A COMPARATIVE STUDY OF GENOTYPE-ENVIRONMENT INTERACTIONS IN SESAME

Ву

MINI. C. J.

THESIS

Submitted in partial fulfilment of the requirement for the degree

Master of Science (Agricultural Statistics)

Faculty of Agriculture
Kerala Agricultural University

Department of Statistics

COLLEGE OF VETERINARY AND ANIMAL SCIENCES

Mannuthy, Trichur

1989

DECLARATION

I hereby declare that this thesis entitled
"A COMPARATIVE STUDY OF GENOTYPE-ENVIRONMENT INTERACTIONS IN SESAME" is a bonafide record of research
work done by me during the course of research and
this thesis has not previously formed the basis for
the sward to me of any degree, diploma, associateship,
fellowship or other similar title, of any other
University or Society.

Mannuthy

2-1-89

MINI C.J.

CERTIFICATE

Certified that this thesis, entitled "A COMPARATIVE STUDY OF GENOTYPE-ENVIRONMENT INTERACTIONS
IN SESAME" is a record of research work done independently by Smt. MINI.C.J. under my guidance and supervision and that it has not previously formed the basis
for the sward of any degree, fellowship or associateship to her.

Mannuthy

Dr. K.C. GEORGE.

2-1-84

(Chairman, Advisory Board),

Professor and Head of Statistics,

College of Veterinary and Animal Sciences,

MANNUTHY.

ADVISORY COMMITTEE

Chairmans

Dr. R.C.George.

R.C. Gin

Members:

ME. K.L. Sunny

Sand

Mr. Jacob Thomas M

Seed shormed to

Smt. Achamma Oommen

the 3 De

External Examiner:

N. Clarifushy

ACKNOWLEDGEMENT

I express my heartful gratitude and indebtedness to Dr. K.C.George, Professor and Head, Agricultural Statistics, Kerala Agricultural University and the Chairman of the Advisory Committee, for his constant encouragement, valuable guidance, patience and inspiring supervision not only during the research and preparation of my thesis but through out my entire M.Sc. programme.

I extend my sincere gratitude to Sri. K.L. Sunny,
Assistant Professor of Agricultural Statistics, Sri.Jacob
Thomas M. Assistant Professor of Agricultural Statistics,
for their guidance, assistance and critical supervision
rendered through out my research work and Dr. Sverup John,
Assistant Professor of Plant Breeding, for his consent
to utilize his research data for my M.Sc. programme.

I would like to thank the staff of Computer Centre, Kerala Agricultural University, for their tremendous effort and dedication they have shown for the timely completion of the analysis work of my thesis.

I express my sincere thanks to the staff and students of the Department of Statistics. College of Veterinary and Animal Sciences, for their valuable help and co-operation.

I would like to express my sincers thanks to the Associate Dean, College of Horticulture, Vellanikkara, for providing necessary facilities for the study. The eward of the fallowship by Kerala Agricultural University is duly acknowledged.

I am highly indebted to my parents for the unfailing support and encouragement they have shown during
the course of my two and half years of study.

I express my heartfelt gratitude and indebtedness to my husband Sri. T.J.Jose for his constant encouragement, interest, patience and support in brightening and broadening my horizons of professional knowledge and skill.

Thanks are also due to Sri.V.T.Kurian, for typing the manuscript neatly.

MINI C.J.

To My Loving Parents

CONTENTS

Title		Pade No.
Introduction	∳ ± ≠	<u>1</u> .
REVIEW OF LITERATURE		7
MATERIALS AND METHODS	* * *	38
RESULTS	***	64
DISCUSSION	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	137
SUMMARY	***	153
REFERENCES	• • •	i - vi
APPENDICES		Ž , 111

GLOSSARY OF SYMBOLS AND ABBREVIATIONS

```
: Correction Factor
CF
         : degrees of freedom
df
EMS
         . Error mean square
         : Eberhart and Russell
ER
         : Freeman and Perkins
F
         : Genotype-Environment
GE
         : Perkins and Jinks
PJ
         : Sum of squares
SS
S<sub>e</sub><sup>2</sup>
        : Error mean square pooled over environments
         : Performance of ith genotype (variety) in
Y<sub>1jk</sub>
          the kth replicate of the jth environment.
        : Mean performance of the ith genotype in
Yii
          the jth environment.
         error associated with the ith genotype in
•<sub>1j</sub>
          the jth environment.
           1 = 1,2,,,,,,,
          : number of genotypes
t
         : number of environments
         : mumber of replications
r
         : sum of Y over the suffix omitted
         : Sum of Y11 over the suffix omitted.
Y<sub>1</sub>
           Similar notations are followed for Y
          Y Y and Y
         : regression coafficient under ER model
\mathbf{b_{1}}
         : regression coefficient under 25 model
b<sub>1</sub>
         regression coefficient under FP model
```

: Environmental index under ER and RJ models

: Environmental index under FP model

: Second parameter for stability under ER and PJ models.

: Second parameter of stability under FP model.

: Deviation mean square for the i th genotype under ER and PJ models

: Deviation mean square for the ith genotype under FP model.

: Ecovalence ratio ofthe ith genotype

: Stability variance for the ith genotype

Introduction

INTRODUCTION

The phenotype of an individual is the result of an interplay between its genotype and the environment in which it develops. Furthermore, the effects of genotype and environment may not be independent. A specific difference of environment may have a greater effect on some genotypes than on others, or there may be a change in the ranking of genotypes when measured in diverse environments, etc. This interplay of genetic and non-genetic effects on the phenotype expression is called genotype-environment (GE) interaction. The failure of a genotype to give the same response in different environments is a definite indication of GE interaction.

The environment of an individual is made up of all the factors other than genotypes of the individual that affect its development. That is to say environment is the sum total of all non-genetic factors external to the organism. There can be two kinds of environments - micro and macro. Micro environment is the environment of a single organism as opposed to that of another growing at the same time and almost at the same place. Especially, micro environmental differences are those environmental fluctuations which occur even when individuals are apparently treated alike. On the other hand, environments that are potential

referred to collectively as macro environment. A macro environment can thus be considered as a collection of micro environments - that are potential therein. Different locations and climates and even different management practices are examples of macro environmental differences. It is to be noted that, the effect of micro environment of an organism as well as its interaction with different genotypes is usually very small. It is macro-environmental deviation and interactions with genotype that can be isolated and tested for its significance.

stability in performance is one of the most desirable properties of a genotype. Though the concept of stability has not yet been standardized and in fact, it means different things to different scientists and figures in different contexts, Plant Breeders were walways concerned with the stability of the cultivars bred by them and were naturally interested in measuring the same in a statistically valid manner. Pioneering work was done in this regard by Eberhart and Russell (1966). Broadly, the concept of stability of crop yields was looked from three angles (Mead et al.1986) viz., (i) variation over time and space, (ii) the interaction with environment and (iii) as the converse of risk associated with a particular crop/variety/

practice. As far as the plant breeders are concerned, they made three subtle differences in the concept of stability of a genotype (Lin et al. 1986) as follows:

- (i) A genotype is considered to be stable, if its among environment variance is small.
- (11) A genotype is considered to be stable, if its response to environments is parallel to the mean response of all genotypes in the trial.
- (111) A genotype is considered to be stable, if the residual mean square from the regression model on environmental index is small.

Measures of stability in plant breeding can be obtained from estimates of the genotype-environment interactions. Various methods have been proposed for statistical analysis of interaction in general and genotype-environment (GE) interaction in particular. Much work has been done on this subject both by the statisticians interested in non-additivity in general and by those including agronomists, breeders and geneticists who are particularly concerned with genotype-environment (GE) interaction.

Different methods of studying the stability through genotype-environment interaction are (i) Eberhart and Russells (1966) regression coefficient b_i and deviation from regression S_d^2 (ii) Wricke's (1966) ecovalence W_i

(iii) Perkins and Jink's (1968) deviation parameter \mathcal{L}_{ij} (iv) Freeman and Perkin's (1971) regression coefficient $\mathbf{b_i}'$ and deviation from regression $\mathbf{S_{di}^{i}}^2$ and (v) Shukla's (1972) stability variance $\mathbf{c_i}^2$.

Sesame (Sesamum indicum L.) is an important and ancient oil yielding species cultivated extensively in India, Burma, Indo China, China, Japan, the hotter and drier parts of Africa and the Mediteranean region. In the recent years, its cultivation has been receiving much attention in USA, Mexico and parts of Latin America. Sesame is grown for its seed and the oil it contains. The seed is high in oil content (50 to 60%) but low in protein (25%). It is rich in calcium, phosphorous and vitamin E and is highly mutritious.

In India, sesame is grown in an area of 2.4 million hectares producing only 0.5 million tonnes of seed every year. India stands next to China in sesame seed production with 24.6 per cent of the world's total production. It is grown in the central states both as kharif and rabi crop. Sesame is the most valued annual oil seed crop of Kerala grown in an area of 14153 hectares with an annual seed production of 3648 tonnes per year (Sverup 1985). It is cultivated in wetlands during summer (January to April) and in uplands, during rabi (August-December).

Lack of high yielding varieties suited to the different soil types and sesons is the main factor limiting the production of sesame in this state. Kayamkulam I and Kayamkulam II are the two improved varieties already released for cultivation.

Genotype-environment (GE) interaction will be always having a definite influence on the seed production of any crop especially in the case of sesame. Even though the varieties Kayamkulam-I and Kayamkulam-II were released, it may or may not suit all localities and all sessons. Hence it is highly essential to find out varieties ouitable to all regions by taking into consideration the GE interaction.

The present study has been conducted to choose a consistent variety for all the regions and all seasons in the light of genotype-environment interaction with the following objectives.

- (1) to evaluate the existing techniques available for studying GE interaction in sesome.
- (ii) to develop new concepts and methods to solve some problems peculiar to crop sesame like non-linearity of interactions, non-orthogonality of data and different patterns of genotype-environment (GE) interactions that are encountered while studying the stability of varieties simultaneously for several traits.

The techniques of genetype-environment interaction can be studied through different methods. With this in view, the stability performance of twenty varieties of sesame were assessed based on six useful characters - seed yield/plot, number of days for flowering, 1909 seed weight, oil content percentage, seed yield/plant and number of days to maturity individually and combinedly were investigated. Over and above the already available five techniques - Eberhart and Russell, Perkins and Jinks, Froemen and Perkins, Wricke's ecovalence method and Shukla's stability variance method for the individual characters, the multivariate procedures - selection index method and principal component method were also used to have complete idea of GE interactions by taking into considerations all the characters simultaneously.

Out of the existing five techniques, wricke's ecovalence method and Shukla's method relate to non-linearity
of interaction. Selection index method and principal
component method are based on multivariate technique considering simultaneously several traits.

Review of literature

REVIEW OF LITERATURE

The genotype-environment (GE) interaction has been widely observed to play an important role in the expression of phenotype. In the last one and a half decades a considerable amount of work has been done to analyse and interpret GE interaction. Complications arising from differential response of genotypes due to different environments have been considered in detail by many workers.

responses of different potato varieties, concluded that the yields of different varieties under different manufal treatment are better fitted by a product formula than by a sum formula.

Yates and Cochran (1938) has given a method of partitioning the interaction sum of squares. They regressed the genotype means on the environmental means, calculated by taking the average of all genotypes in that environment and partitioned GE interactions into two components. In their works, the degree of association between varietial differences and general fertility can be further investigated by calculating the regression of yields of the separate varieties on the mean yields of all varieties.

Sprague and Federer (1951) used variance components approach to show how variance components could be used to separate the effects of genotype, environments and their interactions by equating the observed mean squares in the analysis of variance to their expectations in the random model. The estimates of error, year x variety, location x variety and variety variance components were obtained from a series of top cross, single cross and double crosses of varietial yield comparisons grown in Iowa during the period 1940-1947. The result obtained, suggested that the optimum distribution of a given number of plots, disregarding costs would be one replicate per location with an increase in number of locations and years.

Williams (1952) considered an equivalent model of the linear regression approach. He showed that least squares estimation of the regression coefficients was equivalent to extracting the first principal component of the genotypic performances. The validity of the model can then be assessed by extracting further principal components, or by inspection of the residual correlation matrix after extracting the first component.

Plaisted and Peterson (1959) computed an analysis of variance for every pair of genotypes so as to estimate the interaction variance for every combination of two

genotypes. The mean of the interaction variances obtained for each genotype was used as an indicator of the contribution of that genotype to the total GE interaction. The variety with the smallest mean value was considered as the most stable. The major drawback of this procedure is that computation becomes tedious with increase in the number of varieties.

variety-location-year second order interaction, for lint yield in cotton was observed in their tests, indicating that the varieties showed differential responses when grown under different environments. The variety-year and variety-location first order interaction however were small and non-significant for yield. Apparently neither location nor years had any consistent effect on these differential varietal responses. Furthermore, the lack of a sizeable variety-location interaction in the North Carolina area suggested that it would not be necessary to divide the state into sub areas for variety evaluation purposes. They found that most of the three interaction sources of variances were statistically significant for lint percentage, boll size, and fiber length. In all cases, the magnitudes of

these interactions were very small as compared with the varietal sources of variations and are thus of less concern to the breader.

Comstock and Moll (1963) have classified the environment into two categories - one is micro environment and the other macro environment. Micro environment is the environment of a single organism, as opposed to that of another growing at the same time and in almost the same place. Macro environment is the environment which is associated with a general location and period of time and is a collection of micro environments.

approach to the interpretation of varietal adaptation to varying environments. It led to the discovery that the components of a genotype and the environmental interactions were linearly related to environmental effects, when these effects were measured on the same scale as the genotypic effects. The technique involves the growing of a large number of genotypes in a number of environments. The mean yield of all the genotypes for each site and season gave a quantitative grading of the environments. Then the linear regression of the mean values for each genotype on the mean values for environments is estimated. From the analysis,

the varieties specifically adapted to good or poor environments and those showing general adaptability could be identified. An ideal variety with general adaptability was defined as the one with the maximum yield potential under the most favourable environment and with the minimum phenotypic stability.

Allard and Bradshaw (1964) coined the terms predictable environment and unpredictable environment. The predictable environment includes the permanent features of the environment, such as general features of the climate. soil type, day length and controllable factors such as planting date, sowing density and other agronomic practices. The unpredictable or the uncontrollable environments include weather fluctuations, such as differences between seasons in terms of the amount and distribution of rainfall and the prevailing temperatures and other factors such as established density of the crop. For the uncontrollable variables, a low level of interation would be desirable so as to have the maximum uniformity of performance over a number of seasons. In contrast, for the controllable variables a high level of interaction will be desirable to produce the maximum increase in performance. But the distinction between these two categories is not always clear cut, and characteristics included will vary from crop to crop

Euclo Ananis (1966) developed a mathematical model to measure GE interaction when only two homozygous parents were grown under a large number of environments. Biometrical genetical analysis of genotype-environment interactions were presented, this exploited the empirical findings, that the interactions were a linear function of the additive environmental effects in the generations derived from an initial cross.

Eberhart and Russell (1966) improved the joint regression analysis suggested by Finley and Wilkinson (1963) by adding one more stability parameter, namely the deviation from regression. They developed a regression model such that there exist a linear relationship between phenotype and environment when the latter is measured by its effect on the character under study. They defined a stable variety as one with the regression coefficient $\hat{b}=1$ and the deviation from regression as small as possible ($G_{di}^{-2}=0$). The estimates of the squared deviation from regression for many hybrids were near zero, whereas, extremely large estimates were obtained for other hybrids, thus indicating the utility of the parameter in characterizing varieties for their stability.

Wricke (1966) developed a method to estimate the ecological valence or ecovalence (W₁) of genotypes (g) grown under several environments (n) to measure the stability of performance. He suggested the ecovalence ratio as the percentage contribution of a genotype to the sum of squares due to GE interaction ie, ecovalence for 1th genotype is

$$W_1 = \int_{-1}^{n} (Y_{1j} - Y_{1} - Y_{1} - Y_{1} + Y_{2})^2$$

expressed as percentage of the total of all W₁'s. The lower the ecovalence of a variety, the smaller its fluctuations from the experimental mean under different environments and thus a smaller share in the interaction sum of square. Accordingly, the variety with the least ecovalence can be considered as more stable and the varieties with a high ecovalence less stable.

Perkins and Jinks (1968 a) have proposed that where a number of genotypes have been tested in several environments, the yield of a genotype should be regressed on the mean yield of all genotypes in each environment. According to them two aspects of the phenotype must be considered jointly in deciding which is the best genotype namely the genetic component of performance d_i and the sensitivity

to the environmental variation measured by β_1 . A higher d_1 value is in general accompanied by a greater sensitivity to the environment. The magnitude of an individual regression coefficient can be interpreted as a measure of the stability of a genotype, a low value indicating stability and a high value instability.

Perkins and Jinks (1966 b) investigated the nature of the non-linear component of variation. In every set of data he examined, an overall reduction in the non-linear portion of variation due to GE interaction has resulted from placing the lines into groups such that members of the same group are positively correlated for their deviations (ϕ_{ij}) from their regressions. In general the linear and non-linear component of the GE interaction and the within-environmental variation not only differ among genetypes, but they do so independently. According to them the three characteristics of the phenotype are the additive genetic component \mathbf{d}_i , the linear β_{ij} and non-linear portions of the interaction between the genetype and the environment.

Baker (1969) estimates the magnitudes of the various GE interaction of regression methods as applied to the study of the nature of GE interactions. Sharhart and

Russel (1966) proposed that the criteria for stability should be a regression coefficient of unity and a minimum deviation from the regression line. A cultivar with high mean yield and fulfilling these two criteria could perform well in all environments. He proposed that stability of a cultivar is inversely proportional to the sum of squares for genotype-environment interaction. The result of his paper show that the higher ratio most probably explained by the large component of variance for genotype-place interaction. It also suggests that cultivars should be developed for regional adaptability rather than general adaptability.

According to Breese (1969) the performances of individual genotypes are linear functions of the environmental
values. The linear regression of individual genotypic
values on the mean value of all genotypes for each of a
number of environments provide measures of response which
can be used to predict relative performance over a range
of environmental conditions. The essence of the method is
that appropriate biological material can be used to quantify
environments and so provide a basis for measuring genotypic
response to changing conditions. The measure of the environment has been provided by the mean values of the set of

genotypes under test, and the response of each individual genotype then determined by the regression of its individual values on these means for a range of environments. The regression provided a means of accurately predicting relative performance over a wide range of environments and could also be used to simplify varying relationships between parents and offsprings under changing conditions.

Henson (1970) has defined the stability of a genotype with reference to its position in a space of 1 environments (when tried in 1 variable environments) where a stable genotype would be located at the centre of the space $(Z_1 = 0)$ and unstable genotype would be located in the periphery of the space. The distance of a genotype from $Z_1 = 0$ measures its stability. He has defined a stable genotype as one which has the minimum possible variability when grown in the 1 (variable) environments. This genotype must have minimum (most negative) B_1 expected for the improved genotypes represented in the test and have no contribution to the GE interaction.

Farking and Jinks (1970) defined the assumptions that must be satisfied for making predictions over environments and over generations when GE interactions are present. In their paper, predictions have been made for the

character plant height, of the expected means of 21 generations derived from a cross between inbred varieties when grown in two environments from estimates of parameters obtained from the inbred varieties and their F₁ grown in 16 environments. The predictions were satisfactory for one of the environments which was of the same kind as the previous 16 environments but not for the other environments, which introduced new environmental factors.

Freeman and Perkins (1971) developed an approach in which the mean value of the phenotype is regressed to an independent measure of the environment. They critized the improper choice of sum of squares and degrees of freedom and also of measure of environment and the partitioning of the CS sum of squares into parts attributable to individual genotypes. They listed and discussed a number of ways in which independent environmental values might be obtained and describe a biometerical-genetical model and a regression analysis. They suggest the use of parental genotypes to assess the environments in studies involving either crosses between inbred lines derived from such crosses.

According to Fripp and Caten (1971), most of the deviations over environments can be accounted for, by its linear regression on the environmental values. GB interactions have been analysed using the regression approach of Freemangand Perkins. He found that a significant part of the GE variation is accounted by differences in linear sensitivity.

Mandel (1971) considered the principal components approach further, using a multiplicative model. This method indicated the number of dimensions necessary to contain the genotypic variation and gave estimates of the corresponding coefficients, without, any prior knowledge of which factors these dimensions represented. When the deviations from regression on the environmental mean are substantial but no environmental variables have been measured, Mandel's method is particularly valuable.

Perkins and Jinks (1971) gave a satisfactory and a simple method of quantifying the interaction and evidence of its genetical control to design an appropriate breeding programme to select for any desired level of interaction. They observed that GE interaction can also result due to environment specific genes, as distinct from general genes causing differential changes in all circumstances. The

reactions of genotypes to environments were specific to the Cheracter under study and GE interaction would differ for different kinds of environmental variables. Most of the GE interaction between the environments within each set can be accounted for by linear regression on the additive environmental values. They also found that the relative sensitivity of the genotypes to environmental variation are consistent over the micro, macro and super macro environmental levels. The overall result suggests that different characters are independent in their reaction to the environment.

GE interactions to overcome the limitations of joint regression analysis of regressing one set of variables into another, which is not independent of them. He presented a method of genotypic stability where a GE interaction of a particular variety is partitioned into two components, the linear response to environmental effects (4) and a deviation from the linear response (λ) when g genotypes are tested over an environments with r replications under each environment. A perfectly stable variety will be characterized by $\hat{\lambda} = -1$ and $\hat{\lambda} = 1$. The perfectly stable varieties may not exist and the breeders may be satisfied with varieties having $\hat{\lambda} = 0$ and $\hat{\lambda} = 1$.

measures for the regression approach and made an assessment of the environments with non-independent environment values and concluded that the amount of bias introduced by the use of non-independent values is very small. The linearity of regression reduces with increase in distance of the environmental measures from the genetypes under study. He found that a single assessment genetype could very satisfactorily be used as the environmental measure. The results show that the interpretation is largely independent of the method of assessing the onvironment and might at first seem to indicate that the choice of the assessment genotype is of minor importance in designing an experiment.

Hardwick and Wood (1972) showed that the bias in the estimate of regression coefficient of genotypes on environmental mean reduces with increase in the number of genotypes and the ratio of variation between environment to the error mean square. They considered an alternative method of analysis, using multiple regression of performance, on the levels of the environmental variables. They also showed that the slopes of the regression on the environmental mean can be expressed in terms of the coefficients of regression on environmental variables. The

deviation from regression are not independent of the slopes, but can be expressed in terms of some coefficients, They recommended physical measures of the environmental assessment and formulated the regression model to understand the physiological causes of the observed regression.

Perkins (1972) used the principal component analysis of the environmental, and genotype environmental interaction components of variation. Ferkins carried out the principal component analysis of the sum of squares and sum of products matrix of the genotypes over environments and found that the score of each genotype in the first principal component was directly related to the regression coefficient of the genotype on the non-independent environmental measure. He considered the problem of finding functions of the environmental variables which would beat explain the interaction and calculated principal components of weather variables and then used functions of the first few components as predictors. He found that principal component analysis were more informative than the joint regression analysis in his study, where he observed more than one principal component for the interaction.

Shukla (1972) considered the usual regression approach of explaining genotype-environment interaction by using

non-additive model and the statistical validity. He suggested a method of directly partitioning GE interaction into individual components, one for each of the genotype from which he drived the 'stability variance' of genotype. He calls a genotype stable, if its stability variance σ_1^2 is equal to within environmental variance (σ_2^2) which means that $\sigma_1^2 = 0$. Relatively large values of σ_1^2 will indicate more stability of genotypes, on the basis of the linear regression coefficients also, may not be very effective when only a small fraction of sum of squares of GE interaction is accounted for by regression. He also discussed the relationship of his method to the regression approach.

studying GE interaction and suggested the use of multivariate techniques, like the principal component analysis,
the cluster analysis and the factor analysis, which may
yield answer to complex situations which cannot adequately
be explained on the basis of the simple regression
analysis. According to him, a high proportion of the
sum of squares of the GE interaction should be explained
by the linear regression. He also suggested that when the

inferences are drawn only about the sample of the genotypes and environments used, the procedure of using means of genotypes to assess the environments is perfectly valid.

tionship between the performance of the genotype and environment. They used joint regression enalysis to data recorded in a series of yield trials in carsots and found that the difference between two major groups was non-significant. They observed that principal component analysis could identify the genotypes as well as the environments which gave significant contribution to the interaction, after the joint regression analysis had been only partially successful in explaining OR interactions. As a result, they were able to demonstrate the importance of site x year and density effects upon the yield differences between the varietal groups.

Freeman (1975) suggested the use of 'fitting constants' to estimate the parameters and O of varieties and environments and used these estimate to fill up the gaps in the incomplete table and conducted regression analysis on the completed table. According to Hill (1975), by the use of multivariate techniques, sometime biological relevance is
sacrificed for statistical pedantry. In his paper, it
made
is clear that before using the regression technique to
predict performance, careful consideration must be given
to the choice of environments used for the assessment
phase. The linear regression technique can be used to
predict the performance, either of genotypes in the environments other than those sampled experimentally or of
segregating generations from the non-segregating generations from which they were derived.

According to Fernando Oroxco (1976) the degree of adaptation to adverse environments was mainly determined by the magnitude of the genetic correlation between performances in the adverse and the optimum environments. The evolution of such correlations through selection has been investigated. Considering the genetic correlations between performances in optimum and in adverse environments in the base population, he concluded that, the smaller these correlations, larger would be the interaction effects. He expressed these GE interaction effects in a simple and logical way and they are even predictable as a function of the magnitude of the genetic correlation. According

to his view point, the possibility of a high edaptation or even a true specialisation of the line to the new environment depends not only on a very low genetic correlation but also on a high heritability in that environment and on the number of generations of selection allowed to express that adeptation.

Wood (1976) extended the method proposed by Hardwick and Wood (1972) for relating GS interaction to measure of environmental variables where more than one function is necessary to explain the interaction. In his analysis, the problem is to find functions of the environmental variables which can be used to explain the variance in performance of the genotypes from environment to environment. His analysis is much more economical in terms of the number of parameters used. He made a comparison between his present paper and the principal component analysis by Perkins (1972).

Varma et al. (1978) proposed a modification of the conventional regression technique in the form of fitting two straight lines for the poor and favourable environments to account for the non-linearity around single best fitting regression line in all environments. The

availability of genotypes with different levels of mean performance and environmental sensitivity suggests that sensitivity has not only a separate genetic control but that in fact there may be two distinct sets of genesystems controlling sensitivity in contracting environments in addition to some common genes. According to him, the theoretically ideal genotype has been defined as one with relatively low sensitivity in the poor environments and a high sensitivity in the favourable environments. The computation of separate regression coefficients on the two regions of the response curve has been suggested to detect such genotypes.

Digby (1979) developed a modified regression analysis where in he improved the technique, by introducing the sensitivity parameter β_1 (=1-b₁) for the ith variety. He presents an iterative analysis of incomplete variety—environment tables. The analysis estimates potential differences in the sensitivity of varieties to the environment effect. His technique allows unequal weighing of data and discussed the complete table as a special case. When the data are incomplete, the technique is to first fit the additive model using fitting constants and obtain estimates for β_1 's.

Freeman and Crisp (1979) proposed that when genotypes are grown in a range of environments several variables are often recorded on the same genotype. Regressing one character on another may, not only give useful information about the relation between them but also help to explain GE interaction observed in the character of primary interest. The conclusion drawn from this technique may be of practical plant breeding importance and also illustrates how the method may be used to assist the interpretation of GE interaction.

Nor and Cady (1979) developed a quantitative measure of wide adaptability, the beta response model from a multivariate regression approach for providing an alternate environmental index based on linear function of three weather variables (rain fall, temperature, growing degree days). The functional relationship assumed in the beta response concept between the i^{th} cultivar and j^{th} environment is a linear relationship. Any cultivar within the population whose beta response coefficient β_1 is equal to the average beta response coefficient β is considered widely adaptable.

Finney (1980) obtained the estimates of varietal and site effects by minimising the weighted sum of

squares of deviations of observations from the expectation with weights proportional to the number of observations on which the means of these effects are based.
His paper presents illustrations of circumstances in
which either least squares or some analogous process is
essential to the fair interpretation of data. He is
intended to illustrate the need for least square procedure
in the analysis of unbalanced sets of data.

Timothy et al. (1980) observed non-linearity of response for some fruit characters like fruit weight and soluble solids through the response of yield for these cultivers was mostly linear.

According to Suresh Babu (1981), a breeding programme sized at developing phenotypically stable varieties, requires information on the extent of GS interaction for yield and more particularly the interactions between component characters of yield and environment. He gave two approaches to analyse the data in his work. One approach is to identify developmental sequences which can counteract the fluctuations in environmental conditions. The other approach is genetical, where buffering

capacity is created through genetic mixtures or through gene pools from contrasting environments as a mean to reduce GE interaction. He showed that the second approach is more tenable in bhindi. He found that the effects of the environments and genotypes were not linear for the characters under study. He tried to classify genotypes under study for their adaptability to low, medium and high yielding environments.

sion model by subdividing the many available environments into three subsets on the basis of the confidence limits of the general mean to analyse the response of grain yield of Durum wheat varieties. When the regression change gradually a quadratic curve may be more appropriate to explain the varietal response over environments.

Shukla (1983) showed that emprical regression based mean of genotypes as environmental effects holds only if the varieties differ in one dimension. He proved theoritically that the regression coefficient is estimated as a relative measure - relative to the other genetypes in trial. He suggested that the bias in the estimates of regression coefficients would be reduced with large number of genetypes and environments. He also considered

multiple regression on a number of environmental variables.

According to Geetha (1984) the primary components of seed yield in sesame are number of capsules per plant. number of seeds per capsule and weight of 1000 seeds. It was found from her studies that the character seed yield, is highly influenced by its components and that have to be considered in selection programmes for improving yield.

of genotypes such that interaction of genotypes with environments is insignificant within any group, but significant between any two groups. The genotypes so included in a group will have same sensitivity to differing environments and thus can be said to be relatively stable. She discussed the ranking of genotypes by different stability parameters. According to her view point, Wricke's ecovalence ratios Wis and Shukla's stability variances of a can be used as a seasure of stability in almost all situations. The regression coefficient can be used as a measure of relative sensitivity of a genotype to the environment, only if it accounts for all or most of the GE interactions. She found that

the grouping technique can be used effectively to verify the comparative efficiency of the various stability parameters as well as to identify genetypes of same stability.

Narain and Bhatia (1984) discussed various methods proposed for the statistical analysis of interaction in general and GE interaction in particular. The simple methods including the use of variance components as well as regression and other similar methods have been considered. The usual regression approach of explaining GE interaction is studied by using a non-additive model. The statistical validity of this analysis has also been discussed. The use of external variables to assess the environment as well as the basic concepts of stability are further mentioned.

John Sverup (1985) estimate the stability parameters of selected sesame genotypes in different agro-climatic conditions of Kerala. Considering the stability parameters, he concluded that the varieties IS.284 and C.8 had high mean and average responsiveness and stability for yield of seeds. According to him, number of branches number of seeds per capsule and weight of 1000 seeds were found to be stable over different environments.

Lin <u>et al</u>. (1985) defined the following three types of concepts of stability.

Type I : A genotype is considered to be stable, if its environmental variance is small.

Type II : A genotype is considered to be stable, if its response to environments is parallel to the mean response of all genotypes.

Type III : A genotype is considered to be stable, if its residual mean square from the regression model on the environmental index is small.

Type I stability has four possibilities. They are varieties with (i) high yield, small variation (ii) high yield, large variation (iii) low yield, small variation and (iv) low yield, large variation. According to him, the first category of hybrids are more desirable which gives high and consistant performance among genotypes.

Balakrishnan (1986) made a critical appraisal of the existing methods for the analysis of GB interactions and in addition, gave different approaches for studying the stability and adaptability of genotypes. According

to him, the existing approaches for the analysis of nonlinear GS interactions like two-phase and multi-phase regressions were found inadequate to describe the response pattern of different varieties in vegetable crops. He fitted four new regression models, viz. linear, quadratic. exponential linear and exponential quadratic to study their suitability in explaining non-linear GE interactions observed in the vegetable crops. He compared the two phase least squares and FITCON analysis for the estimation of varietal means for non-orthogonal (unbalanced) data with the modified joint regression analysis and found that, FITCON analysis can be used with equal advantage in comparison with the more difficult procedure of modified regression analysis unless the sensitivities of varieties differ significantly or the non-orthogonality, as measured by the number of missing values, is large.

Brain Westcott (1986) attempts an examination of some of new techniques of analysing GE interaction. He offers a criticism of some established mathods, while pointing out others which have been neglected. Firstly he discussed the methods of linear regression and related stability parameters. According to him, the linear regression approach to analysing GE interaction cannot be

regarded as trustworthy. He discussed the method of cluster analysis and principal component analysis. In principal component analysis he found that, the chief difficulty is in the interpretation of the resulting principal components, which may not bear any obvious relationship to environmental conditions. He also considered geometerical methods and stochastic dominance methods to analyse the GE interaction.

According to Bhatia and Narain (1988) there are situations where the usual measures of stability cannot be as such applied because of various reasons like size, physical conduct of the experiment, large number of varieties under test etc. In these cases the stability aspects has to be looked into through different angles and they attempted to study these aspects of varietal adaptation in the presence of GE interaction. They discussed the methods of reducing the effective number of varieties to be tested, grouping the similar lines and mothods of stability analysis for the case of missing observation and unequal weightage of data. They suggested a modified joint regression analysis for the incomplete GE tables, which will be suitable to both situations for missing observations and data sets with unequal experimental error.

Goswami <u>et el</u>.(1989) made an attempt to detect the presence of long term cycle in the production and prices of commercial crops (cotton and sugarcane) by method of harmonic analysis. They employed harmonic analysis using trignometric functions to uncover inherent periodicity of a series. They used ordinary least squares procedure to estimate the unknown parameters.

Rai and Shanti Sarup (1988) discussed the case of binary responses in pre-post treatment situations and a simple measure of stability. They worked out the sampling distribution of the measure of stability s. and presented a test for testing whether the treatment is stable. They observed the range of stability coefficient s is from -1 to +1 and concluded that s= -1 indicates perfect instability and s = 1 implies perfect stability. They presented a procedure for testing the significance of change in binary responses.

Ramanatha Chetty (1988) looked into the concept of stability of crop yields from three angles.

- (1) variation over time and space
- (11) the interaction with environment and
- (iii) as the converse of risk associated with a particular crop/variety/practice.

He made three subtle differences in the concept of stability of a genotype as, a genotype is considered to be stable if

- (i) its variability among environment Variance is small
- (11) its response to environments is parallel to the mean
- (iii) the residuel MS from the regression model on environmental index is small.

According to him, variation in yields due to crop/ variety/practice can be measured by standard deviation or logarithm of standard deviation and he proposed coefficient of variation as a measure of stability.

According to Rao and Shukla (1988), one of the criteria to assess the phenotypic superiority of a crop variety is through its stability in performance. The methods generally followed to measure it are mostly based on variance concept or regression against environmental indices. They considered the alternate risk based on decision, which may alter the relative ranking of a variety at a given or different risks. Since risk analysis

mainly rests on the existence of variability of both temporal and spatial, they found that the yield variability of a variety is appropriate to estimate through a response function by incorporating the independent variables influenced by the above type of variation.

Subrahmanyam (1988) re-examined all the nine statistics employed by Lin et al. (1985). These nine stability statistics are derived from the components of a two-way classification of data and grouped them into three major types. He grouped the stability statistics as A, B, C, D. He concluded that the concept of stability and the kind of environments chosen for the experiment must be clear before taking the experiment, otherwise it will be misleading. He found that if the regression model fits the data. Group C stability statistics is the best and when data do not fit or the residual mean square from regression are heterogeneous, Wricke's ecovalence ratio W₁² and Shukle's stability variance covalence ratio be used.

Materials and Methods

MATERIALS AND METHODS

3.1. Materials

A secondary data on the following characters

- 1. Height
- 2. Number of branches
- 3. Number of capsule per plant
- 4. Length of capsule
- 5. Circumference of capsule
- 6. Number of seeds per capsule
- 7. Number of days for flowering
- 8. Number of days to maturity
- 9. 1000 seed weight
- 10. 011 content percentage
- 11. Seed yield per plant (gm)
- 12. Seed yield per plot (gm)

of a multilocational trial on twenty sesame varieties conducted by department of Plant Breeding, College of Agriculture, Vellayani at three different locations at Vellayani, Kayamkulam and Pattambi during 1982-83 has been utilized for this study. The experiment was laid in RBD with three replications at each location. The twenty varieties were K.1, K.2, IS.284, C.47, S.1, S.8, 42.1, 38-1, Pt.58-35-1, Rt.(1)37, Si.1, Si.902, Si.914, Si.953, Si.1036, Si.1275, T-12, Tc.25, Vayalathur and Vinayak, The data is as given in Appendix ...

3.2. Methods

3.2.1. Analysis of variance was performed in each of the location for each character separately.

Table 3.2.1.1. Analysis of variance for individual RBD

Source	đ£	5 9	145	F
Varieties	(t=1)	$5\frac{T_1^2}{4}$ - C.F.	s. 2	*t ² /* ²
Locations	S-1	2 C.F.		
Error	(t-1) (s		s ²	
Total	ts-1			

Homogeneity of error variances in different environments was tested using Bartlett's test.

Let there be n mean squares, s_1^2 , s_2^2 ... s_n^2 based respectively on k_1 , k_2 , ... k_n degrees of freedom. From these values a pooled estimate of variance \tilde{s}^2 is calculated by the formula

$$\frac{1}{12} = \frac{1}{12} \left(\frac{n}{2} k_r \right) \log_{10} s^2 - \frac{n}{2} k_r \log_{10} s_r^2$$

$$c = 1 + \frac{1}{3(n-1)} \left(\frac{n}{2} \frac{1}{k_r} - \frac{1}{2} \frac{1}{k_r} \right)$$

 $\gamma^2 = \gamma^2$ with (n-1) degrees of freedom. If the value is significant, the variances are significantly heterogeneous. With the heterogeneous error variance, the procedure to be followed for the test of treatment differences depends on the presence or absence of the treatment x location interaction. The next step to be followed therefore consists of making a test of significance for the interaction. This is made by the method of the weighted analysis of If the interaction is present, we carry out a variance. simple analysis of variance and compare the treatment mean square with the interaction mean square for the significance of treatment differences. This procedure is known as unweighted analysis of variance. When the interaction is absent, the method of weighted analysis of variance itself is available for testing the treatment differences.

When heterogeneity of interaction is suspected, the significance of any component of the interaction which is of interest, can be tested by considering only that part of the table which is concerned with the particular component. If such interaction comes out to be significant, the significance of the relevant treatment differences can be tested by comparing the treatment and interaction mean squares obtained from an unweighted analysis.

Table 3.2.1.2. Unweighted analysis of variance of pooled data.

Source	d £	SS	MS water and supplied to
lot al	st-1	t s Y _{1j} - 1	erre de la company
Genotypes (G)	t-1	± Y ₁ 2	I. P.
Environments	(E) s-1	5 Y.12	· ·
E interaction	n =(t-1) (s-1)	by subtraction	MS ₁
	s(t-1)(r-1)		se ² .

Significance of GE interaction was tested using the F ratio

Table 3.2.1.3. Weighted analysis of variance of the pooled data.

the sate and the sate who sate are take the sate and the sate and the sate that the	· · · · · · · · · · · · · · · · · · ·
Source	SS
	THE REPORT AND AND THE WAY THE
Total	E W _j s _j - c
Environments	$\frac{1}{t} \sum_{j=1}^{8} w_j p_j^2 - c$
Genotypes	t (s W Y _{1j}) ²
	S W _j
GE interaction	Total ss - Env.ss - Gene.ss

The terms in the analysis of variance were obtained as follows:

 $W_j = \frac{r}{s_j}$, where s_j^2 is the error mean square in the jth environment and r is the number of peplications in each environment

$$S_j = \text{crude } / \text{ss for the } j^{\text{th}}$$
 environment

 $P_j = \text{total for the } j^{\text{th}}$ environment

 $C = \frac{G^2}{t}$
 $S_j = C \text{ rude } / \text{ss for the } j^{\text{th}}$ environment

significance of GE interaction was tested using the to

$$\chi^2 = \frac{(n-1)(n-2)}{n(n+t-3)}$$
 I with

$$d.f. = \frac{(s-1)(t-1)(n-4)}{(n+t-3)}$$

where.

n = the number of d.f. on which the error mean
square is based in each environment.

I = Interaction sum of squares.

Once the GE interaction was found to be significant,
stability of each genotype was assessed from the mean
performance over the different environments by the different methods as follows:

3.2.2. Eberhart and Russell's model (ER model)

Eberhart and Russell (1966) considered a model by assuming that there are t varieties whose performance had been tested in as environments (locations). Considering Y_{ij} as the mean observation of ith variety in jth environment. Eberhart and Russell used the following model to study the stability of varieties under different environments.

$$Y_{ij} = \sum_{i} + b_{i} I_{j} + c_{ij}$$
(1 = 1, 2 ... t and j = 1, 2 ... s)

where,

Y₁ = Mean of ith variety in jth environment

= Mean of ith variety over all environments

b_i = regression coefficient of the ith variety on
the environmental index which measures the
response of this variety to varying environments.

I_j = The environmental index which is defined as the deviation of the mean of all varieties at a given location from the everall mean.

with $\mathcal{E}_{\mathbf{I}_{\mathbf{J}}} = 0$

and d_{ij} = The *deviation from regression of the ith variety at jth environment.

Two parameters of stability are calculated.

a) The regression coefficient which is the regression of the performance of each variety under different environments on the environmental means over all genotypes. This is estimated as follows:

where.

 j^{Y}_{1j} is the sum of products I_{j}^{2} is the sum of squares.

b) Mean square deviations (S_{di}) from linear regression.

$$s_{di}^{2} = \frac{s}{s_{di}^{2}} \frac{\sqrt{1j^{2}}}{s-2} - \frac{s}{s_{di}^{2}}$$

where,

$$\sum_{j=1}^{2} \int_{1_{j}}^{2} = \left(\sum_{j=1_{j}}^{2} I_{j}^{2} - \sum_{j=1_{j}}^{2} I_{j}^{2}\right)^{2}$$

se2 = the estimate of pooled error.

The detailed analysis of variance under \mathbb{R}_{R}^{n} model is given as below.

Table 3.2.2.1. Analysis of variance under ER model

Source	₫ £	83	MS
Total	st-1	t * Y 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· C.F.
Varieties	• • t-1 • • •	1 t y 2	C.F. MS
Environments+ Varieties x (s-: Environments	(s-1)+ l) (t-1)= t(s-1)	t s Y _{1j} .	£ Y 2
Environment (linear)	1	1 (E Y , J I ,) 2 E I , 2 E I	
Variety x Environ- ment (linear)	(t-1) :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MS ₂ - SS due to environments (linear)

Source	đ£	59	MS
Pooled deviation	t(s-2)	t & 2 (1) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MS ₃
Variety 1	(s~2)	£ 011	na ana ina min'ny kaominina dia mana na
•	• .	•	
•	•	*	
*	•	•	
•	•	. 2	
Variety t	(s=2)	\$ 0 tj j=1	
Pooled error s	(t-1)(r-1)	₩ . **	s, 2

The following P tests were made use of

2.
$$F = \frac{MS_2}{MS_3}$$
, to test the qequality of regression coefficients.

3.
$$P = \sum_{j=1}^{6} \frac{\hat{j}^2}{s^2/r}$$
 to test the individual deviation from regression.

A variety with unit regression coefficient (b1 = 1) and s_{di}^2 not significantly different from zero ($s_{di}^2 = 0$) could be considered as stable.

To test whether the regression coefficients of individual varieties differed significantly from unity, the following t test was applied,

$$t = \frac{b_{i-1}}{SE(b)}$$

where,

3.2.3. Perkins and Jinks model (FJ model)

From stability point of view, the variance due to GE interaction being the most important, Perkins and Jinks (1968) proposed that a regression of GE interaction on environmental index should be obtained rather than regression of mean performance (Y_{1j}) on the latter as done in the Eberhart and Russell's model. For describing Y_{1j} the mean performance of the ith variety in jth location, they proposed following model:

to analyse GE interaction

where,

 $/\sim$ = grand mean of all genotypes overall environments.

d₁ = additive genetic effect of the ith genotype

2 additive environmental effect of jth environment

g_{ij} = GE interaction effect of the ith genotype at the jth environment.

e_{ij} = error associated with ith genotype in the jth environment.

The effects are estimated as follows:

Wil was further defined as

$$x_{ij} = \beta_i z_j + \delta_{ij}$$
 so that the model becomes $x_{ij} = \beta_i z_j + \delta_{ij} + \delta_{ij} + \delta_{ij} + \delta_{ij}$ where,

 β_1 = linear regression coefficient for the 1th genotype.

Jij * deviation from the regression line for the

In this approach also the same two parameters, regression coefficient and the deviation from regression, are used as the parameters of stability. In comparison to Eberhart and Russell's model, the regression coefficient in this model is different in the sense that Perkins and Jinks proposed to calculate the regression of GE interaction value on the environmental index. In terms of this model, the earlier model of Eberhart and Russell is thus regression of $(\mathcal{E}_j + g_{ij})$ on \mathcal{E}_j . The regression of \mathcal{E}_j on

 ξ_j being one, and regression of g_{1j} on ξ_j being β_1 , the b_1 value of Eberhart and Russell model is thus:

$$b_1 = 1 + \beta_1$$
or $\beta_1 = b_1 - 1$

The regression coefficient under this model is nothing but that in ER model reduced by unity. $s_{\rm di}^2$ remains exactly same as that of ER model.

The analysis of variance under this model, adopting earlier notations is given as below:

Table 3.2.3.1. Analysis of variance under PJ model.

Source	đf	SS	MS
Genotypes	(t-1)	£ Y1.2 - Y.2	न केंग्य कान उन्हें कोंग्र वर्षात कार कुळ वर्षके व्यक्ति
Environments (Joint regression)	(c=1)	£ Y., 2 - Y., 2 j=1 t st	·
Genotype x Environment intoraction (GXE)	(t-1) (s-1)	E EXI	Y 2 -
Heterogeneity emong	•	ξ Υ. ³ + Υ	2 =
regression	_		st
	- 3	S due to environ	ments

Source	đf	SS MS
Remainder	(t-1) (s-2)	(GxE) 5S-SS due to heterogenity
Error	s(t-1)(r-1)	\$ 2 s

the GE interaction SS is partitioned into two components.

viz. heterogeneity among regression with (s=1) df and

remainder SS with (t=1) (s=2) d.f. The environments

(Joint regression) SS with (s=1) df in this case is the

same as the environments (linear) as of Eberhart and

Russell, with d.f=1. Similarly, as due to heterogeneity

among regression in this case is equal to the variety x

environment (linear) as of ER model, both with d.f = (t=1).

The pooled deviation as with t(s=2) df in the former case
is equal to the reminder as with (t=1) (s=2) df in this case.

A variety with: linear regression coefficient $\beta_1 = 0$ (ie. $b_1 = 1$) and the deviation not significantly different from zero ($s_{d1}^2 = 0$) could be considered as stable.

3.2.4. Freeman and Perkins model (FP model)

In the previous two models, the mean porformance of a variety in a given environment (Y_{ij}) is regressed over the environmental index defined as $(\frac{2}{1}Y_{ij}/t) - \frac{22}{1j}Y_{ij}/st)$. Obviously, the estimation of these two variables is not

independent. This being an objectional point, Freeman and Perkins (1971) proposed independent estimate of environmental index in the following two days: (i) Divide the replications into groups, so that the one group may be used for measuring the average performance of varieties in various environments and the other group, averaging over the varieties is used for estimating the environmental index. (ii) Use one or more varieties as check and assess the environmental index on the basis of their performance.

Another objection of Freeman and Perkins to other two models was about the partitioning of the degrees of freedom. Though S.S. due to environment (linear) of Eberhart and Russell's model being the same as S.S. due to environment (joint regression) of Perkins and Jink's model, yet the degree of freedom is one in the former and s-1 in the latter.

For describing Y_{ij}, ie. performance of ith genotype in the jth environment, Freeman and Perkins proposed the following model.

$$\mathbf{Y}_{1j} = \mu + \mathbf{d}_1 + \beta \mathbf{z}_j + \mathbf{d}_j + \beta \mathbf{d}_1 \mathbf{z}_j + \delta \mathbf{d}_{1j}$$

where,

/~ = mean of all genotypes over all environments

di = effect of ith genotype

 \overline{b} = combined regression coefficient

Z_i = environmental index

difference between the regression coefficient of ith genotype and the combined regression coefficient

of a deviation of mean of all genotypes in the jth environment from the combined regression line.

dij = deviation of the ith genotype from its linear regression of 2, in the jth environment minues j.

The two parameters of stability were computed as

$$b_{i} = \frac{2}{j+1} \frac{x_{i,j}}{x_{i,j}} \frac{z_{j}}{z_{j}} \left(\frac{z_{j}}{z_{j}} - \frac{z_{j}}{z_{j}} \right)^{2}$$

$$3di = \frac{2}{j+1} \frac{x_{i,j}}{z_{i-2}} - \frac{2}{z_{i}}$$

where.

$$z_{j} = y_{*,j} - y_{*,i}$$
 $z_{j} = y_{*,j} - y_{*,i}$
 $z_{j} = y_{*,j} - y_{*,i}$

s 2 is the estimate of pooled error.

Table 3.2.4.1. Analysis of variance under PP model

the fifth this date that the case and	an ann ann ains ann 1970 a	716 WA 400 WA CUP HIS WAR HER WAS HER	min eggs sales trait man del	n delle den ern den ern ern ern	-	Age any one species and and dependent and	
Source		₫₫		58			MS
Genotypes	(G)	(t-1)	٤ احاً	¥12	**************************************	Y 2 TSt) 1995 digit Sign dagi 1995 dagi 4995

Source	đ£	SS SS	MS
Environments (E)	(s=1)	<u>S</u> <u>Y 2</u> <u>Y 2</u>	
Combined regression	n 1 (\(\lambda \ \frac{\x}{1-1} \cdot \frac{2}{\x} \\ \frac{\x}{2} \\ \frac{\x}{1-1} \cdot \frac{2}{\x} \\ \frac{2}{\x} \\ \frac{\x}{1-1} \\ \frac{2}{\x} \\ \frac{\x}{1-1} \\ \frac{2}{\x}	
Environmental residual		j=1 by subtraction from E	,
Genotype x environ ment interaction (GxE) (- t-1) (s-1)	E E Y 13 E Y	2
		j=1 Tt	*
Heterogenity among regres- sions	(t-1)	* (2 Y _{1j} , Z _j) 2 (2 Y _{1j} ,	Y. j. 2
(GXE) residual (t	-1) (s-2)	j=1 []] By subtraction from (-
Fooled error *(t	-1) (r-1)	EEEYJK EEY	./r 5

The significance of each item was tested by using variance ratio against the pooled error mean square.

A variety with unit regression coefficient $(b_i = 1)$ and the deviation not significantly different from zero $(s_{di}^2 = 0)$ could be considered as stable variety.

The above three methods used the theory of regression and two stability parameters. The characterization of genotypes on the basis of regression coefficient may not be very effective when only a small fraction of the SS due to GE interaction can be attributed to heterogeneity among regression. For such situations, single stability parameter approaches suggested by Wricke (1966) and Shukla (1972) can be used. In the following methods, SS due to GE interaction was split up into components attributable to different genotypes.

3.2.5. Wricke's Method

Wricke (1966) suggested ecovalence ratio as the percentage contribution of a genotype to as due to GE interaction Ecovalence for ith genotype is

$$W_1 = \sum_{j=1}^{8} (Y_{ij} - \frac{Y_{i}}{8} - \frac{Y_{ij}}{6} + \frac{Y_{i,2}}{8})^2$$

where.

 Y_{ij} is the mean performance of i^{th} genetype in the j^{th} environment (location) expressed as percentage of the total of all W_is .

A variety having least ecovelence was considered most stable and a variety with large ecovalence value, least stable.

3.2.6. Shukla's Method:

Stability variance σ_i^2 of ith genotype as per Shukla (1972) is

$$\sigma_{i}^{2} = \frac{1}{(s-1)(t-1)(t-2)} + \frac{t(t-1)}{j=1} \sum_{j=1}^{s} (Y_{i,j} + \frac{Y_{i,j}}{t} + \frac{Y_{i,j}}{st})^{2} + \frac{\xi}{st}$$

$$= \frac{\xi}{i=1} \sum_{j=1}^{s} (Y_{i,j} - \frac{Y_{i,j}}{s} - \frac{Y_{i,j}}{st} + \frac{Y_{i,s}}{st})^{2}$$

A variety having 1^2 values less than the within environmental variance 1^2 (1^2 is estimated as the pooled error mean square) or having negative 1^2 value was defined as stable. F test given by 1^2 with d.f. ((s-1), s(t-1) (r-1)) was used to test the significance of 1^2 .

3.3. Simultaneous stability analysis for several traits 3.3.1. Menotypic index method

Smith (1936) proposed a selection model for making selection on several characters simultaneously using discriminant function of Fisher (1936). Fisher (1936) mentioned a function I to discriminate the individuals belonging to two different population showing some degree of overlapping. The function I is defined as

Is $b_1x_1 + b_2x_2 + \dots + b_nx_n$ where,

 $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ are the variables measured, and

b₁. b₂ b_n are the weighing coefficients. The b₁ values are estimated based on I values, such that the ratio of variance between populations to that of within the populations would be maximised. The maximisation of this ratio leads to a set of simultaneous equations which after solution provide the desired b₁ values. The simultaneous equations take the following form:

$$b_1 + b_2 + b_3 + b_3 + \cdots + b_n + b_n + b_n = d_1$$
 $b_1 + b_2 + b_3 + b_3 + \cdots + b_n + b_n = d_2$
 $b_1 + b_2 + b_3 + b_3 + \cdots + b_n = d_n$

A solution of these equations in terms of matrix notation is

$$b = R^{-1} d$$

<u>b</u> is the column vector of coefficients 8⁻¹ is the inverse of the correlation matrix. <u>d</u> is the column vector for d_i values. Various components of equation I can be estimated as

$$\frac{\xi(\mathbf{x}_1)^2}{\sqrt{\xi(\mathbf{x}_1)^2}} \frac{\xi(\mathbf{x}_1)^2}{\frac{\lambda}{\sqrt{\xi(\mathbf{x}_1)^2}}}$$

$$\frac{\xi(\mathbf{x}_1)^2}{\sqrt{\xi(\mathbf{x}_1)^2}}$$

 b_i values have to be estimated and x_i^{-1} and x_i^{-2} indicate mean of i^{th} character in population 1 and 2 respectively.

Application of Discriminant function as a basis for making selection on several characters simultaneously is aimed at discriminating the desirable genotypes from undesirable ones on the basis of their phenotypic performance. Smith (1936) defined the genetic worth H of an individual as

$$H = a_1 G_1 + a_2 G_2 + \dots a_n G_n$$

where

G₁, G₂ G_n are the genotypic values of individual characters and a₁, a₂, a signify their relative economic importance. Another function I based on the phenotypic performance of various characters is defined as

$$I = b_1 p_1 + b_2 p_2 + \dots + b_n p_n$$

where

 b_1 , b_2 b_n are to be estimated such that the correlation between H and I ie, r (H, I) becomes maximum. Once such function is obtained, discrimination of good genotypes from the undesirable ones will be possible on the basis of phenotypic performance, ie. p_1 , p_2 p_n directly. The maximisation of r (H, I) leads to a set of simultaneous equations which upon solving give the desired estimate of b_1 values. Simultaneous equations are as follows:

$$b_1 \times_{11} + b_2 \times_{12} + \cdots + b_n \times_{1n} = a_1 G_{11} + a_2 G_{12} + \cdots + a_n G_{1n}$$
 $b_1 \times_{21} + b_2 \times_{22} + \cdots + b_n \times_{2n} = a_1 G_{21} + a_2 G_{22} + \cdots + a_n G_{2n}$
 $b_1 \times_{n1} + b_2 \times_{n2} + \cdots + b_n \times_{nn} = a_1 G_{n1} + a_2 G_{n2} + \cdots + a_n G_{nn}$

which in matrix form becomes

$$x_{11} x_{12} \cdots x_{1n}$$
 $b_1 G_{11} G_{12} \cdots G_{1n}$ $a_1 G_{21} x_{22} \cdots x_{2n}$ $b_2 G_{21} G_{22} \cdots G_{2n}$ $a_2 G_{22} \cdots G_{2n}$

The solution of these equation give the estimates of b, values in the following manner

where,

b is the column vector

- x-1 is the inverse of phenotypic variance and covariance matrix
- G is the genotypic variance and covariance matrix
- a is the column vector for economic weights.

Assuming that all the characters are economically equally important.

where

The mathematical description of the function I is known as phenotypic index or selection index.

$$\mathbf{I} = \hat{\mathbf{b}}_1 \times_1 + \hat{\mathbf{b}}_2 \times_2 + \dots + \hat{\mathbf{b}}_n \times_n$$

From the above function I, we get the phenotypic index or selection index for each of the 20 varieties at three different locations with three replications. GE interaction will be studied for the varieties based on the index values. Once the GE interaction was found to be significant, stability of each genotype will be assessed from the mean phenotypic index over the different environments by the following methods.

- (1) Eberhart and Russell's method
- (ii) Perkins and Jinks model
- (111) Freeman and Perkins model

- (iv) Wricke's method
- (v) Shukla's method

3.3.2. Principal component analysis method:

In many of the experimental situations of multivariate data analysis, the characters may be intercorrelated. In order to examine the relationship among a set of P correlated variables, it may be useful to transform the original set of variables to a new set of uncorrelated variables called principal components. These new variables are linear combinations of the original variable and one derived in the decreasing order of importance so that, for eg: the first principal component accounts for the maximum possible of the variation in the original data.

Frincipal component analysis (PCA) consists in transforming the original set of variables x to a new set of derived variables y by the orthogonal transformation (Morrison, 1978). By = A x where A is the p x p matrix of weighting coefficients. The usual objectives of the analysis is to see if the first few components account for most of the variation in the original data. PCA will simply find components which are close to the original variables but arranged in decreasing order of variance.

Let $x = (x_1, x_2, \dots, x_p)$ be a p variate vector of observations from a multiviate population with mean vector $/\!\!\sim$

and variance covariance matrix \lesssim . The estimate of \lesssim will be the usual sample variance covariance matrix s.

If a 11. a 21. ... a are weights given to the variables according to their relative importance, the first principal component y, is defined as

$$Y_1 = a_{11}X_1 + a_{21}X_2 + \dots + a_{p1}X_p$$

 $Y_1 = a_1 X$

whore

 $a_1 = (a_{11}, a_{21}, \dots, a_{p1})$ is a vector of constants. Sample variance $S_{y1}^2 = a_1 + a_2$

The first principal component is the vector of weighting coefficients a which maximises the variation subject
to the restriction that sum of squares of a is a constant.

$$\leq a_{1j}^2 = 1$$
 is, $a_1 = 1$

Introducing Lagrange's multiplier λ_{ij} the function becomes

$$L = a_{y1}^{2} + \lambda_{1} (1 - a_{1}^{2} a_{1}^{2})$$

$$= a_{1}^{2} a_{2} + \lambda_{1} (1 - a_{1}^{2} a_{1}^{2})$$

Maximise L with respect to a

The above will have a solution other than $a_1 = 0$ Iff $\left| a - \frac{1}{2} \right| = 0$

 $\hat{\gamma}_1$ is the characteristic root of the covariance matrix s and \underline{s}_1 is its associated characteristic vector. The coefficient vector \underline{s}_1 must be chosen in such a way that $\hat{\gamma}_1$ is the greatestycharacteristic root of s.

The second principal component may be y_2 is found by choosing a_2 so that y_2 having the next largest possible variation. With 'n' characters, a maximum of n principal component vectors are possible. The principal components partition the total variance of the original variables into padditive components. From the general properties of characteristic roots,

The relative contribution of jth component in the system (j) is measured by

The first principal component of sample observations $x_1, x_2 \dots x_n$ is the linear combination

 $y_1 = a_{11} x_1 + a_{21} x_2 + \cdots + a_{p1} x_p$ whose coefficients a_{11} are the elements of the characteristic vector associated with the greatest characteristic root a_{11} of the sample covariance matrix of the observations.

In the present investigation the characteristic roots for the observations correspond to each variety will be studied. If the first characteristic root is found to have explained a reasonable percentage of the total variation, the principal component corresponding to the first characteristic root will be taken for studying that variety. The first principal components of all the varieties will be used for studying the GE interaction, if the first principal component explains the maximum variation. The method of using first principal component for the study of GE interaction is more reasonable in comparison to the phenotypic index method, as we are assuming equal weights to the economic characters while calculating the phenotypic index. GE interactions will be studied for the varieties based on the first principal components through following five methods.

- (1) Eberhart and Russell's method
- (ii) Perkins and Jinks method
- (111) Freeman and Perkins method
- (iv) Wricke's method
- (V) Shukla's method.

•

·

.

RESULTS

The data collected from a multilocational trial on twenty sesame varieties from three different locations - Kayamkulam, Pattambi and Vellayani during the year 1982-83 by the Plant Breeding department of College of Agriculture, Vellayani on twelve characters based on twenty varieties were statistically analysed on the basis of the methodology described in the previous chapter. The results were as given below:

Lysed the pooled analysis were done individually for all the characters pooling all the locations. GE interaction based on all the characters were examined and it was found that the characters - length of capsule, height, number of capsule/plant have no GE interaction. The pooled analysis of these characters were shown in the Table 4.10.1, 4.11.1. Hence these three characters were not further investigated. The remaining nine characters, which were showing genotype-environment interaction were further investigated and the results were as follows:

4.1. Seed yield per plot

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's $+^2$ ($+^2$ = 15.056) was found to be significant.

Hence weighted analysis has been done. The pooled ANOVA is given in Table 4.1.1. The variety x location interactions was found to be significant.

The treatment means of the 20 varieties in the three locations averaged over the replications were worked out as shown in the Table 4.1.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.1.3.

The variety x location (linear) component (which is same as the difference between regression) was non-significant. Pooled deviation from regression was significant at 5% level. This was because of the significance of deviation for the varieties 8, 9, 12, 16. The deviation from regressions was significant for none of the other varieties.

The analysis of variance of Perkins and Jinks model for the same data was as given in Table 4.1.4. Heterogeneity among regression was not significant and the remainder part of the variety x location interaction was significant.

One of the replications (Ist replication) in each locations was used for the measure of environment under Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.1.5. From the table it could be inferred that

heterogeneity emong the regressions was not significant and the remainder part of the variety x location interaction was significant in this model also.

The environmental indices I_j and Z_j were worked out as given in the Table 4.1.6. It was found from Table 4.1.6 that they were in close agreement to each other.

Stability parameters for the twenty varieties under the three models are provided in Table 4.1.7. Sdi values are the same for ER and SU models.

The values of Wricke's ecovalence ratio W_1 and Shukla's stability variance σ_1^2 and F values for testing the significance of σ_1^2 are given in Table 4.1.8. All the variaties had non-significant σ_1^2 values except the variety 14. The W_1 's were also high for these varieties.

Correlation coefficients between the various pairs of stability parameters were worked out as given in Table 4.1.9.

A correlation coefficient of unity was obtained between W_1 and σ_1^2 . Hence σ_1 had the same correlation coefficient with other parameters as W_1 had with them. The regression coefficient showed positive correlation with W_1 . $S_{d,i}^2$ and W_1 were highly correlated.

But inspite of these limitations, from the examination

of Table 4.1.7, it could be reasonably concluded that varieties 2, 3, 6, 11, 19 and 20 are stable varieties. This fact has been almost corroborated from the Table 4.1.8 of W_1 and σ_1^2 .

4.2. Oil content percentage

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's \uparrow^2 (= 175.093) was found to be significant. Hence the weighted analysis has been done.

The pooled ANOVA was given in Table 4.2.1. The variety x locations interactions was found to be significant.

The treatment means of the 20 varieties in the three locations averaged over the replications were worked as shown in the Table 4.2.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.2.3. The variety x location (linear) component which is some as the difference between regression was non-significant. Pooled deviation from regression was significant at 5% level. This was because of the significance of deviation for all the varieties except the variety 3, ie, the deviation from regression was significant for all varieties except the variety 3.

The analysis of variance of Parkins and Jinks model for the same data was as given in Table 4.2.4. Hetero-geneity among regression and the remainder part of the variety x location interaction were significant.

One of the replications (Ist replication) on each locations was used for the measure of the environment under Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.2.5. From the table it could be inferred that heterogeneity among the regressions and the remainder part of the variety a location interaction were significant in this model also.

The environmental indices I, and Z, were worked out as given in the Table 4.2.6. It was found from Table 4.2.6 that they were in close agreement to each other.

Stability parameters for the twenty varieties under three models were provided in Table 4.2.7. $s_{\rm d1}^{-2}$ values are the same for ER and BJ models.

The values of Wricke's ecovalence ratio u_i and Shukla's stability variance σ_i^2 and F values for testing the significance of σ_i^2 are given in Table 4.2.8.

All the varieties had non significant σ_i^2 values except the variety 18. The W $_i$ was also high for the variety.

Correlation coefficients between the verious pairs of stability parameters were worked out as given in Table 4.2.9.

A correlation coefficient of unity was obtained between Wi and σ_1^2 . Hence σ_1^2 had the same correlation coefficient with other parameters as W₁ had with them.

From the examination of Table 4.2.7 it could be reasonably concluded that varieties 1, 2, 12, 13, 16 and 20 are stable varieties. This fact has been almost corroborated from the Table 4.2.8 of W_1 and G_2 .

4.3. Seed yield per plant

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's +2 (= 6.921) was found to be significant. Hence the weighted analysis has been done. The pooled ANOVA is given in Table 4.3.1. The variety & locations interactions was found to be significant.

Treatment means of the 20 varieties in the three locations averaged over the replications were worked out as shown in the Table 4.3.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.3.3.

The variety x location (linear) component (which is some as the difference between regression) was non significant. Rooled deviation from regression was significant at 5% level. This was because of the significance of the deviation for the varieties 6, 7, 8, 12 and 17. The deviation from regression was significant for none of the other varieties.

The analysis of variance of Perkins and Jinks model for the same data was given in Table 4.3.4. Heterogeneity among regression was not significant and the remainder part of the variety x location interaction was significant.

One of the replications (Ist replication in each location) was used for the measure of environment under Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.3.5. From the table it could be inferred that heterogeneity among the regressions and the remainder part of the variety x location interaction were not significant.

The environmental indices I, and Z, were worked out as given in the Table 4.3.6. It was found from Table that they were in close agreement to each other.

Stability parameters for the twenty varioties under the three models are provided in Table 4.3.7. Sai 2 values are the same for ER and PJ models.

The values of Wricke's ecovalence ratio W_1 and Shukla's stability variance G_1^2 and F value for testing the significance of G_1^2 are given in Table 4.3.8. All the varieties had non significant G_1^2 values except the varieties 6. 7. and 12. The W_1 were also high for those varieties.

Correlation coefficient between the various pairs of stability parameters were worked out as given in Table 4.3.9.

A correlation coefficient of unity was obtained between W_1 and σ_1^2 . Hence σ_1^2 had the same correlation coefficient with other parameters as W_1 had with them.

From the examination of Table 4.3.7 it could be reasonably concluded that varieties 2. 13, 15, 18, 19 and 20 are stable varieties. This fact has been almost corroborated from the Table 4.3.8 of W_1 and \overline{w}_1^2 .

4.4. Number of seeds per capsule

The error mean square of three locations were tested for its homogeneity using Bartlett's test. The Bartlett's \(\sigma^2 \) (= 1.696) was found to be significant. Hence weighted analysis has been done. The pooled ANOVA is given in Table 4.4.1. The variety x locations interactions was found to be significant.

The treatment means of 20 varieties in the three locations averaged over the replications were worked out as shown in the Table 4.4.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.4.3. The variety x location (linear) component (which is same as the difference between regression) was non significant. Pooled deviation from regression was significant at 5% level. This was because of the significance of deviation for the varieties 10, 11, 13, 15, 16. The deviation from regression was significant for none of the other varieties.

The analysis of variance of Perkins and Jinks model for the same date was as given in Table 4.4.4. Meterogeneity among regression was significant and the remainder part of the variety x location interaction was also significant.

One of the replications (Ist replication) in each location was used for the measure of environment under Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.4.5. From the table it could be inferred that heterogeneity among the regressions and the remainder part of the variety x location interaction were significant in this model also.

The environmental indices I, and Z, were worked out as given in the Table 4.4.6.

Stability parameters for the twenty varieties under the three models are provided in Table 4.4.7. $s_{\rm di}^{-2}$ values are the same ER and PJ models.

The values of Wricke's ecovalence ratio W_1 and Shukla's stability variance σ_1^2 and F volues for testing the significance of σ_1^2 are given in Table 4.4.8.

All the varieties had non-significant σ_i^2 values except the varieties 10, 11 and 16. The W_i 's were also high for these varieties.

Correlation coefficients between the various pairs of stability parameters were worked out as given in Table 4.4.9.

A correlation coefficient of unity of was obtained between W_1 and ${\varsigma_1}^2$. Hence ${\varsigma_1}^2$ had the same correlation coefficient with other parameters as W_1 had with them.

From the examination of Table 4.4.7 it could be reasonably concluded that varieties 4, 6, 8, 12, 17 and 20 are stable varieties. This fact has been almost corroborated from the Table 4.4.8 of W_4 and G_4^2 .

4.5. Circumference of capsule

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The

Bartlett's γ^2 (= 69.485) was found to be significant. Hence the weighted analysis has been done. The pooled ANOVA was given in Table 4.5.1. The variety x locations interactions was found to be non-significant.

The treatment means of 20 varieties in the three locations averaged over the replications were worked out as shown in Table 4.5.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.5.3.

The variety x location (linear) component (which is same as the difference between regression) was non-significant. Pooled deviation from regression was non-significant at 5% level. The deviation from regression was significant for none of the varieties.

The analysis of variance of Perkins and Jinks model for the same data was as given in Table 4.5.4. Heterogeneity among regression was not significant and the remainder part of the variety x location interaction was not significant.

One of the replications (Ist replication) in each locations was used for the measure of environment under Freeman and Ferkins model, the remaining two replications (2nd and 3rd) was used for the enalysis of variance and the same is given in Table 4.5.5. From the table it could be

inferred that heterogeneity among regression was significant and the remainder part of the variety x location interaction was significant.

The environmental indices I, and Z, were worked out as given in Table 4.5.6. It was found from Table 4.5.6. that they were in close agreement to each other.

Stability parameters for the twenty varieties under the three models are provided in Table 4.5.7. $3_{\rm di}^{-2}$ values are the same for ER and RJ models.

The values of Wricke's ecovalence ratio W_1 and Shukla's stability variance G_1^2 and F values for testing the significance of G_1^2 are given in Table 4.5.8. All the varieties had non significant G_1^2 values except the varieties 2 and 7. The W_1 's were also high for these varieties.

Correlation coefficients between the various pairs of stability parameters were worked out as given in Table 4.5.9.

A correlation coefficient of unity was obtained between W_1 and σ_1^2 . Hence σ_1^2 had the same correlation coefficient with other parameters as W_1 had with them.

From the examination of Table 4.5.7 it could be reasonably concluded that varieties 13, 15, 19, 16, 20 and 18 are stable varieties. This fact has been almost corroborated from the Table 4.5.8 of W_1 and G_2 .

4.6. Number of branches

The error mean of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's \uparrow^2 (= 10.005) was found to be significant. Hence the weighted analysis has been done. The pooled ANOVA is given in Table 4.6.1.

The variety x location was found to be significant.

The treatment means of the 20 varieties in three locations averaged over the replications were worked out as shown in the Table 4.6.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.6.3.

The variety x location (linear) component (which is same as the difference between regression) was significant. Fooled deviation from regression was significant at 5% level. This was because of the significance of deviation for the variety 3. The deviation from regression was significant for none of the other varieties.

The analysis of variance of Perkins and Jinks model for the same data was as given in Table 4.6.4. Heterogeneity among regression was significant and the remainder part of the variety x location interaction was not significant.

One of the replications (Ist replication) in each locations was used for the measure of environment under

Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.6.5. From the table it could be inferred that heterogeneity among the regression was not significant and the remainder part of the variety x location interaction was significant.

The environmental indices I, and Z, were worked out as given in the Table 4.6.6. that they were in close agreement to each other.

Stability parameters for the twenty varieties under the three models are provided in Table 4.6.7. $s_{\rm di}^{-2}$ values are the same for ER and EV models.

The values of Wricke's ecovalence ratio W_1 and Shukla's stability variance C_1^2 and F values for testing the significance are given in Table 4.6.9. All the varieties had non significant C_1^2 values except the variety 14. The W_1 was also high for this variety.

Correlation coefficients between the various pairs of stability parameters were worked out as given in Table 4.6.7.

A correlation coefficient of unity was obtained between W_1 and G_1^2 . Hence G_1^2 had the same correlation coefficient with other parameters as W_1 had with them.

From the examination of Table 4.6.7 it could be reasonably concluded that varieties 1, 10, 2, 4, 17 and 20 are stable varieties. This fact has been almost corroborated from the Table 4.6.8 of W_1 and C_2 .

4.7. 1000 seed weight

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's 12 (= 34.652) was found to be significant. Hence the weighted analysis has been done. The pooled ANOVA is given in Table 4.7.1. The variety x locations interactions was found to be significant.

The treatment means of the 20 varieties in the three locations averaged over the replications were worked out as shown in the Table 4.7.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.7.3. The variety x location (linear) component (which is same as the difference between regression) was non-significant. Spoled deviation from regression was significant at 5% level. This was because of the significance of deviation for the varieties 3, 10, 11, 12, 18, 19. The deviation from regression was significant for none of the other varieties.

The analysis of Perkins and Jinks model for the same data was given in Table 4.7.4. Heterogeneity among

regression and the remainder part of the variety x location interaction were significant.

One of the replications (Ist replication) in each location was used for the measure of environment under Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.7.5. From the table it could be inferred that heterogeneity among the regressions and the remainder part of the variety x location interaction were non significant.

The environmental indices I, and Z, were worked out as given in the Table 4.7.6. It was found from Table 4.7.6 that they were in close agreement to each other.

Stability parameters for the twenty varieties under the three models are provided in Table 4.7.7. s_{di}^2 values are the same for ER and FJ models.

The values for Wricke's ecovalence ratio W_1 and Shukla's stability variance G_1^2 and F values for testing the significance of G_1^2 are given in Table 4.7.8.

All the varieties had non significant c_1^2 values except the variety 12. The W₁ was also high for this variety.

Correlation coefficients between the various pairs of stability parameters were worked out as given in Table 4.7.9.

A correlation coefficient of unity was obtained between W_1 and σ_1^2 . Hence σ_1^2 had the same correlation coefficient with other parameter as W_1 had with them.

From the examination of Table 4.7.7 it could be reasonably concluded that varieties 1, 4, 7, 9, 16 and 19 are stable varieties. This fact has been almost corroborated from the Table 4.7.8 of W_1 and σ_1^2 .

4.8. Number of days for flowering

The error mean square of the three locations were tested for its homogeneity using Bertlett's tost. The Bartlett's +2 (= 7.818) was found to be significant. Hence the weighted analysis has been done. The pooled ANOVA is given in Table 4.8.1. The variety × locations interactions was found to be significant.

The treatment means of the 20 varieties in the three locations averaged over the replications were worked out as shown in the Table 4.8.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.8.3. The variety x location (linear) component (which is same at the difference between regression) was non-significant. Fooled deviation from regression was significant at 5% level. This was because of the significance of the deviation for the varieties 1, 2, 3, 4, 7. The deviation from regression was significant for none of the other varieties.

The analysis of variance of Perkins and Jinks model for the same data was given in Table 4.8.4. Meterogeneity among regression and the remainder part of the variety x location interaction were significant.

One of the replications (Ist replication) in deach locations was used for the measure of environment under Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.8.5. From the table it could be inferred that heterogeneity among the regressions and the remainder part of the variety x location interaction were significant in this model also.

The environmental indices I, and Z, were worked out as given in the Table 4.8.6. It was found from Table 4.8.6 that they were in close agreement to each other.

Stability parameters for the twenty varieties under the three models are provided in Table 4.8.7. Sdi values are the same for ER and PJ models.

The values of Wricke's ecovalence ratio w_1 and Shukla's stability variance σ_1^2 and F values for testing the significance of σ_1^2 values are given in Table 4.8.8. All the varieties had non significant σ_1^2 values.

Correlation coefficients between the various pairs of stability parameters were worked out as given in Table 4.8.9.

A correlation coefficient of unity was obtained between W_1 and σ_1^2 . Hence σ_1^2 had the same correlation coefficient with other parameters as W_1 had with them.

From the examination of Table 4.8.7, it could be reasonably concluded that varieties 3, 5, 8, 9, 12 and 20 are stable varieties. This fact has been almost corroborated from the Table 4.8.8 of W_1 and \overline{S}_1^2 .

4.9. Number of days to maturity

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's \(\sigma^2 \) (= 2.588) was found to be significant. Hence weighted enalysis has been done. The pooled ANOVA is given in Table 4.9.1.

The variety x locations interactions was found to be significant.

The treatment means of 20 varieties in the three locations averaged over the replications were worked out as shown in Table 4.9.2.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.9.3. The variety x location (linear) component (which is same as the difference between regression) was non-significant. Pooled deviation

from regression was significant at 5% level. This was because of the significance of deviation of all the varieties except 1, 2, 3, 9, 17 and 19. The deviation from regression was non-significant for the verieties 1, 2, 3, 9, 17 and 19.

The analysis of variance of Perkins and Jinks model for the same data was as given in Table 4.9.4. Heterogeneity among regression and the remainder part of the variety x location interaction were significant.

One of the replications (Ist replication) in each location was used for the measure of the environment under Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is as given in Table 4.9.5. From the table it could be inferred that heterogeneity among the regression and the remainder part of the variety x location interactions were significant in this model also.

The environmental indices I, and Z, were worked out as given in the Table 4.9.6. It was found from Table 4.9.6 that they were in close agreement to each other.

Stability parameters for the 20 varieties under the three models are provided in Table 4.9.7. $\frac{k-2}{di}$ values are the same for ER and PJ models.

The values of Wricke's ecovalence ratio W_1 and Shukla's stability variance σ_1^2 and F values for testing the significance of σ_1^2 are given in Table 4.9.8. All the varieties had non significant values except the variety 10. The W_1 's was also high for these varieties.

Correlation coefficients between the various pairs of stability parameters were worked out as given in Table 4.9.9.

A correlation coefficient of unity was obtained between W_1 and σ_1^2 . Hence σ_1^2 had the same correlation coefficient with other parameters as W_1 had with them.

From the examination of Table 4.9.7, it could be reasonably concluded that varieties 1, 3, 8, 14, 16 and 19 are stable varieties. This fact has been almost correborated from the Table 4.9.8 of W_1 and σ_1^2 .

4.10. Length of capsule

The effor mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's $+^2$ (= 1.02) was found to be non-significant. Hence the pooled analysis has been done.

The pooled ANOVA was given in the Table 4,10.1.

The variety x locations interactions was not significant.

4.11. <u>Height</u>

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's \uparrow^2 (* 4.549) was found to be non-significant. Hence the pooled analysis has been done.

The pooled ANOVA was given in the Table 4.11.1.

The variety x locations interactions was not significant.

4.12. Mumber of capsule/plant

The error mean square of three locations were tested for its homogeneity using Bartlett's test. The Bartlett's +2 (= 11.336) was found to be significent, Hence weighted analysis has been done. From the weighted analysis, it is found that interaction is absent.

4.13. Selection Index

The scores of selection index of twenty varieties of multilocation trials of the crop sessue conducted at three location with 3 replications at each locations were analysed as per the methods suggested.

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's γ^2 (= 205.310) was found to be significant. Hence the weighted analysis has been done.

The pooled ANOVA is given in Table 4.13.1.

The scores of selection index of the 20 varieties in the three locations averaged over the replications were worked out as shown in Table 4.13.2.

The analysis of variance under Eberhart and Russel.

model was worked out as given in Table 4.13.3. The

variety x location (linear) component (which is same as

the difference between regression) was significant.

Fooled deviation from regression was non significant.

In the analysis of variance of Perkins and Jinks model for the same data was as given in Table 4.13.4. Heterogeneity among regression was significant and the remainder part of the variety x location interaction was not significant.

One of the replications (Ist replication) in each location was used for the measure of environment under Freeman and Ferkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.13.5. From the table it could be inferred that heterogeneity among the regression was significent and the remainder part of the variety x location interaction was not significant in this model also.

The environmental indices I, and Z, were worked out as given in the Table 4.13.6. It was found from Table 4.13.6 that they were in close agreement to each other.

Stability parameters for the twenty variaties under three models are provided in Table 4.13.7. $g_{\rm di}^2$ values are the same for ER and EJ models.

The values of Wricke's ecovalence ratio W_4 and Shukla's stability variance σ_1^2 and F values for testing the significance of σ_2^2 are given in Table 4.13.8. All the varieties had non significant σ_2^2 values except the variety 6. The W_4 was also high for this variety.

Correlation coefficients between the verious pairs of stability parameters were worked out as given in Table 4.13.9.

A correlation coefficient of unity was obtained between W_1 and σ_1^2 . Hence σ_1^2 had the same correlation coefficient with other parameters as W_4 had with them.

From the examination of Table 4.13.7, it could be reasonably concluded that varieties 2, 3, 4, 5, 7 and 11 are stable varieties. This fact has been almost corroborated from the Table 4.13.8 of W_1 and O_1^2 .

4.14. Principal components

In the present investigation the characteristic roots for the observations corresponding to each variety by taking into consideration of all the characters were studied. In all the case, the first characteristic root was found to have explained a reasonable percentage of the total variation (more than 78%). The principal components corresponding to the first characteristic root were taken for the study stability parameter analysis. The method of using first principal component for the study of genotype environment interaction is more reasonable in comparison to the phenotypic index mathod, as we are assuming equal weights to the economic characters while calculating the phenotypic index. Genotype environment interaction were studied for the varieties based on the first principal components through following five methods.

- 1. Eberhart and Russell's method
- 11. Perkins and Jinks method
- iii. Freeman and Perkins method
 - iv. Wricke's method
 - v. Shukla's method.

The scores of principal components of twenty varieties of multilocation trials of the crop sesame conducted at three locations with three replications at each locations were analysed as per the methods suggested above.

The data were shown in the Table 4.14.2.

The error mean square of the three locations were tested for its homogeneity using Bartlett's test. The Bartlett's γ^2 (= 15.207) was found to be significant. Hence the weighted analysis has been done. The pooled ANOVA is given in Table 4.14.1.

The variety x locations interactions was found to be significant.

The analysis of variance under Eberhart and Russel model was worked out as given in Table 4.14.3.

The variety x location (linear) treatment (which is same as the difference between regression) was non significant. Pooled deviation from regression was significant at 5% level. This was because of the significance of deviation for the varieties 8, 9, 12, 13, 16 and 17. The daviation from regression was significant for none of the other varieties.

The analysis of variance of Perkins and Jinks model for the same data was as given in Table 4.14.4.

Heterogeneity among regression and the remainder part of the variety x location interaction were significant.

One of the replications (Ist replication) in each locations was used for the measure of environment under Freeman and Perkins model, the remaining two replications (2nd and 3rd) were used for the analysis of variance and the same is given in Table 4.14.5. From the table it could be inferred that heterogeneity among regressions and the remainder part of the variety x location interaction were significant in this model also.

The environmental indices I, and Z, were worked out as in the Table 4.14.6. It was found from Table 4.14.6 that they were in close agreement to each other.

Stability parameters for the twenty varieties under the three models are provided in Table 4.14.7. $s_{\rm di}^{\ 2}$ values are the same for ER and PJ models.

The value of Wricke's ecovalence ratio W_1 and Shukla's stability variance σ_1^2 and F values for testing the significance of σ_1^2 values are given in Table 4.14.8.

All the varieties had non significant c_1^2 values except the variety 14. The W₁'s was also high for the variety.

Correlation coefficients between the various pairs of stability parameters were worked out as given in Table 4.14.9.

A correlation coefficient of unity was obtained between W_1 and G_2 . Hence G_1 had the same correlation coefficient with other parameters as W_1 had with them.

From the examination of Table 4.14.7, it could be reasonably concluded that varieties 2, 3, 7, 12, 19 and 20 are stable varieties. This fact has been almost corroborated from the Table 4.14.8 of W_1 and C_1 .

Table 4.1.1. Pooled Analysis of Variance

Source	đf	SS	MS	F
Varieties	19	57196.49	3010.34	
Locations .	2	88121.51	44060.73	
Var x Loc	38	84859.00	2233.13	2.41*
Average Error	114		926.55	,
			•	

^{*} Significant at 5% level.

Table 4.1.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications.

Varieties	L1	L2	L3	Total	Mean
Т1	220.067	254.100	315.833	790.000	263.333
T2	263.900	277.733	349.000	890.633	296.878
Т3	244.367	296.833	379.500	920.700	306.900
T4	299.333	309.300	344.333	952 . 96 7	317.656
Т5	283.067	313.200	318.333	914.600	304.867
Т6	315.833	437.900	415.000	1168.733	389.578
T7	213.000	349.767	342.500	905.267	301.756
T8	283.833	363.767	278,767	926.367	308.789
Т9	261.167	252.467	381.467	895.100	298.367
T10	277.633	249.467	330.667	857.767	285.922
T11	209.733	265.533	347.667	822.933	274.311
T12	203.700	376.833	299.333	879.867	293.289
T13	180.333	262.200	369.100	811.633	270.544
T14	153.133	384.167	356.500	893.800	297.933
T15	227.033	328.567	351.833	907.433	302.478
Т16	204.933	376.133	306.500	887.567	295.856
т17	225.800	281.933	204.667	712.400	237.467
T18	274.400	218.267	296.167	788.833	262.944
T19	232.567	299.000	266.333	797.900	265.967
T20	269.467	391.233	350.333	1011.034	337.011
Total	4843.300	6288.401	6603.835		
Mean	242.165	314.420	330.192		295. 592

Table 4.1.3. Analysis of variance under ER model

Source	df	SS	MS	F
Total	59	230177.998		
Varieties	19	57197.499	3010.395	
Environment + X Variety x Env. X	40	172980 499		
Environment	1	88122.615		
Environment x Variety (linear)	Х Х 19	37686.140	1983.481	0.84 N.S
Pooled Dev.	20	47171.144	2358.557	2.54*
Variety - 1	1	1164.689	2000,00,	2.54
Variety - 2	1	1839.576		
Variety - 3	1	2002.988		
Variety - 4	1	426.365		
Variety - 5	1	.797		
Variety - 6	1	966.409		
Variety - 7	1	544.124		
Variety - 8	1	4145.553*		
Variety - 9	1	6767.553*		
Variety - 10	1	3013.450		
Variety - 11	1	1932.705		
Variety - 12	1	5249.876*		
Variety - 13	1	3130.590		
Variety - 14	1	2408.779		، ن
Variety - 15	1	.374		~
Variety - 16	1	4522.108*		
Variety - 17	1	3165.161		
Variety - 18	1	3210.126		
Variety - 19	.1	878,687		
Variety - 20	1	1798,380		
Average Error	114	105626.257	926.546	
* 01				

^{*} Significant at 5% level

Table 4.1.4. Analysis of variance under FP Model

~~~~~~~~~~				
Source	df	SS	MS	F
Genotypes	19	140645.00331		
Environments	2	155207.01408		
Combined				
regression	1	154768.81504		
Residual (E)	1	438.18750		
Interaction	38	210243.98803		
Heterogeneity of				
regression	19	· 84079.03671	4425.2124	1.7252
Residual (GxE)	19	126164.94894	6040.2600	2.5888*
Pooled Error	5 <b>7</b>	146205.99746	2565.0177	
		·		

^{*} Significant at 5% level.

Table 4.1.5. Analysis of variance under PJ model

Source	·df	SS	MS	F
Genotypes	19	57197.499	3010.395	
Environment (Joint Regression)	2	88122.501	44061.250	
Genotype x Environment (Interaction - GxE)	: 38	84857.997	2233.105	
(Interaction - Gxz)	30	04037.997	2233.105	
Heterogeneity	19	37686.264	1983.488	2.14*
Remainder	19	47171.735	2482.723	2.68*
Average Error	114		926.546	

^{*} Significant at 5% level

Table 4.1.6. Environmental indices under ER model (Ij) and under FP model (Zj).

Environments	ĭj	$\mathbf{z_{j}}$	
		*	
.1	-53.427	-59.6866	
2	18.8278	19.2583	
3	34.5995	40.4283	
	-^.		

Table 4.1.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models)

Variety	b _i	s _{di}	βı	b'i	s¦ ² di	
1	0.90	-1614.95	-0.10	0.44	-2422.45	
2	0.73	-940.06	-0.27	1.00	-2302.97	
3	1.29	-776.65	0.29	1.02	-1566.69	
4	0.40	-2353.27	-0.60	0.26	-1971.17	
5	0.41	-2778.84	-0.59	0.35	-2543.92	
6	1.30	-1810.23	0.30	0.90	-2314.30	
7	1.60	-2235.51	0.60	1.58	-2564.70	
8	0.30	1365.77	-0.70	0.33	3435.99	
` 9	0.91	3987.91	-0.09	0.57	6307.72	
10	0.29	233.81	-0.70	0.19	-877.01	
11	1.32	-846.93	0.32	1.20	1221.00	
12	1.49	2470.24	0.49	1.02	-1817.02	
13	1,83	350.95	0.83	1.48	9970.34	
14	2.58	-370.86	1.58	2.25	5338.44	
15	1.41	<b>-</b> 2779.26	0.41	1.48	-2559.53	
16	1.53	1742.47	0.53	1.21	5078.32	
17	0.07	385.52	-0.93	-0.12	870.67	
18	-0.07	430.49	-0.93	-0.29	-285.67	
19	0.55	-1900.95	-0.45	0.62	215.88	
20	1.16	-981.26	0.16	1.17	3229.53	

Table 4.1.8. Wricke (1966) Ecovalence ratio ( $W_i$ ) and Shukla (1972) stability variance ( $\sigma_i^2$ ) and F values to test  $\sigma_i^2$  with (s-1), s(t-1)(r-1) d.f.

Variety	W _i	σ _i ²	F
1	1211.0933	548.7673	.2457
2	2167.1183	1079.8922	.4836
3	2361.8514	1188.0778	.5320
4	2034.0495	1005.9653	.4505
5	1557.0113	740.9440	.3318
6	1366.9328	635.3449	.2845
7	2137.5184	1063.4479	.4762
8	6293,4236	3372.2839	1.5101
9	6805.3121	3656.6669	1.6375
10	5196.6395	2762.9592	1.2353
11 -	2388.4348	1202.8460	.5386
12	6311.3012	3382.2162	1.5146
13	6181.7669	3310.2531	1.4823
14	13466.9137	7357.5582	3.2947
15	755.2239	295,5066	.1323
. 16	5755.8155	3073.6131	1.3764
17	6943, 9878	3733.7088	1.6720
18	8244.6308	4456.2883	1.9955
19	1774.7707	861.9215	.3860
20	1904.7836	934.1509	.4183

Table 4.1.9. Correlation tables of the variables  $W_i$ ,  $s_{di}^2$ ,  $s_{di}^2$ ,  $s_{di}^2$ .

						~
VAR	w _i	$\sigma_{\overline{1}}^2$	s _{di}	ь <u>і</u>	b'i	s,2
Wi	1.0000	1.0000	.6276	.2124	.1018	.6069
6- <u>i</u> 2		1.0000	.6276	.2124	.1018	.6069
$s_{di}^{2}$			1.0000	.0087	1255	.5849
bi				1.0000	.9536	.3310
bi					1.0000	.2662
s _{di} 2						1.0000

Table 4.2.1. Pooled Analysis of variance

Source	df	SS	MS	F
Varieties	19	137.8672	7.2562	
Locations	2	55.1719	27.5859	
Var x Loc	38	116.4141	3.0635	70.9144*
Average Error	114		0.0432	

^{*} Significant at 5% level.

Table 4.2.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications

Varieties	L1	L2	L3	Total	Mean
	<del>,</del>	\.			
T1	48.767	45.233	48.633	142.633	47.544
T2	49.367	45.567	48.700	143.633	47.878
<b>T</b> 3	51.333	48.767	50.133	150.233	50.078
Т4	47.467	47.367	46.433	141.267	47.089
Т5	45.400	43.300	47.533	136.233	45.411
. Т6	49.800	45.333	49.500	144.633	48.211
Т7	49.500	46.633	50.033	146.167	48.722
<b>T</b> 8	50.833	44.200	50.467	145.500	48.500
Т9	49.200	44.833	48.733	142.767	47.589
<b>T10</b>	45.833	45.100	48.500	139.433	46.478
T11	49.300	45.333'	45.300	139.933	46.644
T12	43.867	42.733	45.800	132.400	44.133
T13	46.233	43.067	44.167	133.457	44.489
T14	44.500	47.167	46.167	137.833	45.944
T15	50.233	44.733	44.167	139.133	46.378
T16	46.667	44.700	46.700	138.067	46.022
T17	46.667	46.500	45.367	138.533	46.178
T18	48,900	47.333	42.800	139.033	46.344
T19	47.133	46.800	43.767	137.700	
T20	44.567	44.167	43.700	132.433	44.144
Total					- <del></del>
	955.567	908.867	936,600		•
Mean	47.778	46.443	46.830		

Source	dЕ	SS	MS	F
Total	59	309.469		
Varieties	19	137.867	7.256	
Env + Var x Env	40	171.002		
Environment	1	55.163		
Env x Variety (linear)	10	40 222	0. 500	
Fooled Dev.	19	48.223	2.538	0.74 NS
Variety 1	20	68.238	3.412	78.92*
vallety 1	1	1.117*		
	٠ 1	0.508*		
. 3	1	0.016		
4	1	0.650		
5	1	5.875*		
6	1	1.511		
7	1	1.899*		
8	1	3.569*		
. 9	1	1.126*		
10	1	5.791*		
11	1	3.761*		
12	1	3.775*		•
13	1	0.401*		
14	1 3	0.224*		
15	1 `	9.681*		
16	1	0.457*		
17	1	1.000*		•
18	1	19.670*		
19	1	6.881*		
20	1	0.327*		
verage Error	114	4.9247	0.0432	

^{*} Significant at 5% level.

Table 4.2.4. Analysis of variance under FP model

Source	df	SS	ાનદ	ŀ.
Genotypes	19	137.867	7.256	
Environment (Joint regression)	2	55.172	27.586	
Genotype x Env. Interaction (GxE)	38	110.430	3.064	~
Heterogeneity (Among Regression)	19	48.214	2.538	58.75*
Remainder	19	68.216	3.590	83.10*
Average Error	114		0.0432	

^{*} Significant at 5% level.

Table 4.2.5. Analysis of variance under PJ model

Source	df	SS	MS	F
Genotypes.	19	276.89061		
Environments	2	109.73438		
Combined regression	1	108,19394		
Residual (E)	1	1.54044		
Interaction	38	244.10939		
Heterogeneity of				
Regression	19	99.48837	5.2362	616.0235*
Residual (G $\times$ E)	19	144.62101	7.6116	895.486*
Pooled Error	57	0.48438	0.0085	,

^{*} Significant at 5% level.

Table 4.2.6. Environmental indices under ER model (Ij) and . under FP model (Zj)

Environments		I	z _j	
1		1.0944	1.037	
2		-1.2406	-1.293	
3	Ĭ.	0.1461	0.257	

Table 4.2.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models).

Variety	b _i	s _{di} 2	b _i ՝	s, 2
1	1.58	0.987	1.60	0.7286
2	1.67	0.378	1.71	0.2132
, 3	1.09	-0.113	1.09	0.0601
4	<del>-</del> 0.010	0.520	-0.05	0.6559
5	1.06	5.746	1.16	5.0444
6	1.99	1.381	2.02	0.9004
7	1.32	1.769	1.38	1.3823
8	2.96	3.440	2.99	2.0934
9	1.94	0.996	1.98	0.5988
10	0.47	5.662	0.57	5.5283
11	1.57	3.631	1.31	11.4882
12	1.61	3.645	0.68	3.4493
13	1.31	0.271		0.6283
14	-1.11	0.094	1.26	11.3853
15	2.15	.9.551	-1.01	
16	0.89	0.327	1.98	0.2795
17	0.01	0.871	-0.05	0.9958
18	0.38	19.541	0.18	19.9085
19	-0.03	6 <b>.7</b> 51	-1.13	6.8530
20	0.13	0.197	0.08	0.3371
			-,00	0.33/1

Table 4.2.8. Wricke (1966) Ecovalence ratio (W $_{i}$ ) and Shukla (1972) stability variance ( $\odot_{i}^{2}$ ) and F values to test  $\odot_{i}^{2}$  with (s-1), s(t-1)(r-1) d.f.

W ₁ 2.0512 1.7588 0.0391 3.4616 5.8851	0.9693 0.8068 -0.1485 1.7529	F 0.3163 0.2633 -0.0485 0.5720	<b></b>
1.7588 0.0391 3.4616	0.8068 -0.1485 1.7529	0.2633 -0.0485	
1.7588 0.0391 3.4616	0.8068 -0.1485 1.7529	0.2633 -0.0485	
0.0391 3.4616	-0.1485 1.7529	-0.0485	
3.4616	1.7529		
		0 5720	
5.8851		0.5120	
	3.0993*	1.0113	
4.2309	2.1802	0.7114	
2.1772	1.0393	0.3391	
14.2095	7.7239*	2.5203	
3,5588	1.8069	0.5896 .	
6.5624	3.4755*	1.1340	
4,6638	2.4207	0.7899	
4.1901	2.1516	0.7040	
0.6748	0.2046	0.0668	
12.5170	6.7837*	2.2135	
13.3433	7.2427*	2.3633	
0.4918	0.1030	0.0336	
3.7253	1.8993	0.6197	
20.7255	11.3439*	3.7015*	
9.7971	5:2726*	1.7204	
2.3953	1.1604	0.3786	
	4.2309 2.1772 14.2095 3.5588 6.5624 4.6638 4.1901 0.6748 12.5170 13.3433 0.4918 3.7253 20.7255 9.7971	4.2309       2.1802         2.1772       1.0393         14.2095       7.7239*         3.5588       1.8069         6.5624       3.4755*         4.6638       2.4207         4.1901       2.1516         0.6748       0.2046         12.5170       6.7837*         13.3433       7.2427*         0.4918       0.1030         3.7253       1.8993         20.7255       11.3439*         9.7971       5.2726*	4.2309       2.1802       0.7114         2.1772       1.0393       0.3391         14.2095       7.7239*       2.5203         3.5588       1.8069       0.5896         6.5624       3.4755*       1.1340         4.6638       2.4207       0.7899         4.1901       2.1516       0.7040         0.6748       0.2046       0.0668         12.5170       6.7837*       2.2135         13.3433       7.2427*       2.3633         0.4918       0.1030       0.0336         3.7253       1.8993       0.6197         20.7255       11.3439*       3.7015*         9.7971       5.2726*       1.7204

^{*} Significant at 5% level.

Table 4.2.9. Correlation tables of the variables  $W_i$ ,  $S_{di}^2$ ,  $S_{di}^3$ ,  $S_{di}^1$ ,  $S_{di}^1$ .

Variables	Wi	2 	S _{di}	_ս	b _i	Sdi
· W _i	1.0000	1.0000	0.8005	-0.0659	-0.1045	0.7213
2		1.0000	0.8005	-0.0660	-0.1045	0.7213
s _{di}			1.0000	-0.0151	-0.0657	0.9350
b _i .				1.0000	0.9947	0.0041
bi					1.0000	-0.0680
s, ².						1.0000
		•		•		

Table 4.3.1. Pooled Analysis of Variance

Source	df	SS	MS	F
Varieties	19	19.1537	1.0081	
Locations	2	11.4685	5.7343	
Var x Loc	38	27.5860	0.7259	2.21*
Average Error	113		0.3292	
_				

^{*}Significant at 5% level.

Table 4.3.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications.

Varieties	L1	L2	L3	Total	Mean
1	2.757	2.807	3.050	8.613	2.871
2	3.140	3.960	3.600	10.700	3.567
3	4.687	4.370	5.700	14.757	4.919
4	3.900	4.450	4.600	12.950	4.317
5	3.657	3.547	3.933	11.137	3.712
<u>.</u> 6	3.643	7.090	3.300	14.033	4.678
7	3.140	4.217	6.567	13.923	4.641
. 8	2.850	4.157	5.183	12.190	4.063
9	3.530	3.637	3.653	10.820	3.607
10	4.050	4.243	4.900	13.193	4.398
11	3.647	3.963	3.067	10.677	3.559
12	3.520	6.313	2.800	12.633	4.211
13	2.267	3.253	2.610	8.130	2.710
14	3.063	5.343	3.317	11.723	3.908
15	3.387	5.133	4.050	12.570	4.190
16	3.543	5.147	5.500	14.190	4.730
17	3.830	4.753	2.657	11.240	3.747
18	3.337	4.433	4.117	11.887	3.962
19	3.623	4.728	4.567	12.913	4.304
20	3.430	4.727	4.677	12.823	4.274
Total	69.000	90.267	81.837		
Mean	3.450	4.513	4.092		

TY LIBRAR

Table 4.3.3. Analysis of variance under ER model

Source	đf	SS	214	F
	59	58.208		((=
Total	19	19.154	1.008	
Varieties	40	39.055	1.000	, v
Env+Variety x Env		11.469		
Environment	1	11.409		
Env x Variety (linear)	19	7.593	0.400	0.4 NS
Pooled Dev.	20	19.993	1.000	3.04*
Variety 1	1	0.046		
2	1	0.001		
3	1	0.954		
4	1	0.089		
5	1	0.077		
6	1	3.861*		
7	. 1	5.068*		•
8	1	s 1.568*		
9	1	0.002		
. 10	1	0.353		
11	1	0.391		
12	1	3.805 <b>*</b>		
13	1	0.042		
14	1	0.829		
15	1	0.100		
16	1	0.643		
. 17	1	1.969*		•
18	1	0.009		
19	1	0.051		
20	1	0.135		
Pooled Error	114	37.5326	0.3292	•

^{*} Significant at 5% level

Table 4.3.4. Analysis of variance under FP model

Source	df.	ss	MS .	F
Genotypes	19	19.154	1.008	
Environment (Joint Regression)	2	11.469	5.734	
Genotype x Env Interaction ( G x E)	38	27.586	0.726	2.20
Heterogeneity (among regression)	19	7.503	0.400	1.22 NS
Remainder	19	19.993	1.052	3.20*
Average Error	114		0.3292	

^{*}Significant at 5% level.

Table 4.3.5. Analysis of Variance under Po moder

Source	df	SS	MS	F
Genotypes	19	59.2784		
Environments	2	19.4418		
Combined regression	1	17.7788		
Residual (E)	1	1.6630		
Interaction	38	58.8090		
Heterogeneity of				
regression	19	24.1697	1.2721	1.10 NS
Residual (G x E)	19	34.6392	1.8231	1.58 NS
Pooled Error	57	65.6824	1.1523	

Table 4.3.6. Environmental indices under ER model (I  $_{j}$  ) and under FP model (Z  $_{j}$  )

Environments	I, ·	z _i
1	-0.5u84	-0.014
2	0.4949	0.659
3	0.400	-0.045

Table 4.3.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models)

Variety	b _i	5 2 d1	b <u>'</u>	s ¹²
. 1	0.08	-0.942	-0.24	-0.100
2	0.77	-0.987	-0.78	-1.12
3	-0.14	-0.034	-0.61	-0.92
4	0.56	-0.899	-0.21	-0.39
5	-0.06	-0.9100	-0.34	-1.14
6	2.93	2.873	3.09	1.21
7	1.37	4.080	0.66	4.06
8	1.43	0.580	1.15	. 0.79
9	0.11	-0.985	0.032	-1.15
10	0.28	-0.634	0.58	-1.62
11	0.20	-0.597	0.15	-1.14
12	2.32	2.817	-0.26	1.48
13	0.90	-0.946	1.26	-1.15
14	2.00	-0.159	0.97	-1.09
15	1.59	-0.887	1.60	-1.00
16	1.63	-0.345	0.83	0.92
17	0.65 (	0.981	1.13	0.36
18	1.05	-0.979	1.13	-0.96
19	1.07	-0.936	0.98	-0.69
20	1.28	-0.852	1.01	-0.94

Table 4.3.8. Wricke (1966) Ecovalence ratio  $(W_i)$  and Shukla (1972) stability variance  $(\bigcirc_i^2)$  and F values to test  $\bigcirc_i^2$  with (s-1), s(t-1)(r-1) d.f.

Variety	W _i	5; ²	F
1	0.5301	0.2542	0.3501
2	0.0320	-0.02225	-0.0311
3	1.7034	0.9060	1.2480
4	0.1978	0.0696	0.0958
5	0.7211	0.3303	0.4963
6	5,9992	3.2926*	4.5355*
7	5.1456	2.8183	3.8823*
8	1.6725	0.8888	1.2244
9	0.4587	0.2145	0.2985
10	0.6542	0.3231	0.4451
11	0.7587	0.3812	0.5251
12	4.8023	2.6276	3.6196*
13	0.0481	-0.0136	-0.0188
14	1.4026	0.7369	1.0178
15	0.3018	0.1273	0.1754
16	0.8736	0.4450	0.6130
17	2.0402	1.0931	1.5058
18	0.0104	-0.0346	-0.0476
19	. 0.541	-0.0595	-0.0141
20	0.1797	0.0597	0.0819

^{*} Significant at 5% level.

Table 4.3.9. Correlation tables of the variables  $W_i$ ,  $S_{di}^{2}$ ,  $S_{di}^{2}$ ,  $S_{di}^{1}$ ,  $S_{di}^{1}$ .

1	2	3	4	5	6
1.0000	1.0000	0.9697	0.5993	0.5691	0.8117
	1.0000	0.9697	0.5993	0.5691	0.8117
		1.0000	0.5743	0.5192	0.9058
			1.0000	0.8972	0.5117
				1.0000	0.4437
					1.0000
		1.0000 1.0000	1.0000 1.0000 0.9697 1.0000 0.9697	1.0000 1.0000 0.9697 0.5993 1.0000 0.9697 0.5993 1.0000 0.5743	1.0000 1.0000 0.9697 0.5993 0.5691 1.0000 0.9697 0.5993 0.5691 1.0000 0.5743 0.5192 1.0000 0.8972

Table 4.4.1. Pooled Analysis of Variance

Source	đf	SS	MS	F
Varieties	19	64738.6264	3407.2959	
Locations	2	112.3125	56.1562	
Var x Loc	38	280081.5010	528.4605	18.92*
Average Error	114		27.9306	

^{*} Significant at 5% level.

Table 4.4.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications

Varieties	L1	L2	L3	Total	Mean
т1	61.333	49.333	58 <b>.</b> 667	169.333	56.444
т2	53.333	-		156.000	52.000
т3	104.000			336.000	112.000
<b>T</b> 4	70.667		-	198.667	62.222
<b>T</b> 5	91.333	68.000		227.333	
Т6	60.000	60.000	49.333	169.333	56.444
т7	90.667	117.333		320.000	106.667
т8	109.333	98.667	98.667	306.667	102.222
Т9	56.000	48.000	49.333	153.333	51.111
T10	74.667	72.000	112.000	258.667	86.222
T11	50.667	<b>5</b> 6.000	98.667	205.333	68.443
'T12	54.667	52.000	53.333	160.000	53.333
T13	57.333	45.333	72.000	174.667	58.222
T14	50.667	48.000	60.667	159.333	53.111
T15	57.333	65.333	48.000	170.667	56.889
T16	109.333	104.000	48.000	261.333	87.111
T17	61.333	61.333	49.333	172.000	57.333
T18	54.667	54.667	54.667	104.000	54.667
T19	60.000	64.000	50.667	174.667	58.222
T20	76.000	69.333	64.000	209.333	69.778
Total	1403.333	1365.333	1378.000		
Mean	70.167	68.267	68.900		89.111
					<del>-</del>

Table 4.4.3. Analysis of variance under ER model

Mile fine the special special special special state and special special special special special special special				
Source	đ£			
Total	<b>5</b> 9	28310.87		
Varieties	19	21579.594	1135.765	
Env + Var x Env.	40	6731.250		
Environment	1	37.501		
Env x Var (linear)	19	1313.543	69.139	0.2569
Pooled Dev.	20	5380.221	269.011	9.6316*
Variety 1	1	18.272		
2	1	0.124		
3	1	24.924		
4	1	28.562		
5	1	38.843		•
6	1	73.140		
7	1,	8.201		•
8	1	8.100		
9	1	1.133		
10	1	983.373*		
11 .	1	1269.863*		
12	1	0.125		
13	1	330.276*		
14	1	89.173		
15	1	138.293*		
16	1	2145.992*		
17	1	92.568		
18	1	0.001		
19	1	92.574		- ·•
20	1	36.683		
Average Error	114	9552.277	27.93	

^{*} Significant at 5% level.

Table 4.4.4. Analysis of variance under FP model

Source	df	SS	MS	F
0				
Genotypes	19	21579.594	<b>1135.7</b> 65	
Environment (joint Regression)	2	37.500	18.750	
Genotype x Env. (Interaction GxE)	38	6693.750	176.151	
Heterogeneity				
(among regression)	19	1313.544	69.134	2.475*
Remainder	19	5380.206	283.169	
Average Error	114		27.930	

^{*} Significant at 5% level.

Table 4.4.5. Analysis of variance under Po moder

Source	df	SS	MS	F'
Genotype	19	49361.93943	•	
Environments	2	68.81250	:	
Combined regression	1	0.21851		
Residual (E)	1	68.59399		
Interaction	38	17783.18786		
Heterogeneity of				
regression	19	5747.70402	<b>3</b> 02 <b>.</b> 510 <b>7</b> 3	4.2242*
Residual (G x E)	19	12035.48312	633.44648	8.8453*
Pooled Error	57	4081,99977	71.61404	

^{*} Significant at 5% level

Table 4.4.6. Environmental indices under ER model ( $I_j$ ) and under FP model ( $I_j$ ).

Environments		z _j	
1	1.0556	1.400	
2	-0.8444	-2.700	
3	-0.2111	1.300	

Table 4.4.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models)

					_
Variety	b _i	s _{di}	b,	s _{di}	
1	5.7150	-65.520	1.96	-62.8098	
2	1.3540	-83.668	0.02	-63,6177	
3	-6.3144	-58,868	-1.06	54.7560	
4	2,8580	-55.229	0.79 .	-22.3753	
5	13.1588	-44.949	4.86	632.3408	
. 6	1.2037	-10.652	-1.43	2.1422	
7	-14.4348	-75.590	-6.07	421.3839	
8	6.0163	<b>-</b> 75 <b>.</b> 692	1.06	54.7505	
9	4.3615	-82.659	2.01	-41.1903	
10	-3.0065	899.581	4.95	1203.8563	
11	-7.8187	1186.071	3.25	-69.7609	
12	1.3540	-83.067	0.75	-69.7609	
13	3.7601	246.485	4.90	-35.5621	
14	0.0758	5.381	1.48	-71.6042	
15	-2.5557	54.501	-3.91	-30.3879	
16	9.3244	2062.200	-10.21	1852.5825	
17	1.3541	8,776	-1.08	-19.8925	
18	0.0007	-83.791	0.49	-71.0129	
19	-0.7512	8.782	-2.18	-19.3890	
20	4.3618	-47.109	-0.44	0.9474	

Shukla (1972) stability variance ( $\sigma_1^2$ ) and F values to test  $\sigma_1^2$  with (s-1), s(t-1)(r-1) d.f.

		2	
Variety	W _i	6 2	F with 2, 114 d.f.
٠			
1	59 <b>.</b> 88 <b>67</b>	23.4841	0.1333
2	0.3607	<del>-</del> 9.5859	-0.0544
3	125.0719 -	59.6981	0.3389
4	35.0274	9.6734	0.0549
5	315.5755	165.5335	0.9397
6	73.2200	30.8915	0.1754
7	454.1387	242.5130	1.3767
8	55.2052	20.8833	0.1186
9	22.2866	2.5952	0.0147
10	1013.4276	553.2290	3.1406
11	1415.4423	776.5707	4.4085
12	0.3607	<b>-9.5</b> 859	-0.0544
. 13	344.5386	181.6241	1.0311
14	90.7756	40.6446	0.2307
15	161.9608	80.1919	0.4552
16	2275.7086	1254.4963	7.1216
17	92.8051	41.7721	0.2371
18	1.8719	-8.7464	-0.0497
19	98.3162	44.8338	0.2545
20	57.8422	22.3483	0.1269

Table 4.4.9. Correlation tables of the variables  $W_i$ ,  $s_i^2$ ,  $s_{di}^2$ ,  $s_{di}^3$ ,  $s_{di}^3$ .

VAR	1	2	3	4	5	6
W _i	1.0000	1.0000	0.9814	-0.0094	-0.3363	0.9504
~i²		1.0000	0.9814	-0.0094	<b>-</b> 0.3363	0.9504
s a			1.0000	0.0531	-0.3016	0.9113
bi				1.0000	0.1795	0.0542
bί					1.0000	-0.2622
$s_{di}^{, 2}$						1.0000

Table 4.5.1. Pooled Analysis of Variance

Source	đf	SS	MS	F
Varieties	19	7.2644	0.3823	
Locations	2	0.5424	0.2712	
Var x Loc	38	1.6643	0.0438	1.37
Average Error	114		0.03186	

Table 4.5.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications.

Varieties	L1	`L2	L3	Total	Mean
1	2.533	2.633	2.400	7.467	2.489
2	2.567	2,600	3.433	8,600	2.867
3	3.467	3.767	3.567	10.800	3.600
4	2,600	2.733	3.200	8.533	2.844
5	3.333	2.900	3.100	9.333	3.111
6	2.567	2.567	2.733	7.867	2.622
7	2.869	3.700	3.133	9.700	3.233
8	3.867	3.500	3.867	11.233	3.744
9	2.533	2.433	3.133	8.100	2.700
10	2.667	2.833	2.833	8.333	2.778-
11	2.533	2.633	2.700	7.867	2.622
12	2.567	2.700	2.700	7.867	2.656
13	2.567	2.567	2.567	7.700	2.567
14	2.567	2.500	2.700	7.767	2.589
15	2.700	2.900	2.700	8.300	2.767
16	3.267	3.633	3.400	10.300	3.433
17	2.667	2.600	3.033	8.300	2.767
18	2.533	2.633	2.767	7.933	2.644
19	2.567	2.567	3.100	8.233	2.744
20	2.700	3.033	3.200	8.933	2.978
Total	55 <b>.667</b>	57.333	60.267		
Meạn	2.783	2.867	3.013		2.887

Table 4.5.3. Analysis of variance under ER model

	 ac	SS	. MS	 F
Source	df 		. MO	
Total	59	9.471		
Varieties	19	7.265	0.382	
Env + Var x Env	40	2.207		
Environment	1	0.543		
Env x Var (linear)	19	0.795	0.042	0.977
Pooled Dev.	20	0.869	0.043	1.344
Variety 1	1	0.002		
2	1	0.051		
3	1	0.045		
4	1	0.005		
5	1	0.079		
6	1	0.002		
7	1	0.353		
. 8	1	0.087		
9	1	0.065		
10	1	0.007		
11	1	0.001		
12	1	0.005		
13	1	0.000		
14	1	0.009		
15	1	0.026		
16	1	0.066		
17	1	0.026		
18	1	0.000		
19	1	0.029		
20	1	0.015		
Average Error	114	10,898	0.032	

Table 4.5.4. Analysis of variance under FP model

Source	đf	SS	MS	F
Genotypes	19	7.265	0.382	
Environment (Joint Regression)	2	0.543	0.271	
Genotype x Env. Interaction GxE)	38	1.663	0.044 .	
Heterogeneity (Among regression)	19	0.795	0.042	1.31
Remainder	19	0.869	0.046	1.44
Average Error	114		.032	

Table 4.5.5. Analysis of variance under PJ model

Source	đf	ss	MS	F
Genotypes	19	17.96759		
Environments	2	0.88580		
Combined Regression	1	0.84323		
Residual (E)	1	0.04257		
Interaction	38	2.86761		
Heterogenelty of				
Regression	19	1.12504	0.0592	2.40*
Residual (G x E)	19	1.74257	0.0917	3.72*
Pooled Error	5 <b>7</b>	1.40479	0.02465	

^{*} Significant at 5% level.

Table 4.5.6. Environmental indices under ER model (I  $_j$  ) and under FP model (Z  $_j$  ).

Environments	$\mathbf{t^{r}}$	z _j	
1	-0.1044	-0.112	
2	-0.0211	-0.047	
3	0.1256	0.158	
	·		

Table 4.5.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models)

Varlety	b _i	S _{di} 2	b'i	s _{di} 2
1	62	094	.199	-0.0246
2	3.99	-0.044	0.20	-0.0246
3	0.23	-0.050	1.24	.0007
4	2.67	-0.091	1.54	0233
5 ·	7428	-0.016	0.11	02313
6	.7718	-0.093	-0.46	.2920
7	.5861	0.257	1.93	.0723
8	.2856	-0.008	1.20	0035
9	2.86	-0.030	.77	0127
10	0.64	-0.008	.76	0222
11	0.69	-0.095	.48	.0033
12	0.51	-0.091	.30	0243
13	0.0001	-0.096	398	0223
14	0.67	-0.087	.26	.0674
15	16	-0.070	27	.0468
16	0.33	-0.030	1.27	
17	1.75	-0.070	-0.08	-0.199
18	1.00	-0.095	.74	-0.0246
19	2.47	-0.071	2.53	-0.0177
20	2.06	<b>-0.081</b>	2.24	-0.0121

Table 4.5.8. Wricke (1966) Ecovalence ratio ( $W_i$ ) and Shukla (1972) stability variance ( $\sim \frac{2}{i}$ ) and F values to test  $\sim \frac{2}{i}$  with (s-1), s(t-1)(r-1) d.f.

Variety	W _i	∽i ²	F 1 with 2,114 df
1	.0725	<b>.</b> 03 <b>7</b> 8	.8635
2	.2931	•1609 `	3.6626*
3	.0613	.0316	.7225
4	.0806	.0423	.9668
5	.1615	.0873	1,9929
6	.0038	0003	0075
7	.3576	.1962	4.4800*
8	.1013	.0536	1.2290
9	•1589 ·	.0858	1.9600
10	•0108	.0036	.0817
11	.0036	0005	0104
12	.0111	.0037	.0855
13	.0271	.0126	.2884
14	.0116	.0040	.0911
15	.0622	.0321	.7338
16	.0780	•0909	<b>.</b> 9339
17	.0788	.0204	.4660
18	.0002	0023	0536
19	.0828	.0436	.9950
20	.0453	0.227	.5186
	• • • • • • • • • • • • • • • • • • • •		

* Significant at 5% level

Table 4.5.9. Correlation tables of the variables  $w_i$ ,  $c_i^2$ ,  $s_{di}^2$ ,  $b_i^1$ ,  $s_{di}^1$ .

Variables	177	2	3	4	5	6
1	1.0000	1.0000	0.8078	0.2978	0.2596	0.6710
2		1.0000	0.8078	0.2978	0.2596	0.6710
3			1.0000	-0.0613	0.3628	0.8943
4				1.0000	0.3344	-0.3493
5				•	1.0000	0.2104
. 6						1.0000

Source	df	ss	MS .	F
Varieties	19	54.1386	2.8494	
Locations	2	2.0274	1.0137	
Var x, Loc	38	10.5444	0.2775	2.696
Average Error			0.1029	•

Table 4.6.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications

Varieties	L1	L2 '	L3	Total	Mean
T1	2.267	2.833	2.200	7.300	2.433
т2	1.100	1.267	.833	3.200	1.067
т3	4.167	2.933	3.767	10.867	3.622
T4	2.533	2.400	2.633	7.567	2.522
<b>T</b> 5	2.400	2.933	1.567	6.900	2.300
т6	3.933	3.433	2.433	9.800	3.267
т7	1.500	2.033	2.433	5.967	1.989
<b>3T</b>	1.467	2.333	2.600	6.400	2,133
T9	3.167	3.000	2.033	8,200	2.733
<b>T10</b>	.067	.167	.167	.400	.133
<b>T11</b>	5.233	4.300	3.533	13.067	4.356
T12	3.167	3.500	2.300	8.967	2.98 <b>9</b>
<b>T13</b>	2.233	1.633	833	4.700	1.567
T14	4.233	3.700	1.933	9.867	3.289
Т15	2.967	2.767	2.800	8.533	2.844
т16	2.100	2.067	2.433	6.600	2.200
<b>T17</b>	3.467	2.967	2.333	8.767	2.922
T18	3.267	3.633	3.333	10.233	3.411
T19	.800	1.167	1.667	3,633	1.211
<b>T2</b> 0	2.367	2.800	2.533	7.700	2.567
Total	52.433	51.867	44.367		
Mean	2.622	2.593	2.218		2.478

Source	df	SS	MS	F
			7	
Total	59	66.710		
Varieties	19	54.139	2.849	
Env + Var x Env	40	12.572		
Environment	1	2.027	·	
Env x Variety				
(linear)	19	7.860	.414	3.08*
Pooled Dev.	20	2 <b>.6</b> 85	.134	1.30*
Variety 1	1	.175		
2	1	.018		
3	1	.777*		
. 4	1	.011		
5	1	.083		
6	1	.083	•	
7	1	.117		٠.
8	1	.331		
9	1	.004		
10	1	.005		
11	1	.354		•
12	1	.083		
13	1	.135		
14	1	.074	•	
15	1	.019		
16	1	.002		
17	1	.095		•
18	1	.070	·	
19	1	.050		
20	1	.095		
Average Error	114	11.731	.103	

^{*} Significant at 5% level

Table 4.6.4. Analysis of variance under FP model

Source	df	SS	MS	F
Genotypes	19	54.139	2.849	
Environment (Joint Regression)	2	2.027	1.014	
Genotype x Env. (Int G x E)	38	10.544	.277	
Heterogeneity				
(among Regression)	19	7.860	.414	4.019*
Remainder	19	2.685	.141	1.369
Average Error	114		.103	

^{*} Significant at 5% level

Table 4.6.5. Analysis of variance under PJ model

Source	đf	SS	MS	F
Genotypes	19	116.03473		
Environments	2	6.22070		
Combined Regression	1	1.60357		
Residual (E)	1	4.61713		
Interaction	38	27.71942		
Heterogeneity of Regression	19	10.10463	.5318	1.630 NS
Residual (G x E)	19	17.61479	.9270	2.840*
Pooled Error	57	18.59985	.32631	

^{*} Significant at 5% level

Table 4.6.6. Environmental indices under ER model (I  $_j$  ) and under FP model (Z  $_j$  ).

Environments	ĭj	zj	
1	.1439	-0.045	
2	.1156	0.210	
3	2594	-0.165	•

Table 4.6.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models)

Variety	b _i	2 Sdi	b'i	s _{di}	
1	.82	134	1.67	258	
2	.87	290	1.41	266	
3	38	.468	-2.73	.579	
4	41	298	-2.96	305	
5	2.74	121	3.29	.234	
6	3.27	225	2.24	1.2409	
7	-1.78	192	.80	0580	
8	-1.91	.023	18	.3179	
9	2.71	305	2.66	1981	
10	14	304		3220	
11	3.29	.040	.44	.341	
12	2.60	226	3.16	.003	
13	2.90	174	1.43	1.735	
14	5.28	<b>~.</b> 235	3.08	2.074	
15	.20	290	73	263	
16	89	307	-2.29	226	
17	2.33	214	1.54	.605	
18	.25	239	1.69	313	
19	-1.80	559	-1.14	.041	
20	.70	214	1.08	326	

Table 4.6.8. Wricke (1966) Ecovalence ratio ( $W_i$ ) and Shukla (1972) stability variance ( $\sigma_i^2$ ) and F values to test  $\sigma_i^2$  with (s-1), s(t-1)(r-1) d.f.

		·	
Variety	W _i	5 i	F
1	0.1780	0.0835	0.3009
2	0.0200	-0.0043	-0.0154
. 3	0 <b>.</b> 970 <b>7</b>	0.5339	1.8879
4	0.2115	0.1021	0.3678
₋ 5	0.4946	0.2594	0.9347
6	0.6053	0.3208	1.1562
7	0.9009	0.4851	1.7482
8	1.1914	0.6465	2.3297
9	0.3007	0.1516	0.5465
10	0.1368	0.0606	0.2184
11	0.8846	0.4760	1.7155
12	0.4320	0.1746	0.6292
13	0.5003	0.2625	0.9460
14	1.9297	1.0566	3.8079*
15	0.0841	0.0313	0.1128
` 16	0.3643	0.1869	Q.6737
17	0.2740	0.1368	0.4931
18 ·	0.1275	0.0554	0.1997
19	0.8449	0.4539	1.6359
20	0.1833	0.0864	0.3113
	0.1033	0.0004	0.011

^{*} Significant at 5% level.

Table 4.6.9. Correlation tables of the variables  $W_i$ ,  $S_{di}^2$ ,  $S_{di}^2$ ,  $b_i$ ,  $b_i$ ,  $S_{di}^2$ 

_							
_	Variables	1	2	3	4	5	6
	1	1.0000	1.0000	0.4092	0.2032	0.0401	0.6741
	2		1.0000	0.4093	0.2032	0.0401	0.6741
	. 3			1.0000	-0.0800	-0.2812	0.2183
	4				1.0000	0.6920	0.6275
	5					1.0000	0.2987
	6					`	1.0000

Table 4.7.1. Pooled Analysis of variance

Source	df	SS	MS	F
Varieties	19	1.5236	0.0802	
Locations	2	5.9151	2.9575	
Var x Loc	38	0.8132	0.0214	2.78
Average Error	114		0.0077	

Table 4.7.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications

Varieties	L1	L2	L3 [°]	Total	Mean	
T1	2.500	2.557	2.04 <b>0</b>	7.097	2.366	
·T2	2.500	2.600	2.130	7,230	2.410	
т3	2,560	2.963	2.440	7.963	2.654	
Т4	2.567	2.660	2.050	7.287	2.429	
т5	2.600	2.623	2.153	7.377	2.459	
т6	2.420	2.793	1.943	7.157	2.386	
т7	2.573	2.617	2.010	7.200	2.400	
Т8	2.707	2.757	2.120	7.583	2.528	
Т9	2.414	2.733	1.953	7.103	2.368	
T10	2.813	3.387	2.277	8.477	2.8 <del>2</del> 6	
T11	2.857	3.390	2.440	8.687	2.896	٠
T12	2.520	3.297	2.033	7.850	2.617	
T13	2.340	2.717	2.130	7.187	2.396	
T14	2.763	2.903	2.160	7.827	2.609	
T15	2.873	3.240	2.273	8.387	2.796	
T16	2.513	2.760	2.090	7.363	2.454	
<b>T17</b>	2.760	2.947	2.080	7.787	2,596	
T18	2.787	2.757	2.030	7.573	2.524	
T19	2.970	2.880	2.137	7.987	2.662	
<b>T20</b>	2.913	3.080	2.137	8.130	2.710	
Total	52.963	57.660	42,627			
Mean 	2.648	2.883	2.131		2.554	

Table 4.7.3. Analysis of variance under ER model

Source	đf	SS	MS	F
Total	59	8.252		
Varieties	19	1.523	0.080	
Env + Var x Env	40	6.728		
Environment	1	5.915		
Env x Var (linear)	19	0.396	0.021	1.00
Pooled Dev.	20	0.418	0.021	2.73
Variety 1	1	0.007		
2	1	0.001		
3	1	0.037		
4	1	0.007		
5	1	0.010		
6	1,	0.007		
7	1	0.014		
8	1	0.014		
9	1	0.003		
10	1	0.033		
11	1	0.036		
12	1	0.093		
13	1	0.024		
14	1	0.005		
15	1	0.003		
16	1	0.001		•
17	1	0.005		
18	1	0.042		••
19	1	0.066		
20	1	0.010		
Average Error	114	2.645	0.0077	
-				

Table 4.7.4. Analysis of variance under FP model

Source	đf	SS	MS	F
Genotypes	19	1.523	0.080	
Environments (Joint Regression)	2	5,915	2.957	
Geno x Env. (Interaction GxE)	38	0.813	0.021	
Heterogeneity				
(Among Regression)	19	0.395	0.021	2.73*
Remainder	19	0.418	0.22	2.86*
Average Error	114		0.0077	
~				

^{*} Significant at 5% level

Table 4.7.5. Analysis of variance under PJ model

Source	df	នប	МS	F,	
Genotypes	19	2.74768			
Environments	2	13.85321			
Combined regression	1	12,68947			
Residual (E)	1	1.16374			
Interaction	38	2.03424			
Heterogeneity of					
Regression	19	0.72799	0.0038	0.09	N.S
Residual ( $G \times E$ )	19	1.30625	0.0688	1.64	N.S
Pooled Error	57	2.39349	0.04199		

Table 4.7.6. Environmental indices under ER model (I  $_{j}$  ) and under FP model (Z  $_{j}$  )

~			
Environments	^I j	$\mathbf{z_{j}}$	
1	0.0940	0.157	
2	0.3288	0.223	•
3	-0.4228	-0.381	
		-	

Table 4.7.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models)

Variety	b _i	S _{di}	b'i	s,`²
1	0.72	-0.016	0.83	-0.0414
2	0.64	-0.022	0.91	-0.0391
3	0.62	0.013	0.86	-0.0640
4	0.85	-0.016	1.08	-0.0396
, <b>5</b>	0.66	-0.013	7.19	-0.0344
6	1.10	-0.016	1.20	0.0183
7	0.85	-0.010	1.06	-0.0353
8	0.89	-0.009	1.35	-0.0404
9	1.01	-0.020	1.13	-0.0077
10	1.40	0.010	1.56	0.1826
11	1.19	0.012	1.24	0.0860
12	1.56	0.070	1.73	0.2658
13	0.72	0.001	0.80	0.0828
14	1.02	-0.018	1.55	-0.0406
15	1.27	-0.021	1.64	0.1034
16	0.88	-0.022	1.01	-0.0133
17	1.18	-0.019	1.38	-0.0133
18	1.05	0.019	1.19	-0.0420
19	1.09	0.043	1.38	-0.0235
20	1.30	-0.013	1.39	-0.0316

Table 4.7.8. Wricke (1966) Ecovalence ratio  $(W_i)$  and Shukla (1972) stability variance  $(5^2)$  and F values to test  $5^2$  with (s-1), s(t-1)(r-1) d.f.

Variety	^W i	2 i	F with 2,114 d.f
1	0.0301	0.0155	0.7040
2	0.0397		0.7249
 3	0.0397	0.0209	0.9748
4		0.0429	2.0039
	0.0144	0.0068	0.3176
5	0.0430	0.0227	1.0606
6	0.0102	0.0045	0.2081
7	0.0200	0.0099	0.4624
8	0.0174	0.0083	0 <b>.</b> 396 <b>7</b>
9	0.0174	0.0083	0.3967
10	0.0811	0.0439	2.0504
11	0.0462	0.0245	1.1427
12	0.1854	0.1018	4.7582
13	0.0472	0.0250	1.1688
14	0.0055	0.0019	0.0876
15	0.0235	0.0119	0 <b>.</b> 554 <b>7</b>
16	0.0052	0.0017	0.0790
17	0.0141	0.0066	0.3093
. 18	0.0428	0.0226	1.0545
19	0.0686	0.0369	1.7249
20	0.0363	0.0190	0.8867

Table 4.7.9. Correlation tables of the variables  $W_i$ ,  $S_i^2$ ,  $S_{di}^2$ ,  $b_i$ ,  $b_i^3$ ,  $S_{di}^{1/2}$ 

				_		
Varieties	. 1	۵	3	<del>'</del> t	5	( ₀
1	1.0000	1.0000	0.8853	0.4127	0.3043	0.7733
2		1.0000	0.8851	0.4127	0.3046	0.7735
3			1.0000	0.4468	0.3620	0.6134
4				1.0000	0.8962	0.5940
5					1.0000	0.4648
6						1.0000

Table 4.8.1. Pooled Analysis of Variance

Source	df	SS MS F
Varieties	19	367.7266 19.3540
Locations	2	298.6875 149.3438
Var x Loc	38	112.3203 2.9558 3.242
Average Error	114	0.9117

Table 4.8.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications.

Varieties	L1	L2	L3	Total	Mean	
1	39.900	35 <b>.</b> 86 <b>7</b>	30.433	106.200	35.400	
2	39.900	37.867	32.300	110.067	36.689	
3	42.900	39.600	34.967	117.467	39.156	
4	38.133	36.000	31.333	105.467	35.156	
5	41.533	37.167	38.667	117.367	39.122	
6	42.467	38.800	34.800	116.067	38.689	
7	39.367	30.767	34.700	104.833	34.944	
. 8	38.900	34.667	36.267	109.833	36.611	
9	40.433	36.300	33.633	110.367	36.789	
10	38.300	34.800	33.233	106.333	35.444	
11	41.433	39.700	40.033	121.167	40.389	
12	44.767	40.300	40.467	125.533	41.844	
. 13	44.967	37.900	35.467	118.333	39.444	
14	43.667	40.033	40.533	124.233	41.444	
15	40.767	38,200	38.433	117.400	39.133	
16	44.933	38.967	37.933	121.833	40.611	
17	42.000	39.200	41.167	122.367	40.789	
18	40.200	37.400	37.400	115.000	38.333	
19	37.300	30.567	29.433	97.300	32.433	
20	38.633	35.267	35.300	109.200	36.400	
Total	820.500	739.367	716.500			
Mean	41.025	36.968	35.825			

Table 4.8.3. Analysis of variance under ER model

Source	df	SS	MS	F
Total	59	778,727		
Varieties	19	367.711	19.353	
Env + Var x Env.	40	411.016	-	
Environment	1	298.669		
Env x Vareity (linear)	19	54.651	2.876	0.997
Pooled Dev.	20	57.698		3.16
Variety 1	1	6.783		
2	1	9.160		
3	1.	5.039		
4	1	6.071		
5	1	2.740		
6	1	3.234		
7	` 1	14.845		,
8	. 1	2.866		
9 .	1	0.829		
10	. 1	0.125		
11	1	0.248		
12	1	0.748		
13	1	0.074		
14	1	0.854		
15	1	0.337		
16	1	0.156		
17	1	2.790		
18	1	0.229	•	۰.
19	1	0.216		
20	1	0.355		
Average Error	114	311.801	0.912	

Table 4.8.4. Analysis of variance under FP model

Source				
Genotypes	19	367.711	19.353	
Environment (Joint Regression)	2	298.672	149.336	
Geno x Env. (Interaction GxE)	38	112.344	2.956 .	
Heterogeneity				
(Among Regression)	19	54.648	2.876	3.15*
Remainder ·	19	57.696	3.037	3.33*
Average Error	114		0.912	

^{*} Significant at 5% level

Table 4.8.5. Analysis of variance under PJ model

			~	
Source	df	SS	MS	F
Genotypes	19	725.39062		
Environments	2	573.98438		
Combined Regression	` 1	573.70073		
Residual (E)	1	2.28406		
Interaction	38	233.23435		
Heterogeneity of				
Regression	19	137,14879	7.21835	2.89*
Residual ( $G \times E$ )	19	96.08557	5.0571	2.025*
Pooled Error	57	142.32813	2.49698	

^{*} Significant at 5% level

Table 4.8.6. Environmental indices under ER model (I ) and under FP model (Z  $_{\rm f}$  )

Environments	Į į	z	
1	3.0856	3.227	
2	-0.9711	-1.133	
3	-2.1144	-2.093	

Table 4.8.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models

Variety	b _i	s _{di} 2	b _i	sdi	
1	1.6025	4.047	1,5785	6.3024	
. 2	1.2052	6.425	1.1438	4.1813	
3	1.3377	2.304	1.0068	-0.7673	
4	1.1014	3.336	1.1533	4.7147	
5	0.6898	0.005	0.6902	-0.6142	
6	1.3238.	0.499	1.1958	-0.2224	
7	1.2199	12.110	1.4468	.1.6519	
8	0.6481	0.131	0.4970	5.0422	
. 9	1.2315	-1.906	1.0149	-1.4504	
10	0.9449	-2.610	0.6566	-2.4443	
11	0.3109	-2.487	0.3339	-2.1838	
12	0.8992	-1.987	0.7285	-2.3685	
13	1.8045	-2.661	1.6273	-1.0303	
<b>14</b>	0.6798	1.882	0.5297	-2.4930	
15	0.4972	-2.398	0.4741	1.1046	
16	1.3790	-2.579	1.5347	-1.5957	
. 17	0.3000	0.054	0.4480	0.0634	
18	0.5785	-2.506	0.5871	-1.9146	
19	1.5516	-2.519	1.8439	-2.4821	
20	0.6908	-2.380	0.4000	-2.0479	

Table 4.8.8. Wricke (1966) Ecovalence ratio (W $_i$ ) and Shukla (1972) stability variance (  $\odot_i^2$ ) and F values to test  $\odot_i^2$  with (s-1), s(t-1)(r-1) d.f.

Variety	W _i	2 آ i	F(i) with 2,114 d.f.
1	12.2030	6.6152	2.2379
2	9.8086	5.2839	1.7875
3	6.7413	3.5809	1.2114
4	6.2244	3.2938	1.1143
5	4.1759	2.1557	0.7293
6 ·	4.7990	2.5019	0.8464
7	15.5663	8.4837	2.8700
8	4.7149	2.4552	0.8306
9	1.6288	0.7407	0.2506
10	0 <b>.16</b> 90	-0.0704	-0.0238
11	7.3395	3.9133	1.3238
12	0.8981	0.3347	0.1132
13	9.7380	5.2458	1.7746
14	2.3836	1.1600	0.3924
15	4.1110	2.1197	0.7171
16	2.3001	1.1136	0.376 <b>7</b>
17	10.1064	5,4504	1.8438
18	2.8821	1.4370	0.4861
19	4.7586	2.4794	0.8388
20	1.7817	0.8256	0.2793

Table 4.8.9. Correlation tables of the variables  $W_i$ ,  $S_{di}^2$ ,  $S_{di}^2$ ,  $S_{di}^3$ ,  $S_{di}^3$ 

	~~~~~					
Variables	1	2	3	4	5	6
1	1.0000	1.0000	0.7678	0.2692	0.4062	0.5749
2		1.0000	0.7678	0.2692	0.4062	0.5749
3			1.0000	0.2594	0.3420	0.6581
4				1.0000	0.9299	0.2155
5					1.0000	0.2486
6 .						1.0000
_						

Table 4.9.1. Pooled Analysis of variance

~			~	
Source	df SS		MS	F
Varieties	2	654.1250	327.0625	
Locations	19	2034.4998	107.0790	
Var x Loc	38	606.5001	15.9605	30.7821*
Average Error	114		0.5187	

^{*} Significant at 5% level

Table 4.9.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications.

Varieties	L1	L2	L3 `	Total	Mean
ma.	01 222	70 222	76 000	005 669	00 554
T1	81.333	-	-	235.667	78.556
T2	81.000	-		237.000	79.000
Т3	89.333	86.333	86.000	261.667	87.222
T4	81.667	82.333	77.667	241.667	80.556
T 5	81.333	74.667	77.667	233.667	77.889
T6	81.000	82.667	77.333	241.000	80.333
T7	88.667	82.333	85.333	256.333	85.444
T8	80.667	76.000	77.667	234.333	78.111
Т9	81.333	80,667	78.000	240.000	80.000
T10	83.000	93.000	86.333	252.333	84.111
T11	90.667	83.333	84.667	258,667	86.222
T12	93.667	90.333	79.000	263.000	87.667
T13	82.000	79.667	75.333	237.000	79.000
T14	86.333	83.333	82.000	249.667	83.222
T15	88.667	85.667	84.000	256.000	85.333
T16	89.667	84.000	86.667	262.000	87.333
T17	90.333	84.000	81.667	256.000	85 .3 33
T18	82.000	80.667	76.333	239.000	79 .667
T19	82.335	80.000	77.667	240.000	80,000
T20	81.667	83.000	77.333	242.000	80 . 66 7
Total	1696.667	1635.333	1605.000		
Mean	84.833	81.767	80.250		
		•		,	

Table 4.9.3. Analysis of variance underER model

Source	đf	SS	MS	F
				, ,
Total	59	1098.438		
Varieties	19	678.187	35.694	
Env + Var x Env	40	420.250		
Environment	· 1	218.078	•	
Env x Var (Linear)	19	88.983	4.683	0.82 N.S
Pooled Dev.	20	113.148	5.657	10.91*
Variety 1	1	0.206		
2	1	1.540NS		
3	1	0.380NS		
4	1	7.176*		
5	1	11.401*		
6	1	10.899*		
7	1	10.811*		
8	1	4.540*		
9	1	1.571		
10	1	3.193*		
11	1	7.076*		
12	1	26.966*		
13	1	2.904*		
14	1	2.835*		
15	1	3.139		
16	1	2.549*		
17	1	0.182		
18	1	3.880*	• •	
. 19	1	0.398		~-
20	1	11.503*		
Average Error	114	39.1357	0.5187	

^{*} Significant at 5% level

Table 4.9.4. Analysis of variance under FP model

Source	df	SS	MS	F	
			~~~~		
Genotypes	19	678.187	35.694		
Environment (Joint Regression)	2	218.062	109.031		
Genotype x Environ (Interaction G $\times$ E)	38	202.187	5.321		
Heterogeneity (Among Regression)	19	88.998	4.684	9.03*	
Remainder	19	113.189	5 <b>.</b> 95 <b>7</b>	11.48*	
Average Error	114		0.5187		

^{*} Significant at.5% level

Table 4.9.5. Analysis of variance under PJ model

*****				
Source	df	្ននន	ыз	F,
				<b>--</b>
Genotypes	19	1379.50003		
Environments	2	432.93752		
Combined Regression	1	406.90803		
Residual (E)	1	26.02948		
Interaction	38	433.06250		
Heterogeneity of Regression	19	177.15246	9.3238	4.27*
Residual (GxE)	19	255.91003	13.469	6.16*
Pooled Error	57	124.50001	2.18421	

^{*} Significant at 5% level

Table 4.9.6. Environmental indices under ER model (I  $_{\rm j}$  ) and under FP model (Z  $_{\rm j}$  )

Environments	I _j	z _j
1	2.5500	2.733
2	., <del>-</del> 0.5167	-0.967
3	-0.0333	-1.767
		,

Table 4.9.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models)

				•	
Variety	b _i	s _{di}	b' ₁	s _{di} 2	
1	1.14	-1.35	.1.09		
2	0.66	-0.02		-0.83	
3			0.63	-1.66	
	0.76	-1.18	0.75	-2.10	
4	0.71	5.62	0.53	8.59	
5	1.00	9.84	1.36	8.64	
6	0.60	9.34	0.33	14.75	
7	0.92	9.26	0.88	1.57	
8	0.79	2.98	0.72	0.03	
9	0.65	0.01	0.50	0.08	
10	-0.62	1.64	-0.66	2.37	
11	1.47	5.52	1.51	0.32	
12	2.89	25.41	2.47	44.44	
13	1.35	1.35	1.16	4.37	
14	1.05	1.28	1.54		
15	1.12	` 1.58	1.30	-1.40	
16	0.75	0.99	0.60	-2.07	
17	1.92	-1.37	1.05	-0.17	
18	1,12	2.32	0.86	4.72	•
19	0.98	-1.16	0.52	-0.49	
20	0.74	9.95		16.84	

Table 4.9.8. Wricke (1966) Ecovalence ratio ( $W_i$ ) and Shukla (1972) stability variance ( $s_i^2$ ) and F values to test  $s_i^2$  with (s-1), s(t-1)(r-1) d.f.

Variety	W _i	2 ⁶ i	F
1	0.4113	-0.0670	-0.0126
2	2.8372	1.2807	0.2408
3	0.9891	0.2540	0.0477
4	8,6669	4.1861*	0.07869
5	11.4002	6.0379*	1.1350
6	12.6039	6.7066	1.2607
7	10.8779	5.7478	1.0805
8	5.0668	2.5194	0.4736
9	2.8817	1.3054	0.2454
10.	31.8669	17.4083	3.2725
11	9.4446	4.9515	0.9308
12	66.0372	36.3918	6.8411
13	4.2705	2.0770	0.3904
14	2.8557	1.2910	0.2427
. 15	3.3039	1.5399	0.2895
16	3.2372	1.5029	0.2825
17	9.3372	4.8918	0.9196
18	4.0372	1.9474	0.3661
19	0.4039	-0.0711	-0.0134
20	12.2150	6.4906*	1.2201

^{*} Significant at 5% level

Table 4.9.9. Correlation tables of the variables  $W_i$ ,  $G_i^2$ ,  $S_{di}^3$ ,  $b_i$ ,  $b_i^1$ ,  $S_{di}^{12}$ .

Variables	1	2	3	4	5	6
W	1.0000	1.0000	0.8179	0.3951	0.2785	0.8546
vi 2		1.0000	0.8179	0.3951	0.2785	0.8546
s _{di}			1.0000	0.4845	0.4022	0.9230
b _i				1.0000	0.9464	0.5192
b _i '					1.0000	0.5137
s _{di}						1.0000

Table 4.10.1. Pooled Aanalysis of variance

Source	đf	SS	MS	F
Locations	2	0.7163	0.3582	
Varieties	19	13.4005	0.7053	
Interaction	38	1.6393	0.0431	1.1216
Pooled error mean square of interaction pooled				
error	152			
Pooled error	114			
Total	179	0.0385		

Table 4.11.1. Pooled analysis of variance

Source	df					
Varieties	19	10628.2496	559.3816			
Locations	2	79330.7495	39665.3747			
Interaction	38	6101.7503	. 160.5724	1.4937		
Pooled error mean squar of interactions pooled	e:					
error	152					
Pooled error	114					
Total	179		107.500			

Table 4.13.1. Pooled Analysis of variance

Source भेत्राचे	df	MS	F
4 1 7			
Varieties	19	8189870.8343	
Locations	2	3142588853.8360	
Var x Loc	38	7238507.7476	2.43*
Average Error	114	2969836.599	

^{*} Significant at 5% level

		~~~~			
Varieties	Ļ1	L2	L3	Total	Mean
I1	5755.317	21210.539	2845.630	29811.487	9937.163
T 2	6524.689	23076.851	2805.259	32406.802	10802.267
13	6969.053	25889.849	4218.717	37077.624	12359.206
14	7526.583	25621.476	2866.437	36014.494	12004.832
15	7539.487	26015.117	3078 .403	36633.009	12211;004
16	7672.564	35243.523	3548 . 68 7	46464.776	15488.258
17	6122.536	30048.141	3647.215	39817.893	13272.631
I8	7843.451	30502.543	3065.168	41411.161	13803.720
· 19	6505.559	21005.783	3147.676	30659.017	10219.674
I10	7192.800	21494.154	3439.613	32126.567	10708.855
- I11	5382.196	22200.772	3786.516	31372.485	10457.495
I12	5356.716	30565.891	2397.274	38319.881	12773.293
I13	4879.121	21746.175	3387.070	30012.369	10004.123
I14	4238.147	30996.079	3105.901	38340.129	12780.044
I15	5863,988	27209.312	2915.904	35989.117	11996.372
I16	6214.356	31619.820	2395.417	40229.606	13409.868
I17	5900.465	23691.959	1568 . 25 7	31160.678	10386.894
. T 18	6737.633	18657.236	2437.216	27832.086	9277.361
. I19	6014.778	24982.173	1916.273	32913.222	10971.074
120	7028.679	31923 .5 77	3040.487	41922.745	13997.579
Total 1	27268.052	523701.095	59616.127		
Mean	6363.403	26185.054	2980.806		

Table 4.13.3. Analysis of variance under Ext model

Source	df	SS	, MS F
_			
Total	5 9	6715853691.1010	
Varieties	19	155611648.5595	8190086.3647
Env + Var x Env	40	6560242652.8930	
Environment	1	6285182476.0437	
Env x Var (linear)	19	259617280.9600	13664066.7915 4.6*
Pooled Dev	20	15442240.2381	772112.0357 .260N
Variety 1	1	30751.9984	
2	1	333520.0071	
3	1	95167.9992	
'	1	1029792.0703	
5	1	712928.0090	
6 ,	1	140160.0027	
7	1	1076671.9579	
8	1	345856.0228	
9	1	325099.0002	
10	1	717855,9780	
11	1	679888.0100	
12	1	750944.0422	•
13	1	800815.9637	
14	1	4914015.7699	
15	1	200735.9981	
16	1	110783.9941	
17	1	699936.0561	
18	1	2140336.0366	•
19	1	309279.9901	
20	1	27711.9994	
Average Error	114	338561296.4630	2969835,933

^{*} Significant at 5% level

Table 4.13.4. Analysis of variance under FP model

Source	df	SS	MS	F			
Genotypes	19	155611648.559	8190086.364				
Environment (Joint Regress)	2	6285182476.043	3142591238.021				
Genotype x Env. Interaction (GxE)	38	275060248.374	7238427.639				
Heterogeneity (among regression	19 1)	259617805.480	13664095.401	4.6*			
Remainder	19	15442430.973	812759.590	.27			
Pooled Error	114		8909506.797				

^{*} Significant at 5% level

Table 4.13.5. Analysis of variance under PJ model

Source	df	ss	MS F
		<u></u>	
Genotypes	19	354635787.01019	
Environments	2	12619143558.50219	
Combined Regress	1	12616370916.36657	
Residual (E)	1	1772543.90716	
Interaction	38	652068853.37829	
Heterogeneity of			
regression	19	619597816.46728	11.24*
Residual (GxE)	19	32471039.29519	0.58
Pooled Error	57	495960044.86083	8701053.61958

^{*} Significant at 5% level

Table 4.13.6. Environmental indices under ER model (I_j) and under FP model (Z_4)

Environments	ť	z _j
1	-5479.6805	-5683.7482
2	14341,9671	13584.9214
3	-8862.2770	-8593.1532

Table 4.13.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and FP models)

Variety	b _i	s _{di} 2	β_{i}	b _i	s' 2
1	.79	-8878755.57	21	.85	-8388030.05
2	.86	-8575986.88	14	1.01	-8645886,42
3	.94	-8814338,68	06	.95	-8690717.70
4	.95	-7879714.97	04	.98	-6683165,55
5	.97	-8196578.98	03	.96	-7369502.07
6	1.37	-8769346.24	.37	1.31	-8647677.42
7	1.16	-7832834-72	.16	1.15	-7506029.94
8	1.17	-8563651.08	.17	1.20	-8326878.55
9	.76	-8584419.25	24	.70	-7516989.71
10	.76	-8191651.34	.24	.82	-7 935182.09
11	.81	-8229619.03	18	.84	-8261358.26
12	1.23	-8158563.61	.23	.98	-8637598.04
13	.81	-8108690.26	19	.63	-8870133.59
14	1.25	-3995491.03	.25	1.31	-4398429.87
15	1.06	-8708770.75	.06	1.13	-8439325.33
16	1.27	-8798723.22	.27	1.34	-8698366.17
17	.93	-8209570.88	07	.92	-7460318.09
18	.67	-6769171.24	33	.58	-5649909 .97
19	.98	-8600227.36	02	1.12	-8444286.35
20	1.25	-8881794.93	.25	1.33	-8528382.30

Table 4.13.8. Wrick (1966) Ecovalence ratio (W_i) and Shukla (1972) stability variance $(-c_i^2)$ and F values to test $-c_i^2$ with (s-1) s(t-1)(r-1) d.f.

			_,
Variety	w _i	2 	F(2,114) d.f
			4 0004
1	14236163.1993	7506837.3680	1.0371
2	6467820.6443	3191091.0606	0.4408
3	1187235.3553	257432.7707	.0356
4	1605201.7211	489636.2304	.0676
5	1015490.2935	162018.8140	.0224
6	44230451.5838	24170329.5707	3.3391*
7	9294809.3414	4761641.6255	.6578
, 8	9306138.0386	4767934.3223	.6587
9	18966448.7838	10134774.4464	1.4001
10	19043473.2437	10177564.6209	1.4060
11	11731654.4055	6115443.2296	.8448
12	17949832.9162	9569986.3433	1.3221
13	11926 3 83.9721	6223626.1367	.8598
14	25044689.1784	13511574.2683	1.8666
15	1232339.5013	282490.6349	.0390
16	22537236.2136	12118543.3864	1.6742
17	2063618.1831	744312.1910	.1028
18	37354702.9495	20350470.5429	2.8114
19	420471.2867	-168547.3108	0233
20	19451306.3430	10404138.5650	1.4373

^{*} Significant at 5% level

Table 4.13.9. Correlation tables of the variables w_i , s_{di}^2 , s_{di}^2 , s_{di}^3 , s_{di}^3 .

Variables	1	2	3	4	5	6
 W _i	1.0000	1.0000	0.2791	0.2210	0.0662	0.2377
$\mathfrak{s}_{\mathbf{i}_{2}}^{2}$		1.0000	0.2791	0.2210	0.0662	0.2377
s _{di}			1.0000	0.8758	0.0347	0.8991
b				1.0000	0.9014	-0.0962
b _i					1.0000	-0.0925
s _{di} 2						1.0000

Table 4.14.1. Pooled Analysis of variance

Source	df	SS	MS	F
Varieties Locations	2 19	117892.0030 57508.9931	58946.0039 3026.7894	
Interaction (Variety+location)	38	86805.0003	2284.3420	2.44*
Average Error	114	-	936.1996	
_				

^{*} Significant at 5% level

Table 4.14.2. Treatment means of 20 varieties of sesame in 3 locations averaged over 3 replications.

Varieties	L1	L2 .	L3	Total	Mean
T1	219.437	269.505	322.918	811.59	270.620
Т2	262.514	293,946	356.723	913.183	304.394
тЗ	244.982	315.586	390.704	951.272	317.091
Т4	298.186	324.082	35 2. 469	974.736	324.912
Т5	282.093	328,928	325.275	936.297	312.099
T 6	314.607	455.132	421.546	1191.285	397.095
т7	213.476	370.902	353.957	938.335	312.778
T8	285.214	381.329	289.385	956.028	318.676
T9	259.951	267.143	387,953	915.048	305.016
T10	276.811	267.842	342.778	887.432	295.811
T11	207.813	281.718	357.716	847.247	282.416
T12	201.900	394.579	307.189	903.667	301.222
T13	179.025	278.018	377.974	835.017	278.339
T14	150.181	401.193	364.027	915.401	305.134
T15	224.996	346.018	358.724	929.737	309.912
T16	206.452	396.274	314.182	916.908	305.636
Т17	224.107	300.088	211.558	735.753	245.251
T1 8	272.721	234.052	303.231	810.004	270.001
T19	231.314	316.722	274.204	822.240	274.080
T20	268.569	407.885	358.553	1035.007	342.002
Total	4824.349	6630.941	6771.165		
Mean	241.217	331.547	338.558		

**				
Source	df	SS	MS	F
Total	59	262207.007	3026.842	
Varieties	19	57509.999		
Environment + Variety x Environ	140	204696.989		
Environment	1	117892.396		
Environ x Variety (linear)	19	40090.432	2110.023	0.90 NS
Pooled Dev	20	46714.258	2335.713	7.48*
Variety 1	1	1131.781		
2	1	1679.816NS		
3	1	2237.603NS		
4	1	320.972		
5	1	24.487		
6	1	913.390		
7	1	392.410 NS		
. 8	1	4550.074*		
9	1	6672.142*		
10	1	2639.355		
11	1	2277.788		
12	1	4833.036*		
13	1	3928.417*		
14	1	1480.680*		
15	1	5.036		
16	1	4325.671*		
. 17	1	4114.140*		
18	1	2403.910		
19	1	1114.456NS		
20	1	1669.086NS		
Average Error	114	106726.777	936.200	

^{*} Significant at 5% level

Table 4.14.4. Analysis of variance under FP model

Source	đf	SS	MS	F
Genotypes	19	57509.999	3026.842	
Environment (Joint regression)	2	117893.004	58946.495	
Genotype x Environment (Interaction GxE)	38.	86803.998	2284.316	
Heterogeneity (Among Regression)	19	40089.826	2109.991	2.25*
Remainder	19	46714.167	2458.641	2.63*
Pooled Error	114		936,200	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

^{*} Significant at 5% level

Table 4.14.5. Analysis of variance under PJ  $\bmod e1$ 

Source	đ£	SS	MS F
			****
Genotypes	19	142243.00384	
Environments	2	222284.00707	
Combined Regression	1	222128,27205	
Residual (E)	1	155.71874	
Interaction	38	215141.01028	
Heterogeneity of regression	19	90388.85116	34.66*
Residual (G $x$ E)	19	124752.15196	47.83*
Pooled Error	57	148658.01334	2608.03532

^{*} Significant at 5% level

Table 4.14.6. Environmental indices under ER model (Ij) and under FP model (Zj)

~			
Environment	I _j	z	
1	-62.5568	-06.125	
2	27 <b>.77</b> 28	28.376	
3	34.7840	37 <b>.7</b> 48	

Table 4.14.7. Stability parameters for 20 varieties under three models (viz. ER, PJ and PP models)

Variety	b _i	s _{di} 2	b'i	s' 2
1	.8465	-1676.8178	•5185	-2504.0850
2	.7040	-1128.7825	1.0285	-2228.4750
3	1.1926	-570.9966	1.0626	-1511.7256
4	.4423	-2487.7275	.3448	-2119.5871
5	.4755	-2784.1122	.4437	-2606.6274
6	1.2931	-1895.2095	.9836	-2402.5077
7	1.5707	-2416.1889	1,6333	-2569.2400
8	.4781	1741.4752	.5665	3671.5000
9	.7892	3863.5433	.5115	6034.2936
10	.3470	-169.2439	.3020	-1114.8203
11	1.2328	-530.8110	1.2027	-746.3057
12	1.5291	2024.4369	1.1191	-2007.4422
13	1.6404	1119.8179	1.3231	11860.5208
14	2,4446	-1327.9194	2.3391	2830.4608
15	1.3593	-2803.5629	1.5056	-2590.8741
16	1.5301	1571.0718	1.3874	4855.3171
17	.2839	1305,5405	.1256	1854.8257
18	0022	-404.6889	1904	-1103.9452
19	.6555	-1694.1432	1.3346	
20	1.1874	-1139.5133	2.55770	2457.2265

Table 4.14.8. Wricke (1966) Ecovalence ratio ( $W_i$ ) and Shukla (1972) stability variance ( $\sigma_i^2$ ) and F values to test  $\sigma_i^2$  with (s-1), s(t-1)(r-1) d.f.

Variety	^W i	$\widetilde{\tau_i}^2$	F (2,114) d.f.
1	1270.6190	578.9913	.2535
2	2196,2108	1093.2091	.4786
3	2456.1696	1237.6304	.5418
4	2154.1938	1069.8662	.4683
, <b>5</b>	1646.2351	787.6669	.3448
6	1419.9202	661.9364	.2898
7	2312.2534	1157.6772	• 5068
8	6155.9629	3293.0715	1.4416
9	6934.0338	3725.3322	1.6308
10	5152.7371	2735.7232	1.1976
11	2597.2235	1315.9940	.5761
12	6483.4313	3474.9979	1.5212
13	6345.9129	3398.5991	1.4878
14	13781.3520	7529.3989	3.2961
15	766.1609	298 <b>.7</b> 368	.1308
16	5981.9602	3196.4030	1.3993
17	7136.5494	3837.8413	1.6801
18	8324.0375	4497.5566	1.9689
19	1814.1134	880.9327	.3856
20	1876.1173	915.3792	.4007

Table 4.14.9. Correlation tables of the variables  $w_i$ ,  $c_1^2$ ,  $s_{di}^2$ ,  $b_i$ ,  $b_i^1$ ,  $s_{di}^2$ 

Variables	1	2	3	4	5	6	
W _i	1.0000	1.0000	0.5343	0.2405	0.1304	0.5007	
Q [‡] _		1.0000	0.5343	0.2405	0.1304	0.5007	
sdi			1.0000	-0.0394	-0.1758	0.6395	
b _i		,	•	1.0000	0.9476	0.2515	
b ₁ '					1.0000	0.1758	
s _{di} ²						1.0000	•

# Discussion

#### DISCUSSION

The data on the yield and other eleven characters of twenty varieties of sesame obtained from three different locations - Kayamkulam, Pattambi and Vellayani for the year 1982-83 by the Plant Breeding Department of K.A.U. were analysed for its stability by the various techniques, and presented in the previous chapter. the results it was found that, out of the twelve characters studied only nine characters show GE interaction. characters - length of capsule, height, number of capsule/ plant were found to have no GE interaction, hence they were excluded from the present study. Remaining mine characters seed yield/plot, number of branches, circumference of capsule, number of seeds/capsulo, number of days for flowering, 1000 seed weight, oil content percentage, seed yield/plant, number of days to maturity - which were showing significantGE interaction, were taken into consideration for the present investigation,

While investigating the characters - number of seeds/capsule, number of branches, circumference of capusle it was found that the  $b_1$  and  $b_1'$  values from Sberhart and Russell and Freeman and Perkins model were varying to a very large extent one  $\sigma_0$  range  $(1\pm \sigma_0)$  of these parameters taking very exorbitant values. Hence a study based on

these parameters for the stability of the twenty varieties may not be much meaningful. Moreover from the table of inter-correlations of twelve characters (give in Appendix) it was seen that the character height was showing a significant positive correlation (0.6524) with yield. Similarly the character number of soeds/capsule is also having a significant negative correlation (-0.4479) with oil content percentage. Again the character, length of capsule is having a significant negative correlation with seed yield/plant (-0.4564). As the characters, yield and seed yield/plant have been already taken into consideration, there is no further need to include the characters height, length of capsule, number of seeds/capsule which were showing irregular values for the stability parameters in the case of ER and FP models and also showing significant correlation with other characters which were included in the study. Hence the present investigations were mainly based on six characters viz. seed yield/plot; number of days for flowering, 1000 seed weight, oil content percentage, seed yield/plant, number of days to maturity and the study through selection index method and principal component method. The analysis of these six characters and two different methods were presented in the previous chapter.

In order to find the stable varieties based on the GE interaction studies, varieties were ranked on the basis of each character, selection index method and principal component analysis method based on five different types of analysis - Eberhart and Russell's mathod, Perkins and Jinks method, Freeman and Perkins method, Wricke's ecovalence method and Shukla's stability variance method. The stability parameters of the twenty variaties were calculated under these five cases and were already given in the results. Considering all these stability parameters analysis, the stable varieties were located in two ways -(1) The varieties which ere satisfying b, and b, nearer to one, Sai and Sai nearly zero or negative (non significant) and similarly  $W_1$  minimum and  $\sigma_1^2$  non significant taken as stable varieties. (11) Based on the graph of the parameters b, and mean value of the character (the graph of b, and mean value of the character are almost identical to b; and mean value of the character, hance only the first type of graph were drawn and presented in figures (.2, 3. and 少) the varieties which were lying in tho range b # 5 bi and 7 # 5 were considered, it was found that the varieties, 2, 3, 7, 12 and 19 were stable. Again through the 2nd method (graphical method) 2, 3, 4, 5, 7, 11, 12, 16 and 19 were found to be stable. Hence one can reasonebly conclude that the varieties 2, 3, 7, 12 and 19 were

varieties for the six characters, selection index and principal component analysis are as given in Table 4.1. Similarly the mean values of the characters of these five varieties based on the six characters selection index and principal component analysis are given in Table 4.2.

From the table of stability parameters under the plot yield, it was found that the varieties 2, 3 and 19 can be considered as more stable. It could be seen that  $s_{\rm di}^{\ 2}$  in all these varieties were non-significant.

From the table of stability parameters under the seed yield/plant, it was found that the varieties 2, 7 and 19 were found to be more stable varieties. But only the variety 7 was showing a non-significant  $s_{\rm cli}^{-2}$  values.

From the table of stability parameter under the character oil content percentage, it could be observed that varieties 3, 7 and 12 were found to be stable. Out of these, the variety 3 was having non-significant  $S_{\rm di}^{-2}$  values.

From the table of stability parameters under the character 1000 seed weight, the varieties 2, 3, 7 and 19 were found to be stable. Out of these, varieties 2 and 7 were having non-significant  $s_{\rm di}^{\ 2}$  values.

From the table of stability parameters under the character number of days for flowering, varieties 2, 3, 7

and 12 were found to be stable varieties. Out of these only the variety 12 was showing non-significant  $s_{di}^{-2}$  value.

From the table of stability parameters under the character, number of days to maturity it was found that the varieties 3, 7 and 19 were stable. But the varieties 3 and 19 were showing non-significant  $s_d^2$  values.

From the table of stability parameters under selection index, it was found that the varieties 2, 3 and 19 were more stable. All these varieties were showing non-significant  $S_{\rm di}^{\ 2}$  values.

From the dtable of stability parameters under principal component, it was found that the variaties 2, 3 and 19 were more stable. All these were showing non-significant  $S_{\rm di}^{\ 2}$  values.

Considering all these characters together it could be concluded that the varieties 2, 3 and 19 were more stable. But  $s_{di}^2$  were non-significant for the variety 2 in the case of following characters - plot yield, 1000 seed weight, selection index and principal components. The variety 3 was showing non significant  $s_{di}^2$  in the following characters - plot yield, oil content percentage, number of days to maturity, selection index and principal components. The variety 19 was showing non-significant  $s_{di}^2$  only in the following cases - plot yield, number of days to maturity.

selection index and principal component. Other varieties - 7 and 12 were having significant  $S_{di}^{2}$  in the majority of the characters including plot yield, selection index and principal component.

In order to have further analysis about the acceptability of these varieties 2, 3, and 19 (k.2, IS 284 and Vayalathur), the mean values of the six characters and selection index score and principal component score of the top ranking five varieties 2, 3, 7, 12 and 19 were examined. The mean values of the character of those verieties were as given in Table 4.2. From this table, it could be observed that the variety 3 (IS 284) was ranking let in the case of plot yield, seed yield per plant, number of days to maturity, oil content percentage and principal component analysis. Among the characters 1880 seed weight and number of days for flowering the variety 3 was ranking 2nd and in the case of selection index, the rank of the variety 3 (IS 284) was third. Similarly the veriety 2 (k.2) ranked third in almost all the characters except in the case of seed yield per plant, 1000 seed weight and selection index score. Whereas the variety 19 (Veyalathur) ranked first in 1000 seed weight, second in number of days to maturity, third in seed yield per plot, fourth and fifth in the selection index score and principal components respectively. Hence it could be reasonably concluded that the

variety 3 (IS 284) is the most stable variety from among the twenty varieties under consideration, ie. the variety IS 284 can be considered as the stable variety from among the twenty varieties under trial and can be recommended for further investigation.

4.1. Stability parameters
Seed yield per plot

freat- ment No.	Variety	b _i	S _{d1}	b	S _{di}	W ₁	
2	k.2	0.73	-940.06	1.09	-2302.97	2167.1183	Non significant
3	IS 284	1.29	<b>-776.</b> 65	1.02	-1566.69	2361.8514	**
7	42-1	1.60	-2235.51	1.58	-2564.70	2137,5184	
12	S <b>1.9</b> 02	1.49	2470.24	1.02	-1817.02	6311,3012	**
19	Vayalathur	0.55	-1900.25	0.62	215.88	1774.7707	•
20	Vinayak	1.16	-981.26	1.17	3229.53	1904.7836	
eed vie	with some state with this size with the same than the	5 THE THE THE THE THE THE THE	न्त्रपण विदेश स्थिति निर्देश प्रतिक प्रतिक स्थापित त्रावित स्थित स्थापित स्थापित स्थापित स्थापित स्थापित स्थाप	THE SEASON SHEET, MAY SEEN AND SELECT	the thin this state was and state man take scap at		हैं . हैं। 7 में 10 पर्क 100 100 प्रकार में 100 100 प्रकार 100 प्रकार 100 प्रकार 100 प्रकार 100 प्रकार 100 प्रकार 100 प्रक
( <b>100 CO CO CO</b> CO	ld per plant	a tradi majo aday talih salah salah di 	i nigh digit digit kilah kilah mini mend men digit atau digit s Tanggaran digit digi	tin tida ann aide der sen an sch	t the 10th high 10th spin cell 10th seen 10th ness 10th	23 (450-250), (C), (650), (650-450), (C), (C), (C), (C), (C), (C), (C), (C	P 404 - 10는
2	ld per plant	0.77	-0.987	-0.78	-1.12	0.0320	Non significant
(	ld per plant	a tradi majo aday talih salah salah di 	i nigh digit digit kilah kilah mini mend mena digit atau digit g Tanggaran digit	tin tida ann aide der sen an sch	t the 10th high 10th spin cell 10th seen 10th ness 10th	0.0320 1.7034	Non significant
2 3	ld per plant k.2	0.77	-0.987 -0.034	-0.76 -0.61	-1.12 -0.92	0.0320	Non significant
2 3 7	ld per plant k.2 10 284 42-1	0.77 -0.14 1.37	-0.987 -0.034 4.080	-0.78 -0.61 0.66	-1.12 -0.92 4.06	0.0320 1.7034 5.1456	Non significant

1000 seed weight

Treat- ment No.	Variety	bi	s _d 1	D ₁	3 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Wi	r yan ere siin die sin sin sin on on on; so die sin sin sin sin sin s
2	k.2	0.64	-0.022	0.91	-0.0391	0.0397	Non significant
3	IS 284	0.62	0.013	0.86	0.0640	0.0793	
7	42-1	0.85	-0.010	1.06	-0.0353	0.0200	**
12	91.902	1.56	-0.070	1.73	0.2658	0.1854	*
19	Vayalathur	1.09	0.043	1.38	-0-0235	0.0686	**
20	Vinayak	1.30	-0.013	1.39	-0.0316	0.0363	•
	A critical Access	## #V	TO BU LU	A Marie Carlos C	**************************************	CONTRACTOR OF THE SECOND SECON	# # # # # # # # # # # # # # # # # # #
oil cont	ent percenta		and one cale day or dependent and the cale of the cale	ila vider (100 100) 1100 1100 1100 1100 1100 1100	ale video disse quipe desse subse	ega titje mje vice into titje nace gale dan dan vice into titje nace gale dan	प्रतिक त्याप कार्या त्याप इंदान केवल कार प्रत्य द्वारा इंदान इंदार त्यांक टांक टांक इंदार ह्यांक हा इंदार होता है
oil cont	ent percenta	ge 1.67	0.378	1 + 71	0.2132	1.7598	प्राचीय (तेपन नवके तेपन होक होका बनन प्राच्च होका इतिहा तहने (तेक टांडर केवल देवें) होके होते होते होते नकते होते हैं है
oil cost	ent percenta k.2 IS 284		and one cale day or dependent and the cale of the cale	ila vider (100 100) 1100 1100 1100 1100 1100 1100	ale video disse quipe desse subse	ega titje mje vice into titje nace gale dan dan vice into titje nace gale dan	প্ৰতীয় । উপৰ পৰাই বিশাৰ প্ৰথম কৰিব পৰাৰ পৰাৰ পৰাই বাছৰ পৰাই গৰাই পৰাই নাম । বাছৰ বিশ্বাস পৰাই বাছৰ বাছৰ বাছৰ পৰাই পৰাই পৰাই পৰাই পৰাই পৰাই পৰাই বাছৰ বাছৰ পৰাই বাছৰ বাছৰ পৰাই বাছৰ বাছৰ পৰাই
Oil cost	ent percenta	ge 1.67	0.378	1 + 71	0.2132	1.7598	Non significant
oil cost	ent percenta k.2 IS 284	1.67 1.09	0.378 -0.113	1.71 1.09	0.2132 0.0601	1.7588 0.0391	Non significant
oil cont	ent percenta k.2 IS 284 42-1	1.67 1.09 1.32	0.378 -0.113 1.769	1.71 1.09 1.39	0.2132 0.0601 1.3823	1.7588 0.0391 2.1772	Non significant

Number of days for flowering

Treatu	ment Variety		_ 2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	الم فران همه هياه داراه داراه همه رسيد رسيد دروز	
number	A COP 14 CO PA	b _i	Sdi	bı	S _{d1}	MI	
2	18.2	1.2082	5.425	1.1438	4. 1813	9.8066	Non significant
· <b>3</b> .	IS284	1.3377	2.304	1.0063	-0.7673	6.7413	
7	42-1	1.2199	12.110	1.4468	1.6519	15.5663	**
12	Si.902	0.8992	-1.987	0.7285	-2.3685	0.8981	
19	Vayalathur	1.5516	-2.519	1.8439	-2.4821	4.7586	
20	Vinayak	0.6908	-2.380	0.400	-2.0479	1.7817	••
40-74 to ac et ac							

Number	Of	days	to	maturity
--------	----	------	----	----------

2	lt. 2	0.66	-0.02	0.63	-1.66	2.8372	Non significant
3 ·	IS 284	0.76	-1.18	0.75	-2.10	0.9891	**
7	42-1	0.92	9.26	0.68	1.57	10.8779	
12	S1.902	2.89	25.41	1.51	44.44	66.0372	
19	Vayalathur	0.98	1.16	0.86	-0.49	0.4039	**
<b>2</b> 0	Vinayak	0.74	9.95	0.52	16.84	12.2150	

#### Selection index

Treat- ment No.	Variety	b ₁	5 ₃₁	b	ea.		l sale, sale juda lisas alita vite alpo little sitte vite and alita jute in de vites sale, dept antonida
2	k.2	0.86	-8575986.86	1.01	-3545886, 42	6467820.6443	Non significant
3	IS 284	0.94	-8814338.86	0.95	-8690717.70	1187235.3553	
7	42-1	1.16	-7832834.24	1.15	-7508029.94	9294809.3414	• •
12	S1,902	1.23	-915863.61	0.98	-9637598.04	17949832.9162	•••
19	Vayalathur	0.98	-8600227.36	1.12	-8444286.35	420471.2867	
			-8881794.93			19451306.343	**

### Principal components

							The same was to see that the same same same same same same same sam
2	k.2	0.70	-1128.7825	-1.03	<b>-2228,</b> 4750	2196,2108	Non significant
3	IS 284	1.19	-570.9966	1.06	-1571.7756	2456.1196	
7	42-1	1.57	-2416.1889	1.63	-2569.24	2312.2534	2.2
12	si.902	1.53	2024,4369	1.32	11860.5200	6483.4313	,
19	Vayalothur	0.56	-1694-1432	0.80	234.3262	1814.1134	
20	Vinayak	1.19	-1139.5133	1.33	2457, 2269	1876.1173	**
-	-						

Table 4.2. Mean yield

Treat	1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Plot yield (g)		oil con- tent per- centage	1000 seed waight (g)	No.of days flow- ering	No.of deysto matu- rity	Sele- ction index	Principal compo- nents
2	k.2	295.88	3.57	46.88	2,46	36.69	79	10802.27	304 <b>.3</b> 9
3	IS 284	306.900	4.92	50.08	2,65	39.16	87.22	12359.21	317.09
7	42-1	301.76	4.64	48.72	2.40	34.94	78.11	13272.63	312.78
12	S1.902	293.29	4.21	44.13	2.62	41.84	79.00	12773.29	301.22
19	Vayalathur	265.97	4.30	45.90	2.66	32.43	80.00	10971.07	274.08

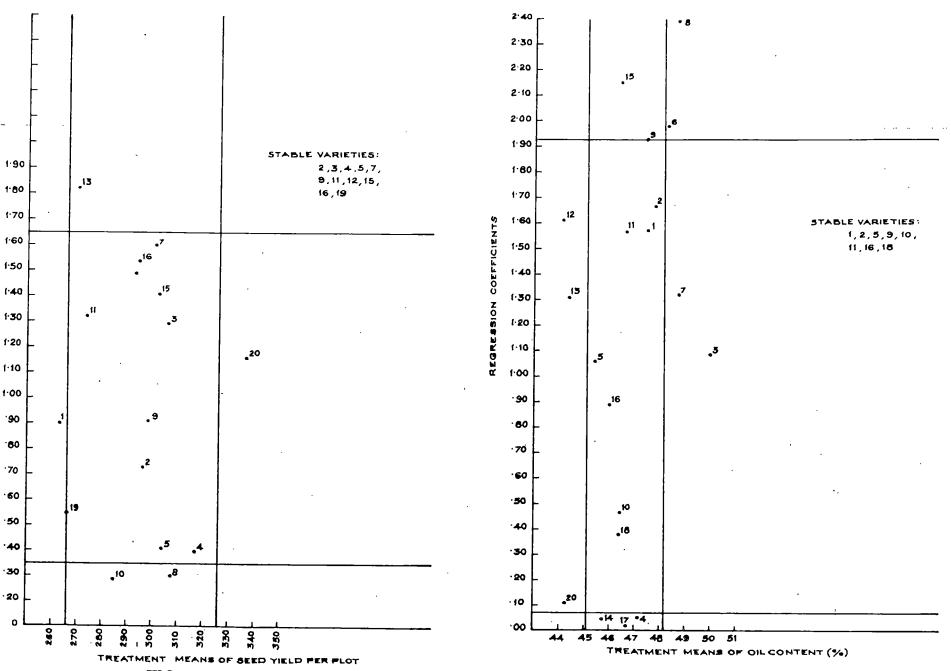



FIG. 1. THE RELATION OF TREATMENT MEANS AND STABILITY OF TWENY SESAME VARIETIES.

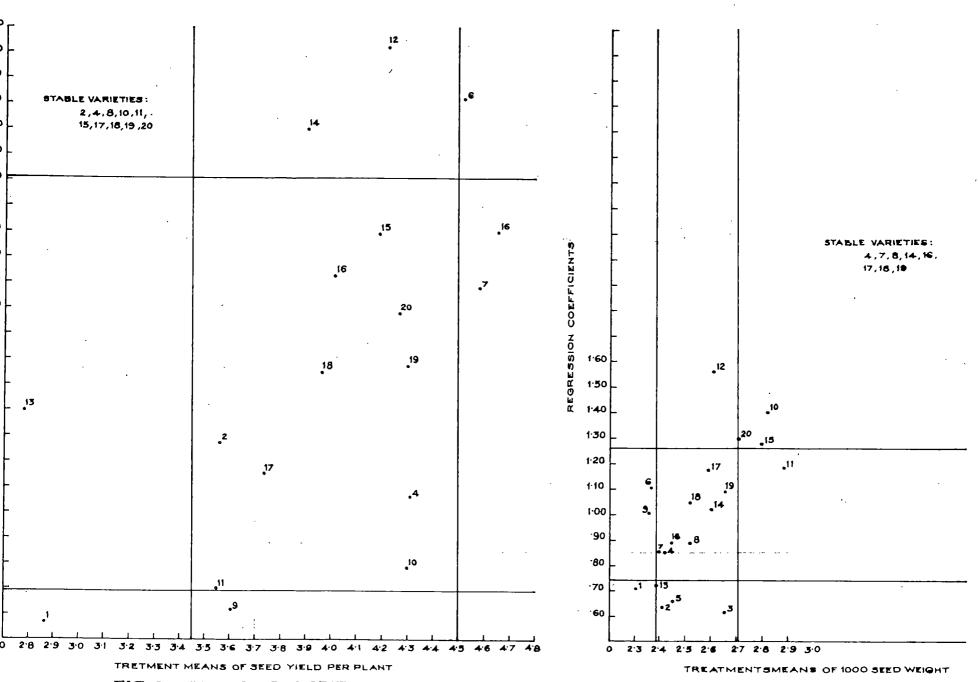



FIG. 2. RELATION OF TREATMENT MEANS AND STABILITY OF TWENTY SESAME VARIETIES.

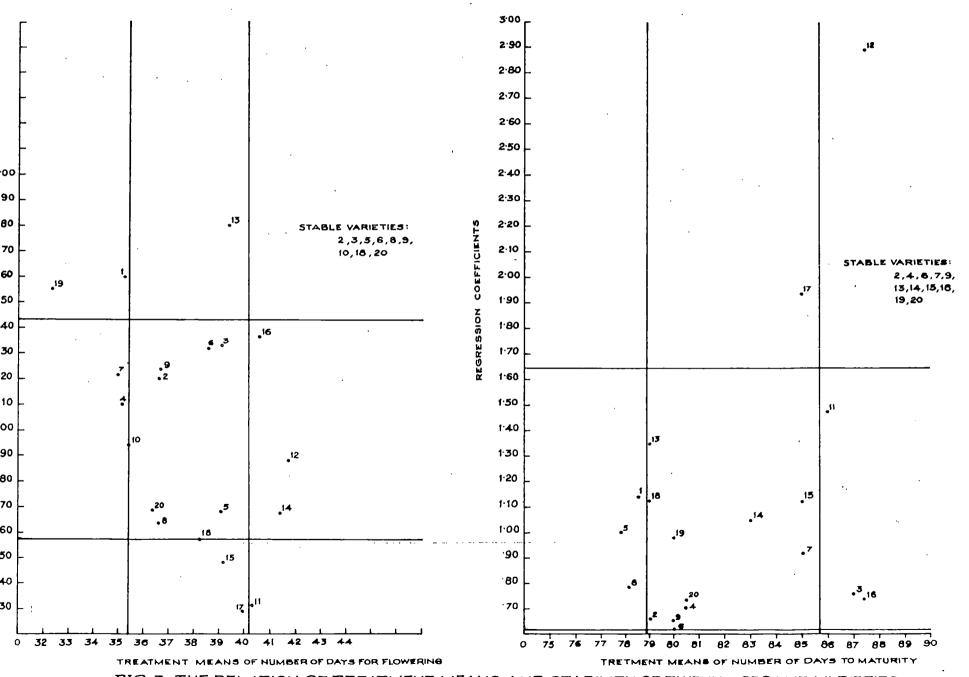



FIG. 3. THE RELATION OF TREATMENT MEANS AND STABILITY OF TWENTY SESAME VARIETIES.

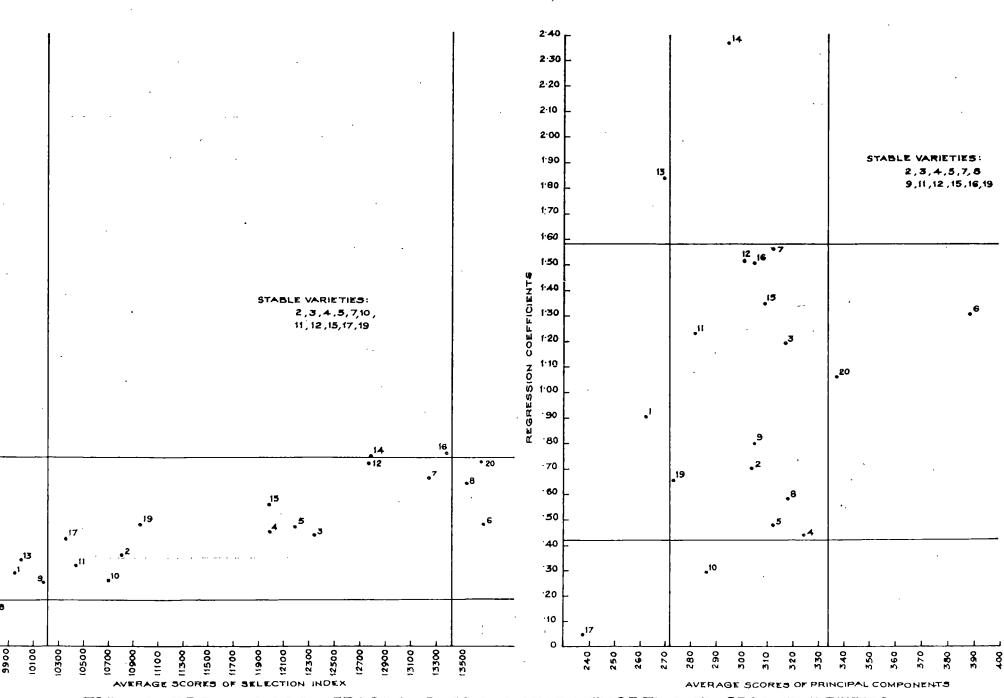



FIG. 4. THE RELATION OF AVERAGE SCORES AND STABILITY OF TWENTY SESAME VARIETIES.

#### SUMMARY

A comparative study of genotype-environment interaction in sesame of twelve characters of twenty varieties was undertaken in this present investigation. The data used for this study was from the experiment conducted by the Plant Breeding Department of K.A.U., Vellayani at three different locations - Kayamkulam, Pattambi and Vellayani for the year 1982-83. The stability of the performance of the varieties were studied through the three regression methods explained by Eberhart and Russel. Perkins and Jinks and Freeman and Perkins and also through Wricke's ecovalence ratio and Shukla's stability variance method.

Objectives of the study were (i) to evaluate the existing techniques available for studying GE interaction in sesame (ii) to develop new concepts and methodo to solve some problems peculiar to crop sesame like, non-linearity of interactions, non-orthogonality of data and different patterns of genotype-environment interactions that are encountered while studying the stability of varieties simultaneously for several traits.

Out of the twelve characters studied, only nine characters were showing GE interaction. The characters length of capsule, height, number of capsule per plant were found have no GE interaction hence they were rejected from the present study. While investigating the remaining nine characters, the characters - number of seeds per capsule, number of branches, circumference of capsule - it was found that the b, and b, values from Sberhart and Russell and Freeman and Perkins model were verying to a very large extent so that the one of range of these parameters (1± 5%) was taking very exorbitant values. the present investigation is based on six characters - seed yield per plot, seed yield per plant, number of days for flowering, number of days to maturity, 1000 seed weight, oil content percentage and the study through selection index method and principal component method.

Stable varieties were located in two ways (i) from the examination of stability parameters, Wricke's ecovalence ratio W_i and stability variance  $\sigma_{i}^{2}$  (ii) by graphical mathod. Based on these methods, it was concluded that the varieties 2, 3, 7, 12 and 19 were stable. Considering all the characters together it was concluded that the varieties 2, 3, 19 (k.2, IS 284 and Vayalathur)

were more stable. The variety IS 284 was found to be more stable in the case of majority of characters - plot yield, seed yield per plant, oil content percentage, number of days to maturity and principal component analysis. Hence the variety IS 284 can be considered as the stable variety from among the twenty varieties under trial and was recommended for further investigation.

#### REFERENCES

- Allard, R.N. and Bradshaw, A.D. (1964). Implications of genotype environment interaction in applied plant breeding. <u>Crop Sci. 4:</u> 503-507
- Baker, R.J. (1969). Genotype environment interactions in yield of wheat. Can. J. Pl. Sci., 49: 743-751.
- Balakrishnan, K.A. (1966). Studies on some aspects of genotype environment interactions as applied to vegetable crops. Unpublished Ph.D. thesis submitted to the Faculty of Post-graduate school, Indian Agricultural Research Institute, New Delhi.
- Phatia, V.K. and Narain, P. (1988). Some statistical aspects relating to stability of crop yield.

  J. Indian Soc. agric. Statist; 40(1): 74
- Breese, E.L. (1969). The measurement of significance of genotype environment interaction in grasses.

  Heredity: 24: 26-44.
- Brain Westcott (1986). Some methods of analysing genotypeenvironment interaction. <u>Heredity</u>: <u>56</u>: 243-253.
- Bucio-Alania, L. (1966). Environmental and genotype environmental components of variability. I inbred lines, <u>Heredity</u>; 21: 387-397.
- Comstock, R.E. and Moll, R.H. (1963). Genotype-environment interactions. In <u>Statistical Genetics</u> and <u>Flant Breeding</u>. NAS-NRC <u>Fubl</u>; 982: 164-196.
- Digby, P.G.N. (1979). Modified joint regression analysis for incomplete variety x environment data.

  J. agric. Sci., Camb., 93: 81-86.
- Eberhart, S.A. and Russell, W.A. (1966). Stability parameters for comparing varieties. <u>Crop Sci., 6</u>: 36-40.

- Fernando Crozco (1976). A dynamic study on GB interaction with egg laying of TREOLIUM CASTAMEUN.

  Heredity; 37(2): 157-171.
- Finlay, K.W. and Wilkinson, G.N. (1963). The analysis of adaptation in plant breeding programme. Aust. J. agric. Res; 14: 742-754.
- Pinney, D.J. (1980). The estimation of parameters by least squares from unbalanced experiments. J. agric. Sci: Camb., 95: 181-189.
- *Fisher, R.A. and Mackenzie, W.A. (1923). Studies in crop variation. II. The manurial response of different potato variaties. J. agric. Sci., Camb., 13: 311-320.
- Freeman, G.H. (1973). Statistical methods for the analysis of genotype-environment interaction. <u>Heradity</u>. 31(3): 339-354.
- *Freeman, G.H. (1975). Analysis of interactions in incomplete two way tables. Appl. statist: 24: 46-55.
- Freeman, G.M. and Crisp, P. (1979). The use of related variables in explaining genotype environment interaction. Heredity, 42(1): 1-11.
- Freeman, G.H. and Dowker, D. (1973). The analysis of variation between and within genotypes and environments.

  Heredity, 30(2): 97-109.
- Preeman, G.M. and Perkins, Jean, M. (1971). Environmental and genetype-environmental components of variability. VIII. Relations between genotypes grown in different environments and measures of these environments. Heredity, 27: 15-23.
- Fripp, Y.J. and Caten, C.E. (1971). Genotype-environmental interactions in Schzophyllum commune-I. Analysis and character. Heredity, 27(3): 393-407

- Fripp, Y.J. (1972). Genotype-environmental interaction in Schizophyllum commune. II. Assessing the environment. Heredity, 28: 223-238.
- Geetha, P. (1984). Genotype environment interaction for yield and its components in sesamum. Unpublished M.Sc. thesis submitted to Kerala Agricultural University.
- Goswami, R.P., Sardana, P.K., Chamola, S.D. (1987).
  Stability in commercial crops in Haryana, J. Indian
  Sec. acric. statist., 40(1): 79.
- Hanson, W.D. (1970). Genotypic stability. Theoret. Appl. Genetics. 40: 226-231.
- Hardwick, R.C. and Wood, J.T. (1972). Regression methods for studying genotype environment interactions. Heredity, 28: 209-222.
- Hill, J. (1975). Genotype-environment interactions a challenge for plant breeding. J. agric. Sci., Camb. 85: 477-493.
- John, Sverup (1985). Genetic variability, path analysis and stability parameters in sesame. Unpublished Ph.D. thesis submitted to Kerala Agricultural University.
- Laly, J.C. (1984). Comparison of different techniques for the estimation of genotype-environment interaction. Unpublished M.Sc. thesis submitted to Kerala Agricultural University.
- Lin, C.S., Binns, M.R. and Lefkovitch, K.P. (1985).
  Stability Analysis: where do we stand? <u>Crop Sci.</u>.
  26: 894-900.
  - Mandel, J. (1971). A new analysis of variance model for non additive data. <u>Technometrics</u>, 13: 1-18.

- Mead, R., J. Riley, K.Dear and S.P. Singh (1986). Stability comparisons of intercropping and monocropping systems. <u>Biometrics</u>. 42: 253-266.
- Miller, P.A., Robinson, H.F. and Pope, O.A. (1962). Cotton variety testing additional information on variety x environment interactions. <u>Crop Sci</u>: 2: 349-352.
- Miriani, B.M., Nanmanna, P.N., and Stefanini, R. (1983).

  Efficiency of linear and multiphase regression

  methods to evaluate genotype-environment interaction
  for grain yield and protein content of Italian durum

  wheat varieties. Z. Pfiziicht., 90: 56-67.
- Morrison, D.F. (1978). Multivariate statistical Methods. 2nd ed. McGraw-Hill, Inc. pp 415.
- Narain, P. and Bhatia, V.K. (1984). Statistical espects of genotype-environment interactions in plant breeding. Silver Jubilee Souvenir, IASRI, New Delhi; 148-160.
- Nor, K.M. and Cady, F.B. (1979). Methodology of identifying wide adaptability in crops. Auron. J., 71: 556-559
- Perkins, M.C. (1972). The principal component enalysis of genotype-environmental interactions and physical measures of the environment. Heredity. 29: 51-70.
- Perkins, M. and Jinks, J.L. (1968 a). Environmental and genotype-environmental components of variability. II. Multiple lines and crosses. Heredity, 23(3): 339-356.
- Ferkins, M. and Jinks, J.L. (1968 b). Environmental and genotype-environmental components variability.

  IV. Non-linear interactions for multiple inbred lines.

  Heredity, 23(4): 525-535.
- Perkins, M. and Jinks, J.L. (1970). Environmental and genotype environmental components of variability. VII. Simultaneous prediction across environment and generations, <u>Heredity</u>, <u>25</u>: 475-480.

- Perkins, M. and Jinks, J.L. (1971). Specificity of the interaction of genotypes with contrasting environments. Heredity, 26: 463-473.
- Plaisted, R.L. and Feterson, L.C. (1959). A technique for evaluating the ability of selections to yield consistently in different locations or seasons. <a href="mailto:american: Potato J. 36: 391-38">Amer. Potato J. 36: 391-38</a>.
- Rai, S.C. and Shanti Sarup (1988). Measures of stability for binary responses in crop yields. J. Indian Soc. agric. Statist. 40(1): 76
- Ramanatha Chetty, C.R. (1988). Measurement of stability in crop yields. A review of concepts and statistics.

  Indian Soc. agric. Statist. 40(1): 75
- Rao, K.V.S. and Shukla, G.K. (1987). A risk Sunction approach for the choice of varieties with differential stability.
- Shukla, G.K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. <u>Heredity</u>, <u>29</u>: 237-245.
- Shukla, G.K. (1983). Use of regression approach in the analysis of genotype-environment interaction. J. Indian Soc. agric. Statist. 35(2): 129-138.
- Smith, H.F. (1936). A discriminant function for plant selection. Ann. Augenics, 7: 240-250.
- Sprague, G.F. and Federer, W.T. (1951). A comperison of variance components in corn yield traits. II Error, year x variety, location x variety and variety components. Agron. J. 43: 535-541.
- Subramanyam, G.S.V. (1988). A comparison of different methods of stability statistics. J. Indian Soc. agric. Statist. 40(1): 78.

- Suresh Babu, K.V. (1981). Phenotypic stability analysis in Bhindi. Unpublished M.Sc. thesis submitted to Kerala Agricultural University.
- Tai, G.C.C. (1971). Genotype stability analysis and its application to potato regional trials. <a href="#">Crop Sci.</a>, <a href="#">11: 184-190</a>.
- Timothy, J., Mc Clurg, C.A., Agell, F.F. and Anderson, J.I. (1980). Evaluation of muskmeloncultives performance by joint regression analysis. J. Ac. Boc. Hort. Sci. 105(2): 220-223.
- Verma, M.M., Chahal, G.S. and Murthy, B.R. (1978). Limitations of conventional regression analysis A proposed modification. Theoret. Appl. Genetics., 53: 89-91.
- Williams, 8.3. (1952). The interpretation of interaction in factorial experiments. Biometrika, 39: 65-81.
- *Wricke, G. (1966). Ubereine Biometrics che Mathode Zur Erfassung der okologischen Ampassung. <u>Acta Agric.</u> <u>scand.</u> 16: 98-101.
- Wood, J.T. (1976). The use of environmental variables in the interpretation of genetype environment interaction. Heredity, 37(1): 1-7.
- * Yates, F. and Cochran, W.G. (1938). The analysis of groups experiments. J. agric. Sci. Camb., 28: 556-580.
  - * Original not seen.

Appendices

			·										
	1	2	3	4	, 5	6	7	8	9	10	11	12	
	095.9	-		2 0									
1.		1.8		2.9	2.5	072		81	2.45	48.8	1.74	158.9	
+ •	096.5		32.3	2.5	2.6	060		82	2.50	48.7	2.79	240.4	
	118.0	2.6	44.5	2.0	2.5	052	39.9	81	2.55	48.8	3.74	260.9	
	105.3	0.0	20.2			050	20.0						
^			30.3	2.4	2.5	052		81	2.38	49.3	2.65	278.0	
2.	107.9	1.2	31.9	2.4	2.5	056		81	2.52	49.3	3.40	279.0	
	118.3	1.2	53.9	2.6	2.7	052	40.8	81	2.60	49.5	3.37	234 <b>.7</b>	
	005.4	~ ~	20.0										
_	095.1	3.3	30.2	2.1	3.5	104		89	2 • 55	51.3	3.39	241.4	
З.	102.8		45.6		3.4	104		91	2.47	51.3	5.69	223.4	
	109.2	4.3	40.5	2.5	3.5	104	42.2	88	2.66	51.4	4.98	268.3	
							_						
	095.9	2.4	30.4	2.8	2.5	068	38.2	81	2.60	47.4	2.87	253.7	
4.	105.6	2.6	35.3	2.8	2.6	072	37.9	82	2.48	47.4	4.06	315.1	
	107.9	2.6	37.3	3.0	2.7	072.	38.3	82	2.65	47.6	4.77	329.2	
-	107.6	2.2	24.4	2.4	3.1	066	41.7	80	2.75	45.3	3.7 <b>7</b>	268.7	
5.	115.3	2.6	52.1	2.5	3.6	096	39.7	82	2.50	45.5	4.25	341.5	
	099.6	2.4	43.0	2.2	3.3	112	43.2	82	2.55	45.4	2.95	233.0	
	100.0	2 4	40 =								_		
`* <u>#</u> ``	106.2	3.0	40.7	2.6	2.6	060	42.6	81	2.45	49.8	3.76	281.3	
6.	098.3	3.6	28.2	2.5	2.6	056	41.7	81	2.47	49 .8	2.62	293.2	
	110.9	5.2	56.9	2.1	2.5	064	43.1	81	2.34	49.8	4.55	373.0	
	100 5	1 0	24 5	0 0	2 4	00.4	20.0	•				465	
	102.5	1.8	21.5	2.6	3.1	096	39.2	90	2.69	49.4	3.35	193.0	
7.	096.9	0.7	24.2	2.5	3.1	080	39.1	87	2.31	49.6	2.62	21300	
	116.5	2.0	37.6	2,•6	2.4	096	39.8	89	2.72	49.5	3.45	233.0	
	091.0	1.4	18.6	2 .4	4.0	104	38.3	81	2.58	E0 0	2	210 4	
8.	095.7	1.5	16.7							50.8	3.64	310.4	
0.	110.4	1.5		2.5	3.8	112	40.3	80	2.78	50.8	2.96	295.6	
_	110.4	1.5	26.0	2.5	3.0	. 112	38.1	81	2.76	50.9	1.95	<b>2</b> 45 <b>.</b> 5	
	103.8	3.7	48.0	2.5	2.5	056	40.2	01	2 44	40.1	4 42	010 5	
9.	091.0					056	40.2	81	2.44	49.1	4 .13	218.6	
9.	124.7	2.9 2.9	31 <b>.</b> 4 48 <b>.</b> 2	2.4 2.6	2.5	052	39.9	81	2.54	49.3	2.88	265.1	
	1246/	2 .5	40.2	2.0	2.6	056	41.2	82	2.27	49.2	3.58	299.8	
	115.0	0.0	32.0	3.2	2.7	084	39.2	03	2 05	45.0		247 2	
10.	126.5	0.2	51.8	3.2				83	3.05	45.8	4.62	247.2	
10.	122.4	0.0	38.4		2.6	080	39.2	83	2.67	45.8	2.98	291.2	
	122.4	0.0	30 • 4	2.8	2.7	060	36.5	83	2.72	45.9	4.58	294.5	
	103.5	5.9	42.7	2.7	2.6	048	41.7	91	3.03	49.3	4.65	222 2	
11.	102.1	4.5	38.1	2.5	2.5	056	40.2	90	2.91	49.3	3.07	203.3 219.2	
	109.9	5.3	45.9	2.5	2.5	048	42.4	91	2.63	49.3	3.22	207.7	
		•••	1363	- •5	~•-	040	74.57	71	2.03	47.0	3.22	207.7	
	133.0	3.0	46.1	2.4	2.6	052	46.1	94	2.54	43.9	3.94	223.9	
12.	117.9	3.1	41.1	2.5	2.4	064	42.7	93	2.63	43.8	3.15	178.0	
	121.6	3.4	44.0	2.4	2.7	048	45.5	94	2.39	43.9	3.47	209.2	
	097.3	1.3	23.5	2.5	2.5	048	45.3	82	2.47	46.2	1.32	136.2	
13.	112.8	2.8	36.4	2.1	2.5	068	44.3	82	2.55	46.3	2.69	177.9	
	121.7	2.6	36.2	2.6	2.7	056	45.3	82	2.00	46.2	2.79	226.9	
			•										
	113.2	3.6	49.4	2.3	2.6	044	45.2	82	2.38	44.4	2.88	193.3	
14.	125.1	5 •6	68.8	2.2	2.5	048	42.9	89	3.13	44.7	3.53	121.8	
	108.9	3.5	36.0	2.5	2.6	060	42.9	88	2.78	44.4	2.78	144.3	
	097.2	2.3	28.6	2.5	2.7	060	40.9	88	3.05	50.2	2.60	217.5	
15.	122.4	3.4	48.1	2.5	2.6	052	40.9	.90	2.87	50.2	3.25	251.0	
	123.1	3.2	49.7	2.6	2.8	060	40.5	88	2.70	50.3	4.31	212.6	
	097.8	2.5	28.2	2.5	3.8	108	41.9	90	2.56	46.6	3 .50	194.5	
16.	087.8	2.5	28.2	2.5	3.4	128	48.4	88	2.69	26.6	3.82	197.7	
	081.2	2.0	29.5		3.1	096	44.5	91	2.29	46.8	3.31	222.6	
17.	117.5	3.2	37.1	2.5	2.5	060	40.6	91	2.91	46.6	4.35	212.0	
±,,	113.3	3.7	44.0	2.6	2.7	060	41 1	89	2.89	46.6			
	110.0	3.5	51.1	2.7	2.8	064	44.3	91	2.48	46.8	2.83 4.31	225.8	
10												239.6	
18.	101.8	3 •5	41.4	2.4	2.5	052	39.9	82	2.94	48.9	4.12	307.7	
	091.0	3.0	24.2	2.4	2.5	052	41.1	82	3.04	48.9	2.62	254.8	
	105.3	3.3	34.2	2.6	2.6	060	39.6	82	2.38	48.9	3.27	260 <b>.7</b>	
	102.2	1 .3	27.8	2.5	2.6	056	33.6	83	2.94	47.0	3.20	211.5	
19.	114.5	0.9	31.9	2.6	2.7	060	39.6	82	3.31	47.3	3.35	221.5	
	119.3	0.2	43.0	3.1	2.4	064	38.7	82	2.66	47.1	4.32	264.7	
20.	112.5	2.3	30.2	3.6	2.8	076	40.5	81	3.05	44.6	3.50	321.5	
	117.7	2.4	23.5	3.8	2.2	076	35.4	82	3.16	44.5			
	106.9	2.4	23.5 28.7	3.7	$\frac{2.7}{2.7}$	076	40.0	82	2.53	44.6	4-25 2.54	271 ⁵ 215 4	
											~•53		

· ·			ion at	Vella	yani.						es 101	me locat
	1	2	3	4	5	6	7	8	9	10	11	12
1.	149.7 139.0 146.3	3.2 2.4 2.4	26.0 27.4	2.5 3.0 2.5	2.5 2.5 2.6	048 056 <b>0</b> 44	35.1 35.7 36.8	79	2.58 2.59 2.50	45.2 45.3 45.2	3.05	213.6 326.8 221.9
2.	155.4 162.5 154.4		33 <b>.3</b> 32 <b>.</b> 8	2.4 2.7 2.3	2.6 2.7 2.5	048 056 048	39.0 37.7 36.9	77 78 78	2.41 2.58 2.81	45.6 45.6 45.5	4.30	192.3 274.3 366.6
3.	118.4 136.9 136.5	3.3 2.5	32 <b>.</b> 4 20 <b>.</b> 8	2.6 2.5 2.6	3.8 3.5 4.0	112 120 112	39.5 39.2 40.1	85 87 87	2.73 2.95 3.21	48.8 48.7 48.8		296.8 260.0 33 <b>3.7</b>
4.	137.3 127.5 127.9		34.3 24.2	3 .2 3 .2 2 .9	2.8 3.0 2.4	072 072 056	37.0 37.5 33.5	81 85 81	2.57 2.32 3.09	47.3 47.5 47.3	4.25	288.4 314.0 352.5
5.	150.7	3.7	33.5	2.5	3.0	072	37.1	76	2.48	43.2	4.30	312.6
	137.0	3.1	27.7	2.4	2.9	072	37.7	77	2.70	43.4	3.45	277.5
	137.9	2.0	19.8	2.5	2.8	060	36.7	71	2.69	43.3	2.89	349.5
6.	192.5	3.0	42.7	2.6	2.5	060	39.3	81	2.72	45.3	6.49	475 <b>.1</b>
	156.1	3.8	45.6	2.6	2.5	064	37.7	82	2.67	45.4	7.43	485 <b>.4</b>
	154.2	3.5	41.5	2.6	2.7	056	39.4	85	2.99	45.3	7.35	353 <b>.2</b>
7.	158.7	1.9	23.3	2.7	3.8	096	29.7	81	2.45	46.6	4.51	353 <b>.9</b>
	155.0	2.7	27.0	3.0	3.5	136	31.1	85	2.46	46.6	4.06	346 <b>.0</b>
	143.2	1.5	21.1	3.2	3.8	120	31.3	<b>81</b>	2.94	46.7	4.08	349 <b>.</b> 4
8.	151 •1 138 • 7 124 • 5	2.4 2.6 2.0	28.4 21.3 16.8	2.6 2.7 2.5	3 .4 3 .5	096 112 088	34:9 34:4 34:7	75 77 76	2.44 2.58 3.25	44.1 44.4 44.1	4.38 4.70 3.39	352.4 377.9 361.0
9.	140.3	2.6	38.3	2.6	2.5	056	34.8	80	2.72	44.8	3.61	278.7
	141.2	3.3	35.3	2.6	2.4	044	37.4	82	2.50	44.8	4.50	239.0
	135.9	3.1	28.0	2.5	2.4	044	36.7	80	2.98	44.9	2.80	239.7
10.	168.7 137.5 156.8	0.0 05 0.0	41.6 35.2 28.8	3.0 3.3	2.8 3.0 2.7	068 076 072	34.0 37.0 33.4	82 87 80	3.23 3.55 3.38	45.0 45.2 45.1	3.66 3.92 5.15	209 • 4 234 • 1 304 • 9
11.	157.5 149.5 120.3	4.4 3.9	33.9 28.3 29.7	2.6 2.9 2.5	2.7 2.6 2.6	048 064 056	38.4 39.4 41.3	83 <b>85</b> 82	3.46 3.14 3.57	45.3 45.4 45.3	5.20 3.20 3.49	250.0 360.5 136.1
12.	187.5	3.6	58.4	2.3	2.5	052	39.7	90	3.08	42.7	7.71	531.7
	162.9	3.8	40.3	2.5	3.0	056	40.2	90	3.29	42.8	6.93	327.3
	167.3	3.1	29.1	2.4	2.6	048	41.0	91	3.52	42.7	4.30	271.5
13.	140.5	1.8	32,9	2.3	2.5	044	36,1	7 <b>9</b>	2,50	43.0	4.94	359.0
	140.5	1.8	28.1	2.4	2.7	044	38.8	8 <b>1</b>	2.78	43.0	3.05	204.5
	135.1	1.3	21.6	2.5	2.5	049	38.8	79	2.87	43.2	1.77	223.1
14.	195.8	3.7	55.1	2.5	2.5	048	38.8	80	2.70	47.1	6.56	364.4
	162.6	3.4	33.9	2.5	2.5	044	40.1	82	2.92	47.3	4.26	368.1
	156.5	4.0	43.0	2.6	2.5	052	41.2	82	3.09	47.1	5.21	420.0
15.	178.0	2.6	35.7	2.6	2.5	0 <b>60</b> 1,	35.2	81	2.86	44.7	5.30	284.4
	132.2	2.8	27.8	2.9	3.0	060	40.7	84	3.29	44.8	5.10	273.3
	160.3	2.9	32.0	3.2	3.2	076	38.7	85	3.57	44.7	5.00	428.0
16.	137.6	2.2	23.6	3.0	3.5	064	39.1	85	2.69	44.7	3.98	352.9
	159.8	1.7	18.2	2.6	3.7	1 <b>28</b>	37:9	8 <b>7</b>	2.81	44.7	5.84	394.1
	142.5	2.3	29.3	3.2	3.7	128	39.9	85	2.78	44.7	5.62	381.4
17.	183.6	2.9	33.2	2.8	2.5	056	39.0	82	2.85	46.4	5.22	290 •1
	165.1	3.4	35.9	2.7	2.7	064	39.0	85	2.91	46.5	5.44	353 •0
	135.1	2.6	25.8	2.6	2.6	064	39.6	85	3.07	46.6	3.60	202 •7
18.	152.4	3.5	29.3	2.7	2.7	056	38.0	81	2.70	47.4	4.45	274.0
	147.6	3.8	40.0	2.9	2.7	064	35.5	81	2.79	47.3	6.30	220.9
	123.2	3.6	25.1	2.5	2.5	044	38.7	80	2.78	47.3	2.55	159.9
19.	164.4 159.7 146.4	1.7 0.9 0.9	39.9 46.4 38.0	2.9 2.8 3.0	2.5 2.7 2.5	<b>Q60</b> 068 064	29.7 30.2 31.8	80 80 80	2.87 2.79 2.98	46.8 46.8 46.8	3.89 6.29	213.3 425.7 258.0
20.	156.5	3.0	30.4	3.2	3.1	064	35.1	81	3.08	44.1	4.75	358.5
	142.9	3.1	27.8	3.5	3.0	072	35.7	85	3.07	44.2	4.31	408.4
	158.5	2.3	28.1	3.8	3.0	072	35.0	83	3.09	44.2	5.12	406.8

1.	095.6 086.8 0 <b>7</b> 9.5	1.9	26.1	2.8	2.5 2.5 2.7	056 060 060		76 76 76	2.01 2.03 2.08	48.6 48.6 48.7	3.25	272.5
2.	118.8 121.6 095.8	077	33.8	2.5	3.0 2.7 2.6	056 052 048	31.7 31.3 33.9	78 78 <b>7</b> 9	2.16 2.14 2.09	48.7 48.6 48.8		319.0 364.0
3.	106.8 109.8 083.5	4.7	24.9 35.7	2.3 3.0 2.6	3.5 4.0 3.7	112 128 112	31.2 35.3 38.4	86 85 87	2.58 2.33 2.41	50.1 50.1 50.2	5.90 5.30 5.90	414.0 345.0 379.5
4.	104.7 115.3 101.9	1.6 2.8 3.5	39.4 39.3	2.6 2.7 3.3	2.7 3.0 3.1	060 064 060	32.7 30.9 30.4	77 77 79	2.10 2.02 2.03	46.4 46.4 46.5	3.00 5.50 5.30	315.0 409.0 309.0
5.	105.0	2.5	25.7	2.4	3.3	072	39.1	78	2.04	47.5	4.75	300.5
	075.8	1.1	14.5	2.2	3.4	080	39.6	78	2.14	47.6	3.15	241.5
	100.0	1.1	16.8	2.3	3.2	052	37.3	77	2.28	47.5	3.90	413.0
6.	099.6	2.4	27.6	2.4	2.4	<b>052</b>	33.8	<b>7</b> 7	1.81	49.5	3.10	412.0
	106.2	2.5	27.6	2.4	2.4	052	38.2	<b>3</b> 7	2.02	49.5	3.70	449.0
	088.8	2.4	24.4	2.2	2.5	044	32.4	<b>7</b> 8	1.99	49.5	3.10	384.0
7.	109.0	3.4	33.7	2.5	096	096	38.6	86	2.01	50.1	7.10	264.0
	109.	2.0	38.8	3.0	3.4	128	32.7	84	2.02	50.1	6.90	421.0
	095.2	1.9	31.0	2.9	3.6	112	32.8	86	2.00	50.0	5.70	342.5
8.	107.7 113.2 078.5	2.6 3.0 2.2	18.7	2.4 2.4 2.5	4.0 4.0 4.0	104 088 1 ₀ 4	33.0 37.9 37.9	77 78 78	2.21 2.10 2.05	50 <b>55</b> 50.4 50.5	5.80 6.25 3.50	298.0 259.5 278.8
9.	097.8	1.9	38.5	2.3	2.7	052	31.6	<b>7</b> 7	1.96	48.7	4.10	380.4
	094.4	2.5	28.8	2.4	2.7	<b>052</b>	32.6	<b>7</b> 8	1.95	48.7	3.26	404.0
	102.0	1.7	25.7	2.5	2.7	044	36.7	79	1.95	48.8	3.60	360.0
10.	117.4	0.2	39.5	3.3	2.8	096	31.2	85	2.34	48.4	5.60	331.0
	129.4	0.2	20.0	3.0	2.9	128	35.9	86	2.26	48.6	3.40	320.0
	136.5	0.1	30.1	3.2	2.9	112	32.6	88	2.23	48.5	5.70	341.0
11.	097.3	3.1	16.4	2.9	2.7	104	41.6	85	2.52	43.8	2.50	344.0
	109.2	4.4	16.1	2.5	2.7	088	39.5	85	2.40	43.7	2.40	360.0
	102.0	4.4	24.0	2.7	2.6	104	39.0	84	2.40	43.8	4.30	339.0
12.	134.5	2.7	34.0	2.1	2.7	052	4066	79	2.03	45.8	3.70	332.0
	113.0	1.8	14.8	2.3	2.8	052	41.1	80	2.02	45.8	1.70	303.0
	095.9	2.4	23.7	2.3	2.6	056	39.7	78	2.05	45.8	3.00	263.0
13.	111.0	1.3	26.7	2.3	2.9	0 <b>76</b>	35.3	75	2.12	44.1	2.80	307.0
	124.4	0.7	28.2	2.4	2.4	0 <b>72</b>	34.5	75	2.17	44.2	3.08	419.8
	101.4	0.5	17.3	2.3	2.6	068	36.6	76	2.10	44.2	1.95	3 <b>8</b> 0.5
14.	118.5	1.6	22.6	3.2	2.6	074	41.5	82	2.30	46.1	2.85	432.5
	100.0	1.8	19.5	2.5	2.6	052	40.8	82	2.12	46.3	2.60	288.0
	099.0	3.4	37.4	2.7	2.6	056	39.3	82	2.06	46.1	4.50	349.0
15.	097.8	2.3	17.7	2.7	2.8	048	40.1	86	2.39	44.1	2.50	298.0
	115.9	2.4	24.5	2.6	2.8	043	36.8	83	2.24	44.3	3.90	441.0
	092.2	3.7	33.6	2.5	2.7	048	38.4	83	2.19	44.1	5.75	316.5
16.	098.0	1.4	16.0	2.5	3.7	042	36.3	85	2.10	46.7	3.90	335.0
	120.0	3.3	33.2	3.0	3.7	042	39.2	89	2.10	46.7	7.20	278.0
	107.5	2.6	31.5	2.7	3.7	060	38.3	86	2.07	46.7	7.40	306.5
17.	089.0	2.7	27.7	2.3	2.8	044	41.3	81	2.10	45.3	3.00	226.0
	089.0	1.9	21.2	2.5	2.6	<b>0</b> 56	42.7	84	2.08	45.3	2.47	213.0
	103.0	2.4	23.5	2.4	2.8	048	<b>3</b> 9.5	80	2.06	45.5	2.50	175.0
18.	111.4	3.8	34.3	2.4	2.9	052	37.0	77	1.96	42.8	4.05	387.5
	091.1	2.7	25.2	2.7	2.8	060	35.6	75	2.15	42.7	3.90	269.0
	086.7	3.5	<b>3</b> 2.8	2.8	2.7	052	39.6	<b>3</b> 7	1.98	42.9	4.40	232.0
19.	104.9	2.0	24.4	2.5	2.9	048	29.5	78	2.15	43.7	3.20	235.0
	112.2	2.0	63.7	2.7	3.1	056	29.7	78	2.09	43.8	7.50	279.0
	095.0	220	23.8	2.4	3.3	048	29.1	77	2.17	43.8	3.00	285.0
20.	120.3 107.2 100.4	3.4 1.2	30.0 38.0 16.0	3.6 3.6	3.3 3.5	064 064	34.1 35.3	77 7 <b>7</b>	2.05 2.18	43.7 43.6	4.90 6.40	397 <b>.</b> 0 346 <b>.</b> 0

### A COMPARATIVE STUDY OF GENOTYPE-ENVIRONMENT INTERACTIONS IN SESAME

By

MINI. C. J.

#### ABSTRACT OF A THESIS

Submitted in partial fulfilment of the requirement for the degree

## Master of Science (Agricultural Statistics)

Faculty of Agriculture
Kerala Agricultural University

Department of Statistics

COLLEGE OF VETERINARY AND ANIMAL SCIENCES

Mannuthy, Trichur

1989

#### ABSTRACT

The present study has been conducted to choose a consistent variety for all the regions and all seasons in the light of genotype-environment interaction with the following objectives.

- (1) to evaluate the existing techniques available for studying GB interaction in sesses
- (ii) to develop new concepts and methods to solve some problems peculiar to crop sessme like non-linearity of interactions, non-orthogonality of data and different patterns of genotype-environment (GE) interactions that are encountered while studying the stability of varieties simultaneously for several traits.

The data used for this study was from the experiment conducted by the Plant Breeding Department of Merala Agricultural University, Vellayani at three different locations - Kayamkulam, Pattambi and Vellayani for the year 1982-83. The genotypic stability analysis of Eberhart and Russell (1966), Perkins and Jinks (1968), Freeman and Ferkins (1971), Wricke (1966) and Shukla (1972) were studied. The multivariate procedures - selection index method and principal component method were also used to have a complete idea of GE interactions by taking into considerations all the characters simultaneously.

(1) from the examination of stability parameters (11) by graphical method. Considering all the characters together it was concluded that the varieties k.2.

IS 284 and Vayalathur were more stable. The variety IS 284 was found to be more stable in the case of majority of characters. Hence the variety IS 284 is the most stable variety from among the twenty varieties under consideration.