PRE-HARVEST FORECASTING OF SUGARCANE YIELD

THESIS

Submitted in partial fulfilment of the requirement for the degree Master of Science (Agricultural Statistics)

Faculty of Agriculture Kerala Agricultural Universityi

Department of Statistics
COLLEGE OF VETERINARY \& ANIMAL SCIENCES
Mannuthy, Trichur

11

declaration

I hereby declare that this thesis entitled "PRE-HARUESE FORECASTIMG OF SUGARCANE YIEDD" is a bomailde record of research wort done by me during the course of research and that the thesis has not been previously formed the basis for the award to me of any degree. diploma, espociateship, fellowship or other similar title of any other Unfverglty or Society.

Mannuthy, $10=8$-1984.

111

CERTITICATE

Certified that this thesis, entitled "PRE-HARVEST FORECASTING OF SUGARCANE YIED" is a record of research work done independently by Miss. ALPHI KORATH, under my guidance and supervision and that it has not previously formed the basis for the awasd of any degree, fellowanip or associateghip to her.

(P.V. PRABHAK̇ARAN) Chairman, Place: Vellayomi

Date. $10 \cdot 8.84$
Advisory Committee, Professor of gtatistics, College of Agriculture, Vellayani.

ACKNOUEDGEMENT

I wish to express my deep sense of gratitude and indebtedneṣ to Shri. P.V. Prabhakaran, Professor of Statistics, College of Agriculture, Vellayani, for suggesting the problem, valuable guidance, tireless help and constiant encouragement throughout the course of the present investigation.

I like to express my gratitude to Dr.K.M. Narayanan Namboothiri, Professor of Agricultural Botany, College of Horticulture, Dr. R. Vikeromen Nair, Professor (K.A.D.P.), Shri. K.Le. Sunny, Agsistent Professor, Department of Statistice, the members of the advisory comittee who took keen interest in going through the material and making useful

I remain grateful to Dr. M. Krighnan Nair, Dean, College of Veterinary and Animal Sciencen, for providing all the necessary facilities for the conduct of the present inveatigation.

My thanks ase also due to Sri. S. Sưkumaran Nair, Associate Professor of Agricultural Botany, Sugarcane Research Station, Thiruvalla and other staff members of the Station for their sincere help rendered in the collection of data.

Author wishes to avail this opportunity to thank Shri.V.K.Gopinathan Unnithan, Associate Professor; Smt. K.P. Santha Bai. Technicel Assistent; Srat. Narayanilsutty, U. Junior Assistant Frofessor, Department of Statistics and Shri.P.C. Joseph, Kerala University for their help in the present invegtigation.

I am grateful to the Kerala Agricultural University for the award of junior fellowship during the course of the stuay.

Smb. J.Lalithe, Senior Office Superintendent also deserves my thanks for neatly typing this manuscript.

Thanks are also due to the staff and students of Department of Statigtics, frienda and all others whose thmely help and encouragement enabled me to fulfill this renture.

$\mathbb{G} \mathbb{O} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \underline{S}$

Page
INTRODUCII ON 1-7
REVIEW OF HITERATURE 8-18
MATERIALS AND MBSHODS 19-32
RESULIS 33-92
DISCUSSION 93-101
SUMMARY 102-106
HEFPRRHCES 1-vi

INTRODUCTION

Reliable preharvest forecasta of crop production are of immense une as a dectaion making basis for planners, policy makerg, tradere and agriculturiats alike. The Governmont need them for the formiation of verious farm policies related to fissation of prices, procurenent and distribution, buffer stocking, inport. export and markoting of agricaltural comrodities. The agrobssed indugtrialiste and traders need them for formulating their otrategiea. Forecaste of yield of comeroial crops like cotton, jute. tobeceo and sugarcane are eapecially inportant for trode and industry because the availability of raw matexials 10 the bagis of pleming of manufecturing procesees and trede operetions.

Advanoe estimates regarding the average area under important crops and their expected yields are being published from time to time during the growth period of the crop in the form of bulleting. Such bulleting eppeor in the various issues of the Joumnal 'Agricultural Situation of India'. These buileting ace issued for most of the crops. The firgt bulletin is isgued one month after sowing, aecond three montho after sowing and the third one month before harresting. As a mattor of fect, the number of forecaste depends on the nature of the crop and ita importence. For
crope like groundnut and ginger, only a single forecast is made. But for rice and wheat five forecasts are made. For sugercane six forecasts will be issued annually at different periods of plant erowth. But all are based on an eye appraisal of the crop-

In India, forecast of crop yield is done by employing two methods. 1. Annawari system. 2. Random sempling method.

In the annawari system which was prevalent in India till recently, the total outturn of a crop was obtained as the product of the area under the crop and the average Jield per heotare. Area maer the crop is obtained from the village registers. Averake yield is estimated by multiplying the normal yield of the crop and the condition factor, taking normal yield as 16 annas. The condition of a crop in a particular year can be described in relation to normal yield in terms of $\frac{x}{16}$ annas, where x is a variable assuming different values from 0 to 16 according to the condition of the crop. The anna condition of the crop ia based on merely the eye estimate of the crop reporter. This method is of subjective nature and the final estimate though objective is of limited utility as it becomes available only after harvest.

In spite of its inherent drawbacks traditional method is still adopted in India in respect of minor food grains
and some other less important crops. Yields of nost of the crops are now based on crop cutting surveys. Although this method was first introduced in India by Hubback in 1925. It was Mahalanobis who introduced objectivity in the method through random sampling. Melnalanobis started crop cutting gurveys on jute in Bengel in 1939. Now crop cutting surveys are being conducted for estimating the production of 37 crops and the results are published in the various publications of the Department of Economics and Statistics. In the case of plontation crops like tea. coffee and rubber, such estimates are being prepared by the respective Boards. During 1964-'65 about 95\% of Indie's cereal production and 70% of pulse production were predicted based on crop cutting gurveys. For ritce and wheat the percentages were 97 and 99 respectively.

But crop forecasting through crop cutting surveys, though objective and reliable, resulte in a considerable time lag between the date of sowing and harvesting of the crops and the availability of crop estimates. When the same crop is sown for more than one season the crop eatimate is gcheduled to be isgued only after the harvest of the second crop. There is slso considerable time lag between the due date of the crop eatimate and the date of its releage: In fact, forecests of most probable production of the crop should be available even while the crop is stending
in the field. Such preharrest estimates of probable production are needed by traders, Goverment and industrial agencies for policy decisions and administration. The avallable syatem of forecasting in India is based on the eye estimate of the arop reporter and is totally unreliable. Thus, there is the need of developing an objective methodology for prehervest forecasts of yield of crops.

The proposed technique of crop forecasting should have some diatinct advantages over the traditional method. These include objectivity of the eatimates and a measure of precision to determine the reliability of arop forecagts Which traditional method cannot provide. Another merit of a crop forecast through this technique is its ability to reflect the impact of the changes in the components of yield over time due to changes in the cultivation of crop varieties and cultural practices. Such changes do slightly affect the coefficients of the parameters in the forecest model, but the model's responsiveness to these changes is not offected as guch.

Three objective approeches may be devised fox the prediction of crop yields. They are: 1. Prediction based on climatological factors as explanatory variables.
2. Prediction based on agricultural inputs as explanatory variables. 3. Prediction based on biometric characters as explanatory veriables.

It is generally believed that production of a crop in a season solely depend on the changes in technology and weather. A sound knowledge of climatic factors and their effect on growth and yield of crops is very much helpful in making reliable forecast of production. Influence of weather begins with preparatory tillage and continues throughout the crop growth period. But crop forecasts based on weather factors ortten become fruitless due to the variations in factors such as agricultural inputs, soil factors, technologicel factors and management factors. It will not be often possible to control the effect of all such variables in maicing a reliable crop forecast. Forecasting models based on macro climatological variables cannot be used in microlevel forecasting. Above all, several years' data are required for building up crop forecast models, based on climatological variables. Thus, preharvest forecasting based on climatological variables though useful has its own limitations, with regard to its range of validity and applicability:

The secona approach which is based on agricultural inputs is also quite popular among agricultural researchers. An objective estimate of likely yield of a crop cen be obtained by developing crop response models based on plant nutriente present in the soil. Additional variables such as aystems of faming; soil management; frequency and level or irrigation etc; may be added to the response function
to make it more efficient. A joint approach incorporating climatological as well as input variables will be more efficient in crop forecosting. Bat the chief defect of this approach is the non-availability of reliable ferm data. The average Indian farmer is not at all an expert record keeper. and it is too much for him to keep a complete account of the details of crop cultivation.

Growth of plante is strongly influenced not only by genetical factors but also by environmentel factors. The environmental factors include weather parameters, agricultural inputs; soil factors and mansgemental factors. The effect of all these factors is reflected through morphological characters. Thus a sizable part of variation in crop yield is explained through the variations in morphological characters during different stages of plant growth. If informations on such variables are available at different stages of plant growth, such data can be effectively utilised for building suitable forecasting models.

The present study deals with preharvest forecasting of yield of sugarcene (Saccharum officinarum Jinn), which is one of the most commercially important crops of India. Sugarcene is the main source of sugar in India. A number of distillaries and paper factories are running in the country based on the by-products of sugar industry. Sugarcone industry and cultivation employs a considerable part of our
population. Thus the crop occupies a prominent place in our national economy. Advence estimates of production of sugarcane will be useful for planners, policy makers, traders and agriculturiats. Thus it was felt worthwhile to take up a study to develop suitable mathematical models for pre-harvest forecasting yield of sugarcene using biometric characters.

The main objectives of the study axe:

1. To develop guitable models for the pre-harvest forecast of production or sugarcane using biometric characters.
2. To identify the importent blometric characters contributing to yield of sugarcane and to assess the relative contribution made by each component.
3. To compare the adequacy of different models in describing sugarcane production.

REVIEW OF LITERATURE

2. 2 HVID OR LITERATURE

Yield estimates are available for most of the field orops; but they need not always be unilased. Severel studies have been reported to be conducted to forecast crop yield of some major crops using biometrical charaoters, agricultoral inputs or weather paranetere. However in the case of sugarcane only a fev atuajes have been conducted and the literature available is limited. A brief review of the work done so Iar for the identirication of factore affecting yield of sugaroane, their relative importance and role in developing various forecasting models are presented below under three headinge.

1. Regrassion analysis
2. Principal component analysis
3. Pati analysia

2.1. Regregsion analysid

According to Sanderson (1954) the yields of short duration crops can be more accurately predicted by condition report. Wendell (1959) estimated the distribution of winter wheat yields based on clinatological data. The fitted model has the property that the mean and variance of the estimated jields are the same as those of the observed yields. Partial regression coefficients of this equation were obtained by dividing the corresponding coefficients of
a multiple regyeseion equation by the coefficient of multiple correlation R.

Thomas and Osenburg (1959) conducted a study to determine the effects of manure, nitrogen, phosphorus and olimatic factors on the production and quality of crested wheat grass. According to them low yields ware associated with high seasonal temperatures. The study also indicated that the estimates of forage produotion should be based on observations on daily range of temperature.

Basia (1968) found thet yields of sugaroane oan be exprossed as a joint function of crop characteriatics namely, height, midgirth and number of canes per clump. The study showed that yield inoreased with weight and midgirth and assumed a constant value when these characteristics exceeded certain values. It also showed that there should be some optimun value of the number of canee per clup to get maximun yield. The study reveajed that yield can be predioted two to three months before harvest uaing curvilinear modela with an accuracy in the range $86-88$ per cent.

Bohra et al. (1969) developed linear modelv for predicting forage yield based on certain biometric characters like basal diameter. Simple and multiple linear regression equations were vorired out using a subset of variajles selected according to their contribution towards forage production. The study indicated that the total yield was
obteined as the product of eatimated yield per plant and the true plant population in the pesture.

According to Singh and Sengha (1970) maximun relative contribution towande cane yield was due to juice percentage followed by girth, number of internodes and number of canes per clump.

Das and Ramohendra (1971) used 50 years meterological deta for foreaasting bajra yield of Ahmedbad district. They determined coritical' periode in the growth gtages of the crop and developed regsession models mith rainfall and temperature variables of the critical periods as explanatory variables.

Jitendra Hohan end Gyan Prakash (1971) predicted the yield of jute using a multiple linear regression equation with plant helght, basal diameter and fibre content as explanatory variam bles. Partial correlation analysis revealed that basal diameter had the greatest influence on jute yield.

George and Vijayakumar (1979) fitted a multiple regression model of the f orm $y=b_{0}+\sum b_{i} x_{i}$ for forecasting the yields of oashew trees (y) based on biometrical Characters $\left(x_{1}\right)$. Taking single spot observations on the Characters at the first peanut stage, forecasts were made one to two months in advance of the firet harvegt. Another Porecast model by taking the mean of the three observations stanting irom the first peanut stage at an interval of one
month. Total numbers of nut alone was found to contribute substantially to yield.

Parameswaran (1979) conducted a study to identify different vegetative, flowering and fruiting characters influencing yield in cashew. He found that the most important vegetative character contributing towards yield was percentage of flowered shoots per unit area.

Tha et $\underline{\text { gil }}$. (1981) conducted a study in Keerut District, for the pre-hervest estimation of yield of sugarcane on the basis of biometrical characters. A stratified multi-stage random sampling design was edopted for the collection of data. Observations were recorded in the thind month after planting in a monthly interval upto 8 to 9 months. High correlations were found to exist between yield and biometric characters. Iinear models of the following form were used for the purpose of forecesting.

1. $Y=a_{1}+\sum_{i=1}^{4} b_{i} x_{i}$

4
2. $Y=a_{2}+\sum_{i=1} b_{i} \log x_{i}$
3. $I=a_{3}+\sum_{i=1}^{4} b_{i} \sqrt{x_{i}}$
4. $Y=a_{4}+\sum_{i=1}^{4} \frac{b_{i}}{X_{i}} \quad$ where a_{i} and b_{i} are the parameters
of the regression models, Y the yield of sugarcene per plot,
and x_{i} blometric characters. All equations were found to be almost equally efficient. Stepwise regression technique was applied to identify the contributing characters. They found tinat number of shoots per cane and girth of the cane were the most important characters in the first and third stagea in the growth phase of sugarcane and using these two variables in a linear multiple regression model, the crop yield can be predicted about two to three months before harvest.

Chaube and Ratnalikar (1982) conducted a study to forecast production of cotton using piolcingwise data before the completion of harvest. Yields of cotton from first pioking to fifth picking were used as regressors in a forecasting model. It was found that data upto third picking was sufficient for forecasting the total yield.

Valshnav and Patel (1983) fitted different statistical models for the corecasting of groundnut yield based on biometric characters in Gajarat State. They tried the Innear models:1. $Y=\beta_{0}{ }^{+} \sum_{i} \beta_{i} x_{i}+E \quad$ 2. Log $Y=\beta_{0}+\sum_{i}$ $\beta_{i} \log x_{i}+E \quad \beta_{i}^{3} \quad \sqrt{Y}=\beta_{0}+\Sigma_{i} \beta_{i} \sqrt{x_{i}}+E$ 4. $\frac{1}{Y}=\beta_{0}+\frac{\beta_{i}}{\beta_{1}}+E$ Where Y represents the yield, and X_{i} 's are the biometric characters. MuItiple correlation coefficients showed that all models were almost equally efficient.

Maltiple growth models of production of wheat, rice and augarcane were tried to determine the factora controling output by Singh et al. (1983) for 15 districts and whole of U.P.t taking output of the crop as dependant variable, area under the orop, consumption of nitrogenous, phosphatic and potassic fertilizers, amount of rainfall and area under high yielding varieties as independant variables. The fitted models explained 31 to 78 percentage of variability in sugarcene proauction in different districts of U.P.

A study wes conducted by Chandrahas et al. (1983) in Kolhopur district of Maharaghtra to get objective preharreat estimates of production of gugarcane based on biometrical characters. Growth phase of the plant was divided into five stages like early growth, grand growth, flowering, maturity and harreat. Different forecast models were fitted using multiple regression technique. Stepwise regreasion anelysis showed that height, girth and number of millable canes would be adequate to predict the yield at different atages of crop growth.

Pre-harveat forecasting of the yield of groundnut has been attempted by Kathri and_Patel (1983) based on twenty two rainfall variables through stepwise regression analysis. It was possible to predict the groundnut yield using four explanatory veriables with sufficient degree of precision.

Krishnakumar (1983) used the technique of multiple linear regression for predicting yield of coconut based on foliar nutrient contents and number of leaves retained in the palm. The study revealed that linear regression equation with 12 variables could be used for satisfactory prediction of yield of coconut, with a coefficient of determination 0.86.
2.2. Prediction using principal component analysio

According to Hotelling (1933) principal components are linear combinations of statistical variables which have special properties in terms of variances. The first principal component is the nozmalised linear combination with maxinum variance.

Girshick (1936) has shown that principal components are linear functions of variates which have least variance ascribable to errors of measurement and factor loadings of the principal components are maximum likelihood statistics.

Grafius and Klesling (1960) developed a technique of eatimating the behaviour of oat varieties under different enviroments by vector analysis. Five veotor sets comprised of twenty two varieties of oats groum under five different enviromente were picked to represent the effects of high night temperature, drought, lodging and composite effect of certain races of both stem and leaf rust. These vectors were used to predict the relative yields of the same twenty two

Varieties for nine other environments with an assurable degree of success.

An attempt has been mede by Abraham and Koshla (1965) to form a single index of the level of incidence of pests and diseases in a field, using component azalysis. The index of overall incidence of pesto and diseases based on simple ranking method wos found to agree closely with the one based on principal component analysis.

Centroid method of factor anelysis based on 10 to 12 characters in two groups of populations was done by Murthy and Armachalem (1967) to find diversity in genus sorghum. Three factors were found to be adequate to account for most of the intercorrelations in both the genotypic and environmental correlation matrices.

Tikcta and Asawa (1978) used correlations of 28 genotypes for factor analysis in Lentil through principal component metiod. Only two factors were found importent in explaining relationships in seven traits.

Agewal et at: (1980) used the method of principal components to develop weather indices. Further they used principal components as independant variables in a multiple regression equation. The first two principal components account about 80 percentage of variation in yield.

Centroid method of factor analysis was used by Sundaxam al al. (1980) in cowpea to atudy its evolutionary pattern. The first three factors accounted for 98 per cent of the totel variation in yield.

A forecast model has been obtained by : Anonymonss (1983) for hybrid Jowar using principel components of biometrical characters. According to them the forecast of hybrid jowar yield is possible one month before harvest for a crop of three and half months duration.

2.3. Path analysis

Wright (1921) proposed the method of path coefficient analysis to study the cause and effect relationship in correlated variables, which was first successiully used in enimal breedine programmes.

Dewey and In (1959) carried out path analysis to study the componerits of crested wheat grass production, using six biometric characters. Accoraing to Ii (1956) the method of path coefficients in essentially a device for analysis or decomposition of comelation coefficient under a structure of causel relationships anong lineariy related variables.
i. . An : Norman (1971) used path coefficient analysis to identify importent component of sugarcane production. They Sound that number of millable stalks per unit area was the most important factor followed by stelk
diameter and stalk length. Stalk denaity $V=\pi(D / 2)^{2}{ }_{\mathrm{J}}$ contributed less to cane yield other than three variables.

Waphade (1972) revealed by paith analysis that the number of leaves per plant was the most important component of fodder yield, followed by the plant height and leaf aree.

Molbotra and Jain (1972) found positive correlations emong yield, grains per ear and 1000 grain weight in barley. Maltiple regression equation was fitted by telring yield as dependent, grain per ear and 1000 grain weight as independent Variables. Maximum variation in yield was accounted by variation in grain per ear enä 1000 grein weight.

Rao et al. (1973) conacted an experiment to identify the direct and indirect effects or planf height, curable leaf number: leaf lengti and leat width in the yield of flue cured virginea tobacco.

The regression of yield on the mozphologioal characters is obteined after logapithemic transfomation of the data. According to then plants with broen and more logerithenic curable leaves wene iden for selection.

Hooda et al. (1979) applied path coefficient analysis on sugarcanc genotypes for ldentilying a few mormological characters as reiliable indices for selection at the settling stage. They obsorved that stalk weight and stalle height heve poaitive direct effect on yield followed by brix content.

Sundaresan 者 al. (1979) obsèrved significant positive genotypic correlations between biometric characters at seedling stage and settling stage. According to them cane thickness was the most reliable character for selecting genotype at both the stages.

An experiment was conducted by Singh et 2I. (1981 a) with 48 varieties of sugarcane in a R.B.D. with three replications. Ten clump were selected atrandom in each plot at the tine of germination, and data were collected from these olumps till harvest. Observations were recorded on 8 traits. According to this stuady selection on sugaroane should be based on stalk height, stelk girth, number of internodes per stalk, number of green leaves per stalk and brix. Sinoe these characters are largely governed by additive genes.

Number of millable canes and number of internodes per clump were 1dentified by Singh et al. (1981 b) as the important components having direct influence on brix quality. They got a high residual effect (0.956) indicating that some prominent characters were not included in the model.

In another study conducted by Singh and Sharma (1982) oane thickness and number of millable canes were found to be the major contributors towards sugarcane production.

MATERIALS AND METHODS
3. MATHRIALS AND METHODS

Data used for the study were collected from the bulk crop of sugarcane available at the Sugarcane Research Station, Thimualle. The stuay was confined to two popalar Varieties of sugarcane namely co-997 and co-62175. Fifty plots of equal gize were located in the experimentel field under each variety. In each plot three plants were demarcated, the two end planta and the middle plant for recording blometric observations such es height of the cane (cm). girth of the cane(cm): width of the third leaf Iroill the top (cm) length of the thind leaf from the top (cm), and the number of green leaves. The identity of the three plants was rebained till harvest. First observation was recorded in the fifth month after planting and thereafter at on interval of one month till harveat. The height of the cane was measured from the ground level to the last node and girth was telien at the midale of the cane. At harvest weights of the three selected canes (gms) were reconded separately in addition to the plot yield (kg). The total number of tillera, canea and leaves in each plot were aiso recorded in each month. In the first two months of study it was vexy difficult to distinguigh between tillers and canes. So the observations on number of tillerg and canes were oonsidered together as a

single observation.

In order to get a rapid method of determining leaf area using linear dimensions of the leaf the product of the maximum length and mextmum breadth (say x) was correlated with actual leaf area (y) obtained by tracing the leaf on the graph paper. A sample of thirty leave日 of different sizes was used for this purpose. Different regression equations were worked out for estimating leaf area with and without applying various transformetions. An approminte prediction equation f or estimating leaf area was selected on the basis of the twin criteria of simplicity and efficiency. In estimating leaf area it was assumed that shape of the leaf did not undergo siminicont changes during the entire growth period of the crop and hence the equation developed for estinating leaf area at the harvest period of the crop was alse equolly applicable during the carly stages of crop growth. Fruther it war assumed that the leaf area of a leaf was not associated with its position. From these assumptiona and the nethods developed it wes possible to estimate the leaf area of the third leaf of the tagged plents. The following waiels were tried for estimating the lsaf area.

$$
\text { 1. } y=b x \quad \text { 2. } y=a+b x \quad \text { 3. } \log y=a+b x
$$

$$
\text { 4. } \log y=a+b \log x \quad \text { 5. } y=a+b x+0 x^{2} \quad 6 \cdot y=a+b \sqrt{x}+c x
$$

The total leaf area of the cane was estimated by maltiplying the number of leaves per cane and nean leaf area of third leaf of the tagged plant from the top.

Pre-harvest forecasting of plot yield of sugarcane was attempted using

1. Cane-wise observations
2. Plot-wise observations

3.1. Prediction using cone-wige observationa

Regression analysis was carried out using the observations recorded from the three selected plants for each of the fifty plots for the two selected varieties for each month separately to find the adequacy of different models for prediction. During the course of the plant growth some of the selected canes got demaged due to disease incidence, so observations on those plents were not accounted for the anaiysis. The biometric characters used for the prediction of cane yield were: 1. Height of the cane $\left(x_{1}\right)$ 2. Girth of the cane $\left(x_{2}\right)$ 3. Wiath of the third leaf from the top $\left(x_{3}\right)$. 4. Length of the third leaf from the top $\left(x_{4}\right)$. 5. Leaf area of third leaf from the top (x_{5}) 6. Total number of leaves in a cane (x_{6}) 7. Total leaf area of all the leaves of a cane $\left(x_{7}\right)$. Correlation coefficients were worked out with the above mentioned seven morphological characters among themselves and with yield (y) for each month
separatiely. The significance of correlation coefficient was tested using students 't' test. Selection of explanatoxy variables of the multiple linear regression equation was done on the basis of the relative influence of the verious characters on cane yield. Only those characters which showed significant linear relationship with yield alone were retained in the model. A class of maltiple linear regresaion equations was fitted for each month separately, coefficient of determination (R^{2}) calculated and tested for siguificance.

In multiple linear regression the values on P explanatory variables $x_{1} * x_{2} \cdots x_{p}$ were used to predict the average value of the dependant variable y using the functional form

$$
y=a+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{p} x_{p} . \text { It was assumed }
$$

that the independent variables vere measured without error and errors in the dependant variable y followed a normal distribution with zero mean and constant variance. The parameters of the fitted equation were estinated by applying the ordinary principle of least squares. The set of normal equations for estimating the parameters $b_{1}, b_{2}, \cdots, b_{p}$ was

$$
\underline{S I}_{1} y_{p x 1}=\operatorname{Sin}_{i} j_{p x p} B_{p x 1}
$$

wigere Siy is the vector of sum of products of the i th explanatory variable with the dependant variable.

St $\mathrm{j}_{\mathrm{pxp}}$ is the sum of product matrix of the explanatory variables, $\underline{B}_{p x 1}$ is the vector of parameters $b_{1}, b_{2}, \cdots, b_{p}$
$\underline{B}_{p x 1}=$ Gi J $_{p x p}$ Sid $_{p x 1}$
where $^{1} j_{p x p}$ is the inverse of sid ${ }_{p x p}$
$a=\bar{y}-b_{1} \bar{x}_{1}-b_{2} \bar{x}_{2} \cdots-b_{p} \bar{x}_{p}$
The estimated value of the dependant variable can be obtained as
$\hat{y}=\hat{a_{1}}+\hat{b}_{1} x_{1}+\hat{b}_{2} x_{2}=--+\hat{b}_{p} x_{p}$
where $a_{9} b_{1}=-b_{p}$ were the least square estimates of a_{s} $b_{1}, b_{2}--b_{p}$. The quantity $\sum_{i=1}^{P} \frac{b_{i} s_{i y}}{S^{2} y}$ is called the
multiple coefficient of determination, which is a measure of the percentage variation in the dependant variable, explained by the independent variables of the fitted equations. The significance of R^{2} was tested using the variance ratio test given by

$$
F=\frac{R^{2}}{1-R^{2}} \times \frac{n-p-1}{p}
$$

The adequacy of a restricted model over the full model was tested using the F test

$$
F=\frac{R_{P}^{2}-R_{r}^{2}}{1-R_{f}^{2}} \times \frac{d \rho}{d r-d \rho}
$$

where R_{f}^{2} is the coefficient of determination for the
frill model. R_{r}^{2} is the coefficient of determination for the restricted model, αf is the degrees of freedom of r_{f}^{2} and $d r$ is the degrees of freedom of R_{r}^{2}.

A significant F test implies that the restricted model is inefficient to cope with the fuil model.

The following tronsformations were tried in gearch of a better fit to the data. 1. $y=a_{1}+\sum_{i=1}^{7} b_{i 1} \log x_{i}, \quad$ 2. $y=a_{2}+\sum_{i=1}^{7} b_{i 2} \frac{1}{x_{1}}$ 3. $y=a_{3}+\sum_{i=1}^{7} b_{i 3} \sqrt{x_{i}} \quad$ 4. $\log y=a_{4}+\sum_{i=1}^{7} b_{i 4} \log x_{i}$ where x_{i} are the biometric characters, $a_{j} \quad j=1,2,3,4$ are the constants to be enverated and $b_{i j}$ are the respective regression coefficients.

The expected yield of a plot was determined as the product of the number of cones per plot and expected cane yield as obtained from the fitted model.

3.2. Prediction using per plot observations

An attempt was also made to predict the yield of sugarcane based on per plot observations. In the first two months os the atudy there were only elegt biometrical characters and in the next three months there were nine characters. The characters included in the study were (1) Height of the cane $\left(x_{1}\right)$, (2) Girth of the cane $\left(x_{2}\right)$,
(3) Width of third leaf from the top $\left(x_{3}\right)$, (4) Length of third leaf from the top $\left(x_{4}\right)$, (5) Area of third leaf from the top $\left(x_{5}\right)$, (6) Number of cenes per plot $\left(x_{6}\right)$, (7) Number of tillers per plot (x_{7}) (8) Total number of eraen leaves per plot (x_{8}) (9) Total leaf area of all leaves in a plot $\left(x_{9}\right)$. The dependent variable was the plot yield in kge. Observations on height, girith, width of third leaf, length of third leaf and aree of thind leaf are the mean values of measurements in the three tagged plants in each plot. Observations on other characters, viz., number of canes per plot, number of tillers per plot and number of leaves per plot were recorded on a whole plot basig. Correlation coefficients were colculated among the characters themselves and with yield and multiple linear regression equations of yield on the above mentioned biometricel characters uere fitted as desoribed in section 3.1. The four nonlinear models as explained in section 3.1. also were tried f or all the months.

3.4. Prediction uging principal

Component enalysis
In many of the experimental situations of multiVariate data analysis the charactera may be interrelated. In such situations in order to examine the relationships among the set of P correlated variables, it may be useful to transform the oxiginal set of P wariables into a new. set of P uncorrelated variables called principal components.

These new variables are linear combinations of original variables and are derived in decreasing order of their importance so that the first principal component accounts for maximum of the variation in the original data.

Plot wise observations were utilized for predicting plot yield using principal component analysis. The anelysis was carried out for each month separately.

Since the variance covariance matrix of the standardised values is the same as the correlation matrix of the cheracters, the principal components were calculated from tine matrix of correlation coefficients.

The eigen vector corresponding to the highest eigen value will be the first principal component. Similarly $r^{\text {th }}$ principal component is the eigen vector corresponding to the $r^{\text {th }}$ eigen value of the matrix.

Iet $\underline{x}^{1}=\left(x_{1} x_{2}-x_{p}\right)$ be a P dimensional random variable wịtin mean $\underline{\underline{1}}$ and díspersion matrix \geqq 。 The components $z_{1}, z_{2} \cdots-z_{p}$ are defined as $z_{j}=a_{i j} \underline{x}$ where $\underline{a}_{j}^{\prime}=\left(a_{1 j} a_{2 j}-\cdots a_{p j}\right)$

The first principal component z_{1} is to be во chosen as to have maximum variance and should satisfy the orthogonality condition $\underline{a}_{1} \underline{Q}_{1}=1$

Veriance of the first component $\nabla\left(z_{1}\right)=\underline{a}_{1} B_{a_{1}}$ where \underline{R} represents the correlation matrix. Maximising
af f ${ }_{\sim}^{R} a_{1}$ using Lagrange multiplier λ_{1}
af $\underline{\underline{a}} \underline{a}_{1}-\lambda_{1}\left(\underline{a}_{1} \underline{e}_{1}-1\right)$
$\left(R_{-}-\lambda_{1}\right)_{Q_{1}}=0$
Equation (1) have a non-zero solution if ($\mathrm{R}_{\sim} \lambda_{1}$ I) \underline{a}_{1} is a singular matrix, λ_{1} must be chosen such that \mid R- $\lambda_{1} \mid=0$. A non-zero solution exists for equation (1) if λ_{1} is on eigen value of C .

$$
\begin{aligned}
V\left(z_{1}\right) & =\underline{a}_{1}^{R} \underline{R} \\
& =\underline{a}_{1} \\
& =\lambda_{1} \underline{a}_{1} \\
& \text { since } \underline{a}_{1}^{1} \underline{a}_{1}=1
\end{aligned}
$$

If λ_{i} is the $i^{\text {th }}$ eigen value then the variance of the $i^{\text {th }}$ principal component is λ_{i}. To maximise the variances λ_{1} must be chosen as the largest eigen value. From equation the principal component \underline{a}_{1} must be the eigen vector of R, corresponding to the largest eigen value λ_{i}. In the same manner the second principal component will be the eigen Vector corresponding to the second eigen value and so on. The gums of variances of the original variables and their principal components are the same. The total Variance in the system will be trace (R) which is the same as som of the eigen values. The proportionate vallation explained by the $i^{\text {th }}$ component is $\frac{\lambda_{1}}{P}$, where P is the
trace (R). The first m components account for $\sum_{j=1}^{m} \frac{\lambda_{j}}{P} \times 100$ percentage of the total variation. Correlation between $j^{\text {th }}$ component and $i^{\text {th }}$ variable is given by $r\left(x_{i}, Z_{i}\right)=\lambda_{j}^{\frac{1}{2}} a_{i j}$. This is known as factor loadings or component loadings. If a variable has no significant correlation with a component then that variable Is not contributing mach to the variance of the component and hence unimportent in describing the causal structure. Thus variables can be ranked according to their relative importance and wimportant variables can be eliminated. But if the so called unimportant variables are correlated with any other component elimination will be dencerous. So elimination is done only after considering the major componenus.

The utility of a pomponent depends upon the variebility it accounts for. Lhus the firgt atep is to select the important components from the ' P ' set of P components. A simple role is to consider only theae components which account for more then 75 percentage of the total variability. Another xule is to select only tinose components with letent roots mumerically greater than unity. A third method used is that of testing the dissiullarity among latent roots by X^{2} test and retaining only those charactexistic vectors correspording to the roots which
are distinct.
On several occesions principal component analysia is only the first step in maltivariate data analyos. The derived observations can be subjected to further statistieal anelysis. In this study the values of the first three principal components are used as independent variableg in maltiple linear regression analysis with final yield as the dependent variable. Prediction equations during different monthe were worked out and corresponding coefficients or determination calculated.
3.3. Pati coeflicient analysig (Plant wise approach)

The simple correlation analysis does not talce into account the cause and effect relationship between the related variables. The technique of path analysis developed by Wright (1921) is ugesul to atudy the frmetional aelationship between equsel feotoxg and theis effect. The method can be applied to asjess the relative contribution of various bionetric characters aflectine yleld of sugarcane so as to ensble the researcher to identify the inportant variables to be retained in the prediction equation.

Path anelysis is concerned with the decomposition of simple linear correlation coefficient between causal Tariable and the effect ractor into numerous components due to direct effect of the causal lactor and its indirect
effect through other factors. The linear model used for the path analysis is of the form

$$
Y=a+b_{1} x_{1}+b_{2} x_{2}+\infty \quad+b_{n} x_{n}+b_{u} x_{u}
$$

Where b_{i}^{\prime} 's are partial regression coefficients, x_{i}^{\prime} 's are the exogenous variables (the biometrical characters) and 'Y' the endegenous variable (cane yield).

Path coefficients are standardised regression coefficients and are given by $p_{i y}=b_{1} \frac{\sigma_{1}}{\sigma y}$

Where σ_{1} and σ_{y} have their usual meanings. The indirect effect of r_{i} through X_{f} is $r_{i j} P_{i y}$.

Standardising the variables

$$
\begin{aligned}
& \frac{X-\bar{Y}}{y}=Y_{1} \cdot \frac{x_{1}-\bar{x}_{1}}{x_{i}}=x_{1} \\
& Y=P_{1 y} x_{1}+P_{2 y^{\prime}} Z_{2}+\cdots-\cdots+P_{n y} x_{n}+P_{n y} x_{u}
\end{aligned}
$$

Let x_{q} be any variable

$$
\begin{aligned}
& \text { Then } r_{y q}=\frac{1}{n} \sum_{1=1}^{J} Y X_{q} \\
& =P_{1 y^{r}} 1_{q}+P_{2 y^{r}} 2 q+\cdots--P_{n y^{x}} x_{n q}+P_{u y^{r}}{ }_{u q} \\
& I_{y q}=\sum_{i=1}^{u} P_{i y^{2}}{ }_{i q}
\end{aligned}
$$

which is known as the fist law of path analysis. If both the raxiablea are purely exogenous, correlation cannot be broken down. If x_{q} is any variable among $x_{i}{ }^{\prime} s, i=1,2 \ldots$ n

Then $r_{y q}=\sum_{i=1}^{n} P_{i y^{\prime}} r_{i q}$
Since there are n exogenous variables the cause end effect relationship con be defined by n simultaneous equations in n unknowns. The coefficient matrix of normal equations will be the correlation matrix. The set of normal equations are

$$
n_{n \times n} E_{i y_{n \times 1}}=\underline{x}_{i y_{n \times 1}}
$$

Where $\underline{p}_{n \times n}$ represent the correlation matrix, $\underline{P}_{1 y_{n x 1}}$ the vector of path coefficients, $\underline{\underline{x}}_{i y_{n \times 1}}$. the correlations of x_{i} with J. Solving these systems of equations the direct effect will be obtained.

The residual effect can be obtained as follow .

$$
\begin{aligned}
r_{y y}=1 & =\sum_{i=1}^{n} P_{i y} r_{i y}+P_{u y} r_{u y} \\
& =\sum_{i=1}^{n} P_{i y^{r}} r_{i y}+x_{u y}^{2}=1 \\
n^{2} & =x_{u y}^{2}=1-\sum_{i=1}^{n} P_{i y^{r}} r_{i y} \\
n & =\sqrt{1-\sum_{i=1}^{n} P_{i y} r_{i y}}
\end{aligned}
$$

where h is the residual effect and h^{2} - measure the degree of determination of Y by residual factors and ${ }_{{ }_{i}} r_{i j} P_{i y}$ measure the degree of determination of Y by the
endogenous variables.
If the correlation coefficient is positive, direct effect is positive and indirect effects are negligible, then the direct.selection of that trait will be effective.

If the correlation coefficient is positive but direct effect is negative or negligible the indirect effect seems to be the cause of correlation. In guch situations the indirect causal factors are to be considered gimultaneously.

In some cases correlation coefficients may be negative, but the direct effect is positive and high. In such situations a restricted simultaneous selection model is to be followed. Restrictions are to be imposed in order to nullify the undesirable indirect effect so as to make use of the direct effect.

Rules for translating equationg into a path diagram are to dray an axrow from each cause to effect and between two purely exogenous veriebles, draw a curved line with arrow heads at each ends. The path diagram contains ail the information of a sygtell of equations, but for meny models the diagram is easier to comprehend.

RESULTS

4.1. Estimation of leaf area

The different models fitted for estimatine leaf axea of sugarcane with corresponaing R^{2} valuea are given in table 4.1.1.
' x ' is the product of maximun width and meximum length of the leaf. All the above mentioned six models were almost equally efficient in the eatimation of leaf area. The coefficients of determinations were somparitively low for veriety $00-62175$. Considering the simplicity and convenience of celculations the equation $y=b x$ was selected for the estimation of leaf area of augarcane.
4.2. Pre-harvest forecesting of sugarcone yield - Method of multiple regregsion- Plant wise aporoach.

The inter-correlations among the difierent characters studied and those with yield were calculated for each month separately. The matrix of comrelation coefficients, the regression equations fitted in each month for the two vaxieties and the value of coefficient of determination are given in tables 4.2(a) and 4.2(b) respectively. As mentioned in section 3.1. Pcur typee of trensformations were tried on the experimentel data and the regression equations fitted. applying these trensformations are denoted by lettars a, b, c and d where a. $y=a_{1}+\sum_{i} \beta_{i} \log x_{i}$ b. $y=a_{2}+\sum_{i} \beta_{i} \frac{1}{x_{i}}$ c. $y=a_{3}+\frac{\lambda_{i}}{i} \beta_{i} \sqrt{x_{i}}$ d. $\log y=a_{4}+\sum_{i} \beta_{i} \log x_{i}$

Table 4.1.1. Nodels for ebtimating leaf area of sugarcane

Sl. Form of model No.	C0-997			c0-62175				R^{2}
	Mstin a	b_{of}	$\begin{gathered} \text { aneters } \\ c \end{gathered}$	H^{2}	$\begin{gathered} \text { Egtimat } \\ a \end{gathered}$	$\text { of } \mathrm{par}$		
1. $Y=\mathrm{bx}$		0.66		0.83		0.66		0.76
2. $Y=a+b x$	63.59	0.61		0.83	51.21	0.57		0.75
3. $\operatorname{Tog} Y=a+b x$	-2.29	-0.0005		0.81	-2.17	-0.001		0.75
4. $\operatorname{Iog} Y=a+b \log x$	0.12	-0.98		0.81	-0.22	0.85		0.76
5. $Y=a+b x+c x^{2}$	53.54	-0.62	$0: 0001$	0.83	-42.72	-0.59	0.00003	0.75
6. $Y=a+b \sqrt{x}+\mathrm{cx}$	26.90	-20.29	-0.28	0.93	-587.44	2896	1.37	0.75

Table 4．2（a）1．1．Zero order correlation matrix of biometric cheracters and yield for co－997 in fifth month of plant growth．

Chara－ cters	Helght x_{1}	Girth x_{2}	Width of 3 rd leaf x_{3}	Iength of 3xd 1eaf x_{4}	Area of $3 x d$ leaf x_{5}	No．of Ieaves／ cane x_{6}	Total lear area／ cane x_{7}	Cane yield Ψ
x_{1}	1	0.445	0.437	－0．159	$0.35{ }^{\text {\＃}}$	$0.35{ }^{\text {\％}}$	0.476	$0.47 \stackrel{*}{2}$
x_{2}		1	$0.52{ }^{*}$	－0．040	0.509	$0.210{ }^{\text {a }}$	$0.53{ }^{*}$	0.52 \％
x_{3}			1	－0．081	0．917＊	0．258＊	0．849＊	0.394
x_{4}				1	0.28 ＊	－0．136	0.179	－0．049
x_{5}					1	0.204	$0.89 \frac{4}{4}$	$0.36{ }^{\text {\＃}}$
x_{6}						1	$0.54{ }^{\text {c }}$	0.226
x_{7}							1	$0.40{ }^{\text {a }}$
Y								1

Table 4．2（a）1．2．Zero order comrelation matrix of biometric characters and yield for C0－62175 in fifth month of plent growth．

Chara－ cters	Height	Girth	Width of $3 x 0$ leaf	Length of 3 md leaf	Area of 3xd leaf	No．of leaves／ cane	Total leaf area／ cane	$\begin{aligned} & \text { Cane } \\ & \text { yield } \end{aligned}$
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	Y
x_{1}	1	0.48 类	$0.50{ }^{\text {\％}} 5$	0．469＊＊	0.575	$0.71{ }^{\text {\＃}}$	0.744	$0.54{ }^{*}$
z_{2}			$0.54{ }^{\text {弚 }}$	$0.45{ }^{4}$	$0.58{ }^{\text {＊}}$	0.404	$0.57{ }^{\text {º }}$	$0.59{ }^{\text {＊}}$
x_{3}			1	0.52 耏	0.937	0.397	$0.80{ }^{*}$	$0.55{ }^{*}$
${ }^{1}$				1	0.777	0.312	0.654	
x_{5}					1	$0.42{ }^{\text {\％}}$	$0.86{ }^{\text {a }}$	0.612
${ }^{x_{6}}$						1	0.807	0.41
x_{7}							1	0.609
Y								1

＊Significont at 5\％level P（＜．05）

Table 4.2(a)2.1. Zero order correlation matrix of biometric oharacters and yield for co-997 in sixth month of plent growth.

Characters	Height	Girth	Width of $3 x d$ leaf	Lensth of 3 rd 1eaf	Area of 3rd leaf	No .of leaves/ cane	Total. leaf area/ cane	Cane yield
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	Y
x_{1}	1	0.023	0.215	-0.095	0.153	0.079	$0.15 i$	$0.37 \frac{*}{5}$
x_{2}		1	-0.016	0.104	0.034	0.037	0.046	0.055
x_{3}			1	0.154	$0.84{ }^{*}$	0.139	0.750	0.420
x_{4}				1	0.610	-0.021	0.500	0.115
x_{5}					1	0.098	0.862	0.387
x_{6}						1	0.577	0.438
${ }^{1}$							1	0.543
Y								1

Table' 4.2(a)2.2. Zero order correlation matrix of biometric characters and yield for $\mathbf{C O}=62175$ in aixth month of plant growth.

Cheracters	Height	Girth	Width of 3 rd leaf	Iength of 3 rd leef	Area of 3 rd leaf	Ho. of leaves/ cone	Total leaf area/ cane	Cane yield
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	${ }^{3} 6$	${ }^{2} 7$	\underline{Y}
x_{1}	1	$0.49{ }^{\text {* }}$	$0.46{ }^{4}$	$0.27{ }^{\text {a }}$	0.458	$0.44{ }^{\text {\% }}$	$0.55{ }^{\text {¢ }}$	$0.630^{\text {² }}$
x_{2}		1	$0.58{ }^{\text {\% }}$	0.36 ${ }^{*}$	0.593	0.324	0.581	$0.62{ }^{\text {* }}$
x_{3}			1	0.42\%	$0.93{ }^{\text {\# }}$	0.26 ²	$0.79{ }^{*}$	$0.54{ }^{\text {² }}$
z_{4}				1	$0.72{ }^{*}$	0.039	$0.81{ }^{\text {¹ }}$	0.407
x_{5}					1	0.210^{*}	0.808	0.574
x_{6}						1	0.73 *	0.415
x_{7}							1	0.639
Y								1

*Significant at 5\% level P (<.05)

Table 4.2(a)3.1. Zero order correlation matrix of biometric characters and yield for CO..997 in seventh month of plant jrowth.

Charecter	Height	Girth	Wiath of 3rd leaf	Length of 3rd leaf	Area of 3 rd leaf	No. 0 P leaves/ cane	Totel leaf area/ cane	$\begin{aligned} & \text { Cane } \\ & \text { yield } \end{aligned}$
	x_{1}	x_{2}	x_{3}	x_{4}	X_{5}	x_{6}	x_{7}	Y
x_{1}	1	0.301	0.153	-0.032	0.104	0.182	0.188	0.525 ${ }^{\text {\% }}$
z_{2}		1	0.877	0.091	0.257^{*}	$0.26{ }^{\text {\% }}$	$0.350{ }^{\text {² }}$	$0.59{ }^{\text {弚 }}$
x_{3}			1	0.179	0.869*	$0.300{ }^{\prime \prime}$	0.79 ${ }^{\text {* }}$	$0.47{ }^{\text {\# }}$
x_{4}				1	0.638	-0.20*	0.317	0.069
x_{5}					1	0.121	$0.77{ }^{*}$	0.394
x_{6}						1	0.715	0.522
x_{7}							1	0.617
X								1

Table 4.2(a)3.2. Zero order comrelation matrix of blometric characters and yield for co-62175 in seventh month of plant growth.

Character	Height	Girth	Wiath of 3rd leaf	Length of 3rd leaf	Area of 3 rd leaf	No.of leaves/ cane	Total leaf area/ cane	$\begin{aligned} & \text { Cone }^{\text {yield }} \end{aligned}$
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	Y
x_{1}	1	0.59 *	$0.35{ }^{\text {* }}$	$0.212{ }^{\text {a }}$	0.337	0.061	$0.24{ }^{\text {* }}$	$0.75{ }^{\text {\% }}$
x_{2}		1	$0.49{ }^{\text {\# }}$	$0.22{ }^{\text {* }}$	0:483	0.162	0.443	0.696
x_{3}			1	0.479	$0.86{ }^{\text {\% }}$	0.126	$0.74{ }^{\frac{4}{3}}$	0.581
x_{4}				1	$0.83{ }^{*}$	0.233	0.740^{*}	0.449
x_{5}					1	$0.22 \frac{\square}{2}$	$0.88{ }^{\text {\% }}$	$0.620{ }^{*}$
x_{6}						1	$0.62{ }^{\text {\% }}$	0.155
x_{7}							1	0.56 ğ
I								1

*Sigaificent at 5\% level P (<.05)

Table 4．2（a）4．1．Zero order correlation matrix of biometric characters and yield for com97 in eighth month of plant growth．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Charac－ ter \& \begin{tabular}{l}
Height \\
\(x_{1}\)
\end{tabular} \& Girth

x_{2} \& | Wiath of 3 rd leaf |
| :--- |
| x_{3} | \& Length of $3 x d$ lear

\[
x_{4}

\] \& Area of $3 x d$ leaf x_{5} \& No．of leaves／ cene x_{6} \& | Total |
| :--- |
| leaf |
| area／ |
| cane |
| x_{7} | \& | Cane yield |
| :--- |
| Y |

\hline \bar{x}_{1} \& 1 \& 0.23 粦 $^{\text {a }}$ \& 0.227 \& －0．039 \& 0.155 \& 0.050 \& 0.139 \& $0.55{ }^{\text {7 }}$

\hline x_{2} \& \& 1 \& $0.27{ }^{\text {c }}$ \& 0.004 \& 0.196 \& 0.220 ＊ \& $0.26{ }^{\text {\％}}$ \& $0.560{ }^{*}$

\hline x_{3} \& \& \& 1 \& 0.269 \& $0.798{ }^{\text {a }}$ \& 0.159 \& 0.698 \& $0.43{ }^{*}$

\hline ${ }^{8}$ \& \& \& \& 1 \& 0.76 है \& 0.109 \& $0.61{ }^{\text {＊}}$ \& 0.041

\hline ${ }_{5}$ \& \& \& \& \& 1 \& 0.154 \& 0．826＊ \& 0.323

\hline x_{6} \& \& \& \& \& \& 1 \& $0.67{ }^{*}$ \& $0.40{ }^{\text {＊}}$

\hline x_{7} \& \& \& \& \& \& \& 1 \& 0.481

\hline $\underline{\square}$ \& \& \& \& \& \& \& \& 1

\hline
\end{tabular}

Table 4．2（a）4．2．Żero oxder complation matrix of biometric characters and yield for C0－62175 in eigth month of plant erowth．

Chera－ cter	Height	Girth	Wiath of $3 x d$ leaf	Tengtin of 3rd 1eaf	Area of 3 rd leaf	No． $0 \hat{1}$ leaves／ cone	Total leaf area／ cane	Cane yield
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	In	I
x_{1}	1	0.52^{*}	0．43 ${ }^{\text {\％}}$	0．28总	$0.44{ }^{\text {\％}}$	0.078	0.387	$0.74{ }^{\text {\％}}$
x_{2}		1	$0.45{ }^{\text {5 }}$	$0.250{ }^{\text {\％}}$	$0.42{ }^{4}$	0.090	$0.42{ }^{\text {\％}}$	0.66 \％
x_{3}			1	0.510^{*}	0.897	0.022	$0.77{ }^{\text {a }}$	$0.60{ }^{\text {\％}}$
x_{4}				1	0.79 है	－0．143	0.56 宩	$0.36 \frac{6}{3}$
x_{5}					1	－0．035	$0.80{ }^{*}$	$0.59{ }^{\text {＊}}$
${ }^{\mathrm{x}_{6}}$						1	0.512	0.101
x_{7}							1	0.557
Y								1

＊Signiflicent at 5% level $P(<.05)$

Teiole 4.2(a)5.1. Zero order correlation matrix of biometric characters for co-997 in minth month of plent growth.

Gharecter	Height	Girth	Width of 3 rc leaf	Iength oi 3xd leaf	Area of 3xd leaf	No. of leaves/ cane	Total leaf area/ cane	Cane jield
	${ }_{1}$	x_{2}	x_{3}	x_{4}	${ }^{x_{5}}$	${ }_{6} 6$	${ }_{7}$	Y
x_{1}	1	0.092	0.240^{*}	-0.073	0.059	0.018	0.077	$0.479{ }^{\frac{7}{3}}$
x_{2}		1	0.109	-0.004	0.096	0.249 華	0.216	0.547
x_{3}			. 1	$0.348{ }^{\text {a }}$	$0.26{ }^{*}$	$0.32{ }^{4}$	0.7174	0.336
x_{4}				1	0.268	0.208	0.584^{*}	0.143
x_{5}					1	0.123	0.288	0.127
x_{6}						1	0.805	0.512
x_{7}							1	0.521
\mathbf{Y}								1

Table 4.2(a)5.2. Zero order comrelation matrix of biometric cheracters anc yield for CO-62175 in ninth month of plant erowth.

Chargm cter	Height x_{1}	Girth X_{2}	Width of $3 x d$ leaf	Irength of 3 rd leai π_{4}	Area of 3rd 1eaf x_{5}	No. of leaves/ cene x_{6}	Total leaif area/ cane x_{7}	Cane yield Y
x	1	$0.56{ }^{\text {\% }}$	0.507	0.26%	0.446	0.107	0.389	$0.80 \stackrel{\text { ® }}{ }$
K_{2}		1	0.45 咅	$0.30 \stackrel{\text { 7 }}{7}$	$0.40{ }^{\text {E }}$	0.116	$0.41{ }^{\text {\% }}$	0.769
x_{3}			1	$0.57{ }^{\text {\% }}$	0.849	0.053	0.680	0.585
x_{4}				1	0.801	-0.161	0.529	0.384
x_{5}					1	-0.031	0.748	0.557
x_{6}						1	0.606	0.173
${ }^{8} 7$							1	0.532
Y								1

*Signiflcant at 5\% level P $(<.05)$

Table 4.2 (b)1.1. Regression equations fitted for co-997 in Iifth month of plant growth.

$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	Regression equations	R^{2}
1.	$\begin{aligned} Y= & -478.382+4.834 x_{1}+103.089 x_{2}+68.01 x_{3}+1.466 x_{4} \\ & -0.475 x_{5}+5.43 x_{6}+0.001 x_{7} \end{aligned}$	0.355**
2.	$Y=-241.445+4.84 x_{1}+101.21 x_{2}+22.426 x_{3}+5.823 x_{6}$ (S)	$0.353^{* *}$
3.	$\begin{aligned} Y= & -246.674+4.855 x_{1}+100.999 x_{2}+19.536 x_{3}+0.03 x_{4} \\ & +5.264 x_{6}(\mathrm{~s}) \end{aligned}$	0.353**
4.	$\begin{aligned} Y= & -244.691+4.994 x_{1}+101.657 x_{2}+0.188 x_{5} \\ & -5.701 x_{6}(3) \end{aligned}$	0.353**
5.	$Y=-179.634+4.956 x_{1}+101.425 x_{2}+0.175 x_{7}$ (S)	0.352**
6.	$Y=-206.619+5.03 x_{1}+101.353 x_{2}+23.54 x_{3}(S)$	0.352**
7.	$Y=317.261+6.576 x_{1} * 0.047 x_{7}$	0.266**
B.	$Y=206.471+6.57 x_{1}+61.09 x_{3}+5.834 x_{6}$	$0.267^{* *}$
a.	$\begin{aligned} y= & -3596.225+141.861 x_{1}+56.991 x_{2}+79.539 x_{3} \\ & -9.647 x_{4}+172 x_{5}+373.6 x_{-}-90.8 x_{7} \end{aligned}$	0.34.6**
b	$\begin{aligned} Y= & 1455 \cdot 171-1927.611 x_{1}-2470.084 x_{2}-507.803 x_{3} \\ & +12777.753 x_{4}-9708.262 x_{5}-2887.764 x_{6} \\ & +12996.929 x_{7} \end{aligned}$	0.373**
c.	$\begin{aligned} Y= & -1377.347+71.394 x_{1}+521.129 x_{2}+96.357 x_{3} \\ & +6.423 x_{4}-0.407 x_{5}+25.879 x_{6}+0.171 x_{7} \end{aligned}$	0.352**
d.	$\begin{aligned} I= & 7.821+0.319 x_{1}+0.826 x_{2}-0.215 x_{3}-0.232 x_{4} \\ & +0.306 x_{5}+0.029 x_{6}+0.004 x_{7} \end{aligned}$	0.340**

**Indicates significence at 1 男 leveI $P(<.01)$

Table $4.2(b) 1.2$. Regression equations fitted for $00-62175$ in fifth month of plant growth.

$\begin{array}{ll} \text { S1: } \\ \text { No. } \end{array}$	Hegression equations	R^{2}
1.	$\begin{aligned} Y= & -446.404+4.052 x_{1}+90.80 x_{2}-18.31 x_{3}+1.20 x_{4} \\ & +0.885 x_{5}-19.24 x_{6}+0.069 x_{7} \end{aligned}$	$0.500 * *$
2.	$Y=-991.45 * 4.134 x_{1}+88.726 x_{2}+121.013 x_{3}+3.961 x_{4}$ (S)	$0.498{ }^{* *}$
3.	$\begin{aligned} Y= & -751.607+3.171 x_{1}+96.823 x_{2}+3.653 x_{4} \\ & +0.063 x_{7}(S) \end{aligned}$	0.488**
$4:$	$\begin{aligned} Y= & -568.929+3.738 x_{1}+95.04 x_{2}+105.69 x_{3} \\ & +0.045 x_{7} \text { (S) } \end{aligned}$	0.484**
5.	$\begin{aligned} Y= & -652.899+5.084 x_{1}+97.482 x_{2}+153.477 x_{3} \\ & -3.493 x_{6}(S) \end{aligned}$	0.480**
6.	$Y=-666.844+4.82 x_{1}+97.091 x_{2}+153.134 x_{3}$ (S)	0.480**
7.	$Y=-388.771+3.014 x_{1}+102.443 x_{2}+0.095 x_{7}$ (S)	0.475**
8.	$Y=-309.642+6.494 x_{1}+236.445 x_{3}+0.883 x_{6}$	0.409**
9.	$Y=589.858+3.952 x_{1}+0.148 x_{7}$.	0.331**
a.	$\begin{aligned} Y= & 19119.059+78.276 x_{1}+268.04 x_{2}-18478.245 x_{3} \\ & -18502.271 x_{4}+18579.113 x_{5}-259.706 x_{5} \end{aligned}$	0.454**
b.	$\begin{aligned} & +279.204 x_{7} \\ = & 5762.09-3251.826 x_{1}-4484.942 x_{2}-8122.177 x_{3} \\ & -383977.323 x_{4} * 407376.293 x_{5}-4437.5 x_{6} \end{aligned}$	0.450**
*	$I=\begin{aligned} & +900939.176 x_{7} \\ & -5398.749+44.995 x_{1}+470.053 x_{2}-4251.957 x_{3} \end{aligned}$	0.487**
a.	$\begin{aligned} y= & 72.868+0.253 x_{1}+0.635 x_{2}-75.04 x_{3}-74.977 x_{4} \\ & +74.712 x_{5}-0.560 x_{6}+0.847 x_{7} \end{aligned}$	0.335**

**Significant at 1% level $P(<.01)$

Table 4.2(b)2.1. Regression equations for com97 in sixth month oi plent growth.

$\begin{aligned} & \text { S1: } \\ & \text { No: } \end{aligned}$	Regression equations	R^{2}
1.	$\begin{aligned} Y= & 460.139+4.097 x_{1}+1.244 x_{2}+105.421 x_{3}+1.294 x_{4} \\ & -2.702 x_{5}-47.25 x_{6}+0.279 x_{7} \end{aligned}$	0.427**
2.	$Y=-614.965+3.73 x_{1}+1.558 x_{2}+109.873 x_{3}+70.77 x_{6}(S)$	0.399**
3.	$Y=-604.76+3.744 x_{1}+109.503 x_{3}+70.959 x_{6}(S)$	$0.397 * *$
4.	$\Psi=-540.626+3.999 x_{1}+0.8071 x_{5}+73.131 x_{6}(S)$	$0.598 * *$
5.	$Y=54.752 \div 4.019 x_{1}+0.111 x_{7}(S)$	0.383**
6.	$Y=174.957+4.013 x_{1}+1.059 x_{2}+0.111 x_{7}(5)$	0.384**
7.	$Y=-9.27+3.982 x_{1}+2.235 x_{2}+126.85 x_{3}$	$0.264 * *$
a.	$\begin{aligned} Y= & -3596.225+141.861 x_{1}+56.991 x_{2}+79.539 x_{3} \\ & -9.647 x_{4}+172 x_{5}+373.6 x_{6}-90.8 x_{7} \end{aligned}$	0.409**
b.	$\begin{aligned} Y= & 3642.591-21729.061 x_{1}-5229.521 x_{2}-1657.684 x_{3} \\ & -74671.427 x_{4}-1422.685 x_{5}-8131.048 x_{6} \\ & +1120489.872 x_{7} \end{aligned}$	$0.462^{* *}$
c.	$\begin{aligned} Y= & 2121.052+75.206 x_{1}+29.693 x_{2}+325.325 x_{3} \\ & +11.75 i x_{4}-205.601 x_{5}-977.602 x_{6}+69.123 x_{7} \end{aligned}$	0.425**
d.	$\begin{aligned} Y= & 2.549+0.536 x_{1}+0.169 x_{2}+0.238 x_{3}+0.059 x_{4} \\ & -0.259 x_{5}+0.374 x_{6}+0.40 x_{7} \end{aligned}$	-0.399**

**Significent at 1% level $P(<.01)$

Table 4.2(b)2.2. Regression equations fitted for $\mathbf{c} 0-62175$ in sixth month of plant growth.

S1.	Regression equations	R^{2}
1.	$\begin{aligned} Y= & -208.253+5.74 x_{1}+91.801 x_{2}+28.623 x_{3}+4.032 x_{4} \\ & -3.532 x_{5}-93.983 x_{6}+0.430 x_{7} \end{aligned}$	0.586**
2 。	$\begin{aligned} y= & -335.23+5.214 x_{1}+86.275 x_{2}+72.387 x_{3}+4.611 x_{4} \\ & +27.542 x_{6}(s) \end{aligned}$	0.571**
3.	$Y=-670.507+5.565 x_{1}+100.123 x_{2}+5.39 x_{4}+28.462 x_{6}(S)$	0.563**
4.	$Y=-781.492+6.093 x_{1}+117.943 x_{2}+23.046 x_{6}$	$0.534 * *$
5.	$Y=313.919+6.310 x_{1}+0.179 x_{7}$	0.518**
6.	$Y=-1010.47+120.855 x_{2}+153.589 x_{3}+43.942 x_{6}$	0.470**
7.	$Y=-893.067+5.486 x_{1}+94.503 x_{2}+103.12 x_{3}+22.819 x_{6}$	0.551**
8.	$\mathrm{Y}=-422.823+3.175 \mathrm{x}_{1}+87.606 \mathrm{x}_{2}+0.123 \mathrm{x}_{7}$ (S)	$0.571 * *$
9.	$Y=-3260.9-5.599 x_{1}+170.045 x_{2}+972.177 x_{3}$	0.403**
a.	$\begin{aligned} Y= & -248872.77+153.851 x_{1}+305.523 x_{2}+255191.019 x_{3} \\ & +255303.979 x_{4}+53.658 x_{5}+255239.167 x_{6} \\ & -255159.688 x_{7} \end{aligned}$	0.532**
b.	$\begin{aligned} Y= & 4456.763-22112.591 x_{1}-5479.72 x_{2}-4148.74 x_{3} \\ & -200321.249 x_{4}+209363.675 x_{5}-4816.034 x_{6} \\ & +837000.286 x_{7} \end{aligned}$	0.497**
c.	$\begin{aligned} Y= & 2599.417798 .284 x_{9}+530.478 x_{2}-520.640 x_{3} \\ & -13.124 x_{4}-209.654 x_{5}-1437.791 x_{6}+95.521 x_{7} \end{aligned}$	0.573**
d.	$\begin{aligned} Y= & -1043.079+0.566 x_{1}+0.969 x_{2}+1083.538 x_{3} \\ & +1084.439 x_{4}-2.059 x_{5}+1081.621 x_{6}-1081.394 x_{7} \end{aligned}$	0.511**

**Significant at 1% level $P(<.01)$

Table 4.2(b)3.1. Regression equations intted for co-997 in seventh month of plent growth.

SI.	Regresgion equations	R^{2}
1.	$\begin{aligned} Y= & -4650.708+5.247 x_{1}+88.047 x_{2}+982.413 x_{3} \\ & +22.937 x_{4}-9.157 x_{5}-3.641 x_{6}+0.111 x_{7} \end{aligned}$	$0.677^{* *}$
2.	$I=78.712+5.312 x_{1}+90.389 x_{2}+0.109 x_{7}(S)$	0.642**
3.	$\begin{aligned} I= & -1464.312 x_{5}+5.111 x_{1}+92.527 x_{2}+115.312 x_{3} \\ & +54.052 x_{6} \end{aligned}$	0.615**
4.	$\mathrm{Y}=-1240.993+5.544 \mathrm{x}_{1}+106.133 \mathrm{x}_{2}+149.104 \mathrm{x}_{3}$	0.572**
5.	$Y=-1180.223+6.408 x_{1}+146.753 x_{3}+64.305 x_{6}$	0.549**
6.	$Y=\tau 554.774+6.588 x_{1}+0.135 x_{7}$	0.548**
7.	$Y=-805.502+5.915 x_{1}+127.422 x_{2}$	0.482**

**Significont at i\% level B(< . 0i)

Table 4.2(b)3.2. Regression equations iltted fow $00=62175$ in seventh month of plent growth.

$\begin{aligned} & \text { SI. } \\ & \text { NO。 } \end{aligned}$	Regression equations	n^{2}
1.	$\begin{aligned} \mathrm{Y}= & 577.621+6.782 x_{1}+70.969 x_{2}-110.633 x_{3}-2.298 x_{4} \\ & +2.263 x_{5}-1.768 x_{6}+0.081 x_{7} \end{aligned}$	0.769**
2.	$\underline{Y}=-322.361+7.117 x_{1}+58.338 x_{2}+0.160 x_{7}$ (s$)$	$0.760^{* *}$
3	$\begin{aligned} Y:= & -1298.8 e 6+6.411 x_{1}+84.465 x_{2}+112.931 x_{3} \\ & +3.375 x_{4} \end{aligned}$	0.753**
4.	$\begin{aligned} Y= & -1216.034+7.011:_{1}+70.268 x_{2}+168.595 x_{3} \\ & +28.059 x_{6} \end{aligned}$	0.735**
5.	$Y=-1032.488+8.48 x_{1}+211.212 x_{3}+36.326 x_{6}$	0.708**
6.	$Y=-1044.620+6.621 x_{1}+80.363 x_{2}+174.645 x_{3}$	0.722**
7.	$Y=-847.41+6.943 x_{1}+118.239 x_{2}$	0.667**
8.	$Y=-374.462+8.602 x_{1}+118.239 x_{2}$	0.645**
9.	$Y=-4896.192+6.419 x_{1}+78.492 x_{2}+1.698 x_{j}(S)$	0.761**

* FSignificant at 1 per cent level $P(<.01)$

Table $4.2(b) 4.1$. Regression equations fitted for co-997 in eighth month of plent growth.

$\begin{aligned} & \text { SI. } \\ & \text { NO: } \end{aligned}$	Regression equations	H^{2}
1.	$\begin{aligned} Y= & -381.292+5.535 x_{1}+99.704 x_{2}-15.140 x_{3} \\ & -2.503 x_{4}-0.751 x_{5}-33.015 x_{6}+0.183 x_{7} \end{aligned}$	$0.633 * *$
2.	$\begin{aligned} Y= & -1479.5+5.622 x_{1}+100.881 x_{2}+76.044 x_{3} \\ & +43.961 x_{6}(S) \end{aligned}$	$0.619 * *$
3.	$Y=-1111.565+5.722 x_{1}+109.021 x_{2}+0.066 x_{7} \quad(S)$	0.595^{*}
4.	$Y=-1134.137+6.491 \pi_{1}+103.314 \pi_{3}+53.638 x_{6}$	0.516^{*}
5.	$Y=-1074.904+6.074 x_{1}+132.561 x_{2}$	0.498**
6.	$y=614.423+6.773 x_{1}+0.084 x_{7}$	0.471**
7.	$Y=-1249.947+5.538 x_{1}+116.825 x_{2}+87.913 x_{3}$	0.447**

**Significant at 1% level $P(<.01)$

Table 4.2(b)4.2. Regression equations fitted for co-62175 in eighth month of plant grouth.

$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	Regression equations	H^{2}
1.	$\begin{aligned} I= & -844.726+5.124 x_{1}+93.113 x_{2}+65.501 x_{3}-0.562 x_{4} \\ & +0.034 x_{5}-10.050 x_{6}+0.081 x_{7} \end{aligned}$	0.716**
2.	$Y=-1064.146+5.113 x_{1}+97.150 x_{2}+135.967 x_{3}(S)$	0.711**
3.	$Y=-998.719+5.899 x_{1}+125.079 x_{2}$	0.656**
4.	$Y=-2502.262+5.329 x_{1}+100.889 x_{2}+0.905 x_{7}$ (S)	0.699**
5.	$\begin{aligned} Y= & -1069.825 * 5.094 x_{1}+96.306 x_{2}+136.559 x_{3} \\ & +4.227 x_{6}(8) \end{aligned}$	$0.712^{* *}$
6.	$Y=-1523.632+6.381 x_{1}+177.003 x_{3}+6.208 x_{6}$	0.656\%*
7.	$Y=-391.881+6.748 x_{1}+0.121 x_{7}$	0.637**
8.	$\mathrm{Y}=-499.811+9.121 \mathrm{x}_{1}$	0.601**
9.	$\mathrm{Y}=-943.218+5.076 \mathrm{x}_{1}+103.087 \mathrm{x}_{2}+0.974 \mathrm{x}_{5}(S)$	0.704**

**Significant at 1% level $P(<.01)$

Table 4.2(b)5.1. Regression equations fitted for com97 in ninth month of plant growith.

$\begin{aligned} & \text { sle } \\ & \text { No. } \end{aligned}$	Regression equations	B^{2}
1.	$\begin{aligned} \mathrm{x}= & -680.146+4.904 x_{1}+108.879 x_{2}-68.879 x_{3} \\ & -1.806 x_{4}-0.015 x_{5}-1.462 x_{6}-0.092 x_{7} \end{aligned}$	0.663**
2.	$\begin{aligned} Y= & -1195.981+4.669 x_{1}+111.240 x_{2}+20.628 x_{3} \\ & +38.557 x_{6} \end{aligned}$	0.641**
3.	$Y=-1015.126+4.563 x_{1}+115.986 x_{2}+0.057 x_{7}$ (S)	0.635**
4.	$Y=-1132.072+4.330 x_{1}+134.392 x_{2}+58.709 x_{3}$	$0.513^{* *}$
5.	$Y=-532.698+5.059 x_{1}+21.668 x_{3}+48.612 x_{6}$	$0.487^{* *}$
6.	$Y=-270.015+4.923 x_{1}+0.069 x_{7}$	0.465**
7.	$\begin{aligned} \mathrm{Y}= & -880.117+4.999 x_{1}+112.461 x_{2}-63.583 x_{3} \\ & +0.778 x_{7}(\mathrm{~s}) \end{aligned}$	$0.654^{* *}$

Table 4.2(b)5.2. Regression equations fitted for co-62175 in ninth month of plant growtin.

$\begin{aligned} & \mathrm{SI}: \\ & \mathrm{NO}: \end{aligned}$	Regression equations	R^{2}
1.	$\begin{aligned} Y= & -1181.538+4.922 x_{1}+115.727 x_{2}-5 \cdot .117 x_{3} \\ & +0.191 x_{4}+1.135 x_{5}+16.484 x_{6}=0.043 x_{7} \end{aligned}$	0.826**
2.	$\begin{aligned} Y= & -1074.184+4.971 x_{1}+113.478 x_{2}+0.704 x_{5} \\ & +7.610 x_{6}(5) \end{aligned}$	0.825**
3.	$Y=-983.567+5.201 x_{1}+113.362 x_{2}+0.049 x_{7} \quad(\mathrm{~S})$	0.819**
4.	$\begin{aligned} \underline{Y}= & -1138.11+5.019 x_{1}+114.943 x_{2}+70.828 x_{3} \\ & +6.267 x_{6}(S) \end{aligned}$	0.817**
5.	$Y=-1081.42+5.064 x_{1}+116.474 x_{2}+70.099 x_{3} \quad(5)$	$0.812^{* *}$
6.	$Y=-0.1030 .77445 .576 x_{1}+125.855 x_{2}$	$0.798^{* *}$
7.	$Y=-281.85+7.191 x_{1}+0.079 x_{7}$	$0.708^{* *}$
8.	$Y=-681.424+6.89 x_{1}+120.452 x_{3}+8.634 x_{6}$	$0.702^{* *}$
9.	$Y=-1021.473+5.048 x_{1}+115.769 x_{2}+0.666 x_{5} \quad(S)$	$0.819 * *$

A high positive significent correlation was found between height and cane yield in all periods of atudy for the two varieties and correlation coefficient lies in the range 0.375 to 0.808 . Girth of the cone was highly correlated with yield in all periods except for $\mathrm{CO}=997$ in the Gixth month of plant growth. Product of number of leaves and area of third leaf, and width of third leaf are correlated with yield during all periods of plant growth. Jength of third leaf was not correlated with yield of variety co-997. But for co-62175 length of third leaf was significantily and positively correlated with yield. Number of leaves per cane was positively correleted with cone yield except for the variety $00-62175$ in the last three months. The biometric characters also showed high intercorrelations among themselves.

The value of the coeflicient of determination of the fittea equations were in the range from 0.355 to 0.826 . The predictability coefficient was relatively high in the later stages of plant growth than at early stages.

All the equations gave better fit to variety C0-62175 than the other variety. From the set of evailable regression equations listed for each month a single equation was identified and selected to be the best for preaiction. The adequacy of the selected equations with fewer number of variables was tested against the full model by ' F ' test and the differences were found to

Table 4.2(b)6. Forecasting models. selected for com997 and co-62175 in different months.

Month	Variety	Constent	Estimates of prornetera						
			```Coeffi- cient of x```	Coefficient of $x_{2}$	Coeffil cient of $x_{3}$	Coefficient of $x_{5}$	$\begin{aligned} & \text { Coeffi- } \\ & \text { cient of } \\ & \mathrm{x}_{6} \end{aligned}$	Coefficient of $x_{7}$	$R^{2}$
V	C0-997	-206.619	5.030	101.353	23.54				-0.352**
	C0-62175	-668.844	4.820	97.091	153.134				$0.480 * *$
VI	C0-997	54.752	4:019					0.111	0.383 **
	00-62175	-422.823	\$.175	87.606				0.123	0.571**
VII	co-997	78.712	5.312	90:389				0.109	0.642**
	c0-62175	-4896.192	6.419	78.492		1.698			0.761 **
VIII	C0-997	-1111.565	5.722	109:021				0.066	0.595**
		-1479.500	5.622	100.881	76.044		43.961		0.619 *
	C0-62175	-943.218	5.076	103.087		0.974			0.595**
IX	c0-997	-1015:126	4.563	115.986		-		0.057	0.635**
	CO-62175	-1021.473	5.048	115.789		0.666			$0.819^{\text {\# }}$

**Significant at 1 per cent level $\mathrm{P}(<.01)$
be nonsignificant. The selected models witin corresponding $\mathrm{n}^{2}$ values for each of the two varieties in different months are given in table $4.2(b) 6$.

Yields of canes estimated by the above mentioned prediction equations when maltiplied by the number of cones in different plots will give an estimate of plot yield of sugarcene in respective monthe for the two varieties with a gufficient degree of accuracy.

### 4.3. Pre-hariesi Porecasting of sugarcane yield - Method of multiple regression - Plot wise approach.

The intercorrelations among the characters themselves, and with plot yield were calculated for each month separately for the two varieties. The matrix of correlation coefficients the regression equations fitted and corresponaing $R^{2}$ values for each month are given in tables $4.3(a)$ and $4.3(b)$ respectively. The regreasion equations fitted after transformations as mentioned in section 3.2 were represented by letters $a, b, c$ and $d$. Where a. $y=a_{0}+\sum_{b} b_{i} \log _{1}$ b $y=a_{1}+\sum \frac{b 1}{x i}$ c. $y=a_{2}+z b i \quad \sqrt{x i}$ d. $\operatorname{Iog} y=a_{3} * \sum b 1 \log x_{i}$

It can be seen from tables 4.3(a) that cene yiela was higaly correlated with height of the cane, girth of the cane and the produat of area of third leaf and the number of leaves in the plot in all periods of plant growth. During fifth and alxth months plot yield was positively correlated with width of third leaf. In later ctages of plent growth leaif dimensions viz., leaf length and wiath were not found correlated with plot yield for CO-997, but in the case of $00-62175$ lear width and area of third leaf showed significant coxrelations with plot yield.

Number of leaves per plot was aigaificantly correlated with plot yield except for co-997 in the ninth month

Table 4.3(a)1.1. Zero order correlation matrix of biometric characters and yield for co-997 in fifth month of plant growth.

Cheracter	Height	Girth	Width of 3rd leaf'	Lengith of 3 ra leaf	Area of $3 x d$ leaf	No. of cones/ tillers	No. Of leaved plot	Total leaf area/ plot	Plot yiela
	$\mathrm{x}_{1}$	$x_{2}$	${ }^{2}$	$\mathrm{x}_{4}$	$x_{5}$	$x_{6}$	$x_{7}$	$\mathrm{x}_{8}$	7
$\mathrm{x}_{1}$	1	$0.44{ }^{\text {考 }}$	, 0.527	$=0.141$	0.479	0.184	0.298	$0.44 \stackrel{\text { \% }}{ }$	$0.46{ }^{\text {* }}$
$\mathrm{x}_{2}$		1	- $0.578^{*}$	0.047	0.587	0.129	0.157	0.389	0.428
$\mathrm{x}_{3}$			1	-0.133	0.533	0.107	0.169	0.566	0.434
$\mathrm{x}_{4}$				1	0.230	-0.218	-0.142	-0.025	-0.119
$\mathrm{x}_{5}$					1	0.029	0.122	0.569	$0.37{ }^{\text {* }}$
$x_{6}$						1	0.86 *	0.724	0.685
$z_{7}$							1	0.877	0.719
$\mathrm{x}_{8}$								1	0.773
$\mathbf{Y}$									1

Table 4.3(a)1.2. Zero order corzelation matrix of biometric characters and yield for $\mathbf{C O} 62175$ in fifth month of plant growth.

| Chara- Height Girth |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| oter |

*Significant at 5\% level $\mathbf{P}(<.05)$

Table 4．3（a）2．1．Zero order correlation matrix of bionetric characters and yield for co－997 in sixth month of plent growbh．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Charem cter \& $\mathrm{x}_{1}$ \& Girth

$\mathrm{x}_{2}$ \& Width of $3 x$ leaf

$$
x_{3}
$$ \& Length of 3rd Leaf

$$
x_{4}
$$ \& Area． of $3 x d$ leaf

\[
x_{5}

\] \& No．＇of canes／ till－ ers／ plot ${ }^{x_{6}}$ \& | No．of Iea－ vea／ plot |
| :--- |
| ${ }^{2} 7$ | \& Total leaf area／ plot

$$
z_{8}
$$ \& Plot srield

$$
Y
$$ <br>

\hline $x_{1}$ \& 1 \& $0.51{ }^{*}$ \& 0.420 ＊ \& －0．241 \& －0．203 \& 0.339 \& 0．420 \& 0.409 \& $0.52{ }^{\text {\％}}$ <br>
\hline $x_{2}$ \& \& 1 \& 0.744 \& 0.178 \& 0.67 娄 \& 0.213 \& $0.42{ }^{*}$ \& 0．596 \& $0.56{ }^{*}$ <br>
\hline $x_{3}$ \& \& \& 1 \& 0.157 \& 0.868 \& 0.146 \& ． $0.34{ }^{*}$ \& $0.61{ }^{*}$ \& 0.386 <br>
\hline $\mathrm{x}_{4}$ \& \& \& \& 1 \& 0.624 \& －0．133 \& －0．065 \& 0.206 \& 0.031 <br>
\hline $x_{5}$ \& \& \& \& \& 1 \& 0.054 \& 0.244 \& 0.592 \& $0.325^{*}$ <br>
\hline $x_{6}$ \& \& \& \& \& \& ｜ \& 0.901 \& 0.762 \& 0.819 <br>
\hline $x_{7}$ \& \& \& \& \& \& \& 1 \& 0.922 \& 0.89 <br>
\hline $x_{8}$ \& \& \& \& \& \& \& \& 1 \& 0.855 <br>
\hline I \& \& \& \& \& \& \& \& \& 1 <br>
\hline
\end{tabular}

Table 4．3（a）2．2．Zero order compelation matrix of biometric cherecters and yield for $00-62175$ in sixth month＇of plent growth．

Chara－ cter	Hel gint	Girth	Width of 3 rd 1eaf＇	Iength of 3rd leaf	Area of 3rd 1eaf	No．OP canes／ もill－ ers／ plot	No．of   lea－ ves／ plot	Total leaf area／ plot	Plot yield
	$x_{i}$	$\mathrm{x}_{2}$	$\mathrm{x}_{3}$	$\mathrm{x}_{4}$	$8_{5}$	${ }^{2} 6$	2	${ }_{8}^{8}$	Y
$x_{1}$	1	$0.62{ }^{\text {娄 }}$	0．613	0.38 震	0.614	0.288 年	$0.498{ }^{\text {\％}}$	0．66苂	$0.657^{\text {＊}}$
$\mathrm{x}_{2}$		1	0.644	0.282	0.610	0.133	0.330	0.511	0.512
$\mathrm{x}_{3}$			1	0.400	0.935	0.005	0.244	0.574	0.577
$\mathrm{X}_{4}$				1	0.696	－0．236	－0．054	0.214	0.217
$x_{5}$					1	－0．099	0.159	0．52\％	0．526
${ }^{x_{6}}$						1	0.864	0.702	$0.61{ }^{*}$
$\mathrm{x}_{7}$							1	0.922 ²	0.816
$\pi_{8}$								1	0.904
Y									1

＂isimisicant at $5 \%$ level $P(<.05)$

Table 4．3（a）3．1．Zero order correlation matis of biometric characters and yield for c0－997 in seventh month of plent growth．

Chara－ cter	Height   $x_{1}$	cixth $\mathrm{x}_{2}$	Wiath of 8 列 leat $r_{3}$	Lencth of 3rd leaf $x_{4}$	Area of 3 md 1eaf $x_{5}$	No．of canes $x_{6}$	No．of tillers $x_{7}$	No．or leaves $x_{B}$	Total leaf orea／plot $x_{9}$	P1ot   yield   Y
$x_{1}$	1	0.424	0.28 ì	0.131	0.30 䓪	$0.350{ }^{\text {\％}}$	$0.31{ }^{*}$	$0.420{ }^{\text {\％}}$	$0.50{ }^{\text {\％}}$	0.51 \％
$\mathrm{x}_{2}$		1	0.220	0.058	0.194	0.209	$0.44{ }^{\text {＊}}$	$0.35{ }^{\text {\＃}}$	0．39	$0.510{ }^{\text {\％}}$
$x_{3}$		．	1	0.084	$0.85{ }^{\text {\％}}$	－0．133	－0．051	－0．087	0.200	0.077
$\mathrm{x}_{4}$				1	$0.58{ }^{\text {\％}}$	0.119	－0．074	0.095	0.289	0.101
$x_{5}$					1	－0．042	－0．096	－0．019	$0.31{ }^{\text {＊}}$	0.112
$\mathrm{x}_{6}$						1	$0.31{ }^{7}$	$0.89{ }^{*}$	$0.83{ }^{\text {类 }}$	0.82 当
$x_{7}$							1	0.377	0．326	$0.49{ }^{\text {\％}}$
$\mathrm{x}_{8}$								1	$0.94{ }^{\text {\＃}}$	$0.89{ }^{\text {² }}$
$\mathrm{x}_{9}$									1	$0.878{ }^{\text {® }}$
Y										1

＊Significant at 5\％level ？（ $<.05$ ）

Toble $4.3(a) 3.2 \%{ }^{2}$ ero order correlation matrix of biometric cheracters and yield for co-62175 in geventh month of plant growth.

Character	Height	Gireth	Width of $3 x d$ leat'	Length of 3 rd leat	Area of $3 x a ̈$ leaf	No, Of canes	No. of tillers	No. Of leaves	Totel Ieaf area	Plot yield
	$\mathrm{x}_{1}$	$\mathrm{x}_{2}$	$\mathrm{x}_{3}$	$x_{4}$	$\mathrm{x}_{5}$	$x_{6}$	$x^{2}$	$x_{8}$	$\mathrm{X}_{9}$	Y
$x_{1}$	1	0.630*	0.429*	$0.317^{*}$	0.413*	0.241	0.474*	0.229	0.460*	0.753*
$\mathrm{x}_{2}$		1	0.537*	0.327*	0.481 ${ }^{\text {\% }}$	0.087	0.398*	0,096	0.387*	0.514*
$x_{3}$			1	0.653*	0.921*	0.138	0.318*	-0.198	0.406*	0.322*
$x_{4}$				1	0.890*	-0.214	0.180	-0.203	0.395*	0.226
$x_{5}$					1	-0.203	0.279*	-0.236	0.427*	0.297*
$x_{6}$						1	0.067	0.889*	0.673*	0.5B5*
${ }^{X_{7}}$							1	0.175	0.324*	0.539*
${ }^{x_{8}}$								1	0.767*	0.644*
${ }^{1} 9$									1	0.795*
Y										1

*Significant at 5\% level $P(<.05)$

Tabie 4.3(a)4.1. Zero order correlation matrix of bionetric characters and yield for co-997 in eighti month of plant growth.

Cherecter	Height $x_{1}$	Girth $x_{2}$	Widin of 3rd leaf $\mathrm{x}_{3}$	Iength of 3 rd 1eaf' $\pi_{4}$	```Area of 3rd leaf z```	10. 0 I cenes $x_{6}$	No. of tillers $x_{7}$	No.of leaves $x_{Q}$	Total Ieaf area $x_{9}$	Plot   yield   $Y$
$x_{1}$	1	$0.313^{*}$	0.326*	0.044	0.248	0.211	0.159	0.150	0.254	0.420*
$x_{2}$		1	0.435*	'0.106	0.362 ${ }^{\text {\# }}$	0.248	0.255	0.351*	0.405*	$0.530 *$
$x_{3}$			1	0.248	0.829*	-0.105	0.076	0.004	0.269*	0.152
$\mathrm{x}_{4}$				1	0.747*	0.079	0.178	0.054	0.290*	0.100
$\mathrm{x}_{5}$					1	-0.025	0.158	0.032	0.351*	0.163
${ }^{2} 6$						1	$0.413 *$	$0.641 \%$	0.636*	$0.873^{3+}$
$x_{7}$							1	0.384*	0.394*	$0.492 *$
$\mathrm{x}_{8}$								1	0.889*	0.672*
$x_{9}$									1	$0.713^{\text {\% }}$
Y										1

Table 4.3(E)4.2. Zero order correlation matrix of biometric chamacters and yield for co-62175 in eighth month of plent growth.

Cherescter	Height	Girth	Wath of 3 rd lear	Length or 3nd 1eaf	$\begin{aligned} & \text { Area of } \\ & 3 \mathrm{ra} \\ & \text { Leaf } \end{aligned}$	Ho.of canes	No.OF tillers	No. of leaves	Totel Leaf axes/ plot	Plot   yield
	$x_{1}$	$x_{2}$	$x_{3}$	$x_{4}$	$\pi_{5}$	$x_{6}$	$x_{7}$	$\mathrm{X}_{8}$	${ }^{7} 9$	Y
$\mathrm{F}_{1}$	1	0.645*	0.541*	$0.518^{*}$	0.599*	0.201	0.247	0.206	0.522*	$0.694 *$
$x_{2}$		1	0.445*	0.248	0.408*	0.175	$0.326^{*}$	0.156	$0.360^{*}$	0.471*
$\mathrm{x}_{3}$			1	$0.673^{*}$	0.913*	-0. 145	0.306	-0.047	$0.540^{*}$	0.376*
$x_{4}$				1	0.904*	-0.232	0.116	-0. 192	$0.41{ }^{*}$	0.237
$x_{5}$					1	-0.177	0.227	-0.098	0.554*	$0.374^{*}$
$\mathrm{x}_{6}$						1	0.279	0.898	$0.629^{*}$	$0.593 \%$
$x_{7}$							1	-0.164	0.017	0.164
${ }^{8} 8$								1	$0.760 \%$	$0.635^{*}$
${ }^{x} 9$									1	$0.76{ }^{*}$
Y										1

"SigniPicant at $5 \%$ level $P(<.05)$

Table 4.3(a)5.1. Zero ordet correlation matrix of biometric characterg and yield for C0-997 in ninth month of plant growth.

Cheracter	Height	Girth	Width of 3 ra leaf	Iength of 3 Id leaf	$\begin{aligned} & \text { Area of } \\ & 3 \mathrm{rd} \\ & \text { 1ear } \end{aligned}$	No.of canes	No. of tillers	No.of leaves	Totel leaf area/ plot	Plot yield
	$\pi_{1}$	$\mathrm{x}_{2}$	$\mathrm{x}_{3}$	$\mathrm{x}_{4}$	${ }_{5}$	$\pi_{6}$	$x_{7}$	$x_{8}$	$\mathrm{x}_{9}$	Y
$x_{1}$	1	0.052	0.213	-0.150	0.049	0.191	0.166	0.265	0.260	0.209
$\mathrm{x}_{2}$		1	0.132	0.015	0.093	0.217	0.239	$0.447^{*}$	0.426*	0.247
$x_{3}$			1	0.254	0.797*	-0.120	0.009	0.076	0.403*	-0.064
$x_{4}$				1	0.783\#	-0.090	-0.090	0.062	0.370*	-0.007
$x_{5}$					1	$-0.177$	-0.055	0.086	0.492*	-0.053
${ }^{6}$						1	0.649*	0.822*	0.635*	$0.345^{*}$
${ }^{3} 7$					.		1	$0.620^{*}$	0.490*	0.197
${ }^{\text {x }}$								1	0.899*	0.419*
${ }^{5}$									1	0.353*
$Y$										1

*Significant at 5\% level P $(<.05)$

Table 4.3(a)5.2. $Z_{\text {ero }}$ order correlation matrix of biometric characters and yield for CO-62175 in ninth month of plent growth.

Charae cter	Height	Glyth	Width of 3 rad leaf	Iength of 3 rd leaf	$\begin{aligned} & \text { Area of } \\ & 3 \mathrm{rd} \\ & \text { leaf } \end{aligned}$	No. of canes	No. of til.1erg	No. of leaves	Total leaf area	Plot   yield
	$\mathrm{x}_{1}$	$x_{2}$	$x_{3}$	$x_{4}$	$\mathrm{x}_{5}$	${ }^{x_{6}}$	$x_{7}$	${ }^{8} 8$	$x_{9}$	Y
$x_{1}$	1	$0.650^{7}$	0.613*	0.510*	$0.614^{\text {² }}$	0.212	0.187	0.387*	0.664*	0.673*
$x_{2}$		1	0.450*	0.375*	$0.357^{*}$	0.066	0.149	0.168	0.351*	0.484*
$\mathrm{X}_{3}$			1	.0.590*	0.769 ${ }^{*}$	-0.071	0.185	-0.048	$0.455^{\text {i }}$	0.318*
$\mathrm{X}_{4}$				1	0.789*	0.124	$0.372^{*}$	0.208	0.645*	0.459*
$x_{5}$					1	0.053	0.033	0.066	0.681*	0.345*
${ }^{8} 6$						1	-0.053	0.752*	0.544*	0.692*
$x_{7}$							1	0.167	0.115	0.118
$x_{8}$								1	0.759*	0.712*
${ }^{7} 9$									1	$0.770^{*}$
Y										1

*Significant at 5\% level P $(<.05)$

Table 4.3(b)1.1. Regression equations fitted for co-997 in fifth month of plant growth.

$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	Regression equations	$\mathrm{B}^{2}$
1.	$\begin{aligned} Y= & -378.865+0.064 x_{1}+0.913 x_{2}+19.158 x_{3} \\ & +0.491 x_{4}-0.193 x_{5}+0.269 x_{6}-0.017 x_{7} \\ & +0.0002 x_{8} \end{aligned}$	0.729**
2.	$\begin{aligned} Y= & -11.556+0.046 x_{1}+0.834 x_{2}+0.761 x_{3} \\ & +0.312 x_{6}+0.041 x_{7}(s) \end{aligned}$	0.686**
3.	$\begin{aligned} Y= & -6.716+0.046 x_{1}+0.81 x_{2}+0.346 x_{6} \\ & +0.0001 x_{8}(s) \end{aligned}$	0.680**
4.	$\begin{aligned} Y= & -9.402+0.070 x_{1}+0.961 x_{2}+0.144 x_{6} \\ & +0.082 x_{7}(S) \end{aligned}$	0.629**
5.	$Y=-2.617+0.033 x_{1}+0.566 x_{2}+0.0002 x_{8}(s)$	0.623**
6.	$Y=-10.379+0.072 x_{1}+1.174 x_{2}+0.584 x_{6}(S)$	0.633**
7.	$Y=-6.258+0.064 x_{1}+1.141 x_{3}+0.593 x_{6}(S)$	0.633**
8.	$\begin{aligned} Y= & 30.792+0.128 x_{1}-5.729 x_{2}+3.642 x_{3} \\ & +0.643 x_{6} \end{aligned}$	0.509**
a.	$\begin{aligned} Y= & -144.855+0.992 x_{1}+2.355 x_{2}+101.385 x_{3} \\ & +101.145 x_{4}-3646.429 x_{5}+1.491 x_{6} \\ & -3545.109 x_{7}+3546.395 x_{8} \end{aligned}$	0.647**
\%.	$\begin{aligned} \mathrm{Y}= & -5.855-237.035 x_{1}-36.368 x_{2}+184.532 x_{3} \\ & +7454.087 x_{4}-24752.439 x_{5}-2.012 \varepsilon_{6} \\ & -38.176 x_{7}-1015.287 x_{8} \end{aligned}$	0.655**
c.	$\begin{aligned} Y= & -287.579+0.964 x_{1}+4.906 x_{2}+141.549 x_{3} \\ & +22.646 x_{4}-14.992 x_{5}+1.768 x_{6}-2.047 x_{7} \\ & +0.147 x_{8} \end{aligned}$	$0.718^{* *}$
	$\begin{aligned} Y= & -37.287+0.323 x_{1}+0.880 x_{2}+28.677 x_{3} \\ & +28.452 x_{4}-864.243 x_{5}+0.254 x_{6} \\ & -835.493 x_{7}+835.912 \varepsilon_{8} \end{aligned}$	0.739**

**Significonce at $1 \%$ level $P(<.01)$

Table 4.3(b)1.2. Regression equations fitted for $00-62175$ in fifth month of plani growth.

$\begin{aligned} & \text { Sl } \\ & \text { No, } \end{aligned}$	Regregsion equations	$\mathrm{R}^{2}$
1.	$\begin{aligned} Y= & -5.281+0.048 x_{1}+0.099 x_{2}+3.332 x_{3}-0.124 x_{4} \\ & -0.018 x_{5}-0.144 x_{6}+0.07 x_{7}+0.0001 x_{8} \end{aligned}$	0.799**
2.	$\begin{aligned} Y= & -3.606+0.050 x_{1}+0.022 x_{2}+1.999 x_{3}-0.027 x_{4} \\ & -0.125 x_{6}+0.088 x_{7}(S) \end{aligned}$	$0.794^{* *}$
3.	$Y=0.105+0.046 x_{1}+0.105 x_{2}-0.017 x_{8}+0.0002 x_{6}(S)$	0.778**
4.	$Y=-3.606+0.091 x_{1}+0.035 x_{2}+1.308 x_{3}+0.158 x_{6}$	0.630**
5.	$Y=-12.886+0.099 x_{1}-0.04 x_{2}+1.559 x_{6}$	0.594**
6.	$Y=-5.343+0.04 x_{1}+0.07 x_{2}+1.717 x_{3}-0.106 x_{6}$	
	+0.081 $x_{7}$ (5)	$0.781^{* *}$
7.	$\mathrm{Y}=-2.824 * 0.065 \mathrm{x}_{1}+0.271 \mathrm{x}_{2}-0.077 \mathrm{x}_{6}+0.078 \mathrm{x}_{7}(\mathrm{~S})$	0.746**
8.	$Y=-2835.002+0.087 x_{1}+1.482 x_{3}+0.147 x_{8}$	0.621**
9.	$Y=0.396+0.206 x_{1}+0.184 x_{2}-0.0003 x_{8}$	0.324**
a.	$\begin{aligned} Y= & -8.113+0.704 x_{1}-0.124 x_{2}+3.809 x_{3}-1.414 x_{4} \\ & +316.042 x_{5}-0.757 x_{6}+319.42 x_{7}-316.631 x_{8} \end{aligned}$	$0.767 * *$
b.	$\begin{aligned} Y= & 33.312-75.118 x_{1}-2.52 x_{2}-15.18 x_{3}+708.432 x_{4} \\ & -2780.942 x_{5}+12.021 x_{6}-952.851 x_{7}+148992.975 x_{8} \end{aligned}$	$0.743^{* *}$
c.	$\begin{aligned} Y= & -5.134+0.634 x_{1}+0.484 x_{2}+10.677 x_{3}-0.389 x_{4} \\ & -1.046 x_{5}-0.956 x_{6}+0.032 x_{7}+0.088 x_{8} . \end{aligned}$	0.784**
	$\begin{aligned} Y= & -2.382+0.316 x_{1}+0.111 x_{2}+1.180 x_{3}-0.319 x_{4} \\ & +180.463 x_{5}-0.203 x_{6}+181.59 x_{7}-180.734 x_{8} \end{aligned}$	0.815**

Table 4.3(b)2.1. Regression equations fitted for come97 in sixth month of plant erowth.

$\begin{gathered} \text { S1. } \\ \mathrm{NO} \end{gathered}$	Regreasion equations	$\mathrm{R}^{2}$
1.	$\begin{aligned} Y= & 9.008+0.045 x_{1}+1.401 x_{2}-8.127 x_{3}-0.148 x_{4} \\ & +0.084 x_{5}+0.279 x_{6}+0.134 x_{7}-0.0002 x_{8} . \end{aligned}$	0.883**
2.	$Y=-11.552+0.024 x_{1}+1.382 x_{2}+0.347 x_{6}+0.058 x_{7}(S)$	0.863 **
3.	$\mathrm{Y}=-9.058+0.028 x_{1}+0.995 x_{2}+0.11 x_{7}(\mathrm{~S})$	0.847**
4.	$Y=-14.91 \div 0.027 x_{1}+1.935 x_{2}+0.743 x_{6}$	0.837**
5.	$Y=-31639.711+0.025 x_{1}+2.291 x_{2}-0.226 x_{6}$	0.833**
	$+0.808 \mathrm{x}_{3}$	
6.	$Y=-16.594+0.027 x_{1}+2.194 x_{2}-0.05 x_{3}+0.74 x_{0}(S)$	0.840**
7.	$Y=-14.849+0.026 x_{1}+1.934 x_{2}+0.742 x_{6}(5)$	$0.837^{* *}$
8.	$Y=-9.731+0.055 x_{1}+1.439 x_{3}+0.758 x_{6}$.	0.770
a.	$\begin{aligned} Y= & 349690.42+1.081 x_{1}+5.507 x_{2}-21.279 x_{3} \\ & -16.829 x_{4}+1493.285 x_{5}+0.958 x_{6}+1477.113 x_{7} \\ & -1474.371 x_{8} \end{aligned}$	0.847**
b.	$\begin{aligned} & x=53.02-171.733 x_{1}-83.389 x_{2}-65.637 x_{3}-4387.421 x_{4} \\ &+9114.868 x_{5}-3.853 x_{6}-622.006 x_{7}+69.27 .738 x_{8} \end{aligned}$	$0.780 * *$
c.	$\begin{aligned} x= & 13.586+0.704 x_{4}+8.344 x_{2}-39.832 x_{3}-4.71 x_{4} \\ & +4.317 x_{5}+1.581 x_{6}+3.239 x_{7}-0.092 x_{8} \end{aligned}$	$0.668^{* *}$
d. Io	$\begin{aligned} Y= & -17.120+0.439 x_{1}+1.353 x_{2}+0.995 x_{3}+1.566 x_{4} \\ & +28.011 x_{5}+0.297 x_{6}+29.88 x_{7}-29.282 x_{8} \end{aligned}$	0.881**

**Significent at $1 \%$ level $\mathrm{P}(<.01)$

Teble 4.3(b)2.2. Regression equations fitted for co-62175 in sixth month of plant growth.

$\begin{aligned} & \text { S1: } \\ & \text { No. } \end{aligned}$	Regreasion equations	$\mathrm{R}^{2}$
1.	$\begin{aligned} Y= & -11.269+0.012 x_{1}-0.012 x_{2}+1.744 x_{3}+0.02 x_{4} \\ & +0.012 x_{5}+0.063 x_{6}+0.133 x_{7}-0.0001 x_{8} \end{aligned}$	0.831**
2	$Y=-2.6+0.014 x_{1}+0.147 x_{2}+0.028 x_{8}+0.0004 x_{6}(s)$	0.824**
3.	$Y=-1.05+0.133 x_{1}+0.139 x_{2}+0.0004 x_{8}(S)$	0,823**
4.	$\begin{aligned} Y= & -8.107+0.016 x_{1}-0.004 x_{2}+2.45 x_{3}+0.007 x_{6} \\ & * 0.109 x_{7}(s) \end{aligned}$	0.823**
5.	$Y=-4.769+0.034 x_{1}+0.504 x_{2}-0.171 x_{6}+0.125 x_{7}$	$0: 766 * *$
6.	$Y=-10.901+0.036 x_{1}+0.111 x_{2}+2.901 x_{3}+0.722 x_{6}$	0.746**
7.	$Y=-7.629+0.061 x_{1}+0.763 x_{2}+0.629 x_{6}$	0.666**
8.	$Y=-12.442+0.038 x_{1}+3.002 x_{3}+0.723 x_{6}$	$0.748^{* *}$
d.	$\begin{aligned} Y= & -46.883+0.337 x_{1}+0.277 x_{2}-6.416 x_{3}-6.626 x_{4} \\ & -1335.279 x_{5}+0.296 x_{6}-1342.104 x_{7}+1344.49 x_{8} \end{aligned}$	$0.845^{* *}$
b.	$\begin{aligned} Y= & 8.122=55.132 x_{1}-10.462 x_{2}+50.691 x_{3}+1964.063 x_{4} \\ & =5950.461 x_{5}-4.384 x_{6}-274.617 x_{7}+3904.302 x_{8} \end{aligned}$	$0.781^{* *}$
c.	$\begin{aligned} Y= & 70.133+0.224 x_{1}+0.232 x_{2}-4.063 x_{3}-1.098 x_{4} \\ & +1.538 x_{5}+0.435 x_{6}+1.895 x_{7}=0.021 x_{8} \end{aligned}$	$0.824^{* *}$
d. Iog	$\begin{aligned} I= & -16.068+0.187 x_{1}+0.075 x_{2}-1.615 x_{7}-1.711 x_{4} \\ & -1227.713 x_{5}+0.163 x_{6}-1229.654 x_{7}+1230.324 x_{8} \end{aligned}$	$0.851 * *$

\#*Significant at 1\% level P $(<.01)$.

Table 4.3(b)3.1. Regression equations fitted for co-997 in seventh month of plant growth.

$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	Regression equations	$R^{2}$
1.	$\begin{aligned} Y= & -16.37+0.02 x_{1}+0.702 x_{2}+4.353 x_{3}+0.083 x_{4} \\ & -0.026 x_{5}+0.312 x_{6} \pm 0.146 x_{7} * 0.08 x_{8} \end{aligned}$	0.878**
2.	$\begin{aligned} Y= & -9.668+0.028 x_{1}+0.862 x_{2}+0.297 x_{6}+0.131 x_{7} \\ & +0.059 x_{8}(\mathrm{~s}) \end{aligned}$	$0.868^{* *}$
3.	$\begin{aligned} Y= & -8.044+0.014 x_{1}+0.827 x_{2}+0.395 x_{6}+0.174 x_{7} \\ & +0.0001 x_{.}(S) \end{aligned}$	$0.873^{* *}$
4	$Y=-10.985+0.03 x_{1}+1.034 x_{2}+0.309 x_{6}+0.061 x_{8}$ (S)	0.859**
5.	$Y=-6.7-0.013 x_{1}+0.837 x_{2}+0.0002 x_{9}$.	$0.803^{* *}$
6.	$\begin{aligned} Y= & -13.668+0.022 x_{1}+0.961 x_{2}+0.914 x_{3}+0.323 x_{6} \\ & +0.063 x_{8} . \end{aligned}$	$0.4866^{* *}$
7	$Y=-16.293+0.31 x_{1}+1.349 x_{2}+0.760 x_{3}+0.781 x_{6}$	0.822**
8.	$Y=-9.435+0.031 \mathrm{x}_{1}+0.856 \mathrm{x}_{2}+0.094 \mathrm{x}_{8}$ (S) ,	$0.843^{* *}$
9.	$Y=-15.346+0.045 x_{1}+1.51 x_{2}+0.867 x_{6} 0.0004 x_{9}$	$0.803^{* *}$
10.	$Y=-21.517+0.128 x_{1}+0.837 x_{2}+0.0002 x_{9}$	$0.803^{\text {² }}$ *
a.	$\begin{aligned} Y= & -50.673+0.717 x_{9}+2.123 x_{2}+12.33 x_{3}+10.383 x_{4} \\ & -6.4 .45 x_{5}+1.331 x_{6}+0.295 x_{7}+6.427 x_{8}-4.269 x_{9} \end{aligned}$	0.878**
c.	$\begin{aligned} Y= & -118.439+0.409 x_{1}+3.125 x_{2}+39.032 x_{3}+5.513 x_{4} \\ & -2.538 x_{5}+1.891 x_{6}+0.604 x_{7}+2.951 x_{8}-0.084 x_{9} \end{aligned}$	0.862**
	$\begin{aligned} Y= & -66.944+0.323 x_{-1}+0.805 x_{2}-2.284 x_{3}-2.4 .21 x_{4} \\ & +2.45 x_{5}+0.321 x_{6}+0.077 x_{7}+0.424 x_{8}+0.127 x_{9} \end{aligned}$	0.897**

**Sigaificent at 1\% level P $\quad(<.01)$

Teble 4.3(b)3.2. Regregsion equations fitted for c0-62175 in seventh month of plant growth.

$\begin{array}{cl} \text { SI. } \\ \text { No. } \end{array}$	Regression equations	$\mathrm{R}^{2}$
1.	$\begin{aligned} Y= & 24.431+0.052 x_{1}+0.07 x_{2}-0.42 x_{3}-0.014 x_{4} \\ & -0.024 x_{5}+0.0111 x_{6}+0.143 x_{7}-0.086 x_{8}+0.001 x_{9} \end{aligned}$	0.883**
2	$Y=-6.068+0.055 x_{1}+0.029 x_{2}+0.149 x_{6}+0.0002 x_{9}$ (S)	$0.836 * *$
3.	$\begin{aligned} Y= & -6.268+0.056 x_{1}+0.261 x_{2}+0.046 x_{1}+0.139 x_{6} \\ & +0.059 x_{8}(S) \end{aligned}$	$0.835^{* *}$
4.	$\mathrm{Y}=-2.811+0.056 \mathrm{x}_{1}-0.095 \mathrm{x}_{2}+0.0003 \mathrm{x}_{9}$ (S)	0.823**
5.	$\underline{Y}=-5.448+0.053 x_{1}+0.249 x_{2}+0.423 x_{6}+0.185 x_{9}$	0.79.6**
6.	$Y=-13.767+0.064 x_{1}+0.392 x_{2}+0.413 x_{6}$	$0.748^{*}$
7.	$\begin{aligned} I= & -3.734+0.06 x_{1}+0.172 x_{2}+1.045 x_{3}+0.232 x_{6} \\ & +0.033 x_{8} \end{aligned}$	0.787**
8.	$Y=-8.168+0.061 x_{1}+0.237 x_{2}+0.804 x_{3}+0.437 x_{6}$	0.756\#\#
9.	$Y=-6.086+0.067 x_{1}+0.346 x_{2}+0.051 x_{3}$	$0.753^{* *}$
E.	$\begin{aligned} Y= & -54.103 .2 .112 x_{1}+0.604 x_{2}-0.965 x_{3}=0.884 x_{4} \\ & +5436.343 x_{3}-0.005 x_{6}+0.188 x_{7}+5435.729 x_{5} \\ & -5434.471 x_{9} \end{aligned}$	$0.843^{*}$
c.	$\begin{aligned} Y= & 14.2 \overline{5}+1.039 x_{1}+0.924 x_{2}+1.095 x_{3}+0.022 x_{4} \\ & -2.118 x_{5}+0.535 x_{6}+0.483 x_{7}-3.431 x_{3} \\ & +0.282 x_{9} \end{aligned}$	0.870**
	$\begin{aligned} Y= & -67209.6+0.785 x_{1}-0.031 x_{2}-0.033 x_{3}-0.087 x_{4} \\ & +1921.209 x_{5}+0.042 x_{6}+0.081 x_{7}+1921.502 x_{8} \\ & -1920.311 x_{9} \end{aligned}$	0.883**

Table 4.3(b)4.1. Regression equations iftted for co-997 in eighth month of plant growth:

Slo.	Regression equationa	$\mathrm{R}^{2}$
1.	$\mathrm{Y}=\mathrm{l}-22.338+0.036 x_{1}+1.196 x_{2}+2.615 x_{3}+0.049 x_{4}$	0.903**
$2 \cdot$	$Y=-15.661+0.041 x_{1}+1.444 x_{2}+0.704 x_{6}(S)$	0.892**
3.	$\begin{aligned} Y= & -15.265+0.042 x_{1}+1.329 x_{2}+0.647 x_{6}+0.010 x_{7} \\ & 40.010 x_{8}(s) \end{aligned}$	0.897**
4.	$Y=-15.561+0.04 x_{1}+1.429 x_{2}+0.698 x_{6}+0.021 x_{7}(S)$	0.892**
5.	$\mathrm{Y}=-15.304+0.042 \mathrm{x}_{1}+1.334 \mathrm{x}_{2}+0.650 \mathrm{x}_{6}+0.01 \mathrm{x}_{8}(\mathrm{~s})$	$0.897 * *$
$6:$	$\begin{aligned} Y= & -16.406+0.037 x_{1}+1.166 x_{2}+0.655 x_{3}+0.667 x_{6} \\ & +0.01 x_{8}(S) \end{aligned}$	0.901**
7.	$Y=-16.742+0.036 x_{1}+1.282 x_{2}+0.639 x_{3}+0.723 x_{6}$ (S)	0.896**
8.	$\mathrm{Y} \theta-14.911+0.062 \mathrm{x}_{1}+1.298 \mathrm{x}_{2}+0.052 \mathrm{x}_{8}$ ( S )	0.609**
9.	$Y=-5.003+0.042 x_{1}+1.624 x_{2}+0.779 x_{6}-0.003 x_{9}$ (S)	0.882**
10.	$Y=-11.354+0.049 x_{1}+1.195 x_{2}+0.0001 x_{9}$	0.613**
a.	$\begin{aligned} Y= & -29.79+2.735 x_{1}+3.296 x_{2}-29.758 x_{3}-30.778 x_{4} \\ & +30.291 x_{5}+2.647 x_{6}+0.093 x_{7}+0.105 x_{8}+0.376 x_{9} \end{aligned}$	0.839**
c.	$\begin{aligned} Y= & -85.515+0.975 x_{9}-5.78 x_{2}+25.54 x_{3}+3.69 x_{4} \\ & -2.291 x_{5}+4.262 x_{6}+0.007 x_{7}+0.098 x_{8}+0.005 x_{9} \end{aligned}$	0.878**
d.	$\begin{aligned} \mathbf{Y}= & 99.739+0.832 x_{1}+1.069 x_{2}-5.244 x_{3}-5.308 x_{4} \\ & +5.134 x_{5}+0.640 x_{6} * 0.033 x_{7}+0.011 x_{8} \\ & +0.151 x_{9} \end{aligned}$	0.911**

**Significant at 10 level $P(<.01)$
 in elgith mazth of plant gromit.

$\begin{aligned} & \mathrm{SH}_{2} \\ & \mathrm{TRO} \end{aligned}$	Regreemion equabiong	$n^{2}$
1.	$\begin{aligned} & I=13.09+0.047 \pi_{7}=0.400 x_{2}-3.905 x_{3}=0.103 x_{4} \\ & \quad+0.042 x_{5}+0.167 x_{6}+0.14 x_{7}=0.042 x_{8}+0.0004 x_{9} \end{aligned}$	$0.8350 \%$
2.	$\begin{aligned} Y= & -13.996+0.054 x_{1}+0.051 x_{2}+0.878 x_{3}+0.126 x_{6} \\ & +0.045 x_{6} \end{aligned}$	$0.749^{*}$
3.	$T=-4.24100 .047 \pi+0.019 x_{2}+0.23 \pi+0.00012$	$0.753^{\text {㿻番 }}$
4.	$z=-6.967+0.053 x_{7}-0.126 x_{2}+1.155 x_{6}+0.439 x_{z}$ (3)	0.767**
5.	$X=-5.707+0.063 x_{1} * 0.017 x_{2}+0.395 \pi_{6}$	$0.696 \%$
6	$Y=-14.969+0.025 x_{1}+0.508 x_{2}+0.002 x_{3}+0.072 x^{4}$	$0.720 \%$
7.	$Y=1.297+0.041 x_{1}+0.074 z_{2}+0.0002 x_{9}$	$0.709 \%$
0.	$Y=-6.781+0.063 x_{y}+0.266 x_{2}+0.099 \mathrm{~S}_{3}$	0.629 ${ }^{\text {\% }}$
E.	$\begin{aligned} Y= & -37.369+2.318 x_{1}-2.043 x_{2}-5.462 x_{3}-6.213 x_{4} \\ & +5.70 x_{5}+0.692 x_{6}+0.231 x_{7}-0.415 x_{0}^{3} \\ & +1.7075_{9} \end{aligned}$	$0.773^{* *}$
c.	$\begin{aligned} Y= & 25.953+1.022 x_{1}-3.075 x_{2}-16.03 x_{3}-2.603 x_{4} \\ & +1.697 x_{5}+0.734 x_{6}+0.394 x_{7}-0.443 x_{6}+0.082 x_{9} \end{aligned}$	$0.6064 *$
0.	$\begin{aligned} \text { Log } Y= & 1.231+0.928 x_{4}-0.045 x_{2}-1.873 x_{3}-2.055 x_{4} \\ & +1.963 x_{5}+0.246 x_{6}+0.108 x_{7}-0.155 x_{2} \\ & +0.509 x_{9} \end{aligned}$	0.822*

Table 4.3(b)5.1. Begression equations fitted Pow com97 in ninth month of plant growth.

$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	Regresalon equations	$\mathrm{H}^{2}$
1.	$\begin{aligned} I= & -44.54+0.032 x_{1}+0.541 x_{2}+19.765 x_{3}+0.348 x_{4} \\ & -0.141 x_{5}+0.086 x_{6}-0.128 x_{7}-0.069 x_{3} \\ & +0.0002 x_{9} \end{aligned}$	0.253
2.	$\begin{aligned} Y= & 2.304 \div 0.03 x_{1}+0.443 x_{2}-1.035 x_{3}-0.062 x_{6} \\ & +0.046 x_{8} \end{aligned}$	0.209
3.	$Y=-4.047+0.034 x_{7}+0.93 x_{2}-0.504 x_{3}+0.237 x_{6}$	0.197
4.	$Y=-0.777+0.023 x_{1}+0.403 x_{2}+0.039 x_{8}$	0.191
a.	$\begin{aligned} Y= & -425.691+9.050 x_{1}+0.963 x_{2}+274.451 x_{3} \\ & +272.400 x_{4}+960866.358 x_{5}-0.335 x_{6} \\ & =0.336 x_{7}+161140.576 x_{6}-161140.185 x_{9} \end{aligned}$	0.131
b.	$\begin{aligned} Y= & -175.097+0.771 x_{1}+2.175 x_{2}+90.754 x_{3} \\ & +15.691 x_{4}-10.619 x_{5}+0.233 x_{6}=0.37 x_{7} \\ & -2.355 x_{6}+0.149 x_{9} \end{aligned}$	0.259
c.	$\begin{aligned} & \log Y=-119.357+2.634 x_{1}+0.5 x_{2}+54.306 x_{3} \\ &+53.675 x_{4} 440.902 .303 x_{5}=0.007 x_{0} \\ &-0.091 x_{7}+40956.63 x_{8}-40956.499 x_{9} \\ & 7 \end{aligned}$	0.065

Table $4.3(b) 5.2$. Regression equations fitted for co-62175 in ninth month of plant growth.

Sl.	Regression equations	$\mathrm{R}^{2}$
1.	$\begin{aligned} Y= & -3.747+0.031 x_{1}+0.412 x_{2}+0.269 x_{3}+0.032 x_{4} \\ & -0.032 x_{5}+0.313 x_{6}+0.015 x_{7}-0.056 x_{8} \\ & +0.0004 x_{9} \end{aligned}$	0.834**
2.	$Y=-7.233+0.026 x_{1}+0.575 x_{2}+0.447 x_{6}+0.0001 x_{9}(s)$	0.808**
3.	$\begin{aligned} Y= & -4.142+0.038 x_{1}+0.546 x_{2}-0.239 x_{3}+0.43 x_{6} \\ & +0.022 x_{8}(s) \end{aligned}$	0.799**
4.	$Y=-7.319+0.046 x_{1}+0.532 x_{2}-0.639 x_{3}+0.541 x_{6} \quad(S)$	0.790**
5.	$\mathrm{Y}=-3.156+0.015 \mathrm{x}_{1}+0.594 \mathrm{x}_{2}+0.0002 \mathrm{x}_{9}$	0.655**
6.	$Y=-6.884+0.032 x_{1}+0.521 x_{2}+0.068 x_{8}$	0.713**
7.	$\begin{aligned} \mathrm{Y}= & -10.874+0.013 x_{1}+0.783 x_{2}+0.029 x_{5} \\ & +0.333 x_{6}+0.056 x_{6} \end{aligned}$	0.602**
a.	$\begin{aligned} Y= & -48.29+1.76 x_{1}+1.41 x_{2}+0.351 x_{3}+1.24 x_{4} \\ & +0.663 x_{5}+1.175 x_{6}+0.01 x_{7}+1.659 x_{8} \\ & -0.872 x_{9} . \end{aligned}$	0.795**
c.	$\begin{aligned} Y= & -2.334+0.71 x_{1}+2.204 x_{2}+0.876 x_{3}+0.605 x_{4} \\ & -1.654 x_{5}+1.955 x_{6}+0.058 x_{7}-2.239 x_{8} \\ & +0.19 x_{9} \end{aligned}$	0.829**
d.	$\begin{aligned} \text { Log } I= & -15.548+0.745 x_{1}+0.384 x_{2}+0.101 x_{3}+0.552 x_{4} \\ & +0.215 x_{5}+0.605 x_{6}+0.036 x_{7}+0.512 x_{8} \\ & -0.345 x_{9} \end{aligned}$	$0.837^{* *}$

of plant growth. Number of canes was found to be highly correlated with plot yield in all atages of plant growth for the two varieties. Number of tillers was algo correlatet with plot yleld in the seventh month for both the varieties and in ninth month only for com997.

The biometric characters were highly interrelated among themselves. Height of the cane was comrelated with girth which was also correlated with width of third leaf. Wumber of leaves was highly correlated $w$ ith number of canes which was highly correlated with number of tillers and so on. This interrelationahip among the characters introduced the problem of malticollinearity in the data.

The prediction equations fitted using all the biometric characters atudied were found to give aufficiently high values of $\mathrm{R}^{2}$ in different months. Meximum coefficient of deternination was noticed for the full model in the eighth month arter planting ( 0.903 ) for C0-997, and in the seventh month in the case of $00-62175(0.883)$.

In ninth month none of the fitted model gave a significant $R^{2}$ in the cage of variety comg97. Predictability of the regtricted models were compared with the full model using $F$ tegt. Some of the simpler models were found to be equally efficient with the full linear model, these models have been indicated by the symbol (S).

Table 4.3(b)6: Regression equations selected in fifth and sirth months of plent growth.

Month	Variety	Estimates of parameters						
		Constant	$\begin{aligned} & \text { Coeffi- } \\ & \text { cient of } \\ & x_{1} \end{aligned}$	$\begin{gathered} \text { Coeffi- } \\ \text { cient of } \\ \mathrm{x}_{2} \end{gathered}$	Coefficient of $x_{3}$	```Coeffi- cient of \mp@subsup{x}{6}{}```	Coepficient of $x_{7}$	$\mathrm{n}^{2}$
V	60-997	-11.556	0.046	0.834	0.761	0.312	0.041	0.686**
	c0-62175	$-5.343$	0.040	0.070	1.717	-0.106	0.081	0.781 \#
VI	c0-997	-11.552	0.024	1.382		-0.347	0.058	$0.863^{*}$
	co-62175	-8.107	0.016	-0.004	2.450	0.007	0.109	$0.823^{* *}$

**Significant at 1 per cent level $P(<.01)$

Table 4.3(b)7. Regression equations aelected in seventh, eighth and ninth month of plant growth.

Month	Variety	Constant	Egtimates of parameters						
			Coefficlent of $x_{1}$	Coefficient of $\mathrm{x}_{2}$	Coefficicient of $x_{3}$	Coefficient of $\mathrm{x}_{6}$	$\begin{aligned} & \text { Coeffi- } \\ & \text { oient of } \\ & x_{7} \end{aligned}$	Coefficient of ${ }^{x_{8}}$	$\mathrm{R}^{2}$
VII	60-997	-13.668	0.022	0.961	0.914	0.323		0.063	$0.866^{\text {\%* }}$
	60-62175	-6.268	0.056	0.261	-	0.139	0.046	0.059	0.835**
		-8.168	0.061	0.237	0.804	0.437			0.756**
VIII	c0-997	-16.406	0.037	1.166	0.655	0.667		0.010	0.901 **
	C0-62175	-6.987	0.053	-0.126	0.439	1.155			0.767**
IX	00-99?								
	c0-62175	-4.142	0.038	0.546	$-0.239$	0.430		0.022	0.799\#*
		-7.319	0.046	0.532	-0.639	0.541			0.790**

*WSignificant at $1 \%$ level P $(<.01)$

+ None of the $R^{2}$ Values for the fitted models were significant (including the full wodel) and hence prediction equations were not given.

In most of the months $\mathrm{R}^{2}$ values were sound to be higher than 0.70 , which indicated that more than 70 per cent variation in plot yield could be explained by the linear model of biometric characters.

For convenience of prediction a set of equations was selected in different months which is presented in tables 4.3 (b) 6 and 4.3(b)7. All the equations selected in different months were at par with the full model with respect to predictability. The coefficients of determination of the equations were felrily high indicating that yield of sugarcene can be successfully predictea with linegr regretimion of yield on biometric characters.
4.4. Blometric characterg inpluenoing sugaroane yielã Mathod of path coefficients - plant wige approach.

Path analyais wes carried out for both the varieties in each of the months of observation. The direct and indirect effects towards yield for variety com97 and combit5 axe given $\ln$ tables $4.4(a)$ and 4.4 (b) respectively. Path diagram was drawn only for the month heving least residual veriation. The residual effect is represented by h. Underilined Eigures аепоте тие а.rect exrects.

From the various tables under 4.4(a) and 4.4(b) it cen be seen that haight of the plant and atalk girth showed high positive direct effects uniformly during the entire period of observation. The direct effect of height on yield was slightly higher then that of girth in all the months except in the first month of observation for both the varieties. These two oharacters had low or negligible indirect effects through other cheracters. The direct effects of height on yield was found to be maximun ( 0.520 ) in the seventh month for variety C0-997 and for the other varlety in the ninth month (0.440). The direct effects of girth on yield was maximum ( 0.424 ) for variety $00-52175$ and $f$ or the other variety ( 0.398 ) in the ninth month of plant growth. Width of third leaf showed relatively high pasitive direct effect on yield duxing seventh month for C0-997 but It had high netative effect through area of third leap.

Table 4.4(a)1. Direct and Indirect Effects for Variety c0-997 in fifth month of Plant Growth.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cheracter \& Height

$x_{1}$ \& Gixth

$\mathrm{x}_{2}$ \& Wiath of 3nd leaf

$$
x_{3}
$$ \& Liength of $3 x$ d leaf

$$
x_{4}
$$ \& Area Of 3rd leaf

$$
x_{5}
$$ \& No. Of leaves/ cane

\[
x_{6}

\] \& Total leaf area/ cone $x_{7}$ \& | Corre- |
| :--- |
| lation |
| with |
| yield | <br>

\hline $x_{1}$ \& 0.264 \& 0.162 \& 0.111 \& -0.014 \& -0.067 \& 0.012 \& 0.003 \& 0.472 <br>
\hline $\mathrm{x}_{2}$ \& 0.117 \& 0.364 \& 0.133 \& -0.003 \& -0.096 \& 0.008 \& 0.004 \& 0.526 <br>
\hline $\mathrm{x}_{3}$ \& 0.115 \& 0.190 \& 0.254 \& -0.010 \& -0.173 \& 0.009 \& 0.006 \& 0.394 <br>
\hline $\mathrm{x}_{4}$ \& -0.041 \& -0.014 \& -0.021 \& 0.086 \& -0.054 \& -0.005 \& 0.001 \& -0.049 <br>
\hline $\mathrm{x}_{5}$ \& 0.099 \& 0.185 \& 0.233 \& 0.024 \& -0.189 \& 0.007 \& 0.006 \& 0.361 <br>
\hline $x_{6}$ \& 0.095 \& 0.077 \& 0.056 \& -0.012 \& -0.038 \& 0.036 \& 0.004 \& 0.226 <br>
\hline $x_{7}$ \& 0.126 \& 0.194 \& 0.216 \& 0.015 \& -0.169 \& 0.019 \& 0.007 \& 0.408 <br>
\hline
\end{tabular}

$h=0.803$

Table 4.4(b)1. Direct and Indirect Effects for Variety C0-62175 in fifth month of Plant Growth.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Character \& Height

$x_{1}$ \& Gixth

$\mathrm{x}_{2}$ \& Wiāth of 3rd leaf

$$
x_{3}
$$ \& Length of 3 rod Leaf

$$
x_{4}
$$ \& Area of 3 nd leaf

$$
x_{5}
$$ \& No. of leaves/ cane

$$
x_{6}
$$ \& Totel leaf area/ cane

$$
x_{7}
$$ \& Correlation with yiela <br>

\hline $\mathrm{x}_{1}$ \& 0.222 \& 0.152 \& -0.015 \& 0.024 \& 0.091 \& -0.085 \& 0.156 \& 0.545 <br>
\hline $\mathrm{x}_{2}$ \& 0.109 \& 0.311 \& -0.016 \& 0.023 \& 0.092 \& -0.048 \& 0.119 \& 0.590 <br>
\hline $x_{3}$ \& 0.112 \& 0.170 \& -0.029 \& 0.026 \& 0.150 \& -0.047 \& 0.169 \& 0.551 <br>
\hline $x_{4}$ \& 0.104 \& 0.141 \& -0.015 \& 0.051 \& 0.122 \& -0.037 \& 0.137 \& 0.503 <br>
\hline $x_{5}$ \& 0.125 \& 0.178 \& -0.027 \& 0.038 \& 0.161 \& -0.050 \& 0.178 \& 0.600 <br>
\hline $\mathrm{x}_{6}$ \& . 0.158 \& 0.125 \& -0.012 \& 0.016 \& 0.067 \& -0.012 \& 0.169 . \& 0.405 <br>
\hline $x_{7}$ \& 0.165 \& 0.177 \& -0.024 \& 0.033 \& 0.137 \& -0.096 \& 0.209 \& 0.602 <br>
\hline
\end{tabular}

Table 4.4(a)2. Direct and indirect effects for variety 00-997 in sixth month of plant frowih.

Character	Height	Girth	Wiath of 3 rd leaf	Length of 3 Id leaf	Area of $3 x d$ leap	No. of leaves/ cane	Totel leaf area/ cone	Corre lation with yield
	$x_{1}$	$\mathrm{x}_{2}$	$x_{3}$	$x_{4}$	$\mathrm{x}_{5}$	$x_{6}$	$x_{7}$	
${ }^{8}$	0.303	0.001	0.056	-0.006	-0.142	-0.018	0.181	0.375
$\mathrm{x}_{2}$	0.007	0.030	-0.004	0.007	-0.032	-0.008	0.005	0.055
$\mathrm{x}_{3}$	0.065	-0.003	0.262	0.010	-0.784	-0.031	0.898	0.420
$\mathrm{x}_{4}$	0.029	0.00\%	0.040	0.065	-0.568	0.005	0.599	0.115
. $x_{5}$	0.046	0.001	0.221	0.040	-0.931	-0.022	1.032	0.387
$\mathrm{x}_{6}$	0.024	0.001	0.036	-0.001	-0.091	-0.222	0.691	0.438
$\mathrm{x}_{7}$	0.046	0.001	0.197	0.033	-0.803	-0.128	1.197	0.543

$h=0.758$

Table 4.4(b)2. Pirect and indirect effects for variety C0-62175 in sixth month of plant growth.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cheracter \& Height

$\mathrm{x}_{1}$ \& Girth

$\mathrm{x}_{2}$ \& Width of 3 rd leaf $x_{3}$ \& Length of 3rd leaf

$$
x_{4}
$$ \& Azea of 3 rd 1eaf $x_{5}$ \& No. of leaves/ cene

\[
x_{6}

\] \& Totel leaf area/ cane $x_{7}$ \& | Gorrelation with |
| :--- |
| yield | <br>

\hline $x_{1}$ \& 0.362 \& 0.151 \& 0.021 \& 0.038 \& -0.289 \& -0.211 \& 0.557 \& 0.630 <br>
\hline $\mathrm{x}_{2}$ \& 0.178 \& 0.307 \& 0.027 \& 0.050 \& -0.373 \& -0.152 \& 0.584 \& 0:620 <br>
\hline $x_{3}$ \& 0.680 \& 0.180 \& $\underline{0.046}$ \& 0.059 \& -0.586 \& -0.123 \& 0.798 \& 0.542 <br>
\hline $x_{4}$ \& 0.098 \& 0.111 \& 0.020 \& 0.139 \& -0.456 \& -0.018 \& 0.514 \& 0.408 <br>
\hline ${ }_{5}$ \& 0.166 \& 0.182 \& 0.043 \& 0.100 \& -0.630 \& -0.099 \& 0.812 \& 0.575 <br>
\hline $x_{6}$ \& 0.163 \& 0.100 \& 0.012 \& 0.005 \& -0.132 \& -0.469 \& 0.738 \& 0.415 <br>
\hline $\mathrm{x}_{7}$ \& 0.200 \& 0.178 \& 0.004 \& 0.071 \& -0.509 \& -0.344 \& 1.006 \& 0.639 <br>
\hline
\end{tabular}

Table 4.4(a)3. Direct and indirect effects for co-997 in seventh month of plent growth.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cherecter \& Height

$x_{1}$ \& Girth

$\mathrm{x}_{2}$ \& | Width of 3rd leaf |
| :--- |
| $x_{3}$ | \& Iength of 3 rd leaf

$$
x_{4}
$$ \& Aree. of $3 x d$ leaf.

$$
x_{5}
$$ \& No.02 leaver/ cane

$$
x_{6}
$$ \& Total leaf area/ cane

$$
x_{7}
$$ \& Correla tion wity yield <br>

\hline $\mathrm{X}_{1}$ \& 0.332 \& 0.099 \& 0.316 \& $-0.039$ \& -0.274 \& 0.004 \& 0.082 \& 0.525 <br>
\hline $x_{2}$ \& 0.102 \& 0.329 \& 0.572 \& 0.113 \& -0.681 \& 0.005 \& 0.152 \& 0.591 <br>
\hline $x_{3}$ \& 0.052 \& 0.091 \& 2.062 \& 0.222 \& -2.302 \& 0.006 \& 0.346 \& 0.478 <br>
\hline $\mathrm{x}_{4}$ \& -0.011 \& 0.030 \& 0.370 \& 1.237 \& -1.690 \& -0.004 \& 0.138 \& 0.069 <br>
\hline $\mathrm{x}_{5}$ \& 0.035 \& 0.085 \& 1.793 \& 0.789 \& -2.648 \& 0.002 \& 0.337 \& 0.394 <br>
\hline ${ }^{x_{6}}$ \& 0.061 \& 0.087 \& 0.618 \& -0.255 \& -0.321 \& 0.020 \& 0.311 \& 0.522 <br>
\hline ${ }_{7}$ \& 0.064 \& 0.115 \& 1.641 \& 0.392 \& -2.049 \& 0.014 \& 0.435 \& 0.612 <br>
\hline
\end{tabular}

$$
h=0.568
$$

Fig 4.4.1 Path Dragram for Variety 60997 in
Seventh Month of Plant Growth.


Table 4.4(b)3. Direct and indirect effecte for $00-62175$ in seventh month of plant growth.

Character	Height	Girth	vidath of 3 xd leap	Length of 3 rd leaf	Area of 3 rd leaf	No. of leaves/ cane	Totel leaf area/ cane	Corre-   lation   with   yield
	$x_{1}$	$\mathrm{x}_{2}$	$\mathrm{X}_{3}$	$\mathrm{x}_{4}$	$\mathrm{x}_{5}$	${ }^{8}$	$x_{7}$	
$x_{1}$	0.520	0.135	-0.061	-0.029	0.155	-0.001	0.042	0.761
$\mathrm{x}_{2}$	0.311	0.227	-0.086	-0.030	0.224	-0.001	0.077	0.721
$\mathrm{x}_{3}$	0.184	0.112	-0.174	-0.065	0.397	-0.001	0.129	0.582
$\mathrm{x}_{4}$	0.110	0.052	-0.083	-0.137	0.383	-0.002	0.128	0.450
${ }^{2}$	0.175	0.111	-0.150	-0.114	0.459	-0.002	0.154	0.633
$x_{6}$	0.032	0.037	-0.022	-0.032	0.102	-0.008	0.109	0.218
$x_{7}$	0.125	0.100	-0.129	-0.101	0.406	-0.005	$\underline{0.174}$	0.570

Table 4.4(a)4. Direct and indirect effects for com97 in eighth monilh of plant krowth

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Character \& Height

$x_{1}$ \& Girth
$\mathrm{x}_{2}$ \& Width of 3 rd leaf $x_{3}$ \& Iength of 3 rd leaf

$$
x_{4}
$$ \& Area of $3 x d$ leaf

$$
x_{5}
$$ \& No. of leares/ cane

\[
x_{\hat{0}}

\] \& | Total |
| :--- |
| leaf |
| area/ |
| cane |
| $\mathrm{x}_{7}$ | \& Correlation with yiseld <br>

\hline $\mathrm{x}_{1}$ \& 0.404 \& 0.082 \& -0.009 \& 0.009 \& -0.048 \& -0.010 \& 0.125 \& 0.551 <br>
\hline $\mathrm{x}_{2}$ \& 0.096 \& 0.341 \& -0.011 \& -0.001 \& -0.060 \& -0.046 \& 0.240 \& 0.560 <br>
\hline $\mathrm{x}_{3}$ \& 0.092 \& 0.094 \& -0.039 \& -0.060 \& -0.246 \& -0.034 \& 0.625 \& 0.431 <br>
\hline $\mathrm{x}_{4}$ \& -0.016 \& 0.001 \& -0.011 \& -0.225 \& -0.236 \& -0.023 \& 0.550 \& 0.040 <br>
\hline ${ }_{5}$ \& 0.063 \& 0.067 \& -0.032 \& -0.172 \& -0.309 \& -0.032 \& 0.740 \& 0.324 <br>
\hline $\mathrm{x}_{6}$ \& 0.020 \& 0.075 \& -0.006 \& -0.025 \& -0.047 \& $-0.210$ \& 0.610 \& 0.408 <br>
\hline $x_{7}$ \& 0.056 \& 0.092 \& -0.028 \& $-0.138$ \& -0.255. \& -0.141 \& $\underline{0.895}$ \& 0.481 <br>
\hline
\end{tabular}

$$
h=0.606
$$

Table 4.4(b)4. Direct and indirect effects for coment in eight month of plant growth.

Cheracter	Height	Girth	Width of 3rd leaf	Iength of 3 rd leaf	Area of $3 x^{d}$ leaf	No. of leaves/ cane	Total   leaf   area/ cane	Corre   lation   with
	$x_{1}$	$\mathrm{x}_{2}$	$x_{3}$	$\mathrm{x}_{4}$	$\mathrm{x}_{5}$	$x_{6}$	${ }_{7} 7$	
$x_{1}$	0.468	0.176	-0.028	-0.018	0.206	0.013	-0.073	0.743
$x_{2}$	0.248	0.332	0.030	-0.016	0.098	0.015	-0.081	0.666
$x_{3}$	0.202	0.150	-0.066	-0.028	0.117	0.071	-0.017	0.429
$\mathrm{x}_{4}$	0.133	0.083	-0.030	-0.062	0,369	-0.024	-0.107	0.363
$x_{5}$	0.206	0.141	-0.016	-0.049	0.467	-0.006	-0.153	0.590
$x_{6}$	0.037	0.030	-0.028	-0.009	-0.016	0.167	-0.097	0.101
$x_{7}$	0.181	0.096	-0.006	-0.035	0.378	0.086	-0.188	0.557

$$
h=0.543
$$

Table 4.4(a)5. Direct and indirect effects for C0-997 in ninth month oŕ plent growth.

Cheracter	Helght, $x_{1}$	Girth $x_{2}$	width of 3 ind leaf $x_{3}$	Iength of 3rd leaf $x_{4}$	Area of 3 rd leaf $Z_{5}$.	No. of leaves/ cane $x_{6}$	Total   lear   area/   cane   ${ }_{7} 7$	Corre   lation   with   yield
$x_{j}$	0.440	0.337	-0.053	0.008	-0.002	-0.000	0.050	0.479
$x_{2}$	0.041	0.398	-0.024	0.000	-0.003	-0.004	0.139	0.547
$x_{3}$	0.106	0.043	-0.222	-0.039	-0.009	-0.005	0.461	0.336
$\mathrm{x}_{4}$	-0.032	-0.002	-0.077:	-0.112	-0.009	-0.003	0.577	0.143
${ }^{5}$	0.026	0.038	-0.059	-0.030	-0.033	-0.002	0.186	0.127
$3_{6}$	0.008	0.099	-0.072	-0.033	-0.004	-0.014	0.519	0.512
$x_{7}$	0.034	0.086	-0.158	-0.065	-0.009	-0.012	0.645	0.520

Table 4.4(b)5. Direct and indirect effects for co-52175 in ninth montin oi plant growth.

Charecter	Height	Girth	Wiath of 3 ra 1eaf	Iength of 3 rd leaf	Area of 3 rai leaf	NO.Of leaves cane	Total /leaf axea/ cane	Corre-   latjon   with   yield
	$\mathrm{x}_{1}$	$\mathrm{X}_{2}$	$x_{3}$	$\mathrm{x}_{4}$	$x_{5}$	2	${ }^{\text {[ }} 17$	
$\mathrm{x}_{1}$	$\underline{0.485}$	0.238	-0.005	0.003	0.124	0.018	-0.055	0.808
$\mathrm{x}_{2}$	0.272	0.424	-0.005	0.004	0.113	0.020	-0.058	0.769
$x_{3}$	0.9246	0.193	-0.010	0.007	0.236	0.009	-0.096	0.585
$\mathrm{x}_{4}$	0.126	0:130	-0.006	0.012	0.222	-0.027	-0.075	0.384
$\mathrm{x}_{5}$	0.216	0.172	-0,009	0.010	0.277	-0.005	0.105	0.557
${ }^{x_{6}}$	0.052	0.049	$=0.001$	-0.002	-0.008	0.168	-0.085	0.173
$x_{7}$	0.188	0.175	-0.007	0.007	0.208	0.102	-0.141	0.532

Fig 4 4.2. Path Diagram for Variety Co. 62175 in
Ninth Month of Plant Growth.


In the case of variety $00-997$ area of third leap alowed a negative direct effect on all periode of study. But for the other variety in last three months of atudy area of third leaf exibibited a positive direct effect on yield. For the same variety, during the seme period of time total leaf axea showed negative direct effects on yield.

The direct effects of number of leaves on yield were either negetive or negligibly mall in all the months. Estinated total leaf area hed a positive direct effect on yield in most of the months except for comg7 in last three months.

Amone the verious plent charactere the major contributors towards cane yield in all stages of plant grouth were height of cene and girth of cane.

### 4.5. Pre-harvest forecasting of sugarcane yield Principal component analysis - plot wise approach.

The principal components and their loadings were calculated in each month separately for both the varieties. In most of the months the first three principal componente explatned as much as 75 per centage veriation in the original dete. But for co-62175 in the geventh month the fingt four components explained only 62 per cent vaxiation. Component loadings and proportionate percentage contribution of each component ane given in table 4.5(a) for $00-997$ and $00-62175$. Regression equetions fitted using the principal oomponents as the explanatory variables are Elven in table $4.5(0)$ 。

Table 4．5（a）1：Component loadings and the percentase contribution of firgt three components in ifith month of plant growth．

Characters	C0－997			co－62175		
	component loedings			Component loadings		
	I	II	III	I	II	III
Height	0.6648	－0．1908	－0．3096	0.8420	－0．0983	0.0627
Gurth	0.6419	－0．4034	－0．0346	0.5524	－0．4418	0.6646
Wiath of 3rd leaf	0.7908	－0．4765	－0．1909	0.8546	－0．3197	－0．0673
Leagth of 3ri leaf	－0．0720	－0．3203	0.9214	0.7995	－0．1339	－0．3835
Axea of 3rd leaf	0.7556	－0．5807	0.1421	0.8966	－0．3501	－0．1436
No．of canes／ tillers per piot	0.5860	0.7428	0.0671	0.5092	0.7052	0.2586
No．of leaves／ plot	0.6838	0.6908	0.1408	0.7540	0.5658	－0．0275
Total leaf area／ plot	0.9082	0.2930	0.2229	0.9351	0.2516	0.0847
Percentage contribution	46.14	24．00	13.46	61.11	16.60	8.66
Tlotal contribution		84.40			86.38	

Table $4.5(\mathrm{~b}) 1$. Regression equations＇in fifth nonth of plant growth

Variety	Regreesion equationv	$R^{2}$
C0－997	$\begin{aligned} I= & 10.348+0.413 x_{1}+0.264 x_{x}+0.350 x_{3}-0.303 x_{4} \\ & +0.24 x_{5}+0.783 x_{6}+0.82 x_{7}+0.778 x_{8} . \end{aligned}$	0.568
c0－62175	$\begin{aligned} \Psi_{1}= & 7.937-0.04 x_{1}-0.052 x_{2}+0.31 x_{3}+0.417 x_{4} \\ & +0.342 x_{5}+0.302 x_{6}+0.008 x_{7}+0.373 x_{8} \end{aligned}$	$0.55^{\text {类䓔 }}$

＊＊Significance at 1多 level P $(<.01)$

Table 4.5(a)2. Component loadings and the percentage contribution of first three components in sixth month of plant growth.

Characters	C0-997			co-62175		
	Component loadings			Component losdings		
	I	II	III	I	II	III
Height	0.5641	. 0.2705	-0.7946	0.8342	0.1859	-0.0973
Girth	0.7940	-0.2758	-0.4033	0.7874	0.0227	-0.0204
Wath of 3rid leaf	0.7880	-0.4077	-0.3743	0.8773	-0.1881	0.1886
Ieneth of 3xd leaf	0.2102	-0.6805	0.7676	0.5731	- 0.5121	-0.2281
Area of 3rd leaf	0.7403	-0.6496	0.7105	0.9022	-0.3523	0.0893
No. of canes/ piot	0.5396	0.6501	0.4420	0.2189	0.9251	-0.0756
No. of leaves/ plot	0.7973	0.5275	0.3240	0.4604	0.8268	-0.0750
Total leaf area	0.9373	0.1866	0.3284	0.0358	0.1040	0.9673
Percentage contribution	51.06	24.21	14.27	43.85	25.09	13.16
Totel contribution		89.54			82.09	

Table 4.5(b)2. Regression equations in sixth month of plant growth

Variety	Regression equations	$\mathrm{H}^{2}$
C0-997	$\begin{aligned} Y= & 9.779-0.062 x_{1}+0.163 x_{2}+0.07 x_{3}=0.124 x_{4} \\ & +0.22 x_{5}+0.146 x_{6}+1.02 x_{7}+0.85 x_{8} \end{aligned}$	0.874
c0-62175	$\begin{aligned} y= & 7.386+0.34 x_{1}+0.285 x_{2}+0.307 x_{5}-0.272 x_{4} \\ & +0.22 x_{5}-0.054 x_{6}+0.465 x_{7}+0.013 x_{0} \end{aligned}$	0.7 感

**Slgnificant at: 1 per cent level $P(<.01)$

Table $4.5(\mathrm{a}) 3$. Component loadings and the percentage contribution of first three components in seventh month of plant growth.

Characters	60-997			00-62175			
	Component loadinge			I Component loadings			IV
	I	II	III				
Helght	0.6642	0.2751	0.1800	0.0372	0.1398	-0.5527	0.6620
Girth	0.5831	0.1401	0.6036	0.4698	-0.4453	-0.0435	0.4086
Width of 3nd leaf	0.2040	0.8642	0.0717	0.5183	-0.2831	0.0730	-0.2844
Jength of 3nd leaf	-0.0333	0.6503	-0.2373	-0.1101	0.1190	-0.1418	0.6074
Area of 3 rd leaf	. 0.2657	0.9203	-0.1073	-0.7238	0.3648	-0.1407	-0.0219
No. of canes/ plot	0.8178	-0.3363	-0.3680	$-0.6332$	0.5999	-0.1281	-0.0820
No.of tillers/ plot	0.5306	-0.2298	0.6116	-0.0892	-0.0197	-0.6369	0.2779
No. of leaves/ plot	0.9002	-0.3096	-0.2504	0.2595	0.7871	0.0176	-0.1444
Total leaf area	0.9411	0.0127	-0.2803	-0.3469	-0.1467	0.7571	-0.0994
Percentage contribution	39.34	26.39	0.125	18.03	16.07	14.98	13.00
Total contribution		78.18			62.09		

Table 4.5(b)3. Regression equations in seventh month of plant growth.

| Veriety | Regresaion equations | $R^{2}$ |
| :--- | :--- | :--- | :--- |
| $00-997 \quad \mathrm{Y}=$ | $8.972+0.561 x_{1}+0.504 x_{2}-0.035 x_{3}-0.2 x_{4}+0.013 x_{5}$ | $0.770^{* *}$ |
|  | $+0.792 x_{6}+0.558 x_{7}+0.005 x_{8}+0.905 x_{9}$ |  |
| $00-62175 \mathrm{Y}=$ | $7.162+0.774 x_{1}-0.758 x_{2}-0.579 x_{3}+0.282 x_{4}+0.669 x_{5}$ | $0.540^{* *}$ |
|  | $+0.319 x_{6}+0.674 x_{7}+0.66 x_{8}-0.841 x_{9}$ |  |

Table 4.5(a) 4. Component loadings and percentage contribution of the first three components in eighth month of plent growth.

Characters	c0-997			c0-62175		
	Component loadings			Component loadings		
	I	II	III	I	II	III
Height	0.4519	0.1482	0.6058	0.8057	0.0669	0.1465
Girth	0.6372	0.1302	0.4256	0.6472	0.0927	0.4207
Width of 3rd leaf	0.5271	0.8744	0.2640	0.8540	-0.3038	-0.0545
Tength of 3rd lear	0.4678	0.5964	-0.6453	0.7551	-0.4366	-0.2706
Area of 3rd leaf	0.6324	0.9428	-0.1908	0.8965	0.3724	-0.1761
No. of canes/plot	0.6002	-0.7582	-0.0748	0.2029	0.9382	-0.1932
No. of tillers/ plot	0.5459	0.3270	0.1480	0.3281	-0.0559	0.8463
No. of leaves/ plot	0.7059	-0.7303	-0.0536	0.2369	0.9460	-0.2160
Total leaf area	0.8668	-0.3874	-0.1143	0.7563	0.5461	-0.3271
Percentege contribution	37.924	23.626	12.380	43.870	27*90	13.47
Total contribution		73.93			85.24	

Table 4.5(b)4. Regression equations in eighth month of plant growth

Versiety	Regression equations	$\mathrm{R}^{2}$
C0-997	$\begin{aligned} I= & 10.205+0.605 x_{1}+0.667 x_{2}-0.014 x_{3}-0.384 x_{4} \\ & -0.228 x_{5}+0.955 x_{6}+0.745 x_{7}+1.034 x_{8} \\ & +0.9 x_{9} \end{aligned}$	$0.73{ }^{\text {\% }}$ 年
00-62175	$\begin{aligned} \bar{Y}= & 7.234+0.220 x_{1}+0.226 x_{2}+0.054 x_{3} \\ & -0.113 x_{4}+0.142 x_{5}+0.062 x_{6}+0.06 x_{7} \\ & -0.069 x_{8}-0.105 x_{9} \end{aligned}$	$0.70{ }^{*}{ }^{\text {\% }}$

[^0]Table $4.5(a) 5$. Component loadings and percentage contribution of first three components in ninth month of plant growth.

Characters	c0-997			c0-62175		
	I Component lioadinge			Component logdinge   I II III		
Height	0.3359	-0.0668	0.8317	0.7220	0.1957	0.4042
Girith	0.5058	-0.0387	-0.0807	0.7263	0.0244	0.3867
Width of 3rd leaf	0.3281	0.7330	0.4063	0.8293	-0.3621	-0.1256
Length of 3rd leaf	0.2485	0.7293	-0.4509	0.7281	-0.4111	-0.3862
Area of 3ro leaf	0.3664	0.9226	-0.0167	0.8552	-0.3461	-0.2632
No. of cenes/plot	0.7445	-0.5194	-0.1467	0.1626	0.9206	0.1799
No. of tillers/ plot	0.6766	-0.3785	-0.0355	0.5387	0.1290	0.5861
No. of leaves/ plot	0.9272	-0.2545	-0.0729	0.1770	0.9544	-0.1330
Total leaf area	0.9545	0.1686	-0.0553	0.7094	0.5984	-0.3174
Percentage contribution	38.39	27.03	12.20	42.767	29.689	11.572
Total contribution		77.62			84.03	

Table 4.5(b)5. Regression equations in ninth month of plant growth

Veriety	Regression equations	$\mathrm{H}^{2}$
c0-997	$\begin{aligned} Y= & 9.584+0.330 x_{1}+0.501 x_{2}+0.007 x_{3} \\ & -0.048 x_{4}-0.024 x_{5}+0.926 x_{6}+0.802 x_{7} \\ & +0.992 x_{8}+0.846 x_{9} . \end{aligned}$	0.73 萃
c0-62175	$\begin{aligned} Y= & 7.124+0.359 x_{1}+0.279 x_{2}+0.099 x_{3} \\ & +0.026 x_{4}+0.065 x_{5}+0.497 x_{6}+0.278 x_{7} \\ & +0.499 x_{8}+0.496 x_{9} \end{aligned}$	0.683

The coefficients of determination of the forecasting models using principal components ranges between 54 and 81.4 per cent. The highest predictability was noticed in sixth month of plant growth for the two varieties. This equation in table 4.5(b)2. cen be used to forecast yleld of sugarcane of the two varieties in sixth month with predictability 81.4 per cent for $\mathbf{c 0}-997$ and 76 per cent for C0-62175.

During the ninth month for variety co-997 principal component method gave a high and aignificant $R^{2}$ value ( 0.731 ) when compared to a nonsignificent $R^{2}$ ( 0.253 ) by the regression analysis. Thus the regreasion equation through principal component analysis may be made use of for yield prediction in ninth month for variety co-997.

## DISCUSSION

## 5. DISGUSSION

Investigations on the precharvest forecasting of sugarcane yield on two popular varieties of sugarcane namely $00-997$ and $\mathbf{C O - 6 2 1 7 5}$ were made on the basie of periodical data on biometric cienracters gathered from the Augarcane Research Staiton Thiruvalla and tio results obtained were disoussed below:

### 5.1. Prenarvest orediction of sugarcane yield - Method of multiple regression - plant-wise approach.

The sinple coxrelation analysis revealed that delght of the cane was positively and signi il cantly coryelated with yield in all stages if plant growth for the two varieties. The results are in agreement with the results of Esooda ot al. (1979), Singh and Sangha (1970), Singh and Sharma (1982) and Forman (1971). Girth of the cane was also positively and significantly correlated with yield in all the months except in the sixth month for variety $00-997$. Slngh and Sharma (1982) and Horman (1971) reported positive significant correlation between girth and yield. Width of third leaf showed a positive signifioant correlation with yield in all periode of plant growth. Length of thisd leaf had a positive significant correlation with yield in the entire period of plant growth for co-62175. In the case of the othex variety the relationship was
non-significant. The result is in contrediction with the findings of Hooda et al. (1979) who observed a positive significant correlation between length of third leaf and yield. Area of third leaf and estimated total leaf area were hifghly correlated with yield in different months. Number of leaves per cane had a positive significant correlation with yieid in all stages of crop growth for co-997 and only upto seventh month for C0-62175.

The coefficients of determination of the fitted regression equations were low but significant in the fifth and sixth months of plant Erowih. From the seventh month onwards the predictability increased considerably. A set of regression equations wes selected for the pre-hervest predsetion of yield and presented in table 4.2(b)6. The cane yield estimated from the equations multiplied by the number of cenes in the plot will give an edvance estimate of plot yield. Similar methodology wes applied by Bohra et al. (1969) for the prediction of forage yield using biometric characters and there was olose agreement between predicted yield and actuel yield.
5.2. Fre-horvest prediction of sugarcane yield - Method of multiple regresgion - Plot wise approach.
From the correlation analysis of per plot observations it was found that height of the cane and girth of the cane had high positive aignificant correlation with yield except
in the ninth month for variety co-997. The result is in partial agreement vith those of tha et al. (1981) and Chandrahas et el. (1983). Width of third leaf had an insignificant correlation with plot yield from the seventh month onwards for variety comgi. The other variety showed significant correlations between widtin of thirrd leaf and yield during the entire period of observation. But Jha哂 时. (1931) noticed significant coxrelation only in Pive to six months after planting. Number of canes/tillers and number of leaves per plot showed high positive significent correlation with plot yield in all stages of plant growth. This result is in periect agreement with those of Chendrahas et 르. (1983) and Jha et 르. (1981).

Coefficient of determination of the forecasting models of the present stuay ranged between 72.9 and 90 percentage when all the characters were taken into account. According to tha et RI.(1981) reliable forecasta can be mede available only from the seventh month after planting onwarde with on accuracy of about 68 percentage. All the statistical models developed in this stiudy for yield prediction were more efficient then those proposed by Jhe et el. (1981). Further these models could be used for yield prediction as early as in the fifth month after planting with sufficiently high degree of precision. The coefficients of determination of the proposed models were
in the range from 68.6\% to $90.1 \%$. The predictability of the equation was considerably increased at the later stages of plant growth and finally attained a maximum value of 90 percentage for variety co-997 in the geventh month and 88.6 percentege for variety co-62175 in eighth month of plent growth. The results of the present study are aliso in confirmity with the findings of Chandrahas et al. (1983) who found that yield of sugarcane coula be predicted from the fifth month onwaris with satisfactory precision. But it is observed that the coefficient of determination of the models of the present atudy are higher than those reported by Chandrahas et al. (1983) and hence are more efficient for yield prediction. A possible reason for the high value of $\mathrm{H}^{2}$ may be the inclusion of more characters in the model. Vexietal differences might have also contributed to this discrepancy. The forecasting models for the two varieties were not identioal in nature which indicated that the varietsl aspect is also to be taken into account in building up suitable forecasting models for sugaroane crop. Chandrahas et al. (1983) used five explenatory variables viz., height of the cane, girth of the cane, width of third leaf, length of third leaf and number of canes/tillers per plot in the linear model and observed coefficient of determinations in the range 60 to 72 percentage. Whereas simpler models with the four
characters, height of the cane, girth of the cane, width of third leaf and number of canes/tillers per plot developed in this study' could explain about 63 to 89.6 percentege of variation.

It was found that the restricted nodels with five biometric characters; height of the cane, girth of the cane, width of third leaf, number of canes/tillers per plot and number of leaves per plot were sufficient to predict yield of Variety $00-997$ in all stages of the study. Field of vasiety co-62175 could effectively be predioted in firth and sixth months of plant grouth using the above nentioned five biometric characters. The inforwations on firgt four biometric charactars ape enough for the forecasting of yield of variety co-62175 from seventh month of plant grouth onvarde.

The coefficient of determinations of none of the fitted models were found to be signiricant in the ninth month for variety com99. In this month plant-wise observations cen be efficiently used for yield prediction.

The first three types of transformations mentioned in section 3.2 were tried by Jha et al. (1981) and Chandrahas et al. (1983), and they Sound that thege three trangformations were equally efficient as the original model. In this study also no sienificant gain was achieved by the square root, reciprocal and logarithemic
transformations over the original data. The doubly logarithemic transforination resulted in a slight increase in the value of $\mathrm{R}^{2}$ in some of the months. But thin Increase was negligibly mall. So considering simplicity and convenience the linear models in the original nontransformed variables was used for yield prediction. 5.3. Biometric charaoters influencing augarcane vield -
Method of Path Coefficients - Plant-wise aporoach-

Path anelysis was carried out in each month for the two varieties to identify the characters influencing the yield of sugaroane during different stages of plant grouth.

Out of the seven characters studied only the height of the cane showed high positive direot effect on yield in all stages of plant grouth for the two varieties and its influence on yield wes higher in later stages of plant growth. The results are in agreement with the findings of Horman (1971), Hooda et al. (1979) and Singh and Sharma (1982), who observed high positive direct path due to stalls height on cane yield. Girth of the cane also had positive direct effect towards cane yield in all periods of study. According to Norman (1971) and Singh and Sharna (1982) gixth of the cane had a positive direct effect, but Hooda et al. (1979) reported a negative direct effect. This result of the present study is in perfect agreement with that of

Horman (1971) and Singh and Shava (1982) and contradictory to that of Eooda et al. (1979). Helght and girth exeried very little indirect effects through other characters. The direct effects of width of third loaf were negative or negligible in all stages of plant growth for variety 00-62175. thereas for ther variety it showed high positive direct efrects in early stages of atudy and negative effects in later stages. In the seventh month for variety C0-997 width of third leaf did show substantial positive direct effect, but its indirect effect through area of third leaf was negative and high. Length of third leaf and negative or negligibly small direct effects in entire period of obseryation excent for co-997 in the eeventh month where it had a positive direct offect. But the indirect effect through area of third leaf was higher and negative. This result is in partial agreement with these of Hooda et al. (1979), tho noticed a negative and lou direct effect to leaf length on yield.

Area of third leaf iad negative direct effeot in all stages for variety 00-997, whereas in the case of other variety positive direct effect in alnost all months except in sixth month. Hinber of leaves/cane had negative or negligible direct offects in all the monthe for the two varieties. Boen though the nuaber of
leaves/cane and leaf dimensions ghowed negligible direct effects, the eatimated total leaf area/cane exhibited high positive direct effect towards yield in the entire period of study for variety co-997. But for other varlety it had a positive direct effect in early stages of plant growth and negative in later stages.

The residual effect was comparitively high for both the varieties varying in the range from 0.418 to 0.803 . The high residual effect indicated that there may be some important characters which could not be utilised in the present strudy. The residual effect was the least ( 0.568 ) for variety co-997 in the seventh month of plant growth and for variety co-62175 in the ninth month of plant growth (0.418).

The results of this study reveeled that height of the cane and girth of the cone were the most important yield contributing characters in all steges of plant growth for the two varieties.
5.4. Pre-harvest forecasting of gugericane yield Principal component analyais-Plot wise approach.

On examining the values of the component loadings it was found that all of the explanatory variables exert their influence on the criterion variable through one or the other of the selected components. Hence elimination of variables is not advisable. Among the different
variables the least contributing variable appears to be length of third leaf which hes comparitively Lower loadings than others in most of the montins. For further screening of variables the axes ore to be roteted through the technique of varimax rotation.

The first three principal components that explain more than 75 per cent variation in plot yield were used as regressors in the multiple linear regression equation for the two varieties in all the months except for variety C0062175 in seventh month for which the first four components were used as regressors. The $\mathrm{R}^{2}$ values are comperitively low for the prediction equations fitted using the metiod of principal components than the original equations by usual regression analysis. This may be due to the inciusion of only limited mumber of componenta in the regression model. It mey be happen that some of the princigal components with small variance may be related with the dependant variable. If more components were inoluded, $\mathrm{R}^{2}$ values would have been higher. However the accuracy of the forecasting rodel obtained through principal ocuponent analysis was higher than that reported by Anonymousi. (1983) in hybrid jower.

A study was conducted to develop suitable statistical models for the pre-harveat prediction of sugarcane yield using biometric characters. Data were collected periodically with a monthly interval from the Sugarcane Research Station, Thiruvalla on two sugarcane varieties namely co-997 and co-62175. The first observation was recorded in the fifth month after planting. Prediction equations were erolved by the method or multiple linear regression using plent wise and plot wise observations. The characters influencing different stages of plant growth were identified by path analysis. Principal oomponent analysis was capried out using the plot wise observaitions in each month separately for the two varieties. Regression equations were fitted using the principal components as explanatory variables. The salient findings in the stoudy are summarised below:
6.1. The study revealed that yield of sugarcene per mit area could be successfully predicted with sufficient degree of accuracy in either case of utilising cane wise or plot wise observations.
6.2. The developed models based on plant vise observations were able to explein moderately high degree of variability during later stages of plant growth. The different linear and trapsformed models fitted on the besis of per plant observations failed to serve as
efficient predictors of production during the early atages of plant growth. Some of the useful prediction models developed on the basis of per plant data are listed below:

Forecasting models selected for co-997 and co-62175 in different months

Estimates of parameters
Month Variety Coefficients of
Constant Heignt Girth Width Area No.of Estima- $\mathrm{R}^{2}$ of 3 rd of leaves/ted
leaf $\begin{aligned} & \text { 3rd } \\ & \text { leas }\end{aligned}, \begin{aligned} & \text { total } \\ & \text { leaf } \\ & \text { area }\end{aligned}$
00-997 $\quad 78.7125 .312 \quad 90.389 \quad 0.1090 .642^{* *}$

VII

C0-62175	-4896.192 6.619	78.492	1.698	0.761**
C0-997	-1479.500 5.622	100.88176 .044	43.961	0.619**

VIII

$.00-62175$	-943.218	5.076	103.807	0.974	$0.704^{* *}$
$00-997$	-1015.126	4.563	115.986		0.057

IX

$$
\frac{00-62175-1021.4735 .048115 .789}{0.666}
$$

The cane yield determined on the basis of the prediction equation when multi.plied by the total number of canes/plot will give the expected plot yield.
6.3. Anelysis of plotwise observations revealed that prediction of sugarcane yield could be effectively attempted as early as in the fifth month of plant growth with a sufficiently high degree of precision.

Maximum coefficient of variations ( $88.3 \%$ ) was noticed in the seventh month for variety C0-62175 and 90.3 for variety CO-62175 in eighth month of plant growth. The selected models with corresponding coefficients of determination are tabulated below:

Forecasting modela selected for C0-997 and C0-62175 in different montis

Egtimates of parameters							
Month	Variety	$C_{\text {onstant }}$	Height Girth	Width of $3 x d$ leaf	ciente or   No. of cenes/ tillera/ plot	No. of leaves	$\mathrm{H}^{2}$


	C0-997	-11.556	0.046	0.834	0.761	0.312	0.041	0.686**
V	co-62175	-5.345	0.040	0.070	1.717	-0.106	0.081	0.781**
	C0-997	-11.552	0.024	1.382		0.347	0.058	0.863**
VI	c0-62175	-8.107	0.016	-0.004	2.450	0.007	0.109	0.823**
	C0-997	-13:668	0.022	0.961	0.914	0.323	0.063	0.866**
VII	C0-62175	-8.168	0.061	0.237	0.804	0.437		0.756**
	c0-997	-16:406	0.037	1.166	0.655	0.667	0.010	0.901**
VIII	C0-62175	-6.987	0.053	-0.126	0.439	1.155		0.767**

**Significance at 1 per cent level $P .(<.01)$
6.4. Four types of trensiormation were applied in the experimental data, square root, reciprocal semi logarithemic and doubly logarithemic. It was found that none of the tranafomations resulted in a significant improvement over the original model. However the doubly logerithenic trensfomation was found to yieid slightly better results in certain cases.
6.5. Path analysis revealed that among the verious biometrio characters the major contributors towards came yield In all stages of plant erowth were helght of the cane and girth of the care. The direct influence of number of leaves on cane yiela were negligibly small in all stages of pient growth.
6.6. The principal component enalyais failed to carmark a sub set of important charaoters at the expense of others. The only finding is that the contribution of length of third leaf to the divergenoe was negligibly smoll. The first three principel components explained more then 75 per cont of variation in the original data in most of the months. From the prediction equations fittied using the principel componentes as explenaṭoxy variables yield could be predicted from the fifth month onwaw with an accuracy ranging from 54 to 31.4 percentage. Sixth month after planting was found to be the best for prediction using this
method with a predictability coefficient of 81.4 per cent for variety $\mathrm{C} 0-997$ and 76 per cent for variety C0-62175. The equations in the original form are given in table.

Forecsating models using principal components in sixth month of plent growth

Variety	Regreasion equations	$\mathrm{R}^{2}$
c0-997	Xield $=9.775-0.062$ (height) 0.163 (gixth) +0.07 (width of third leaf) -0.124 (length of third leaf) +0.22 (area of third leaf) +0.148 (number of arnes/tililers) +1.02 (number of leaves) +0.852 (estimated total leaf area).	0.814**
00-62175	Yield $=7.386+0.34$ (height) +0.266 (girth)   +0.307 (width of third leaf   -0.272 (length of third leaf)   +0.22, (area of third lea:)-0.054   (number of canes/tiliers) +0.466   (number of leaves) +0.013 (eati-   mated total leaf area).	$0.760 \%$ *

## REFERENCES

Abraham, ISP. and Khoola, R.K. (1965). On the posaible uge of component analysis technigue in pest and disease survey data. J. Indian Soo. agric. Stat.g 11 : 208-219.

Agarval; Ranjana; Jain, R.C.j Tha, H.P. and Singh, D. (1980). Forecasting of rice yield ueing climatic variables. Indian J. gacic. Sei., 50 : 680 - 684 .

Anony:mous (198\%). Statistical Hewsletter of Indien sericultaral statietics Heeseach Institute, Hew Delhi. 2 (2) 3 .

Basu, Aow. (1968). A study on curvilinear relaticuship of yield as product of functions of crop characteristice In sagarcane. J. Thdian Soc. agric. Stat., $20: 29-44$.
 Eatimation procedure for assessmont of forage productica in a pasture of Cenohrus oiliario. Indian J- apria. Sei- 39 - 207 - 213.

Ghandrahes, SoRop Bapat and Singh, B.f. (1983). On prehapregt forecasting of yield of ougarcano. Apric. Situation in India, 38 8 291 -292.

Chaube, NoA. ant Ratmalikar, D.V. (1982). On forecasting cotton profuction using partial harvest data. J. Indian Soc ageqo Stat $\cdot$. 3 : 129.

Das. Joc. and Ramachandra, G. (1971). Forecasting of yield of bajpa on the basis of weather parameters. Jo Inaian Soc. ageje. Stat: $23: 100$.

Dewey, D.R. and Lu, K.H. (1959). A correlaticn and path coofflcient anelysis of components of creste'd wheat greas production. J. Agerner 51 545-548.

George, Bi. . and Vijayakumar, K. (1979). Forecasting of cashem yield. J. Indian Soe agric. Stat. 31895 .

Girshiok, M.A. (1936). Prinoipal components. I. Aner. Stat. Assoog. 31 : 519 - 528.

Grafius, J. E. and Kiesling, R. $_{0}$ i. (1960). The prediction of the relative ylelds of different oat varisties based on known enviromental variables. Agron. J.枈: 396 - 398.

Hooda.R.S.; Babu,C.î̀ and Zhairwal, İ. S. (1979). Aśsocieỳion and path analysis of aine oharacters in progenies of four sugarcane crosses at settling stage. Indian J. emerico Scio, 等 : 931-933.
\# Hotelling, H. (1933). Analysis of a complers of statistioal variablea into principal components. J. Educ. jeych. 24 : 417-444.

Jha,M.P., Jain, R.C. and Singh,D. (1981). Pre-harvest forecasting of sugareane yield. Indian J. apric. Soi.. 51 : 757-761.

Jitendra Mohan, K. Y. and Gyam Prakash (1971). Regression and correlation of fibre yield and its componente in sannhernp (orotalazie dungea I.). Indian J. anric. Sci." 41:378-381.

Thatri. ToJ. and Patel, RoM. (1983). Use of eye and rainfall variables for pre-harvest forecasting of grountinut yield in Gujarat. I. Indian Soc. agric. Stat., 35 : 69-78.

Krishnalcuanar, II. (1983). Yield prediction in coconut based on foliar $\mathrm{H}_{\mathrm{g}} P$ and K values. M. Sc. (Ag.) Thesia. KeralaAgricultural University.

Li,C.C. (1956). The concept of path coefficient and its impact on population genetics. Biometrics, 12 : 190-210.

Malhotra.R.S. and Jain, R.P. (1972). Path and regression analysis in barley. Indian J. agric. Soi. A2 : 404-406.

Murthy, B. R. and Arunachalim,V. (1967). Factor analysis of diversity in the genus sorghum. J. Indian Soc. apric. Stat. 19 : 145.

Naphade, O.S. (1972). Correlation and path analysis for some oharacters contributing to fodder yield in sorghom. Indian I. agric. Sci. 42 ( 9 ) : 790-791.

Hormen.I. James (1971). Yield components in random and selected sugarcane populations. Grop. Sci. $3: 906-908$.

Farameswaran, N.K. (1979). Factors affecting yield in oashew. MoSc. (Ag.) Thesis, Kerala Agricultural University.

Rao Venkata,Co, Narasinhayya,G. and Rao Appa,K. (1973). Path analysid in flue - cured tobacco. Indian J. agric. Scin. 4 色 : 198-201。

* Sanderson, F. H. (1954). Method of orop forecasting. Harvard University Press, Cambridge.

Singh, M. Mo, Srivastava, S. K. and Aghok Kumar, $\mathbb{K}_{0}$. . (1983). Multiple growth models of production of urieat. rice and sugaroane in 15 Districts of Eastern U.P. I. Indian. Soc. astic. Stat. 32 : 189 - 190.

Singh, Ho K., Singh, S. B. and Singh, T.K. (1981 a). .Seleotion parameters in sugarcane. Indian I. apric. Sci., $5 \underline{\text { I }}$ 562-566.

Singh,B.V. and Sangha,A.S. (1970). Correlation studies in sugarcane: Madras agexic. J. 57 : (19) : 474-477.

Singh. H. and Sharma,H.C. (1982). Interrelationship between yield and yield components in sugaroane. Punjab agric. J. 19: 185-187.

Singh, H. No, Singh, S. Bo, Verma, P.S. and Singh.R.V. (1981 b). Correlation and path analysis in sugaroane. Indian J. agric. Soi. 15 : 126-130.

Sundaram,A., Ramakrisinan, P.V., Marappan,S. and Balakris hnan, G. (1980). Factor analysis in covpea. Indian J. agric. Sci. 50 : 216-218.

## iv

Sundaresain, K., Balairishnan, H. and Shanmugasundaram, S. (1979). Correlation between seedlings and their settlinge in intervarietal erosses of ougarcane for major economic characters. Indian J. agric. Soi., 49: 934-937.

Thomas, B.J. and Oeenbrug,A. (1959). Effect of manure. nitrogen, phosphorus and climatic factors on the production and quality of Brone grass - orested wineat grass. Agron. Jo951: 63-66.

TLikg, So. BeS. and Asata, B.M. (1978). Factor analysis in Lentil. Indian J. agric. Sei., 48: 643-646.

Valshnav, P.R. and Fatel,R.M. (1983). Braluation of different statistical models for pre-harveat forecasting of groundnut yield. I. Indian Soc. agmic. Stat. $35(2): 10 \%$.

Wendell, C.J. (1959). A mathematical procedure for evaluating relationship between climate and weat yield. Asson• J. $51: 635-639$.

* Wright, S. (1921). Gormelation and causation. J. aeric. Res. 20 : 557 - 585.
* Original not seen.


# PRE-HARVEST FORECASTNG OF SUGARCANE YIELD 

BY
ALPHI KORATH

ABSTRACT OF A THESIS<br>Submitted in partial fulfilment of the requirement for the degree<br>Master of Science (Agricultural Statistics)<br>Faculty of Agriculture<br>Kerala Agricultural University:

Department of Statistics
COLLEGE OF VETERINARY \& ANIMAL SCIENCES
Mannuthy, Trichur
1984

Several yield prediction models were tried to examine their suitability for the pre-harvest prediction of yield of two varieties of sugarcane namely co-997 and co-62175 in different months of plant growth ueing biometric characters based on the data collected from the Sugarcane Research Station, Thiruvalla. The methods of multiple regression analysis, path coefficient anolysis and principal component analysis were used for the above purpose.
foultiple regresaion analysia using plant biometric characters revealed that cone yield could be predicted on the basis of observations on heigit of the cene, girth of the cane and estimated total leaf area per cane or area of third leaf from the seventh month after planting onwards with an accuracy in the range of 59.5 to 81.9 per cent. The estimated cane yield when multiplied by the number of canes. in the plot will give an advance estimate of the plot yield.

Iinear modele with five biometric oharacters viz., height of the cane, girth of the cone, width of the third leaf determined from the selected plants of each plot and number of canes/tillers and namber of leaves determined on a whole plot besie were aufficient to predict the plot yield of the crop as early as in the fifth month of plant growth with an accuracy in the range 68 to 90 per cent.

Path analysis revealed that height of the cane and girth of the cane were the $t$ wo important characters contributing towards cane yield in all stages of plant growth.

Using the forecasting models fitted with principal components as explanatory variables, yield could effectively be rredicted with 81.4 per cent accuracy for variety co-997 and with 76 per cent accuracy for variety co-62175 in the sixth month of plant growth.


[^0]:    **Significant at 1 per cent level $p(<.01)$

