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INTRODUCTION

Woody perennials are integral part of Kerala which have significant potential

for protective ftinctions in terms of regulation of physical and chemical fluxes in

ecosystems, carbon sequestration and mitigation of environmental pollution along

with productive functions by providing food, fuel, fodder, green manure and timber.

Woody trees are incorporated in agro forestry systems, homegardens, silvopastural

systems, and as monoculture plantations. These contribute to the timber and wood

requirement of the society along with fuel wood requirement of households in Kerala.

According to FSI (2011) total quantity of timber used in household is around 18.5

million cubic meters and fiiel wood used per year is 14.543 million tones which is

building pressure on the forestry sector. Establishing woody ecosystem on the

degraded lands as well as with agroforestry systems will thus enhance as a carbon

sink and in time will reduce the pressure on existing forest there by reducing emission

from forest degradation.

Economic and population growth has driven anthropogenic greenhouse gas

emission increase since the pre-industrial era which led to increased atmospheric

concentrations of carbon dioxide (CO2), methane and nitrous oxide higher than ever.

Carbon dioxide is the principal cause of global warming and the current greenhouse

gas (GHG) concentrations are 30 percent more than the pre-industrial level.

Anthropogenic GHG emissions in 2010 have reached 49 ± 4.5 Gt CO2 eq yr"' which

is the major reason for more than half of the observed increase in global average

surface temperature from 1951 to 2010 (IPCC, 2014). Terrestrial ecosystems

functions as a sink of atmospheric carbon and also limiting the GHG emission from

land through carbon sequestration, carbon conservation and carbon substitution.

Hence expanding the size of the global terrestrial sink is one strategy to extenuate

CO2 build-up in the atmosphere. Tree plantations are advocated as a carbon sink and



^5.

establishment of tree plantations has been proposed as an effective method for

sequestering CO2 and mitigating atmospheric CO2 levels. Carbon sequestration

occurs in aboveground growing biomass and in belowground soil. Soil is the largest

terrestrial pool of organic carbon. Total soil C pool is 2300 Pg (1 petagram^lO'^ g =
1 billion ton) while atmospheric and vegetation pools are 770 Pg and 610 Pg

respectively which shows soil pool is 3 times than that of atmospheric and 3.8 times

the vegetation pool. The soil C pool comprises soil organie carbon (SOC) estimated

at 1550 Pg) and soil inorganic C approximately 750 Pg both to 1 m depth (Nair et al,

2009). Reduced inputs of roots and biomass residues will trigger SOC pool depletion

and also will increase carbon output from soil. For each Pg of carbon reduction from

soil 0.47 ppmv of C will be released back to atmosphere (Lai, 2001).

Trees play a major role in nutrient recycling and further reduce nutrient

removal through reducing surface runoff and soil erosion. The network of root

system further acts as a barrier for nutrient leaching through soil. Tree litter improve

soil fertility, however, it depends on the quality and quantity of tree litter, soil type,

and climatic conditions of the area. The role of trees and plantation in stabilizing

CO2 levels and increasing carbon sink potential of soils have taken considerable

scientific attention by the recent years and has been manifested in a number of

international and national agreements and policies, such as the Kyoto Protocol, the

Paris Agreement, REDD+ and the European Union (EU) climate policy. Slight

changes in the soil organic carbon stock (SOC) could cause significant impacts on the

atmospheric carbon concentration. SOC pool may greatly change or largely

dependent quantity and variability of above ground biomass, litter fall and the land

use pattern under the system. Hence it is important to know what kind of plantation

is suited as a climate change mitigation option. Quantitative infonnation on the

carbon and nutrient contribution to the soil by various woody ecosystems would help

to understand their potential to enrich the soil attributes and productivity there by

helping to assess their role in mitigating climate change.



<53

There is also a chance that the land under these systems will act as a source of

GHGs thus exacerbates global warming with faulty land use practices. Degraded

soils have lower SOC and nutrient stock than their potential capacity. In addition to

GHG emission, the changing land use patterns trigger surface runoff and erosion and

intensive cultivation causes removal of nutrients from soil. Woody ecosystems offer

nutrient enrichment through litter fall and fine root turnover.

Many woody ecosystems are prevalent in Kerala but little has been known

about the comparative potential of these systems to sequester carbon and nutrients.

Homegardens and plantations of mahogany, teak, acacia and mango are widely seen

woody ecosystems in Kerala. Homegardens are distinguishing traits of the state

which plays a fundamental role in providing food security to the farmer and have

high potential for carbon (C) sequestration, especially due to its rich agro

biodiversity. Plantation systems are the next important woody ecosystems seen in

Kerala. The social forestry wing has been raising plantations on various land

categories viz. land along the sides of highways, railway lands, and land at the

disposal of government so on. Acacia auriculiformis was widely planted along vast

stretch of state under social forestry projects. Social forestry wing has planted an

area of about 4000 ha with acacia (KFRl, 1993). Teak and mahogany are two

principal forest plantations in Kerala and are promising source of income generation.

Mango is considered to be an inevitable part of homegardens and also, commercial

orchards are well established in the state of Kerala. These woody systems hence can

be further incorporated with the degraded lands as well as fallow lands of Kerala.

Though these are well suited plantations in Kerala their adaptability as well as

ecological services varies considerably.



sif

In this backdrop the study was undertaken in five major woody ecosystems of

Central Kerala viz. homegarden, and mature plantations of Tectona grandis. Acacia

auriculiformis, Swietenia macrophylla and Mangifera indica with the following

objective:

i. To assess and compare the soil carbon stocks in selected woody

ecosystems viz. teak, mahogany, acacia, mango and typical homegarden

ii. To analyze the nutrient stocks in these woody ecosystems.

Tt
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^  REVIEW OF LITERATURE

2.1. GLOBAL WARMING AND GHG EMISSION

Warming of the climate system is obvious and is unprecedented over decades.

Of the last 1400 years, the period from 1983 to 2012 was likely the warmest 30-year

period in the Northern hemisphere. A warming of 0.85°C is observed over the

period, 1880 to 2012. There is 95 percent certainty among scientists that global

warming is caused by anthropogenic activities mainly increasing concentrations of

GHGs, especially CO2. Cumulative anthropogenic CO2, emissions to the atmosphere

were 2040 ± 310 Gt CO2 between 1750 and 2011. While about 60 percent of these

emissions have been removed from atmosphere and stored on land (in plant and soils)

and in the ocean, the rest remained in the atmosphere (880 ± 35 Gt CO2). Oceanic

uptake of CO2 over past decades has resulted in acidification of ocean (26% increase

in acidity). About half of the anthropogenic CO2 emissions between 1750 and 2011

have occurred in the period, 1970 to 2010 with larger absolute increases in last 15

years, despite a growing number of climate change mitigation policies. It was found

that global anthropogenic emissions have reached 49 ± 4.5 Gt CO2 eq yf' in 2010.

The global mean surface temperature change for the period, 2016-2035 relative to

1986-2005 is expected to be in the range of 0.3°C to 0.7°C, which depends on

committed warming caused by past, as well as future anthropogenic emissions (IPCC,

2014). As per the report of lEA (2007), India will become one of the top three

emitters of the world by 2030. Net emission from India has already gone beyond

1727.71 million tons of CO2 equivalent (GOHP, 2014) and is already experiencing a

wanning climate with projections of high temperature regimes over southern India

(World Bank, 2013). Studies have shown that Kerala has become more vulnerable to

climate change (Brenkert and Malone, 2005)

2.2. MITIGATION STRATEGIES FOR REDUCING AND MANAGING THE

RISKS OF CLIMATE CHANGE



The IPCC (Intergovemmentai Panel on Climate Change) defines mitigation as

"an anthropogenic intervention to reduce the sources or enhance the sinks of

greenhouse gases" (IPCC, 2007). The intervention can be a complex plan or a

simple improvement that mitigates climate change (UNEP, 2016). Carbon capture

and storage facilities are regarded as the most discussed climate change mitigation

options. Most of them are complex carbon capture technologies with high cost and

technical uncertainties owing to the slow and narrowed implementation in India

(Kapila and Haszeldine, 2008). The Bali action plan had put forward the proposal

that forests in developing countries must be considered as a primary climate change

mitigation option (FAO, 2007). Locking atmospheric carbon through trees provide

an ideal mitigation strategy which is environmentally sound and cost effective.

According to United Nations Framework Convention on Climate Change, mitigation

is crucial in stabilizing GHG concentration in atmosphere (UNFCCC, 2016a).

Integrative approaches on the economic as well as environmental constraints

need to be studied to examine the role of plantations as carbon sinks (Montagmini

and Porras, 1998). The total global carbon storage potential from afforestation and

reforestation activities for the period, 1995—2050 is estimated to be between 1.1 and

1.6 Pg C (I Pg^Peta gram, lO'^g) per year, of which 70 percent could occur in the

tropics (IPCC, 2007). Substantial emissions reductions over the next few decades can

reduce climate risks while delaying mitigation shoots up the burdens beyond curb.

Climate mitigation would require substantial emissions reductions and near zero

emissions of CO2 and other long-lived greenhouse gases. Land use, land use change

and forestry particularly deforestation contribute to greenhouse gas emission

(UNFCCC, 2016a) and livelihoods play major role in driving deforestation and forest

degradation. It is unique to country's national circumstances, capacities and

capabilities (UNFCCC, 2016b). On an average, about 28 percent of anthropogenic

CO2 emissions were collected and stored by the land based sinks between 2002 and

2011 (Peters ei ai, 2012). Carbon dioxide removal by increasing tree cover is
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^  recommended as a cost-effective method and plays a major role in many mitigation
scenarios where it reduces net emissions and enhances carbon sinks in land-based

sectors (IPCC, 2014).

2.3. CARBON SEQUESTRATION IN WOODY ECOSYSTEMS

According to IPCC (2007), carbon sequestration can be defined as "the uptake

of carbon containing substances and, in particular, CO2 into another reservoir with a

longer residence time". Usually these reservoirs include oceans, soils, vegetation and

geologic formations. Nair et al. (2010) has given an agroforestry perspective to

carbon sequestration as "the locked storage of atmospheric CO2, in vegetation,

detritus and soil pools as fixed carbon, after being taken up for photosynthesis".

Carbon sequestration occurs directly and indirectly. Directly, inorganic chemical

reactions convert carbon dioxide into soil inorganic carbon compounds and indirectly

through photosynthesizing atmospheric carbon dioxide into plant biomass. The plant

biomass is sequestered as SOC while decomposing (SSSA, 2001). Carbon can either

remain stored in soils for long period or be quickly released back into the atmosphere

with respect to the climatic conditions, natural vegetation, soil texture, and drainage

(ESA, 2000).

The incorporation of trees in a treeless land improves soil properties and can

result in greater net carbon sequestration (Young, 1997). In a woody ecosystem,

carbon sequestration occurs in the aboveground and belowground segments. In

aboveground, it is stored in specific plant parts (stem, leaves, etc. of trees and

herbaceous components), and belowground includes living biomass such as roots and

other belowground plant parts, soil organisms and carbon stored in various soil

horizons. Type of system (and the nature of components and age of perennials), site

quality, and previous land-use has significant effect on the total amount sequestered

in each part (Nair, 2011). In order to consider woody ecosystem as a climate change

mitigation option, the carbon captured should be stored and stabilized in the sink



(Kma and Rapson, 2013; Mackey et ai, 2013) which is carried out by the extensive

root system. Up to 2.2 Pg C may be sequestered above and belowground over 50

years in agroforestry systems (Lorenz and Lai, 2014). In addition, carbon that gets

locked in the wood products is complementary to that of the permanent stock in

standing trees. This kind of storage gives relaxation time to implement cleaner

technologies (FAO, 2003).

Plantations are forests of introduced species and in some cases native species,

established through planting or seeding, with few species, even spacing and/or even-

aged stands. Along with forest plantations, homegardens, agroforestry and

silvopastoral systems and individual trees grown as wind breaks are also important in

providing ecosystem foods and services (Peyre et ai, 2006; Beer et al., 2000). Sink

capacity of soil is enhanced when degraded ecosystems are restored with perennial

vegetation. Studies have shown that reforesting with appropriate stand density could

even improve the soil organic carbon of SOC rich systems like grasslands (Chen et

al, 2016). Better silvicultural practices resulted in considerably high carbon stock in

the above ground biomass in plantation of Sal (406.4 Mg ha ') than that of natural

forest (324 Mg ha~') (Baishya et ai, 2009). Likewise establishing plantations in

degraded land provide an alternative way to solve the issues resulting from forest

degradation and deforestation and to also enhance the carbon sequestration in soil via

litter decomposition and root turnover (Tom-Dery et ai, 2015), which is otherwise

slow or absent in fallow lands. Globally there are millions of trees in urban areas, on

farms, along roads, homegardens and so on, that does not come under the definition

of forest, widely recognized as trees outside forest (TOP). These relatively little

recognized forms of trees are now receiving greater attention (Long and Nair, 1999)

as they play extensive role in contributing national biomass and carbon stocks as well

as the livelihood of people (Schnell et ai, 2015). In tropics, TOF are a major source

of food (Bergeret and Ribot, 1990). In addition, the ecological functions regulated by



trees in terms of soil and water conservation by preventing erosion and maintaining

soil fertility, boosted the recognition of TOF (Carle et al., 2002; FAO, 2001).

Trees outside forest (TOF) in India mainly growing on private land are the

main source of wood in the country for industry and domestic wood fuel (Pandey,

2008) and is therefore an important natural resource (Schnell et al., 2015). In Kerala

about 90% of fuelwood requirement is met from trees outside forests (FSI, 1998),

which further reduce the pressure on existing forests.

2.4. BELOW GROUND SOIL ORGANIC CARBON AND CARBON DYNAMICS

Soil organic carbon (SOC) plays a very significant role in the global carbon cycle as

it is the largest terrestrial carbon pool (Lai, 1999). Restoration of existing 2 billion ha

of land could reverse annual atmospheric CO2 increase (Lai, 2000). According to

Batjes and Sombroek (1997), soils contained 1550 Pg of organic carbon upto im

depth. Of the five major carbon pools, viz. oceanic pool, geologic pool, soil organic

carbon pool, biotic pool and atmospheric pool (Lai, 2003a), sequestering carbon in

SOC pool is the cost effective mitigation method. Lai (2001) reported that converting

degraded soils under agriculture and other land uses into forests and perennial land

use can enhance the SOC pool. The severely depleted and degraded soils of tropics

hold large potential to sequester carbon (Lai, 2004a). The restoration of degraded

soils and ecosystems could sequester about 7 to 10 Tg C yr ' in India (Lai, 2004b).

Vertical distribution of SOC is influenced by root distribution and turnover

rates of corresponding vegetation and diverse set of organisms present in soil (Paton,

1995; Bronick and Lai, 2005; Schmidt et al, 2011; Schrumpf e/ al, 2011), since litter

and rhizodeposition are the first and foremost way through which carbon enters soil

pool (Rasse et al, 2005; Guo et al. 2008). Introducing deeply rooted vegetation into

shallow rooted systems hence store carbon deep in the soil (Fisher et al, 1994;

Jobbagy and Jackson, 2000) while the physiochemical interactions with soil particles

stabilize root derived carbon input in deeper horizons (Rasse et al, 2005; Kell, 2012)
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making deep soil a carbon reservoir. As such the stability of carbon in soil depends

on the root carbon incorporated into the soil through root turnover (Rasse et al,

2005). Furthermore, elevated surface input of SOM preferentially increases dissolved

organic carbon which is transported and stabilized in deeper soil horizons in due

course (Lorenz and Lai, 2005).

Carbon and nutrient stocks in deep layers have significant influence on site

quality parameters like biomass production and total carbon stock (Callesan et al.,

2016). Assessment of SOC storage gives an idea about the sequestration potential

and losses of soil carbon (Davidson and Janssen, 2006) as well as the carbon cycle

and climate change which allows the formulation of future policies (Sreenivas et al.,

2016; Dorji et al., 2014).

2.5. SOIL CARBON SEQUESTRATION; IMPACTS ON GLOBAL CLIMATE

CHANGE AND FOOD SECURITY

Increasing population and urbanization drives the need for increasing food

security and at the same time maintenance of environmental quality (Bronik and Lai,

2005). Soil carbon sequestration is a win-win strategy. Enhancing SOC pool could

substantially offset fossil fuel emissions (Kauppi et al, 2001) concurrently leading to

sustainable management of soil and water resources and ensuring food security.

Carbon sequestration enhances food security by improving crop yield. For example,

Lai in his study has shown that an increase in carbon pool by 1 ton per hectare in a

degraded cropland will increase crop yield by 20 to 40 kilograms per hectare (kg ha"')

for wheat (Lai, 2004a).

Decline in soil organic carbon pool will adversely affect soil structure, thereby

enhancing erodibility (Lai, 2004a). Lower density and vicinity to surface aggravates

removal of soil organic carbon during erosion. Depletion of SOC has contributed to

78 Pg carbon to the atmosphere (Lai, 2005) and at the same time restoration of same

could offset 5 to 15% of fossil fuel emission per year (Lai, 2004b). The land

10



conversions for intensive agriculture in response to increasing demand for food will ̂
adversely affect soil carbon stocks.

2.6. RELEVANCE OF WOODY ECOSYSTEMS IN KERALA:

ENVIRONMENTAL AND ECONOMIC SERVICES OF WOODY ECOSYSTEMS

Woody perennial based system has the property to ■ restore degraded

ecosystems and improve site productivity (Kumar, 2006). Forest plantations are

important in terms of its economic, social, and environmental benefits.

Environmental benefits include combating desertification, absorbing carbon to offset

carbon emissions, protecting soil and water, rehabilitating lands exhausted from other

land uses and providing rural employment (Carle et al., 2002). Teak and mahogany

are two prominent forest plantation species in Kerala. Both are slow-growing and

valuable hardwood species easier to grow under tropical ecological conditions (FAO,

2001). Kerala forest department alone have above 56510 ha under teak plantation

(Prabhu, 2005). Acacia auriculiformis is suitable for social and farm forestry

programmes since it has the ability to adapt well to various soil and climatic

conditions along with features like fast growth, nitrogen fixing ability, and evergreen

nature (Narendra, 2011). Auriculiformis is well adapted to acidic soils as well. Also

their densely matted root system protects the top soil from erosion (NAS, 1983).

The horticultural systems have more SOC sequestration potential than

agricultural systems (Naitam and Bhattacharya, 2004) due to its greater canopy cover,

leaf litter, and favorable micro environment (Singh et ai, 2009). Mango is the most

prominent horticultural plantation in India with highest area of 2516 thousand ha

(NHB, 2015). Commercial orchards are now established in Kerala comprising a total

area of 75911 hectares under mango cultivation (Cocohol, 2016). Carbon

sequestration through horticultural system is a better option if forestry is not feasible.

The average carbon stock sequestered per tree was found to be highest in Mangifera

II



indica (1.73 t/tree against 0.12 ± 0.24 t/tree.) in the forest reserves of Eastern Ghats

(Pragasan, 2014).

Homegardens are centuries old productive systems (Schroth et al., 2001). The

woodfuel collected from homegardens is an alternative for fossil fuel (Kumar and

Nair, 2004). The state is estimated to have 4.32 million homegarden covering 1.4 M

ha of land (Kumar,r 2006), making homegardens the most important agroforestry

system. Of the total annual wood production, 83 percent was from the homegardens

(house compounds and farmlands) (FSI, 1998). Homegardens are diverse in nature in

terms of species composition, size, and age (Mohan et al, 2007). According to Saha

et al (2009) soil carbon content in homegardens ranged from 101.5 to 127.4 Mg ha"'

within the Im profile and is found to be a function of species richness and tree

density especially in the top 50cm. Knowledge on carbon and nutrient flux in

homegardens is crucial for further management of system for efficient use of

resources, energy and increased production (Benjamin et al, 2001).

2.7. INFLUENCE OF PLANTATION ON SOIL NUTRIENT POOL

Soil nutrient distribution in different depths is influenced by weathering,

atmospheric deposition, leaching, and biological cycling (Trudgill, 1988) of which

plant cycling is a major contributor. Enhancing the diversity and quantity of soil

flora and fauna are important in improving soil structure which further improves

ability of soil to hold carbon and nutrients (Kay, 1998). Also, the soil carbon storage

is influenced by the presence of nutrients (Rastetter, 1992) especially nitrogen,

phosphorous and sulphur in organic matter (Kirschbaum et al, 2001). To sequester

10,000 kg of C in humus, 833 kg of N, 200 kg of P and 143 kg of S are needed

assuming C: N ratio of 12:1, C: P ratio of 50:1 and C: S ratio of 70:1 (Himes, 1998).

Unlike monoculture plantations, multispecies agroecosystems are more

sustainable in tenns of soil nutrients pools (Vandermeer et al., 1998), since the deeper

and denser rooting system in a multispecies system consumes the soil nutrients
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sustainably (Ong et ai, 2004). Root system plays a vital role in the nutrient

enrichment. Nutrient deficient soils generally have shallow root system where

substantial part of roots is concentrated on the surface layers (Buresh et ai, 2004).

Woody trees have the potential to take up nutrients that annuals cannot otherwise

from deeper depths (van Noordwijk et al., 1996). Perennials have an ability to

retrieve nitrogen from deep soils especially during leaching events. Thus, inter

cropping woody trees with annuals ensures sustainable use of nutrients (Buresh et al.^

2004). Plant characteristics like tissue stoichiometry, biomass cycling rates, above

and belowground allocation, root distributions, and maximum rooting depth may all

play an important role in shaping nutrient profiles. Nutrients strongly cycled by

plants, such as phosphorous and potassium, were more concentrated in the topsoil

(upper 20 cm) (Jobbagy and Jackson, 2001).

2.8. DEPLETION OF CARBON AND NUTRIENT POOLS IN SOIL.

Soils have the property to act as a sink or source of carbon in response to its

carbon fluxes (Schrumpf et al, 2011). When humification, aggregation and

sedimentation sequester carbon, erosion, decomposition, volatilization and leaching

remove soil organic carbon (Batjes, 2004). Despite the opportunities at global,

national and local levels to enhance soil carbon, it has disappeared rapidly since the

SOC stocks are vulnerable to anthropogenic disturbances (UNEP, 2012). The

emission of CO2 from soil is primarily caused by decomposition of organic matter or

soil respiration (Schlesinger and Andrews, 2000; Lai, 2003b). Depletion of SOC is

aggravated by soil degradation, land misuse and soil mismanagement (Lai, 2004b)

and conversion of natural ecosystems to cultivated or pastoral land (Lai, 2004c).

Inadequate planning and inappropriate management of plantations results in

environmental degradation (Carle et al, 2002).

Even though SOC pool is three times the vegetation pool, the reduced

biomass productivity and low root turnover caused considerable reduction in the SOC

-■
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^  pools in soils of India (Lai, 2004a). Ramachandran et al. (2000) has shown that the

ratio of soil organic carbon to that of vegetation is only 1.3 times in the natural forests

of Eastern Ghats. A similar low ratio of 0.8 was obtained in the study of Kaul, (2010)

using a dynamic model C02FIX in teak plantation. Seventy-five percent or more

SOC pool is depleted in the tropics due to conversion of natural forests to agricultural

ecosystems and some soils have lost as much as 20 to 80 tons C ha"^ (West and Post,

2002). Soil erosion is also regarded as a factor for carbon emission as well as CH4

and N2O, leading to low carbon pool in eroded land (Lai 2003b; 2005).

Plants produce poor quality litter that decomposes slowly in a nutrient

deficient ecosystem since the growth is slow and nutrients are utilized efficiently by

the tree itself. This leads to further depletion in soil nutrient pool since nutrient

^  enrichment through litter is low (Hobbie, 1992). Also, fast growing species deplete
more nutrients since the nutrients withdrawal during growth and loss through harvest

far exceeds the replenishment (Goncalves et al., 1997; Kumar et al., 1998). It is also

noted that fast growing exotic trees such as Acacia resulted in marked loss of

nutrients from the site (Kumar et al., 1998).

14



3i

^  MATERIALS AND METHODS

3.1. STUDY SITE

The study was conducted in five different mature woody ecosystems viz. teak,

mahogany, acacia, mango and a homegarden located in Central Kerala during May

2016. Acacia plantation and mango orchard were selected from Kerala Agricultural

University, Vellanikara. Teak, mahogany plantations and homegarden were selected

from Thrissur district.

3.1.1. Climate

The climate is humid tropical with South-West and North-East monsoons.

Summer rainfalls are also not uncommon in the region.

^  3.2. MATERIALS

3.2.1. Woody ecosystems

Mature forest plantations of teak, mahogany, acacia, horticultural plantation

of mango and typical homegarden were selected for the study. Mahogany plantation

was about 85 years old, teak was 45 years old and acacia was 15 years old.

3.3. METHODS

3.3.1. Design layout

Design: One way ANOVA
*

Factors: Plantation * Depth

15
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Plate 1. Mahogany plantation

17



3?^

I

K

m

f
16

K

Plate 2. Acacia plantation
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Plate 3. Mango plantation
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Plate 4. Teak plantation
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Plate 5. homegarden

>

21



3.3.2. Above ground parameters

For taking above ground measurements the three plots of size 20m*20m were

selected randomly from all the sampling sites. Height (H) and girth at breast height

(GBH) of all the trees in the selected plots were taken to calculate tree volume.

Using a measuring tape of Im GBH was taken, at a height of 1.37m of the

tree. Heights of the trees were taken using a Vertex.

3,3.2.1. Tree volume

Using the GBH and height tree volume was calculated using Huber's formula,

Volume = Sm*L,

Sm = Sectional area at breast height; L= length of the tree

3.3.3. Soil sampling and preparation

Soil samples were collected in May-June 2016. From each woody ecosystem

three sampling points were randomly selected along the slope. The soil was

excavated to Im depth in each sampling point. Soils were collected from five depths

viz. 0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, and 80-100 cm respectively. Similarly

soil samples were collected from a contiguous treeless control plot of each system.

Prior to the analysis, samples were air dried and sieved with a 2mm sieve.

Undisturbed soil samples were also collected from each depth in a core sampler to

calculate bulk density. A 158cm^ steel cylinder was used to collect soil from each

depth which was weighed right away. Soil samples were dried for calculating bulk

density, at 105X for two to three days.

3.3.4. Soil physical properties

3.3.4.1. Bulk density

Soil samples were collected undisturbed from each depth using a core

sampler. The core was taken without pressing the cylinder too hard on soil so that the

22



its

natural bulk density of soil may not be disturbed. Soil was oven dried at 105"C for

48-72 hours and weight was taken. Volume of soil was calculated by measuring

volume of cylinder (jir^h). Bulk density was calculated by dividing oven dry weight

of soil samples by volume of soil (Jackson 1958).

3.3.5. Soil chemical properties

SJ.S.l.SoilpH

Soil pH was calculated using an aqueous suspension of soil and water in

Bray-1-extractant ratio using Elico pH meter (model Li 613).

3.3.5.2. Total nitrogen

The N content in the digest was detennined by microkjeldahl method which

involves three steps which were:

1.Digestion

2.Distillation

3.Titration

The total nitrogen content in soil was determined by digesting Ig of 2mm

sieved soil in 5ml of sulphuric acid in presence of digestion mixture (Na2S04, CUSO4

and selenium). Distillation involved the separation and isolation of the nitrogen from

the digestion tube. This was done by raising the pH with NaOH and by doing this

ammonium radical was converted to ammonia. On heating, the ammonia was distilled

out which was collected in a trapping medium (4% Boric acid). This was then titrated

against O.IN H2SO4 in the presence of mixed indicator.

3.3.5.3. Exchangeable potassium

Exchangeable potassium was estimated by flame photometry using IN neutral

ammonium acetate solution as the extractant.

3.3.5.4. Available phosphorous
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2.5 g of soil was weighed out into a 100 ml conical flask and added 25 ml of

Bray No.l reagent and shake exactly for 5 minutes. The solution was filtered through

Whatman No.42 filter paper. Available phosphorus in the extract was estimated by

ascorbic acid method (Watanabe and Olsen, 1965) as per the following procedure:

5 ml of the extract was pipette out into a 25 ml volumetric flask and diluted it to 20

ml. To this 4 ml ascorbic acid was added. Made up the volume with distilled water

and shook the contents well. Read the intensity of color after 10 minutes at 660 nm

using spectrophotometer. The color was stable for 24 hours and the maximum

intensity was developed within 10 minutes. The concentration of P in the sample was

computed from the standard curve.

3.3,5,5. Organic carbon

Each sample was air dried for 24hrs and passed through 2mm sieve prior to

the analysis. Soil organic carbon was analyzed using wet digestion method (Walkley

and Black, 1934).

3.3.6. Below ground carbon and nutrient stocks

Soil carbon and nutrient stock for each soil depth was calculated by

multiplying respective carbon and nutrient concentration with its corresponding soil

mass (Anderson and Ingram, 1989). Soil mass for each soil layer was calculated

using bulk density. Carbon or nutrient stock over Im depth was calculated by adding

respective carbon or nutrient content in each layer up to Im.

3.3.7. Statistical analysis

Soil physical and chemical properties were analyzed statistically following ANOVA

technique (using SPSS). Post hoc analysis (Duncan) was done for each parameter.
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RESULTS

The results of the study are presented in this chapter.

4.1 TREE VOLUME

Estimated tree volume shows that mahogany plantation had very high tree

volume per hectare when compared with other woody ecosystem. The order of

volume for other ecosystem is as follows : homegarden > teak > mango > acacia.

Table 1: Volume of trees in the selected woody ecosystem in Central Kerala

Woody ecosystem Volume (m^ ha"')

Homegarden 1889.67

Acacia 957.5

Mango 1321

Teak 1525.42

Mahogany 6061.5

4.2. SOIL STUDIES

Soil samples were analyzed to find bulk density, pH, organic carbon, total nitrogen,

available phosphorous and exchangeable potassium.

4.2.1. Soil physical property

4.2.1.1. Bulk density

25



46

Bulk density of soils of selected woody ecosystems increased with depth

though the variation was not significant (Table 2). Bulk density at surface varied

from 1.10 kg m"^ to 1.41 kg m"^ with homegarden having higher bulk density and

mango had the least. Bulk density of deeper soils was higher than that at the surface

in the selected woody ecosystem except for teak. Homegarden, mango and teak

woody ecosystems had higher bulk density at 40-60cm soil layer. Open soils had

lower bulk density than corresponding woody ecosystem however not significant,

except for mango. As for mango, woody ecosystem soil had lower bulk density than

that of contiguous open plot.

26
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4.2.2. Soil chemical properties

Each soil sample was analyzed for its chemical properties viz. pH, soil organic

carbon, total nitrogen, available phosphorous and exchangeable potassium. Depth

wise trends as well as woody ecosystem wise variations were studied for each

parameter. The chemical properties in soils of each woody ecosystem were

compared with chemical properties in soils of contiguous open plots as well.

4.2.2.\. SoilpH

Soil pH values of selected woody ecosystems are depicted in Table 3. Soil

pH varied from 5.49 to 6.26 within the selected woody ecosystems. Homegarden and

mahogany had significantly lower value than contiguous open plot. While other

systems had significantly higher value than corresponding treeless control plots.

Across woody ecosystems, homegarden had low pH and acacia had high pH although

on par.

Table 3. pH of soils across different depths in selected woody ecosystem in Central
Kerala

Woody ecosystem Tree field Treeless control

Homegarden 5.49" (0.55) 5.90'' (0.08)

Acacia 6.26" (0.14) S.OS"" (0.41)

Mango 6.25" (0.12) 6.09'' (0.59)

Teak 5.66" (0.33) 5.16'' (0.02)

Mahogany 5.62" (0.36) 5.88" (0.43)

(Values in parenthesis are standard error of mean)

(Values with same superscripts do not differ significantly across row)
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4.2.2.2. Organic Carbon

Soil organic carbon concentration calculated and compared between selected

woody ecosystems up to Im depth is tabulated in Table 4. There was significant

variation in soil carbon concentration across selected woody ecosystem and with soil

depth. Top 20 cm of soil layer had higher carbon concentration invariably for all the

woody ecosystems sampled. The highest carbon content in surface layer (0-20 cm)

was observed for the mahogany plantation (1.49%) followed by teak (1.32%) and

lowest was for homegarden (0.95%). Mahogany had significantly higher carbon

concentration at top 40 cm soil depth compared with other woody systems.

Interestingly homegarden had significantly higher carbon concentration at lower soil

depth (80-100cm) (0.59%), while acacia had the lowest C concentration (0.36%).

The remaining species had moderate concentrations at the lowest soil depths which

however were on par.

A general declining trend in soil C concentration had been observed across the

soil depths for all the woody ecosystems. The values were significantly different

from surface to deeper layers. However, the decline was not prominent at deeper

layers (i.e. beyond 60 cm). Despite the higher C concentration for acacia at surface

soil there has been sharp reduction across depths as compared to other species.

The SOC was also compared with contiguous treeless open plot (Table 5,

Figure 11-15). The SOC in the treeless open soils were considerably lower

compared to the corresponding soil in the woody ecosystems. Trends were the same

for all the tree species across the soil depths. Among the woody systems, teak and

mahogany showed highest improvement in SOC as compared to other species. For

instance, at surface soil layer (0-20 cm) teak plantation soils showed 83 percent and

mahogany 73 percent increase in SOC as compared to their contiguous open soils.

The differences were fairly high for other ecosystems also. Among the species,

probably acacia soils had moderate improvement as compared to open especially at
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deeper soil layers. The differences were more prominent at deeper depths. For

instance, there was more than 100 percent increase in SOC at deepest soil layer (80-

100 cm) in the mango, teak and mahogany systems as compared with their respective

open soils.

■  ■ I
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Table 4. Soil organic carbon in different soil depths across selected woody

ecosystems in Central Kerala.

Depth

(cm)

Soil organic carbon (%)

Homegarden Acacia Mango Teak Mahogany

0-20

0.95/

(0.021)

0.96a'

(0.021)

0.96/

(0.121)

1.32a"

(0.111)

1.49/

(0.131)

20-40

0.85ab''

(0.011)

0.70b''

(0.011)

0.70b"'

(0.073)

0.99b"

(0.087)

1.25b'

(0.032)

40-60

0.73bd'^

(0.009)

0.568"

(0.015)

0.6 lee"

(0.015)

0.80c'

(0.116)

0.67c'"

(0.022)

60-80

0.63d'

(0.008)

0.53b'

(0.007)

0.50c'

(0.020)

0.51d'

(0.049)

0.58c'

(0.005)

80-100

0.59D'

(0.005)

0.36c"

(0.015)

0.51c'"

(0.021)

0.50d'"

(0.020)

0.51c'"

(0.008)

Plantation (F value) =22.05 p value <0.01

Depth (F value) = 113.21 p value<0.0i

Interaction (F value) =5.77 p value<0.01

(Values in parenthesis are standard error of means)
(Values with same superscripts do not differ significantly across row)
(Values with same subscripts do not differ significantly across column)
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4.2.2.3. Total Nitrogen

Soils of selected woody ecosystem showed modest variation across woody

ecosystem and depth (Table. 6). Mahogany plantation had highest nitrogen

concentration in each soil layer up to Im depth (0.55%, 0.46%, 0.36%, 0.39%, and

0.32%). Differences were not prominent among homegarden, acacia and mango.

There was a general declining trend in nitrogen concentration with depth which was

significant across soil depths.

Analysis of variance for total nitrogen showed that there was significant

increase in total nitrogen concentration in soils of selected woody ecosystem as

compared to the nitrogen concentration in the corresponding contiguous open plot for

all depth classes except for mango orchard (Table. 7, Figure. 17-21). Among the tree

species, the soil nitrogen buildup was highest for Mahogany (112% increase) as

compared to nitrogen concentration in the open soil at 0-20 cm soil depth. The

second best in terms of nitrogen concentration was teak, which showed as much as 86

percent increase as compared to corresponding open soil. The corresponding values

for other tree species were mango (71%), acacia (42%) and homegarden (50%).

Reduction across depth was 40 percent for homegarden while 44 percent for open.

For mahogany plantation the reduction was 42 percent and for corresponding open

soil it was 50 percent.
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Table 6. Total nitrogen concentration in different soil depths across selected woody
ecosystems in Central Kerala.

Depth

(cm)

Total nitrogen concentration (%)

Homegarden Acacia Mango Teak Mahogany

0-20
0.27a'
(0.014)

0.27a'
(0.014)

0.36a^
(O.OlO)

0.39a''
(0.016)

0.55a^
(0.023)

20-40
0.24ab'
(0.008)

0.25ab'
(0.014)

0.28b'
(0.051)

0.35a''
(0.025)

0.46b'
(0.040)

40-60
0.2 Ibc
(0.008)

0.21abc'
(0.016)

0.22bc'^
(0.025)

0.2880"
(0.008)

0.36c'
(0.023)

60-80
0.1 9bc
(0.008)

0.20bc'
(0.014)

0.1 8cd'
(0.023)

0.27c''
(0.038)

0.39c'
(0.003)

80-100
0.16c'
(0.008)

0.16c'
(0.008)

0.13d'
(0.010)

0.240"
(0.016)

0.32d'
(0.026)

Plantation (F value) = 79.88 p value < 0.01
Depth (F value) = 44.27 p value < 0.01

Interaction (F value) = 1.41 p value = 0.17

(Values in parenthesis are standard error of means)
(Values with same superscripts do not differ significantly across row)
(Values with same subscripts do not differ significantly across column)
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4.2.2.5. Available Phosphorous

Table 8 depicts that available phosphorous content in soil across the selected

woody ecosystems varied significantly. Woody ecosystems had remarkable effect on

available phosphorous concentration in soil. Phosphorous concentration decreased

consistently from surface to Im depth in the selected ecosystems. Homegarden, teak

and mango woody ecosystems showed a reduction of 94 percent between surface

layer and deeper depth. Mahogany had somewhat similar drop in phosphorous

content (90%). Acacia had comparatively less reduction across depth (73%).

Within the top 20cm soil depth, homegarden had highest phosphorous

concentration (26.96 mg kg"'), followed by teak (13.08 mg kg"'), mahogany (7.73 mg

kg"'), acacia (5.40 mg kg"'). Mango had the least value (3.27 mg kg"') which was

significantly different from each other. Moving on to the deeper layer, the variation

got narrowed with no significant difference across selected woody ecosystem, at

80cm depth.

Table 9 and Figure 23-27 depict the variation of phosphorous concentration in

woody ecosystems with treeless control plots. All woody ecosystems had

significantly higher value than contiguous open plot. At surface, homegarden had

higher phosphorous concentration than contiguous open plot (370%), while variation

was least for mahogany (67%). Interestingly mahogany plantation had higher

variation at 80 cm soil depth (375%) while in homegarden, the increment over open

plot reduced to 188 percent. For all other selected woody ecosystems, the variation in

phosphorus content from open plot increased with depth though soils of mango and

mahogany plantations at 60-80cm layer does not have significantly higher

phosphorous concentration than open plots. At 80-100cm soil depth only acacia had

significant difference from treeless control while other systems were on par with open

plot.

36



5^

Table 8. Available phosphorous concentration across selected woody ecosystems in

Central Kerala

Depth
(cm)

Homegarden
(mgkg')

Acacia

(mg kg*')
Mango

(mgkg"')
Teak

(mg kg"')
Mahogany
(mg kg"')

0-20
26.93a'
(0.657)

5.40a'
(0.306)

3.27a'
(0.141)

13.08a^
(0.999)

7.73a'
(0.762)

20-40
20.03b'
(0.732)

4.20bc'
(0.20)

I -bOBc' 6.53b'
(0.241)

4.12bc'
(0.066)

40-60
4.67c'
(0.133)

3.67c'^
(0.241) 1.20cd'

3.40c''
(0.306)

3.10c''
(0.058)

60-80
2.65d'
(0.535)

1.47de'^
(0.291)

0.37d'
(0.033)

2.20d'''
(0.116)

1.07de"
(0.088)

80-100
1.73 d'
(0.177)

1.45e'
(0.229)

0.2 Id'
(0.013)

0.80e'''
(0.116)

0.76e'''
(0.014)

Plantation (F value)= 527.66 p value <0.01
Depth (F value)= 693.59 p value<0.01

Interaction (F value)=135.80 p value<0.01

(Values in parenthesis are standard error of means)
(Values with same superscripts do not differ significantly across row)
(Values with same subscripts do not differ significantly across column)
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4.2.2.6. Exchangeable Potassium

There was a general diminution in exchangeable potassium content with depth

(Table 10). Highest concentration was observed in the top 20 cm layer. Teak

plantation had higher concentration over surface (101.33 mg kg"') followed by
mahogany (99.88 mg kg"'). Homegarden had significantly lower concentration than

other plantations (72.65 mg kg"'). Comparing the variation in phosphorous content

from surface to Im depth, mahogany plantation showed lesser reduction over depth

with 32 percent reduction from 20cm depth to Im depth and highest reduction was

observed for teak (53%). Homegarden and acacia had similar decrease over depth

(46%) while mango had 41 percent reduction in potassium content with depth. At Im

depth, mahogany plantation had highest potassium concentration (67.67 mg kg"') and

teak had the least (37.97 mg kg"').

Analysis of variance for exchangeable potassium showed that woody

ecosystems had significantly higher concentration than contiguous open plots. (Table

11). Mahogany had considerable larger addition than open plots. An increase of 152

percent over open plot was observed for the surface layer which decreased with depth

(120%, 116%, 108%, and 97%). A reduction in percent increase over open plot was

observed with depth in the selected woody systems. Homegarden had least

potassium increment than open plot in all depth groups (32%, 28%, 28%, 4.9%, and

18%). Acacia and teak, despite of the larger increment from treeless plot at surface

(20 cm), (66% and 101%), had comparable increment with homegarden at 80 cm

depth (16% and 17%) (Figure 29-33).
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Table 10. Exchangeable potassium concentration across selected woody ecosystems
in Central Kerala

Depth
(cm)

Exchangeable potassium concentration (mg kg'')

Homegarden Acacia Mango Teak Mahogany

0-20

72.65a'
(2.13)

82.13a^
(0.82)

86.32a''
(5.30)

101.33a'
(3.45)

99.88a'
(2.44)

20-40

68.48a''
(2.89)

79.80a'
(0.91)

62.03b''
(0.69)

8 1.00b'
(3.17)

83.92b'
(3.54)

40-60

59.85b'
(1.85)

70.75b'''
(1.20)

58.20bc'
(0.86) (2.25)

16.12c
(0.38)

60-80

49.07c'
(2.59)

52.25c'''
(2.64)

54. BCD'"
(0.83)

56.55d''
(1.52)

71.35cd'
(0.23)

80-100

39.15d''
(1.76)

44.30d"'
(0.91)

50.600*"
(0.33)

37.97e'
(6.42)

67.67d'
(1.65)

Plantation (F value) = 54.29 p value < 0.01
Depth (F value) = 196.45 p value < 0.01

Interaction (F value) = 6.79 p value < 0.01

(Values in parenthesis are standard error of means)
(Values with same superscripts do not differ significantly across row)
(Values with same subscripts do not differ significantly across column)
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4.3.3. Soil carbon and nutrient stocks

4.3.3.1. Carbon stock

Woody ecosystems had significant effect on soil carbon sequestration across

depth (Table 12). Total carbon stock over Im was highest for mahogany plantation

(116.01 Mg C ha"') followed by homegarden (105.41 Mg C ha"') (Figure 3) while

Acacia had lowest carbon stock (75.19 Mg C ha"'). Almost half of the total carbon

stock was stored in the top 40cm soil depth for all the species. For instance, the top

soil (0-40 cm) carbon content for mahogany was almost 60 percent of the total carbon

stock in Im soil depth. Similarly, teak registered about 55 percent of the total soil C

stock in the surface 0-40 cm soil depth. Also, there was consistent reduction in

carbon content with depth in the selected woody ecosystems. However, fairly good

amount of carbon was retained in the deeper depths for all ecosystems. For instance,

homegarden soil retained about 16 percent of the total carbon stock in the deepest soil

layer (80-100 cm). The corresponding values for other ecosystems were acacia

(12.22%), mango (15.47%), teak (12.33%) and mahogany (11.59%).

All the woody ecosystems showed consistently higher soil carbon

sequestration compared to their contiguous treeless open soils (Table 13).

Interestingly, all the open soils were having uniform carbon stocks that showed a

narrow range of 49.78 (mango) to 59.44 Mg C ha"' (homegarden). Among the

systems, the overall improvement in C stocks was the highest for mahogany followed

by teak, homegarden, mango and acacia. The coiresponding increase compared to

contiguous open treeless soils was: mahogany (125.26%), teak (85.61%),

homegarden (77.33%), mango (52.8%) and the least for acacia (29.17%) (Figure 2).

Homegarden represented the highest improvement in soil carbon stock in the

surface soils (0-20 cm) as compared to open soil followed by teak and mahogany.

For instance, homegardens showed as much as 100 percent increase (45.97 Mg C ha

') in soil C content as compared to adjacent open soil in the surface soil layer (0-20
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^  cm). Corresponding values for other systems in the top soil were: 93.5 percent (teak;
47.51 Mg C ha'), 88.1 percent (mahogany; 64.51 Mg C ha''), 42 percent (mango;

26.3 Mg C ha"') and least value of 37.02 percent (16.98Mg C ha') for acacia. Fairly
high soil carbon buildup was observed for woody systems even at deeper soil depths

(80-100 cm). Interestingly mango system showed remarkably high soil carbon at

deep soil to the tune of 444 percent increase as compared to the contiguous open soil.

Other prominent system that increased C stock at deeper depths compared to open

soil were mahogany (120.13%), teak (115%) and homegarden (73.38%) while acacia

showed the lowest increase (37.57%) (Figure 2).

4.3.3.2. Nitrogen slock

Mahogany plantation had higher stock over all depths with a total stock of

53.61 Mg N ha"' over m depth, against a stock of 22.49 Mg N ha"' in treeless control,

followed by teak (38.29 Mg N ha"'). Lowest nitrogen stock was observed in mango

orchard (26.72 Mg N ha"'). The variation is not significant for interaction (Table 14).

Total nitrogen stock shows considerable enhancement over treeless control

plots (Figure 5). All woody ecosystems had remarkably high nitrogen stock than

their contiguous open plot (Table 15). Analysis of variance showed that homegarden,

acacia, teak and mahogany had significantly higher nitrogen stock than treeless

control at all depths while for mango, the increase was not significant after 40 cm

(Table 14). Nitrogen stock in each ecosystem was higher in 0-20cm layers. Nearly

half of total nitrogen stock is concentrated in the top 40cm depth, while mahogany

had about 61 percent of stock in the top 40cm layer followed by teak (56%), acacia

(52%), mango (49%) and homegarden (46%). A similar pattern was seen for open

plots as well, where treeless open soils of mahogany and teak had higher allocation in

top layer (62%) (Figure 4).

On comparison with treeless plots total stock increment was higher in

mahogany plantation. Mahogany had an increment of 31.12 Mg N ha ' (138%) from
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its contiguous open plot followed by teak (19.11 Mg N ha"'; 99.6%), homegarden

(14.01 Mg N ha 87%), acacia (8.92 Mg N ha"'; 50%) and least was observed for

mango woody ecosystem (4.88 Mg N ha"'; 22%). At the surface too, mahogany had

higher increment of 132 percent over treeless control plot. Similarly remaining

woody ecosystems, teak (99%), mango (79%), homegarden (63%) and acacia (55%)

showed considerable increase over open soil at surface. At deeper depth (80-100

cm), the increment was not as much prominent as surface in mango and acacia. For

instance, mango only had an increase of 6 percent from open plots and acacia had 35

percent increase over treeless, while homegarden, mahogany and teak had higher

addition of nitrogen stock than treeless plot even at deeper depth (76%, 145% and

81% respectively) (Figure 4).
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Table 12. Soil carbon sequestration across selected woody ecosystems in Central
Kerala

Depth
(cm)

Soil carbon sequestration (MgCha')

Homegarden Acacia Mango Teak Mahogany

0-20

26.68a'*
(0.78)

23.13a"*
(0.43)

21.14a"'
(3.01)

33.36a'
(2.61)

37.17a'
(3.65)

20-40

21.9580"
(2.20)

16.25bc'
(0.37)

16.14b'
(2.42)

24.30bc"
(2.47)

33.18a'
(0.42)

40-60

21.81c'
(0.62)

13.73c'
(0.33)

15.42bc'
(1.70)

20.12c'"
(1.68)

16.73b"'
(0.94)

60-80

18.36cd'
(0.82)

12.88cd"
(0.79)

n.6lBc"
(1.04)

12.52de"
(0.92)

1 5.48b'"
(0.63)

80-100

16.61d'
(0.44)

9.19d''
(0.46)

11.77c"
(0.86)

12.70e'"
(0.40)

13.45c'"
(0.39)

Total

105.41

(4.86)

75.19

(2.38)

76.08

(9.03)

103

(8.08)

116.01

(6.03)

Plantation (F value) - 28.89 p value < 0.01
Depth (F value) = 85.90 p value < 0.01

interaction (F value) = 5.64 p value < 0.01

(Values in parenthesis are standard error of means)
(Values with same superscripts do not differ significantly across row)
(Values with same subscripts do not differ significantly across column)
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Table 14. Nitrogen stock across in soils of selected woody ecosystems in Central
Kerala

Nitrogen stock (Mg N ha"')

Depth
(cm) Homegarden Acacia Mango Teak Mahogany

7.66 6.45 7.82 9.83 13.63

0-20 (0.36) (0.33) (0.23) (0.54) (0.73)

6.17 6.05 6.35 8.54 12.06

20-40 (0.61) (0.39) (1-17) (0.80) (1.00)

6.17 5.23 5.50 7.17 9.11

40-60 (0.27) (0.35) (0.18) (0.62) (0.89)

5.49 4.80 4.08 6.67 10.31

60-80 (0.23) (0.41) (0.29) (0.52) (0.41)

4.68 4.24 2.97 6.08 8.50

80-100 (0.39) (0.12) (0.18) (0.61) (0.95)

30.17 26.77 26.72 38.29 53.61

Total (1.86) (1.6) (2.05) (3.09) (3.98)

Plantation (F value)= 78.15 p value < 0.01
Depth (F vaiue)= 32.53 p value < 0.01

Interaction (F value) =̂ n.s p value = 0.261

(Values in parenthesis are standard error of means)
(n.s means non significant)
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4.3.3.3. Phosphorous stock

Total phosphorous stock over Im depth in soils of selected woody ecosystems

is presented in Table 16 and Figure 7. Phosphorous stock over Im was higher in

homegarden (154.56 kg P ha ') followed by teak (65.33 kg P ha'') (Table 15). Mango

orchard had the least phosphorous stock of 15.24 kg P ha"'. At surface, homegarden

had a phosphorous content of 75.96 kg P ha"' which decreased to 4.95 kg P ha"' at 80-

100 cm soil layer. When compared with treeless control plots homegarden had fairly

high buildup than other woody ecosystem especially in the surface horizons. The

increase from treeless plot was in the order of homegarden (449%), teak (198%),

acacia (163%), mango (80%), and mahogany (65%) (Figure 6). The entire selected

woody ecosystems had fairly high phosphorous content in the top layer.

Corresponding values were homegarden (410%), teak (245%), acacia (225%), mango

(110%), and mahogany (80%). Even in the deep layers also the woody systems

maintained higher buildup. Mahogany irrespective of lower increment at surface had

fairly high buildup in the deepest soil layer. With increasing depth, phosphorous

stock reduced severely. Most of the systems had about 90 percent decline in

phosphorous content at deeper depths (homegarden, 93%; mango; 93%, teak, 94%;

mahogany, 90%). Acacia had comparatively lower reduction (71%). Homegarden

had higher concentration than other ecosystems at each depth layer. Mango had

lowest phosphorous content at surface as well as at Im depth (7.19 kg P ha"'and 0.50

kg P ha"'). Large proportion of total stock was concentrated in the top 40 cm depth in

each ecosystem. Homegarden had about 82.9 percent of total phosphorous stock in

40 cm depth. Similar trend was observed for teak (81.5%), mango (71.3%), and

mahogany (70.6%). Acacia had comparatively shallower distribution across depth

with 58.6 percent of total stock distributed in the top 40 cm depth.

Table. 17 depict the variation across selected systems and treeless control

plots. Acacia had significantly higher value in each depth while a non-significant
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high value was recorded at 80-100 cm depth for homegarden, mango, teak and

mahogany woody systems. Variation in total phosphorous stock over Im was highest

for homegarden with an increase of 126.43 kg P ha"'from treeless control and lowest

in mango woody ecosystem (6.77 kg P ha"').

4.3.3.4. Potassium stock

The trends in potassium stock across depth and plantation is depicted in Table

18. There was significant variation across depth and plantation. Highest potassium

stock was recorded in the mahogany plantation (1030.06 kg K ha ') followed by teak

(857.55kg K ha"'), homegarden (813.58 kg K ha"'), acacia (805.88 kg K ha"'). Mango

orchard had the least stock (721.05 kg K ha"'). In the surface layer, teak had higher

potassium stock (256.91 kg K ha"') followed by mahogany plantation (247.92 kg K

ha"') (Figure 9). There was no significant variation between homegarden, acacia and

mango though. A general declining trend was observed across depth. At deeper

layer, mahogany had higher stock (177.50 kg K ha"'). Although teak had higher

concentration at surface there was a sharp reduction with depth. Only 11 percent of

total stock was retained in the deeper layers. Corresponding value for other systems

were mahogany 17 percent, mango 16 percent, acacia 14 percent, homegarden 13

percent.

Comparison of potassium stock in woody ecosystems and treeless control

over each depth group is illustrated in Table 19 and Figure 8. Each system was

significantly different from its contiguous treeless plots in each depth groups. Figure

24 portrays the comparison of total potassium stock over Im depth in woody

ecosystems and open plots. It shows that mahogany plantation had higher variation

from open plot (136%) and least variation was observed for homegarden (30%)

(Table 22). Likewise, in the surface soil within 20cm depth, mahogany plantation

had highest increment over treeless (172%). Teak (113%), mango (73%) and acacia

(79%) also had considerably high increment from treeless control. Homegarden had
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11

comparatively low increase over treeless soil (43%). Along with depth, the increment

reduced considerably. At Im depth mahogany had about 97 percent increase over

treeless control plot followed by mango (30%), teak (24%), acacia (18%) and

homegarden (17%).

..W-
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Table 16. Phosphorous stock in soils of selected woody ecosystems in Central
Kerala

Depth
(cm)

Phosphorous stock (kg Pha')

Homegarden Acacia Mango Teak Mahogany

0-20

75.96"^"
(1.85)

12.83^'^
(0.79)

7 19Ae

(0.42)

33.

(2,67)

19.25'^''
(2.11)

20-40

52.08®'
(6.48)

10.30"^'
(0.67)

3.68^®''
(0.16)

16.13®''
(1.16)

10.94®"
(0.21)

40-60

13.97^'
(0.23)

9.00^''
(0.76)

3.03^®'
(0.31)

8.65'"'
(0.81)

'y Bb

(0.19)

60-80

7.59°'
(1.30)

3.50^'^''
(0.53)

0.84®'
(0.09) (0.67)

2.81^^
(0.12)

80-100

4.95°'
(0.67)

3.70®'
(0.47)

0.50®'
(0.09)

2.02°'
(0.27)

1.99^'
(0.05)

Total

154.56

(10.53)

39.43

(3.22)

15.24

(1.07)

65.53

(5.58)
42.76

(2.68)

Plantation (F value) = 226 p value < 0.01
Depth (F value) = 253.30 p value < 0.01

Interaction (F value) =56.12 p value < 0.01

(Values with same superscripts do not differ significantly across row)
(Values with same subscripts do not differ significantly across column)
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Table 18. Potassium stock in soils of selected woody ecosystems in Central Kerala

Depth
(cm)

Potassium stock (kg fCha')

Homegarden Acacia Mango Teak Mahogany

0-20
205.03\
(7.83)

195.09\
(2.89)

189.30\
(11.05)

256.9l\
(7.11)

247.92^
(3.56)

20-40 175.82®b
(10.26)

195.36^b
(3.16)

142.37®c
(4.97)

200.23 ̂b
(15.86)

222.88®a
(12.56)

40-60
179.34®a
(6.04)

173.34^
(7.13)

147.2l\
(16.57)

163.68'^b
(15.56)

192.45"^a
(7.22)

60-80
142.44S
(9.84)

127.53'^b
(12.38)

124.49\
(6.57)

140.86'^b
(9.02)

189.31*^3
(7.40)

80-100
104.98°d
(8.86)

I H.se'^b
(6.91)

117.68®b
(11.31)

95.87''b
(15.65)

177.50^^3
(4.57)

Total 813.58 805.88 721.05 857.55 1030.06

Plantation (F value)-27.40 p value <0.01
Depth (F value)= 72.85 pvalue<0.01

Interaction (F value)=3.27 p value<0.01

(Values in parenthesis are standard error of means)
(Values with same superscripts do not differ significantly across row)
(Values with same subscripts do not differ significantly across column)
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DISCUSSION

The study was done to analyze the variations in soil carbon and nutrient pools

across selected woody ecosystems. The variations in soil physical and chemical

parameters which were significant across woody ecosystems and depth are discussed

here.

5.1. SOIL PHYSICAL PROPERTIES

5.1.1. Bulk density

Bulk density of soil had an increasing trend with depth although not consistent

(Table 2). Studies have shown that bulk density increases with depth in relation to

organic matter content, porosity and compaction (Chaudari et al., 2013). Porosity

and organic matter content had negative correlation with bulk density (Askin and

Ozdemir 2003; Sakin 2012; Chaudari et al., 2013). There was no significant

difference in bulk density of soils in the selected woody ecosystems with contiguous

treeless plots.

5.2. SOIL CHEMICAL PROPERTIES

5.2.2. Soil organic carbon and carbon stock

Investigations on soil organic carbon concentration and carbon stock clearly

showed that there was considerable variation among the selected woody ecosystems.

Also all the woody ecosystems showed profound variation in C stocks and allocation

patterns across soil depths.

The total carbon stock in the soil representing various selected woody

ecosystems varied from 75.19 to 116.01 Mg C ha'. Higher carbon stock was

observed in the mahogany plantation and least for mango woody ecosystem. The total

carbon stock was in the decreasing order mahogany > homegarden > teak > mango >

acacia. The soil organic carbon content of a site is detennined by both inherent
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■t-
properties and the extrinsic factors to which the soil is exposed. Among these the
type of land use followed has a strong bearing on the soil productivity. Tree based
land use systems have prominent role in modifying the soil properties by virtue of
their deeper root systems and efficient carbon and nutrient cycling. Since biomass
production and carbon sequestration are directly linked with the site quality, woody
species, and related silvicultural management practices, different woody ecosystems

at different locations may have differences in the carbon stored in the soil (Swamy et
al., 2003).

The present study indicated that mahogany plantation had highest carbon
stock at one meter soil depth. The woody ecosystems when compared with their
contiguous treeless open plots showed that soil carbon sequestration rendered by

mahogany was the highest. For instance, mahogany plots had as much as 125%
increase in soil C stock as compared to tree less open which acacia had the least value

(29%). Percentage increase in soil C stocks compared to contiguous treeless plots

was in the order of mahogany > teak > homegarden > mango > acacia. The higher

increment of soil carbon stock for mahogany and teak woody systems especially in

the top horizons (up to 40cm depth), might be due to longer gestation periods
(mahogany > 85 years and teak > 45 years) and associated accumulation of carbon

and nutrients to the soil through elemental cycling (Mafongoya et ai, 1998). A

unique property of woody ecosystems is that they produce more recyclable biomass

over long term (Buresh et al., 2004). The primary way of carbon accumulation in the

soil is through the return of plant-fixed carbon to the soil mainly through leaves and
roots (Lai and Kimble, 2000), which is absent or nearly scarce in a treeless region.

The contribution from deep root system in species such as mahogany and teak might

help in enhanced contribution to the soil carbon and nutrient pools. The study results
converges to the generalization that woody ecosystems have great potential to enrich

the soil carbon stocks even at deeper soil depths. Yet another observation is that the

present reported C sequestration values for various woody ecosystems were lower as
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compared to moist deciduous forests (168 Mg ha"'). However, our values were

considerably higher than treeless paddy fields (59 Mg ha"') (Saha et al., 2010).

Present study showed that homegarden also had fairly high carbon stock over

Im depth (105.41 Mg C ha"'). In a similar trial, Saha et al. (2010) found that large

homegardens in central Kerala had 108.2 Mg C ha"' up to Im depth which is

comparable with the present study. The multi-tier vegetation structure and

differential resource absorption potential mimicking natural forests, is explained as

the major reasons for high soil carbon sequestration potential of homegardens

(Kumar, 2006; Nair et aL. 2009). Up to 40cm depth, mahogany had higher stock but

in the subsequent layers, homegarden accounted for higher carbon sequestration. A

similar pattern was observed in a study on tropical homegardens (Saha, 2009). Since

homegardens account for diverse tree species belonging to different age groups,

rooting intensity at lower depths may also be higher than monoculture plantations,

(Saha, 2009). Consistent with this, homegarden had higher soil carbon stock than its

corresponding treeless plots when compared with the monoculture plantations of

acacia and mango. Lower carbon sequestration of the mango and acacia, might be

the result of lower litter quality (Issac and Nair, 2006) which is yet another important

factor deciding carbon contribution to the soil.

Variation in soil organic carbon content across depth suggested a general

declining trend with increasing soil depth (Figure 10). The study showed that

variation across depth was eventually contributed by the existing woody ecosystem

(Table 4; Table 12). Invariably carbon concentration as well as carbon stocks was

higher at surface than deeper depths in all woody ecosystems, which is common for

all mineral soils (Brady and Weil, 2007). Fine roots of woody perennials are the

major source of carbon stock in deeper depths though the root carbon input declines

substantially with depth (Buresh et at., 2004). This could be the reason for steep

reduction in SOC with depth especially in acacia, teak, and mahogany. Mahogany

and teak accounted nearly 60% of total SOC in the top 40cm depth. However, it is
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interesting to observe that all the woody ecosystems showed higher carbon content in

the deeper soil as compared to their corresponding soil depths in the treeless open

plots.

Homegarden represented the highest improvement in soil carbon stock in the

surface soils (0-20 cm) as compared to open soil, followed by teak and mahogany.

Deeper depths of woody ecosystems had remarkably higher SOC and carbon stock

while in treeless control plots there was sharp reduction with depth. Teak, mango and

mahogany ecosystems had about 100 percent increase in SOC over treeless control

plot at the 80cm depth. Mahogany plantation had above 100% increment at all soil

depths except top 20 cm layer. Similarly, soils of other woody ecosystems also had

relatively higher enrichment at deeper depths. For example mango had about 444%

increase against treeless control. Likewise mahogany (120.13%) teak (115%) and

homegarden (73.83%) showed much variation even at 80-100cm depth. This distinct

change is due to the fact that tree based systems had higher potential to sequester

carbon than other systems (Post and Mann, 1990) as the deep-rooted systems store

considerable amount carbon deep in the soil (Fisher et al., 1994; Jobbagy and

Jackson, 2000). Acacia (37.57%) had comparatively low carbon stock at deeper

depth than treeless control. Investigations on soil carbon accretion lead to the general

conclusion that woody ecosystems contribute substantially to enrich the soil carbon

stocks which however may vary with tree species.
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Figure 10. Soil organic carbon in different depth of the selected woody ecosystems in
Central Kerala
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Figure 11. Variation in soil organic carbon at different soil depths of homegarden and
contiguous open plot in Central Kerala
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Figure 12. Variation in soil organic carbon at different soil depths of acacia plantation
and contiguous open plot in Central Kerala
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Figure 13. Variation in soil organic carbon at different soil depths of mango woody
ecosystem and contiguous open plot in Central Kerala
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Figure 14. Variation in soil organic carbon at different soil depths of teak plantation
and contiguous open plot in Central Kerala
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Figure 15. Variation in soil organic carbon at different soil depths of mahogany
plantation and contiguous open plot in Central Kerala
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i  5.2.3. Soil nutrient concentration and stock
-r

The order of nitrogen, phosphorous and potassium stock over selected woody

ecosystems were:

^  Nitrogen stock: Mahogany > Teak > Homegarden > Acacia > Mango;

Phosphorous stock: Homegarden > Teak > Mahogany > Acacia > Mango;

Potassium stock: Mahogany > Teak > Homegarden > Acacia > Mango.

Also there was considerably higher increment in nutrient concentration and

stocks in the selected woody ecosystem when compared with their respective treeless

control. The nutrient concentration in soil is determined by the soil's intrinsic

properties and several other external factors like organic matter addition.

Furthermore, nature of the existing vegetation had profound influence on the soils'

^  nutrient pool through their litter characteristics (quantity and quality) as well as the
belowground root productivity. The root architecture and spatial distribution tree

roots also have prominent role in determining the soil nutrient stocks (Lynch, 1995).

Considerable species variation in soil nutrient stocks has been observed in the

present study. For instance, acacia and mango consistently had lower total nutrient

stock (N, P and K) than homegarden, teak and mahogany. Poor litter quality and

associated slow decay process of acacia and mango could be the major reasons for

this trend. For example, the safety net mechanism in monoculture plantations is not as

much efficient as multistrata-multispecies woody ecosystem such as homegardens

~t (Kumar 2006). Safety net role is important in nutrient cycling through different

depths (Schroth et al., 2001, Seneviratne et al, 2006). Also, the monospecific tree

stands fails to ensure enough biomass turnover and protection against soil erosion

until they are well established (Kumar 2006). In addition, short rotation plantations

because of their intensive management and rapid growth rates accounts to rapid

nutrient removal from the ecosystem (Kumar et al., 1998). Also when compared with
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its corresponding treeless plots it is evident that the percentage increase in total

nitrogen stock is low for acacia (50%) and mango (28%).

Total nitrogen concentration as well as stocks in soils of treeless control plots

was significantly lower compared to that of woody ecosystem (Table 7 and 16). Since

nitrogen is mobile and highly soluble in water, the chances to leach out with rain

water and erosion is very high (Espinoza et al, n.d). Hence without root system and

ground cover, soil nitrogen is highly susceptible to leaching, which might be the

reason for low concentration in treeless control plots. Similarly mango had very low

phosphorous and potassium enrichment than its corresponding treeless soils (Table 19

and 22).

Total nitrogen, available phosphorous and exchangeable potassium shows a

general declining trend when analyzed over soil depth in the selected woody

ecosystems (Table 6, Figure 16; Table 8, Figure 22; Table 10, Figure 28). A higher

amount of nutrient concentration in upper layer is contributed by high organic matter

enrichment through litterfall, herbaceous biomass and intense biological activity in

top porous and nutritious soil (Manjunatha et al., 2016). Mineralization or biological

breakdown of soil organic matter decreases with depth leading to reduction in

nutrient concentration with depth (Buresh et al., 2004). Woody ecosystems had

considerably higher concentration of nutrient stocks in each depth. For example, in

the top most soil, selected woody ecosystems had 50-112% increase in nitrogen over

treeless control. Similarly, for available phosphorous and exchangeable potassium,

there was significant enrichment than the corresponding treeless soil across depth.

This shows that improvements in soil takes place when it is integrated with trees

especially in the surface soil (Kumar, 2006). Although mango had higher nitrogen

addition than treeless control plot in the surface soil (79%; 0-20 cm), the increase was

marginal at deeper depths (6%; 80-100 cm). Similarly, for acacia also nutrient

addition rates were comparatively less at deeper depths than surface, while

homegarden, mahogany and teak retained fairly high addition even at deeper depth
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(76%, 145% and 81%). Likewise, phosphorous and potassium, increments are higher

in the surface soil than deeper depths. This shows that nutrient enrichment as

compared with the treeless control plot decreases with depth and variable with tree

species. The higher belowground biomass buildup of mahogany and teak consequent

to longer lifespan and multistrata-multispecies property of homegarden provide

enough litter layer and root activity to maintain comparatively higher nutrient stock

even at deeper depths (Mafongaya et ai, 1998; Saha 2009).

Woody ecosystems had significant effect on the available phosphorous with

soil depth (Table 8). Homegarden ecosystem dominated in the phosphorous

concentration especially up to top 60 cm soil depth. Studies have shown that the leaf

litter of certain common trees in homegarden (for example Ailanthus and

Anacardium) has higher phosphorous concentration and faster decomposition rate of

litter than others (Issac and Nair, 2005).This might be the reason for fairly high

phosphorous concentration in the surface layer. This also shows that litter turnover

has considerable effect in the surface layers (Ola-Adams and Egunjobi, 1992). Litter

quality is an important factor thus governing the decomposition rates. Litter with

high phenol and lignin content decompose slowly (Chesson, 1997). Mango litter is

high in lignin and phenol that inhibit decomposition, while low in cellulose that

favors decomposition (Issac and Nair, 2005). The lower concentration of nutrients

over different depths in mango might be due to the lower decomposition rate of litter.

It is also obvious that phosphorous is often present in unavailable forms (Buresh et

al., 2004), which might be the reason for lower concentration of available

phosphorous at deeper depths of selected ecosystems.

Irrespective of being monoculture, teak and mahogany had higher nutrient

stocks in soil especially nitrogen and potassium. Both are long rotation crops and in

the present study, the teak plantation was about 45 years old and mahogany was

above 85 years old. When compared with other fast growing monocultures, teak and

mahogany thus had long term addition of nutrients. The larger biomass of the trees
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favors higher addition of litter and root turnover thereby enriching the soil for long

period of time until harvest.
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Figure 16: Total nitrogen concentration in different soil depth of the selected woody
ecosystems in Central Kerala
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Figure 17. Variation in total nitrogen concentration at different soil depths of
homegarden and contiguous open plot in Central Kerala
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Figure 18. Variation in total nitrogen concentration at different soil depths of acacia
plantation and contiguous open plot in Central Kerala
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Figure 19. Variation in total nitrogen concentration, across at soil depths, between
mango woody ecosystem and contiguous open plot in Central Kerala
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Figure 20. Variation in total nitrogen concentration at different soil depths of teak
plantation and contiguous open plot in Central Kerala
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Figure 21. Variation in total nitrogen concentration at different soil depths of
mahogany plantation and contiguous open plot in Central Kerala
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Figure 22. Available phosphorous concentration at different soil depth of the selected
woody ecosystems in Central Kerala
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Figure 23. Variation in available phosphorous concentration at different soil depths
of homegarden and contiguous open plot in Central Kerala.
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Figure 24. Variation in available phosphorous concentration at different soil depths
of acacia plantation and contiguous open plot in Central Kerala.
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Figure 25. Variation in available phosphorous concentration between different soil
depths of mango woody ecosystem and contiguous open plot in Central
Kerala.
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Figure 26. Variation in available phosphorous concentration between different soil
depths of teak plantation and contiguous open plot in Central Kerala.
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Figure 27. Variation in available phosphorous concentration between different soil
depths of mahogany plantation and contiguous open plot in Central
Kerala.
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Figure 28. Exchangeable potassium concentration in different soil depth of the
selected woody ecosystems in Central Kerala
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Figure 29. Variation in exchangeable potassium concentration at different soil depths
of homegarden and contiguous open plot in Central Kerala
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Figure 30. Variation in exchangeable potassium concentration at different soil depths
of acacia plantation and contiguous open plot in Central Kerala

0-20

?
* ft

20-40
w

ja

a 40-60
w

■o
a
e 60-80
Vi

80-100

I Open ■ Mango orchard

p<0.01

20 40 60 80 100
Exchangeable potasssium concentration (mg 1^')

Figure 31. Variation in exchangeable potassium concentration at different soil
depths of mango woody orchard and contiguous open plot in Central
Kerala
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Figure 32. Variation in exchangeable potassium concentration at different soil depths
of homegarden and contiguous open plot in Central Kerala
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Figure 33. Variation in exchangeable potassium concentration at different soil depths
of mahogany plantation and contiguous open plot in Central Kerala
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5.3. MANAGEMENT IMPLICATIONS OF THE STUDY

The extensive field investigations on the variability in the soil carbon and

nutrient stocks revealed interesting observations. In general, all the woody

ecosystems showed substantial improvement in soil carbon and nutrient buildup as

compared to their respective treeless open soils. Long rotation species such as

mahogany and teak had significant advantage in enhancing the soil carbon stocks as

compared to other woody ecosystems. Also multitier multispecies characteristics of

homegardens showed profound leverage in improving the soil carbon and nutrient

status even at deeper depths. This study converges to the conclusion that intensively

managed short rotation species such as acacia may function as soil nutrient drainers

by allocating more of the nutrients in their biomass. Hence such short rotation

plantations could lead to massive drains of carbon and nutrient in soil through

repeated harvest related exports from the site. Hence it would be desirable to retain

leaves, twigs branches and roots in the soil which resorting to total clear felling. The

improvement in soil fertility in long rotation tree species such as mahogany and teak

suggest the possible integration of compatible crop components with these systems.

However the above ground species limitations need to be considered while

integrating other crop components.
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4.

SUMMARY

Woody ecosystems play a major role in the mitigation of climate change

through this property of sequestration of atmospheric carbon dioxide in the soils. In

this context present study entitled "Comparative analysis of carbon and nutrient stocks

in soils of selected woody ecosystems of central Kerala, India" was carried out at the

Academy of Climate Change Education and Research, Kerala Agricultural University,

Vellanikkara, Thrissur during 2015-2016.

Soil samples were collected from the mature woody ecosystems located over

central Kerala. Three replications were selected randomly from each woody

ecosystem. Correspondingly samples were collected from treeless control for each

woody ecosystem. Samples were analyzed for bulk density, pH, soil organic carbon,

available phosphorous and exchangeable potassium. Carbon and nutrient stocks were

calculated from this. The study generalized following conclusions.

The carbon and nutrient stocks were significantly influenced by the

treatments. Soil organic carbon was significantly different in each plantation and also

there was significant reduction in depth. Carbon stocks were higher for mahogany

plantation (116.01 Mg C ha"') followed by homestead (105.41 Mg C ha"') and teak

(103 Mg C ha"'). Lower carbon stock was found for mango (76.08 Mg C ha"') and

acacia (75.19 Mg C ha"'). Carbon stock for each plantation was significantly higher

than contiguous open plot. When compared with treeless control plots the percentage

increase was higher for mahogany (125.26%) followed by teak (85.62%), homegarden

(77.34%), mango (52.83%) and acacia (29.17%). More than half of the carbon stocks

were concentrated in the top 40cm layer. Slow growing species like mahogany and

teak had more potential to sequester carbon than short rotation species like acacia.

Considering the nutrient stocks, all woody ecosystems had significantly

higher soil nutrient stocks from their respective contiguous treeless soils. The highest

nitrogen and potassium stocks were recorded in the soils of mahogany plantation
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(53.61 Mg N ha"'; 138.37% and 1030.6 Kg K ha ') which were significantly different

from contiguous open plot. Nitrogen stocks were lower for acacia (26.77 Mg N ha"',

49.97%) and mango (26.77 Mg N ha"', 28.21%) but were significantly higher from

treeless condition. Nitrogen stock in soils of teak (38.29 Mg N ha"', 99.64%) and

homestead (30.17 Mg N ha"', 86.70%) were higher than acacia and mango but lower

than mahogany. Like carbon stock nitrogen and potassium stocks were higher for slow

growing species than fast growing acacia species.

All the selected woody ecosystems had significantly higher phosphorous

stock in soil from its contiguous plots. Soils of homestead woody ecosystem had

higher available phosphorous stock (154.56 Kg P ha"', 449.45%). the increase from

contiguous plots followed the order teak (197.59%) > acacia (163.04%) > mango

_i (79.93%) > mahogany (64.9%)

The results of the present study revealed soil organic and nutrient stock varied

significantly with woody ecosystems. Slow growing species as well as multi-strata

ecosystem enrich soil with carbon and nutrient better than slow growing species. Also

is significantly higher than treeless condition. Enhancing tree cover is thus an efficient

method to mitigate global warming. Short rotation species because of the intensive

management could lead to massive drain of carbon and nutrient pools. Hence choice

of the species and their management conditions are important considerations while

designing plantation forestry programs particularly when their carbon sequestration

and greenhouse gas mitigation potential are considered.
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ABSTRACT

Present study entitled "Comparative analysis of carbon and nutrient stocks in

soils of selected woody ecosystems of central Kerala, India" was carried out at the

Academy of Climate Change Education and Research, Kerala Agricultural University,

Vellanikkara, Thrissur during 2015-2016.

The study showed that the carbon and nutrient stocks were significantly

influenced by the treatments. Soil organic carbon is significantly different in each

plantation and was significantly higher than corresponding contiguous treeless soils (p

< 0.005). Also there was significant reduction in depth. Carbon stock was higher for

mahogany plantation (116.01 Mg C ha"') followed by homestead (105.41 Mg C ha"')

and teak (103Mg C ha"'). Lower carbon stock was found for mango (76.08Mg C ha"')

and acacia (75.19 Mg C ha"'). Carbon stock for each plantation was significantly

higher than contiguous open plot. Similarly highest nitrogen and potassium stock was

recorded for mahogany plantation (53.61 Mg N ha"' and 1030.6 Kg K ha"') which

were significantly different from contiguous open plot. Nitrogen stocks were lower

for acacia (26.77 Mg N ha"') and mango (26.77 Mg N ha"') but are significantly higher

from treeless condition. Nitrogen stock in homestead (30.17 Mg N ha*') and teak

(38.29 Mg N ha*') was higher than acacia and mango but lower than mahogany.

Available phosphorous was lower in all woody ecosystems other than homestead

(154.56 Kg P ha"') with significant reduction across depth.

The results of the present study revealed that soil organic and nutrient stock

varied significantly with woody ecosystems and slow growing species as well as

multi-strata ecosystem enrich soil with carbon and nutrient better than fast growing

species like acacia. Also is significantly higher than treeless condition. Enhancing

tree cover is thus an efficient method to mitigate global warming. Hence choice of the

species and their management conditions are important considerations while designing
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plantation forestry programs particularly when their carbon sequestration and

greenhouse gas mitigation potential are considered.
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