COMPARATIVE PERFORMANCE OF SOYBEAN (c) $l_{1,1}$ in max (L.) Merrill) VARIETIES

PUSHPAKUMARI, R.

BY

THESIS

Submitted in partial fuifilment of the requirement for the degree of

flastry of satute in Agriculture

Faculty of Agriculture
Kerala Agricultural (niversit)

Department of Agronom:
COLLEGF OF HORTICILMLRE
Vellanikhara - Irichur KERAIA - INIIA

DBCEAMAICA

I hereby doclare that this theaia antitlod "Comparative parforiance of soybean (inchne max (L.) derrili) varieties" is a bonafide record of research work done by wo during the course of research and that the theais has not previougly focmed the basis for the ewosd to te of ony decroc, dimocia, asociateanip, fellowhiz or other aimilar title, of any other Thiveraity or jociety.

Vellanifiara.

 nctober. $1,01$.

cestacese

Certified that this thesis antitled
"Condrative performance of noybcan (Glyaine Eex (i.) "arrili) varieties" is a record of researah wort: done independently by tios. Eushparumari, . under ay cuidance and supervision and that it has not Previoushy formad the balis for the award of any decree, fellowahip or assoolategily to her.

Tellanikora.
ic. 108 .
(Dr. A. VNUNAN TARB)
Chairuan
ndvisory comiltteo
read of the Departicent of Aeronoly

cerachen

e, the underalignod, nenberg of the Abvisory Comittee of lig. uanowimari, a oondidate for the Depree of anter of seience in priculture with najor in Agronow, aree that the theais entitled "Cou, arative

 fulifinont of the requirenente for the dogroc.

$$
(\underbrace{\text { k. }}_{1,3} \text {) si }
$$

(Dr. A. VIKLAM: :NAR)
Chaimpan
Mavisory Comittee

(Shri...V. Madarn Ni)
combor
ember

ACKIT H.BDGETM

It is ny ploseant duty to exisebs my profound (jratitude on deep sense of Ludsbtcanoas to Dr. ?. Thimman Ifolir, houociate Profensor and Head of the Dencrtnont of fronow. for hite ctneere enidence, orstical
 cavisory oomittoo, during the whole courge of this investication.

 the Dopurthent of Aroncteoroloz, Dr.V.i. . anhumer, rofeogur

 cionco on hemonltural Chomistry for thoir ingining mace entions an keen interest show throwernt the course 0 or titu ctialy.

I au thanful to Sri.t.V. rabirkaran, nasociate frofeaoor of Ariouthral Statistics for the hely renderas Lit thator ot tice uxpriment an anclycis of the data.

I rewetion with thande, the hel readorod to to
 why of he mot hou futcrot in the atruly onk orective cribleter.

It is a donourc to acmowlage bhe efrocto of

Atatiotica, wo kno ahon active Interoct in the atruay wa have fivan de viuable surgeotiona.

A boxd of crithtwo is exprecoed to all tu oulleapues am atalent infado, who have rut in a
 boyond the litatos of vapal acimonbedrowent.
 Director of Reaoarch, Ker la Aghealtaral Jniveroity,
 ollege of Horticulture, ar wovidinc necessum sacilition for the conduet of this or minunt.

Whe awn of leoorch followety by the korio

comerrs

> Sege No.

$$
\begin{aligned}
& \text { I. Iramorotr ... } 1 \\
& \text { II. WTTE: OO HTEBNTUS } \\
& 3
\end{aligned}
$$

```
H52% n%%
```

1. eomanion compoition and chenical popertlea of soil.
2. cothor data (wediy avembe) sor the firgt acounn (Junc to october 1900).
3. oather data (eokly avorcce) for the soom becoon (etober 1vo to jamery 1,e1).
4. Neight of lant and nuber of branciec vor lont at aifrerent routh staceu of goyboan varieties in the two seaumz.
5. Otal number of nodule yor lant at alsearat arowtin stacee of soybeen varicties in the two secona.
6. Fwher of effective noduleo and weifit of nodules por alant at differwit rowth stages of soybean variotios in the two soasong.
7. Cotel pivtowas production per plent of sojucan varieties in the two socsons.
8. Zeaf arca index and not asaicilation rate of pojboan varietien in the two seasans.
9. umber of dave to flowarin and numbor of calu so naturity of soybean varieties in the two deazons.
10. "uber of bearine nodeo par plant. nambor of podo er bearinc: node, number of beeda per pod and 1000-geed weifht or soybean varictios in the two weasons.
11. "ubor or zols par plant, velcht of yodo par plont. shelline percentaco and number of acedo exr lant of soybears varictios in the two seasons.
12. jeed yiold, atovor yichd and harveat indes of $0_{\text {, bean }}$ varietios in the two scasons.

12(a) siciple linenr correlation coofficiont of jicla yer lant uith aiffercat quantitative characters.

12(b) Corrolation matrix of maber of ods yes bearin nude and number of bearing nodes yer piant and seed wel, hit per plant.

TS OM 2AOLX

13. "itrogan contant of ofor at disferont drowth ata, 00 09 00 , boan varifoties in the two geadon.
14. Strogan content us leeven at disforont routh atchea of sojoean variotios in the two geasono.
15. "iltrogon contant of jods, shollo and needs of soyboan verictics in the two veamons.
16. Lbrogar uptede by atel at aicferont rovth atajea of noybean vorieties in the two soabong.
17. Litrocon uytaite by loaves at disiorent wouth atagen on soybean varictied in the two seasons.
18. Ntrogan uptako by pods, dinella and secdo of pojbocn varictieg in the two geagong.
19. Zotal nitrogen uytake by plants at difrarent rowth geagos of boybean varictieg in the two geasona.
20. Lhoghoms oontent of stan at differant routh statea of aoyboan variction in the two seasons.
21. hoophorus contont of laavas at differcnt rowth ataces of aoybean varietion in the two geanons.

2?. noophorus content of pold, ohells and goods of soy vean varieties in the two soasons.
2. Soophorus uptalice by stem at dirferont routs atajos of soybean varieties in tho two geabons.
24. hoamorus uytake by leaver at diffoxent frouth veajes of soybean vericties in the two deadons.
 variatice in the two geagong.
20. Total phosphoms uytake by plants at dificeront rowth ataces of noybean varieties in the two peasons.
27. otassiun contont of aton at dirferant rowth atakes of noybean varictios in the two gocoons.
26. iotasuium content oi leaves at aipionent jowtin atagea of soybean varictics in the two geadona.

Ins 09 2 AL

29. otasaizm content of yodis, ghells and seods of soyboan vorictiog in the two seajong.
30. Otagaizu uptalio y stan dt difacont growth ota jo or boybean vacietien in the two geanons.
31. Otasolun untaice by leaves at disieront rowth sta, ed of goybean variotica in the two geasone.
32. otagaiur uptaice by poãs, ahello and peods of boybean varieties in the two secoono.
33. otasoiur uptake by plante at different rowhataces on boybean varietics in the two gecbons.
34. poteln oontont, rotoin ield, oil content and oil yield of noybcan varietiea in the two seanons.
35. Weathor data for the period from Jume 1940 to Jemuary 1901.
36. Invout inon
S. Varlotel voriation on total argatter production por alat at harveat.
37. Vowiens variction an numor of pode becring node.
38. Verictal variction on number of sex do pod.
39. Variotel vericition on nubos of pods er 1ent.
40. Vorietal vori tion on waifit of pols ser plat.
u. Vametal variation number of se ada per late.
41. Tarictal variation on seed jiela.
42. Verictal vasiation on stover yield.
43. Tamital variation on totel nitrogen utoke by pants at harvest.
44. Varietal variation on total phoophoma uitake by plante at hervest.
45. Varietal variation on total votaludu u taie by pinte at srrvect.
46. Fraseme raniztion on protata contoin of soybean geac.
47. Varietal variation on rotein yiain.
48. Varictol variation on oll content of oybean secas.
49. vaniot a vaiation on oll y2ela.

INTRODUCTION
goyboon is considore: to be an injoatent nownee of caiblo plant motoln and vogotable oil in many contrios. ed celally as it contumo about 40 per ocnt rotoln and 20 acr ont oil. Thougi it bad been socestou for large oocle cultivation in mony countriec and though ettous vore node to introduce this cave into India dince long, its oultivation had not $n 0$ for boon takon up on a loge aculc in I adia. Tinc main roanong for the poor accoptuce of oybean an a ocmoncially ingortant orop in this conntry aro onoidaro. to be tine poor congunar accartability of tine crop prounce and the non-avillability of outtoble viciebias and roduction technology. 20 get over theso difiloution, lage gcale ax whent 1 oris was ane in oevaial remonch contrice in India ca jart of the All India comordinatud Soyboan I eroveaent Projeot from tho 1960's. In a gindier work done at the INI Gub Cantre, Doinbatore with tho prexay objactive of gelocting variotios gutoble for Souts Incia, e $10 \times \mathrm{c}$ gerapladm matorial oi oves 1000 ty us vero seroeno. This noxh Indicutol tiat oovaral varietiea caue up vell in Gouth Indion conditions one noout 25 variotion wore found to be
 teated at the colloge of Hontionlture for threc yoarn sinco
1976. This initial soreening work inilicated ude differmee in the performance of these soybon variotios both within a peason and eiso betwean scesons. titin a view to douny the porfomanoe of the initially acreened suanior Vorietica furthor in relatively longe plota, the present investigation was tekon uiv Thore werc 13 varieties included in tills trial during the firet aonson (Juno to cotober) and 14 in the socon neanon (Octobar to Jcmunry).

The manay objootive of the study verc
(1) To stualy tho parfomanoe of soyben varletico and to golect marior vomietios suitel to Kam.
(a) ?o btudy tio ow arativo rerformace of the variction In the boath dent med nortis eaot nunoon soocons of taraia.

REVIEW OF LITERATURE

$$
W^{+} \text {on lis nrma }
$$

Held potontinl in constacted to be the ost
 owever this charcotor is tho on rocult on tat intoz
 Lde variationg in tho ocod yich and cuaociatod
 woritare. A brief rovion of the work done on the artor - meo of absosont variobiou of goybear in indio and aorond io ivon bolow.
T. Syowtil avacoterg

- Mariotal comenioon on crowti chasrocterg (a) ci int of lant

 goyboan ouldvaw at copmbacoro. Dhe adio andioze in
 a ons il boyboan cultivors toatod at the gaic concic.

 Pbont variotal veriation in layt hoight a ons sevon

 Tra. Sililar aignisicant varictal variation in lont weight were reportod by lajasamaran of al., 10, and ilioli, 1, 1.

Vocramayy and atimasuary (1.75), osea ot al. (179) and ajaschman et al. (10w), obearvea poltive complation betwom ilat hoi hat at unturity and poed iola
 Scoutly coreclatod with yiela (AVOC. 1970). archer
 Euroved clican. Gelowbus and Callond were the higheet vichase.

G1lioli (1,1) in a fiold ex ericuent foun that in the enily wrowth atcuge lant hel int was related to seed size.
"o ooltive correlation betveen plat nel ne ad
 (b) arbor of bmonetes atel of al. (1/70) obgerved that the numur ot branciou and leavo lant wero higher in latc atarine oultivars axi bley vare the hithest fieldero aldo. Tayo (1)7\%) roprtod al nificant variation in numer of brancnes whant ${ }^{-1}$ bunk tirree sojboon cultivare tosted. in iliar olorisicont varictol vanation in mbor of aroncheo want ${ }^{-1}$
wo acortor by sing and ressad (170). hey aloo

 Nor lant aun the of viriobioo bented. shasmadin auk ansa (177) observed ocitive
 of seca tant in cultivoro 3rati. ictett 71 and leo w. "Hiver as wrocheo hioued oaitive correlation with dayo

(o) wher cus weitut ot nodules en lent eiso (14A) pe orted enctic differencos in nounintion of goyboan lino3. ober at al. (1Ji1) doberval
 oo ctitive conlty or atrelno in forming nodale. to
 an bhem monaiv munionl otreathe
(a) Towth and ais

Accortins to ebos of al. (1,un) and vitery (1,u).

Monay and ober (1971a) objorved variation in cro, pontil reto wagine frol oo to $14 . \mathrm{J} \mathrm{m}^{-2} \mathrm{day}^{-1}$ in goybean vametios.
 dincuod in hotomathesio inde omdenthy or leat area index. Zhurif ob al. (1u77) observed positive comelation betvear dit and jicla lant ${ }^{-1}$.

 cluo ouscrval sicilas results. The same cuthons ajoin oboerved varietal difforenee in the leas area indox (iN) and net asalisiation rate ("). The variaties $: 01$ sclection 0 and ol neloction 5 exisbited the figneat lunf aroo indices on 50 oh day ond the values were 4.79 and 4.25 resectivoly. rat hichest an noticed on 20 th day in ol aclection 4 and on 34 th cay in el polcetion 3 and
 bot. hive ongos.
aremitov ob 01. (1,n) rejopton that one late

 $a^{2} \mathrm{La}^{-1}$, a.4 otic and 1.75 tha a^{-1} and for a mia lave oltivar vere $7.700 \mathrm{a}^{2} \mathrm{ha}^{-1} \cdot 2.09 \mathrm{sm}^{-2}$ and $1.5 \mathrm{tha} \mathrm{a}^{-1}$.
(c) Dry notter moduction
orgs and Thatchat (1031) ougurva that the incrage
 Growtin and ranid thoreastar. Vegetative prowtia or oojboan cescol uitia the comencenent of need dovelopant

 altivare.

Anizey (1 477) noticol poltive oomelabion betwoon

 sela. (o) mbor or ano to moworiag

Muber of tap watised for fimot Rlowering in

(fow and conon, 1971). Thoy had clemsithed the rariotien 3021, Tmpoved elicon and Tam-15 en early atamine. (3) ays to utiarity

Yaw ond lan (1071) observed a varietal variation of 70.3 to 126.7 dago for maturiti, aums 77 acy been vixiation teoted under poinbatore condition (11'i). The

 oborval a valetal pariotion of a. 17 to $10 y .76$ as, for

 antrajar.
(1) weon of noden yen lent

Tin and emm (1.71) revarted that the natro of nodeo ver hent vapied Froub. 6 to 17.4 anons 37 noybean varieties tontod and the variotion o 3000 and 07034 recomed the hifeat values. In anotion twal invelving
 supcrionit, of the above variaties witi respect to tha oharacter.

Whari ot al. (1,77) reontod that the mather of nodes renainol aicont the oase in all the variutien otudied oxout in cultryoy ibm and Semes.

- Bongmal orpacta on arowti charadoro

In Geromb id secoon aowing vo belion hando

 Toncl, 1061).

 b. when bow, the nubor of dajo to hlower an dayd to

 A docroase in tho landin of ve etative dase with duerease in to. omotiro, in all tho 10 cultivaro totied. Noy

 Gravo and e catchen (177) in a trial at ilan

 hot Hit duo to delo, a sowlef.
cotven an Co (170) obsenva that twe butal

0ininlomt ofeot on ilant height or nuber of dajo srow flowering to caturity (hichow et ol., 1u70). Tumala and
 interoction on hont hoiftht at latiofity and number of nodon $103 t^{-1}$.

Whan and inor (197) resontod that a ticnus air tew erature for motoonthoals in gojbean was at to $30^{\circ} \mathrm{C}$.
 vegetative thane reoutco in roducod jant rowth.
o oeagotal differenco in Lh weo noted in toree culivaso tooton by ishirl at al. (1von), ecrease in lant heloht, loai dry weloht, stex dry velght and leas suca jer Lant due to dela, ed sowin fron 15th a to bota o, tha we orton by c, cde ot al. (1, 1) in wit.
hay of al. (173) obaenve geagonal variation in flonering and caturity of 10 aoybon cultiven tooted in "orai rocton of titar reacoh. All the verieticu prown fron "etober to "conbor twok lonem criods to Slower and atire wille the sow variotiog, when lantod durine
 tevereture to be the reasen for dola, od flowarin and waturitu th the forwer cecoon.

In an areoricent at ontmaje involvine nix

obocrved that the nuber of daye to shovering was inelucheed by bowin; dater in botil the oonons. The ercot wa wore coried in late than in ourl atarine sarotijes. arlj vosietics were wore gencitive to teqerature than to lanth of dank eriod and hate watarinc toves the reveroc und true.

T. Seld and jialn attributea

- Varictel conarison
(a) Lold atoributes

Kow and enon (1,71) observed significant varietal disforeneco in mubor of podo plant ${ }^{-1}$, nuber an jeedo lant ${ }^{-1}$ and weifint of soed plant ${ }^{-1}$ in 37 soybean vamiaties costed and the reapective velues ranjed between 7.0 to 7..1. 11.1 to 150.9 and 1.42 e to 13.70 . in all theoc cimpacters 7034 was 60 erior. the sawe authory in 1070
 the above dinuctarg.
olor and Cortter (1959) and ajasctioron ot al. (1) (10)) also poortod varictal variation in seai veijit lant ${ }^{-1}$ n goyboan.
(b) 1020

In an experiment involvine 16 varietios, saxenn and randey (1071) obocrved that the variety orack was consistcatly aramior to the other varieties tested, with racad bo jtclu.
 disiowonee $2 n$ ield arong 36 variobied tontel. The the

eli ut ab. (1975) obsarvu on jold variation of

 0.010 maning frou o9 to $2440 \mathrm{~kg} \mathrm{ha}^{-1} \mathrm{mon}$, 19 vanietion
 Nala of 172 tis 10^{-1} vith cultivar sea, pollowa by 3 "0.1 ans 10ris 03.

 an Fold of \because IG na ${ }^{-1}$. In the wo toicl. the ontiviro
2. -5 chu Irgovou clloan also vore hig jioldu but thoy icre ronn to bo macentible to disonges. abel
 tant tho cultivas a, ton 200 weo the bigueat jlelacr.
(iny and ragul (1979) oboerved an ichar variati n

 jiela vaxiation os jes to $145 \mathrm{k}_{\mathrm{j}} 1 \mathrm{a}^{-1}$ was obvervu whth
 177 。

Mesemoncos in seal Jield with goll bule whe

 cultivar solwbus to $4030 \mathrm{~kg} \mathrm{ha}^{-1}$ in cultivar odera on \therefore cnlearecau goll and $500 \mathrm{~kg} \mathrm{ha}^{-1}$ in cultivax itceelo to 3400 th ha^{-1} in oultivar Gunes on a clay aoil.
dagoscisuman ot al. (1,0n) obteinod an jield oz $3640 \mathrm{k} \mathrm{ma}^{-1}$ xuder colibbtore conditions for the variet. M-1

Aceordin: to frady (1901) the wat gtaile monetioc Uith reyau to viela at 9 to 10° Intitialo were vavio and Torvoct. 7at fow 10 to 20° latitude the variotios were ooolor, navio and Juiter. he also reportea that obability of oultivars variod froc continent to contiment than frol sonext to pocgon.
(c) Domolation butwean iela and fiela cumponts
satemis and ande (1971) reported that sood iold wa anoociaboi with ciargotoro like mucber of ode $10 n 0^{-1}$.

 that the whiber of ode lant will serve as decrurolo coumant on iela an sojboan.

and toot weigit or scens. A aigntricmt postive correlation betweon tho wathe of bocks 1 1ant ${ }^{-1}$ and the nubber of ody lant ${ }^{-1}$ was reportod y_{0} hersualin and avon (1,70). novon and obuole (1.7.) in a field expericent
with 10 linoc of soybean obscrval thet the seo. field was
 cloo reporte mat the beed hold wou inversh comelejod intan mabor on seous od^{-1}.

 that tine sech jelu pait ${ }^{-1}$ was correlated with latenoso
 $3 \operatorname{mat}^{-1}$ and rotan se2a $2 \operatorname{sen} t^{-1}$.
ajaboilumen et al. (1,00) noticed nocative ooreo
 and iola mad ogitive corrolation with nubor of aoeds Cd^{-1}.

- Seasonal efrects on yiela and jiela attributes

Accordin; to sartter and lower (1,42) peasmol

 wothe wot a meciobly apocted by dela in lombins. abrowh theno ves a daromeo in veriotios in his sor coch^{2}.

 day comblrons.
nviron mital factore sual as altitude, latibue,

 onl., 107.

 wasm wh mea hald in noyber.
 wo not coolreible but lato ay or fane hentin woll ave
 (10.4). Tre (135). Gevinese and saitia (10.1, Avol (1001) and terpel (1001).

In an oxperimont at abarabitra, fou cud babav (1977) obscrvod veriotal aifierence in seal jold due to

 were beet for thax; Whey also ougervat that the luvert
 Decreasod seod hold due to delay in potint deow
 in a stady involuin diges pojbeas cultivay in itan.

Hiold of soyjoan is noat afiected by nolotire atrear axing the pol filling verlod (Dusek ot al., 1971 and Doss of 21., 1974). Docrease in the nuwer of nodid 2ont ${ }^{-1}$ and reduction in ceod yield due to noisture stres durine flowerine were revorted by Draek et al. (1971). They olso roprted that the numbor of sede ad^{-1} romanoi winsootel due to noloture ctreso durine floworing.

Lhen and Minor (1976) reported tint in verto Bioo, yojben yiclao were hignost wem hatinge were done in licy or June and lo eat when Innted in Decenbor and Jumzy.

III. Contont ona nutico of ferthigem nutricnto

Percentaces or 4,8 and K in the coybern it at parte at sacceosive atcege of plont develoguent woro detemined by Hanky and obor (1g71b) and it was ouserved that the composition of plont parto from differant verietien was uncliy similos. They alvo found a docline in nitrogen contant in plent pett with age. Bategla ot ol. (1977) reported that thore were aigisicent varietel difformees in the content of all eloments in soybean vecds, particularly ror hognorus.

Accordine to Whew and Binor (1970) potabalum oontont or agbene incrocoud with increase in temperature upto $32^{\circ} \mathrm{O}$. They also roported that nitrogen content in

Latwall and ons (1981) indicabed butt the viclu of soybeca mon clowiy eocociated ith the canoms of nitrogen that aecuralated ithin the ginnt. seed ylola
 after shating mile there was no conelotion ith aitroger
 In a shudy ith soybeen voriot w 39421 obuervel tix t the nitrogen contont of stem as hilueat in the initiol

 In tho nitrogen content of lenven srou 30 the dey to Guth day and a dine docline thoreafte . Nitrogen utote by cton

 ombent: the tow an leaver ith matmity wes diso

 there wes a deetne. She further obocrvod a otechy and conoviowno increciso in tina totil aptake of givo horms
 ma a jodurl reduction.

TV. multiv aj, oote

A. (a) Vesictal couyarison on ofl ountant

Shioles ot al. (1775) rewned thet two oeods on modom outive of woybua contrin abuat 21 con cont Bat. In an ox crincat with throe gopoon mativors.
 contant or 24.02 er cont in custrat 3ma.
nibort (107) amathe thentant on gea was

 reorlt was obuchen by sood ot al. (1,T). Abert ot al. (1.70) in a tome involviag to caltive, uborved tixt wa jeas anturtu of rotein and lipla de unded wore on
 clumbo ak woutan omaltiona.

Sanj ot al. (1,77) in a drady involvino 12 so becn

(b) Farictul waintion in rotain contont

So do ur wom cutivers ware re onted to ontwin

proteln ounturt of 41.02 par omt. arictive in dead sotoin contat of sojboan seads remetne frow 20.6 to 53.3 as dant wo ovorved by miro ot at. (1, 10).
heo (1.77) fond twet the woteln conteat of 6

 hacrer aton and Iover oll ontont than Late variotios.

 Lathence on rotolia content than vilubios.

 2,07 bo 40.04 ven ont of rotein. The al.o nocm that
 suamion bene on ylela an gullty.
3. कocnact onfecto on and potein ountat on 0y, boce bead

 gatont dno to deloje Lntix.

Howell can carttor (1953) obeavel coxmelabion Sotwen oil verembage ond ucthan tomerature and oil arembeg an winm tomerature. They obtolnod Whicat cormelution coernciont ∇ luon betwen ons erontrey and tom arbure surine 20 to 30 and 30 to 40 dass worentrit.

 (1.7).

 condtiono on orcin.
 Tost attconon 30 tho pollo, or "oxticulture, obloniman?.

 6.0VO mean gen lovel.

320, in ingtor of sice esphantal piola

 021

Arvimod onud clo 2ock.
ate on hadionl on olumiont cmanoteristice on the soil aco ivor in aule 1.

Peslo 1

$\therefore \quad 00 \operatorname{ALOOL}$ co, Mogtion

abay	-	25.73
832	-	$\because 7$
Snc oxne	-	C. 1
$\operatorname{Bac} e \mathrm{cma}$	-	20.0,

- horicol yonerties

Tonctitrant	coaborst in 0021	atine	etiono whos sox cotimation
9001 mibso.ars	. .050	clita	icronjolucts
$\begin{aligned} & \text { Ave. } 20310 \\ & 200,6020 \end{aligned}$	2.3 ,	Bow	chlonogucyoun s.00ucod 01 buomoghorio blue colom rethod
vailuble otaygit	$163 \ldots$		In noubzal nomal an ontur coctoto extruct - 10.0 24000 ctric
,	4.3	ncic	1:a.s toh water sua, ension winins c. - eber

The anca ajojs a mad bro ical ollate.
De orgerimant wo condacted in two versons
 1.0. The clast oso was reigen betivem swe thth and ctobor 1 th can necond caro. whe twan betwem esobow th

 nou octival and . 1. Sump the oe nowe do rownow bozot.

aticazos	Scason:	;eagon: 1
1. eanly avome on daily noxima *ow crabure (0) (rom o)	20.3-32.40	21.50-34.03
a. aocily avore of doll inhma tan osature (:) (2canc)	21.17-23.0	2.40-2.0.
- clajivo havidob Soronoon () (rone)	0.co - 07.14	(2.1) - 2.00
	101.83-94.29	45.6-73.5
3. 0001 ardnin 31 recoived (a)	31.0.20	1.0 .10
$\begin{aligned} & \text { con } 1 \text { ovorgo (hours) } \\ & \text { (rango } \end{aligned}$	11.45-12.30	11.61-11. 1 1
and dobibution on xaneall was low and mosionctom		
209060		
To pocus os til 	sou couch so. - - c,tonol	brici vore

Soyt2	4tonact weet	$\underset{(x)}{\operatorname{ain} a z 1}$	$\frac{20 n e n}{2 x}$	$\frac{\operatorname{tare} \cdot c}{184}$	$\frac{\text { clative }}{\text { oromindity }}$ Antem		0 lengti (homer
tune	23	4.40	31.10	23.34	94.25	07.63	12.3
June	24	14.30	32.20	2.04	95.00	70.0	12.39
Junc	25	42.76	29.50	23.21	92.33	94.29	12.39
June	20	36.17	2.30	2×65	94.59	33.57	12.53
July	27	$4 \% .29$	$2 \cdot 03$	22.20	94.00	~.43	12.3
July	20	55.97	29.06	22.30	95.00	91.25	12.37
July	29	33.65	29.79	2.6	95.43	98.57	12.35
Jun	30	20.14	20.93	2.0 .10	95.71	e. 71	12.33
Augut	31	7.54	29.03	2.35	95.0	0.14	12.30
Augat	32	12.03	30.19	22.51	93.29	66.43	12.27
Augut	35	30.57	30.47	22.14	97.14	2.23	12.24
Anguat	34	12.00	23.70	26.56	33.14	4.14	12.19
Augut	35	11.11	30.44	22.24	35.6	73.43	12.15
setabar	36	2.09	30.65	22.37	95.71	67.45	12.10
Soytajocr	31	0.03	21.04	23.30	95.71	61.43	12.05
ctorben	30	2. 9	32.43	22.79	Q.60	62.70	12.02
Soycwiber	3.	12.40	32.10	23.17	59.3	74.50	11.03
ctober	4	12.03	31.0	23.0	92.25	74.00	11.44
cbober	41	7.71	32.41	63.51	95.70	69.70	11.49
ctobex	42	1.30	32.21	21.17	97.73	72.0	11.45

coter	tanceryeos	atural(21)	3onometrara		oLotsve 3usaity		ow 1024. (200aro)
			ariche	intrem	Orcnoos	Astorrivo	
Cetobes	43	4.71	31.50	29.13	$0 \cdot 3$	$0 \cdot .70$	11.4. 1
cobbor	4	3.23	32.0	29.57	7.20	40.3	11.37
"ove	43	4.03	32.75	8.303	0.50	6 con	11.33
Tovoluck	46	12.74	32.00	2.7	火20	70.30	11.29
\%overber	47	14.23	31.00	23.11	0.10	16.80	11.26
Hovelder	40	1.00	31.75	21.00	6. 10	09.90	11.24
Tocombor	4	0.00	32.07	20.03	47.60	67.40	11.22
Jecabor	50	3.00	33.04	20.64	.3.90	63.70	11.21
ocenber	51	0.00	32.25	22.54	4.70	62.40	11.21
Decelica	32	3.00	31.90	21.30	05.20	05.10	11.21
January	1	0.00	37.53	20.40	4.70	50.10	11.24
Tomuary	2	0.00	32.66	20.47	2. 10	40.00	11.26
dankxy	3	0.00	33.14	22.09	Q. 0	45.40	11.20
Jannory	4	$0.0)$	34.33	2.e.0	6.	4.19	11.20

Costincoro damn 10th. Thay wero subjecta: so mithal

 uscu for ble argent arial.

$3 x+0.020$
The treotaned onsistod of the follownc if varicoice.

1. : 30.1
$\therefore \quad 14837$
2. 20001
3. Enimorea . 1 .00n
4. $\%$ yec14
5. Num

7 . $08=10$
6. .oncte
3. Tad.
10. 50.24
11. Devie
12. 2750
13. 0.023
14. asw
 no, bo nelade som 6.00 brich.

2010 culture

 atabiles were reaved, clods wore brokon and lovelled. The Pleld was thon laid oat into blocis and lots as or the
 Gat in the lote with chazelo of 20 on wiaki in bebuen.

 In addition. all the loto recoiva a unform dose of

 we of lios no bugal drosuin:

2061203014001

cortlizers ith the following analuais reto uned
sos tho oz onicont.

$$
\begin{aligned}
& \text { Ruontw oulunio - } 25 \% \\
& \text { Tu orkoghzto - 10. } x_{2} 0 \\
& \text { ariate or notan - } 00 \mathrm{~F}_{2}
\end{aligned}
$$

Meotim and 10, out

The la out hen io dhom in a., 2.
ovin.
Sowing on tire tingt and second oro whe dome

Minte oceuc wore dibulod in ock row on 1.0 a whatir at a distance of 45 as betweor rowe wolling wase twine oms a woar cutor cowin to dintela a onalowion of 20 lata der row tras giving an avoruco ancin of
 no sived as roj-

Aton pustivation

seror 30wite.
Lont rotection

 owtrollu: b, owne a Sevin.

ATVOQLn

 of lonveo. crvoctur wh done $3 y$ cutthe tho pants as

Bogarrotions reconcleg

1. routi dracotozo

 rocordod swo. bood lase at raviono sowtis sta, A A

 $0 \times 1,30$ aunownont 2.
(a) obut of 1ata
 Sot bho ban to the torwinal budo ank he overato hoi not
 otreos.

(c) Waber of nodule per lant

Wis obouration was thim at discorat pouth sta, co commein; from 40th day. Lonts vexo alled out

(a) Tuber or extective nodule we lat

Tron the total nuwer of roct nodulac, tione weth the olour in the contro wore conten ne, arotoh ays the
 10nt.
(c) cifit on nouncos lat lant

 lint wos oalenlabal.
(D) Ty as as noduction

 Endividual songonato. (0) men aree man (17)

and thoir leavou were oeraratal. Tas loavon nere soleotai
 sencil on quality bond pay of mow area er mith wet nt. Se broce partiono wore cat out ocresill and vet, hok.
 calculabou.

Wo levgo were the drien is a not ais oven ct 7

 Tht was odcalabal ao nollow

(a) ot cons ilobion abe (M)

 SOllown, jowala wes wod to andyo bt the not cogisilation acto.

W2, 20

 10wCx min
(i) N, to naturi

Co deaj 40 antumito
T. Oot-ivevot ojouyationg

 (b) "unbes of do w jecring nowe

 $\cos +2.006$.
(a) "unbur on veodo yen wa

Tuant youlo nett goloctor ct mento. Amon tico

(d) 100 gect matide

 canolbou.
(a) Muber of yodo ver plont

Averaje muber of poda per blant wes woricod out bj comtinj the fotal nabor of pods trou the observation Lents at harrot.
(b) cijit of podo yer plant

Avercue welut of pole per lomt wed cale lated by recondin, the weith of total numor of pobs from the observation lonta.
(G) Mellin vercentace
mellin, poreataje was ocloulatod at hasvost woint the Dollowin Somala.
(a) Mumar of geodo yor lont

The tutal maner of beeds wodsea th we obarvetion
lonto wes ounted and the avera, whered ont.
(i) T101 or seais

The pods harvoutal fon the nob arce wore sundried
 of clack cous rocordon. Loll was exareugod as $\mathrm{as} \mathrm{ha}^{-1}$.
(j) Tala on asover

(ii) tarroct indor.
Gomoot indor was calouzuch do allom.
$\therefore 2 \mathrm{E}$

$$
\begin{aligned}
& \text { com }=\text { row wolet of sood } \\
& \text { biol }=\text { otol dry vei ht on planto }
\end{aligned}
$$

 - verto di maridano

(i) rothin contat of coels

The arboin doboh on neodo wea colculatod wo
 $0 . \infty$ (• • •1, 10)
(i) rotan acula
ocntent of soede and total seed yield and expreaced in ing ha^{-1}.
(o) 012 oontent of meods

The oil content of oven dzied seods was eatimated by ualice Soxhlet apparatua (A.O.C.S., 1971) and axpressed as parcentage.
(d) 041 yield

The oil yield was estisated trom the oil ocentent of seeds and totel yield of esede and exycressed as kg ha ${ }^{-1}$.

Date were cmalyosd otatiatically by enploying the analyais of variance technique as sugzasted by Coobran and Cox (1965). Sirilie and multiple linoar correlation ooofficients between yield and erowtin abarractars and yield and yield contributing obaroctess were worked out DA yer the toolniques ancesogted by Snedecor and Coohren (1967).

The characters whiah were mignificmatly correlatod with yield, were seleoted for forinng the caltiple linoar regresaicon equation (seleotion index) as a basis for seleoting cuporior verieties. It wae of the fomis

n - number of quantitative onaracters
b_{0} - a constent
X = yleld per plant
b_{1} - the partial regression coefficient of I on x_{2}
x_{1} - the meen vaine of the $i^{\text {th }}$ charecter
The ooefficiant of determination was also calculated to know the parcentage variation explained by the regreselion equation. The partlal regreselicn coefficients were tasted for aignificance ualnis the Stuacnt' 0 " t " teat.

The independent variatee of the regreselion function were replaced by their meen values for eech variety to get an index scove. This index ecore was ued to assess the genctio worth of the naterial. The varietioe were reniked acooxding to these indioes in the oxder of tholr magnitude and the pronising varletios were leentifled.

Another method of seleating superior genotypes for further propagation was adoyted on the asguaption that the alatribution of yiela plot ${ }^{-1}$ wee normal.

Acooxding to this oritericn those varieties whiloh Iell in the upper 5 pror oant portlon of the fitted normal curve ware dealgnated as superior.

RESULTS

1xiduIs

Reaulte of the experinent "Coaparative parformanoe of soybeen varieties" are presented below. A. Groyth chareoters (a) Heicht of plant

The date an nean helcht of plente at various arowth stages are presented in able 4 and the analyois of variance in Appenalx 1.

Thare was no alurificent varietal difforence in plant helgent at any of the stages of want growth in woth the seasons. All the 14 varieties tried in this expericant showed nore or less cowprable plant hatght.
zlent halght ln the eecond eeason was conalderably Lower in all the varleties. For example the variety J7 2750 which recorded the higheat ilant helght of 70.27 om durince the firet eeason oould reoord a plant hel fit of 24.21 ca only durine the second season.
(b) Tumber of branohes par plont

The data on the number of branoilen per plant at various growth itoges are yresented in hable 4 and the analygis of varianoe in Appendix 1.

This observation was taken anly in the flisst eeason and there wan no aifonificant differanoe in the nuabor of brenchee jer jlant botween variction.

Table 4. Helght of plant and number of branahos per plant at alffarant growth atages of soybean varietier in the two mencons

Erentrenta	Height of ajlente (an)					Mraber of branohen per plent Flrat meagcn	
	Pirgt geagan			Seoona gaseca			
	40th tay after nopting	60 th day after sonding	$\begin{aligned} & \text { 90th ady } \\ & \text { artorer } \\ & \text { geving } \end{aligned}$	40th das aftere eouring	6012 day arters soning	40th day after spoping	60theny aftere soring
1. EC 39821	23.94	41.08	62.63	11.18	20.01	1.66	4.90
2. BC 14437	20.10	39.37	57.61	12.16	19.42	1.86	4.48
3. EC 26691	26.02	44.63	66.20	12.78	20.03	1.60	5.67
4. Improved Policm	31.42	36.23	59.53	13.86	22.69	1.20	4.57
5. 10 92814	28.18	40.65	62.73	11.90	20.73	1.80	4.33
6. Anicur	31.77	40.67	59.81	11.47	19.40	1.53	4.83
7. PLSO-18	20.70	36.72	58.96	11.77	19.92	0.60	4.48
0. Benette	26.73	39.93	66.03	11.57	20.79	1.06	4.37
9. Brage	29.19	43.00	64.31	12.90	22.41	1.40	4.20
10. BE 39824	26.03	39.03	60.09	12.33	23.00	0.93	3.67
11. Devis	27.14	40.37	58.45	12.08	10.45	1.01	4.43
12. In 2750	30.01	40.30	70.27	14.63	24.21	2.46	5.10
13. 503298	26.62	30.20	59.95	13.84	24.26	1.46	4.17
14. 80256				12.33	24.65		
F teat	US	[15	[Ns	Hs	m	W3
3pm \pm	2.534	3.694	5.070	1.025	1.672	0.403	0.597
0.0. 5 \%	-	-	-	-	-	-	-

(a) Number of root nodules per plant

The data on the rumber of root nodules per plent at vaicus otaces of piant growth are presented in Tabla 5 and the analysis of variance in Appendix 2.

The mumber of root nodules per plent aid not alffer significantly between varietiea in both the seasons.

Compariscm betwoen stages in the firet eeason indicated a greaual inorease in the namber of root nodulea per plant upto 90 th day. It was aleo noticod that the rate of production of noot nodule was hlegeet between 60 th and 90th day. Po consistent variation in the number of root nodules per plant betwoen stagea was noticed in the seoond seagon.

The number of root nodulee per plent in the seoond eeason was considerably lower.
(a) Thumber of effective nodules per plent

The data on the number of effeotive nodules per plant are presented in Table 6 and the analyais of varience in Apyendix 2.

The date revealed that there wea no atanificant difference in the nuaber of effeotive nodules jer plant asone varleties in both the seasons.

The rumber of effeotlve nodules per plent was mankediy lese in the second season as oompared to the firat eonson.

Table 5. Total maber of nodulea per plant at different growth atagee of soybeen varlathes in the two geasons.

Treatrienta	Fursber of noduleg ver slant				
	I2mat geagon			Scocral geagcy	
	40th tay arters gouting	Goth day afte: bouing	90th day aiter goning	40th day after sonting	60th day aftex goulng
1. 2539021	0.522(1.500)	0.979(2.428)	20.106(10.076)	1.007(3.327)	$0.277(1.943)$
2. TC 14437	$0.326(1.6212)$	2.006(3.321)	18.399(9.643)	$0.0993(1.412)$	$0.174(1.568)$
3. EC 26691	$0.182(1.362)$	2.352(3.572)	12.26547.395)	0.265(1.911)	0.144(1.715)
4. Improved relionn	0.496(2.665)	3.779(4.460)	10.173(7.202)	$0.458(2.364)$	0.728(2.676)
5. $\times 92814$	0.759(2.190)	2.009(3.323)	10.293(7.243)	0.461(2.370)	0.536(2.523)
6. Animur	$0.844(2.265)$	2.440(3.633)	5.199(5.196)	0.42 E (2.290)	$0.699(3.160)$
7. FLS0-18	$0.290(1.577)$	$1.081(2.531)$	26.029(11.624)	$0.776(2.961)$	$0.916(3.169)$
8. Honetta	2.719(3.820)	4.007(4.629)	6.630(5.844)	$0.092(3.150)$	0.416(2.270)
9. Bracs	1.596(2.996)	$4.310(4.743)$	$26.079(11.463)$	$0.116(1.471)$	$0.300(2.000)$
10. 39624	0.979(2.428)	$5.900(5.413)$	$27.569(11.786)$	$0.672(2.776)$	$0.549(2.548)$
11. Devis	$0.854(2.296)$	8.373(6.549)	$6.640<5.643)$	$0.149(1.577)$	$0.333(2.061)$
12. It 2750	2.511(3.681)	3.619(4.310)	22.349(10.618)	$0.2644(1.959)$	0.198(1.727)
13. TC 63298	1.183(2.634)	5.956(5.548)	12.505(7.970)	1.362(3.223)	$0.519(2.490)$
14. 2.2506				$0.003(1.130)$	$0.177(1.667)$
7 tost	ns	r3	173	10	us
STm	0.121	0.362	0.377	0.140	0.164
C.D. at 5 '	-	-	-	-	-

Pigureo in parenthesis indicate $\sqrt{(x+1)}$ transforned velue

Growth
Table 6. Fumber of effeotive nodules and welght of nodules per plant at different stages of soybean verieties in the two seasons

Treatwents	PLrat seamp Seocna		Sopond gespon [First geason		Seoond geasga
	60th day after sowing	$\begin{aligned} & \text { 90th day } \\ & \text { after } \\ & \text { goutiga } \\ & \hline \end{aligned}$	60 th day after soning	40th dey after sowing	60th day after souling	90th day after oowing	60 th day after sowing
359621	0.329(1.626)	4.020(4.595)) $0.000(1.000)$	0.023(1.057)	0.052(1.125)	0.517(1.ن93)	0.001 (1.006)
EC 14437	0.491(1.059)	$4.943(5.071)$) $0.000(1.000)$	$0.033(1.000)$	0.059(1.139)	$0.229(1.464)$	0.0002(1.001)
- xC 26691	$0.771(2.203)$	$6.663(5.369)$) $0.000(1.000)$	0.013(1.003)	$0.155(1.333)$	0.483(1.349)	$0.0001(1.001)$
- Inysoved polioan	2.044(3.350)	6.859(5.941)) 0.055(1.244)	0.023(1.067)	0.165(1.352)	$0.187(1.391)$	$0.003(1.012)$
EC 92814	$0.600(2.000)$	4.156(4.667)) $0.198(1.727)$	$0.068(1.158)$	0.103(1.231)	$0.363(1.707)$	$0.001(1.006)$
- Ankur	$0.498(1.869)$	3.644(4.384)) 0.607(2.661)	$0.067(1.155)$	$0.065(1.152)$	$0.170(1.360)$	$0.008(1.038)$
- EISO-18	$0.199(1.412)$	8.379(6.550)) $0.091(1.362)$	$0.014(1.034)$	$0.036(1.087)$	0.456(1.811)	0.006(1.029)
- "cnetia	$0.617(2.021)$	3.197(4.121)) $0.100(1.414)$	$0.134(1.293)$	$0.113(1.252)$	0.383(1.707)	$0.0007(1.003)$
- Dragg	1.457(2.879)	6.154(5.637)) $0.055(1.244)$	$0.115(1.254)$	$0.280(1.549)$	0.654(2.067)	$0.001(1.006)$
0. 396024	1.944(3.274)	0.992(2.441)) $0.233(1.324)$	$0.036(1.191)$	0.376(1.697)	0.781(2.215)	$0.002(1.009)$
1. Devis	1.039(3.193)	$3.988(4.576)$) $0.185(1.687)$	$0.046(1.110)$	$0.166(1.309)$	0.129(1.283)	$0.005(1.006)$
2.51750	$1.498(2.914)$	$5.927(5.535)$) $0.099(1.412)$	$0.128(1.262)$	$0.316(1.606)$	0.641(2.050)	$0.001(1.006)$
3.x 63296	1.443(2.571)	5.994(5.565)) $0.222(1.794)$	0.064(1.140)	0.286(1.559)	$0.162(1.345)$	$0.003(1.013)$
3.x 2506			$0.055(1.244)$				0.0003(1.001)
Teat	13	ms	IT	173	ns	1 m	ws
spat	0.175	0.374	0.047	0.015	0.037	0.045	0.0014
P. at 5	-	-	-	-	-	-	-

1 gureo in parentheals indicate $\sqrt{(x+1)}$ transformed value
(e) Solegt of soot nodulee per plent

Date on tho welgit of root nodules per plant at different Growth ataces are presented in Table 6 and the anolyals of vayiance in Aypandix 2.

The verieties ald not ahow any aforificant difference In the welgrit of root nodules per plant in both the seagons.

Comparisan between atages in the first season
indicated a aredual inorease in the welght of root notulea par plant upto 90th day.

As in the oame of nowber of root nodules per plant, weight of root nodule per plant was also arastloally lese In seoond season as compered to flrst geason in all the varietien.
(1) Total phytomase jproluotion par plant

The data can total phy fooman yroduction per plant at different gerowth atages are preented in Taicle 7.

The analyels of varianoe is given in Appendix 3.
Varietice did not mhow axy algorifioant difference in the total phytoness produotica per plent in both the seagons.

It was eleo noticed that there was a grealual inorease in the total playtconase protuction upto wih day and a decline thoreafter in all the varieties in the IIrst season. But awsing the second easem a steady increase In phytomaes production was noticed throughout the orop growth pariod.

Table 7. Total phytomass production per plent at aifferent growth atagee of soybean varietien in the two seasons.

3xeatmanta	Lotal rhytorana mpoluation per plent (g)						
	P15at mapen				Sepord asagon		
	404h dav after sonding	60th day after coulne	90th day arter centing	Herveet	$\begin{aligned} & \text { 40tin day } \\ & \text { aftore } \\ & \text { emaling } \end{aligned}$	60th déy after couing	Haxreet
1. 283921	1.771	3.507	17.503	14.533	0.358	0.721	1.031.
2. EC 14457	1.603	4.705	17.917	10.500	0.364	0.673	1.150
3. 26691	1.133	5.090	18.439	18.200	0.423	0.950	1.126
4. Improved	2.104	6.224	22.315	19.047	0.403	1.454	1.394
5. EC 92814	1.925	5.893	16.756	14.860	0.369	1.401	1.334
6. Ankar	2.132	3.618	17.533	10.033	0.291	0.933	1.174
7. PLsO-88	2.085	3.577	14.357	11.867	0.469	1.084	1.419
8. Honotte	1.635	4.779	16.039	16.033	0.581	0.709	1.186
9. Bragg	1.541	5.237	24.738	21.633	0.430	0.650	1.181
10. BC 39924	1.647	4.837	22.143	16.047	0.404	0.953	1.034
11. Davis	1.380	5.804	18.558	15.147	0.474	0.939	0.933
12. ग1 2750	1.233	6.217	21.621	21.333	0.305	1.051	1.566
13. 63298	1.068	4.760	14.092	12.540	0.396	1.150	1.265
14.* 2586					0.395	0.775	1.652
F teet	ns	Ns	WS	ns	17	7s	TS
Smat	0.391	1.450	3.130	3.243	0.0077	0.2433	0.169
C.D. at 5	-	-	-	-	-	-	-

F1G.3. VARIETAL VARIATION ON TOTAL DRYMATTER PRODUCTION PER PLANT AT

FIG. 4 VARIETAL VARIATION ON NUMBER OF PODS PER BEARING NODE

A drastio deoline in totel pilytomese production yas noticer in the second seascon compared to SIrgt in all the varietien etvaled. For example the variety Brace which reoorted the higheat dry welght value of 21.633 e plant ${ }^{-1}$ during firat acason could produoe only a total phytomase of 1.181 g plent ${ }^{-1}$ during seocon aseson. (g) Leat ares index
che results on the leaf area index at various atageo of plant growth are presented in Table 8 and ths analyals of variance in Appenaliz 4.

The data reveeled that the verietiee did not difier signifloantly with roapect to leal area index on 40 th and 60th days in both the seasons. But in the first season. there was aigniflcant difforence in IAI on juth day aiter eowing. At this atage the variety IN 2750 reoorded the blegest LAI of 8.094 which wes on par with Improved Pelican,
 Ankur. All the variatiea except 101437 recorded higheat Lal values on 90th dey after souting during this season. It was also notioed that the varietiee in general reoorded the highest ThaI values on 90 th day in the firat eeceson and an 60th day in the seoond soason.

A ocaparison between seasons ahowed that the LAL of all the variatles was loss in the ecoond season.

Table 8. Leaf area index and net andich 1 ation cate at alfiarent growth stages of goybeen varietiea in the tuo seascons

Ereatgenta	Leaf area indax					Net assimilation rete$\left.\cos ^{-2} \operatorname{day}^{-1}\right)$		
	Firatingoeaca			Second seagon		Purnt magar		Segord_nepson
	40th day after 00wing	60th day after sowing	90th day a.ters sowing	40th day aftese sowing	60th day after souling	Between 40th \& 60th day after souting	Between both ts 904 h day after soling	405h and Whth day afters conting
1. EC 39021	1.604	2.877	5.042	0.419	0.677	2.303	4.293	1.278
2. W 14437	1.279	2.785	2.317	0.481	0.776	4.259	2.526	1.632
3. 26691	0.024	3.842	6.054	0.613	0.900	3.099	4.475	1.523
4. Impoved	1.774	3.531	6.076	0.493	1.144	5.441	3.692	2.407
5. Ex 92814	1.556	4.071	5.336	0.471	1.053	4.242	3.315	2.942
6. mances	1.631	2.460	5.211	0.466	0.857	2.106	4.401	1.971
7. FLSO-18	1.476	2.386	4.152	0.623	0.357	2.583	5.445	1.616
8. Manatta	1.335	3.111	4.144	0.798	0.658	4.180	4.510	0.893
9. Bragg	1.247	4.206	7.767	0.550	0.766	3.165	$4 \cdot 729$	1.412
10. DC 39024	1.593	3.881	7.792	0.574	0.985	2.961	3.727	1.962
11. Davis	1.161	4.304	5.974	0.580	0.744	3.951	5.225	1.402
12. JV 2750	1.152	5.024	8.094	0.461	0.960	4.523	3.677	2.036
13. EC G3296	1.525	3.214	4.115	0.506	0.960	3.920	2.843	2.326
14. DC 2506	. 2	3.214	4.1	0.450	0.066			1.543
Ftogt	NS	15	3	W	He	03	15	N8
$\mathrm{Sm}_{ \pm}$	0.315	1.012	1.069	0.125	0.228	1.118	1.013	0.506
C.D. at 5\%	-	-	3.120	-	-	-	-	-

(h) Net oselmilation rete

The Qata on not easimiliaticn sate between growth stages are preacnted in Table 3 and the analyals of varianos in Appenalx 4.

It cen be seen from the Table 8 that thare wee no algalilioant aiffarence in not asaimilation rate between varietios at ayy of the atages of plant growth in both the seasons.

A compariscn of the trend in MAR between 40 th and 60th day and 60th and 90th day abowed an inorease in IIAR in 8 of the varieties under teat, wille the remaining ones sbowed a deoreaslng trend.

As in the oase of LAI and other ohargoters, a conaiderable reluotion in har wae alao oberrved in the second seascn compared to Elrat.
(i) Number of days to flowecting

Date an mamber of daye to flovering are given in Table 9.

The variteties tomic 56 to 62 days for ilowarini in the flrgt eeason and 45 to 53 days in the second season.
(1) Number of cays to maturi ty

The data on the ramber of days to maturity are given in Table 9.

The varieties took 125 to 130 days for maturity
in the PIrst season and 33 to 65 days in the seocnd season.

Table 9. Mumber of days to flovering and number of days to maturity of soybeen verieties in the two seascns

Examamata	Days to 50 per cent nowning		Days to maturity	
	$\begin{aligned} & \text { Firat } \\ & \text { gesecn } \end{aligned}$	$\begin{aligned} & \text { Secoud } \\ & \text { gepenonn } \end{aligned}$	Pluet manen	Seccend
1. BC 39821	60	52	129.5	83.5
2. 14437	62	52	126.5	84.0
3. 2626691	50	48	126.5	84.5
4. Improved Pellom	57	47	126.5	83.0
5. 92814	58	53	128.0	84.0
6. Ankur	59	50	129.5	84.0
7. 1480-18	58	50	129.5	85.0
8. Menette	57	50	126.5	85.0
9. Brags	56	47	125.0	85.0
10. 35804	58	50	130.0	83.0
11. Devia	58	50	129.5	33.5
12. Jצ 2750	58	46	126.0	84.5
13. be 65298	58	45	126.5	83.0
14. EC 2566		50		83.0

II. Obsaxvations at harreet
(e) Tumber of bearing nodes per plent
the data on the number of bearing noies per plent at harraet are prosented in rable 10 and the analyais of variance in Appendix 5.

Vanietien ald not ehom any gignifiont differenoe on tha number of bearing nodes per plant in both the seasong.

The number of bearting noies per plant was much less in the geoond soason.
(b) Number of pode per beeming node

The data on the number of pods pex beoring node are given in Table 10 and Tige4. The ansiygie oi variance is given in Aprendix 5.

There was afgificont varietol Aifference in the muber of pods par bearing node in the first seacon. The variety Bracs zeconded the highest mmber of pods per bearing node (3.66) which was on par with Improved felican but euperior to ell other vasieties.

The muber of pods par bearing node alao was conslaerably less in seoond seascn.
(a) Nurber of aeeds per pod

The mern valueg on the rmber of eeeds por yod are presented in Table 10 and Fig.5. The amelyais of variance is in Aypendix 5.

The varieties did not show awy algaifioant variation In the namber of seals per yod in both the seasons.

Table 10. Thumer of bearing nodes per plant, number of peds per bearing node. momer of seede per yod and 1000 meed weight of soybean vexleties in the two saasone.

Treatmente	Rumber of bearing nodes par plent		Humber of pois per bearing nude		Furaber of seate par poid		$1000 \text { (g) weight }$	
	Fingt Seascon	Second Beascn	First ceam:	Seoond geagon	Firgt sersca	Second season	Fisut senacen	Seccent scascon
1. Fe 39821	19.20	4.67	2.36	1.28	1.78	0.82	86.67	66.73
2. 14437	10.27	3.60	1.90	1.41	1.75	1.19	79.96	65.12
5. DC 26691	24.20	4.07	2.50	1.14	1.71	1.10	85.40	70.90
4. Inyrove palioan	20.27	4.60	2.90	1.28	1.62	1.00	87.21	70.30
5. EC 92814	10.53	3.67	2.44	1.36	1.88	1.93	89.59	68.10
6. Anicur	17.60	3.67	1.05	1.91	1.71	1.07	84.64	70.57
7. PISO-18	15.60	4.00	1.99	1.39	1.94	1.73	83.90	72.29
8. Minetia	20.47	4.07	2.45	1.13	1.02	1.42	84.05	68.53
9. Brages	19.00	4.13	3.68	1.34	1.77	1.39	84.36	65.77
10. Ex 39924	19.40	3.93	2.67	1.08	1.65	1.57	82.71	61.00
11. Devie	18.67	3.60	1.96	1.21	1.83	0.87	89.23	64.37
12. JN 2750	25.47	5.33	2.50	1.23	1.67	1.66	66.07	67.68
13. -c 63298	16.93	4.60	2.35	1.26	1.67	1.18	83.60	66.61
14. S 2586		4.27		1.16		2.02		70.30
F Teat	75	7S	5	\%8	W8	ns	WS	घs
3 mm	3.344	0.570	0.287	0.171	0.105	0.293	0.207	0.272
C.D. at 5\%	-	-	0.836	-	-	-	-	-

FIG.5. VARIETAL VARIATION ONNUMBEROF SEENS VERPOD

$$
\text { UICROP } \quad \text { IUCHOO }
$$

FIO. VARIETAL VARIATION ON NUNEER OF PODS PER PLANT

Ilke other georth yield oharecters, the number of seeds per yol also was less in the second season. (d) 1000-seed welgent

Data on 1000 seed welght are presented in Table 10 and the analysis of varience in Appendix 5.

Thaze wea no alunificent varietal aifference in 1000 seed weldot amone the varieties teated in both the oeasons.

But a ocnaiderable reduction in test weicht was notloed between aeasons.
(e) Number of pode per plent

The data an the number of pods per plant are yresented in Table 11 and Fig.6. The analyole of variance Is given in Appenalx 6.

There was no alenificant difference in number of poin par plent between varieties in both the seasons.

But there wae a very heavy deoline in the number of pads in the second aecoon.
(f) Weight of pods per plant

The data on the weight of pols per plant are presented in Table 11 and Fig.7. The analyala of variance In Apprendix 6.

It can be seen from the table that the varieties aid not ahow any algalificent aliference in the welight of pode per plant.

As in the oase of number of pods per plent the meen

Table 11. Jumber of pods per plant, weight of pods per plent. ahelling percentege and nuber of aceds per plant of soybean varletles in the two eeasons

Treatrogats	Tumber of pode par plana		Weleght of pods ner blant (a)		Shalling percentage		Number of aeods par nlant	
	$\begin{aligned} & \text { Flrat } \\ & \text { geagan } \end{aligned}$	Second agogon	Fingt 898008	Seoond peagon	PLrat geagan	Seocnd日gason	E2Fet Beapona	Second geragon
1. 3C 39321	46.33	6.07	10.85	0.61	62.78	54.10	82.90	4.30
2. BC 14437	35.06	4.93	7.17	0.73	57.73	54.92	62.34	5.67
3. $\times 26691$	60.73	5.00	13.10	0.73	56.92	53.03	107.97	6.40
4. Impuroved felicon	53.90	3.67	12.93	0.34	50.551	57.32	96.87	5.60
5. [C 92314	44.67	4.40	10.66	J.99	61.80	53.17	44.27	8.67
6. Aninur	33.73	6.50	7.00	0.82	64.06	55.14	56.00	6.90
7. ILSO-16	30.67	5.60	$7.90{ }^{-}$	1.05	50.17	50.30	59.93	8.37
8. Escnetta	49.87	4.60	11.23	0.77	61.79	53.53	90.87	6.53
9. Bragb	68.47	5.73	14.56	0.69	61.69	53.19	121.73	6.50
10. IL 39024	51.33	4.23	11.00	0.57	62.05	52.24	05.53	6.03
11. Devis	36.80	4.60	9.38	0.61	65.97	52.10	67.13	3.93
12. Ji 2750	60.73	6.53	14.10	1.08	61.63	54.55	117.67	10.67
13. זС 63298	39.73	6.07	6.81	0.90	61.23	53.93	67.67	7.13
14. m 2566		5.30		1.36		56.36		10.50
F teet	15	HS	13	TH:	8	3	HS	3
30.m	9.910	0.705	2.291	0.163	1.413	1.065	18.466	1.186
C.D. at 5	-	-	-	-	4.123	3.096	-	3.448

FIG.8. VARIETAL VARIATION ON NUMBER OF SEEDS PER PLANT

welght of pods per plant wate markediy lower during the eocond geabon.

(g) Shelling peroontage

Data on ahelling perventage are presented in Table 11 and the analyals of variance in Appandix 6.

Thore was aigaificent varietel differance on ahollince percentage in both the beascas. The variety Devis reoomded highert sholling pexoentege of 65.97 during the Plrat seseon end thile was on par with Ankur, SC 39621, : 39824 and 509314.

During the seocod seascn cultivar iLs0-18 gave the highest ahelline peroentage (56.30) whioh was on par with Improved Pellcan and sc 2566 but saperior to all other varletiea.

A general deoline in ahelling percentage was aloo notioed in the seoond seacon compared to the flrat. (h) Number of seeds per plant

Data on the mumber of seede per plant are presented in Table 11 and Fle.e. The enalysis of variance is given in Appendix 6.

There was algnificant variatal aifference in the nuraber of seeds per jlent only in the eecond season and the variety JV 2750 recorded the highest value. It was on par with c 2506. EC 92314 and iLSO-10. The number of seods per plent again wes lees during second sesson then the first.
(1) Yiexd of meed

Data on yield of secie are presented in Table 12 and Fig. 9 and analyaide of variance in Appendix 7.

Thare was ilgnificmen varletal difference with zespect to this ahareoter.

During the ilset seascn, the variety Brages reconded the highest yield of 2319.49 kg ha -1 it was on par with the varieties x 26691, IN 2750, TC 63290, licnotta, Improved Pelicen. BC 39824, \mathbb{D} 39821, Davie end Ankur, but auperior to FC 92314, C 14437 and LSO 18.

For selooting out a fow superior varieties a critical
value of discrimination at 95 per coat confldence was detormined aspuxing the noxmallty of plot ilelds and this wes found to be 2096.66. Jaing this coltical level the varlaties 3rage, x 26691, Jn 2750, x 63290 and Honetia were selected as promiaing in the relative orter of magnitude.

Coprelation betugen viald and yiald contributing and nepowth onayepreth

The siaple correlation coefficients of different Growth and yield components with yield are presention in Iable 12(a). It was obeerved that the yield contributing factors anoh as mmber of seexis per plant, number of pode per plant. volght of pois per plant, number of bearing noden per plant and numbar oi pods per bearing node nhowed aignificent joaitive correlation wh seed yield.

Table 12. Yield of geeds, yield of stover and harvest index of soybean varieties in the two seasons

Inestrenta	Ylald of soed (ky ha ${ }^{-1}$)		Yleld of atover (kg ha ${ }^{-1}$)		Iiarvent index	
	Flyst geaman	Secomat peas ch	Flret日enscm	$\begin{aligned} & \text { Second } \\ & \text { gapgon } \end{aligned}$	Fiset pasaon	3econd geracen
1. 39021	2072.57	107.57	2974.20	195.36	0.384	0.367
2. 14437	1412.22	109.08	2095.03	178.01	0.382	0.370
3. 8C 26691	2244.67	73.63	3217.37	154.60	0.410	0.383
4. Improved Pelioan	2000.52	123.28	3616.45	198.13	0.403	0.364
5. 5C 92314	1853.14	60.05	2543.97	152.56	0.418	0.292
6. Ankur	1915.45	97.71	2674.91	172.08	0.416	0.382
7. FLSO-18	1338.02	129.00	2250.69	169.70	0.382	0.455
8. Mometta	2121.21	111.98	2731.03	206.80	0.439	0.372
9. Dxage	2319.49	74.65	3477.93	173.90	0.400	0.320
19. EC 39824	2000.06	65.90	3329.61	161.50	0.383	0.301
11. Davie	1922.93	75.62	2731.62	163.20	0.415	0.344
12. गT 2750	2222.22	115.50	3497.96	197.00	0.300	0.353
13. 政 63290	2169.85	115.95	2974.20	184.93	0.412	0.355
14. BC 2506		128.93		201.73		0.376
F teat	8	*	\%	3	NS	WS
SRm	147.400	11.760	183.640	9.503	0.014	0.028
6. 7. at 5 \%	430.470	35.160	535.228	40.018	-	-

1. Turmer of seede per giem	0.9714**
2. Number of pode per plemt	0.9321**
3. Weight of pods per plant	0.9943**
4. Truber of seeds yer yed	0.2474
5. Number of bearing nodee per plant	0.6043**
6. Number of pods parn noting	0.5679**
7. 1000 need weight	0.2466
8. Hedght at 40th any	0.06013
9. Iraletht at 60th day	0×3074
10. Helght at 90th day	0.2400
11. Number of brenahea par plent at 40th day	0.0573
12. Trumber of brenohea per plant at 60th day after sonding	-0.0284

Table 12(b). Correlation matrilx of number of pode par bearing nole, mumber of beaping nodes per plant and aect waleth per plant.

	y	x_{1}	x_{2}
y	1.000		
x_{1}	0.568	1.000	
x_{2}	0.004	0.1270	1.000

y		Seed welght per plant
x_{1}		Thuber of pode per beoring node
z_{2}		Tumber of beaving nodee par plant

It was eleo foumd that of the four independent Pactors viz.. number of bearlag nodes per plant, number of pods pern ${ }_{n}^{\text {bcarinete, nember of seele per pod, and toot welght the }}$ simple correlation oceificienta betwean yield and yield oontributing factors was algnifioms only for the mubar of bearing nodea par plant and maber of pois per bearing node. Hence the seed welght per plent (X) was defined in terms of number of bearing nodes per plent $\left(x_{1}\right)$ and number of pods per bearing node (x_{2}) and a multipla regresalion equation in the form $Y=a+b_{1} x_{1}+b_{2} x_{2}$ wall intsed for entimating the relative contribution of these charaoterre on yield. The realits further rewealed thet the above two dharactero were reeponadble for 36.73 per cent of variations in seed yleld. The cocrelation natrix for these two oharacters are given in rable 12(b).

Saleation index

Uging the nultiple regresalen equation the followng gelooticn indioee were worked out \mathcal{I} or each varilety and are presented below.

	Ferety	$\frac{\text { Enention }}{\text { Indoes }}$	Reak
1.	Brage	19.980	1
2.	Jw 2750	19.562	2
3.	12 26691	19.501	3
4.	Inquoved Pellcen	18.666	4

5.	EL 39824	18.079	5
6.	Monetita	18.027	6
7.	30 39621	17.377	7
0.	[c 28814	17.202	8
9.	[C 63298	16.521	9
10.	Devis	16.345	10
11.	xc 14437	16.102	11
12.	Ankur	15.765	12
13.	250-18	15.302	13

It can be sean from the above deta that the varietien Bragg. JN 2750 and 3626691 raniced P1xat, second and thisd ao orrang to selection index. Thase varieties were the top runkery besed on mean yield he ${ }^{-1}$ aleo. Hence it was ocmoluted that the varioties Bragg, JN 2750 and EC 26691 were the most proniaing verieties anong the 13 varietias tried in the experiment for the first seabon.
 recorded the highent yield of $129 \mathrm{~kg} \mathrm{ha}{ }^{-1}$ and wess on par with EC 2506, Imperved Pelicen, sc 63290, IN 2750, Honetta, EC 14437. EC 39321 end Ankur. This variety wea canperior to זC 26691. Davis, Brags, 92814 and 39624.
seed yield of all the varietien was markodiy leas
in the seocnd meason then the ilrst.
(j) Fleld of stovar

The data on yiela of atover are preaented in table 12
and Fig. 10 and the analyele of varianoe in Apperaix 7.
shenithoent difiarenoe in atovar yleld wae noticed between varietlas in both the seascns. In the first seascn, varisty Improved Pellcan recosided the hifheat atover yleld of $3616.45 \mathrm{kE} \mathrm{ha}^{-1}$ whito was on par with In 2750, Bragg,

Drering the second aeeson, varioty Manotte zave the higheat etover yleld of $206.6 \mathrm{~kg} \mathrm{hm}^{-1}$ whith was superior to X 26691, x 92814, 30324 and Davis but on par with all other varieties.

As in the oase of seed yiald and other growth and yield charecters, the Btover yield aloo wae leaser in the second season in ell the varifities tested.

(k) Harvest infea

Data on harvert indax are givan in Table 12 and the analyuls of variance in Appandix 7.

Thase was no algiliont varietal difference in the harvest index during both the seascas.

Canparisan between seacone ahowe a lower haveest Inder in the seoond seascen compared to the firgt.

III Content end uptake of tertiliser mentrote
A. 1. Mitrogen content
(a) Introgen oontent of stem

The data an nitrogen content of sten at various

Erouth atagea are preseated in Table 13 and the enalysis of varianoe in Appendix 8.

Thore was algeificent verietal difference in the niltrogen ocntent of atern, at all the atages of plant growth except 40 th day after acuing in both the eeepons.

Compariscn between itagee indicated minorease in nitrogen ocntent of atem srom 40th to 60th day and deoline thareafter in the firat seagon. Ibut a gredual dearease in nitrogen content was notioed between stages in the meocul soasen.

Hilener nitrogen content of the stem wae notioed in the seocual seasch as compared to the fixst.
(b) WLtrogen oontent of Leaves

The data on nitrogen oontent of leaves at different Erowth stages are gresentod in Table 14 and the analyais of varianoe in Appendix 9 .

Varietal variation in the nitrogen ocntent of leaves was signifloent at all the ateries in both the seapons.

Compariaca between atacee nhowed inoreape in nitrogen ocnteat of leaves from 40th day to 60th disy and a deakine thereafter.

There was no ocnalateant veriation in the oontent of leaves between seasons.
(e) Mitrogen ocntent of pode

Date an nitrogen ocantent of pods are presented in

Table 13. Hitrogen content of aten at alfferent growth stages of goybean varietiea in the two seasons

2reatmente							
	Firat seamen				Second seascon		
	40th day after coning	60th day aftere goning	90 th day after copting	Harveat	40th day after acung	60th day after conting	Harvest
1. $x 39821$	0.918	1.003	0.016	0.463	1.727	1.627	1.553
2. 10 14437	1.003	1.196	0.720	0.613	1.927	1.567	1.020
3. 226691	0.926	1.156	0.676	0.426	1.670	1.603	0.820
4. Injeroved Pelloan	1.060	1.120	0.760	0.456	1.560	1.580	0.720
5. EC 92814	0.962	1.163	0.606	0.463	1.673	1.607	1.187
6. Ankur	0.080	0.330	0.736	0.453	1.700	1.213	1.427
7. PLSO-18	1.010	0.060	0.506	0.436	1.500	1.533	0.987
B. Vionetta	0.942	0.700	0.773	0.390	1.747	1.627	0.093
9. Brace	0.951	1.106	0.793	0.266	1.597	1.587	1.073
10. $x 39824$	0.971	1.000	0.973	0.273	1.597	1.657	1.247
11. Devis	1.026	1.043	0.653	0.456	1.323	1.513	0.960
12. J\% 2750	0.953	1.043	0.960	0.413	1.020	1.607	1.607
13. 62290	1.006	0.926	0.746	0.406	1.603	1.760	1.200
14. EC 2506					1.613	1.050	1.180
$1 F$ test	ms	3	5	3	\%s	3	5
Smay	0.101	0.0412	2.0601	0.0265	0.1331	0.0961	0.119
C.D. at $5:$	-	0.119	0.093	0.079	-	0.200	0.345

Table 14. 7itrygen content of leavea at different growth atagea of eoybean varieties in the two erescns

Ixeatreanta	Hitropen conteme (i)				
	Flxet pegagn			Sepond seasgn	
	40th das after sondra	60th day after gondng	90th day after soning	40 th day arter soring	60th day after sedna
1. EC 39621	2.920	3.610	2.970	2.793	3.227
2. EC 14437	3.206	3.726	1.946	2.900	3.407
3. EC 26693	3.016	3.713	3.056	3.173	3.477
4. Improved Pollcen	3.396	3.426	2.736	3.080	3.293
5. Mc 92714	3.050	3.683	2.000	3.147	3.347
6. Ankur	2.793	3.186	3.103	3.497	3.230
7. PLSO-18	2.900	3.240	2.313	3.240	3.427
8. Honetta	3.056	3.300	2.673	3.540	3.647
9. Bragg	3.060	3.680	3.200	3.190	3.347
10. 50 39024	3.113	3.100	3.320	3.287	3.373
11. Davia	3.126	3.020	2.233	3.220	3.260
12. J11 2750	2.906	4.053	3.070	2.640	3.190
13. EC 63290	3.023	3.073	3.312	2.600	3.160
14. EC 2506				3.010	2.940
F teat	3	3		:	a
Sma	1.740	1.414	1.336	0.171	0.096
C.0. at 5\%	0.252	0.370	0.546	0.409	0.278

Table 45 and the analyala of varisnoe in Appendix 10. The lata revealed that thare wee elenificant varistal differenoe in the niterogen ocntent of green pods in the first geason onily.

There was no ocual etent variation in the nitrogen content of ereen pris between eaascna.
(d) IIItrogen content of ahells

The date an introgen content of chelis are given in Table 15 and the analyaile of veriance in Appendiz 10.

Thare was afgificant varietal alfferrence in the nitrogen coatent of ahells in both the aeasons.

In genersi the nitwrogen oontent of ahells was leas
In the secose season as compared to the firet.
(e) Hiwrogen content of seells

Data on the nitrogen content of eeede are presented in Table 95 and the analyala of varience in Appendix 10.

The varietiea ahowed aigniflomt differance in the nitrogien ecntent of seede oniy in the 2lrot seascu.

No consilatent variaticen in the nitwogen ocntent of seeds was noticed between measons.
A. 2. Hitrogen uptake
(a) Witrogen uptalce by atem

Data an niltrogen uptake by stem at different stages of plant growth are presented in Table 16 and the analysis of varlance in Appemilx 11.

Table 15. Mitrogen content of pods, chells and seeds of acybean varietiee in the two neasons

Treatruants	Matyorcen content (ii)					
	Peda		Sheila		Seedn	
	First meagon	Seccud seamon	Firet sergon	$\begin{aligned} & \text { Second } \\ & \text { Epeapacy } \end{aligned}$	P1rat geang	Second
1. EC 39821	0.806 (1.344)	1.311(1.676)	0.853	0.667	5.061	5.062
2. 14437	1.099 (1.702)	3.068 (2.022)	0.800	0.703	4.696	5.220
3. BC 26691	2.434 (1.053)	2.421 (1.849)	0.560	0.583	4.755	4.850
4. Improved Pelloan	2.323 (1.823)	2.504 (1.872)	0.774	0.553	5.031	5.140
5. BC 92814	2.309 (1.819)	2.349 (1.330)	0.693	0.617	5.047	5.067
6. Arkur	2.760 (1.939)	1.350 (1.533)	0.707	c.630	4.665	5.067
7. RLS0-18	2.557 (1.886)	2.576 (1.691)	0.728	0.670	5.160	5.030
8. Monetta	2.652 (1.911)	2.399 (1.844)	0.726	0.690	5.760	4.916
9. Hracg	2.561 (1.887	2.033 (1.742)	0.651	0.617	5.711	4.930
10. $\overline{\text { cc }} 39024$	2.434 (1.853)	2.498 (1.870)	0.700	0.777	5.160	4.455
11. Devis	2.713 (1.927)	2.752 (1.933)	0.616	0.713	5.116	5.050
12. गा 2750	2.606 (1.899)	1.653 (1.629)	0.659	0.600	5.551	5.100
13. BC 63290	2.471 (1.863)	2.149 (1.057)	0.673	0.593	4.960	4.860
14. 2586		2.228 (1.797)		0.607		5.027
F test	5	HE_{5}	s	s	s	Ns
SR2 \pm	0.057	0.145	0.010	0.032	0.127	0.134
6.0. at 5\%	0.168	-	0.035	0.074	0.369	-

Figures in parenthesis indicate $\sqrt{(x+1)}$ tranaicrmed valne

Table 16. Hitrogen uptaice by stem at aifferent growth stages of soybean varieties in the two seagons

Ireatmanta	Upinice of nityogen (kg ha ${ }^{-1}$						
	Fingt gepeon				Seocra reasca		
	40th 4ay aiter nophag	60 th dey after poriting	90th day ufter socing	Harveat	$\begin{aligned} & \text { 40th day } \\ & \text { gitter } \\ & \text { goping } \end{aligned}$	60th day after sonfing	Harreat after Manne
1. EC 39021	3.197	7.542	35.796	8.026	1.366	2.570	2.921
2. 50 14437	3.441	13.993	12.087	9.202	1.382	2.707	1.005
3. BC 26691	2.319	13.607	32.126	9.367	1.410	2.783	1.236
4. Imperovad Fallosen	4.826	17.645	34.846	12.159	1.349	3.763	1.662
5. $\mathbf{7 C} 92814$	4.030	16.361	23.529	9.007	1.296	4.459	1.709
6. Anicur	4.163	6.796	26.758	7.695	1.189	2.193	2.576
7. स150-18	4.496	7.252	15.554	7.637	1.540	2.913	1.609
8. Mcnetta	3.517	8.298	23.373	8.328	2.131	3.467	1.664
9. Braug	3.703	13.307	41.376	8.271	1.428	2.614	2.284
10. DC 39924	4.552	10.997	48.285	6.186	1.390	6.140	2.567
11. Devie	3.040	14.497	26.767	15.838	1.569	3.915	1.154
12. गT 2750	2.655	14.991	48.907	13.116	1.213	3.856	3.073
13. EC 63298	4.362	10.772	23.419	8.082	1.299	4.322	2.029
14. EC 2506					1.500	2.206	2.225
F teat	NS	W8	5	HS	75	175	S
srat	1.002	4.162	5.770	2.173	0.313	0.832	0.176
C.D. at 5 ?	-	-	16.841	-	-	-	0.019

There was algaiflcunt vieletal difference oin nitrogen uptake by atem onity on 90th dey after southe in the firft easoon and at harveat in the seoont becson.

Compariacn between atagee indioated a hificher nitrogen uptake by atem upto the pod ferning atage and a deoline thercearter in both the eeaeons.
(b) Mitrogen uptake by leaves

Data on nitrogen uptake by Leavee at different grouth stages are presented in Table 17 and the analysie of varience in Appecalx 12.

Sienifloant verietal aifferenoe in the nitrogen uptake by leaves was noticed onily on 90th day after sowing duzing the Plrat seascn.

A ateady increase in nitrogm uptaike by loaver wea notioed upto the pod fosming etrege in joth the seasona.

Mistrogea uptake by leaves wan ocnapicuousiy leas in the mecomi aceson compared to Iirat in all the varioties. (a) ULtrogen upteke by pode

Data cal the uptaice of nitsogun by pods are presented in Table 18 and the analyale of varinnce in Appenalx 13.

Thare was atgililcont Aiffermoe in the nitrogen uptake by pode in the flret seaeon conly.

Mitrogen uptake by poie during the mecond season wam conalderably lean then that of the Iixpt eeason.
(d) Miturogan uptake by abolla

Data on the nitrrogen uptake by mbells are presented

Table 17. Mitrpogen uptake by leaves at aifferent grouth stagas of soybeen varlethea In the two geesons

Smatamata	Untere of nitwosen (ks han ${ }^{-1}$)				
	Fixat rapacp			Seognd aspapy	
	40th dey arters poring	60 th day after gocing	90th day after eoving	40 th day after gexing	60 th day after exusing
1. EC 39821	12.020	29.909	79.794	2.216	5.074
2. EC 14437	11.758	35.263	21.266	2.847	6.009
3. 26697	7.937	41.397	80.593	3.281	6.646
4. Impeoved Pelloen	16.245	41.190	81.746	2.369	6.927
5. 892714	14.055	43.666	65.088	2.736	9.502
6. Anzur	13.166	25.089	72.139	2.329	6.020
7. 7130-18	10.791	25.369	44.572	3.675	7.490
8. Vionetta	11.306	32.969	55.122	4.007	5.060
9. Braces	11.873	41.972	110.741	3.009	5.587
10. EC 39624	11.725	34.158	111.350	2.967	6.242
11. Devie	9.676	37.619	54.933	3.436	5.888
12. गm 2750	8.484	54.827	96.543	2.007	6.796
13. EC 63298	10.347	38.653	64.879	2.731	8.064
14. EC 2586				2.292	4.499
F teat	73	\%	s	NS	W3
Srint	2.173	10.189	13.416	0.725	1.552
c.7. at 5	-	-	39.161	-	-

In Table 18 and the analyif of variance in Appendix 13. Varleties did not mow say algnifionat difference in the altrogen uptake by thelle in both the saasons. Comperison between eacecus abowed that the niltrogen uptake by abolls was marricediy lese during the socond seaecm.
(e) Nitrogen uptake by seeds

Data on nftrogen uptake by eved. are presented in Table 16 and the analyala of verimee in Appendix 13.

8ignifiomat varietal variatica on nitrogen uptake by soeds was notioed only in second scavon.

The uptake of nitrogm by seeds was lees during the seocend seamcn.
(f) Nitrogen upteke by pimate

Date on total upteke of nitrogen by plente are presented in Table 19 and the malyale of varience in Appenalx 14. Total uptake of aitrogen at harvest is chove in Fig. 11.

Verietal alffermone in the total nitrogen uptake by plante wae algrificent caly on goth day of the ilxut eeasca and at hayreet atage of the secend sacach.

A ateady inorease in the total niturogen upteke was noticed upto harreet in the firet eeagon while a decilne in uptake was obearved after 60th dey in the seocna seasch.

Comparisen between seasons also mhowed that the sotal nitwogen upteke by plente in the seconal meamon was

Table 1B. Witrogen uptaice by pods. Ehells and seeds of acybean varietiea in the two geasones

Inatament	Optage of nitroeren (kn ha^{-1})					
	Pela		Shella		Sende	
	Firat eesecm	Seeond sessca	Prat	Sacond Beanct	$\begin{aligned} & \text { Plist } \\ & \text { gexpern } \end{aligned}$	Secont
1. EC 39821	12.647(3.694)	0.646(1.283)	14.653	0.901	154.852	11.044
2. EC 14437	14.297 (3.911)	$1.038(1.445)$	11.551	1.043	90.455	10.923
3. EC 26691	$42.364(6.585)$	0.693(1.301)	13.050	0.898	168.616	78642
4. Improved Pellcen	46.082(6.062)	1.449(1.565)	18.184	1.090	176.320	12.128
5. E0 92814	43.724(6.698)	1.105(1.451)	12.491	1.163	149.160	6.582
6. Ankur	53.649(7.406)	0.997(1.413)	7.758	0.984	97.886	10.120
7. 7Ls0-48	41.913(6.551)	1.569(1.609)	10.834	1.379	104.928	13.706
8. Henetta	$54.205(7.430)$	$0.575(1.255)$	16.118	0.951	177.76	13.914
9. Breag	$66.355(8.207)$	0.740(1.322)	16.196	0.854	227.933	8.567
10. BC 39624	39.696(6.579)	0.688(1.298)	12.079	0.024	153.834	5.720
11. Dapis	43.065(6.699)	1.100(1.449$)$	9.036	0.979	138.460	7.660
12. गत1 2750	39.051(6.595)	0.713(1.309)	15.954	1.298	222.994	10.751
13. BC 65890	24.341(5.034)	0.812(1.346)	11.051	0.064	119.565	10.090
14. 50 2566		$0.471(1.216)$		1.650		11.526
F teat	s	HS	[s	Hs	ns	日s
32m	0.753	0.176	2.837	0.208	0.978	1.420
C.D. at 5\%	2.197	-	-	-	-	4.128

Pigurea in parenthesis indicate $\sqrt{x+1}$ tramefommed value

Table 19. Total introgen uptake by plants at different frowth stages of aoybean varietiea in the two geagons

Irsatmenta	Total printes of nttroger (ke ba)						
	Hrght magach				Sperpa meanca		
	$\begin{aligned} & \text { 40th day } \\ & \text { after } \\ & \text { goyting } \end{aligned}$	$\begin{aligned} & 60 \text { th dey } \\ & \text { after } \\ & \text { geuling } \end{aligned}$	$\begin{aligned} & \text { 90th day } \\ & \text { after } \\ & \text { gonting } \end{aligned}$	Herreet	40th day after noknag	60th day after goting	Hacreat
1. EC 39021	15.218	37.472	131.96	177.532	3.589	25.258	15.309
2. EC 14437	15.207	49.262	48.01	111.211	4.228	29.444	13.352
3. BC 26691	10.156	55.262	163.24	195.034	4.691	30.474	9.777
4. Improved Pelican	21.071	58.976	163.50	206.656	4.218	36.438	14.895
5. we 92814	18.085	60.520	132.16	170.650	3.697	45.414	9.475
6. Ankur	17.343	31.306	156.20	113.340	3.395	27.095	13.681
7. PLSO-18	18.625	33.276	103.24	122.815	5.216	36.056	46.695
8. Monetta	13.826	41.193	134.20	202.205	6.933	29.409	14.605
9. Brages	14.976	55.345	198.55	252.401	4.517	28.574	11.706
30. Ec 39824	16.253	45.155	200.02	172.899	4.376	34.228	9.173
11. Dexde	12.718	52.117	127.09	163.334	4.005	33.158	9.794
12. 312750	11.139	68.819	136.36	252.066	3.206	37.269	15.216
	14.710	49.426	115.39	139.497	5.697	39.606	12.984
14. EC 2506					5.600	21.556	15.735
F teet	NS	W	5	MS	HS	ขs	3
Smim	2.829	14.128	25.52	38.969	1.050	2.522	1.496
C.D. at 5\%	-	-	52.67	-	-	-	4.350

FIG. II VARIETAL VARIATION ON TOTAL NITROGEN LPTAKE BY pLANTS AT HARVEST

ocosalderably leas compared to Ilxet in all the verietiee. B.1. Ehoorphorrus content
(a) Phoaphorus content of aten

The data on the ghoaphorive ocntent of stem at vailous growth atagea are presented in Table 20 and the analyals of vaxianoe in Appendix 15.

There was alguistoment varietal difference in the phoephosus ocntent of stem at all the growth atages axcept at the haxveat stage of the mecond eecanon.

A ateedy cearease in the phomphorrus content of etem was noticed with age of the axop in the Ilret seasch. But In the seocul season, thare wae an inttial inoreese upto 60th dey and a deoline therreafter.

The phomphorus conteat of atem in the second aesecn wae leas comyered to fixat in all the variatien. (b) Fhoeryhorras content of leaven

The data on the ghoughosus content of leaver at asfferment atages of plent growth are prowented in Iable 21 and the enalyais of varience in Appemalix 16.

Slgaiflomat varietal difference in the phoophorua content of leavee was notioed at all the growth stages In both aeacons.

A steedy decline in phomphorus ocntent of loeves was noticed with advenoecient of axop growth in all the varietien.

Table 20. Phosphorus content of atem at different arorth atazes of soybean varietiee in the two mearone

Ineatmagt	Phomphomas content (S)						
	Fixat neascn				Spect ragnen		
	$\begin{aligned} & \text { 40th day } \\ & \text { after } \\ & \text { noulng } \end{aligned}$	$\begin{aligned} & 60 \mathrm{th} \text { alay } \\ & \text { after } \\ & \text { ponting } \end{aligned}$	$\begin{aligned} & \text { 90th day } \\ & \text { after } \\ & \text { gentra } \end{aligned}$	Hamroet	$\begin{aligned} & \text { 40th amy } \\ & \text { getter } \\ & \text { gonting } \end{aligned}$	$\begin{aligned} & 60 \text { th day } \\ & \text { after } \\ & \text { popityg } \end{aligned}$	Harvert
1. RC 39821	0.566	0.336	0.032	0.017	0.071	0.082	0.022
2. 14437	0.468	0.312	0.066	0.023	0.048	0.072	0.058
3. 50 2669*	0.457	0.202	0.037	0.020	0.042	0.081	0.044
4. Imperoved	0.382	0.246	0.026	0.025	0.022	0.071	0.017
5. 5c 92714	0.397	0.242	0.035	0.019	0.061	0.077	0.089
6. Aniar	0.462	0.501	0.035	0.023	0.003	0.190	0.021
7. $\mathrm{PLSO}-18$	0.307	0.202	0.038	0.030	0.074	0.134	0.026
B. Menetts	0.440	0.215	0.013	0.011	0.056	0.056	0.025
9. Heregs	0.298	0.206	0.044	0.016	0.060	0.103	0.027
10. E\% 39004	0.302	0.206	0.024	0.011	0.036	0.058	0.027
11. Beols	0.469	0.215	0.053	0.029	0.044	0.077	0.026
12. गT 2750	0.298	0.266	0.035	0.017	0.052	0.075	0.029
13. EC 65290	0.312	0.206	0.035	0.015	0.091	0.035	0.029
14. 2506					0.086	0.093	0.023
$?$ test	S	S	S	8	\mathbf{s}	s	188
Sbmさ	0.224	0.014	0.003	0.003	0.008	0.008	0.0130
O.D. at 5\%	0.064	0.042	0.0095	0.007	0.025	0.022	-

Teble 21. Fhompouv coatent of larves at different grouth atages of auybean varlatias In the two soaecns

Treatremta	Phorphoras eantent (\%)				
	PLrat meagcy			Segond repgom	
	40th day after equng	60 th day after coning	$\begin{aligned} & \text { 90th day } \\ & \text { aftere } \\ & \text { goving } \end{aligned}$	40th day after ceating	60th day after ecelng
1. EE 39621	0.883	0.588	0.202	0.191	0.112
2. BC 14437	0.706	0.598	0.527	0.213	0.124
3. EC 26691	0.572	0.457	0.202	0.147	0.001
4. Inaproved Palicen	0.420	0.418	0.204	0.157	0.115
5. re 92814	0.474	0.572	0.212	0.351	0.108
6. Antur	0.620	0.549	0.276	0.226	0.165
7. Flsomic	0.597	0.336	0.186	0.157	0.163
8. Honet ta	0.519	0.446	0.190	0.182	0.120
9. Irass	0.467	0.344	0.392	0.153	0.077
10. EC 39824	0.392	0.378	0.172	0.146	0.093
11. Davis	0.416	0.367	0.163	0.144	0.093
12. JII 2750	0.416	0.317	0.197	0.111	0.113
13. 63298	0.480	0.340	0.202	0.155	0.101
14. $\mathbf{E C} 2586$				0.129	0.123
P test	5	3	5	3	s
SEm	0.018	0.014	0.054	0.006	0.006
C.D. at 5:	0.054	0.041	0.158	0.016	0.020

Comparisca between seascas aleo showed lover oontmate in the seocod season ocmpared to first in all the cultivary. (o) Phoephocrus content of pode

Data ca phosphorrs ocntent of pods are pregented in Table 22 and the analyais of varience in Appendix 17.

There was algnifiont varietal veriation in phoaphorrue content of pois in the flxet aeason only.

Phomphorrue ccntent of pode wae aleo 2 eas in the seccea seseson ocmpared to first.
(d) Phosphorus content of eboils

The data phosphorus ocatent of abolls are given In Table 22 and the analyale of varianoe in Appendix 17.

Thase was significunt verietal ilfference in phoaphorves ocntent of ahells in both measons.

Phoaghorsue ocntent of ahalle was ocnaidervably iligher In the ceocen aeaacn oompared to 2lswe in all oultivars. (e) Fhosphoress ocntent of seods

Data on phosphosus ocatcent of meeds are presented in Table 22 and the analyais of variance in Appendix 17.

The vailetiee chowed aspalifiomet aiffersenoes in the phoaphorse oontent of seeds caily in the IIrgt season.

Phomphosue content of acede mas conoplouousiy 1 lese in the secoun seascon scapared to fixw in all the varieties.

Teble 22. Rhosyhorus content of pode, shells and seeds of soybean varietiea in the two beegons

Traptruents	Ehosphoyma content ()					
	Eods		Shal1		Seeda	
	$\begin{aligned} & \text { Srat } \\ & \text { seasson } \end{aligned}$	$\begin{aligned} & \text { Second } \\ & \text { geagon } \end{aligned}$	$\begin{aligned} & \text { FLyst } \\ & \text { geagon } \end{aligned}$	$\begin{aligned} & \text { Seoond } \\ & \text { geagon } \\ & \hline \end{aligned}$	Mrat ggason	Seoond geason
1. 539821	$0.216(1.103)$	$0.108(1.042)$	0.031	0.114	0.539	0.262
2. 14437	0.416 (1.190)	$0.211(1.1005)$	0.118	0.162	0.534	0.279
3. DC 26691	0.329(1.158)	0.181(1.007)	0.042	0.079	0.374	0.247
4. Improved	$0.322(1.150)$	0.143(1.069)	0.034	0.103	0.374	0.293
5. $\times 92814$	$0.350(1.662)$	$0.175(1.064)$	0.029	0.111	0.476	0.271
6. Ankur	0.442(1.201)	$0.149(1.073)$	0.057	0.119	0.506	0.303
7. 1290-18	$0.315(1.147)$	$0.173(1.084)$	0.070	0.067	0.531	0.266
6. licnotta	0.304(1.142)	$0.151(1.074)$	0.040	0.093	0.460	0.238
9. Bragr	$0.300(1.144)$	0.193(1.092)	0.044	0.132	0.457	0.242
10. EC 39424	0.320(1.149)	$0.164(1.079)$	0.036	0.0463	0.519	0.233
$11 . \mathrm{mux}$	$0.338(1.157)$	$0.151(1.073)$	0.041	0.067	0.454	0.23
12.0 W7 2750	0.354(1.164)	$0.133(1.064)$	0.032	0.053	0.290	0.230
13.x 63290	$0.336(1.156)$	0.174(1.004)	0.063	0.079	0.481	0.300
14.20 2505		$0.223(1.10 \mathrm{c})$		0.071		0.207
F test	5	\%	a	5	3	115
Smat	0.015	$0.014{ }^{\prime \prime}$	0.006	0.014%	0.024	0.018
C.D. at 5	0.044	-	0.015	0.041	0.070	-

Whores in parenthoais indicate $\sqrt{x+1}$ trunaforwed value
3.2. Phoeghorrue upteice
(a) Phoophorue upteice by atea

Data an phosphomere uptaice by atem at different stases of plant growth are presented in Table 23 and the analyule of variance la Appendix i0.

There vas at grificent verietal Alfference in phoophorus rutalice by etem onily an 90th day in the Riset season and on 40th day in the aecose seasca.

Comperisen betwean atagen indicated an inoreaee in the phosphosus upteke upto 60th day and a deoling thereafters in all the varietlas in both the eeasona.

Phosphorras upteice in aten was drestically $2 e s s$ in the seocma seasch compared to ilime in all the oultivare.
(b) Pboaghcerva upteke by Leaver

Data an phosphorra uptaice ty leaves are prosented In Table 24 and the analyale of matance in Appendix 19.

Verietal difference in phoaphorrus uptaice by leaven wae alguillomt an 40th day of the fixyt season only.

A eteady laoseace in phopghoris uptake by leavea wae notioed with age of the cevo la both the seasons.

Phoephoerus uptake ty leavee was oonsiderably lese in the seocmi season oompared to firmt in 211 the varietiee teated.
(c) Phomphozus uptake by poate

Data on the phoaphorrus uptake by pods are presanted

Table 23. Thoophorua uptalce by aten at different growth stages of soyboan varieties in the two eeaecan

Trentmenty	पratere of phonphorva by otem (kg ha ${ }^{-1}$)						
					Seocnd seascon		
	$\begin{aligned} & \text { 40th day } \\ & \text { attier } \\ & \text { yoting } \end{aligned}$	60 th das after gealing	$\begin{aligned} & \text { goth aay } \\ & \text { aftere } \end{aligned}$	Haxvent	$\begin{aligned} & \text { soth day } \\ & \text { gefter } \\ & \text { boning } \end{aligned}$	60th axy after conting	Harvest
1. 3039821	2.111	2.605	1.325	0.307	0.056	0.121	0.040
2. BC 14437	1.618	3.655	1.157	0.446	0.0034	0.129	0.050
3. 26691	1.098	2.527	1.357	0.493	0.034	0.160	0.035
4. Inproved	1.771	3.908	: 6991	0.691	0.020	0.172	0.039
5. 5c 92814	1.598	3.422	0.750	0.349	0.043	0.183	0.044
6. Anlcur	2.180	4.117	1.311	0.497	0.054	0.238	0.033
7. 1580-18	1.396	1.650	0.627	0.550	0.073	0.260	0.042
6. Nonetia	1.605	2.477	0.421	0.236	0.070	0.309	0.052
9. Brags	0.971	2.447	2.259	0.518	0.051	0.164	0.057
10. EC 39624	1.230	2.283	1.225	0.264	0.030	0.118	0.054
11. Davis	1.404	2.930	1.362	0.761	0.047	0.144	0.057
12. J7\% 2750	0.773	4.231	1.774	0.518	0.042	0.167	0.042
13. EC 6:293	1.360	2.311	1.124	0.261	0.074	0.208	0.039
13. EC 2586					0.058	0.144	0.050
F test	ns	H	5	Ms	3	MS	\%
skat	0.353	0.946	0.234	0.116	0.012	0.084	0.008
C.D. at 5\%	-	-	0.683	-	0.003	-	

Table 24. Fhopphorus uytaice by leaves at aifferent frowth ategea of soybana veriethes in the two agescne

Ixpentumat				Secona	
	Prxet sersch			Sepori menacy	
	$\begin{aligned} & \text { 40th day } \\ & \text { arter } \\ & \text { nghing } \end{aligned}$	60 th day after genting	$\begin{aligned} & \text { 90th day } \\ & \text { arter } \\ & \text { nadia } \\ & \hline \end{aligned}$	40th day after Enctar	$\begin{aligned} & 60 \text { th acy } \\ & \text { Arters } \\ & \text { nenting } \end{aligned}$
1. 5 39021	3.650	4.865	5.195	0.151	0.176
2. 214457	2.615	6.240	5.786	0.192	0.220
3. 1c 26691	1.469	5.171	5.670	0.154	0.148
4. Irproved	2.067	4.920	6.006	0.127	0.242
5. 5 92814	2.094	4.400	4.637	0.132	0.307
6. Antry	2.948	4.343	6.414	0.150	0.305
7. FL90-16	2.763	2.637	3.964	0.154	0.357
8. Hanette	1.955	4.465	4.172	0.249	0.156
9. Hragr	1.679	3.956	5.850	0.148	0.130
10. El 39024	1.474	3.758	5.196	0.128	0.180
11. Daxis	1.318	4.625	4.350	0.157	0.163
12. 1112750	1.219	4.382	5.063	0.087	0.249
13. 7x 63290	1.602	3.471	3.935	0.140	0.233
14. 5c 2586				0.103	0.206
2 teat	5	75	H5	75	HS
GFin土	0.401	1.317	0.978	0.052	0.071
C.D. at 5\%,	1.171	-	-	-	-

In Table 25 and the analyale of variance in Appendix 20.
There was no algniflomen verietal difference in phoeghorus upteke by pois in beth the easacns.

Thouphomes uptake ty pole was lese in the seoond ecamon acmpared to firet in all the varietlas tried. (d) Phoephosere uptake by shalls

Data an the phomphorrus upteke by ahoils are promented In Table 25 and the analyaie of varience in Appandix 20.

Verictiee asd not mow may ebeniflosent variation in phomphorsa uptake by whelle in both the seasons.

Comperisen between seascom mhoved that the phosphorve upteke my abelle vas ocnellemably leos duxing the mecond seaecn in all the oultivass tosted.
(e) Proophorrus uytake by meeds

Data on phosphosus uptelce my meeds are presented in Table 25 and the analyuis of varimace in Appeodix 20.

Thaxe was no algaill cant virletal difference in phooghores uptaice by seods in both the seasone.

Ehoughorus upteke by aeede wee martredit leen during second season compared to kixut in all the verieties. (1) Phopphomas upteice by plante

Data ca the total phomghorae uptake by plente at alffarent growth atagee are premated in Table 26. The total uptake of phoaphorsus by pleate at harveat is chown in Fig.12. The ansivale of vailance is given in Appenaix 21.

Table 25. hoeghosus uptaice by pods, ahells and seeds of soybean varietien in the two geascras

Sreatmints						
	pode		5n-11童		Seata	
	First veagon	Second reascos	Fixst geagion	Seconi geparen	PLret peaten	$\begin{aligned} & \text { Second } \\ & \text { geamoma } \end{aligned}$
1. 39821	3.541 (2.131)	$0.022(1.011)$	0.560	0.180	17.528	0.314
2. EC 14437	3.169 (2.042)	0.075 (1.037)	1.604	0.239	9.342	0.482
3. EC 26691	5.724 (2.593)	0.047 (1.023)	0.953	0.123	13.234	0.422
4. Impervead Pelloan	$6.409(2.722)$	0.095 (1.047)	0.006	0.220	13.233	0.503
5. EC 92814	6.656 (2.767)	0.097 (1.046)	0.503	0.214	14.336	0.774
6. Ankux	8.610 (3.100)	0.112 (1.054)	0.661	0.180	10.044	0.646
7. PLSO-18	5.175 (2.485)	0.122 (1.054)	1.079	0.158	10.842	0.744
8. Minatta	6.279 (2.698)	0.044 (1.022)	0.739	0.140	14.264	0.456
9. Brage	7.323 (2.865)	0.072 (1.036)	1.098	0.179	17.895	0.413
10. EC 39024	$7.600(2.946)$	0.047 (1.023)	0.675	0.302	15.782	0.341
11. Devis	6.006 (2.647)	0.063 (1.033)	0.582	0.120	12.987	0.308
12. ग7 2750	5.472 (2.544)	0.055 (1.027)	0.731	0.154	10.693	0.679
13. BC 65290	4.269 (2.295)	0.077 (1.038)	0.955	0.114	10.845	0.626
14. 52586		$0.050(1.025)$		0.193		1.013
F teat	HS	NS	17s	W8	13	Ms
88m	1.918	0.0164	0.207	0.060	2.967	0.129
C.D. at 5\%	-	-	-	-	-	

Figures in perrentheala indicate/ x+1 transformen value

Table 26. Total phosphorrus uptake by planta at aifferent growth atagee of soybean varletiee in the two seascas

Treatmentis	Uptake of phomporne by plenta (ke be ${ }^{-1}$)						
	Purgt magnon				Seocra megaon		
	40th aey ufter manimg	60th day after coming	90th day afters Eening	Herveet	40th day aster gunting	60th day after condis	Haxve日t
1. EC 39821	5.764	7.470	10.595	18.396	0.206	0.380	0.534
2. EC 14437	4.233	9.895	10.187	11.363	0.226	0.425	0.772
3. BC 26691	2.587	7.696	12.970	14.681	0.180	0.356	0.581
4. Inproved	3.356	8.829	14.267	14.730	0.142	0.509	0.768
5. EC 92814	3.693	7.902	12.060	15.169	0.179	0.599	0.838
6. Ankur	5.129	8.459	15.568	11.200	0.204	0.651	0.888
7. H5S0-18	4.160	4.268	10.088	12.452	0.227	0.741	0.944
8. Manette	3.541	6.882	11.052	15.230	0.319	0.282	0.648
9. Buags	2.651	6.403	15.561	19.442	0.200	0.366	0.649
10. EC 39624	2.709	6.041	14.236	16.724	0.151	0.346	0.491
11. Devis	2.390	7.555	11.906	14.351	0.204	0.376	0.465
12. JE 2750	1.993	8.614	13.173	12.142	0.157	0.471	0.675
13. 8 cc 63298	3.162	5.782	9.328	12.062	0.214	0.499	0.778
14. $\mathbf{8 c} 2566$					c. 162	0.380	0.765
7 teot	,	ns	H8	18	NS	US	MS
Sray	0.763	2.199	2.216	3.197	0.412	0.137	0.127
C.D. at 5\%	-	-	-	-	-	-	-

FIG.RVARIETAL VARIATION ON TOTAL PHOSPHORUS UPTAKE BY PLANTS AT HARVEST

FiCROP
 (11GROD

Varistal differrenee in the total uptake of phomphorus by plents was not mastex at ay of the growth etages of both the seasons.

A ateody inorease in the total phoaghoris uptaice with age of the arop wan noticed in both seasons in almost all the varietles teated.

Comperisicn between acosons mhowed that total uptake of phouphorva by plante vas leas in the recond seeeon. O. 1. Potamalym nontent
(a) Potasalum content of stem

The mean values on potaselvin content of sten at alsfarent growth otagee are precented in table 27 and the samyade of varianoe in Appendiz 22.

Verietlee ahowed algiflomat alfference in the potaanivm ocatent of atem at all atages of plent erowth in both the seacons.

A steady deoline in petaralum content of sten vith edvenoemant of arowth mee notheed in both the aeasons.

Compreicom between sceecong mowed that the potassium content of atem in the socud ceacon was loos in all the verietie teated, exoept at hasvent.
(b) Potoasilum content of Leaves

Data on potameium content of leaven are promented in Table 28 am the analyals of varisnce in Appendix 23.

Thore wae aignifloment varietal difference in

Table 27. Potamalum ocatent of stem at different growth steges of soybean variatiss in the two sesecne

Treatruenta	Potamalum content (S)						
	Fhrat measor				Seacna season		
	40 th dey asters goying	60th day after cowing	$\begin{aligned} & \text { 90th dey } \\ & \text { aftar } \\ & \text { poring } \end{aligned}$	Harvest	$\begin{aligned} & \text { 40th day } \\ & \text { after } \\ & \text { goving } \end{aligned}$	60th day after gexing	Harvest
1. DC 39821	2.733	2.283	1.700	6.508	1.917	1.317	0.967
2. EC 14437	2.633	2.083	1.450	0.675	2.100	1.450	1.033
3. EC 26691	2.000	2.166	1.300	0.466	1.650	1.383	0.050
4. Improved Pellom	2.533	2.433	1.500	0.766	1.750	0.983	0.800
5. Fe 92814	2.233	2.653	1.416	0.266	1.750	1.433	0.900
6. Anicur	1.416	2.250	1.433	0.491	2.017	1.000	0.967
7. PLSO-18	2.216	2.016	1.350	0.883	1.333	1.417	0.900
8. Nomette	2.466	2.083	1.083	0.250	1.433	1.317	1.000
9. Braeg	2.090	2.583	1.383	0.600	1.683	1.000	0.683
10. Bi 39624	2.283	2.400	1.500	0.333	1.800	1.183	0.900
11. Devie	2.400	2.250	1.216	0.750	1.600	1.150	0.867
12. गN 2750	2.216	2.050	1.350	0.316	1.000	1.233	0.383
13. EC 63298	2.316	2.450	1.466	0.416	1.600	1.250	0.767
14. 2566					2.060	1.517	0.750
F test	s	s	s	3	3	6	s
Sra士	0.122	0.050	0.146	0.020	0.006	0.071	0.028
c.8. at 5\%	0.358	0.147	0.146	0.059	0.192	0.207	0.060

Table 23. Potessium content of leaves at isfferent growth stegee of eoybean varieties in the two seascone

Txeatmenta	Potaratum acaternt (B)				
	403 day after aghns	$\begin{aligned} & \text { Wrgt gess } \\ & \text { 60th day } \\ & \text { after } \\ & \text { goping } \end{aligned}$	$\begin{aligned} & \text { 90th day } \\ & \text { aftar } \\ & \text { poping } \end{aligned}$	$\begin{aligned} & \text { Seacpi } \\ & \text { 40th dey } \\ & \text { after } \\ & \text { eoving } \end{aligned}$	$\begin{aligned} & \text { Boging } \\ & \text { afth day } \\ & \text { goulng } \end{aligned}$
1. $x^{2} 3921$	2.053	1.233	1.283	1.700	1.533
2. 14437	2.066	1.516	1.400	2.050	1.750
3. BC 26691	1.866	1.300	1.133	1.617	1.650
4. Imperoved Paliarn	0.935	1.450	1.266	2.050	2.500
5. 5092814	1.083	1.383	1.300	1.167	1.533
6. Ankur	1.566	1.516	1.650	1.767	1.533
7. FIGO-18	1.783	1.433	1.383	1.933	1.567
8. Howetta	1.933	1.066	1.133	1.350	1.567
9. Brage	1.700	1.450	1.450	1.767	1.550
10. 52 39024	1.466	1.233	1.516	1.330	1.733
11. Davia	1.933	1.383	1.000	1.600	1.583
12. J7 2750	1.466	1.033	1.266	1.403	1.433
13. BC 63298	2.200	1.333	1.533	1.767	1.500
1. 球 2586				1.700	1.500
F tent	5	\$	3	3	HS
SDat	0.115	0.075	0.038	0.1165	0.0632
C.D. at 5\%	0.536	0.219	0.104	0.339	-

potacelum ocntent of leavis in all the erowth atages of both the seascns exregt 60th day of the eeccmd seamon.

A aserease in potanelum content of leavee wae notioed with age of the oxpy in almoet all varieties tyeled in both the seascne.

Coxpariman betwean emecne in genaxal showed highers contente in the seocond eampon.
(a) Potegaium ccatent of pois

Data an potagaium content of pois are presented in Tabla 29 and the anelyale of verimace in Appendix 24.

Variaties ahowed algililemt aifierence in potasalum ocntent of poif in the neocen seacon only.

The potagelum oontent of pois was conaldersably lose In the secom season ocmpared to E1xet in all the varietios teeted.
(a) Potasailum content of cheile

Data ca potacealum content of mhalls are presented in Table 29 and the analyait of varimoe in Appendix 24.

Nensced varietal vertiatica in the potasesim content of melle was notioed in both the seacona.

In gmarel, the potamelum conterat was lean in the second seasen comparsed to IImot.
(1) Potagaium conteat of meats

Data on potasulum coutent of meeds are presented in Table 29 and the analymis of verience in Apyenalix 24.

Toble 29. Potasalum content of poda, shella and eeeds of goybean varieties in the two seasons

Txeatreant	Potopal un ocntent (5)					
	Prode		Shal1a		Seata	
	First meamon	Seocnd seascon	PLut geagan	$\begin{aligned} & \text { Second } \\ & \text { gepeocon } \end{aligned}$	Pirst geagen	$\begin{aligned} & \text { Seocna } \\ & \text { geperga } \end{aligned}$
1. EC 39621	1.129(1.459)	0.507(1.228)	1.300	1.250	1.700	1.133
2. 14437	2.013(1.736)	1.161(1.470)	1.016	1.600	1.650	0.950
3. EC 26691	2.048(1.746)	$0.999(1.414)$	1.283	1.250	1.716	1.477
4. Improved Pelicem	2.013(1.736)	0.568(1.252)	1.400	1.400	1.650	1.450
5. EC 92314	1.819(1.679)	1.362(1.537)	1.000	1.300	1.600	1.303
6. Ankur	1.940 (1.717)	1.250(1.500)	1.333	1.467	1.633	1.350
7. 1230-18	1.752(1.659)	1.250(1.500)	1.550	1.517	1.683	1.433
B. Monetta	1.855(1.684)	1.285(1.511)	1.216	1.317	1.683	1.400
9. Brags	2.013(1.736)	1.515(1.586)	2.000	1.517	1.750	1. 300
10. EC 39624	2.097(1.750)	1.333(1.528)	1.386	1.283	1.416	1.350
11. Davis	1.965(1.722)	$1.233(1.494)$	1.500	1.450	1.350	1.533
12. M 2750	1.315(1.678)	0.851(1.361)	1.333	1.500	1.563	1.383
13. EC 63298	1.852(1.699)	1.215(1.488)	2.083	1.600	1.683	1.450
14. 10 2586		1.450(1.565)		1.483		1.462
F test	us	5	g	s	5	s
Smat	0.065	0.070	0.074	0.066	0.040	0.062
C.D. at 5\%	-	0.203	0.216	0.190	0.111	0.182

Figmes in parentheals indicate $/ \overline{(x+1}$ trensioxmed value

Thanv wae algailiomat verietal variation in the potaselum ocntent of ceeds in both the seasons.

Comperisen between seamons showed lower potaseium content of eosds in the seacnd mearson.
C.2. Potamatum untaka
(a) Poteasium upteice by eten

Date ca potesalim uytaice by stem are preacated in Table 30 an the enalyale of verlanoe in Appendix 25.

Data revealea algaiflomit varietal variati on in potasalum upteke by eteci an 901th day and at harvest of the flyst easocn caly.
 In potasaiun upteke upto the pod forning atage and a decilne in the maturity phace in both the scescres.

All the varioties aboved lover potamstum uptake by stem in the reocud seasco compersed to first.
(b) Potersitum uptake by Leavers

Data ca the potenalum uptake iv leaves are presentod In Table 31 and the analyale of varience in Appenaix 26.

There was no eignificent differchoe in poteasium uptake by leaves in eny of the exerth etages gtualed. axoopt 50th tay of the firet semesa.

A ateady inorease in potenaium uptake by leaves was notioed throughout the growth period in both the sessens.

Potaasium upteke by learee was also conaiderably leas

Table 30. Potasaitm uptake by sten at differant arowth otages of saybean varietiea in the two seascns

Treatmantas	Uptake of potagaium (ky he ${ }^{-1}$)						
	Plint geason				- Seocna gaesen		
	$\begin{aligned} & \text { 40th deg } \\ & \text { arter } \\ & \text { gonling } \end{aligned}$	60th dey after conting	90th day aftar boving	Harvest	$\begin{aligned} & \text { 40th day } \\ & \text { artere } \\ & \text { ghoping } \end{aligned}$	$\begin{aligned} & \text { 60th day } \\ & \text { gertorep } \\ & \text { gosing } \end{aligned}$	Harrest
1. EC 39321	10.177	17.607	70.511	8.969	1.537	1.967	1.815
2. EC 14437	9.068	24.619	24.518	10.114	1.494	2.547	1.917
3. EC 26691	4.829	25.141	47.394	10.266	1.405	2.605	1.565
4. Improved Pelicen	11.332	38.659	69.027	18.492	1.482	2.390	2.068
5. SC 92814	9.344	37.474	. 7.667	4.983	1.354	4.095	1.355
6. Antur	6.823	18.464	52.024	8.381	1.257	1.788	1.375
7. PLsO-18	10.155	15.008	36.366	15.465	1.283	2.727	1.463
8. Honette	8.450	24.553	32.873	5.333	1.735	1.751	1.848
9. Bragg	7.146	30.819	72.333	16.028	1.737	1.666	1.923
10. EC 39824	9.747	26.379	68.682	8.038	1.573	2.555	1.908
11. Devis	7.121	30.463	50.024	19.420	1.658	2.205	1.260
12. J12 2750	5.718	33.148	67.296	10.369	1.097	2.673	1.913
13. EC 63298	10.239	27.059	46.202	6.932	1.298	3.073	1.593
14. 2586					1.457	2.563	1.656
F teat	Hs	ns	3	3	\%	W	Ws
Sret	2.331	8.326	10.294	3.129	0.293	0.538	0.224
C.D. at 5\%	-	-	30.046	9.133	-	-	-

Table 31. Poteasium uptake by leaves at different growth stages of soybeen verietiee in the two geabons

Treatmaxis	Uptrace of potianatum by leares (ky ha^{-1})教 bapich				
	40th axy after seneng	601 h day after eaning	90th day after souing	$\begin{aligned} & \text { 40th dew } \\ & \text { ather } \\ & \text { secting } \end{aligned}$	60 th day after souing
1. BC 39621	8.592	10.303	32.469	1.416	2.405
2. 144457	7.714	14.455	15.329	1.858	3.122
3. 26691	4.891	13.714	32.976	1.050	3.203
4. Improved Peilcom	4.296	16.911	39.211	1.610	3.115
5. BC 92814	4.939	16.118	29.848	1.017	4.371
6. Ankur	7.554	11.863	35.520	1.176	2.860
7. PLSO-18	3.353	11.023	28.376	2.292	3.445
B. Promette	3.864	90.531	23.578	1.868	2.126
9. Bragrs	0.151	16.653	50.285	1.740	2.658
10. Ec 39824	5.485	13.538	50.431	1.190	3.350
11. Davis	6.130	16.472	25.057	1.711	2.890
12. J15 2750	4.315	13.136	39.957	1.098	3.000
13. 3C 63298	8.334	12.917	30.142	1.583	3.519
14. 5c 2506				1.320	2.331
F test	\%	I7S	s	In	\%8
STat	1.690	3.779	5.819	0.3996	0.7772
O.D. at 58	-	-	16.986	-	-

In the seecon seacon compered to Arest in all the varietiea teated.
(a) Potassivm uptake ty peal

Data on the potacetin yuteke by pods are presented In Table 32 and the analyele of verience in Appendix 27.

Wo marked varletal alfference in the potagalum uptake by poas was noticed in either of the seascons.

Poteralum uptake by peis van markediy lose in the ecocmi soamon oompared to fiswt in all the variutien. (a) Potessium uptaks by abelle

Data on the potasily uptake by shells are presented In table 32 and the maijaie of varlanoe in Appenalx 27.
significmat vasicial variation in potasaium uptake by challe was notioad in both the seasons.

Potasatum uptaice by shells in the eeoond season was leas ocappered to the firet seamon. (e) Potaasivill uptake by aeede

Data cn the potasaium uptake by aeede are presented in Table 52 and the anolyale of veriance in Agpendix 27.

There was signifloent vasiotal differonce in potasaium upteke by seeds canly in the ascond seascn.

A11 the eultivers under teet showed oongyicuously lower potasalum uptake by seede in the seoond season cosapared to firet.

Table 32. Petesalum uptake by pode, nelle and seede of acybean varieties in the two Beacona

Treatmants	Uptake of potasaitum (ks han					
	Pods		Shan		Seada	
	First meason	Second sexson	Pirat season	Socom soasca	Firet seasca	Seacnt masaca
1. sc 39021	18.120 (4.372)	0.105 (1.051)	23.701	1.800	49.625	1.364
2. 5 E 14437	15.467 (4.058)	0.424 (1.193)	13.895	2.150	29.953	1.657
3. EC 26691	35.323 (6.027)	0.578 (1.125)	29.775	1.910	59.994	2.461
4. Improved Pelicen	40.648 (6.454)	0.621 (1.349)	31.923	2.801	56.676	2.498
5. 192814	34.409(5.951)	0.091 (1.375)	16.072	2.500	47.403	3.758
6. Ankur	37.848 (6.233)	0.573 (1.254)	14.695	2.445	29.627	2.719
7. PwSO-18	28.712 (5.451)	0.883 (1.374)	22.740	3.211	34.439	3.682
8. Mowatta	37.425 (6.199)	0.334 (1.155)	25.006	1.932	51.876	2.689
9. Bragg	47.595 (6.971)	0.560 (1.249)	49.733	2.050	68.896	2.220
10. EC 39824	34.294 (5.941)	0.375 (1.172)	31.811	1.370	42.914	1.983
11. Davis	31.565 (5.707)	0.525 (1.235)	21.968	1.981	36.469	1.811
12. J2 2750	27.724 (5.360)	0.360 (1.166)	30.568	2.852	61.569	4.002
13. EC 63298	23.567 (4.957)	0.408 (1.187)	31.449	2.341	40.409	3.028
14. 2586		0.512 (1.145)		4.060		4.823
F test	WS	[15	5	3	WS	s
SEm \pm	0.733	0.103	5.593	0.450	10.697	0.591
c.t. at 5	-	-	16.325	0.131	-	1.717

(f) Potecalum uptaice ty plimats

Data ca potanalum uptciee by plants at various arowth stages are yreeented in Table 35 and the analysis of varienoe in Appendix 28. Total uptake of poteselum by plente at harvaet is shown in Fig. 13.

No mariced verietel distersence in the potasaium uptake by plants was noticed at ay of the growth atagee of the two ecacone etrualed exreggt at the herveat atege of the seocnd seasom.

Comperison between atages ahoved a eteady increase In the potenailum upteke upte 90th day and a decline thereafter In the Elirgt seascm. But Arring second seeacn, a steady incerease in potemilum uptake was noticed upto harreat In meay of the varietien temted.

Total potabalum uptalse by plents was oomapioucrialy leas in the seacna scanco comparsed to ILret in all the vecheties teated.
IV. Quality erpeote
(a) Prosein ecutent of seal

Data on protein acatent of ceede are presented in Table 34 and Fig.14. The analymis of varimeo is given in Appenaix 29.
significent varietal differmae in protain coateat of aeed was notioud in the flime meason only and the variety Monetta reoorded the hictheat protein oontens of

Table 33. Potarailua uptake by plants at aifiecent growth stages of soybean varietien in the two atrancas

Kreatmante	Untake of potagat um br plents (ke has ${ }^{-1}$)						
	F4xat magen				Seornal seasion		
	40th day after paring	60 th day after soning	90th day after nexing	Earveet	40th day after Reping	60 th day after apeing	Harveat
1. BC 39321	18.766	27.911	126.370	82.296	2.683	4.484	4.978
2. 14437	16.783	39.075	55.617	53.961	3.352	6.100	5.722
3. EC 26691	9.720	38.719	115.769	100.042	3.286	6.282	5.984
4. Improved	15.629	55.571	149.599	107,090	3.092	0.358	7.478
5. EC 92814	14.276	53.593	112.017	70.458	2.374	9.406	7.588
6. Anloxp	14.577	30.327	126.558	52.702	2,435	5.248	6×812
7. PrsO-48	85.508	26.032	94.475	71.652	3.978	7.147	9.198
8. Henetite	17.314	33.095	94.848	85.095	3.605	4.239	6.466
9. Ruags	13.298	47.272	171.133	135.364	3.476	4.690	6.200
10. EC 39824	15.233	39.916	154.288	84.096	2.764	6.147	5.263
11. Davia	13.251	46.936	107.938	77.654	3.370	5.663	5.263
12. JIV 2750	10.033	51.262	135.631	104. 992	2.195	6.049	8.760
13. EC 63298	18.573	40.776	100.031	78.870	2.687	7.005	6.956
14. EC 2566					2.777	5.212	10.535
F teat	นร	แS	NS	7s	8	5 ms	s
Smat	3.756	11.673	22.060	18.098	0.692	1.493	0.968
C.D. at 5\%	-	-	-	-	-	-	2.814

FIG.I5. VARIETAL VARIATION ON TOTAL POTASSIUM UPTAKE BY PLANTE QT HARVEST

36 perr oent. whioh was on par with bragg and 712750 and hifter then all other varlethee.

There was no seceonal aifference in the protein content of the variety EC 39821. But the varietiee mi 14437.
 bighar seed perotein ocntrat in the secoped season while the remaining ones gnve lowers valuen.

Ancag the varietiee tested, the protein content ranged mrom 29.72 per owat to 36 per cent in firet acason and from 23.46 per eent to 32.63 per oent in scoond season. (b) Protatn yiold of seed

Data on the proteln yield per hectere are presented in Table 34 and Fig. 15 and the malymis of variance in Appentix 29.
slgnifioant varietel diffurence in protein yield was obearved in both the meacons. During the Ilret seascon. the Farkety Brage seocosied the hifheet protein yleld of $325.65 \mathrm{~kg} \mathrm{ha}^{-1}$ wisile in the movoni meacon the variety DO 2556 gave the higheot puoteln yleld of $41,64 \mathrm{~kg} \mathrm{ha}$. The runges of protein yield for the firet and seocnd seagcons wesp 431.53 kg ha -1 to 825.65 kg ha to $41.64 \mathrm{~kg} \mathrm{ha}^{-1}$ reoppeotively.

Proteln yield was conalderrilily lase in the second ceaccu comparea to Pixat.

Teble 34. Protain oontent, protein yield, oil conteat and oil yield of aoybean varieties in the two seagons

Treatmenta	Protein ocontent (\%) Protein yield (ke ha ${ }^{-1}$) ofl oontent (\%)						011 yleld (kg ha ${ }^{-1}$)	
	Plyst seagon	Secoma season	$\begin{aligned} & \text { First } \\ & \text { geaseon } \end{aligned}$	Seocud	First spapon	Second soeran	Fixat geagon	Second geancn
1. EC39821	31.64	31.64	656.12	32.00	15.79	15.33	327.08	16.49
2. EL 14437	30.60	32.63	431.54	34.35	18.45	19.93	259.96	21.74
3. EC 26691	29.72	30.31	667.43	24.59	14.09	16.36	356.60	14.45
4. Improved Pelican	31.44	32.12	673.41	41.30	21.09	17.98	438.90	22.16
5. EC 92814	31.55	31.66	560.67	21.26	21.22	16.07	390.20	10.93
6. Ankur	30.40	31.67	562.50	29.46	21.30	17.41	407.04	17.01
7. PLSO-18	32.25	31.44	431.81	39.55	17.77	17.59	237.03	22.69
8. Hometta	36.00	30.74	763.53	32.48	16.44	16.02	348.44	17.94
9. Bragg	35.69	30.64	825.65	22.26	18.49	15.92	428.67	11.68
10. EC 39824	32.25	28.46	670.66	18.48	20.31	17.09	421.57	10.92
11. Davis	31.98	31.56	614.79	21.63	20.59	16.54	395.57	12.51
12. गn 2750	34.70	31.87	772.26	38.79	18.86	15.93	417.20	18.40
13. EC 63298	30.99	30.37	673.41	37.67	15.10	17.13	\$70.29	19.86
14. EC 2566		31.41		41.64		17.61		22.70
F teat	5	WS	3	s	3	8	a	s
SEm	0.769	0.631	56.467	3.781	1.057	0.030	38.331	2.014
c.?. at 5\%	2.305	-	164.824	9.789	3.087	1.200	111.655	4.257

(a) 012 ocntent of soeds

Data on the ofl content of eeeds are premented in Table 34 and Fig.t6. The analyaia of varianoc is given in Appendix 29.

There was alguifloant veriotal variation in the oll content of eoed in both the ecasons.

In the first seseon, verilety Anicur reoorded the highest ofl content of 21.30 pere cent relioh was on par with thoee of varietien EL 92814, Impeoved Pelloan. Davis. FC 39824, JN 2750, Brage and TC 14457 but hienor then all the varieties. But dusing eecond meacon, vaxiety EC 14437 grve the hiforeet 011 content of $19.933^{\text {Porcent }}$ was higher then the oontente of all other varietles.

The range in the ofl oontente anous the varietiee ware 14.09 to 21.30 per oent and 15.33 to 19.93 per oent In the Lirut and seoun meason reapeotively.

Compriseon between eoascus indicated that the 012 oontent in the mecond beason in all the varieties was lees amoept EC 14437 and $\overline{E C} 26691$.
(d) 012 ylela

Data an ofl yield par hootere are presented in Table 34 and Fic. 17 and the analysit of varianoe is given in Appeadix 29.
ilariced varietal veriation in the oil yield wale notleed in both the apascne.

FIG. 16. VARIETAL VARIATICN ON OIL CONTENT OF SOYBEAR; SEEDS

In first geagch, Vustety Imperoved Pelloen recorded the hichest $0 i 1$ yileld of $438.90 \mathrm{~kg} \mathrm{ha}^{-1}$ which was on par whth Bragg, wC 39824. JH 2750. Ankue, Davis, DC 92814, BC 63996, Honette and BC 39821 but experior to all other varietion.

But in the seocnd meamen veriety EC 2586 recorded the higreat oil yield of $22.70 \mathrm{~kg} \mathrm{ha}^{-1}$ which wae on par With PLsO-18, Imyeroved Pelloen, EC 14437 and EC 63290, that aupectior to all other varletlee.

The ranges in oil yiela mang the varietice teeted ware $237.02 \mathrm{~kg} \mathrm{ha}{ }^{-1}$ (ILSO-18) to $438.90 \mathrm{~kg} \mathrm{ha}{ }^{-1}$ (Improved Plican) $\operatorname{and} 10.92 \mathrm{kE} \mathrm{ha}^{-1}$ (EC 39824) to $22.70 \mathrm{~kg} \mathrm{ha}^{-1}$ (BC 2506) in the firet and secont seamon seapeotivoly. Compericon between seacons ehowed that 011 yi ela in meoun soaeon was markediy leee in all the variaties teated.

DISCUSSION

The rosulte of the present stualies ehowed wide Alfferenoes in the parforcrenoe of soybeen in the two seacons. The gemerral growth of the aroy was good during the first seancon and the yiald levels were high. Durince the seocnd season, the growth was vexy moh restricted and the yleld wee aleo very low. The reaeone for the poor peoformence of the arop during the eecond season will be discuased in detasl afterwaris. As the yield levels are satisfootory only for the first orop, detailed alsousaion is attenpted conly for the results of this seascn.

The reanlis of the ilrat mesem inficated little differanoe in the vegetative growth between varietiea as indioated by the obeervatione on helght of plant, number of brenohes par plent. nuraber of nofulee per plent, nuriber of effeotive nodules per pleat, welght of noduleo per plant. total phyytomase produotion pere pilant and net aselaliation rate. Leaf aree index aleo ild not diffor aignifiomily between varieties except on 90th day. The yield of the orop, on the ocntrary, mbowed atatietically oif zilicant Alfforencee and the variety hragg recorded the higheet moen ylald of $2319.49 \mathrm{kbha}^{-1}$ Anciag the independent yleld ocntributing characters. Viz.e number of bearinct noien yer glant, number of pode per bearing node, number of aeods per pod and test weight. thare was aignifioant varietal
alffarence colly in the case of number of pods per beating node. 3imple oorrelation conffloianta between these yield components and the final yield were adgnifioant in the case of number of bearing nodee pers plent and nasiber of pode per bearing node. The fact that the other two yield oomponento, Viz.: mamber ot seale per pod nad test waight ald not ghow either atatiaticeliy algenliseant verlatal alfferenoes ore a aigerificatit oomelation with yield, may be taken to indioate that theas two chemrasterse might not have been affeoted by aither varictal or maviromanital aiffomenoes. In the case of number of bearing nodes yror plant, there was a higt poaitive onyselation with eaed yield. Dut the difference in this onaxaoter between the veriaties was not sigenificant. It may be coccinded from thaee remulte that thise oharracterp showed whe envixonmental paximatime only. Fumber of pode per bearing node, on the ocntraxy, showed both nigniflicent variatal lifformoon and oomrelation with jield. thous. the colly priwary growth ocmponeat that had algoipiocnt intluanse on aced field maes the mumber of prode per beazing node. Positive somselatica between mumber of pode per glant and soed yield wase reperted by Jexena and Pandey (1971). Veencumany and Rathmaeramy (1975) and Choudhary et 0.1. (1977).

Arong the depcment growth ocminibuting oharacters, aholling paroentage ahcwed algenifleout variatal difference. The varieial variations in mumber of pede per plant and
weight of pods par plant were not algalifcant. though these gave aignifioent oorrelation whth erain yleld. As world be ovident from the results on seed yield (Table 12) the yiald of the varlety Bregg was atatistioally at par with the yleld of all the othar varietios excepting BC 92014. T 14437 and ILSO-18. The range in yield between variotica was from 1333.02 to $2319.49 \mathrm{~kg} \mathrm{ha} \mathrm{he}^{-1}$. As the meen yiala of a large number of vailaties were statistically at pear, an attempt was mede to select a fow varicties as auparior. This was done by eeleotinc the varieties whoee ylelds exoesded the aritlcal level of Alacriminaticn. Suoh a seleotion showed the superiority of the varietien Arack, Fe 26691. JN 2750. © 63298 and lionetta. To eatimate the gemetic potential of the varieties. a ealeotion index besed on mumber of pods per bearine node and number of bearing nodes per plent was oaloulated and based on this seleotion intex, the varieties were ranked. The varioty bragg came out es auperior besed on this oritaricn aleo. Among the verieties that were seleoted as superior baced on moan gleld, the three varietien Brack. J7 2750 and 26691 renked firet, seocen and thira respectively in selaction index. These three varieties mey tharefore be considared as cost suyerior in terne of their genotic potential.

Superiority of the variety Bragg en aeed yield hod been reported by Sasman and Irandey (1971) anong 16 varietien tested and Agarnal and Narang (1975) anome three vapieties tried. iremsalchar (1973) reported Jil 2750 es the higeneat yielider among 36 varieties.

A stualy of the comparative arowth performance of theme three supemior varieties may be mede by renicing the varietlee for each of the grouth characters and identifying thome in which theee three varieties occupy positione within the flrst five renks. Stoh a oomparison indicated that Brags was experior in term of haight, total mamber of nodules, number of effeotive nodulee, welght of nodulea. leaf area inder and not asalnilation rate. The variety JN 2750 reniced firat in height and leat area index and was superior in number of brenohes, total number of nodules and weicht of notules. EC 26691 omme out as flret in number of branchess and was experior in holght of plant, number of effeotive nodulea per plemt, vaight of nodules per plant. leaf area index and not acelmilation rate.

As had been indicated earilier, the general growth of all the verieties was good during the firat season and In the cese of these superior varieties the highest valuea of plant helght and nuraber of branohes ranged from 64.31 to 70.27 an and 4.20 to 5.67 reapeotively. Nodules ware notioed from the firgt stage of obearvation (40 days after soring) in all the varieties end the highest mean values
on totel number of nolulee, mumber of affeotive nodules and welght of nodules per pient for these superior varieties ranged fram 12.265 to $26.079,5.927$ to 6.688 and 0.483 to 0.654 z reapeotively. The leat oanogies were also dense and the reayeotive LAI values for Bracg, J17 2750 and 20 26691 ware 7.767. 63.094 and 6.054 on 90th day after oowing.

Coxyarieon of the ocntents of fortilizer nutirientis in plant pertes ehowed wide variations between varieties and Lt was diffioult to draw any conoluaion of the superiority of any of the varioties. Sluilar oignificent varietal variation in the content of these mutriente had been raported by Bataglia et al. (1977). But Hamway and eber (19716) reported nongisnifloment verietel alfference in the content of nitzogen, phosphorve pand potaeh in soybean plent parte.

In the case of uptalce of matrienta, on indication of higher uptake by suyerior verieties was evideat and the variety nreage reoorded the higheat uptake of all the three nutirients at harvest. Variety J7 2750 was seoond in nitrogen uptake and tinisi in yotasaium uptake at harvest. Nitsogen and potasalum uptake values of ne 26691 were comparativaly infech. The uptake of nitrogen at harvest by the three superior varieties renged from 195.034 to $252.401 \mathrm{~kg} \mathrm{ha}^{-1}$ and those by phomphorus and potassium from 12.142 to 19.442 and 100.042 to $135.364 \mathrm{~kg} \mathrm{ha}^{-1}$ reapeotivaly. Theoe ugtake velues of phoophomus corpare reasonably with the femifilizer

reoomendetice for this arop. In the case of potasalum, on the oontraxy, the uptake values are far higher then the present reocumendation.

It Day aleo be wortmonile atuaying the pattern of cocumulation of mutifente in the different plent parts. Uptace of the mutriente on 90 th day (purior to leaf aheddiag) indicated conomatration of 52 to 56 par oent of the total nitrogen in the leaves in these 3 sapenior varieties. The couparable Ifgurea for sten and pods were 20 to 26 per ceat and 21 to 33 par cent reopeotively. At harvest. the quentities of this nutrient in seeds. aheils and atemsreaged from 6 to 90 per cent, 6 to 7 per oant and 3 to 5 per cont. reapectively. It would appear fron these figwee that the built of nitroggen in plente gete oonoentrated in eeode and the plent componente in the deareading oxder of nutilent cocumulaticn were saed, aball and etem at harvest, and leaves, pods and aters on 90th day after planting. A sinilar coxparieon made for the phomphorus uptake would indioate the highest accumulatica of the nutrient in pods and leaves an 90th dey after planting followed by mter. At harveet. the plent ocmponents in the decreasing order of inportance were ceed, shell and aten. In the oase of yotessium, the bolk of the nutilent was ocnocntrated in stem on the goth day after eowing. The other oomponents in the deareasing ander ware leeves and pole and the ranking at harvest was in the sequenoe, seed, shell and oten.

The protein and ofl contents of seeds showed algrifiosnt vametal ilfferences. of the three supenior vasieties, Broug and JH 2750 recomed relatively high protein contents and the reapective vilues were 35.69 per oent and 34.70 per cent. The protein oontent of EC 26691 vas comparativoly low (29.72 perr oent). The oontent of 011 in meads in the varieties teated ranged from 14.09 to 21.30. Peroantaga of ofl in meede of the superior varietieo were onparativaly 10w. The yields of zpoteln and 0.11 , on the ocntrary, ware sulatsvely high in the superior variatiea eapealally in the case of Bragg and JN 2750. The protesin yield of the three varieties Bragg. JN 2750 and 526691 were respeotively sas. 65 , 772.26 and $667.43 \mathrm{~kg} \mathrm{ha}{ }^{-1}$. The comreepponaling valuen for ofl yield ware 428.07. 417.20 and 316.60 kg ha . The fact that the hief yielaing vorietiea ahowed hishar $0 i l$ yiald 0180 indientee that the totel seed yield zuther than the oontent of oil heal a dominant influanoe im deoiaing the total oil yiold.

Ao hed been indisated carliear, the yleld of all the varieties during the aeocnd seasen (Dotober 28th to Jamuary 274h) was octaparatively low. The mange in yield was only between 65.90 to $129.00 \mathrm{~kg} \mathrm{he}^{-1}$. A pompasieon with the observations on growth parametecer would ghow that the plante were suoh shorter and hat lees number of branohes.

Kodulation was alao poorer. Onilke in the firgt aemocn. the leaf canoplea ware syaree and the mean LAI ranged from 0.650 to 1.144 . Suoh a poor greuth performence of the plant wes zellooted on the poor axymaesion of yiald contributing charectare aloo.

The explanatica for poor growth and yield of all the goybeen varlaties during the second aeason onn be given from a atuily of the meteorological data of the two seasons. The totel rainfall received during the second gooeon uas cony 160.1 mm as againgt 3190.2 mm during tho firet acason. The weakly exterage temprasture manged from 21.17 to $32.4^{\circ} \mathrm{C}$ for the flrat eeapon and Prom 20.40 to 34.03 C in the seoond meatca. leagoo in the weekly everage relative hualdity In the fixet and seoond seascns were $61.43 t 097.14$ per cent and 45.4 to 92.2 par oant. rempeotively. Among all the above weather paranaters, the moet glaring dilference appears to be that of the amovat of rainfall recelved. In adation to the comsplowousk louer ralnfall recaived during seoced seagon, the diatribution was aloo highly uneven and the rains were reatricted almost completely to the Initial growth phase of the arop. It ayyears therefore that the intencity and the distribution of zeinfall were probably predominantiy meaponatble for the meatricted erowth of the arop during the second season.

Another major differeno in the performence of the
varietice during thle seascn was that the total orop duration wee maxkedly lese during the second season. It took about 125 to 130 days for the varieties to oome to naturity during first ecaecn, whereas these could be harrested in 63 to 05 days in the eecond seapon. The study of the daye to flowering (Table 9) would also Indicate that both the time reguixed for appearence of flower and the time taken from flowering to matruity were leso during the seecnd season. The eariler appearance of Illowers durine the seocnd seascn might have been at leaet partly Induced by the shorter day lengtin during thila aecson. Sinllar regulta of echanced flowerine in ahorter davs in soybean hace been reparted by Byth (1960). Bvanthough the deorease in day lencth might have influenoed the period from flowering to maturity as hed been reported by Byth (1960) and higham (1976). the other exvironvuental regtriotions also might be involved in this. Though the yields were comparatively iow during the aecond aeason, thare were aignificant varietal diffacenoce and variaties r200-13, EC 2586 and Iaproved Fellean were ranked first, geocnd and third. The parformance of the superior varieties of the ilrst seseon was comparatively poor during the seccnd aeason.

SUMMARY

A field axperinent was conduoted in the Instructional Farn attached to the Collece of Hortloulture, Vellanikkara durine the period from June 1960 to Jonuary 1961, to atidy the performance of soyboan varieties durinc south weat and north east monsoon seasons of Kecrale. The treatments oonsiated of 14 soybean variethea viz.. BC 39821, ic 14437. © 26691. Improved rellcen, 5 92614, Ankur, RLSO-13. ionetta, Brags, x 39e24, Davia. JN 2750, ic 63294 and m 2506. The experiment was lald out in a renionised blook dealgn with three replioations. The reauls are axwarised below.

1. There was no aiguificant varietal difference In helght of plants, number of branohes per plant, number of nodules per plant, number of offective nodulea per plant. waight of nodules per plant, total phytonase production per plant and net asaimilation rate at any of the growth otageo in both the seasons. The varietal effect on leaf area indax was digificant only on goth day of first aeagon and the varlety 3112750 recorded the ingeneat LAI value of U.094. A drastio reductica in the expresalion of all the erowth oharecters was noticed in the second season coupared to the Plrat.
2. Yield oontizibuting factors like number of bearing nodes per plent, number of pods per plant, woifht of
pode per plent, mumber of aeeds per pod, 1000 aeed welght and harveat index ald not show any elgnificent varlation between varieties in both the seasons.
3. Vawioties ehowed aignifleent aifferenoes in ohelling percentage in both the seascns, in nuraber of yode per bearing node in the firet season and muber of seeds per plent in the seoond eooson.
4. 3ignifioant varietal aifferenoc in seed yield and atover ylald were obperved in both the seasons. The variety brage reooxied higheot seed yleld of $2319.49 \mathrm{~kg} \mathrm{ha}^{-1}$ In the firet seascn and it was on par with varieties C 26691, J7 2750, EC 63298, Honetta, Improved rellcan, x 39824, BC 39021, Davis Ankur but euperior to other varieties. A ealeation teoknalque based on the nornal diatribution and eelection index could identify the verieties Bracg, JT 2750 and 26691 as moat promieing.
5. Maxiced varietal aifferenoe in etovar yleld was notioed in both the aersons and the highest stover yield of 3616.45 kg ha was reopried by the varilety Improved Pellcan whith was on par whth IH 2750, Bracge EC 39624 and te 26691 but guperior to all othor variethea in the ilret ceaecm. All the varietien showed extremely poor perfornence with segaxd to yleld and yield contributing ohersoters in the second scespon.

- 6. Thare was alenillicent varietal difference in the content of fertiliser natimente in different plant parts in almost all growth atages. Tut the uptake of these nutyiente ald not differ cuch betwoen variotiee. The upteke of the mutriente was ocnspicuously lees in the soocnd season oonjpared to first in ell the varietios.

7. Varietal aifferenoe in protein content was sienilloant anly in the firet eeasom and the varlety ilonotite reoorded the highest proteln content of 36 per cent. ryoteln yield, 011 ocatent and 011 yleld differed algniflcently between varletlee in both the oeasons. Druring the Plrat season the variaties Bragc, Ankur and Impxoved relican recoxded the hifoest values of protein jleld. oil ocntent and 012 yield reapeatively.

REFERENCES

REPEIMCPS

Abel, U. $\mathrm{H}_{.0} \mathrm{Jr}$. (1961). Reappone of soybeans to datea of plenting in the imperial valley of Callfornia. Arexan. I. 53(2): 95-98.

Agarwal. S.K. end Narang, R.3. (1975). Bffect of levele of phosphorus and nitrogen on soybean varietien.

"AI'bert, V.E. (1975). Stualiee ca quantity and quallty of 011 in eeedis of biologicalis different soybeen cultivers. Byulh. Feag. Inot. Pagteniey. No. 53t 56-59.
 E.I. and Stolicove, V. YA. (1976). Chenical compo alticn of seeds of aone soybean oultivars and abanges in it undere the influence of weather. $e 0 i l$ and olimatio conditions. Prink. 3iaidh. 14ke. 12(2): 166-191.
A.O.A.C. (1950). Official methode of amalyaig. Assoolation of Offialal fericultural Ohemlete 7th EA. pp. 1-343. Assoolation of orflaial Agriculturcal Chealsts, Weahingtica. D.C.
A.0.c.3. (1971). Officiol mixntative Vethode of the
 Amerioan 012 Cherniste' Scoiety 508. South Sizth 3treet Chempalga, ILXinois 61820.

* Achley, D.A. Boarma, M. I. and Solmice, L.L. (1977). Lual and oenopy apparant photosyntheais oompariscons and the relation of each to moybean oultivar yield. In Agrea. Absto gi Reison, V.S.A.

AVsic (1976). Aslen vegretable hesearch and Develojnent Centre. AVBDC aoybeen Keport. Varletal developwent and gersplaen utilization in soybeens. Teoh. Bull. 13(78-102).

- Bataghla, O.C. Macoarnhad, H. A.A. and Tisselll Filho, 0. (1977). Ininaral compositica of the ecods of nine cultivars of ooybeen. Grarnatia. 36(1): XIVII-L.
 soybean oultivars in maturity eroupe VI, VII and VIII. G301 304. 19(5): 611-613.
*Boxst. H.L. apd Thatoher. L. L. (1931). Hife history and composition of the coybeen plent. obio Aerta. Expt. Sthe Sty. Buni. 491.
* Bryant, H.T., BLester, R.F. and Hemon, R.C., Jr. (1970). grfect of plent maturity un yiold and chonioal compoaltion of theree soybeens. In Arsen. Abst. 9?. Hedison. J. $3 . A$. 92.

Buttery. B.R. (1969). Analyals of the growth of soybeens as affected by plant poprlation and fertilizer. Crg. J. P2. S0i. 49: 675-684.

Buttery, B.R. (1970). Brfeots of viriation in leaf acea index an grouth of malse and moybonas. Grop gai. 10(1): 9-13.

Byth, D. .. (1963). Ins Horreen, A.G. (eA.) (1978). Soybegn ghysiology. Acronomy refilitration. Iet SK. 2y. 32. Acosemio Prees, Now Yorth,
-Candilo, D.I. Pamea, F. and Ciafarilai, G. (1975). Trial on cultivation of soybean. Annali delle gatituto aperimantale paria colture indugtrapli. 7(1): 117-116.

311

Cartter, J.I. and Hopper, I.I. (1942). In Nomnen, A.G. (ed.) (1965). The Soyberg. 1at EC. py. 179. Aoaicalc Freas, Hew Tork.

Cerlmesp, C.E. and Smith. D.E. (1959). InsMormen. A.G. (ed.) (1963). Tha Soyberg. 1st A. pp. 160. Acederic Prees, New Yozik.
 (1977). Cosrelation and regresaion in soybeen. proe. Bihat Aag. arote. Sot. 25(1):

Cochran. U.G. and Cox, GoN. (1965). Erperimental Dericne. Aste Publicatl an Horree. pp. 610.

Curtia, P.E., Orgen, I.I. ani Hegemen, E.H. (1969). Varietal affects in soybean photonymbesis and photoreoplration. Grop Sch. $g(3): 323-327$.

Drager, Roll., Brun, \because A. and Coopers, R.L. (1969). Effect of genotype as the photomynthetic rate of noybean. Cron Sat. $\mathrm{g}(4): 429-431$.

Doss. D.D.. Peareon, R.f. and Hugere, H.T. (1974). Effeot of a011 watar atrease at varlous grouth etages on soybean yleld. Argen. I. 66(2): 297-299.
Dueak, D.A., IhaLok, J.J. and Poxtery, K.3. (1971). Ins Norman, A.C. (ed.) (1978). Soxhean Phyciolog, Agronomy and Otilkgatica. 1et Bu. pp. 100. Aoedemic Preas, Hew York.
-Egil. D. E.o Tutt, C.. Hood, J.i. and Reloosiky, D. (1975). Kentuaky soybeen performanoe teete. 1975. preg. Hen. axtic. Krn. Stn. No. 219. pp. 14.

Fisher, R.A. and Yatee, F. (1963). Stathatical tahlen for blologtoal. agricultrmal mi malloal researah. oliver and Boyd. Bainburgh iweeddale Court. Falnburgh [II III pp. 146.

Fumah, 3.1., and leaty, C. (1960). Genotype x envisomment intermotions as grain yield and other charsoters of soybeen. 종ㄴ. Astica. 16(3): 269-273.
sGIM101L, J.L. (1981). Influmee of seed size on some arfronomic ohareoterimblies of soybeen. Anals 2: 309-315.

Gravea, Geit and Nic Outchen, T. (1978). Soybeen variety date of planting atudy at kian from 1974-76. 2omn. Ferm na Hom Solyape. No. 105: 27-29.

Gray, J. (1959). In: Nompen, A.G. (ed.) (1963). The Boybean

"Hensen, \cdot.i. (1972). "Net photomythease and evapotranapiraticn of field groma eoybean amopies'. Eh.D. Thesis. Iowa State Juiversity Libxary, Ames.

Heanmy, J.J. and ober, C.R. (1971a). Dyy natter socumuLation in elgat soybeen (Glyolne max (I.) Lexcilil) varieties. Aspray I. 63: 227-230.

Hanway, J.T. and ober, G.i. (1971b). N. Pand K peraentagen ln anyberan plant parte. Asson. I. 13(2): 266-290.

Hartwig. E. . (1954). Ins Normeny A.G. (ed.) (1963). The Sorbean. 1st Ed. pp. 17B. Acedenio Iress, New York.

Howeli, R. T. and Dartter, d.I. (1953). Physiological factors affeoting oconpoaltion of soybeane. 1. Correlation or tesperatures durinc certain portiono of the yod fliline stage with oil percenticge in wature beans. Aprgn. I. 告(10): 525-526.

Howall. R. . (1963). Fhyst alogy of goybean. Ins Norman. A.G. (ed.) (1963). The Enxpona. 1et Ed. pp. 75-115. Acedealic Press, New Xowt.
 itall. Inc.. T.E.A. pp. 493.

Jeifers, D.I. and Shibles, H. if. (1969). Some effects of leap area, eolar radiation, air teriperature and vasiety on net photosyatheain in Ileld growe eoybeas. Cxon Sat. $\mathrm{g}(6)$: 762 m 764 .

Jobnson, D.i. and Majox, D.J. (1979). Kiaxreat iniex of soyberas as affected by plenting date mad maturity ratinge. Agran. I. 71(4): 538-541.
 acroes varisbie environumetel conaiticno. In Agrig. hbat. Amerioun Soutety of Agronomy 45 Madieon, D.S.A.

Kaw, R.N. and Iedhava itenca. P. (1971). Vasiebility of agricousto characters in coybean (Glyolna max (L_{0}) Nerzill at Coimbatore, 8. India. Madrea gacia. I. 58(4): $281-290$.
Kew. R.J. and Nedhave Kencn, Y. (1978). Bvaluation of coyben genetopes at Coimbatere. Hedrag acrig. I. $65(12): 779-766$.
 on the yield of two eoyben varietiee yig. Cleminw 63

* Larchor, J. (1976). Resulte of the Impsox Soybean tria.

Iathwell. D.J. and Evans, B. R. (1951). KLbrogea uptake from
 growth. Aprge. I. $4^{3}(4): 264-279$.
-Lee, J.S. (1977). Studiee an the Mochernical features of soybean seeds in breeaing a high protein variaty. with amphatis can accumalation during maturation and eleotrophoretio patterne of protein. I. Kor. Sop. Gxpp 501. 28(1): 135-166.
Leffel, R.C. (1961). Int Horman, A.G. (ed.) (1963). The leyberg 1st Ed, pp. 178. Acedemic Irees. Hew Yortc.

Hooers, C.A. (1903). Int Harma, A.G. (ed.) (1963). The Govbern lst Bd. pp. 100. Rociemia Erese, Hew Yosk. Hocca, Ge. Peryini, P. and Tanlolo, L. (1979). Relationahipe between ylald, nomptological and biologio obarsoteriatics in coybem from aifforent countilee. [317. Arren. 13(1): 157-168.
-lturtea, A. and Spanu, A. (1979). Iield ponalblitilee of some soybeen cultivare. Regults of 3 years of experiment carried out in Sardinia. Riy. Agron. (1979). 13(1): 137-145.
 of soving date on the yield 02 soybeen in Hokikaldo. 1. Growth and yield of soybeen sown on differcent daten. Reg. Bull. Kipkeatio natn. Expt. Stn. Ho.126. 105-121.

Oaler. R.D. and Cartter, J.L. (1954). Effect of planting date an ohemical composition and growth charactesietios of aoybeans. Acpen. I. 46(6): 267-269.
Peartay, J.K., Leng, 3. .i. and Jaakobo, J.A. (1977). Pathe coefficient analysis of flowering time in diverse genotypes of scybeen as influenced by teaperature and day lencth. Indien I. esrig. Sat. 47(10): 499-502.

Patel, C.J. Petel, U. R. an Patel, P.G. (1978). comparative peorformanoe of oertain varieties of soybean in kharif season. Gotarak Apricputivral

 Performanoe of coybeen genotypeo in Harathwada ragica of Liaharachtra, Inlla. 3ron. Grain Learme BuN. リо.5. 33-35.

* Penataikop, Vaí. Kedyennikov, V. F. and Kappuabev, A. (1960). Photoayntheale and productivity of soybem oultivare. Selektady I Semenopoditico No.3. 15-17.

Promalichar, (1973). Bvaluation of promiaing eoybean varieties at colmbatore. vearag acric. J. 60(6): 393-395.

* Rebman, F. (1979). Pexformance of elght noybeen varietles on the lalend of peoienala in the valley of the Sollmoes ilver during the $1976-1977$ season. Inoti tuto Nacional de Peaquisace da Acsesona, Menars, Amasonas, Bramil. Aati Amagonion (Bracil). g(1): 5-7.
 (1980). Selection and evaluation of the relative influence of the norphotjogical chassoters and yield compenents on yield in aoybeen (Glyoine max. (I.) Merrilil). Mairal agric. I. 67(2): 71~76.

Reena, G.P. (1981). Bfiect of levele of potasalum and rhisobial oulture inoculaticn on the growth and yiold of aoybean (Giycting max (t.) hemaili). H.So. Theale. Kersia Agricultural Oniversity, Triabur (Unpubli ahed).

$T 11$

*Ruak, H.C. and Bolea, B.D. (1956). atuaies in the comparative phystology of apule root etocice. I. The affect of nitrogen on the growth and assimilation of : Aalling apple root atoake. Ann. Bot. 17.S. 20: 57-68.
*Ruasca, \%. and Obasola, c.O. (1979). Varletal yield differences and relationehlp of yield with variability in seed per pod at succeseive nodes in soybeen. 0ieagingax (Frence). 3A(6): 295-299.
 C.A. (1979). Growth anelyais of two soybean (Glyoine max (L.) Mexplill) Lineo in pelotas. Fig. Centre Naolonet de Percuina do join. 347-361.
Sazana, H.C. and Yendey, R.E. (1971). Characterietios and parforsmence of ecen promiaing varieties of acybem at Jantnagar. Indien I. acrio. Bot. 41(4): 355-360.
"Sahuster, r. and Jobehdar-fionarnajad, R. (1976). The response of several soybeen cuitivar to photoperica and tenpersture. Z. Acker-I. EefBean Berlin. 142(1): 1-19.
*Sohnstar, id. and roseelt, D. (1977). Proteln content and protein quality of some aoybean varieties an different locatlons. Int Protein availty from Lequinovis arong. Klechbergy, Inwembergi Cownisaion of the Suropeen Commantien. pp. 324-533.
 stuales in soybeen (Glyatine gax (1.) iemmil) Bencinderh J. of Boit. ind. Res. 13(t): 14-20.

4x
 Soxpern. In: Brane. L.T. (ed.) (1975). Ongr Phyaiology. Iet 1. pp. 151-190. Cambridee Thilveraity Free日, Oambilige, Great Dritain.

Slnch, J.N., Joahi, K.C., Hegi, I.S. and Taripathi, S.K. (1973). A note cn the seed quarity of soybean as influenoed by planting dater in Taral Region of J. P. Send Reperay is 66 -90.
SLugh, K.H. and Erabed, R.D. (1979). Perfommance of coybacn verieties in terms of forege and grain production under aub-berperste regions of South Indla. Indien I. Arxan. 2A(4): 451-452.
Snodoopr, G. Oxford and IMI Prablithing Coes Oalcutta, Bombay. Now Delhi.

3ood, D.Re, Kuiliy Siach maindea, Saxiapopli and ragle, D.S. (1900). Componitional veriation in different
 Hasere 10(2): 190-203.
 and fatrunoto, S. (1976). Verietel aifferencen of oeed valecht. protetn and eniphrw containing aninosold content of noybean aeeds. Sxoo. Gxop Sat. Sge. Jmen. 45(3): 381-393. E.A. 32(1): 245.
*Tamg, .T. Chen, H.C. and Teat. .F. (1977). Varletal and regional offeot. on the ofl ocntent and fatty acid ocmpoaltion of aoybeen. I. armp. Agh. Ohing. 110. 97: 5-9.

Fayo, T.O. (1977). Comparative analyate of the growth, develoyment ani yield of three aoybean varieties (Glyaina max (I.) ivempili). I. apotie inge: J.iz. g(1): 151-157.

Tiwarl, D.K., Shrivasteva, S.K. and Vearna, G.F. (1977). Phyailologioal effeota of date of eouinc on yiela daterrinente of soybem. JIINVY Reas. J. 11(1) and (2): 91-94.

* Valaivia, By VA (1979). Effeos of cowing catee an yield and srain oil end protein ocntente in goyboen (Ihyotno cha (I.) herwili). Apreculture Ipocnica. 39(1): 11-16.

Veeraeneray, i. and Hathmaswery, R. (1975). Charector association analyals in soybeen. Hianres agMas I. 62(9): 534-536.
Viljoen, N.J. (1937). Ins Norman A.G. (ed.) (1963). The Sovbern 1st FA. pp. 100. Aomicmic Prean, New York.

* Watecn D.J. (1950). The depemdence of net assinilation rate an lear area index. Ama. Bot. 25: 431-439.
 of plant population and zer syacing on soybean developmant and production. Aeron. I. 58: 99-102.
 (1971). Sono JSDA atualiea an the soybeen Thisobium aymbiosis. In Diological H1troagn Fixation in Hatrual and Acox curitural Habitatsa eds. E.G. Malders and I.A. Lie. Martirac Migjhoff. The Hague, pp. 293-504.

Welea, IIoG. (1949). Soybeens. Alvanoes in Agronomy, Vol.I. pp. 76-152. Aoadenfe Rrese, New York.
 (1950). Int Jorman. A.O. (ER.) (1963). Tha Soybean. 1at 7. pp. 180. Academila Ereas, New Zoxk. mbangar, O.A. (1976). Performance or aome soybeen varieties in Libaria. Erop. Grain Eesame Duli. 3i vo9.


```
    Sovbera Thvetolaste Ampncru rad Utilisation. 100
    DA. wp. 65. Lealemic Prees, New zozk.
    highan, D.K. and Hince. H.C. (1973). Agevnorala
        charactarieble日 and andromental etrees. Ins
    Nownon. A. \({ }^{\text {. ( }}\) (ea.) (1978). Govbong Phystolocy
```



```
    Aoadeni a Zrese, Rem Yonts.
Thighem. D.K. Kinor. F.O. and Carmar. S.O. (1970). Effoots
    of eavironment and menagencent on soybean perfor-
    bance in the tropice. Acrene I. 70(4): 557-592.
```



```
    (ed.) (1976). Soxpern Fhyalology, Agxnopy end
    Yetilsation. ist ed. pye 102. Acadealo Erese,
    New Yaris.
```



```
        gifoct of soulng date and porniation denalty on
        the growth and ylelf of nowe noybeen varletles,
        Research milimetin. Faculty of Agriculture.
        Aly Thams thivaraity. No. 1245: 1-20 2g.
```

 Onlginal not meen
 APPENDICES

Appendix - 1

Analyals of variance for haight of plant and nuxiber of branahes per plant

Fliset meason							Second seasca			
Neen mquares							Source	dt	Hean squares	
Sorree	di	Heletut of pleat		Ho oof branohas persNhent					Height of	plants
		40th day after sowing	60 ch day artare sowing	90th day artas sowiac	40th day after soning	60th day after nowing			40th day after aowing	60 tin day after sowing
Block	2	207.350**	350.660**	201.180	0.720	3.150	Blook	2	1.700	14.600
Truat	12	10.620	32.860	42.730	0.710	0.730	Ireatment	13	3.160	12.970
Enew	24	19.260	40.940	77.110	0.490	1.460	Surs	26	3.150	8.390

[^0]Apuendix - 2
Analysia of varianoe for mumber of total root nodules per plont, numbor of effeotive nodilles per plant and weight of total neot nodules per plent.

Sourse	di	Mean equ ree							
		Total number of noot nodules per plant			Nuaber of effective nodulos per plant		Weight of toteal noot nodulas per plont		
		40th day after sowing	60th day after corwing	90 th day after sowing	60 th cay after erwing	90th day after sowing	40 th day after souling	60th day after sowing	90 th day after sowing
Irrat semann									
Blook	2	4.191*	11.303	351.386**	1.328	129.277**	0.066*	0.057	1.293**
Treatment	12	1.743	4.403	16. 565	1.374	3.303	0.024	0.124	0.290
Emerer	24	1.103	9.829	10.686	2.304	10.513	0.015	0.100	0.354
geacma_magom									
Block	2	2.346	0.297		0.040			0.00013	
Treat-	13	1.933	0.062		0.598			0.00036	
Snror	26	1.471	2.020		0.666			0.00052	

Anvendis - 3

Analyaie of varianoe for the total phytomess production per plant at varlous growth etages

**Signifiocnt at 1 per cont level

Appegitx-4

Analyale of varianoe for leaf area index and not amsinilation rate

	Firat acoeom						Second season			
Hema squares							Hean ocuares			
Souroe	ds	Leaf ar	n index		Net amainil	latica		Leat area	index	Het acoimi1aticur mita
		40 th day artor sowin	60 th day after sonding	90th dsy sowing	Botween 40th 60th cay aiter boving	Botweem 60th and 90th day after gowing		$\begin{aligned} & \text { 40th day } \\ & \text { after } \end{aligned}$ sowing	60 th day coning	Batuaen 40th ma 60th day after acoling

Block	2	0.026	4.991	$11.578 *$	0.061	0.650	2	0.025	0.089	0.712
Treat-	12	0.198	1.906	$9.026 *$	2.007	1.946	13	0.034	0.059	0.923
ment	24	0.298	3.070	3.427	3.747	3.079	26	0.046	0.156	0.968

- Signifioant at 5 per cent level

Appendix - 5

Analysis of varianoe fox amber of bearing nodes pes plant. muber of pods par bearing noie, number of seale per pod and 1000 aeed waletht.

		Firet meancn				Second searon				
		Hean equaree					Hean sq	quares		
Sounce	de	Tumber of besering nodea par plant	Wupber of pede per bearing node	Eumber at ceeds jar pod	1000 need weigut	d	Shatber of bearinic notes per plant	Numbers of pode per beasing node	Rumber ot seods per pea	1000 sead veleft
BLock	2	18.575	0.041	0.051	0.800*	2	1.480	0.000	0.431	0.800
$\begin{aligned} & \text { Treat- } \\ & \text { ment } \end{aligned}$	12	22.030	0.726**	0.044	0.210	13	0.860	0.124**	0.440	0.270
Errow	24	33.55	0.247	0.030	0.130	26	0.970	0.000	0.262	0.220

* 3lgnifloant at 5 per cant level
- 3ignificont at 1 per cent level

ApremAlix - 6

Anelysis of raviance for mumbr of pods per plant, walght of pods per plant. shalling parvantage ani namer of geeds per phant.

HLrat seascon							Second seamon			
Meen equares							Mean equares			
Sownee	di	Number of yods pere plent	Varent of pode par plent	Shelling pexcentage	Hariber of seeds per plant	$2 \pm$	Sraber of pods ner plant	Welght of pods per plant	Shelling yercen tage	Numbers of sceds par pienat
Block	2	234.123	36.965	10.795	1553.546	2	3.265	0.002	27.979**	0.100
$\begin{aligned} & \text { Treat } \\ & \text { ment } \end{aligned}$	12	436.267	19.254	17.223*	1423.906	13	1.503	0.173	10.724*	11.893*
Emerer	24	294.629	15.745	5.987	1022.958	26	1.847	0.036	3.403	4.219

* Signiflocnt at 5 per cont Leval
** Sigaificant at 1 per sant level

- Signifloant at 5 per oont level
** Sicniricant at 1 per cant level

Appenalix - 8

Analyais of varlance for nitrogen oontent of atem at different erowth etages

Sounce	ds	Fliret easson				Second meabon			
		Moen squeres				Mean squaree			
		Fitrogen content of etcm				ds	Wltrogem content of etem		
		40th day after sowing	604 h day after soving	90th acy arter sowing	Harveat		40th day after socing	60th alay artier sowing	Harveat
Blook	2	0.030	0.003	0.005	0.002	2	0.050	0.020	0.079
Treatvent	12	0.027	0.065**	0.039**	0.023**	13	0.062	0.110^{*}	0.254**
meror	24	0.050	0.005	0.003	0.002	26	0.057	0.027	0.042

* Ilenificant at 5 per cant level
* Significout et 1 pere cant lovel

Appendix-9							
Analysis of variance for nitrogen content of leavea at different growth atagea							
	First measou				Second seasce		
Source	Hean equares				Heen equaree		
	ds	Witrogen content of leavee			at	IItrogon content of Leaves	
		40th day after sowing	604h day after sowing	90th day after moving		40th day after mowing	60 mh ay after sowing
Block	2	0.002	0.140	0.102	2	0.071	0.008
Exeat-	12	0.204**	0.290 *	0.563**	13	0.213°	0.865*
Euner	24	0.022	0.048	0.105	26	0.085	0.027
			- significe * Slenifla	nt at 5 per ce nt at 1 per oc	$\begin{aligned} & \text { lev } \\ & \text { lovt } \end{aligned}$		

Aypeadix - 10
Anaiysis of varience for nitrogen oontent of pods, abella and apeds

		Fixst season			Second scascm			
Source	df	Heen equeres			Hean squaree			
		Witrogen oontent of			48	Mitzogen ocntiont of		
		Poda	Sthelle	Seeds		Pode	Sheile	S eeds
3look	2	0.002	0.0001	0.049	2	0.098	0.0025	0.006
Treat- meat	12	0.073**	0.020**	0.304**	13	0.049	0.011**	0.102
merer	24	0.010	0.0009	0.048	26	0.063	0.0019	0.053

* 3leniflcant at 1 yer oent level

Appenalix-11

Analyais of variance Por nitrogen uptake by stem at differcat growth stageo

- signifleant at 5 per ocat level

			Append	dix-12		
		Analysils of	varianoe for	nitrogen uptaka gowth staces	leaves at dirfare	
			First geascon		Second seasom	
			Heen aquarea		Mean squarea	
Source	ds	mitrogen u	aptake by leave	de	Witrogen uptake	Leases
		40tin day after sowing	60 th day after gowing	$\begin{aligned} & 90 \text { th } \text { day } \\ & \text { arter } \\ & \text { acoving } \end{aligned}$	$\begin{aligned} & \text { 40th day } \\ & \text { after sowing } \end{aligned}$	60th Aqy after moving
Blook	2	33.790	925.500	211.783	0.510	3.082
Ereat- mant	12	15.029	195.562	2021.544" 13	1.548	5.183
Erioz	24	14.179	311.026	339.98926	1.577	8.190

[^1]
Aprenalis - 13

Analysia of Faxianoe for nitrogen uptaice by pods. abella and seads

		Pliret neason			Seeond measan			
Souroe	48	Hean mquares			$4 \times$	Heam aquares		
		Poas	Shalls	Seeds		Pods	Whells	Seods
Blook	2	1.804	69.147	7390.194	2	0.018	0.007	19.005
Treasment	12	5.253*	27.410	5630.035	13	0.041	0.160	16.093*
Exxos	24	1.700	24.148	3614.917	26	0.092	0.129	6.048

- Signifioont at 5 per oont leval

[^2]
Appendix - 15

Analyais of wariance for phosphorus content of stem at aifferent growth atages

Scurce	dt	First measom				Scoond seasom			
		Hean squares				Meen equares			
		Phosphorus content of stem				4	Phosphorus content of stes		
		40th day aftere eowing	$60 \operatorname{th}$ asy after sowing	90th ady after soling	Harvect		40th day afte: owing	60 th tay aftere sowing	Hayreat
Bloak	2	0.0002	0.00004	0.00005	$0.0001 *$	2	0.000014	0.0001	0.0005
Trast ment	12	0.023°	$0.0217^{* *}$	0.0094**	0.0007:	13	0.00013**	$0.0017^{* *}$	0.004
Erecer	24	0.0044	0.0006	0.00003	0.00002	26	0.0002	0.0002	0.0005

* Slenifioant at 5 per cent leval
** Slenificunt at 1 per oent level

* Whatheart at 1 gew cant leval

Apiemalz - 17

Annlyaia of varience for phosphorvs cortent in podo, shalls and eeeds

- Signifiocut at 5 per oant level
* Sigmiciocat at 1 por oont laval

Appenitx-18

Analyais of variance for phosphores uytale by stem at differcat grouth atage:

		First meascn				Second maason			
Source	4	Kesn Equares				Hean equaree			
		Phosphorus uptake hy btem				at	Phosphomus upteke ty atem		
		$\begin{aligned} & \text { 40th asy } \\ & \text { artear } \\ & \text { boulng } \end{aligned}$	$\begin{aligned} & \text { 60th atay } \\ & \text { after } \\ & \text { mouling } \end{aligned}$	$\begin{aligned} & 90 \text { th day } \\ & \text { arter } \\ & \text { eowing } \end{aligned}$	Harvest		$\begin{aligned} & \text { 40th day } \\ & \text { efter } \\ & \text { eoting } \end{aligned}$	$\begin{aligned} & \text { 60th dey } \\ & \text { atwer } \\ & \text { gowing } \end{aligned}$	Hasyast
B1ock	2	1.373*	6.508	0.161	0.051	2	0.0005	0.0012	0.0007
Ireat- mens	12	0.505	2.047	0.663**	0.000	13	$0.000{ }^{\prime \prime}$	0.0069	0.0002
Ericos	24	0.363	2.666	0.164	0.040	26	0.0004	0.0057	0.0002

- 3ignificant at 5 par acnt lavel
* Sigalficant at 1 per ceat level

Appendix - 19
Amelyeis of varianoe for phosphorras uptake by leaves at diffareat growth weages

Souree	af	First seasion			Seand meason		
		Hean equares			Heen equares		
		Phosphorras uptake by leaves			ds	Phosphorus ujtake by Leavee	
		40th day after sowing	60th day after souing	90th day arter sowing		40th 8ay after souling	60th 4ay after sowing
Blook	2	1.886*	9.965	1.283	2	0.002	0.005
$\begin{aligned} & \text { 2raatt- } \\ & \operatorname{ment} \end{aligned}$	12	1.569**	2.278	1.289	13	0.004	0.014
Ersur	24	0.484	5.210	2.068	26	0.003	0.014

- Sigai flicant at 5 per oent level
** Slgnificant at 1 yer cent level

Appernis - 20

Analysia of varience for phosyhoras uptake by pode, chells and seeda

		First geason			Second acason			
Source	da	Meen equarea			Mean mquarea			
		Phosphorus uptake			df	Phoephosus uptake		
		Pods	Sbella	Seeas		Poats	Shelle	Seeds
Blook	2	13.955	0.262	90.432*	2	0.0003	0.016	0.080
Treatment	12	12.194	0.268	22.623	13	0.0006	0.008	0.324
Erxor	24	11.036	0.127	26.395	26	0.0008	0.0108	0.050

- Signiflicant at 5 per cent leval

Appenalx-21

Anelyale of varimee for phosphorus upteke by plant at alfferent growth etagea

		Flyst meason				Seocna measom			
Souroe:	di	Meen equaree				4	Heen squarea		
		Fhosphorrae uptake by plant					Phosphorus uptake by plant		
		40th day after nowing	60 th day after gowing	$\begin{aligned} & \text { 90th day } \\ & \text { artier } \\ & \text { sowing } \end{aligned}$	Harvast		40th 4ay after sonting	60th day after souing	Haxrest
Block	2	5.644*	32.247	16.540	101.925	2	0.004	0.011	0.034
Ereatment	12	3.676	6.690	15.052	20.519	13	0.007	0.053	0.098
zeros	24	1.746	14.510	14.727	30.672	26	0.005	0.056	0.048

- Slegiflevat at 5 per oent level

Avereatix - 22
Analyals of variance for potagelm oontent in stem at differrent grouth btagea

	Fixat seapon					Second season			
Source	dr	Hean aqu ress				df	Hean equares		
		Potassium content in atem					Potamalum content in atem		
		40th 4ay aftere aowine	60th day arter sowing	90th day after sowing	Harvent		40th day afters souling	60th day after soring	Hexreat
Blook	2	0.0330	0.0001	0.0002	0.0002	2	0.0221	0.0018	0.0011
Ireat-	12	$0.3280{ }^{*}$	0.1240*	0.0668*	0.1260**	13	0.1648**	0.0943**	0.0194**
Rexor	24	0.0450	0.0070	0.0075	0.0012	26	0.0131	0.0152	0.0023

* Stgniflecnt ot 5 per cent level
* Sigifi oant at 1 per cent level

Appenais - 23

Analyais of variance for potasalum contcnt in leaves at aiffercent growth etagea

- Higniticant at 1 per cont leval

Appanaix - 24								
Analyais of varience for potasaium oontent in potio, shelle and seeds								
		Pirst senson				Second aeason		
Source	df	hean squaree			Heen equares			
		Potamalum oontent			df	Potassium content		
		pods	Shells	seeds		Pods	Shells	Sede
Blook	2	0.011	0.008	0.0013	2	0.005	0.016	0.0034
Ireatmant	12	0.018	$0.343 *$	0.0406**	13	0.035*	0.046**	0.0674**
Ruror	24	0.013	0.017	0.0043	26	0.015	0.013	0.0117

* Sigaifloant at 5 per cent leval
* Bignificont at 1 per oent level

Aprenalix-35

* Sleniflount at 5 per oont level

Appenalx - 26

Analysis of variance for potassium uptake by leavee at differcent growth stages

Source	df	Prat season			Second aeason		
		Mean equares			dr	Hean squares	
		Potassilun ujtake hy leaves				Potasalum mptake by leaves	
		40 th d ay after sowing	60th day aftier sowing	90th ad atter eowing		40th day after sowing	60th day after souling
Blook	2	16.693	38.490	79.154	2	0.160	1.145
treatment	12	8.798	20.999	299.562*	13	0.408	0.979
Brior	24	8.870	42.650	101.601	26	0.479	1.811

- gienficant at 5 yer cent level

Aprenaix - 27

Analyala of variance for potassiun uptaike by pode. shells and aeods

		Piret seasces			Seound gecoun			
Souree	af	Nean squares			af	Leen myueres		
		Totamelun upteice				rotas	Lyteike	
		Pcate	Shella	seeds		Pods	Shells	seede
Block	2	1.612	184.098	796.734	2	0.027	0.0015	0.168
Txeatnent	12	2.029	$265.720{ }^{*}$	476.447	13	0.028	0.014*	2.963*
neror	24	1.601	93.842	343.285	26	0.032	0.006	1.046

Appenitix - 28

Analysis of variance for potheniva uptake by plant at different erouth etages

sounve	ar	Plrat beeson				Second season			
		Meen squares				ds	Mean squares		
		Potasaium uptake by plant					Potasalum uptake by plant		
		40th day after sowing	60th asy after souing	90th 4ay after sowing	Harvest		40th dey after sorring	60th day after soving	Hasweet
3look	2	163.767*	874.210	2198.849	2687.747	2	0.775	1.818	0.250
Treat mesnt	12	26.906	276.935	2757.509	1528.710	13	0.635	5.098	8.136*
Bror	24	42.327	408.768	1459.091	982.641	26	1.437	6.688	2.311

aigalincant at 5 par acit leval

Anuctsix - 29

Analyale of varionoe for protain content. protein yield, oil content and oil ylald

- Sieniflcant at 5 per cent level
- BEmificont at par osat lovol

COMPARATIVE PERFORMANCE OF SOYBEAN (G1 lycine max (L.) Merrill) VARIETIES

BY
PUSHPAKUMARI, R.

ABSTRACT OF A THESIS
 Submitted in partial fulfilment of the requirement for the degree of Alastrr of Sciente in Agriculture

Faculty of Agriculture

Kerala Agricultural University

Department of Agronomy
COLLEGE OF HORTICULTURE
Vellanikkara - Trichur
KERALA • INDIA

ABETRAOS

An experiment was cominoted in tho Inotruotional Farn atteched to the College of Flowticulture, Vellanicicara, during the period fron June 1980 to Jensuany 1901 to select soybean varietlea entitable for the agroolimatic conilticne of Kerrala. The oxperiment van lald out in zendoms sed blook deaiga with 14 varisties and three replloaktons.

The stuily serealed that there was no aignifloent varietal aliferance in the exymeadica of all growth ohareotere and moot of the yield oontributing faotors at any of the growth staget in both the searono. But aigniilcent vaydetal differraces in mead yiald and atover yield ware observed in the two seascan. The reaulte of the experitaent revealed that the varletien Bracge JII 2750 and 026691 are most gromialigg for the seuth west acmeoon seagon of Kerala.

The variety Lionetta geve the highest protein ocnteat of 36 per eent and Bragz, Ankur and Imperved relicen seapeotively recoxied the hi cheet protetn yield, oll content and oil yield in the evath vemt anasoon easen.

Tha eltuiy further mevealed that soybeen cannot be micoesafully zrown during porth eant mongoon season of Reraia uithout impigatica.

[^0]: Significant at 1 percent level

[^1]: -Signifioent at 5 per cont level

[^2]: Wignisioant at 5 per ceant level

