052	20.519	13	0 .007	0.053	0.088	
Peror	24	1.746	14.510	14.727	30.672	26	0.005	0.056	0.048	

Analysis of variance for potassium content in stem at different growth stages

			First	80880n			Secon	d season	
			Meen	agu ros		Meen squeres			
		Potassius content in stem					Potagaium content in stem		
Source	đſ	40th day after soving	60th day after sowing	90th day after sowing	Harvest	ðf	40th day after sowing	60th day after sowing	Harvest
Block	2	0.0330	0.0001	0.0002	0.0002	2	0.0221	0 .001 8	0.0011
freat-	12	0 .3260*	0.1240*	0.0668*	0.1260**	13	0.1648**	0.0943**	0.0194*
	24	0.0450	0.0070	0.0075	0.0012	26	0.0131	0.0152	0.0023

* Significant at 5 per cent level

Analysis of veriance for potassium content in leaves at different growth stages

			Pirst	803.80n		Second seeson			
			Neen s	QU		Mean squares			
Bource	dſ	Pe	otassium conten	it in leaves	đ £	Potessium content in leaves			
		40th day after sowing	60th day after soving	90th day after soving		40th day after sowing	60th day after sowing		
lock	2	0.005	0.017	0 .008	2	0.020	0.006		
reat-	12	0.442**	0=071++	0.085**	13	0 .207**	0.024		
FLOL	24	0.039	0.017	0.004	26	0.040	0.012		

Analysis of variance for potassium content in pode, shalls and seeds

		First sease	n		Second a					
		Mean square	6		Neen equ	u.68				
đſ		Potessium con	tent	āf -	Potessiu	a content				
	Pods	Shells	Secis		Pods	Shells	Seeda			
2	0.011	800.0	0.0013	2	0 .005	0.016	0.0034			
12	0.018	0.343**	0.0406**	13	0 .035*	0.046**	0 -0674**			
24	0.013	0.017	0.0043	26	0.015	0.013	0.0117			
	12	Pods 2 0.011 12 0.018	Mean square Af Potessium con Pods Shells 2 0.011 0.008 12 0.018 0.343**	Mean squares Ar Potessium content Pods Shells Seeds 2 0.011 0.008 0.0013 12 0.018 0.343** 0.0406**	Mean squares Ar Potessium content dr Pods Shells Seeds 2 0.011 0.008 0.0013 2 12 0.018 0.343** 0.0406** 13	Mean squaresMean squaresdfPotessium content PodsdfPodsShellsSeeds20.0110.0080.00132120.0180.343**0.0406**130.035*	AfMean squaresMean squaresAfPotassium contentdfPotassium contentPodsShellsSeedsPodsShells20.0110.0080.001320.0050.016120.0180.343**0.0406**130.035*0.046**			

* Significant at 5 per cent level

Analysis of variance for potassium uptake by stem at different growth stages

			F	'irst season			Second a	000000		
Source			1	lean einores		Hean squares				
			Potossium	uptake by s	; en		Potasain	m uptake by	stem	
	đf	40th day after souing	60th day after sowing	90th day after sowing	Harvest	ð f	40th day after soving	Soth day after sowing	Barvest 0.177	
Blook	2	75 -859*	55 3 -4 57	780.256	74.163	2	0.238	0.119	0.177	
Treat-	12	11.735	157 .777	750 • 383*	69.646*	13	0.105	1.202	0.202	
Strop	24	16 .300	207.968	317.872	29.370	26	0.297	0.868	0.150	

Analysis of variance for potassium uptake by leaves at different growth stages

			Pirst s	08.901		Second season			
Source			Meen sq		Nean squares				
	đſ		Potessium upto	ke by leaves	1 5	Potasaium upts	te by leaves 60th day after sowing 1.145 0.979		
		40th day after sowing	60th day after sowing	90th day after soving		40th day after sowing			
Block	2	16.693	38.490	79.164	2	0.160	1.145		
rreat- Beat	12	8.798	20 •999	299. 562*	13	0+408	0.979		
Error	- 24	8.870	42.650	101.601	26	0.479	1.811		

Analysis of variance for potassium uptake by pods, shells and seeds

			First seas	(m)		Second peason				
Source			Mean squer	88	*****	Meen on	leres			
	đſ		Potessium upt	ake	đf	Potessi	Pota saiu a uptake			
		Pods	Shella	Seeds		Pods	Shells	Seeds		
Block	2	1.612	184.898	796 .734	2	0.027	0.0015	0.168		
Crost-	12	2.029	265 .720*	476 .447	15	0.028	0.014+	2.963*		
Brior	24	1.601	93.842	343.285	26	0.032	0.006	1.046		

Analysis of variance for potassium uptake by plant at different growth stages

			1	'irst seeson					
302278			1	lean squares		Mean squares			
			Potassium 1	uptake by pla	ent		Potassi	m uptake bj	plant Harvest 0.250 8.136° 2.811
	16	40th day after eowing	60th day after sowing	90th day after sowing	Harvest	26	40th dey after sowing	60th day after sowing	Herveet
lock	2	163.767*	874 .210	2198.849	2667.747	2	0.775	1.818	0.230
Czeat-	12	26.906	276 .935	2757 •509	1528 .71 0	13	0.635	5.098	8.136*
Beror	24	42.327	408.768	1459.891	982.641	26	1.437	6.688	2.811

Analysis of veriance for protein content, protein yield, cil content and cil yield

			First	39930 0		Second secson					
		 	Moan s	quares			Mea	a Sinces			
Sourge	df	Protein content	Protein yield	011 content	011 yield	4 f	Protein content	Protein yield	011 content	011 yiel4	
Block	2	1.936	30140.96 0	0.456	7890.68	2	0.192	150.825*	0.0013	59-493**	
Treat- ment	12	11.902**	41311.53*	18 .202* *	12720 -43*	13	3.128	123.011**	0.0181**	0.484**	
Error	24	1.871	9565.040	3.357	4457.74	26	1.991	38.065	0.0015	8.814	

* Significant at 5 per cent level

COMPARATIVE PERFORMANCE OF SOYBEAN (*Glycine max* (L.) Merrill) VARIETIES

BY PUSHPAKUMARI, R.

ABSTRACT OF A THESIS

Submitted in partial fulfilment of the requirement for the degree of

Master of Science in Agriculture

Faculty of Agriculture Kerala Agricultural University

Department of Agronomy COLLEGE OF HORTICULTURE Vellanikkara - Trichur KERALA - INDIA

1981

.

ABSTRACT

An experiment was conducted in the Instructional Farm attached to the College of Horticulture, Vellanikkara, during the period from June 1980 to January 1981 to select soybean varieties suitable for the agroclimatic conditions of Kerala. The experiment was laid out in randomised block design with 14 varieties and three replications.

The study revealed that there was no significant variatal difference in the expression of all growth characters and most of the yield contributing factors at any of the growth stages in both the seasons. But significant variatal differences in seed yield and stover yield were observed in the two seasons. The results of the experiment revealed that the variations Bragg, JN 2750 and 50 26691 are most promising for the south west monsoon season of Kerala.

The variety Monetta gave the highest protein content of 30 per cent and Bragg, Ankur and Improved Felican respectively recorded the highest protein yield, oil content and oil yield in the south west monsoon season.

The study further revealed that soybeen cannot be successfully grown during north east monsoon season of Kerela without irrigation.