VARIABILITY AND HETEROSIS IN INTERVARIETAL HYBRIDS OF SUGARCANE [Saccharum officinarum L.]

THESIS
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENT FOR THE DEGREE
MASTER OF-SCIENCE IN AGRICULTURE
FACULTY OF AGRICULTURE
KERALA AGRICULTURAL UNIVERSITY

DEPARTMENT OF PLANT BREEDING
COLLEGE OF AGRICULTURE
VELLAYANI, TRIVANDRUM
1982

I hereby declare that this thesis entitied "Variability and hoterosis in interverietal hybrids of sugarcane" is a bonafide record of research work done by ma during the course of research and that the thesis has not previously formed the basis for the awerd to me of any degree, diploma, associateship, fellowship or other similar title, of any other University or society.

CERTIEICATE

Certified that this thesis antitled "Variability and hoterosis in intervarietal hybrida of sugarcane" Is a record of reaeerch work done incependentiy by smt. ALICE ANTONY under my guldance and aupervision and that it has not previously formed the basis for the award of any degree, diploma, fellowsinip or associateship to her.
(DT.P. MANIKANTAN NAIR) Cheirman
Vellayani.
31-12-1982.
Acivisory Comnttcee Associate Professor of plant Breeding.

APPROVED BY

Chairmen:

Dr.P.MANIKANTAN NAIR

Members:

1. Dr. V.GORINATHAN NAIR

2. SE1.S.SUKUMARAN NAIR

3. SEL.R.EALAKRISHNAN ASAN

External Exauncer.

ACROONLEDGEMENT

I wish to place on record my ceep sense of gratitude and indebtedness to my guide and Chairman of Advisory Comittee, Dr.Pomanikantan Nair, Associate Professor, plant breeding for his valuable guidance, constructive criticism and anthusiastic encouragement in streamilining this small venture of mine. Indeed I owe him a lot more than that could be expressed here.

Dr. V. Gopinathan Nair, Professor of Plant Braeding and member of my divisory Comittoe provided me with a congenial technical environment. His propitious help is gratefully acknowledged.

As a mambar of my Advisory Comittes, Sri. S. Sukumaran Neir, Associate Professor, Sugarcane Reseaxch Station, Tiruvalla showad meticuizous care in my research works. I an Indebted to him for his valuable suggestions and encouragement.

Hy ancere thanks are due to Sri.R.Balakrishnan Asan, nseistant Professor and Sri. Yageen Thomes, Agsistant professor, Department of Agricultural Statistics for the help rendered in the statistical analysis of the data.

I am ecqually thankeul to Sri. PeK.Chollappan Nair, Associate Professor, sugarcano Research Station Tiruvalla for providing the facilities for the concuct of my research work at rifuvalle.

The sinancial supeort provided by the Ferala Agricultural Univorsity in the form of research Eollowahip during the course of study is gratefully acknowledged.

IY sincere thanks are due to ell membere of staft and students of the iepartment of Plat Breoding and my friends for their help und comoperation.

Words fasl to express my respoct anc regard to my parente who have brougite me upto thin level. I affectionately dedicate this iittle plece of work to them.

ALICE ANTONY

				Pages
InTRODUETSON	**	**	**	1
REVIEN OE LITERATURE	**	- *	**	6
MATERINES AND METHOLS		$\cdots \cdots$	***	21
RESULTS	-**	**	***	32
DISCUSSION	**	-	-	110
SUTHAPS	- *	**	**	127
REFERENCES	**	**	\cdots -	1 - x

LIST OP TADLES

Table 1. Table showing the Erequency of F_{1} seedings for the qualitative attributes.

Table 2. Range, moan and coefeiciont of variation of hybrid seadings.

Table 3. Correlations between yield and its components in seeding population.

Table 4. Analysis of variance table for the selectad clones under each claracter.

Table 5. Hean and genetic parameters of different characters of the clonal population.

Teble 6. Phonotypic and genotypic correlations between characters in the clonal population.

Table 7. The mean values of parents. standards and F_{1} hybrids and their heterosis in percentage for germination (45 DAP).

Table 8. The maen values of parents, stendards and F_{1} hybrids and thoir heterosis in percontage for shoot count (90Dap).

Table 9. The mon values of parents, standards and I_{1} hybrids and their heterosis in percentage for H. $\mathrm{B} . \mathrm{Briz}$.

Table 10. The mean values of parents, standards and F_{1} hybrids and their heterosis in percontage for total weight of cano.

(List of Tables contel..)

Tabla 11. The noan valued of parents, stancards and P_{1} hyorids and their hoterosis in percentage for number of millable canes at harvest.

Table 12. The mean values of parents, stancards andi F_{2} hybrids and theis heterosis in percentage for number of internodes at harvest.

Table 13. The moan valuog oif parents, standards and F_{1} hybricia and their hecorosis in percentage for length of internode at harvest.

Toble 14. Tho mean values of parents. stancards ance F_{1} hybrids and their heterosis in percontage for girth of cane at harvest.

Table 15. The mean values of paronts, standarde and F_{1} hybrids and their heterosis in percentage for height of cano at harvest.

Table 16. The mean valuos of parents, standards and F_{1} hybrids and their heterosis in porcentage for weight of single cane.

Table 17. The moan values of parents, standards anci F_{1} hybrids and their hoterosis in percentage for number of water ohoots.

Table 18. The mean values of parente, standards and F_{1} bybrids and thoir hoterosis in percontage for number or arrowe.

Table 19. Percentage of hyjorids displaying positivo significant and nogative significent htorosis in different comparisons.

LIGT OR FIGURES

Fig. 1. Diagran showing correlation between importent attributes in sacohorum ofexcinarum.

Fig. 2. Briz in parents and hyorios.

Fiy. 3. pol in parents and hybrids.

Fig. 4. purity in parents and hybrids.

Fig. 5. Cas in parents and hybrids.

Fig. G. Percentage of hybrids aisplaying significant positive heterosis in diEferent comparisons.

Tintroduction

Sugarcene and sugar beet form the two major sources of commercial sugar in tropical and temperato zones of the world respectively. Sugarcane has a paramount place in the suger industry as it contributes the ilon's share of the raw material, besides being able to prociuce a host of bye-products. The crop is essentlally a tropical one. It has however been in cultivation in subtropical India from time immenorial. ugarcane is cultivatod in india since ancient times. It is referred in Atharva vede. Tha use of gur in religlous proctices indicates the presence of sugarcane plent in India gince the days of mythology. .

Sugarcane is classified uncier the genus saccharum and bolongs to the farmly Gromineee. Of tha cultivated species, Seccharum ofeicnarum occupies an important niche on account of its higher yield potential and allied noblo attributes.

The genus Saccharum is genetically a complas ono. It is charactarised by variable chromosome numbers and high polyploidy. Parthenogenesis adas to these complexities. There are two cytological types (1) officnarum type in which the cincomosome numbar is constant, basic number is ten and
meiosis regular. (ii) spontanoum type with varieble chronosome number, irregular melosis, basic number not decided (Parthasarathy, 1972). Sugarcane has been known In India long before other countries took to its cultivation. Naturally India was considered as the original home of this crop till the time of the dual origin theory according to which the Northern India region was accopted as the place of origin of the indegenous cultivated varieties grouped under gacchamun barberi and the polynesian Islands as that of the tropically cultivated gacchamum officinarum. The cultivated sugarcane is not seen in the wild state anywhere and its cultivation is conifined to the tropics and aub tropics rouginly between 35° worth and south of equator. Sugarcane occupies an aroa of 31,19,000 ha and 8537 ha in India and Kerala respectively.

Sugarcenc breeding is confronted by countless number of problems. Flowering is confined to South Indian conditions only, blowers are tiny and soeds are delicate in gemination. Selfing in augarcane cioes not seem to yield good rewards. Reciprocel recurrent selection is reported to yield greater measure of recombination. polycross method is also recomended. In the melting pot technique adopted in Hawaii, there is economy of cost and time, but hers only female parent is known.

The history of sugarcane breeding dates back to 1912. when the first cane breeding work was started at coimbatore and the consequent production of the flret hybrid co 205.

Being a high polyploid by iteelf. inheritance of characters is more complom in sugarcane. stuales at Codmbetore indicated that certain charactors like weight of stalks can be relied on as criteria on seloction, as the variation of this character from place to place is not. high indicating genetcc stablility. In India, the phanomenal success of the earlier Colmbatore hybrid varietios had lea to an ever increasing demand for high tomage quality canes with built-in-resistance to a wide spectrum of unfavourable environments. It is an undisputable fact that the opectacular increase in the yield of augarcane per hectare has been mainly due to the guccessful production of new high yielding varieties of cane obtained by selection from the enormous number of seedlinge.

The problems of sugarcane industry are well known. Though a number of variettes have been bred and cropped over lange areas of land, still degeneration or reduced yields have been noticed in many cases on account of a host of reasons. The practice of monoculture is wicespread.. in sugarcane
causing problems of pegts and diseases. The crushing season is limited and because of the existing policy of the mills generally to pay on quantity basis instead on quality criteris, the incentive to grow high gucrose verieties is on the decline. The failure of variety to yield takes two forms; an apparent sudden and spectacular collapse, or a more or less general ciecline. Regardleas of cause, the threat of the yield decline can best be countered by active breeding and testing programme. Biological influences on the deterioration of cane varieties in Hawail have been studied by Kartin et al." (1959) who included cultural, environmentel and genetical causes in their consideration of this problem. Accoraing to simmonds (1967) a close adaptation will reduce the variability and thus limit long term edaptablility by narrowing tho genetic base.

In korala, the aree under sugarcane has not registered an increasing trena. One of tho factors whieh contributes towaris this decline is the non availability of high yielaing cane varieties suited to local conditions. inth this end in view the prasent investigation was taken up. The experiment was carried out at the sugarcane Research station, Thiruvalla. Eour hundred and fifty seedilings available from

3

the crose Co $775 \times$ Co 453 wers subjected for subsequent studies. The female parent was endowed with the qualities of resistance to water logging, high sucrose content, profuse tillering capacity and good ratooning ability, while the male parent possessed saline and drought resistance, thicknese of cane and higher yield potential. the female parent had high fibre content.

Seventeen attributes were studied in the seeding population and correlations and cosfficient of variation worked out. From among the seedling population, sixty Eive clones wers selected based on the millable cane number, HoR.Brix, ; total woight of cane and general appearance. The selected clones were tried in an RBD with three replications along with parents and four standards provalent in the thiruvalla area nemely Co 997. Co 449, Co 785 and Co 62175. Seventeen important economic attributes vere assessed from the clonad population. The atatistical studies included the estimation of coafficient of Variation, correlation coefficiente (both phenotypic and genotypic), heritability, genetic advence and heterosis.

The studies enabled to elucidate twenty four elite clones with higher values for millable canes, brix, pol, puricy, ccs and total weight.

Pevien of literature

REVIEA O: LITERATURE

Saccharum officinarum, boing a comples polyploid. makes it Impossible to Forecast the characteristics of hybrids derived by cross pollination between varieties. The progeny of one cross may number several thousands of individuals displaying wide range of variation in size. apparrance, growth habit, disease susceptibility, vigour, yield and other features. Therefore, cane breeding may at first sight appear to be empirical, it depends basically for success in the inheritance of desirable characters Srom known parents possessing particular and desirable attributes. The groat variability in hybrids is due to the unusually large number of chromosomss and genes in the species and subspecies of sacchark and in the variations in these numbars not only between species but betwsen Local forms of the same species. Most of the comnercial characters in sugarcane are polygenic in inheritance. The genetic stocks are maintained as clones and most of the varieties are characterised by estreme degregs of
hetorozygosity. Hybria seedilng population therefore display wide genetic variation and prowice escellent scope for selaction among the segregants.

Genotyoic and phenotypic veriability, heritability and genatic advanco in sugarcone

(1) guantitetive traits:

Craig (1944) whils studying rafractometric brix and weight per stool in seading population reported a greater coefficient of varintion for weight of stool than refractometric brix. In seediling populations, Desorney (1950) emphasised that genotyplc varlability was a function of genetic make up and differant for aach of the seedlings. Burton (1952) suggested that genetic coefficient of variation along with heritability estimates would provide the best picture of the amount of advance to be expected from selection.

Tho heritability estimates relating to important economic traits have bean studied by many workers. From a stuay on charactors like cane thickness. length, number. brix and grade at four locations in sugarcane crosseb, George (2962) observed inat heritability values in the broad sense ranged Exom 6-82 per cent. Yang and Chu (1962) recorded heritebillties of cane yield, stalk length and tiller number to be 35 per cent, 45 per cent and 49 per cent respectively. In an observation conducted in twenty hybrid
clones, Rao et ale. (1966) reported that the heritability varied from 51 per cont to 91 per cent for the characters, gemination percentage, height, girth, yield and sucroge percentage. Substantial genetic advance for similar characters were reported by Rao et al." (1967) and Shah et ale. (2966). By employing the parent progeny regression methoc, Anonymous (2967) estimated hacitability In narrow sense for germination at 30 days. as 0.17. High heritability velues and low coefficiente of genetic variation for yield components in sugarcane were reported by fariotti (1971 c). On the basis of broad sense heritability ostimatas. Dayal ot al. (1972) suggested that selaction for yield and shoot number should be based on the phonotype while for node number and neight, selection should bo beged on progeny performance only. In hybrid progenies of three sugareene crosses; Marlotti (1973) observed the hlghest heritubility value of 63 per cent for stalk diameter. followed by stalk woight (53\%). High variability for cane yield, number of stalks and stalk weight were also reported by him. Allan et elw. (1974) reported high heritaility estimates for tons of cane per hectare, kg sugar par ton of cane, and ky sugar per hectare in plant, first ratoon and second ratoon crops of over 100 experimental clones.

High haritobllity values for yield and quality characters in geedlings were obcained by Ceanik (2975). Knalrwal. (1975) reported high estimates of broad sonse heritability for leaf width, laaf lengtin, cane thickness and number of millable canes and medium estimates for hejght of cane. High heritabilyty ootimatos for flowaring in sugarcane were obtained by Lysene (1977'a).

The Variance components, broad sense herdtability estimates, expected genetic advance and genetic coefficients of variation for yiald characters on the plant and ratoon crope of twenty early maturing cene varlaties in two localities wera studied by sahi et aze, (1977) and recorded very high heritability estimates for yield in the plant (96.24%) and ratoon " 91.44%) sespectively. Balasundaran and thagyalalishai (9978) Erom variedal studies. reported high genetic variability for stalk yield and its components namely number of uikleble stalks per row, single stalk weight and amont of suger produced per row on the basis of the results Erom pasent and progeny analysis, Etogarth et aloe (1931) observed high variability for cane zield and Low horitability for stalk dametan and langta. High variabllity for yield attributes like yiela pen elump and number

10

of millable canes was reported by punia and gingh (1981). Singh (1981) obtained high variability and heritability estimatos for yiold in sugarcane.

(ii) Qualitative traits

In gugar . . Incuatry, the total cane yiold is rot the ultimate objective as it is generaliy conceived, but the comercial cone suger (CCS) per unit area is of paramount importance. Juicinese, bris, pol, purity and cos are the common parameters generally employed to gauge the guality attributes. A perusal of the works done in thase lines elucidate interesting trends.

In hybrid populatione, Brown (1965) obtained heritam bility eatimates for brix and Eipre content as 50 per cent and 75 per cent respectively in ten genotypes, moderate herttability gor sucrose under varying hetarogenity conditiong, maximum heritebility in different eeasong and the highest haritebility velues uncer efffergnt locations ware reported by Rao et aj.. (1967). Hariotti (1971c) recorded nodexate horitability velues for pol, juice purity and notsture in begesse. For these atiributes. he could get only low coefelcients of variation. Nurther, he observed
a variability less than 5 per cent for quality comonents also. For gucrose, Khairwal and Babu (1975) recorded low broad based heriteblilty. Amador and Galver (1977) observed brix to be the lass varlable charactar in their studies on different families, while the progenies diaplayed greater variation for this character. High heritability values of brix and stalk diameter were

* reported by Galvez and Amador (1978). bingh et alo. (1978) observed sufficient genetic variability for brix percentage, sucrose percentage,purity and ccs percentage. For refractomatric brix within progenieg of a single parent, Mariotti et al.e (1979) reported 42 per cent heritebility. Hogarth gt al." (1981) obsarved low heritability values for augar content on the besis of the results from parent progeny analysis. High variability and heritability values for quality attributes namely, cce percentage and sucrose parcentage wore reported by Punle and singh (1901). singh (1991) also soported similar results for quality attributew.

CORRELATIIONS

Elaborate correlation studies on quantitative and qualitative attributes have been conducted by many workers. However, the paramoters available ara very iitile to predict the quality attributes with precision. A good amount
of work done in thege lines helped to standerdise the correlation indices with respect to many economic characters. In the past, many workers have tried to correlate the yield and quality attributes with the vegetative characters In sugarcane with an objective to find out a suitable indicator for selection.

i. quantitative traits

The inverse relationship between tillering capacity and thickness was recortied by wodenouse (1915). Positive correlations between yiold and number of millable canes were reported by many authors. quintus (1925) could notice proportionate increase in yield with stooling. Gili (1949) and Rattan (1951) observed highly significant positive correlation of yield with total length and number of canes per unit area. The latter also recorded high. positive correlation botween laaf area and yield. The total absence of correlation botween juice quality and woight per stool in seedilings was reported by Desorney (1950). Dillewijn (1950) noticed an approximately linear relationship between moan plant weight and numiser of stalks. He observed a highly significant correlation coekticiont between mean weight of the stalk and its mean length.

13

Within crosses, aignificant negative corcelations for stalk diamotar and number of stalks per stool were recorded by Herbert and lendorson (1959). George (1962) and Mariotti ($1972 ; 6 ; 1973$) also obtained similar resules.

Subbarao et ale (1962) reported that there was no correlation between early vigour of the seedlings and the final data on number of stalks per clump and thicienese of atalk.

The positive correlation between number of millable canes with haight, weight and girth have been eatablished by many workers. Consistent positive and significant correlations with number of millable canes and cane height Were obtatned by Vamma (1963) and Hariotti (19712;1972), Anon: - i (1965) reported the same trend with respect to cane diameter also in hybrid seedilngs. But, an inverse association of number of canes per clump with thickness of Cane, number of internodes per clump and yield of cane, was roported by Singh and Jain (1968). Singh and Sangha (1970) showed that cene girth, number of internodes and juice percentage had aignificant correlations wth cane yiela. High correlation of atalk number followed by stelk diamster and length with cane yield was observed by James (1971). He further concluded that stalk density had the
least correlation with yleld. Juang (1971) also reportad gaine regults. Low pogitive correlation of yield whth number of Internodes and girth was reported by Batcha and saht (1972). They also obtained highly significant positive correlations botween number of canes per row and . haight of milleble cenes with cane yields. stalk diam mater was observed to be a better criterion for forecasting yiela according to Mller and James (2975). Balasundaram and Ehegyaleksimi (2976), end Khainwal and Dabu (2976) erphasieed the mardmun contribution of atalik number to yield. High positive correlation of cans weight with cane length, thicknoss and number of internodes was under1ined by Bethile (1978). singh at ple. (1981) obtained positive genotypic end phenotypic association whth number of millable cenes per clump aumber of internodas par stelk and number of green leaves per cane.

11. Qualitative tralts:

Correlations between morphological and anatomical characters and with other traits were investigated by Barber (1915, 1916 and 1919). According to Barber (1915) sucrose and purity of cane juice were inversely correlated with vigour. Further, he reported negative correlation

15

between the wicth of the leaf and sucrose content in seediling populations. Low degrees of positive corrolations between sucrose, Eibre, stalk diameter and stalk weight were reported by Stokes (1934). stevenson (1954) obtalned similar results betsteen cene weight and brix of juice. While stucying correlations betweon juice weight and leaf characters RaO and Negi (1956). reported significant neyative correlation of juice welght per stalk with number or green leaves, total area of green leaves and dxy welght of green leaves.
iiigh positive correlation between brix value and sucrose in hybrid progenies was obtainad by Hebert(1957). Hebort and Henderson (1959) recorisd ofgnificant negative correlation batween diameter and brix within crosses. Between ten month old seedilngs and settlings, non-signiIfeant correlation for canes per clumg and brix in juice was reported by bhat et al." (1960). High yiold and high sugar were found to be negatively corralated by Rao and Warasingham (1963). Brown (1965) observed a non-signiElcant genetic correlation and a small positive phenotyple correlation between brix in juica and itibre. In intervarletal crosaes, Ethirajan (1965) obtained negativo

16

relationship between yield and fuice quality. Very high correlation between stalk diameter and milling quality and. Iow degree of negative correlation between cane yield and sucrose recovery mere reported by Hebert (1965). similar results ware obtained by Batcha and Gahi (1972). Lina (1965) recorded negative correlation between brix and stallt diameter in hybrid progenies. Khapage et ale. (1966) observed that stalk weight had no correlation with brix. Inverse association of number of canes per clump with juice percentego per clump was reported by singh and Jain (1968). Further, they reported positive significant correlations betweon height of the main shoot, thickness of cane, numbor of internodes par clumpe yield of cenea and juice percentage. Mariotti (1971) emphasised that juice quality was not strongly associated with fibre content or yield. significant correlations between H.R.Brix and aucrose content and between sucrose content and purity in crossen were observed by Rtchard (1975).

Dosado ot al.. (1976) suggested that canes with long stalks and leaves hed lower sugar content while freely ilowering varieties had higher sugar content at harvest.

17

Furchar, they observed variotios with greator stalk diameter and wider leaves to be giving higher sugar yield.

Lyrene (1977b) reported juicinese to be an important component of yield in sugarcano. In different varieties significent positive corcelations botween the ces per cent and brix value, sucrose per cont and purity coefzicient were reworted by Kanwar Singh et al. (1979). singh et al., (1981) observod nagative association of stalk height and stalk girth with bris value.

Heterosis

The important varieties of sugarcane avallable today are compler hybrids that include in their ancestry representatives of both geccharun officinarum anc gaccherum barberi groups of cultivated varietios together with representatives of one or both of the villc species. thus the sugarcane breeder has been exploiting to tho best of hiv eivility the advantages thet hetorosis has to offer.

If heterosis is to be maasured by comparing the perfomance of offspring with that of the parentes then higher the stanciang of the parento in the scale of moasurement, the lower the dogree of hatorosis to be

18

expected in the offspring and vice versa.

A perusel of the iiterature available on the stuales on heterosia inaicates that the information available in this aspect is scanty.

Winle studying the principles of breeding vegetatively propagated crops, Hebert and Henderson(1959) reported that the general performance of the progeny derived from a cross could be prealcted to a reasonably relative degree from the performence of the parentes There were no Instances in winich inferior parents produced a superior progeny or vice varsa. Further, they observed that the smaller the relationship between two parents, the greater the hsterosis expressed in the mating.

Luna (1965) from his study on the progeny characters In four sugarcane crosses observed the presence of a possible negative heterotic effect especially for the stalk thickness and nurber of immature cames.

Anonymous (1965) reported nine par cent inigher cane yieldg and 20 per cent higher sugar yielde for the variety ii 148 . than the standard variety N Co 310.

19

While evaluating the plant attributes concerned with yield in sugarcane and ascessing their behaviour in succeading clonal population, Ethirajen (1965) observed thst the progeny of tho crosses co $419 \times$ co 678 and Co $419 \times$ co 779 recorded high meen yield then the mean of tho highor yialding parent co 419.

A higher sucsose percentage and ten per cent mora sugar was reported for the variaty cos 541 (Co 629% Co 285) and the local veriety cos 510 by cingh (1965).

Shen (1967) reported three to Eive per cent higher sucrose content for the variety $E 153$ (f Co $310 \times 34-136$) than $1 \mathrm{co} \mathrm{310}$.$\mathrm{ife} \mathrm{compared} \mathrm{variaties} P 154. E 155$ and F 156 with the standard N Co 310 for sugar yield and sound an increage of ton per cant, 15 per cent and 15-20 per cent ouger then the stendard.

Hogarth (1968) reviewed tha guantitativa genetics In plant breeding with particular reference to sugarcane and concluded that the thoory of guantitative genetics may bo inadequate when applied to a clonally propagated crop like sugarcane.

20

From the experiments with saccharum officinarum and Saccharum spontaneum crosses. Roach (1969) concluded that male-female interactions are highly significent
 in determining sucroee yield per acre, parcentage of flowering and pollen production. In the cross korgl x 51 NG.2, features of atooling and guality exceeded the mid parent values while staik thickness, flowering time, total sugar and sucrose approximated with mid perent values and fibre content and exectness remained below mid parental values.

Matoicials and methods

MATERTALS AHD METHODS.

Abstract

The present investigacion was carriod out at tias Sugarcane Rogearch Station, inruvalla during the year 1981. Bour hundred and fixty hyorid geedlings of the cross Co 775 x Co 453 which displayed remarkable norphologleal variation were selected Eor the prelininery studiese Observatione on tho Eollowing chacecters wawe recordec in January 198. when the seedilngs attained elght months' age.

\section*{1. Compactuess of shoots}

Dased on the ordentation of the canes the seedilngs woro catogorised as (a) Compact (b) semicompaot and (c) Open. 2. Pooting at nocies

The intensity of rooting et nodes wexe classifiod es (a) High (b) medium and (c) Mida.

3. Colour of the Btem

Tho intensity of the Internodal pigmentation was recorded.
4. Colour of the Leaf

Leaf colouration on oither side of tho midrib was noted.

22

5. Gpines on sheeth

The glaborous and pubescent shoaths were recorded separately.

6. goworing

Elowering was recordsd when the cenes attealned eight months' age.

7. Stom solitting

The stem splitting nature of canes was recorded when tho canes wate at olght months' maturity.
Q. Mumoer of shoots

Counts were caken including the number or water shoots at eight months' age.
9. Humber of milleble caneb

Sully marured canes were reckoned as millable canes.
Three millable canes were randomly selected from each hybrid progeny and the following observations recorded. 1. Helght

The hoight of the cane was moasured from the lowest node to the uppermost node that could be seen after stripping off the leaves, averaged and axpressed in centimetres.
2. $\frac{3}{}$ umber of intemodies

The total numiser of internodes were counted and avereged.

2

3. Length of internode

The length of the midale internodes were measured, averaged and expressed in centimetres.

4. Girth

thaximum girth of the midale internodes were measured, avaraged and expressed in contimetres.

H.R.Brix Velues were taken from the lower fifth internode averaged and expressed as percentage.
6. Length of a thzee buajed sett

The length of a threa budded sett from the middle portion of each of the canes was maasured, everaged and expresped in centimatres.
7. height of a three budded sett

The three budded sette were weighnd, averaged and expressed in grems.

6. Waight of cene per untt langth

Woight of cane par unit length was found out by dividing the mean velght of the three budded sett by its mean length.
9. Weight of canes per clump

Total walght of all canos in each clump was taken and expressed in kilograms.

24

Essed on the sbove observations, progenies which oxhibited higher values Eor height, gisth, weight, H.R.Brixp number of millable cenes anc generel. vigour were selected for Eurthor studies.

The female parent, © 775 and the male parent co 453 were numbered es one and two respectively. The standards Co 449. Co 785. Co 997 and Co 62175 were assigned numbers Erom three to 0 ix and hybrid clones from seven to seventy one. Erom each of these progenies. setts with three viable bude were taken and planted along with parents and standarcis. The erperiment was laid out in Rendomised Block Deaign with three replications during February 1981.

Two matre rows of threa budded setts constituted one treatment. Four numbers of three budded getts occupied one metre length, with an inter-row spacing of 90 cm . The cultural and management practices were given according to the package of practices of the Kerala Agricultural University (1979).

The following observations were recorded.

1. Germination

Geminated sprouts were countod on the 45th day of planting and expressed as percentage.

83

2. Shoot count

The total number of shoots per troatmont fere counted on the 90 th day of planting and replication means obtained.
3. Grasay ghoot count

The incicence of grascy shoot: Gisease tas recorded by counting the number of shoots affected on tho 130 th day after planting and replication means worked out.

4. H.E.Brix

Observations on brix percentage wele taken in the tenth month by using a hand refractometer.
5. Number of water shoote

The total number of water shoots vere counted in the tenth month and replication meens worked out.
6. Humber of arrous

The number of arrows procuced ware counted in the rentir monti and replication mesns worked out.

7. Number of millabla_canes

From each treatmant, fully matured canes were reckoned as millable canes at the timo of hervest, and replication means worked out.
Q. Number of internoces
(As measured in the preliminary stuales)

9. Length of intornode

(As measured in the preliminary seudies)
10. Girth of the cane
(As measured in the preliminary studies)
11. Holght of the cane
(As measured in the preliminary stucies)
12. suiciness

The total juice Erom a unit weight of cane (ona kg) was extracted by using a power crusher. The quantity was expressea in millilitres.
13. Brix

One litre of jutce was taken for brix raading. A atandard brix spindle was usod for taking the reading and, correated to temperature.
14. Pol (parcentage)

Pol percentage was worked out as suggested by Gupta (1977).
25. Purity (percentage)

Purity of the juice was expressed as the percentage of pol to brix.
16. Commorcial cene sugar (porcentage)

Cu. was detemmined according to the schoms proposed טy Hathur (1978).

$$
\begin{aligned}
& 27 \\
& \cos =5-\{0.4(\mathrm{~B}-\mathrm{S})\} E \\
& \text { where } \mathrm{B} \text { घrix percent } \\
& \text { s Pol percent } \\
& \text { E }=0.73 \text { - Factor relative to fibre percentage of } \\
& \text { cane }
\end{aligned}
$$

17. Total weight of cane
(As measured in the preliminary studies)
18. Weight of single cane jer treatment

From the willable cones per treatment, a single cane Gas randomly selected, weighed, replication resins worked out and expressed in grams.

As regards juiciness, bris and pol, replication means could not be worked out for want of sufficient quantity of juice from each treatment.

Statistical Analysis

The data collected in respect of the metric traits as mentioned above wore tabulated and subjected to statistical analysis.

Genotypic and phenotypic correlation coefficients were estimated according to Burton (1952).

1. Genotypic correlation coefficient.

$$
x g_{1} g_{2}=\frac{\operatorname{cov}\left(g_{1} \cdot g_{2}\right)}{\sqrt{V\left(g_{1}\right) V\left(g_{2}\right)}}
$$

where $\operatorname{Cov}\left(g_{2}, g_{2}\right)=$ Genotypic covariance between the two traits

$V\left(g_{2}\right) \quad$	$=$ Genotyple variance of the first trait
	and
$V\left(g_{2}\right) \quad=$	Genotypic variance of the gecond trait.

2. Phenotypic correlation coefelcient,

$$
r p_{2} p_{2} \quad=\frac{\operatorname{cov}\left(p_{1}, p_{2}\right)}{\sqrt{V\left(p_{1}\right) V\left(p_{2}\right)}}
$$

where $\operatorname{Cov}\left(p_{1}, p_{2}\right)$ a phenotypic covariance between the two tralts
$V\left(p_{1}\right) \quad=$ Phenotypic variance of the first trait and
$V\left(p_{2}\right)$ Bhenotypic variance of the second trait.
3. Phenotyple coofficient of variation, $\sqrt{V(p)}$
$=\frac{\text { haan }}{} \times 100$
where $V(p) \quad$ Phenotyplc variance
4. Genotypic coefficient of variation.
$=\frac{\sqrt{V(g)}}{\text { Mean }}$ \% 100
where $V(g) \quad$ Genotypic variance.

¿9

5. Heritability in the broad genso tas estimated by the method proposed by Lush (1949) and Allard (1960)

	h^{2}
where \quad	$=\frac{V(g)}{V(p)} \times 100$
h^{2}	$=$ heritability expresset in percentage
$V(g)$	$=$ Genotyptc varience and
$V(p) \quad$	$=$ Dhenotypic variance

6. Expected genetic advance under gelaction wes calculatad according to Allard (1960)

$$
\begin{aligned}
& G A \quad=k \cdot n^{2} \cdot \sqrt{V(p)} \\
& \text { where } \\
& \text { GA } \\
& h^{2} \\
& V(p) \quad=\text { Phenotypic variance. } \\
& \text { k: } \\
& \text { - Genetic advance } \\
& =\text { Heritability in tho broad sense. } \\
& \text { = Selection aifferential expressea } \\
& \text { in phenotypic standerd deviation } \\
& \text { - } 2.06 \text { in the case of } 5 \% \text { of selection } \\
& \text { in large samples. }
\end{aligned}
$$

Estimation of heterosia

The thrae typas of heterosis, vize, relative heterosis, heterobeltiosis and standard hoterosis were estimated uging the relation,

$$
H=\frac{\left(\bar{x} \Gamma_{1}-\pi P\right)}{T p} \times 100
$$

where $\overline{E F_{1}}=$ hean value of \vec{F}_{2}
FP a Mean value of mid parent, better parent or standard variety as the case may be.

Negative heterosis expresued as the porcentage decrease of the mean value of the F_{1} ovor those of mid parent, botter parent and atanderis was workod out with respect to the characters, number of water shooes and number of arrows.

For testing the significence of the difference between the mean values of the F_{1} and those of the mid parent, better parent and stancard varieties, the critical values were calculated as follows.
a) Cil (For testing the significance over mid parental valua)
$C D I(0.05)=\operatorname{te}(0.05) \sqrt{\frac{3 M S e}{2 r}}$
$C D I(0.01)=t_{\theta}(0.01) \sqrt{\frac{3 M S E}{2 \Sigma}}$.
b) CD II (For testing the significance over the better parant and over the standard varioties)
0 II (0.05) $=\mathrm{te}(0.05) \sqrt{\frac{2 \mathrm{MSe}}{5}}$
CD II $(0,01)=\operatorname{te}(0.01) \sqrt{\frac{2 M S Q}{I}}$
where $C D \quad=$ Critical difference
Mse $\quad=$ Moan squaro for orror
$r \quad=$ Number of replications.
$t_{e}(0.05)$ and $t_{0}(0.01)$ are critical values of 't' corresponding to error degrees of freedom at 0.05 and 0.01 levels respectively.

Since the data pertaning to grassy shoots, water shooto and number of arrows contained zero values, they were traneformed by ustng square root transiomation . Le. $\sqrt{x+1}$
where $x=$ observed value
Since the data on gemination was expressed in percentage arc sin transsomation was done (Panse and Sukhatme, 1954). finis consisted in calculating the angle o corresponding to the observed value of proportion P such that $\sin \theta=\sqrt{P}$.

i. Eange, mean and cooffigient of variation in the geeding population

The frequency of F_{2} seedilings for the difEerent qualitative attributes are presented in Table 1. The range, man and coefficient of variation with respect to nine quantitative attributeg of the four hundred and fiEty hybrid progeny seedjings of the aross co 775 \% Co 453 are presented in rable 2 . Out of the nine giantitative traite estimated, the maximum range (63.33 198.57) was alsplayed by height of cane followed by number of shoots. edile girth recorded the mindmum range. The cousficiont of variation ranged from 10.36 to 55.18. The maximus variation in this paramater wos manifested in welght of cane per stool (55.18) followed by number Of shoots (51.29). The minimum coefficient of variation wad observed in HoReririx seaing (10,36).
II. Correlation gtudies in the geealing population

The Interrelationship anong the nine metric traites estinated in the preliminary studies are presented in Pable 3. Out of tha thirty sis correlation coefficients

33

Table 1
Toble anowing tha frouency of E_{1} seedinge for the qualltative attributes

Si. Character	Frequencies of E_{1}
1. Compactnese of shoots	
a. Compact	143
b. Sendicomuct	238
c. open	69
2. Rooting at sodes	
a. $31 . \mathrm{gha}$	21
b. Himatum	31
c. LOW	129
3. Colour of sten	
a. ufght graen	27
b. Purple	142
C. Light purple	148
d. Yollowish green	9
Q. Yellow with purple tint	12
E. Green with purplo tint	21
g. Derk purple	91
4. Colour of leax	
a. Laght graen	333
b. Darls green	117
5. Spinee on 3 .	
a. Presence.	224
b. ibsence	226
6. Stem splitting	' 0
a. Presence	48
b. Absence	402

Table 2
Range, mean and coesticient of variation of hybrid oeediings

Sl. Charscters	Range	Hean	Coefficient of variation
1. Weight of cane por stool	0.29-7.76	2.21	55.18
2. Number oin shoots	2-26	9.03	51.29
3. Number of millaiole canes per stool	2-19	5.69	46.61
4. Height of cane	43.33-190.57	103.36	20.82
5. Number of internodes	8-24.67	12.63	18.61
6. Length of internode	4.4-13.35	9.53	14.06
7. Girth of ceno	5.1-9.8	7.08	13.30
8. H.R.3ris	11.33-22.00	17.37	10.36
9. riolght oi cane per unit longth	1.70-7.32	3.67	24.23

35

twenty four were posiedvely significant and four were nogatively signieicent. The meximum degres of positive association was displayed between the characters, girth of cane and weight of cane per unit length (0.876). The marimum negative association was exhibited between height of cane and H.R.Brix (-0.00364).

The weight of cane per stool had positive correlation with the seven attributes except HoRoBrix. The number of shoots also displayed positive significant correlation with all the characters except girth of cane, H.R. Bris and weight of cane per unit length. The number of milleble canes per stool displayed negative non-3ignificant correlation botween girth of cans, HoR. Brix and weight of cane per unit length. The height of cane at harvest displayed positive significant correletion with all the characters except H.R.Brix, where it ohowed a negative non-significant association. The number of intermodes recorded negative aignificant corre-刦 lation with length of internode while cloplayed positive significant corralation with other characters. As regards length of internodo, it exhibited positive significant association with girth of cone and weight of cane par unit length.

36

The fie ReBrix menifestad negative correlation with cheracters like length of internode, number of millable cenes weight of cane per stool. Girth of cane also displayed negative association with number of raillable canes per stool.

1i1. Phenotypic ana genotypic variabilitye heritabllity and genetic mavance

The ANOVA with respect to thicteon quantitative characters studied in gixty five selected clones from the base material is prosented in Table 4. The clones differad significantly for all the characters investigated. The mean values of the selected clones for all the quantitative traits are given in Appendis: $I_{\text {. }}$ The range, mean, coofficient of variation, heritability and expected genetic advance under selection for the different charactere are presantad in Table 5. The maxinum amount of phenotyplc coefficient of variation was displayed by grassy ohoot counts (119.77) followed by number of arrows (91.58). Waight of single cane displayed minimum phenotypic coefficiont of vaniation, being 0.03. As far as genotypic coefticient of variation is concerned, the number of arrows recorded tho masimum coefficient of

Table 3.
Correlations between yielo and its components in seeding population

Characters	Wodeght OE cane per stool	kumber OL shoots	Number of milla- bla cenes per atool	Holght of cenc at harvest	Number of 1ntor nodes	Leongth of internode	$\begin{aligned} & \text { G1rth } \\ & \text { of } \\ & \text { cane } \end{aligned}$	H, R, BESX	weight of cane por unit Iength
Weight of cane per stool		0.61129	0.71982	0.62948	0.49017	0.24602	${ }^{* *}$	-0.04119	0.41920
Number of shoots			$\begin{array}{r} \text { m* } \\ 0.62178 \end{array}$	$\begin{array}{r} \text { ** } \\ 0.27092 \end{array}$	0.19637	$0.11 .916^{*}$	0.05884	0.06376	0.0709
number of millable canes per stool				0.32551	0.2009	$0.1020{ }^{\text {\% * }}$	-0.05201	-0. 06726	-0.05063^{-9}
ireight of cane at harvest					0.70537	$0.38162^{* n}$	$\begin{array}{r} \frac{\pi}{t \overrightarrow{4}} \\ 0.30424 \end{array}$	-0.00364	$0.29981^{\text {* }}$
Numbor of internodes						-0.21332	0.25959	0.18524	0.27598
Length of internodes							0.13981	-0. $2010{ }^{*}$	0.14078
GiFth of cane			.					-0.02006	0.87602
S. R. Brix									-0.01225

[^0]Table 4
Analysis of variance table for the selected clones under character

O Transfonmad values
ut significant at 1% level

Table 5
Meen and genetic parameters of different characters of the clonal population

- Characters	Range 	Ratan	Coefficient of variation		Heritability in the broad sense	Expected genetic advance under seletion.
			Phenotypic	Genotypic		
1. Germination (45 Dap).	25.02-83.40	57.1305	29.21	13.37	20.96	7.2051
2. Shoot count (90 DAP)	7.67- 53.33	24.4923	38.66	30.68	62.98	12.2847
3. H.R.Erix (10th month)	12.8-21.8	17.9129	16.12	9.17	32.66	1.9251
4. Total weight of cane	4.417-18.333	9.4313	40.00	29.75	55.29	4.2973
5. No.of millable canes at harvest	4.00- 30.67	16.1848	32.56	25.02	59.02	$6.4074{ }^{\text {Ci }}$
6. No. of internodes at harvest	15.11-29.11	21.8277	16.65	14.30	73.72	5.5202
7. Length of internodes at harvest	6.55-12.30	9.6335	13.32	8.43	40.03	1.0592
8. Girth of cane at harvest	6.20- 8.56	7.3158	9.72	6.37	42.84	0.6278
9. izeight of cane at harvest	134.61-232.47	182.105	13.09	9.87	56.85	27.9191
0. Weight oin single cane	441.67-1170.00	768.8726	0.03	0.02	38.63	0.1057
11. Grassy shoot counts (100 DAP)	$0-23.67$	6.4872	119.77	68.54	32.75	5.2617
2. Numiver of water shoots	2.67-21.33	9.3622	49.56	27.64	31.10	2.9729
3. Number of arrows	$0-20.67$	5.3545	91.58	81.16	78.54	7.9338

40

variation (81.26) followed by grassy shoot counts (68.54). The minimum variation ves displayed by weight of single cane (0.02).

The marimum extent of range was ovserved in the character weight of single cano, while tha minimm degree of range was registered in girth of ceno at harvest.

Heritability mandfested wide veriation in the thirteen characters stuaied. The maximua and the minimum heritability was displayed by number of arrows and germination respectively. All the characters displayed relatively hagh degree of horitability. High haritability was not alweys accompanted by higher genetic advence.

The expected genetic advance was moximum for height of cane at harvest and i. . mindmum for weight of single cane.

iv. Correlation studies in tho clonal population

The phenotypic and genotyple correlations between the thisteen charactern stualied among the sixtyifive hyorid clones from tha replicated trial are presented In Table 6. The genotypic correlatione were Eound to be greater than the phenotypic correlations. The shoot count was found to be positively correlated with total walght of cane, numer of millablé canes, grassy shoots, number of water shoots and number of arrows, while this charectar was negatively associated with number and length of internode, helght and girth of cane and weight OR single cane. ife 2 ensix displayed negative correlation With the charmcters, total weight of cane, numer of adilabla cancs, length of internode, belght of cene, grassy shoot count, number of water shoots and number of asnows. while it fhowed positive correlation with three cheracters viz. number of internodes, girth of cane and welght of eingle cane. The total weight of cane dieplayed positive association with all the characters studied except grassy shoot counte The number of milleble canes Was Eound to be negatively associated with girth, weight Of single cand and grassy shoot counts, but it showed positive correlation with number and length of internode.
height, number of water shoots and number of arrows. The numbor of internodes was positively associsted with three characters, vize girtin and haight of cano and weight of single cane, while it registered negative correlation with other characters. The length of internode was positively correlatsi with all the characters studied except ohoot count. fi.R.Brix and number of internodes. The girth of cene was sean positivaly correlated with H.R.Brix, total weight, number and Length of intemode, height of cane and weight of single cane. However, the girth and number of millable canes regigtered a negative non-significent correlation. The height of cane displayed negative correlation witin H.R. Brix. At the same time it manifested positive signiElcant corralation with total weight, number and length of internodes and weight of aingle cene. But this character manifested a pogitive nonmsignificant correlation with number of millablo cenes.

Helght of single cane had positive corrolation with H.R.Brix, total woight of cane, number of internodes, length of internode, girth and height of cenef while it was negativaly correlated with shoot count, number of
x_{1} - Germination (45 DAP)
$x_{2}=$ shoot count (90 DAP)
$X_{3} \quad-1 . R .3 r i x \quad$ (10th month)
x_{4} - Total weight of cane
x_{5} - Number of millahlo conses at harvest.
X_{6} - Number of internodes at harvest.
$X_{7} \quad$ - Length of internode at harvest.
x_{8} - Girth of cane ac harvest.
x_{9} - relight of cane at harvest.
X_{20} - weight of single cane
X_{11} - Grassy shoot counts (180 DAP)
$x_{12}-$ Number of water shoots
X_{13} - Number of arrows.

FYG.1. DIAGRAH SHOMNS CORRELATON BETWEEN IMAOFTANT ATTRIEUTES IN Sccehatur officinarmme.

milleble canes. grassy ghoot counts. water shoot counts and number of acrows. Gressy shoot counts were found to have negative associatsons with all the characters except gemaination, shoot count and length of internodo, where Lt manifested positive associattons. Number of water shoots had nogative correlations with all the characters except total weight of cane, number of millable canes and number ois arrows in which case, the correlations were positive and significant. The choracter, number of arrows followed a similar pattem.

The genotypic corcelations mong the thiletean characters of the hybrid clones studied in the replicated trial aro diagranatically roprosented in Elgure (1).

V. ifatemosis

The mean values of parents, stanciards and p_{1} hybrids and their heterobeltiosis, relative heterosis and atandard heterosis in percentage aro presented in Wables 7 to 18. rable 19 represents the parcentage of hybrids diaplaying aignificant positive and nagative hetorosio, which is diagramaticaliy represented in Elgure (6).

1. Germination (45 Dap)

The mean values of the hybricis were found to be ranging from 25.02 to 83.40. The maximum and the minimum values were recorded by hyorld clone numbers alxty nine and thirty nine reapectively. The hybrids displayed signieicant positive hoterosis over the better parental and midparental values and a silght enhancement over the fourth standard. namoly Co 62175.
seterobeltiosis was positive and significant in three of the hybrids (4.6%) and the values ranged from 35.14\% to 39.78% The masimun value was recorded by clone number twonty one and the manimum by fifty one. The number of individuals aisplaying significant positive reiative heterosis was much higher (12). The highest value of 67.83% was recorded by clone number twenty and the lowest value of 34,03 per cent by clone nunber eleven.
significant negative hoterobeltiosis was displayed by two out of the total sixty five hybride (3.08\%) and the Values ranged Erom 33.71 per cent to 39.84 per cent. Relative heterosis was significant and negative only in

48

Table 7

The mean values of parents standards and E_{1} hybrids and their hateraeds in parcentoge

Gemmanation（ 45 DAB ）

Parents． stand－ axds and hybrids	Nean	Hetero－ beltio G15	Relo Etve Hetero－ 013	Standard Roterobis			
				1	2	3	4
2	2	3	4	5	6	7	δ
1	72．14						
2	56.65						
3	57.92						
4	49.86						
5	32．69						
6	49.12						
7	45.80	－ 6.75	11．95	－35．6旁	－29．15	－20．93	－ 8.14
0	49.92	1.63	22.02	-29.83	－11．83	－13．92	12.03
9	44.20	－10．016	8.04	－37．87	－21．98	－23．69	-11.35
10	55.21	12.398	34.95	-22.39	－ 2.54	－ 0.68	10.73
11	54.83	21.62	34.03	－22．93	－ 3.21	－ 5.33	9.97
12	47．41	－ 3.40	15.89	-33.36	－16．31	－18．15	－ 6.9
13	50.38	20.89	45．${ }^{\text {星 }}$	－16．53	4.02	2.52	19．09
14	47.75	－ 2.79	26.72	-32.8	－15．71	－27．56	－ 4.23
15	52．55	6.93	23.45	－26．13	－ 7.24	－ 9.27	5.40
16	32.56	-33.71	20．42		－42．${ }^{\text {＊}}$ 离	-43.78	$-34.7{ }^{\text {m }}$
27	36.60	－25．49	－ 20.54	$-43.5{ }^{\text {\％}}$	－35．39	$-36.81{ }^{*}$	－26．59

(Table 7. conta.)

1	2	3	4	5	6	7	8
18	48.31	- 2.65	23.09	-32.09	-14.72	-16.59	- 3.11
19	49.04	-0.0026	19.87	-31.07 $* * *$	-23.43	-15.33	- 1.64
20	45.00	- 0,0eg	9.99	-36.74	-20.56	-22.31	-9.75
21	68.66	39.78	67.8	- 3.49	21.2	18.54	37.71
22	64.35	32.02	57.3	- 3.34	13.59	11.10	29.06
23	51.59	5.03	26.21	-27.4 党	- 8.93	- $\mathbf{1 0 . 9 2}$	3.47
24	45.00	- 8.39	9.99	$-36 . \frac{5 \Delta}{i t h}$	-20.56	-22.31	- 9.75
25	: 42.60	-13.27	4.13	-40.12	-24.e0	- 26.45	-14.56
26	35.96	-26.79	-12.09	-49.85	-36.52		-27.88
27	52.45	6.78	28.21	-26.27	-7.41	-9.44	5.19
28	49.9	1.59	22.98	-29.86	-11.92	-13.35	0.80
29	57.55	17.16	40.67	-19.10	1.59	- 0.64	15.42
30	49.57	0.79	21.02	-30.40	-12.60	-14.52	- 0.70
31	50.95	3.73	24.54	-28.38	-10.06	-12.03	2.19
32	44.99	- 8.41	9.97	-36.76	-20.58	-22.32	- 9.77
33	29.55	-39.84	-27.77	-50.46	-47.84	-48. ${ }^{\text {\% }}$ \%	-40.73
34	59.51	21.15	45.47	-16.35	5.04	2.75	19.35
35	44.11	-20.2	7.82	-37.99	-22.13	-23.84	-11.53
36	45.00	- 0.39	9.99	-35.74	-20.56	-22.31	-9.75
37	40.60	-17.3F	-0.76	-42.93	-28. 33	-29.900	-18.57
38	49.82	1.40	21.76	-29.98	-12.07	-14.00	- 0.1
39	49.17	0.102	20.19	-30.88	-13.20	-15.11	- 1.36
40	38.46	-21.70	-5.99	-45.94	-32.11	-33.60	-22.86
41	66.52	$35.4{ }^{\text {\% }}$	62.	- 6.49	17.42	24.85	33.41

(Pable 7 contd.)

1	2	3	4	5	6	7	6
42	45.82	-6.72	22.00	-35.5.5	-19.12	-20.89	-8.10
43	50.70	3.22	23.93	-28.73	-10.50	-12.47	1.68
44	51.69	5.23	26.35	-27.34	- 8.76	-10.76	3.67
45	46.65	- 5.03	14.03	-34.43	-17.65	-19.46	-6.43
46	43.40	-12.64	6.09	-33.99	-23.39	-25.07	-12.96
47	64.17	30.64	56.* 86	- 9.79	13.27	10.79	28.7
48	46.59	$=5.15$	23.88		-17.76	-19.56	- 6.56
49	48.24	- 1.79	37.92	- -32.19	-14.35	-16.71	- 3.25
'S0	63.10	28.46		- -11.30	11.39	8.94	26.55
51	53.09	8.08	29.77	. -25.37	-6. 28	- 0.34	6.48
52	44.96	-8.47	9.90	- 36.80	-20.6. ${ }^{4}$	-23.38	- 9.83
53	46.60	- 5.13	13.91	-34.50	-17.74	-19.54	- 6.54
54	43.38	-11.69	6.04	-39.02	-23.42	-25.10	-12.99
55	53.34	8.59	30.38	-25.02	- 5.84	- 7.91	6.98
56	48.19	1.89	17.80	-.32. 26	-14.93	-16. 3	- 3.35
57	66.30		62. ${ }^{\text {2 }}$	- 6.69	17.18	14.61	33.13
58	47.41	- 3.48	25.89	-33.36	-16.31	-18.15	- 4.91
59	44.31	-9.79	8.31	-37.72	-21.78	-23.50	-11.13
60	50.66	3.14	23.83	-20.79	-10.57	-12.53	1. 60

(Table conta..)
(Tablo 7 contc.)

1	2	3	4	5	6	7	8
62	48.35	- 2.57	28.19	-32.02	-14.65	-16.52	- 3.03
62	55.22	12.42	34.9 *	-22.38	- 2.52	- 4.66	10.75
63	46.60	- 5.13	13.91	-34.5	-27.74	-19.54	- 6.54
64	56.42	18.93	42.86	-17.89	- 3.12	-0.86	17.17
65	42.59	-13.29	4.11	-40.13	-34.82	-26.46	-14.58
66	50.02	9.95	32.02	-24.03	- A. 66	- 6.75	8.32
67.	51.45	4.74	25.76	-27.68	-9.18	-11.17	3.19
68.	49.92	1.63	2.20	-29.83	-12.88	-13.81	-0.12
69.	97.63	17.32	$40.8{ }^{4}$	-38.99	1.73	-0.50	15.58
70.	47.82	- 3.48	35.89	-33.36	-26.31	-18.15	- 4.91
71.	49.10	. 00.042	20.02	-30.98	-23.33	-15.23	- 1.52

$$
\begin{aligned}
& \text { G6D. I (0.05) - } 13.5 \\
& \text { C.E. I (} 0.01 \text {) } \simeq 17.79 \\
& \text { C.D.II (0.05)-15.59 } \\
& \text { C.O.II (0.01) - } 20.55
\end{aligned}
$$

50

One hybrid. signjficant nagative standard haterosis was reglatered by tha hybrids over all the four standards and the maximum over the first standard 10. Co 499. The number of hybrids in each comparison ware Eifty seven (87.69%) four (6.15%) , $04 x$ (9.23%) and two (3.08%) respectively.
2. Shoot count (90 DAP)

The hybride were found to have ${ }_{a}^{a}$ range of mean values from 7.67 to 53.33. The maximum and the minimum values vore alsplayed by clone numbers thirteen and seventeen reapectively. Anong the sis comparisons, significant positive haterosis was observed in all. None of the hybrids axhibited aigniEicant negative heterosis over the mid parental values. But this trend was observed in all other comparisons.

Among tho mixty Eive hybrids, sixteen (24.62\%) exhibited significant positive haterosie over the bettar parent. Clona number thirteen algplayed the maximum value of 190.94 por cont. while clono number thirty eight recorded the minimum value of 60.01 per cent. There was pronounced onhancement in the number of clones (33) displaying heterosis over the mid parental value. The values ranged from

$5 i$

sabla a
The moen values of parents standards and F_{1} fybrids and their heteroeis in percentage
shoot count (90 DAP)

Parontes, standarde and hybrias	Hean:	Heterom beltio615	Relaeive Heterosis	Standard Heterosis.			
				1	2	3	4
1	2	3	4	5	6	7	8
2	28.33						
2	15.50						
3	30.67						
4	23.67						
5	34.33						
6	23. 33						
7	24.33	32.73	56.97	-20.67	2.79	-29.13	4.29
8	28.67	1.35	20.45	-39.13	-21.12	-45.62	-59.97
9	25.67	80.04	65.51	-16.30	8.45	-25.23	10.03
10	33,00	80. ${ }^{\text {彦 }}$	112.30	7.60	$39.42{ }^{3}$	- 3.87	12.45
11	. 36.33		134. ${ }^{\text {笉 }}$	18.45	53.49^{*}	5.83	$55.7{ }^{\text {* }}$
12	. 32.00	74.58	206.45	4.34	35.19	-6.79	37.16
13	53.33	190.94	$244.0{ }^{\text {tax }}$	$73.8{ }^{\text {¢ }} 8$	225.31 **	55.35	120.5**
14	24.00	30.93	54.84	-21.75	1.39	-30.09	2.87
15	37.00		136.72	20.64	$56.32{ }^{\text {* }}$	7.78	$58.5{ }^{\text {t* }}$
. 16	. 27.67	-3.60	12.00°	-42.39	-25.35	-48.53	-24.26

52
（Tajole B conta．）

2	2	3	4	5	6	7	8
		＊＊			＊＊		由午
17	7.67	－50．16	$-50 \mathrm{e} 52$	-0.75	－67．60	－777．66	－67．12
18	23.00	25.48	48.39	－25．01	－ 2.83	－33．00̈	－ 1.41
19	29.67	7.31	26．90	－35．87	－16．90	－42．70	－15．69
20	25.00	30.39	61.29	－13．49	5.62	－27．1营	7.16
21	23.33	27．28	50.52	－23．93	－ 1.44	－32．04	－
22	35.33	92.74	127．96	15.19	49.26	2.91	52.44
23	24.00	30.93	54.8 离	－21．75	1.39	－-30.09	2.87
24	17.33	－ 5.46	11.81	－ 33.50	-25.35	－49．3岂	-25.72
25	21.00	14.57	35.48	－31．5 ${ }^{*}$	－11．20	－39．83	－ 9.99
26	13．67	－25．42	－11．31	－55．4 ${ }^{\text {免 }}$	-42.25	－60．18	－41．41
27	29.00	58．${ }^{\text {2 }} 1$.	67．${ }^{\text {\％}}$	－ 5.45	22.52	-15.93	24.30
28	23.00	25.48	43.39	－25．01	－ 2.83	－33．008	－ 1.41
29	36.00	96．40	132．0）${ }^{\text {\％}}$	17.38	52.0 加	4． 86	54.4
30	27.00	47．30	74.19	－11．97	14．07．	－21．35	15.73
31	27.33	49.10	76，号学	－10．39	15.46	-20.39	17.15
32	23.67	29.33	52．71	－22．83	－	－31．05	1.46
33	9.33	－49．10	-39.81	－69．5意	－60．58		－60．01
34	23.67	29.13	39.81	－ 7.00	－	－ 20.66	1.46
35	18.00	－ 1.80	16.13	－41．${ }^{\text {考 }}$	－23．95	－47．55	－22．85
36	21.67	28.22	39.81	－29．84	$=0.45$	-36.8	－33．53

53
（2able 8 conta．）

2	2	3	4	5	6	7	3
37	14．33	－21．82	－ 7.55	－53．2晏	－39．36		－38．58
38	29.33	60.01	89．${ }^{\text {² }}$	－4．37	23．91	－14．56	25.72
39	22.00	30.02	41.94	－28．27	$=7.06$	－35．92	-5.70
40	12．33	－39．19	－26．90	-63.06	－52．${ }^{\text {告 }}$	－66． 99	-51.44
11	36.00	96．${ }^{\text {b }}$	132．${ }^{\text {学 }}$	17．30	52．8．8	4.86	54．31
42	29.33	60.01	89．${ }^{\text {2 }}$ 空	－4．37	23.91	$\prime-14.56$	25.72
43	22．67	23．60	49.26	－26．08	-4.22	－33．9 ${ }^{\text {\％}}$	-2.83
44	20.00	9.11	29.03	－34．79	－15．50	－42．7敩	－14．27
45	17．67	－ 3.60	14.00	-42.35	－-25.35	－48． 5 竹	－24．26
46	16．00	－12．71	3.23	－47．${ }^{\text {咅 }}$	－-35.19	－53．39 ${ }^{\text {萨 }}$	-31.42
67	32.00		106． 2 安	4.34	35.19	-6.79	37.16
48	23.67	29.23	39.81	－22．83	\cdots	－31．0 ${ }^{\text {¢ }} 5$	1.46
49	18．33	－	18.26		－22．56	－45．64＊	－21．43
50	25．67	40.04	65.63	－16．30	0.45	－25．23	10.03
51	26.33	43.64	69．87	－ 212.26	11024	-23.30	12.06
52	20.00	9.11	29.03	-34.79	－15．50		－14．27
53	21.33	16.37	37.61	－30．35	－ 9.89	-37.8^{7}	－ 8.57
54	20.00	9.11	29.03	-34.79	-15.50	－42．74	－14．27
55	26.67	45.50	$72.0{ }^{\text {言 }}$	－13．04	12.67	－22．31	24.32
56	30，33	$65 . \frac{.87}{* *}$	95．${ }_{\text {\％}}^{68}$	－2．11	28.34	－11．65	30.00
57	30．33	65.47	95.28	－1．11	28.14	－11．65	3.00

54

（Tablo 8 conta．）

1	2	3	4	5	6	7	8
58	46.00	140．020		43.46	65．89	28.17	80.60
59	14.00	－23．62	－ 9.63	－54．${ }^{\text {年 }}$	－40．85	－59．${ }^{2}$	－40．08
60	25.00	36.39	62.25	-10.49	5.62	-27.1 ＊	7.16
61	14.00	－ 23.62	－9．6e	－54． 6 管	－ 40.8	－59．0艺	－40．08\％
62	23.00	25.68	48． 39	－25．01	－ 2.83	-33.000	－ 1.01
63	26.33	43．64	69．${ }_{\text {a }}^{\text {骨 }}$	－14． 25	11． 24	－23．30	22.36
64	28.00	52.76	20．65	－0． 71	18．29	－10．44	20.02
65	22.00	1\％．57	35.48	－32．53	－11．28	－ 35.8	9.99
66	10．67	3.06	75.48	－45．65	－29．57	-51.44	－28．55
67	24.33	32.73	55.97	－20．67	2.79	－29．${ }^{\text {等3 }}$	4.29
68	26.67	45.50	72．06	-23.04	12.67	－22．31	14.32
69	43，67	138．${ }^{\text {che }}$	103． 3 矣	42.33	B9．95	$27.2{ }^{\text {2 }}$	87．${ }^{\text {去 }}$
70	19.67	7．31	26.90	－35．87	－16．90	－42．70	－25．69
71	21.67	10.22	39．61	-29.34	－ 3.45	－36．3害	－ 7.12

$$
\begin{aligned}
& \text { C.D. I (0.05)-7.87 } \\
& \text { C.D. I (0.01) }-10.97 \\
& \text { C.D.II }(0.05)=9.09 \\
& \text { C.D. II }(0.01)-13.9 E
\end{aligned}
$$

55

52.71 per cent to 183.87 per cent: The clone numbers forty eight and thirty two recorded maximum and minimum values respectively. Among the four standards, the maximum range of positive heterosis was displayed over the fourth standard, ie. Co 62175. The range varied from 41.45 per cent to 128.5 per cent. Three hybrids each manifested positive heterosis over the first and third standards, eight numbers over the second and seven numbers over the fourth.

When compered to the standerds, more number of hybrids displayed significant negative heterosis. the highest number was with respect to the third standard, Co 997. In this aspect the values were found to be ranging from 29.13 per cent to 77.66 per cent.

3. H.R.Bris

The mean values of the hybrids for this character were found to be renging from 12.8 per cent to 21.8 per cent. The meximum value was recorded by clone number forty two and the minimum by clone number twenty two. The hybrids displayed significant positive heteresis over the better parental and midparental means only. Heterosis was negative and significant over the four standards. Thirty nine

$5 \hat{0}$

2ablo 9

The mean values of parento，standarde and in hybride and thelr heterosis in percentage

$$
H_{0} R_{0} B x i x
$$

Parente． standards and hyorids	Lhan	Hetero－ beltiosis	Relative Ligtolosia	Standard Haterosis			
				2	2	3	4
1	2	3	4	5	6	7	θ
\pm	15.93						
2	14.47						
3	18．27						
4	18.53						
5	21.20						
6	19.00						
7	17.40	9.23	20.25	－ 4.76	－6．10	－17．92	－ 8.42
8	16.53	3.77	14.24	－ 9.52	－10．79	－22．03	－13．00
9	14．27	－10．42	1.38	－21．85	－22．9\％	－32．69	－24．0．3
10	18.67	17.20	$29.0{ }^{\text {\％}}$	2.19	0.76	－11．93	－1．74
11	18.07	13.43	24．09＊	－1．09	－ 2.48	－14．76	－4．89
12	88.27	14.69	26． 26	－	－12．20	－13．82	－ 3.84
13	16，33	2.51	12.85	－10．62	－11．87．	－22．97	－14．05
14	14.33	－10．04	－ 0.97	－21．57	－22．65	－32．${ }^{\text {委 }}$	-24.58
15	23.20	－17．24	－ 8.78	－27．75	－23．7嵒	－37．78	－30．E3
16	16.40	2.95	13.34	-10.24	－11．49	－22．64	－13．68
17	20.13	23.37	39.3 先	10.19	8.63	－ 5.05	5.95
18	16.80	5.46	16.10	－ 8.05	－ 9.34	－20．7党	-11.58

57

－（Table 9 conta．）

1	2	3	4	5	6	7	θ
19	18．30	18.02	29.94	2.90	1.46	－11．32	－1．05
20	19.40	21.73	34.07	6.19	4.70	－ 8.49	0.21
21	19.40	21.70	34．${ }^{\text {南 }}$	6.19	4.70	-8.49	0.21
22	12.00	－19．65	-12.54	－29．04	－30．92	－39．6茫	$-32.6{ }^{\text {星 }}$
23	10.87	10.46	30．43	3.28	1.83	－10．99	－ 0.68
24	19.27	20.97	33.17	5.47	3.99	－ 9.10	1.42
25	20.60	29．32	42.3 产	12.75	11.17	-2.33	8.40
26	17.07	7.16	17.97	6.57	－ 7.88	－19．40	－10．16
27	21.27	$33.5{ }^{\text {c }}$	46．96	16.42	14.79	0.33	11.95
28	16．53	3.77	14.24	-9.52	－10．79	-22.03	-13.00
29	20.13	26．37	39.12	10.18	8.63	－5．05	5.95
30	17.93	12.55	23．92	－1．36	3.24	－15．42	-5.63
31	20.60	29.32	42． 3 管	12.75	12.27	－ 2.83	0.42
32	18.80	-7.09	2.20	-10.99	－20．13	－30．19	－22．11
33	21.13	32． 54	46.03	15．65	14.03	－0．33	11．21
34	17.13	7.53	18.33	－6．24	－ 7.56	-10.20	－9．84
35	18.93	18.83	30.8 家离	3.61	2.16	－10．71	-0.37
36	16.87	5.90	16.59	－ 7.66	－0．96	$-20.4{ }^{\text {咼 }}$	－12．21
37	29.07	19．71	32.89	4.38	2.91	－10．05	0.37
38	16.93	6.28	17.00	-7.33	－8．63	－20．14＊	－10．89
39	18.67	17.20	29.0 年	2.19	0.76	－11．93	－ 1.74
40	20.00	25.55	30.8 言	9.47	7.93	-5.66	5.26

58

（Table 9 conta．）

2	2	3	4	5	G	7	θ
41	18.40	15.51	27.16	0.71	-0.70	－13．21	－ 3.16
42	19.27	20．97．	33．${ }^{\text {H }}$	5.47	3.99	－ 9.10	1.42
43	18.73	17．50	29．4复	2.52	1.00	－11．65	-1.42
44	19.73	23.85	36．35	7.99	0.48	－ 6.93	－3．34
45	16．60	4.21	14.72	－ 9.14	－-10.42	－21．70	－12．63
46	16，00	0.44	10．57	－22．42	-13.65	－24．53	－15．79
47	17．67	10.92	22.11	－ 3.28	－ 4.64	－16．65	－ 7.00
48	21.80	36.5 彦	50.6 息	19.32	－ 17.65	2.83	14.74
49	18.73	17．50	29．44＊	2.52	1.08	－11．65	－ 1.42
50	18．20	14.25	25．78	－0．38	－ 1.78	－14．15	－ 4.21
51	17．53	20.04	21.25	－4，05	－5． 40	－17．13	－ 7.74
52	20．00	25.55	39．${ }^{\text {等 }}$	9.47	． 7.93	-5.66	5． 26
53	13.20	-17.14	$\begin{array}{r} -8.70 \\ 8 * \end{array}$	-27.75	－26．7．78	－37．74	－30．53
50	19.00	19.27	31.31	3.40	2.54	－10．39	－
55	19.07	19.71	32．76	6.38	2.92	－10．05	0.37
56	18.73	27.58	29．44	2.52	1.08	＇－11．65	－ 2.42
57	17．67	10.92	22.14	-3.28	－ 4.64	－ 16.65	－ 7.0
58	． 15.60	-2.07	$\begin{gathered} 7.82 \\ * 4 \end{gathered}$	14.61	－25．81	－26．4新	－17．39
59	． 21.07	32.27	65.61	15.33	－ 23.71	－0．62	10.89
60	18.67	27.20	29.03^{*}	2.19	． 0.76	$-\mathbf{- 1 1 . 9 3}$	-2.74

（Table conta．）

59
（Table 9 conta．）

1.	2	3	4	5	6	7	8
61	13．87	－12．93	-4.15	－24．0夏	－25．15	－34．5 ${ }^{\text {亳 }}$	－27．00
62	29.93	25.11	37.73	9.09	7.56	－ 5.99	4.89
63	16.93	6.28	17.00	-7.33	－ 8.63	－20．2莺	－10．89
64	14.47	－ 9.17	－	－20．80	－21．91	－31．${ }^{\text {拷 }}$	-23.84
65	20.27	27.24	40.00	10.95	9.39	-4.39	6.68
66	19.67	23.48	35.76	7． 66	6.15	－ 7.22	3.53
67	14.80	-7.09	2.23	－10．99	－20．13	－30．19	－22． 21
68	19.33	23.34	33．${ }^{\text {\％}}$	5.80	4.32	－ 0.82	1.74
69	18.67	17.20	29.03	2.19	0.76	－11．93	-1.74
70	10.53	16.32	20．06	1.42	\cdots	－12．59	－ 2.47
71	15.60	－2．07	7.8	－14．61	－15．81	$-26.4{ }^{*}$	－17．89

$$
\begin{aligned}
& \text { C.D. I }(0.05)=3.37 \\
& \text { C.D. I }(0.01)=4.44 \\
& \text { C.D. II }(0.05)=3.89 \\
& \text { C.D. II }(0.01)=5.13
\end{aligned}
$$

60

Abstract

hyorids displayed algnificent positive heterosis over the midparental value and twelve numiers over the better parental value. The corresponding values expressed in parcentege were 10.46 and 60 respectively. In the former comparison, the maximum heterosis of 50.66 per cent was registored by clone number fortyolght and the minimurn of 23.91 per cent by clone number thirty. In the latter case, the range was very little (25.11 if to 36.95%). The clones displaying the maximum and the mintmun values were forty eight and sixty two respectively. Eut none of the hybrids manifestad positive heterosis over the standands.

As regarde negative hoterouis, it was olgaificant only over the atenarde. Haximum number of kybzids were found to foliow this trend orer the thira standard ie, $\cos 997$. The range of heterosis in this respent yas aren 19.2 par cent to 39.62 per cent. the maximum rango of negative haterosis was found to be ovar the sana atencarra,

4. 2otal weight of cenc

For tiris attributg, the hybrids dioplayed mean velues ranging Erom 4.417 to 28.333 . The hybrid clones which racordod the maximum anci the minimum mean values were clone

61

Table 10
The moan velues of parents，standards and F_{1} hybrids and their heterosis in percentage．

Total welght of cene

Peronts， standards and hyorids	man	intero beltio－ sis	Rela－ tive Hatera－ s13．	3tandard Heterosis			
				1	2	3	4
1	2	3	6	5	6	7	8
1	16.483						
2	12．817						
3	23.217						
4	23.417						
5	19.817						
6	26．383						
				＊＊	＊t	4＊	＊＊
7	12，908	-21.689	0.71	$=44040$	－64．48 48	-34.86	-51.07
8	8.458	-48.687	－34．01	－63．57	－63．88	－57．32	－67．94
9	6.325	－58．5费	－ 36.85	－70．60	－70．8营	－65．${ }^{\text {E \％}}$	－74．13
10	12．300	-22.34	－ 0.13	－ 44.8	－45．34	－35．81	－51．48
11	7.817	－52．${ }^{\text {易 }}$	－39．082	－66．${ }^{\text {容 }}$	－66．6\％	-60.5	－70．37
12	7，550	－54． 20	－ 2.0 .49	－67．${ }^{\text {离畐 }}$	－67．76	－62．90 ${ }^{\text {\％}}$	－71．38
13	5.400		－5\％．${ }^{6} 7$	－76． 76	－76． 9 宪	－72．75	－85．74
14	9.983	－39．43	－22．13	－57．00゙		-49.62	-62.16
15	14.950	-9.30	16.64	－35．${ }_{\text {\％\％}}^{61}$	－ 36.20	$-24.5{ }^{\text {＋}}$	－43．33
16	11.333	-31.24	－11．58	－51．${ }^{\text {枵苟 }}$	$-51.6{ }^{\text {\％\％}}$		－57．0゙＊
17	6.293	－62．${ }^{\text {䛱 }}$	－50．58	－72．94	－73．17	－60．${ }^{\text {娄 }}$	－76． 19

62
（Table 10 contd．）

1	2	3	4	5	6	7	8
18	13．317	－19．21	3.30	-42.64	-43.13	$-32 .{ }^{*} 80$	-49.52
19	9．983	－39．43	－22．11	－57．00	－57．37	－49．64	－62．16
20	6.533	-60.37	-49.03	$-71.87^{7 i}$	-72.10	-67.03	$-75, \stackrel{* *}{24}$
21.	10． 200	－38．12	－20．42	－56．07 ${ }^{\text {㐫 }}$	－56．44	－40．${ }^{\text {\＃}}$	$-61.3{ }^{\text {¢ }}$＋
21.	10.200	－38．12	－20．42	－56．07	－56．4＊	－4c．${ }^{\text {t }}$	－62．34
22	7.500	－54．50	－41．48	－67．70	－67．97	－62．15	71.57
23	6，867	－50．${ }^{\text {＊}}$＊	－46．42	－70．42	$-70.68{ }^{*}$	－65．${ }^{\text {＊＊}}$	-73.97
24	10．200	－30． $2{ }^{\text {a }}$	－20．42	－56．07	－56．4．4	－48．53	－61．34
25	6.717	－59．${ }^{\text {考 }}$	－47．5．${ }^{\text {婁 }}$	－71．07	－71．32	－66．${ }^{\text {3 }}$	－74．54
26	8.500	－48．43	－33．6竟	－63．39	－63．70	－57．${ }^{\text {a }}$	
27	13.367	－10．90	4.29	－42．43	－42．92	－32．55	－49．33
28	9.567	－41．96\％	－25．36	-58.79	－59．15	－51．7 7	－63．74
29	5.967	－63．80	－53．${ }^{\text {教 }}$	－74．30	－74．5 ${ }^{\text {ck }}$	－69．89 ${ }^{\text {＊}}$	－77．3产
30	9．433	-42.77	－26．40	－59．37	$-59 \cdot{ }^{\text {¢ }}{ }^{*}{ }^{*}$	－52．40	-64.25
31	14.300	-13.24	12.57	－38．41	－30． 9 年	－27．84	－45．${ }^{\text {菏 }}$
32	14．383	－12．74	12.22	－38．05	－38． 58	－27．42 ${ }^{*}$	-45.48
33	9.383	－43．07	－26． 79		－59．${ }^{* *}{ }^{* *}$	－52．65	－64．44 ${ }^{* *}$
34	9.800	－40．53	－23．54	－57．79	－58．${ }^{\frac{1}{5}}$	－50．55	－62．85
35	11.733	－20．8离	－ 8.46		－ 49.8	－40．7 7	－55．53
36	6.650	－59．6＊${ }^{\text {¢ }}$	－68．${ }^{*}{ }^{*}$	-72.36	－71．60	－66．44	－74．79
37	4.533	－72．50	－64．63	$-30.4{ }^{4}$	－80．6离	－77． 13	－82．82
30	7.350	-55.41	-42.65	－68．34 ${ }^{* *}$	－68．${ }_{\text {＊＊＊}}^{\text {¢ }}$	-62.91	-72.14
39	11.133	－32．46 ${ }^{-1}$	-13.14	－52．0\％		－43．82 ${ }^{\text {＊}}$	－57．${ }^{\text {¢ }}$（ ${ }^{\text {c }}$

（Table conta．）

63
（Table 10 conta．）

1	2	3	4	5	6	7	8
		＊＊	＋＊	＊＊	＊＊	＊＊	＊
40	5．600	－66．03	－56．31	－75．88	－76．09	－71．74	－78．77
41	16．567	0.51	29.26	－28．64 ${ }^{\text {＊＊}}$	－29．${ }^{\text {\％＊}}$	－16．40	－37．${ }^{\text {＊}}$＊
				\＃＊	＊＊	＊	＊＊
42	14．833	－10．01	25．73	－36．11	－36．66	－25．15	－43．78
43	9.350	-43.27	－27．05	－59．73 ${ }^{\text {＊＊}}$		－52．82 ${ }^{\text {＊}}$	－64．${ }^{\text {＊＊＊}}$
		＊＊	27．05	＊＊＊	＊＊	－52．82	＊＊＊
44	8.658	－ 47.47	－32．45	－62．71	－63．03	－56． 31	－67．18
45	8.150	－50． 56	－36．4i	－64．＊＊＊	－65．＊＊	-58.87	－69．11 ${ }^{\text {＊}}$
46	6.383	－61． ²8 $_{8}$	$-50.2{ }^{\text {＊}}$	－72．${ }^{\text {¢ }}$（ ${ }^{\text {a }}$	－72．74	－67．${ }^{\text {¢ }}$＊${ }^{\text {a }}$	－75．8゙离
47	6.483	－60．67 ${ }^{\text {¢ }}$	－49．42	－72．09	－72．31	－67． ¢ $^{\text {¢ }}$	－75．${ }_{\text {＊＊}}$
			＊＊	＊${ }^{\text {¢ }}$	＊＊	＊＊	－75．3
48	6.317	－61．68	－50．71	－-72.79	－73．02	－68．12	－76．06
49	6.167	－62．${ }^{\text {苟易 }}$	－51．88	-73.4	$-73.6{ }^{\text {＊}}$	-67.86	$-76.6{ }^{* *}$
50	4.417		－65．54	－30．98	－81．${ }^{\text {¢ }}$ 免	－77．71	－83．${ }^{\text {浬 }}$
51	13.360	－18．95	4.24	－42．46 ${ }^{\text {a }}$	－42．95	$-32.5{ }^{\text {\％}}$	-49.3 ＊＊
52	9.800	－40．54	－23．54	－57．79			－62．${ }^{\text {南 }}$
53	7.400		-42.4 宏	－63．13	－68．${ }^{*}{ }^{*}$	－62．6离	－71．${ }^{\text {a }}$ 5
54	10.650	－35．${ }^{\text {\％＊}}$	－16．91	－54．13	$-54.5{ }^{\text {＊}}$	－66．${ }^{*}{ }^{*}{ }^{*}$	－59．6＊
	20．650		－16．9＊		－ 4.8	－${ }_{\text {H＊＊}}$	－59＊＊
55	7.067	－57．13	－44．06	－69．56	－69．82	-64.34	－73．21
56	7.267	－55．${ }^{\text {部 }}$	-43.30	－68．707	－68．${ }^{\text {\％}}$		－72．46
57	18．333	11.22	43．04	－21．04	－ 21.71	－ 7.49	－30．5古
58	5.700	－65．42 ${ }^{\text {＊}}$	－55．53	－77．45	－75．66	－71．24 ${ }^{\text {\＃}}$	－79．40
59	7.917	－52．58	－39．＊＊${ }^{\text {＊}}$	-66.33^{*}	－66．62	－60．5 ${ }^{\text {免 }}$	－70．${ }^{\text {4．4 }}$
				＊＊	＊	＊＊	＊＊
60	12.183	－26．09	－ 4.95	－47．53	－47．97	－38．52	－53．82

（Table conta．）

64
（ Table 10 conte．）

1	2	3	4	5	6	7	8
		＊		＊＊	＊＊	＊＊	＊＊
61	9.922	－39．80	－22．59	－57．26	－57．63	-69.93	－62．39
62	5.167	－68．65	－59．69 ${ }^{\text {＊}}$	－77．74	－77．93	$-73.9{ }^{\text {＊}}$	-90.42
63	7． 550	-54.20	-41.09	－67．88 ${ }^{\text {¢ }}$	-67.76	－61．90	$-7 i^{* *} .38$
64	21.250	－32．75	－12．23	－52．54	－51．96	$-43.4{ }^{2}$	－57．${ }^{\text {\％}}$
65	10.650	-35.3 ＊	－16．91	－54．${ }^{\frac{1}{3}}$	－54．${ }^{\text {苞 }}$		－59．83
66	12.367	－24．97	－ 3.51	－46．73	－47．19	－37．59	－53． 13
67	9.117	－ 44.69	－28．87	－60．73＊	＋－61．07		－65．4i ${ }^{\text {m }}$
68	23．433	-18.50	－4．31	－ 02.24	－42．64	－32．21	－49．08
69	8.683	－47．32	－32．${ }^{\text {宏菅 }}$	－62． 60	－62．92	－56．18	－67．09
70	12.203	-25.48	-4.27	－47．09		$-33 . \stackrel{\star}{2}_{2}^{2}$	-53.44
71	3．3a3	－49．14	－34．59	－63．89	-64.20	$\begin{array}{r} W_{H} \\ -57.70 \end{array}$	－68．23

$$
\begin{array}{ll}
\text { C.D. I (0.05) } & -3.99 \\
\text { C.D. I (0.01) } & -5.27 \\
\text { C.D. II (0.05) } & -4.62 \\
\text { C.D. II (0.02) } & -6.09
\end{array}
$$

numbar flity seven and elfty respectively. positive significant heterobls (43.04\%) was observad in one hyorid only over the mid parantel value while gignificant negative heterosis was oboerved in all the six comparisons ie. over the bottor and mot parental values and over the four standarcis*

Ald the slixty Eive hybrid clonea recorded signdIicant negative heterosis over three standards; ie. Eirst, second and fourth atandards. The range of values with seapect to the above atendards were almost the same. Fifty hybrids exhibited significant negative hoterosis over botter parent and thirty three numbers followed the same pattarn for comparisons with mid parent.

5. Wumber of milaiole canes at harvest

The maan values of hybrids for this character ranged Erom 4.00 to 30.67. Clone number Eifteen registered tine mesimun value and elone number seventoen, the minimum valug.

Comparatively lesser nunber of clones manifestea significant positive heteroois than aignificant nagativo heterosis.

Table 11

The mean values of parents，stendards and i_{1} hyoridg and their heterosis in parcentaga

Number of millabla canes at hervest

parents， otandarde and hyorids	trean	Hetero－ beltto－ 5ะs	Rola－ tive Eletero－ ais	Standard Hetarosis			
				1	2	3	4
1	19.00						
2	14．67						
3	29.00						
4	21.67						
5	21.67						
6	23.00						
7	23．33	22.79	59.03	－19．55	7．66	7.66	1.43
3	13.67	－28．05	－ 6.82	－52．86	-36.92	-36.92	-40.57
9	13.67	－28．05	－6．82	－5\％．${ }_{\text {\％}}^{86}$	－36．${ }^{\text {¢ }}$ ¢ ${ }^{\text {¢ }}$	-36.9 尔	－40＊＊＊＊
10	20.00	－ 5.26	－36．33	－ $31.0{ }^{\text {菏 }}$	－7．71	-7.71	－13．04
11	16.00	-15.79	－9．07	－44＊宽寅	－26．17	－26．17	－30．43
12	13．67	－28．05	－6．82	－52．86 ${ }^{* *}$	－36．92	－36．92＊	－40．57
13	13．33	－29．84	－9．13	－54．03	－38．49 ${ }^{\text {＊}}$		－42．04
				＊＊	＊	＊	＊＊
14	15.00	－22．05	2.25	－48．28	－30．78	－30．78	－34．70
15	30.67	61.42	$109 .{ }^{* *}$	5.76	41.53	$\begin{array}{r} \text { + } \dagger \\ 41.53 \end{array}$	＊＊ 33.35
16	13.0	－31．5＊	－11．33	－55．${ }^{\text {2＊}}$	－40．01	$-40.01^{\text {E＊}}$	－43．48
17	4.0	－70．55	－72．${ }^{\text {告 }}$	－86．${ }^{\text {离1 }}$	－81． 54	－81．54	－82．64
18	16．33	－14．05	21.32	43.6 ＊＊	－24．64	－24．68	－29．00

67
（Eable 12 contd．）

1	2	3	4	5	6	7	8
19	15.33	-19.32	4.50	－47．14		-29.2 意	－33．35
20	12.67	－33．32	－13．63	－56． 31	－4．2．53	－42．53	
21	18．33	－ 3.53	24.95	－36．79	－15．41	－15．61	-20.30
22	18．33	－ 3.53	24.95	－36．75	－15．42	－15．12	－20．30
23	10.00	－47．${ }^{\text {® }}$＊	－31．83	-65.52	$-53 . \ddot{\text { 商 }}$	$-53 . \stackrel{+\stackrel{*}{8}}{8}$	$-56.52^{4 \times}$
24	16.33	－14．05	11.32	－43．69	－ 224.64	－24．64	－29．00̈
25	14．00	－26．32	-4.57	－51．75	－ 35.3 9	－35．39	－39．1鿓
26	10.67	－43．8发	－27．27	－63．42	－50．76	$-50.7{ }^{\text {\％}}$	－53．61
27	18.33	－ 3.53	24.95	－36．79	－15．41	－15．41	－20．30
28	16.67	－12．26	13.63	－62．52	－23．07	－23．07	－27．52
29	18.67	－ 1.74	27.27		－13．84	－13．84	－18．03
30	17.67	－ 7.00	20.45		-88.46	-18.46	－23．17
31.	20.00	5.26	36.3 亭	－27．59	－ 7.71	－ 7.71	－23．04
32	26．67	29．${ }^{\text {\％}}$	68.17	-24.93	13.34	13．84	7．26
33	9.00	－52．63	－36．65	－68．97 ${ }^{\text {¢ }}$	－58．47	－58．47	－60．87
34	18.00	~ 5.26	22.70	-37.93	－16．94	－16．94	－21．74
35	17.67	－ 7.00	20.45	－39．07 ${ }^{*}$	－19．46	－28．46	－23． 27
36	18.00	－ 5.26	22.70	－37．93	－16．96	－16．94	－21．74
37	9.67	$-49.1{ }^{* *}$	－34．03	－66．${ }^{\text {ex }}$ ¢	－55．38	－－55．38 ${ }^{\text {＊}}$	－57．96
38	18.67	－ 1.74	27.27	－35．6．	－13．34	－13．84	－18．83
39	21.0	10.53	43.25	-27.59	－ 3.09	－3．09	－ 8.70
40	9.33	$-50,89$	-36.40	-67.83	-56.95	-56.95	-59.43
41	25.33	$33.32^{\text {6 }}$	$72.6{ }^{\text {x }}$（ ${ }^{\text {a }}$	－32．66	16.89	26.89	10.13

（Table 11 conta．）

1	2	3	4	5	6	7	9
42	18.00	－ 5.26	22.70	－37．${ }^{\text {¢ }} 3$	－26．94	－16．94	－21．74
43	17.67	－ 7.00	20.45	－39．07 ${ }^{\text {＊}}$	－18．46	－18．46	－23．17
44	18.33	－ 3.53	24.95	－36．79 ${ }^{\text {＊}}$	－ 35.41	－15．41	－20．30
45	14.33	－24．58	－ 2.32	-50.59	-33.87	-33.87	-37.70
46	10.67	－43．${ }^{\text {＊}} 4{ }_{4}^{*}$	－27．27	$-63.2{ }^{\text {＊}}$	-50.76	－50．76	-53.61
47	16.00	－15．79	9.07	$=44.83$	－26．17	－26．17	－30．43
40	13.33	－29．84	－ 9.13	－54．03	－38．4＊${ }^{\text {a }}$	-38.49	-42.04
49	10.33		－29．58	－64．3落	－52．${ }^{\text {夏 }}$	－52． 3 ＊	－55．09
50	9.67	$-49.11 .$	－34．08	-66.66	-55.38	$-55.38 .$	－57．96
51	14.33	－24．56．	－ 2.32	$-50.5{ }^{\text {＊}}$（	-33.87	-33.87	－37．70
52	15.33	－19，31．	6.50	$\rightarrow 47.14$	－29．26	－29．26	－33．35
53	21.00	10.53	43.15	$\begin{array}{r} \text { ** } \\ -27.59 \end{array}$	－ 3.09	－3．09	－ 8.70
54	18.00	－ 5.26	22.70	-37.93	－16．94	－16．94	－21．74
55	11.67	$-38,53^{t t}$	23.63	-59.76	$-4 G .15$	-46.15	-49.26
56	16．67	－12．26	13.63	－42．5 ${ }^{\text {＊}}$	－23．07	－23．07	－27．52
57	24.33	28.05	65．${ }^{\text {笭 }}$	－16－10	12.28	12.23	5.70
53	10．00	-47.37 ．	－32．93	-65.52	-53.85 *	-53.35	
59	12.67	－33．58．	－20．45	－59．76	－46．15	－26． 25	-89.26
60	22.67	19.32	54.53	$-21 .{ }^{\star} 3$	4.61	4.61	－ 1.43
61	16.00	－15．79	9.07	－44．83	-26.17	－26． 17	－30．43
62	15.00	－21．05	2.25	－48．${ }^{\text {2 }}$＋${ }^{\text {a }}$	－30．78	-30.78	-34.75

（Table contd．）

$$
69
$$

（rabla 12 conta．）

1	2	3	a	5	6	7	8
63	18.00	－ 5.26	22.70	-37.4	－16．94	－16．94	－21．74
63	88.00	－ 5.26	22.70	-37.90^{*}	－36．94	-16.94	－21．74
65	16.00	－15．79	9.07	－44．83	-26.27	－26．17	－-30.43
66	15.33	－19．32	4.50	-47.14	$-29.26^{\text {＊}}$	－29．26	． 033.35^{4}
67	12.67	－33．32	－13．63	－56．${ }^{* *}$	－41．${ }^{\text {¢ }}$＊		－ 44.91
68	23.67	24．58	61．${ }^{\text {空 }}$	-18.78	9.23	9.23	2.91
69	20.67	6． 79	40.90	－28．7新	－ 4.61	－4．61	＇－10．13
70	15.33	－19．32	4.50	－37． 3	－29．2悤	－29．26	－ $33.3{ }^{\text {＊}}$
71	15.00	-21.05	2.25	$\cdots 48.20$	$-30.7{ }^{*}$	$-30.7{ }^{*}$	$-34.7{ }^{\text {\％}}$

$$
\begin{aligned}
& \text { C.D. I }(0.05)=5.10 \\
& \text { C.D. I }(0.01)=5.73 \\
& \text { C.D. II }(0.05)=5.89 \\
& \text { C.D. II }(0.01)=7.77
\end{aligned}
$$

Out of the sixty ifve hybuid clones, heterobeltiosis was positive and significant only in three clones (4.62%). The values of heterosis ranged from 29.84 per cent to 61.02 per cont monam naximan minimum values were displayed by elone mumber filtaen and thirty two respectively. Relative hoterosis was significant and positive in comparatively hagher nurber of clones (11). The itigure oxpressec in porcentage mes 16.92. tho marimun value (109.07\%) for relative hotacosis was recorded by clone number Eiftaen and the minimum value (36.33%) by clone number ten. standard hetarosis wes very 20% and one clone aech mandfeoted this phenonenon over the second. third and Eourth standards.

Heterobeltiosis was significant and negative in fifteen clones (23,09\%) only. The heterotle values were found to bo ranging from 31.58 per cent to 78.55 per cent. The maximum value was displayed by clone number seventeen and the minimum by sisteen. Rolative hetorosis was negative end algnificant only in three out of sixty five clones. The maximum number of hybrids (59) displaying standard heterosis vea observed with mespect to the first stendaxd 1e. Co 449. Tho maximum value in this aspoct was 86.21 per cent which was recorciod by izyorid clone number seventeen and the minimun value 21.03 per cant $b y$ clone number sixty.

71

The number of hyorids with respect to other standarde were thisty each for the second and third. standards and thiztyEive for the fourth atandard. Among the standards maxemun range of heterosis was observed with respect to the first standard.

6. Number of Intemodas at hasvest

The meximum mean value of 29.11 was recorded by clone number eluty seven and the manimun value of 15.12 by clone number thirty goven.

The number of hybrids manifesting signizilcont positive heterosis over the botter and mie parental values were found to ka equal (forty three each) for this character. The hyorids displayed an almost equal range of heterotic Values. The ranges were 15.05 per cent to 64.74 per cont and $\mathbf{2 6 . 9 1}$ per cent to 67.4 par cent reepoctively. The maximu values weno recorded by clone mumor sirty sovon and the minimum values by clone number gixty one, in both rospects. Fiva hybrids oach manifegted significant poaitive heterosis over tha aecond and thind standards. Eiere elso almost egual ranges of values wore observed (10.34 per cent to 18.00 per cent and 10.63 par cent to 18.53 per cent).

72

Teble 12
The mean values of parents，standard and y_{2} hybrics and their heterosis in percentage

Number of internodes at harvast

parents． Standards and nybrids	Mean	Hetero boleio－ sis	Relativo hatero－ Bis	Strincterd Heterosis			
				2	2	3	4
				2	2	3	4
1	2	3	4	5	6	7	8
1	17.67						
2	17．39						
3	26.78						
4	24.67						
5	24.56						
6	30.89						
7	26.44	－ 6.96	－ 5.46			－33．0言	－46．${ }^{\text {最 }}$
8	27.33	54．6．${ }^{\text {\％}}$	57．1笑	2.05	10．7篝	11．208	-11.52
9	18.44	4.36	6.04	－31．14	－25．25	－24．92	-40.30
10	17.55	－0．63	0.92	-34.4	$-28.3{ }^{\text {嗉 }}$	-28.54	
11	19．33	9.39	11.16	$-27 .{ }^{\text {® }}$＊${ }^{\text {¢ }}$	-21.65	-21.29	－37．42 ${ }^{\text {a }}$
12	19.22	8.77	10.52	－28．${ }^{\text {考 }}$	－22．${ }^{\text {多 }}$		－37．78
13	17.22	－ 2.55	－0．98	－35．78	－30．${ }^{\text {言 }}$	－29．3营	－44．${ }^{\text {2 }}$
14	20.78	17．6\％	19.45	－22．400＊	－15．77	－13．49	-32.73
15	17．67	\cdots	16.10	－34．02			$-42 . \text { Bt }_{*}^{*}$
16	18.89	6.90	8.63	-29.46	-23.43	-23.09	－38．85
17	20.92	18.39	$\begin{array}{r} 20 \cdot 30 \\ +\pi \end{array}$	－21．88	－15．20	－14．82	－32．28
18	26.78	51．56	53.99	\cdots	8.55	9.04	－13．31

$$
73
$$

（Table 12 conta．）

2	2	3	4	5	6	7	8
19	24.22	37.0		－9．56	-1.82	－ 1.38	－21．59
20	18.46	4.36	6.04	－31．14 ${ }^{\text {＊}}$	$-25.2{ }^{\text {＊＊}}$	－24．${ }^{\text {＊＊＊}}$	－40．＊＊＊
21	19.78	11.94	13．74	－26．14 ${ }^{* *}$	－19．${ }^{\text {＊}{ }^{\text {d }} \text {（ }}$	$-19.4{ }^{\text {¢ }}$＊	－35＊＊＊${ }^{\text {＊}}$
22	23.22	31．${ }^{\text {乲 }}$	33．53	-13.2 产缶	-5.88	－ 5.46	－24．${ }^{\text {苟 }}$
23	21.78	$23.4{ }^{\text {4 }}$	25.24	－18．67 ${ }^{\text {4n }}$	-12.71	－11．32＊	－29．49 ${ }^{\text {＊}}$
24	28.66	62.20	$64 .{ }^{\star 81}$	7.02	26． 17	16.69	7.22
25	20.39	28．2苼	20.13	21．939		-14.96	－32．3㐌
26	27.22	54．0离	56.53	1.64	10．34	10.83	－11．88
27	23.44	32.6 莿	34．79	－32．47	－4．99	－4．56	－24．${ }^{\text {\％}}$
28	25.00	41.4	43.76	－6．65	1.34	1.79	－19．0\％${ }^{\circ}$
29	26.00	47.44	49.51	－2．91	5.39	5.86	－15．83
30	24.00	35.88	38.01	－10．38	－ 2.72	－2． 28	－22．30
31	25.22	42．73	$45.0{ }^{\text {\％}}$	－5．83	2.23	2.69	－18．36
32	20.44	15．6药	17．54	－23．67	－27．15		－33．83
33	23.18	23．${ }^{\text {方 }} 7$	33． 29	-13.44	－6．04	－5． 62	－24．58
34	20.44	15．6音	17．54	－23．67	－17．1顔	－16．7部	
35	21.00	10．85	$20.7{ }^{\text {离 }}$	－21．58	－14．${ }^{\text {突 }}$	－14．50	－32．0̂2
36	20.00	13.19	15.01	－25．3离	－10． 93	－18． 5.	－35．5
37	15．11	－14．49	－13．11	－43．538	-30.5	－38．48	－51．00\％

（Table contci．）
（Table 12 contd．）

1	2	3	4	5	6	7	8
38	24.11	$36.4{ }^{\text {＊}}$	$30.8{ }^{* *}$	－9．97	－2．27	－1．83	$-21.9{ }^{* *}$
39	23.89	35．20゙	37．38＊	－10．79	－3．16	－2．73	－22．6゙党
40	14.56	5．04	6.73	$\begin{array}{r} * * \\ -30.69 \end{array}$	－24．${ }^{* *}$	－24．43	－39．92
41	26.56	50．缡	52.73	－0．82	7.60	8.14	－14．02
42	24.33	37.69	$39.9{ }^{\star k}$	－9．15	－i．3E	－0．94	－21．24
43	21.44	$21 .{ }^{\star *} 34$	$23 * 29$	－19．94＊＊＊＊＊＊＊＊＊＊）	－13．09＊	$-12.7{ }^{\star}{ }^{*}$	$-30.5{ }^{\star+}$
44	22.22	25．7\％${ }^{* *}$	27.77	$-17 . \stackrel{\star+}{0}$	－9．93	－9．53	-28.07
45	23.44	$32.6{ }^{*}{ }^{\text {¢ }}$	34．79	-12.47^{*}	－4．99	－4．56	－24．12
45	21.11	19.47	21.3 ＊	－21． 1 年	$-14.4{ }^{*}$	－14．0＊5	－31．＊＊＊
47	22.33	26． 37	28．${ }^{\text {\％}}$ \％		－ 9.49	－9．08	－27．71
48	21.00	18.85	20.76	－21．${ }^{\text {学 }}$	－14．88 ${ }^{\text {＊}}$	－14．50	
49	21.11	19.47	21.39	－21．17 ${ }^{\text {离 }}$	$-14.4{ }^{*}$	－14．05	－31．${ }^{\text {¢ }}$ \％ 6
50	18.33	3.74	5.41	－31．${ }^{\text {它 }}$	－25．70	－25．${ }^{\text {粦 }}$	－40．6离
51	22.00	24.5 客	26．5安		－10．82	－10．42	－28．78＊
52	22.11.		27．14	－17．4 4 苂	－10．36	－9．98	
53	18.78	6.28	7.99	－29．${ }^{\text {部 }}$		－23．古古	－39．20
54	22.22	$25.75^{* *}$	27．${ }^{\text {¢ }}$＊	－17．03＊	－9．93	－9．53	$-28.0{ }^{\text {㐫 }}$
55	23.55		35．${ }^{\text {免 }}$	－12．06	－4．54	－4．11	－23．76
56	25.33	$43.3{ }^{* *}$	45.66	－5．41	2.68	3.14	－18．00
57	29.00	7.53	9.26		－22．9＊＊${ }^{\text {a }}$	－22．64	$-38.4{ }^{\text {产 }}$

75

（Table 12 contd）

1	2	3	4	5	6	7	8
58	22.78	28.92	30.99	$-14 . \stackrel{\star}{94}$	－7．66	-7.25	-26.25
59	18．89	6.90	0.63	－29．${ }^{\text {d }}$ 容	－23．4 4	－23． 0 \％	-38.8
60	23.11	30．79	$32.8{ }^{\text {＊}}$	－13．70＊＊＊＊＊＊＊＊＊）	－6．32	－ 5.90	－25．19 ${ }_{\text {＊}}^{\text {\％}}$
			＊	＊＊	＊＊	＊＊	＊＊
61	20.33	15.05	16.91	－24．09	－17．59	－17．22	－34．19
62	13.11	2.49	4.14	－32．3\％	－26．${ }^{\text {5＊}}$	－26．26	-41.4
63	17.00	－3．79	－2． 24	$-36.5{ }_{*}^{*}$	－31．09 ${ }_{\text {\％}}^{\text {\％}}$	－30．78＊＊＊＊＊＊＊＊＊＊＊）	－44．97 ${ }_{\text {＊}}^{*}$
64	19.33	9．39	11．16 ${ }_{\text {＊}}$	－27．82	－21．65	－21．29	-37.42
65	23.11	30.79	32.89	－13．70	－6．32	－59．04	－25．19
66	28．44	60.95	63．${ }^{\text {慟 }}$	6.20	15．23	15．80 ${ }^{*}$	－ 7.93
67	29．11	64．74	$67,40$	6.70	10．00	28．53	－ 5.76
68	18.67	5.66	$7 \cdot \underset{i *}{36}$	-30.28	－24．32 ${ }^{* 1}$		$-39 \cdot \underset{* *}{* *}$
69	23.34	32.09	33.64	－12． 95	－5． 39	－ 4.97	－24．44
70	25.11	42．12	44．${ }^{*}{ }^{*}$	－ 6.24	1.79	2.24	－18．${ }^{\text {\％}}$（
71	21．4A	21．34	$23.2{ }^{\text {＊}}$	－19．9＊	－13．0゙生	－12．70	－30．${ }^{\text {＊＊}}$

C．D．I (0.05)	-2.61
C．D．I (0.01)	-3.45
C．D．II (0.05)	-3.02
C．D．II (0.01)	-3.58

As regards aignificant negative haterosis, the hybride sollowed this trand only over the standards. None of them mendeested negetive significant heterosis over the batter or mid parental vaiues. The maximum number of hybrids (60) cisplaying nagative heterosis was observed with respect to the fourth standard. The maximum renge of values wero observel with regara to the fourth standard. The Eigures being 13.52 por cent and 46.78 per cont. In ohort, higher percentages of hybrids were found to be manifesting negative heterosis over the standards.

7. Length of intemode at harvest

The range of means with respect to this character was from 6.55 to 12.3. The hybrid clones which recorded the maximum and minimum values were cione numbers forty seven and seventeen respectively.

None of the hybrids displayed positive significant heterobeltiosis or relative heterosis. But positive significant otandard heterogls over the third and fourth standards was manifested by some of the hybricis. Among the sixty five clones, olght numbors elisplayed significent positive standard heterosis over the third standard. Tho heterotic valuos rangeă Erom 15.76 por cent to 33.70 per cent.

77

Table 13
The maan valuos of parentes standaris and. Fi hybrids and thoir heterosis in percentege

Sength of diternode at harvest

Pazontes. seandards and hybrids	Nam	$\begin{aligned} & \text { Metero } \\ & \text { bedtio- } \\ & \text { gls } \end{aligned}$	Relative Heterosis	Stancard Heterosis			
				1	2	3	4
1	2	3	6	5	6	7	8
1	12.94						
2	10.99						
3	10.86						
4	22.56						
5	9.20						
6	9.71						
7	10.22	-14.41	- 7.01	- 5.89	-18.63	11.09	5.25
					**	*	
8	10.66	-10.72	- 3.00	- 1.34	-15.13	15.87	9.78
		\# ${ }^{\text {d }}$			${ }_{\text {\% }}^{4}$		
9	9.54	-20.30	-13.19	-12.15	-24.04	3.70	-1.75
		-20. 8 \%			㐫*		
10	9.45	-20.85	-14.03	-12.98	-24.76	2.72	-2.68
		Ht	**	**	$4{ }^{4}$		*
11	6.24	-30.99	-25.02	-24.13	-34.39	-10.43	-15.14
		13 ${ }^{\text {N }}$			**		
22	10.30	-13.74	-6. 68	- 5.36	-17.99	11.96	6.08
23	9. 26	-31.66	-25. 75	-24.86	-35.03	-12. 30	-25.96
		${ }^{* *}$	+	**	**		*
14	Q. 27	-30.74	-24.75	-23.85	-34.26	-10. 11	-14.83
25	11.07	-7.29	0.73	1.93	11.86	20.33	14.01
16	10.56	-10.72	- 3.00	- 1.84	- -15.13	15.87	9.78
		****	***	-39.4*	* **	15.	- ${ }^{\text {dx }}$
17	6.55	-45.14	-40.40	-39.69	-47.85	-23.80	-32.54

（Table 13 contd．）

2	2	3	4	5	6	7	8
28	8.37	－29．	－23．34	－22．${ }^{\text {娄 }}$	－33．${ }^{\text {离䒨 }}$	-9.02	－13．80
19	10.27	－13．9\％	－ 6.55	－ 5.43		11.63	5.77
20	10.23	－14．3咅	－ 6.92	－ 5.80	－18．5产	11.20	5.36
21	11.12	$\cdots .0 .07$	1.18	2.39	$-11.8 G$	$20.3{ }^{\text {＊＊＊}}$	14.52
22	3.35	－21．69	－16．92	－13．90	－25．56	1.63	－ 3.71
23	10.14	$-15.08 *$	－ 7.73	－6．63		10.22	4.43
24	9.16	-23.28	－36．65	－15．65	－27．07	－ 0.43	－ 5.66
25	9.22	－22．78	－16．11	－15．10	－26．59	0.22	－ 5.05
26	10，02	-9.46	－ 1.64	－0．46	$-2.3 .93$	17.50	23.33
27	10.43	-12.91	－5．28	－ 4.24	-27.12	13.15	7.21
28	10.22	－14．42	－ 7.01	－ 5.89	－18．63	21.09	5.25
39	9.06		－17．5＊	－16．57	－27． 68	－ 1.52	－ 5.69
30	9.36	－17．42	－10．28	－9．21	－21．50	7.17	1.54
31	e． 78	$25.4{ }^{\text {＊}} 7$	-20.12	－19．15	－30．10＊	－4．57	－9．58
32	10.02	-16.0 者	－ 8.83	－ 7.73	－20．3意	8.91	3.19
33	9.72		－11．56	－10．50	－22．61	5．65	0.10
34	9.21	－22．464	$-16.2{ }^{\text {t }}$	－15．1婁	－26．67	－0．11	－ 5.15
35	30.37	-13.25	－5．64	－ 4.51	－17．44	12.72	6.90
36	9.89	－17．2F	－10．10	－ 9.02	－21．34	7．39	1.75
37	9.33	$-22 .$	－1．5．10	－14．0 ${ }^{\text {B }}$	－25． 72	1.41	－ 3.91
33	9.89	-17.17	－10．01	－ 6.93	－21．26	7.50	1.85

（Teble contd．）
（Table 13 contd．）

1	2	3	4	5	6	7	8
39	9.07	-24.50	-17.48	-16.48	-27.79	－ 1.41	－6．59
40	10.95	－8．29	0.36	0.83	12.32	19.02	12.77
41	8.14	－31．${ }^{\text {总 }}$	－25．${ }^{\text {免 }}$	-25.05	－35．19	－11．52	－16．17
42	20.44	－ 22.5 古	－ 5.00	－ 3.87	－16．89	13.48	7.52
43	10.18	－14．7 ${ }^{\text {\％}}$	－ 7.37	－ 6.26		10.65	8.84
4	3.62	－27．亭㗐	－21．57		－31．3霉	－6．33	－11．23
45	8.70	－27．14	－20．84	－19．89	－30．73	－ 5.43	－11．23
46	8.53	－28．56	－22．${ }^{\text {\％}}$＊	－21．45	－32．09	－ 7.28	12.15
47	12.30	3.02	11.92	13．20	－． 2.07	33.70	26.6 宕
48	7.81	－34．59	－39．94	－28．08	－ $37.3{ }^{* *}$	－15．11	$\begin{array}{r} * * \\ -59.57 \end{array}$
49	8.30			－23．57	－33．692	$-9.78{ }^{\circ}$	－24．52
50	9.23	－22．70	－16．01 ${ }^{*}$	-25.01^{4}	-26.51	0.33	－ 4.94
51	9.42	－25． 12	－14．29	-13.20	－25．0ิ\％	2.39	－ 2.99 ．
52	9.28	－22．${ }^{\text {雰 }}$	－15．5突	－14．55	－26．129	0.87	-4.43
53	9.48	-20.60	－13．74	－12．71	-24.52	3.04	－2．37
54	9.69	－18．${ }_{\text {\％}}^{4}$	-21.83	－10．77	$-22 . \text { 語志 }$	5．33	－0．21
55	2． 26	-33.49	－25．57	-24.68	－34．87	－12．09	－15．76
56.	9，55	－28．36	－22．${ }^{\text {虫 }}$	－21．27	－32．${ }^{\text {考 }}$	-7.07	-12.95
57	20.79	－ 9.72	－ 1.91	－ 0.75	－14．17	27.17	11.02
58	9.43		－14．19	－13．17	－24．92 ${ }_{\text {＊}}^{\text {＊}}$	$\underset{*}{2.50}$	－2．88
59	10.65	－10．80．	－ 3.09	－ 1.93	－ 15.21	15．76	9.68

$$
80
$$

(Table 13 conted)

1	2	3	4	5	6	7	8
60	9.02	-24.4. ${ }^{4}$	-17.93	-16.04	-25. ${ }^{\text {崖 }}$	- 1.96	- 7.11
		* ${ }^{\text {m }}$		+	**		
61	9.37	-21.52	-14.79	-13.72	-25.40	1.85	- 3.50
62	10.42	-12.73	-5.19	- 4.05	-17.04	13.26	7.32
63	9.38	-21.44	-34.65	-13.63	-25.32	1.96	- 3.40
64	10.05	-2.5.33*	-9.55	-7.46	-29.93䆓	9.24	3.50
65	10.92	- 8.54	± 0.64	0.55	-2.3.06	10.70	12.46
66	20.01	-26.16	- 8.92	-7.83	-20.30	8.80	3.99
67	10.37	$-13 \cdot 15$	-5.64	- 4.51	-17.4	12.72	6.30
69	20.77	9.30	-2.00	- 0.03		17.07	10.92
69	9.10	-23.79	$-27.20{ }^{*}$	-16.21	-27.55	$\cdots 1.09$	-6.28
70	10.62	- 1.1 .06	-3.37	-2.21	-15.45	S5043	9.37
71	9.88	$\cdots{ }^{-17.25}$	0.10 .10	-2,02	-25-34	7.39	1.75

$$
\begin{array}{lll}
\text { C.D I (0.05) } & -2.43 \\
\text { C.D. I (0.01) } & -1.89 \\
\text { C.D. II (0.05) } & -1.65 \\
\text { C.D. II }(0.01) & -2.18
\end{array}
$$

The maximum and the minimum values were recorded by clone numbers Eorty seven and fifty nine respectively. only one clone (Clone number forty seven) manifestod positive and signtifcant heterogis (26.67\%) over the Fourth standard.

The number of hyorias displaying significant negative hetorosis wes much higher compared to pooltive hetorosis. Out of the totel sixty five hyorids. fifty two of them (80%) manifested significent negative heterobeltiosis. The range of values was from 12.73 per cent to 45.14 per cent. The maximum and the minimum values wrece displayed by clone numers seventeen and sixty two respectively fith regard to relative heterosis, twenty two (33.85\%) of them recorded Eignificent values. The maximum and the mindmum numioer of hybrids which registered signtficant negative values were observed in tho comparison with the second and thind standards respectively.

8. G4xth of cane at harvost

The maan values ranged from 6.2 to 8.56. The maximum and the minimum valwes were recorded by clone numbers geventy end twenty nine respectively. The hyorids aisplaying negative heterosis were comparatively much higher than those registering positive haterosis.

Sable 14
The mean values of parents，standards and j_{1} hyorids and their heterosis in percantage．

Gerth of Gane at harvest

parents． atanclards and hyorids．	Hean	hatero－ beltio als	Relative hetero－ sis	standara neterosis			
				1	2	3	4
1	2	3	4	5	6	7	8
1	8.04						
2	8.00						
3.	7.57						
4	7.68						
5	7.14						
6	9.06						
7	6.81	－15．30	－14．98	－10．04	－11．33	－ 4.62	－24．83
8	6.86	-14.8	-14.2 部	－ 9.39	－10．68	－ 3.92	－24．${ }^{\text {营 }}$
9	．7．58	－ 5.72	－ 5.25	0.33	1.30	6.16	－26．34
10	7.98	－ 0.75	-0.25	5.42	3.91	11.76	－11．92
11	6.30	－15．42	－ $15.0{ }^{\text {\％}}$	－10．17	－12．46	－ 4.76	-24.94
12	7.05	－12．31	-11.98	－6．87	－ 8.20	－ 2.26	－22．19 ${ }^{* *}$
13	7.12	－11．4 ${ }^{4}$	－11．00	－ 5.94	－ 7.29	－ 0.28	－21．4゙
14	7.84	－ 2.49	－ 2.00	3.57	2.08	9.80	－13．47
15	6.99	－13．0缶	－12．${ }^{\text {\％}} 3$	－ 7.66	-8.93	－ 2.10	－22．4荌
16	7.01	-12.31	－12．3空	－ 7.40	－ 8.72	－1．32	-22.8 离 ${ }^{\text {＊}}$

83

（Table 14 conca．）

2	2	3	4	5	6	7	8
17	7.33	－8．22	-7.75	－ 2.51	－3．91	3.36	$\begin{array}{r} \text { 由4 } \\ -13.54 \end{array}$
	－						＊＊
28	7.59	－ 5.60	－ 5.13	－ 0.26	－1．17	6.30	－16．23
19	7.26	－ 9.70	-9.25	－ 4.10	－ 5.47	1.68	
20	6.95	－13．56	－13．13 ${ }^{\text {＊}}$	－ 8.19	－ 9.51	－ 2.66	23＊＊＊
21	7.60	－ 5.47	5.00	0.40	－1，004	6.44	$\begin{array}{r} * * \\ -16.11 \end{array}$
22	7.35	－8． 58	－8．13	－ 2.91	-4.30	2.94	
23	7.28	－ 9.45	－ 9.00	－ 3.83	－ 5.21	1.96	-19.65
24	7.87	－ 2.11	－ 1.63	3.96	2.47	10.22	－13．${ }^{\text {菏 }}$
25	7.38	－ 3.21	－ 7.75	－ 2.51	－ 3.91	3.36	－18．54
26	8.03	-0.12	0.38	6.08	4.56	12.46	-11.37
27	7.98	－ 0.75	0.0 .25	5.42	3．91	13.76	－12．92
28	6.67	－17．04	－16．63	－11．89	－13．15 ${ }^{*}$	－6．58	－26．3＊
29	6.20		－22．50	-10.10	－19．27	-13.17	－31．57
30	6.93	－13．81		－ 8.45	-9.77	－ 2.94	－23． S $^{\text {d }}$
31	7.39	-8.08	－ 7.63	－ 2.38	-3.78	3.50	－18．43
32	7.22	－10．20	-2.75	－ 4.62	－ 5.99	1.12	－20． 3 虹
33	6.75	－16．${ }^{\text {砉 }}$	－15．63	－10．83	－12．11	－ 5.46	－25．50
34	7.82	－ 2.75	－ 2.25	3.30	1.82	9.52	-13.69
35	8.12	0.87	2.38	7.13	5．60	13.59	-20.49
36	8.03	0.1 .2	0.38	0.08	4.56	12.46	－11．37

84

（rable 14 conta．

1	2	3	4	5	6	7	8
							＊
37	7．70	－ 4.23	－ 3.75	1．72	0.26	7.84	－15．01
		＊${ }^{\text {H }}$	＊＊	＊	＊		＊＊
38	6.45	－19．70	－19．38	－14．88	－16．02	－ 9.66	-28.81
		＊＊	＊＊				＊${ }_{\text {■ }}$
39	6.94	－14．93	－11．50	－9．64	－10．94	－ 4.20	－24．50
40	7.32	－ 8.96	－ 8.50	－ 3.30	－ 4.69	2.52	－19．2离
41	7.41	－ 7.84	－ 7.38	－2．11	－3．52	3.78	－18．21
42	7． 30	－ 9.20	-8.75	－ 3.57	－ 4.95	2.24	－19．${ }^{\text {若 }}$
43	6.88	$-14.4{ }^{\text {＊}}$	－14．00	－ 9.11	-10.42	－ 3.64	－ 24.0 坛
44	7.18	－10．70	-10.25	－ 5.15	-6.51	0.56	－20．75
45	6.96	－33．43	-13.80	－0．06	－ 9.38	－ 2.52	－23．2＊＊
46	6.89	-34.30	-13.8	－9．98	－10．29	－3．50	－23．95
47	7.96	－1．00	－0．50	5.15	3．65	11.48	-12.14
48	7．31	-9.08	－8．63	－3．43	－4．82	2.38	－19．3管
49	7．70	$=6.23$	-3.75	1.72	0.26	7．84	-15.01
50	6.49	-19.28	－10．83	-14.27	－15．49	－9． 20	$-29 \cdot 37$
51	7.60	－5．47	5.00	0.40	2，04	6.44	－16．11
52	7.59	－5．60	－5． 13	0.26	－1．17	6.30	－16．23
53	6.27	－22．02	－21．63	－17．17	-18.36	－12．16	－30．79
54	7.50	－6．72	－ 6.25	－0．92	－2．3A	5.04	－17．${ }^{\text {菜 }}$
55	7.58	－ 5.72	－ 5.25	0.13	－1．30	6.16	－16．${ }^{\text {菬 }}$
56	6.92	－13．9 ${ }^{\text {\％}}$	－13．50	－8．59	－9．90	－3．08	－23．65
57	8.03	－0．12	0.38	6.08	4.56	12.66	-11.37

85

(Table 14 contas)

1	2	3	4	5	6	7	0
53	7.12	-11.57	-11. 13	-6.00	-7.42	-0.42	-21. ${ }^{\text {姩2 }}$
59	7.93	-0.75	$\underset{\underset{\pi}{-0.25}}{\substack{0 \\ \hline}}$	5.42	3.91	11.76	-11.92
60	6.61	-17.79	-17.38	-12.68	- -13.93	-7.62	-27.04
61	7.10	-21.69	-130 25	-6. 21	-7.55	-0.55	-21.63
62	7.30	-6.03	-7.33	-2.30	-3.78	3.50	-18.4
63	6.72	-16.42	-16.000	-11.23	$-12.50{ }^{*}$	-5.88	-25.83
64	7.39	- 8.08	- 7.63	-2.38	-3.70	3.50	-18.43
65	Q. 27	2.96	$3 \cdot 36$	9.25	7.68	15.83	-3.72
66	4. 23	2.36	2.88	8.72	7.16	$15.27 *$	-9.16
67	8.38	4.23	4.75	10.70	9.31	17.37	-7.51
68	7.27	- 5.58	-5.13	-3.96,	-5.34	1.82	-19.76
69	5.83	-27.49 ${ }^{* *}$	-27.13	-22.93*****	-24.09	-18.35	-35.65 ${ }^{\text {** }}$
70	8.56	6.47	7.00	$13.09^{\text {² }}$	11.48	$19.85^{\text {5 }}$	-5.52
71	6.98	-13.3部	-12.75	-7.79	- 9.11	-2.24	-22.96*

$$
\begin{array}{lll}
\text { C.D. I } & (0.05) & -0.75 \\
\text { C.D.I I }(0.01) & -0.93 \\
\text { C.D.II } & (0.05) & -0.87 \\
\text { C.D.II }(0.01) & -1.15
\end{array}
$$

86

The hybrids recorded significant positive hetorosis over the first, second and third standaras only: Nine of then registered significant values over the better parent and mid parental maens. Maximum number of hybrids (7) displaying significant positive heterosis was found to be over the third standard. The values ranged from 12.46 per cent to 19.89 per cent. The maximum and the mindmum values vere secorded by clone numbers seventy and thirty six respectively. With respect to the ocher two standards. one hybrid each recorded significent positive heterosis.

Heterosis was negative and significent in all the alx comparisons. Among this, mexitium number of hybrids which recorded signikicant negative heterosis was with respect to the fourth atandard. In this regard, sixty one hybrids, out of tho total sixty zive registered signisicant values. When the better parent was compared, twenty two clones (33.85%) recorded eignificant negative hoterosis. The values renged from 11.34 per cent to 27.49 per cent. A still more number of hybrids (27) manifestod aignificent heterosis over the mid parental velue. In the comparison with the etandards, the maximum number of hybrida (47); displaying significant negative heterosis was found in relation to the second standard. The velues ranged from

$\delta 7$

12.11 per cent to 24.09 per cent. The maximan ranga of values wero observed with regard to tho fourth standard. The hyorid clones displaying signizicant nogative hetarosis with respect to the first, thind and fourth seandardo were twenty elght, one and $31 x$ respectively.

9. Height of tho cane at horvost

The hybrids secorded mean values ranging from 134.61 to 232.47. Clone number thirty six registered the naximum value and clone number thirty geven, the minimum value. Comparatively much lesser number of hybrids displayed aignificant positive haterosis.

Out of the total sixty five hybrids, only three of them recorded algniEicant positive heterobeltiosis. The values ranged from 14.09 per cont to 20.24 por cent. Tho number of hybrids displaying relative heterosis was much higher compared to thoso manifesting heterobeltiosis. As regards relative natorosis, the maximum value of 30.07 per cent wes recorded by hybrid clone number thirty six and the minimum valua of 14.08 per cent by hybrid clone number eight. only two hybrids displayed positive stancard heterosis over the third standard.

68

Table 25

The mean values of pazonts，otandards and i_{1} hybrids and thair heterosis in percentage
tieight of cane at farvest

Parents． standaris ．and hyorids	Mean	Heterom belito－ 313	Rolative Standard Heterosis				
			sis	1	2	3	4
1	193.34						
2	178.73						
3	241．89						
4	255.39						
5	195.72						
6	22\％．72						
		－${ }^{\text {＊＊＊＊}}$		－34．82	－39．3＊＊＊＊＊＊＊）	＊＊	＊
7	157.67	－18．45	－11．78	-34.82	－39．38	－19．44	－31．36
8	203.89	5.46	14.08	－15．72	－ 20.3	4.17	－11．24
9	161.72	-16.35	－ 9.52	－33．14	－36．${ }^{\text {8 }}$（	－17．37	－29．60
10	173.00	－10．52	－． 3.21	－28．48	－32．${ }^{\text {策 }}$	－11．61	－24． 69
11	158.94	－17．79	－11．07	－34． 2 茟	-37.8	－13．79	－30．${ }^{\text {产 }}$
12	164．56	－14．89	－7．93	－31． 97	－35．6．6	－15． 92	－28．3产
13	149.83	－22．50	－16．${ }^{\frac{1}{2}}$	－38．8す ${ }^{\text {d }}$	－41．45	－23．4\％	－34．78
14	179.67	－7．07	0.53	－25．72	－29．79	－8．20	－21．79
15	195.67	1.21	9.48	－19．11	-23.53	－0．03	－14．8意
16	179．11	－7．35	0.21	－25．93离	－30．02	－8．49	－22．043
17	136.47	－29．41	-23.64	－43．58	－46．0\％${ }^{\text {类 }}$		－60．${ }^{\text {苟 }}$
10	205．61	6.35	15.04	－15．0゙0	－19．${ }^{\text {考 }}$	5.05	－10．50
19	192.17	0.62	7.52	－20．55	$-24.90^{\text {＊}}$	－1．82	-16.3 管

(Table 15 contd.)

1	2	3	4	5	6	7	3
20	**			* ${ }^{\text {d }}$	**	* ${ }_{\text {¢ }}$	**
	156.99	-12.35	-12.22	-35.14	-33.69	19.84	-31.70
		*	*		*	+	
21	220.58	14.09	23.42	-3.81	-13.80	12.70	-3.98
22	168.22	-12.99	- 5.88	-30.46	-34.26	-14.05	-26.77
			**	*	-		
23	203.43	7.80	16.62	13.83	-18.55	6.49	- 9.27
				**	**		*
24	289.67	- 4.48	3.32	-23.66	-27.83	- 5.65	-19.61
				*	**	*	**
25	171.11	-11.50	- 4.26	-29.26	$-33,13$	-12.57	-25.51
			*	**	\# ${ }^{\text {¢ }}$		
26	206.17	6.64	15.35	-14.77	-19.43	5. 34	-10.25
			* ${ }^{\text {r }}$	*	**		
27	214.11	10.79	19.80	-11.48	-26.33	9.40	- 6.80
				**	**		**
28	193.61	0.14	8.33	-19.96	-24.34	- 1.00	-15.72
29	168.17	-13.02	- 5.91	-30.48	-34.23	-14.03	-26.79
				**	\%		**
30	285.44	- 4.09	3.75	-23.34	-27.53	- 5.25	-19.28
	209.56	8.39	$17.2{ }^{\text {\% }}$	-13.37	-13.11	7.07	- 8.78
31				**	* 6		cis
32	192.39	-0.49	7.64	-20.46	-24.82	- 1.70	-16. 25
		**	$24.8{ }^{84}$		-12.78	-1A.04	
33	223.19	15.44	24.80	**		-14.04	2.84
34	175.61	- 9.17	- 2.75	-27.40	-31.37	-104.27	-23.55
35	137.00	- 3.28	4.63	-22.69	-26.92	- 4.46	-23.60 ${ }^{\text {¢ }}$
		**	**			**	
36	232.47	20.24	30.07	-3.89	-9.25	18.78	1.20
		**	**	\#*	**	**	**
37	134.61	-30.38	-24.69	-64.35	-47.40	-31.22	-42.40
38	186. 83	- 3.37	4.53	-22. ${ }^{\text {每 }}$	-26. 99	-4.54	-1日.6\%

(iablo conta.)
（rable conta）

1	2	3	4	5	6	7	8
				＊＊	＊＊		＊＊
39	194．33	0.51	8.73	－39．66	－24．06	－ 0.71	－15．41
40	173．33	-10.35	－3．02	$-2 \mathrm{e} \cdot \frac{* 4}{* *}$	$-32 .{ }_{* *}^{\text {美灰 }}$	－11．44	－24．5 ${ }_{\text {＊}}$
41	177．39	－ $8.25{ }^{\circ}$	$=0.75$	－26．67	-30.68	－ 9.37	－22．78
42	216.11	11.78	20.91	－10．66	－15．55	10.42	－ 5.92
43	199．35	3.11	11.54	－17．59	－22．10	1.85	－13．22
44	168．34	－12．93	－ 5.81	－30．41	－34．21	－13．99	－26．${ }^{* *}$
				＊$*$	＊＊		＊＊
45	190.89	－ 1.27	6.80	－21．08	－25．40	－ 2.47	－16．90
46	160.33	－17．07	－10．29	-33.72	－37．34	－18．08	－30．21
47	180．05	－ 2.74	5.21	$-22 .{ }^{\text {2 }}$ \％		－ 3.92	－18．${ }^{\text {交 }}$
48	164．00	-15.18	-8.26	32．${ }^{\text {易 }}$	－35．${ }^{\text {¢ }}$	－16．21	－28．8id
49	162.80	$-15 .{ }_{*}^{*} 0$	-8.91	－32．${ }^{*}{ }^{*}$			－29．13
50	162.72	-15.84	－ 8.95	-32.73	－36．41	－15．86	－29．${ }^{\text {＊}}$ 年
51	211．61	9.45	18.40	-12.52		S． 12	－7．88
52	116．61	-13.83	－6．73	-31.12	-34.89	-14.87	-27.47
53	160.75	－12．72	－ 5.58	－30．24	－34．05	-13.78	－26．54
54	183.89	－ 2.30	5.68	－21．91	-26.1 新离	－ 3.49	－17． 515
55	172.28	－10．89	－ 3.61	－29．7音	－32．67	－11．99	-25.0 ¢\％
56	181.61	－ 6.07	1.61	－24．92	－29．03	－ 7.21	－20． 34
57	180.67	－ 6.55	2.09	－25．${ }^{\text {胶 }}$	－29．40	－ 7.69	-31.3 ＊＊
58	193.67	0.17	8.36	－19．9䖝	－24．3年	－ 1.05	－15．69
59	164.28	－15．03	－ 8.08	－32．0゙部	－35．80\％	－16．06	－23．4\％${ }^{\text {\％}}$
60	187.75	－ 2.39	5.05	－22．3＊${ }^{\text {\％}}$	－26．6\％	－ 4.07	－19．27

（sable 15 contd．）

2	2	3	4	5	6	7	9
				＊＊	＊＊		4＊
61	185.11	-4.25	3.57	－23．47	－27．66	-5.42	－19．42
			＊	＊＊	＊＊	＊＊	＋${ }_{\text {＊}}$
62	i56．49	－19．06	－12：44	－35．31	-38.34	－20．04	－31，88
		＊ H	＊	＊＊	\％＊	＊＊	＊＊
63	152.78	－20．98	-14.52	－36． 84	－ 80.29	－21．94	-33.49
64	127.85	2.33	10．70	－13．${ }^{\text {2 }}$	－22．6薙	1.09	$-13.8{ }^{\text {\％}}$
65	194.56	－ 4.54	3.26	－23．${ }^{\text {方 }}$	－27．${ }^{\text {明 }}$	－ 5.70	$-19.6{ }^{6} 6$
66	114．38	－25．32	－19．22	－40．31	-43.58	－26．23	－37．15
67	215.45	11．44	20．54	－11．34	－15．葸	10.08	－ 6.21
68	179.11	-7.36	0.21	－25．95	－30．01	－ 8.49	－ 22.03
69	177．33	－ 6.02	－0．50	-26.48	$\cdots 30.6$	－ 9.14	－ 22.4 ＊＊
			＊＊	＊	＊＊		
70	207.89	7.53	16.32	－14．06	－18．76	E．22	－． 9.50
				＊＊	＊＊		＊＊
71	136.37	－ 4.74	3.04	－23．86	－28．03	－5．90	－19，83

$$
\begin{aligned}
& \text { C.D.I }(0.05)-21.92 \\
& \text { C.D. I }(0.01)-28.89 \\
& \text { C.D.II }(0.05)-25.31 \\
& \text { C.D.II }(0.01)-33.36
\end{aligned}
$$

92

Tha number of hybrids displaying algnificant negative hoterosis wat roure with respect to the standards then with the better or mid parental means. Heterobeltiosis qas negative anc ailgnifloant in seventeen (26.15%) out of the total number of hybrids. The values ranged from 13.83 par cent to 29.61 per cent. The highest and the lowest values were recorded by clone numbers seventeen and fifty two respectively. only sixy hybricis followed this trend for nagative heterosis. Among the standards, with respect to the second standerd, the maximum number of hybrids displayed negative significant hoterosis. The renge of values was from $\mathbf{1 2 . 7 8}$ per cent to $\mathbf{4 7 . 4}$ per cent. The figures corresponaing to the first, third and fourth stancierais were forty seven (72.31\%) twenty one (32.31\%) and thirty eight (59.46%) respectively. The maximurn range of values was displayed by the second standard.

10. Woight of singla cane

The mean values of the hybrids were found to be ranging from 481.67 to 1170.00 . Hybric clones, sixty six and thirteen registored the maximum and the minimum values respectively. For this attribute also, hybrido displaying significant netjativo heterosie were much higher than signiElcent positive heterosis.

Sable 16

the mean values of parents，stanards and F_{1} hybrids and their hetarosis in percentage
ireight of single cene

Parants standards and hybrida	Mean	Hieterom boltio Gis	Relative ineteroais	Standerd Heterosis			
				1	2	3	4
1	2	3	4	5	6	7	8
1	906.67						
2	870.84						
3	1030.00						
4	993.23						
5	846.67						
6	1398.33						
7	596.67	－34．2＊	－31．4意	-82.0 \％	-39.93	－29．53	
3	315.00	－10．11	－6．41	－20．87	－17．94	－ 3.74	－41．72
9	765．00	－15．63	－i2．15	－25．73	－2c．98	－9．65	－ 45.4
10	701.67	－22．61	－39．43	－31．8菖	－29．35	－17．13	－49．82
21	621.67	－ 31.83	－28．61	－39．${ }^{\text {崖 }}$	$-37.4{ }^{*}$	－26．57	
12	551.67	-39.15	-36.65	－46．44	－44．4＊＊	-34.84	－60．${ }^{\text {甹 }} 5$
13	442.67	－51．＊	－49．${ }^{\text {音 }}$	－57．12	－55．${ }^{\text {菏 }}$	－47．43	－68．${ }^{2} 1$
14	970.00	6.98	11.39	－5．83	2． 34	14.57	－30．63
15	550．00	-39.34	－36．34	－46． 6.8	$-44.68{ }^{48}$	－35．08	－60．67
16	695.00	－23．35	－20．19	-32.52	-30.03	－17．91	－50．30
17	536.67	－35．71	－37．${ }^{\text {2 } 2}$	－46．93\％	－4．96	-35.43	－60．4＊

（Table 16 conte．）

1	2	3	4	5	6	7	8
18	935.00	3.12	7.37	-9.22	－ 5.36	10.43	-33.1 ＊＊
19	596.67	－34． 19	－31．48＊	－42．07	-39.93	－29．53	－57．${ }^{\text {＊＊}}$
20	678.33	－25．18	－22．11	-34.14	-31.70	－19．88	－51．49
21	601．67	-33.6 产	－30．91		－39．42	－28．94	－56．${ }^{\text {97 }}$
22°	760.00	-16.18	－12．73	－26．21	-23.48	-10.24	－45．65
23	911.67	0.55	4.69	－11．49	－ 8.21	7.68	－34．80
24	1156．67	27.57	32.82	12.30	16.46	36．61	－17．28
25	870.00	－ 4.04	－ 0.10	－15．53	－12．41	2.76	－37．78
26	1043．33	25.07	19.81	1.29	5.04	23.19	－25．39
27	1166．67	28.68	33.97	13.27	17．46	37.80	－16．57
28	705．00	－22． 24	－19，04	－31．${ }^{\text {t }}$	－29．02	-16.73	－49．58 $\begin{array}{r}\text { \％} \\ .4 *\end{array}$
29	653．33	－27．94	－24．90	-36.57	－34．22	-22.84	－53．28
30	811．67	－10．48	－6．79	－21．20	－18．23	－ 4.33	－41．3愹
31	1045.00	15．26	20.00	1.46	5.21	23.42	－25．27
32	816.67	－9．93	－6．22	－30．71	－17．79	-3.54	41.60
33	991．67	9.37	13．85	－ 3.72	－ 0.16	27．13	－29．08
34	\＄75．00	－ 3.49	0.48	15.05	－11．90	3.35	$-37.4{ }^{4}$
35	846.67	－6．62	－2．78	－17．90	-14.76	m	$-39.4{ }^{4}$
36	860．00	－ 7.35	－2．56	－18．45	－15．43	－0．79	－39．9＊＊
37	525.00	-52.30	$-39.7{ }^{\text {年 }}$	－49．0等		－37．9＊	－62．46
38	548.33	$-39.5{ }^{\text {\％}}$	－37．03	－46．${ }^{7}{ }^{\text {\％}}$	－44．79	-35.24	－ $60 .{ }^{\text {＊}}$ ¢ ${ }^{\text {a }}$

95

（Table 16 conta．）

1	2	3	4	5	6	7	9
32	773.33	-14.71	－11．20	－24．92	－22．14	-8.65	－44．70
40	875＊00	－ 3.49	0.48	－15．05	－11．90	3.35	$-37.4{ }^{*}{ }^{*}$
42	790.00	－12．87	－ 9.28	－23．30	-20.46	－ 6.69	－43．30
42	920.00	1.17 4	5.65	－10．68	－ 7.37	8.66	-34.21_{*}^{*}
43	595.00	－34．38	－31．68	－42．23	－40．09	－29． 72	－57．45
44	660.00	－27．21	－24．21	-35.93	-33.55	－22．05	－52．80
45	713．33	-20.77	－17．51	－30．26	－27．68	－15．16	－43．${ }^{\text {宸 }}$
46	636.67	－29．78	－26．39	－38．13	－35．906	－24．80	－54．4．4．
47	910.00	0.37	8.50	－11．65	－ 8.33	7.48	－3s．9世
48	776．67	－14．34	－10．81	-24.60	$=21.80$	－ 8.27	－43．46
49	573．33	$-36.7 \%^{*}$	－34．2袁	－64．34	－$\frac{4}{7}$ ． $28^{\text {\＃}}$	－32．2竟	-59.0 ＊
50	616．67	－31．99	－29．19	-40.15	$-37.91{ }^{\text {i }}$	－27．27	
51	1080.00	20.22	25．17	9，83	9.74	28.74	－22．05
52	801.67	－11．59	－ 7.03	－22．17	－19．29	－ 5.31	－32．64
53	551.67	$-39.1 .{ }^{\text {m }}$	－36．6总	－ 46.46	－46．46	－34．84	－60．5S
54	823.33	－ 3.19	－ 5.46	－20．07	－17．11	－ 2.76	
55	711.57	－21．31	－18．28	－30．91	－28．35	－15．94	-49.12
56	831.67	－8．27	－ 4.50	－19．26	-16.27	－1．77	-40.52
57	835.00	－ 7.90	－ 4.12	-13.93	－15．93	－ 1.30	-40.29
58	798.33	－11．95	－ 0.33	－2\％．49	－i9．63	－5．7i	-32.91
59	818.33	－ 9.74	－ 6.03	－20．53	-17.61	－ 3.35	-41.48
60	751.67	－27．10	-13.63	－27．02	-24.32	－11．22	－46．25

96

（Table 16 conta．）

1	2	3	4	5	6	7	8
61	611.67	－32．5A	－29．76	－40．${ }^{\text {晨 }}$	－38．36	－27．76	－56．${ }^{\text {营 }}$
62	550.00	－39．34	$-36.8 \frac{n}{4}$	-46.60	－ 48.63	－35．0＊${ }^{\text {＊}}$	-60.87
63	581．67	－35．05	－33．2 ${ }^{\text {\％}}$	－43．5空	-43.4	－ 31.30	-58.46
64	651.67	－20．12	－25． 27	-36.73	-34.39	－23．03	－53．080
65	1050.00	15.81	20.57	1.94	5.72	24.02	－2A．91
66	1170．00	29.04	$34 \cdot 35$	13.59	17.80	38.19	－16．33
67	970.00	6.99	12.39	5.83	2.34	14.57	30.63
68	723.33	－20．22	－16．34	-28.77	－27．17	－24．57	－ 40.4
69	461．67	－49．08 ${ }^{\text {＊}}$	$\begin{gathered} 4 * \\ -46.99 \end{gathered}$	－55．10 ${ }^{\text {＊}}$	－53．52	－45．67	－66．${ }^{\text {＊＊}}$＊
70	1000.00	10.29	24.83	－ 2.31	0.68	18，11	－26． 69
72	.715 .00	－25． 24	－17．90	－30．5 5	－28．02	－15．55．	$-48.8{ }^{\text {\％}} 8$

$$
\begin{array}{r}
\text { C.L. I (0.05) }-260.95 \\
\text { C.D.I (0.02) }-343.93 \\
C_{.} D . I I(0.05)-301.32 \\
C_{4} D . I(0.01)=397.29
\end{array}
$$

57

Bositive signigicant heterosis was observed only with respect so the mid parental value and the third standard. In all other aspects, none of the hybrids displayed significent positive heterosis.

Among the total slitity five hyixide, only tinces recorded aignificant positivo hatorosis over the mid parental value and over the thited atandard. The hyorids displayed similar range of valuse in the two cases. The ranges were 32.82 per ceat to 34.35 per cent and 36.61 per cent to 38.19 per cent. The marimum veiues vere recorded by clone number sisty gix and the minimum values, by clone number twanty folis.

Significant negative heterosis was manifosted by Eifteen hybrids each with regend to the bottor end mid parental values. The range of values wam slifghty bugher In the latter. The corresponaing velues were from 33.64 per cent to 51.29 per cent and from 30.91 per cent to 49.28 per cent respocively. the masimumumber of hybrias Alsplaying standard heterosis was observed with respect to the fourth standard. followed by the first, second and third standards. The number of hybrids in each comparison were fifty nine (90.77%), twenty seven (41.54%). twanty tinree (35.38%) and three (4.62%) respectively. The hybrids
displayed maximum range of values (29.08\% to 60.41\%) then compared to the fourth standard.
11. Number of vater shoots

For this attribute the hybria msans ranged fxom 2.67 to 21.33. Clone numberd Eifteen and seventeen recorded the maximum and the minimum values respectively. But none of the hybricis aioplayed significant positive heterosis or significant negative netorosis over the better parent, mid parent and the standards.

12. Number of arrows

The nyorids secorded mean valwes ranging from 0-20.67 for this trait. Though tha minimu value was recorded by more than one clone, the maximam valuo was recorded by clone number fifteen only, The hybrids displayed positive afgniElcant hetarosis ovar the standards and negative signieicant hetoroais over the better and mid parental mans.

The maximum number of hybrids displaying significant positive hetorosis was observed in tho compariaon with the aecond standard followed by the thina and fourth standards. In tinis regari, eleven hybrids mandeested heterosia ranging from 241 per cont to 364 per cent. Clone numbers fifteen

93

Teble 17
The noan values of parents, standards and F_{1} hybrids and their heterosis in percentage

Number of Water shoots

Parants. standards and hybrida	Mean	Haterom beltiosis	Relative Heterosis	ctandard Heterosis			
				1	2	3	4
2	2	3	4	5	6	7	8
1	4.61						
2	3.99						
3	4.56						
4	3.73						
5	3.33						
6	3.67						
7	2.97	-19-07	-15.14	-35.57	-20.38	-10.81	-19.07
8	2.76	-24.80	-21.14	-40.13	-26.01	-17.12	-24.80
9	2.43	-33.78	-30.57	-47.29	-34.85	-27.03	-33.79
10	3.56	- 2.99	1.72	-22.78	- 4.56	6.91	- 2.99
11	3.07	-16.35	-12.29	-33.41	-17.69	- 7.01	-16.35
12	2.51	-31.61	-28.29	- 45.55	-32.71	-24.62	-31.61
13	2.17	-40.87	-38.00	-52.93	- 41.82	-34.83	-40.87
14	3.59	- 2.18	2.57	-22.13	-3.75	7.31	- 2.18
25	4.62	25.89	32.00	0.22	23.86	38.74	25.89
16	3.43	- 6.54	- 2.00	-25.60	- 8.04	3.00	-6.54
17	-1.82	-50.41	-63.00	-60.52	-54.39	-60.09	-51.21

100

(Table 17 conta.)

1	2	3	4	5	6	7	8
18	3.10	-15.53	-11.43	-32.75	-22.31	-32.02	-16.89
19.	2.97	-19.07	-15.14	-35.57	-25.56	-34.87	-20.38
20	2.10	-42.78	-40.00	-54.45	-47.37	-53.95	' -43.70
21	2.35	-35.97	-32.06	- 49.02	-41.10	-48.46	-36.99
22	2.05	-14.14	-41.43	-55.53	-48.62	-55.04	-45.04
23	2.65	-27.79	-24.29	-42.52	-33.53	-41.89	-28.95
24	2.41	-34.33	-31.14	-47.72	-39.59	-47.15	-35.39
25	2.08	-43.32	-40.57	-54.88	-47.87	-54.39	-44.24
26	2.14	-41.69	-38.86	-53.58	-46.37	-53.07	-42.63
27	2.74	-25.34	-21.71	- 40.56	-31.33	-39.91	-26.54
28	3.08	-16.08	-12.00	-33.19	-22.81	-32.46	-17.43
29	3.01	-17.98	-14.00	-34.71	-23.56	-33.99	-19.30
30	3.16	-14.44	-10.29	-31.89	-21.30	-31.14	-15.82
31	2.10	-42.78	-40.00	-54.45	-47.37	-53.95	-43.70
32	3.53	- 3.81	0.86	-23.43	-12.53	-22.59	- 5.36
33	2.73	-25.61	-22.00	-40.76	-31.58	-40.13	-26. 32
34	2.48	-32.43	-29.34	-46.20	-37.34	-45.61	-33.51
35	3.31	-9.81	- 5.43	-28.20	-17.04	-27.41	-11.26
36	2.46	-32.97	-29.71	-46.64	-30,35	-46.05	-34.05
37	2.03	-44.69	-42.00	-55.97	-49.12	-55.48	-35.50
38	2.81	-23.43	-19.71	-39.05	-29.57	-38.39	-24.66
39	3.23	-11.99	- 7.71	-29.93	-19.05	-29.17	-13.40
40	1.97	-46.32	-43.71	-57.27	-50.63	-56.80	-47.18

$10 \hat{i}$
(Table 17 conta.)

1	2	3	4	5	6	7	8
41	3.39	- 7.63	- 3.14	-26.46	-15.04	-25.66	- 9.12
42	3,46	- 5.72	- 1.14	-24.95	-13.28	-24.12	- 7.24
43	2.54	-30.79	-27.43	-44.90	-36.34	$-44 \cdot 30$	-31.90
44	3.66	- 0.27	4.57	-20.61	-8.27	-19.74	-1.38
45	3.41	- 7.08	- 2.57	-26.03	-14.53	-25.22	- 8.58
46	2.58	-29.70	-26.25	- 04.03	-35.34	-43.42	-30.83
47	2.44	-32.51	-30.29	-47.07	-38.85	- 36.49	-34.58
48	2.62	-22.61	-25.14	-43.17	-34.34	- 42.54	-28.76
49	2.00	-49.50	-42.96	-56.62	-49.87	-56.14	-46.38
50	2.24	-39.96	- 36.09	-51.41	-43.86	-50.88	-39.95
51	3.41	7.08	- 2.57	-26.03	-14.54	-25.22	- 8.58
52	3.29	-10.35	- 5.00	-28.63	-17.54	-27.85	-11.80
53	3.51	- 4.36	0.29	-23.86	-12.03	-23.03	- 5.90
54	2.64	-28.07	-24.57	-42.73	-33.83	-42.11	-29.22
55	2.65	-27.79	-24.29	-42.52	-33.50	-41.89	-29.95
56	2.64	-28.07	-34.57	-42.73	-33.93	-42.11	-29.22
57	3.87	-5.45	-20.57	-16.05	- 3.00	-15.13	3.75
58	2.49	-32. 15	-23.86	-45.99	-37.59	-45.39	-33.24
59	2.56	-30.25	-26.86	-44.47	-35.84	-43.86	-31.37
60	3.36	- 8.45	- 4.00	-27.11	-15.79	-26.32	- 9.92
61	3.85	- 4.90	10.00	-16.49	- 3.51	-15.57	3.22

102

(Table 17 conta.)

1	2	3	4	5	6	7	θ
62	3.15	-14.17	-10.00	-31.67	-21.05	-30.92	-15.55
63	3.36	- 8.45	4.00	-27.11	-15.79	-26.32	- 9.92
64	2.46	-32.97	-29.71	-46.64	-38.35	-46.05	-34.05
65	2.86	-22.07	-18.29	-37.96	-28.32	-37.28	-23.32
66	2.88	-21.53	-17.71	-37.53	-27.82	-36.84	-22.79
67	3.15	-14.17	-10.00	- 31.67	-21.05	-30.92	-15.55
68	3.63	- 1.09	3.71	-21.26	- 9.02	-20.39	- 2.68
69	3.24	-11.72	- 7.43	-29.72	-18.80	-28.95	-13.14
70	2.21	-39.78	-36.86	-52.06	-64.61	-51.54	-80.75
71	2.48	-32.43	-29.14	-46.20	-37.84	-45.61	-33.51

$$
\begin{aligned}
& \text { C.D.I (0.05) }-2.92 \\
& \text { C.IV I (0.01) }-3.04 \\
& \text { C.D.II (0.05) }-3.37 \\
& \text { C.D.II (0.01) }-4.44
\end{aligned}
$$

103

Table 18
The moan values of parents，standards and r_{1} hybrids and their hetorosis in percentage

Number of arrows

Parents， standarus and hyorids	Moan	Hetero beltio sis	Relative Hataro－ sis	Standard Heterosis			
				1	2	3	4
1	2	3	4	5	6	7	8
1	2.16						
2	1.00						
3	1.18						
4	1.14						
5	2.85						
6	3.73	．					
7	3.74	0.27	13.63	73.15	274	22G．07	228.07
8	1.14	－69．4 ${ }^{\text {\％}}$	－65． 35	47．22	14	－	－
9	2.92	－21．72	-11.25	35.19	192	156.14	． 156.14
10	3.78	2． 34	24.89	75.00	278	231．5竟	233．53
11	3.46	7.24	5.17	60：19	246	203．5 ${ }^{\text {＊}}$	203．51
12	1．83	－49．59	－ 42.86	－12：96	93	64.91	64.91
13	2.29	－30．61	－30．39	6.02	129	200.89	100.88
14	3.04	-18.49	－ 7.59	40．74	204	166．65	166.67
15	4.64	24.40	42.03	114．81	36衰	307．0\％2	307．0艺
16	2．43	-34.85	－25． 14	12．50	143	113.16	113.16
17	1.66	-55.50	－49．54	－23．15	66	45.62	45.61

104

(Table 18 conta.)

1	2	3	4	5	6	7	8
28	1.14	-69.44	-65.35	-47.22	14	-	-
19	2.88	-22.79	-12.86	33.33	169	252.63	152.63
20	1.87	-49.87	-43.16	-13.43	97	$6 ¢ .04$	64.04
21	2.93	-21.48	-20.94	35.65	193	157.02	157.02
22	2.28	-66.6苞	-61.0\%	- 40.74	28	12.28	12.28
23	3.79	-52.01	-45.59	-17.13	79	57.02	57.02
24	3.00	- 73.19	-69.60	-53.70	-	-12.26	-12.2B
25	2.77	-25.74	-15.81	28.24	277	142.98	142.98
26	1.05	-73.19	-69.60	-53.70	-	-12.28	-12.28
27	2.49	-33.24	-24.32	15.28	149	110.42	118.42
28	1.88	-49.60	- 02.86	-12.95	88	64.91	64.91
29	2.26	-65.68	-62.09	- 40.74	28	12.28	12.28
30	1.00	-73.19	-69.60	-53.70	-	-12.28	-12.28
31	1.99	-96.65	- -39.51	-7.97	99	74.56	74.56
32	3.25	-12.87	- 1.22	50.36	225	185.09	185.09
33	1.38	-63.00	-58.05	-36.11	39	21.05	21.05
34	2.67	-28.42	-18. 86	23.61	167	134.21	134.21
35	2.37	-36.46	-27.96	9.72	137	107.89	107.89
36	3.60	-3.49	9.42	66.67	260	215.79	215.79
37	2.35	-23. 59	-13.37	31.94	185	150.00	150.00
38	1.73	-53.62	-47.42	-	73	51.75	51.75
39	2.82	-24.40	-14.29	30.56	182	147.37	147.37

105
(Nabla 18 conta.)

1	2	3	4	5	6	7	8
40	1.66	-55. 50	-49.54	-23.35	66	45.61	45.62
41	1.14	-69.44	-65.35	-47.22	14	-	-
42	1.14	-69.44	$-6.5 .35$	- 47.22	14	-	-
43	3,09	-17.16	-6.08	43.06	209	171.05	171.05
44	3-36	- 9.97	- 2.13	55.56	236	19A.74	194.74
45	3.01	-19.30	- 8.51	39.35	201	154.04	164.04
46	2.34	-37.27	-20.08	Q. 33	134	105.26	105.26
47	1.82	-51.21	-44.68	-35.74	82	59.65	59.65
48	$\pm .20$	-65.6 ®\%	-62.003	- 80.74	28	12.23	12.28
49	2.13	-42.90	-35.25	-2.39	213	85.84	86.34
50	1.91	-19.79	-41.95	-11.57	93	67.54	67.54
51	3.50	- 6.17	6.38	62.04	250	207.12*	207.1党
52	1.63	-56.30	-50.46	-24.54	63	42.98	42.98
53	3.93	5.36	19.45	81.94	293	244.74	244.74
54	2.76	-26.02	-16. 12	-27.78	176	142.11	142.12
55	2.05	-45.04	-37.69	- 5.09	105	79.82	79.82
56	1.28	-55.68	-61.09	- 60.78	28 $*$	12.20	12.28
57	3.41	- 8.58	3.65	57.87	241	299.12	199.12
58	1.00	-73.15	-69.60	-53.70	-	-22.28	-12.28
39	1.72	-53.09	-67.72	-20.37	72	50.86	50.88
60	2.59	-20.56	-21.28	19.91	159	127.19	127.19
61	2.68	-29.15	-18.54	24.07	160	135.09	135.09

(Table contd.).

1.06

(rable 18 conta.)

1	2	3	4	5	6	7	8
62	2.91	-21.98	-12.55	34.72	191	155.26	155.26
63	3.78	- 1.34	14.89	75.00	278	2.31 .58	231.58
64	3.27	-12.33	-0.01	51.39	227	136.34	186.84
65	1.28	-65.60	-6.6. 09	-40.74	28	22.28	12.28
66	1.55	-50.15	-52.89	-28. 24	55	35.96	35.96
67	1.00	-73.19^{*}	-69.60	-53.70	-	-12.28	-12.26
68	3.54	-5.09	7.60	63.39	254	210.53	210.53
69	2.37	-36.46	-27.96	9.72	137	207.89	107.89
70	2.56	-31.37	-22.19	18.52	156	124.56	124.56
71	2.57	-31.10	-21.80	18.95	157	125.44	125.44

$$
\begin{aligned}
& \text { C.D.I }(0.05 j-2.97 \\
& \text { C.D.I }(0.01)-2.6 \\
& \text { C.D.II }(0.05 j-2.29 \\
& \text { C.D.II }(0.03)-3.00
\end{aligned}
$$

Table 19
Percentage of hybrids displaying signiztcent positive and negative noterosis in dieferent comparisons

103

(Table 19 conta.)

(

109

and fifty seven recorded the maximum and the minimum Values. In comparison with the third and fourth standards. nine clonas each displayed aignificant values ranging from 203.51 per cent to 307.02 per cent.

The man values of brix, pol, purity and ces of the hybrids and parents aro presented in Eigures 2.3. 4 and 5 rospectively.

Thenty four elite clones were selected based on the numbor of millable canes total walght of cane brix, pol, purity and cos. The details of which aro presented in Appendir II.

Although ougarcene (Gaccharun ofelcinerun) occuples a paramount place in the sugar industry. with its nobla attributes. the alminighing vigour and yield of cane varieties after thoy have been in comercial cultivation for some yoars has been a characteristic of the cane sugar industry since the ara of oxpansion bogan about a century ago. It is an obscure and puazling problem of the highest imoortance to growers and processors on one hand, the scientists associated with the industry on the other. Some of the factorg contributing to varietal yteld were described in papers pregented at the 10 th Congress of the International Society of Sugarcane Technologists in 1959. The genetic aspecte were critically described by Hangeladorf (1959).

Barnes (1974) has attributed the essential quadities of the canes as:

1. Profttable yield of sucrose over the crop cyele or productivity.
2. Immunty or high resistance to diseases and insect pests of local importance.
3. A111ability.

These features are associated with a number of contributory factors and all these are interralated. Profitable yield is not necessarily synonymous with - higheat yield. Sugarcane liko other crops possesseb agroclimatic adaptationse for unveiling the yiela potential of the variety concemed. The practice of monoculture has stonmed, the canes from being abla to express themselves in torms of their genetic potentiality.
since sugarcane being a complex polyploid which is comanonly propagated vegetatively, the broad spactrum of recombinants resulting from intarvarietal hybridisation provida ample scope Eor elucidating elite clones possessing positive heterosis and adaptability to varied environmental conditione.

With an objective to study the genetic variability and to assess the extent and magnitude of heterosis pertaining to important economic attributes, tho hybrid

112

progenies of the croes co $775 \times$ Co 453 were selected. The female parent was enciowed with the qualities of resistence to watar-logging, high sucrose content, profuse 'tillering capecity and high ratooning ability while the male parent possensed saline and drought resistince, thicknegs of cane and higher yield potential. She female perent hed high fibre content. The experimont was conducted at Sugercane Resoarch Station, Tinuvalla during 19a1. Four hundred and fifty seedilngs were screened for further studies. Seventeen important economic traits including quality aspects wero assossed. The correlations betrean charactars ans coafficiant of vardation were aleo gtudied.

Besed on the gonoral performance, number of millable canes, welght per stool and brix value, sixty five clones wore selectod for further studies. The solected clones were put uncer replicated trial. She two parente and four etandaras which fore popular in tha 20cality namay Co 449. Co 735. Co 997 and co 62175 were also included in the treatments. Seventeen important economic traits including four quality attributes vero ascessed. Tha quality attributes being juiciness. brix, pol and purity. Destos the

113

egtimation of relative heterosise hotorobeltiosis. and standard heterosis, phenotypic and genotypic corrolations were worked out. The genetic parameters like coofficients of variation, heritability in the broad sense and genetic advance were also assessed.

Based on millable cane number, total weight, bris, pol. purity and ecs, twenty four elite clones were selected for subsequent studies. The resulta obtained sre discussed in the oucceeding pages.

(a) stuales on vertability

(1) giometric studies in seeding population

The naximum coefficient of variation was observed for the character, weight of cane per stool, followed by number of shoots and number of milleble cangs per stool. This suggests tho acope for selection of superior Canos based on these attributes. The minimum coefficient Of variation was recorded by . : H. R. Brix. The results were in confirmity with the Eindinge of Craig (1944). who observed a higher coefficient of variation for weight Of atool than refractometric brix. Mariotei (1971c) also recorded observations in the same line, te could observe

114

low coefficients of genetic variation for pol and juice purity, However, majority of the worlsers reported high variability for quality components in sugarcane. Singh et ale. (1978) and punia and singh (1981) regiatered the game observations.

(ii) Genotyoic and phonotypic variability haritability and genetic advence in clonal population

A perusal of the results on the population mean and genetic parameters rovealed that the heritability was maximum for arrowing followed by number or internodes at harvest, and shoot count at ninety days. The results were in agreement with the observations of Livene (1977a). All the characters except gexmination percontage, H.R.Brix, grassy shoot counte, and number of water sinoote displayed hagher horitability, The findings indicate that thege characters aro less influenced by environmont. High heritability for yield and its components were reported by ferslotti (1971cand 1973). Cesnik (1975). Balasundaram and Bhagyalakshmi (1978) and singh (1981), As regerds H. R. Brix, horitablilty was comparatively lowe This observation was in disagreement with the Eindings of Galvor and fmacor (197B).

115

The phenotypic coefEicient of variation was greater than the genotypic coefficient of variation for all the characters studied. The meximum genotypic coefficient of vartation was observed for number of arrows Eollowed by grassy shoot counts. Cane yield and its components namely number of millable canes, number and length of internode, gizth and height of cane manifested low coefficient of variation. Contrary to these observations. Mariotti (1973) and Balasundaram and Bhagyalakshmi (1978) observed high veriability for cane yield and its components. Punia and singh (1991) also reported gimilar results. High varlability was roported by Hogarth gt al*o (1981) and singh (1981), For yield.

Johnson et ale. (1955) in thoir studies with soybean have reported that heritability estimates along with Genetic advance is more usoful than heritaioility alone in predicting the resultant exfect of selection. Since heritability detemines the component of heritable variation and genetic advance measures the extent of its stability under selection, those two paramotera should be Considered together, so as to bring effective inprovement In economic yield and other complex characters. In the

116

present study the mastmum genetic advance was obtained for hoight of cane at harvest, followed by shoot count at ninety days after planting. In general, this parametor was not high for most of the attributes studied except for hoight of cane. Substantial genotic açvance for yield and its components were obtained by fao gt ale. (1966) and shen et alag (1966).

The different clones selected from the base population differed significantly for all the characters stupided. This trend along with high haritability estimates for the characters offered considereble scope for selection within the population.
(b) Correlations

The genotypic correlations ware higher than the phenotypic correlations. In cases where both phenotypic and genotypic correlations were significant, the sign was same, either positive or negative.

(1) Seeding population

Cane yield was observed to be positively correlated with all the yield componencs except H. Re Brix where a

117

negative non-signiElcant correlation vas observed. Yiela registered high positive correlations with number of shoots, number of millable canes per stool and hoight of cane at harvest. Cane yield had the closest association with nuraber of millable canes at harvest.

The positiva correlation of number oi millable canes with height, welght, girth and numoer of intemodes had been ostablished by many workers (Gill. 1949g Rattan; 1951: Dillewijn, 2950, Vama, 1963: Anonymous.1965, Singh and Sangha 1970: Jamos. 1971. Juang, 1971: Batcha and Sahi, 1972; Hariotti, 1972 b, Belasundaram and Bhegyalakshmi. 1976 and 2978 and Bathila. 1978).

Number of millabla canes and girth had an inverse relationship. But the same attribute had positive and correlation with height of cene. number anc length of Internode. Height of̃ cano had significant positive assaciations witin number and length of internode, girth of cane and number or millable canes. Hence the contribution of numbar of millable canes to yicla was presumed to be through height of cane. Hhairwal and Babu (1976) also opined this Eact.

The negative non-oignificant correlation of brix with cane yield had been established by stovenson (1954). Ethirajan (1965) reportod negative relationship between yield and juice quality in crosses.

(11) clonal population

The association between cane yield and its important components namely number of millable canes, number of Internocies, length of internode. girth oí cane, height of cane and weight of single cane were positive and signiEicant. Yiold of cane had the maximum positive significant correlation with number of millable canes followed by height of cane and weight of singla cane.

Stuales conducted by various workers (Quintus, 1925 ; Gill, 1949; Dillewijn, 1950; Anon; \because 1965; James, 1971; Juang 1971: Mariotti, 19716and 1972b; Balasundaram and Bhagyalakshmi, 1976: and Bathila, 1978) and also from the results of the present study, the maximum contribution of number of millable canes to cane yield had been well established.

Number of millabla cenes being the most important component of cane yield, recorded positive non-aignificant correlations with number and length of internode and height
of cane. However, this attributo registered nagative non-significant corrclations with girth and weight of single cane.

Ancording to singn and Jain (1968) number of canes per clump had inverse association with yiold per clump.

Although there were difierence of opinion regarding the correlation of number of millable canes and girth, the results obtadned in the present stuay were in confirmity with the obseryations of Hebert ance Honderson, 1959: George, 1962; Singh anci Jein, 1968; and Mariotti, 1972 and 1973.

High positive corcelation of stalls number with height had been reported by varma, 1963; inonymous, 1965; Jomes. 1971; and wariotti 1571 and 1972. In the present invescigation aiso positive correletions were observad between stalk number and height of cane.

In the present investigation, number of millabie canes and number of intornodes were observed to have nonsignificant positive correlation. However, Singh at al.. (1981) reported sigmizicant positive genotypic and phenotypic
assoriation between these two tradts.

Height of cane was observed to have significant positive correlation with total weight of cane. However, with number of miliabla canes, this attribute established positive nonmsignificant correlation. Positive association of yield with height of cana hed been reporced by G111, 1949, Rattan, 1951; James, 2971, Batcha and Sahi. 1972: and Mariotti. 1972 a.

Weight of alngle cane had positive significant correlation with cane yield. The reaults unvoiled that aingle cane weight had high positive correlation with Cane girth and haight and both intum possessed positive correlations with yield. Hience $1=1 s$ inferced that the contribution of single cane velight to cane yisld may be through gireh and hoight of cane. Thle observation was supported by the findings of Khairwal and Babu (1976). tiobert (1965) and Mariotti (1971band 1972.b) a1so opined that the single cene weight had positive correlation with cane yielc.

Number of internodes and leagth of internode also displayed positive correlation with cane yield. Thase two
attributes contributed to cene height and were positively corcelated with canc height. since the number and length of internodes had a positive bearing on the height of cene, which inturn contributed to yield, the fomsr two traits were balleved to be indirectly influencing the yield. Positive corralation of yield with number or Internodes was emphasised by singh and sengha (1970). However, Low positive corcelation between these two traits was reported by Batcha end sehd (1972).
H. R. Brix had nogative significant correlation with number of millabla canes and positive significant corroletion with girth of canes and weight of single cane. However, purity registered significant positive correlation with yiela.

Total cane yield appoared to have negative correlation with H.R.Brix: The results were in conilimity with the findings of Desorney (1950), who reported total absence of correlation betwean yiald and quality. Tha present findinge point towards the fact that as the total yield enhances, the water content also get enhancas. Consequently, the quality components get decreased.

122

Negative correlations of yield with juice grality was already reported by Stevenson (1954), Ethirajan (1965) and Mariotti st ale (1971). Hence it may bo presumed that the probabillty of varieties combining high yield potential and quality attributes are remote. Habert (1965) emphasised that there was low negative corrolation between yield and sucrose racovery.

(c) Heterosia

Although all the characters except 'water shoot counts' manifested ponitive heterosis, the number of nybrids displaying this phenomenon wes relatively less. Comparatively lesser number of clones displayed signifieant positive heterosis than significant negative heterosis. Consequantly, the percentage of hybrids manifesting positive heterosis became less, and accounted a higher proportion of negative heterosis in seven out of the twelve charectors investigated. The shoot count alone displayed positive haterosis in all comparisons. The percentage of hybrid clones displaying positive and negative values in heterobeltiosis. relative hetarosis and standard heterosis were compared.

$1 \dot{2}$

As regards itoR. Brist 28.46 per cent of the hybrids were found superior to the better parent. The comparison with the mid parental value ravaeled the euperiority of 60 per cent hybrids for this quality attribute, The decinne for heterosis in quality attribute like brix can be ascribed to the fact that the otandards incorporated In the investigation wera highly stabilised ones.

Numbsh of millable canes is the principal field objective of the cene culefvator. Gut of the tistal sixty Itve hybria clones 4.62 por cont. 16.92 per cent ana 4.54 per cant each aisplayed beteroboltiosiz. relative hetercsia end gtandarc heterosis oxcept with respect to the first standard, 1e. Co 449. Eventhough the figures are ralatively not high; tha informetion provide ample testimony for the suporiority of the hybride with respect to tink primo yiela component.

Number of Internodes directly influence tho haight of the cane and consequently its centribution to tha gield is indirect. Fairly higher peranntage of the hybrid clones registared haterobeltiosis and relative hoterosis. Evanthough the percentagos of hybrid clonas registering
standard heterosis with respect to the first three etandards were low, the superiority of the hybrids over tho stabilised varleties provide scope for improvement among the hybrid clones.

A few of tha hybrids manifested oignificant positive heterosis in the compexison with the third and fourth standards, for the charactor, longth of Internode. In this regard, the trend of the byortas Was to manifest negative heterosis than positive heteronis. Kigher percentages of hybrids recorded negative heterosis with respect to tho better and mid parental values and also with the first and second standards.
positive relative heterosis was manifested by 20 par cent of tho hybrids for height of the cane, being an ingortant component for total yield. Heterobeltiosis wa: positive and significant in 4.62 per cent of the hybrids. Compored to the thisal standard, 3.08 per cent of the hybrids aisplayed positive heterosis. It can be seen that 3.08 per cent of the hybria clones registored standard heterosis over an established high yielding cone co 997 besides being able to provide apprectable percentages of

125

heterobeltiosis and relativo hoterosia. This in fact point towards a promising trend of the hybrid clones investigated.

The presence of water shoots and arrows are undesirable charactors Irom the economic point of view. Hence for these characters inverse relationship was taken into account.

Hater shoois being an undesirable attrisute, registered relatively less positive or segative heterosis in all the comparisons. So it can be sazely presumed that this attribute may not deter the augarcane breeder from being able to select elite clones.

Arrowing eventhough is desirable from the breeder's point of view, is undesirable as far as the Earmers are concerned, as the vegetative phase ceases during arrowing. Smali percantages of hybrids manifested positive standard Feterosis for this attribute. But the heterobsltiosis anci relative heterosis were negative.

When the yield potential of the clones was considered, excopt for relative haterosis. no positive significant Values were registered by the hybrids. A similar trend
was observed in single cane veight also. But in this respect, standard heterosis was displayed by . few " hyozids.

In general. the pertomence of the hybrids was promising. All the characters except water shoot counts manifiested positivo nsterosis. Relatively omall decilne of heterosis in bris can be attributod to the fect that the otendards included were highly stabilized ones. As regards number of millable canes winich is the prime yield objectiva, the performance of the hybrids were oncouraging. The superiority of the hybrids over the stoblilized varieties with respect to number of intsrnodes provicie geope for further gelection in the clonal population. Consequently based on the pregent investigation including variability and heterosis studies, twanty fous elite clones couda be Identified.

SUMMARY

The progeny of the intervarietal croes co $775 \times$ Co 453 constituting 450 hybrid secdilngs available at Sugarcene Research Station, Tiruvalla were tho material for the investigation. The study was aimed at selecting superior hybride with econoric attributes from the variable progeny by ovaluating genetic variability and heterosip. A preliminery study was conducted on the seeding population for seventeen economic attributes incluaing qualitative aspeces. Erom the bese population, sixty Eive clones ware selected on the basis of number of millable cenes, $H A_{0} A_{0}$ Brix, waight of cane par stool and general appearance. These clones along with their parents and Eour popular varieties of the Locality namely Co 449. Co 785, Co 997 and Co 62175 were tried in an RBD with three roplications at sugarcane Research Station, Tiruvalla during 1982, and ascossed seventeen important economic attributes.
fine statistical atudies included coefficient of variation and correlations in both the seading and clonal populations. Eesides these, in the clonal population

123

\because heritability in the broad senge, genetic advance and heterosis wers also studied.

The highlights of the investigation are sumarised below:

1. Seedling population

The preliminary study revealed that the weight of cane por stool displayod the maximum coefficient of variation followed by number of shoots and number of milleble canes per stool.

The correlations between the guantitative traits indicated that cane yield (weigint of cene per stool) had positive correlations with all the yield components except H.R.Brix. The closest assoclation of cane yield with number oz millable canes was also established. the inverse relationship of number of millable canes and girth was also brought to light, and prosumed that the number of millable canes contributed to cane yield through height of cane, since height of cane and ite components had positive correlation with number of miliable cenes.

i4. Clonal population

Tho results on the population mean end genetic paramoters revealed that the heritability tas meximum for arrowing followed by number of internodes at harvest and shoot count at ninety dayo ingh haritability : was aisplayed by all the charectexs except germination percentage, H.R. Brise grassy shoot counts and number of water shoots, suggesting that these characters ware less influenced by environment.

Regarding the coofficionte of variation, tho maximum values was accounted by number of arrows followed by grassy shoot counts. However, cane yield and its componones, namely number of millable canes, number and length of internode, girth and hoight of cane manifested low coafficients of variation. Genotic aivance was maximum for height of cane at harvest followed by shoot count. In the clonal population significant difference Was noted for tho diEforent characters atudied. High heritebility estimates for the characters along with this trend offer considerable scope for selection within the population.

Correlation betwean the aconomic attributer revealed that yiald of cane had positive significant correlation with number of millable canes; number anc length of internodes, hoight and girth of cane and weight of single cane. In the clonal population also, positive correlation of number of millable canes to yield was unvelled. stalk number had positive correlation with height while it regigtored negative correlation with girth. Cone yield was observed to heve positive correlam tion with the components of cane helght also. nemely number and length of internodes. single cene weight beling one of the components of cane yield, contributed to yield through hoigit and girth of cane. Total cane yield appeared to have negetive correletion with H.R.Brix although purity registered significent poaitive correlation with yield. It was presumed that as tha tocal yteld enhances, the fater contemt also enhanced. consequently the quality components get decreased. The present study suggests that probebilities of varieties combining higher yield potential with quality attributes are remote.

In genoral, the performance of the hybrids was promising. All the characters except water shoot counts manifested positive heterosis. Relatively small decine of heterosis in H. Re Brix can be attributed to the fact that the stendards included were highly stabilized ones. As regards number of millable canes which to the prime yield objective, the performance of the hybridg were encouraging. The superiority of the hybrids over the stabilized varleties with respect to number of Internodes provide scope for furthor selection in the clonal population. Consequently, based on the present Investigation including variability and heterosie stuaides twenty four elite clones possessing higher values for number of millable canes, weight, brix, pol, purity and ccs could be identified.

REEERELTES

Allara, A.I., Schilling, PoE. and koonce. K.I.(1974). Estimates of heritability in sugarcene. Sug. J.. 36 (20): 35-37.

Allard. R.W. (1960). Principles of Plant Breeding. John Wiley \& Eons. New York, London.
*Nador Fonseca, M. and Galvez Rodriguem. G. (1977). Study of the genetic variability in a group of selfed families and their parents for some yield components in sugarcane: Centro Aqricola. $4(1): 47-52$.
*Anonymous (1965). A new variaty of ougarcane in taiwan. Int. Sug. ِ. 67 : 39 .
*Anonynous (1967). Annual Ropts. of Sug. Cano Rose sta. Julluncur. Cant. Punjab. India.
*inonymous (1979). Pacriage of practices recommendatione, Kerala Agricultural university.

Balasundaram, N. and Bhagyalakshmi. KoV. (1976). Response to selaction at the seeding stage in sugarcano. Sug. Cane Semin. Mandye: 1-7.

Balasundaram. N. and Bhagyalakbian. K.V. (1978). Variability, horitainlity and association among yiold and yield components in sugarcanc. Inc. I. Agri. Ecie. 48(5): 291-295.

Sarber, C.A. (1915) , han. Dept. Agric. Ind. Bot. Sex. 7\%劧: 3-106.

Barber, C.A. (1916). Studies in Indian sugarcanos. No. 2. sugarcane seedilngs including nome correlation botween morphological charactore and sucrose content in juice. tom Dept. Agric. Inge Bot. Eex. g(3): 103-149.

Barber, C.A. (1919). Ken. Dept. Agri. Ind. Dot. Sor. 10: 2:-39-153.

Barnes, A.C. (1974). The Sugarcane. Leonard Hill Zooks.

Batcha, M.B.G.R. and Sahi, B.K. (1972). Studies on the association of certain agronomic traits uncer subtropical conaitions. pianond Jubil. symp. Sua. Cene Broed. Inst. Coimbatore, India. (Unpubl.)

Bathile. H.V.L. (1978). Stuay of correlationg between cane yield and difforent attributing characters. Indian Sugar Crons Journal, 5(3): 45-46.

Ehat. N.Re. Eatcha, M. M.G.R. and Sankaranarayanan. P. (1960). Disparity betwoen seedinge and settling performance In sugarcane. Proc. All Indie Lonf. Suct Cane Res. Dev. Hkrs. Galtair 4, : 309-318.

Brown, A.H.D. (1965). Correlation batween brix in juice and fibre in commercial hybrid sugarcane populationc. Proc. Int. Doc. Sug. Cano Tach 12th Cong. 754-759.

Burton. G.iv. (1952). Luantitative Inheritance in grasses.

*Cesaile, Ro (1975). Study on the heritability of some charactars in ougaccane. Eoletim ce Dlvulgacao. Egcola. Superior de agricultura "Euis de pueiroz' (20): 149-151. 372-373.

Craig. N. (1944). A note on the quantitative and qualitative characters of sirst year sugarcane seedlings. Trop. Agri.. 3 (a): 244-245.

Dayal. TrRe. Upadhya, MoD.e Mahothra, V.P. and nehra, K. Ke (2972). Heritability and correlation in yield and othergugntitative characters in potato. Inc. J. agri. Sci.. दُ릐 (6): 464-466.

Desorney (1950). The selection of sugarcane seedilings from Eirst ratoon population. Proc. Int. Eoc. Suge cane Tech. 7th Cong. 128-134.
*Dillowijn。 C. Van (1952) . Improving India's sugar output. S40. J., $47(21): 33-34$ 。

Dosado. V.G., Geolingo; D. and Geolingo, R. (1976). Factore affecting yiold of sugarcone. I. Plant characters amoociated in the yield among high yialding varicties. proc. 2ht2ig. Lug. Tech. A• Com. 2g 64-75.

Ethirajen. A.S.(1965). Sveluation of plant attributes concemed with yield in sugarcane and aseassing their behaviour in succeeding clonal population. Thesis Univ. Madras: 119.
*Galvez, G. and Amador (1978). Study of yiold and somo its components in 22 cane varieties. ATAc. 37(6): 24-29 (Epanish).

George, E.F.(1962). An oxpertmant to comparo the selection of sugarcane varietios from seedilings bunch planted in two different ways and from others singly planted. Proc. Int. goc. Sug. cane goch. 31th Cong. 417.

Gi11. P. G. (1949).EEfect of manuros anc inrigation on the yield and quality of sugarcanc. Unpublished M.Sc. Thesis punjab Universtey。

Gupte. A.F. (2977). Method for assescment of sugarceno quality. Indian Sugnr crong Joumal. $4(4): 15$.

Hobent. L.P. (2957). Breeding bohaviour of certain agronomic charactors in progentes of sugarcane. Diss. Abstr. 27 : Publ No. 17: 444-463.

Hebert. L.P. (1965). Association between yield components and yield of sugarcane varieties in Louisiana. Proc. Int. Soc. Sug. Cona Tech. 22th Cong. $760-763$.
*Hebert, LeP. ant honderson, M. T. (1959). Breeding behaviour of certain agronomic charactors in progenies of sugarcene crosses. Uspa Tech. Eull.. NO. 1194: 54.
*Hogarth. D. ${ }^{\text {H. (2968). A reviou of quentitative genetics }}$ in plent breeding with particular reforence to sugarcane. Aust. Inst Aqric. Sci.e 3太
 genetic variance in sugarcane using factorial cross dasign. Grop scie. 21 (1): 21-25.

James N. I. (1971). Field corponents in rancom and delectea sugarcane populations Crop. Scis. 11 : 906-910.

Juang. P.Y. (2972). Ralationship between cane yield and the main charactere of ougarcanc. Annual report. Saiwan Sugar esperiment itation.
Kanmar Singh, Snguan, Re:", Shama, O.Re, Taneja, A. D.and Hooda. M. $\mathrm{H}_{\text {. (1979). Corfelation and path coefficient }}$ analyois in early maturing gonotypes in sugatcane. Ag. 81-Ag. 83 Hariyana Agri. Univ.Hisoar. Inaia.

Khairwal. Is. (1975). Studies on correlation and heritabiLity involving certain morphological and commercial charactera in sugerceno. M.Sc. Thesis. Hariyana fari. Univ., Hisear. India.

Khairwal, Is is and Dabu, C.N. (1975). Poth coefficient analyols of cano yield in augarcane. Inte soc. Sug. cane monh. Suqarcane Ereeders Hewslatter $36: 58$.

Thairwal. I*S. and Dabu, CoNe (1976). Estimetes of heritem blilty and its imglications in salection of ougarcane varieties. Int. EOc. Sug. Cane Fech. Suarcane Breociers' Newsletter 37: 32.
*Khaphaga, E.E., Eladawi, M.K., Elsmei, M. A., Nour, A. H. and Fayed. T.M. (1966). Correlation studies in sugarcane. Agric. Res. Rev.. Cairo. 44: 57-62.

Luna Luna, A. (1965). Stuay of some characters of the progeny in four crosses of sugarcane. Broc. Int. Soc. Sug. Cane. Tech. 12th Cong: 764-772.
*Lush. J.L. (1949). Animal breeding plans. Iowa State Press, Ames, Iowa pp. 473.

Lyrene. R.M. (1977a). Heritability of flowering in sugarcane. Crop. Sci.. 17(3): 462-464.
*Lyrene, P.M. (1977b). Juiciness as a yield component in sugarcane. Soil and Crop Science Society of Florida Proceedinge 36(9): 134-138.
Mangelscorf (1959). Genetic aspecta of yield decilne. Rroc. Int. Soc. Sug. Cane Tech. 10th Cong.: 72-76.

Mariotti, J.A. (197ia). Associations among yield and quality components in sugarcane hybrid progenies. Proc. Int. Soc. Sug. Cane Tech. 14th Cong.; 297-301.
*Mariotti, J.A. (1971b). Phenotypic association among characters at the first stage of selection in sugarcane. Revista Agronomica del Noroeste Argentino, $8(3 / 4)$: 327-340.
*Mariotti, J.A. (1971c). Heritability estimates of five hybrid populations of sugarcane in clonal plots. Revista Agronomica del Noroeste Argentino. $\bar{g}(3 / 4)$: 373-389.
*Mariotti. J.A. (1972a). Repeatability estimates and assoclations among characters of five hybrid sugarcane populations. Revista agronomica del Nocoeste Argentino. $g(2): 255-266$.
*dariotti, J.A. (1972b). Experiments on clonal selection of sugarcane in Jujuy province. I. Study of associations between characters. Revista Agronomica del Noroeste Argentino. $9(3 / 4): 573-583$.
*Mariotti. J.A. (1973). Clonal selection experiments in sugarcane. I. Realised heritability and sectorial heritability. Revista Agronomic del Noroeste Argentino. 10(1/2): 75-88.
*Mariotti, J.A." Scandaliaris, J. and Abregu, C. A. (1979). Selection for quality in sugarcane by means of Rexractometer brit. Boletin. Bstaccon Experimental Agricola de yucuman. 132: 11.

Martin, J.P., Wismer, C.A., Koike, it and Apt. W. J. (1959). Some Blological factors assoctatod with yield decline of sugarcane varieties in Hawaii. Proc. Int. Soc. Sug. Cane Tech. 10th Cong. 77-85.

Miller, J.D. and James, N.I. (1974). The influence of stalk density on cane yield. South African Sug. J.. 5g(5):12.

Miller, J.D. and James. N.I. (1975). Selection in six crops of sugarcane I. Repeatability of three characters. Crop. BCi. 15(1): 23-25.

viii

Panse, V.G̈. and sukhatme, p.V.(1954). Stetistical Methods Eor Agricultural workers. Indian Council of Agricultural Research, New Delhi.

Parthesarathy, S.V. (1972). Sugarcane in India. K. C. P. Ltd.. Madras.
*Punia and Mohinder Singh (1991). Path analysis for yield and quality attributes in sugarcane. Hariyana Agric. Univ. Hzssar, India.
*Quintus. N..A. (3923). Cultivation of sugaroane in Jawa.
Rajpal Singh (1965). Early high sugared variety. CoS. 541. Sug. Cane Her., 7: 1-4.

Ran Behari Lal. Mathur (1978). Handbook of cane sugar Technology • Oxford and IBH Publishing Co. Nes DB.jni, Bombay \& Calcutta; 483-484.

Ranbir singh (1981). Biometrical studies on yield and quality characters in sugarcane H.A.U. Hissar, India.

Rao, J.T. and Narsingham, R. (1963). Recent currents in sugarcane breeding, Ind. juge, $13(2)$: 135-137.

Rao. M.S. and Negi. N.S. (1956). Growth correlations in sugarcane. proce Int. Soc. Sug. Cane Tech. 9th Cong. 13-20.
*Rattan. P. (1951), studies on the effect of some agronomic factors on the ratoon crop of sugarcane in Punjab. M*Sc. thesis unpublished.

Richard. G.A.(1975). Genetic behaviour of sucrose content in sugarcane. Dissertation Abstracts International. B $36(4)$: 1535 B- 1536 B.

Roach, B.T. (1969). Duantitative efrects of hybridisation in Saccharum officinarum \times Saccharum spontaneum crosses. proc. Int. Soc. Sug. Cane Tech. 13th Cong. 939-953.

Sahi. B.K., Shah, E.S. and Patel. K.A. (1977). Variability in early varieties of sugarcane in plant and ratoon. crops. Inc. J. Genet \& El. Breed. 3 ' 7 (3): 496-500.

Shah, S.S.e Rajasekharan, S. and Venkataraman, M.R. (1966). Heritability of some characters in sugarcane. Inc. J. Genet. \& P1. Breed. 26(1): 107-11.
*Shen, I』S. (1967). Release of new cane varieties in Taiwan. Taitan Sug. 14(1): 7.

Simmonds (1967). Some potato breeding ideas applied to sugarcane. Int. Soc. Sug. Cane Techno. Breeders' News letter 19(3): 1-6.

Singh B. V. and Jain, R.P. (1968). Correlation stuaies in Sugarcane. Madras Agrice J. 5 55: 287-289.
singh, B.V. and Sangha, A.G.(1970). Correlation studies in sugarcane. Madras Agric. J., 57: 474-477.
singh H.N., Singh, H. H_{H}, Verma, P.S. and Singh, R.V. (1981). Correlation and path analysis in sugarcane. Ind. I. Agric. Res: $15(2)$: 126-130.

Stevenson, G. $\mathrm{C} .(1954)$. Reflection on the evolution of Hawail's philosphy of sugarcane breeding. Sugar $49(6):$ 51-56. 65.
*Stokes. I.E.(1935). A biometrical analysis of certain characters of Saccharum ofeicinarum L. A thesis submitted to Clvil Service Commssion, Washington, D.C.

Subbarao, K. S.. Kanaaswami, P.A. and Natarajan, B. V. (1962). Vigour as unreliable basis for selection of seedlings from seed pans for field plantings. proc. Int. Soc. Bug. Cane Techn. Mauritius. 11: 568-570.

Thuljaram Rao, J., Vijayalakshmi, U., Natarajan, B. V. and Krishnamoorthy, T.N. (1966). The genetic approach to selection of promising sugarcane varieties. Ind. Sug.. 19 (5).

Thuljaram Rao, J.. Krishmamoorthy T.N. and Natarajan, B. V. (1967). Heritability of economic characters in sugarcane and its implications in selection. Inci. Sug., (2): 153-161.

Varma, H.P.(1963). A study of certain correlations between yield and growth factors in sugarcane. Proc. 31st Ann. Coment. Sugar Tech. Ass. India. Pt.1: 33-41.
*Wodehouse, E.S.. Bose, S.K. and Taylor, C.S. (1915). The distinguishing features of sugarcane cultivated at Sabour with a note on the characterisation. Mem. Ind. Bot. Ser. 7(2).

Yang. T.C. and Chu, C.C. (1962). Stuales on combining ability in sugarcane hybrids. Roport of Taiwan Sug. Exp. Sta. (26): 1-10.

Sfpuendices

APPENDIX II
Details showing the characteristics of the finally selected clones

2	7	23.33	12.908	16.28	13.55	83.23	9.094
2	9	13.67	8.458	18.07	14.71	81.41	9.757
3	12	20.0	22.800	17.88	15.44	86.35	9.008
4	15	13.67	7.550	16.98	13.35	78.62	11.335
5	. 26	18.33	10.200	18.98	17.11	90.15	13.309
6	23	10.00	6.867	18.31	15.97	84.90	10.829
7	29	16.33	10.200	17.94	15.49	86.83	10.622
8	31	14.00	6.717	18.31	14.93	81.54	9.912
9	33	18.33	13.367	18.41	15.83	85.99	10*803
10	36	17.67	9.433	18.52	15.69	84.76	10:630
11	37	20.00	24.300	19.01	17.93	94.32	12.774
12	39	9.00	9.383	19.31	10.25	94.51	13.013
13	47	21.00	11.133	18.71	14.31	76.48	9.162
14	49	25.33	16.567	27.21	14.54	84.49	9.835
15	52	18.00	14.633	17.74	14.44	81.40	9.578
16	53	17.67	9.350	19.01	17.20	90.48	12.027
17	61	10.33	6.167	20.11	16.32	81.15	10.807
18	64	15.33	9.80	16.84	12.86	76.37	8.226
19	66	18.00	10.650	18.54	15.95	86.03	10.387
20	69	24.33	18.333	16.44	13.95	86.85	9.456
21	71	12.67	7.817	19.16	17.23	89.93	12.014
22	78	16.00	10.65	18.04	16.69	92.52	11.790
23	79	25.33	12.367	19.56	17.44	89.16	12.112
24	83	15.33	22.283	16.04	13.00	81.05	8.602

VARIABILITY AND HETEROSIS IN INTERVARIETAL HYBRIDS OF SUGARCANE [Saccharum officinarum L.]

BY
ALICE ANTONY

ABSTRACT OF THE THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE MASTER OF SCIENCE IN AGRICULTURE FACULTY OF AGRICULTURE KERALA AGRICULTURAL UNIVERSITY

Abstract

A Elold trial was conducted at Sugarcene Research Station, Tiruvalla, during 1981 with selected clones after screaning the hybrid progeny of the intervarietal cross Co 775 \% Co 453. The investigation was conducted with the object of selecting superior hybrids with economic attributes from the progeny possessing wide spectrum of Variability by avaluating genetic variability and asseasing the extent and magnitude of heterosis.

The preliminary studies on the seediling progeny proved its veriability for econonic attributes. Weight of cane per stool recorded the maximum coefficient of variation followed by number of shoots and number of millable canes per stool. This attribute hed positive correlation with all the yield components studied except i. R. Brix. Among the yiela components, number of millable canes establishad the closest association with cane yield.

High heritability was displayed by almost all the attributes assesced in the clonal population, the maximum being recorded by arrowing and as such these characters were less influenced by envicommental variations.

Further, the maximum coefficient of variation was also registered by the same attribute. The presence of sufficient amount of variability in the clonal population offered scope for exercising subsequent selaction. Cane yield and its components manifestad low coefficientes of veriation. Maximum genetic edvance was accounted by haight of cane. The clones selacted from the base population alaplayed significant aifference for the cheracters "studied. Along with this, the high heritability estimates for the charecters added considerable scope for selection within the population.

Correlation studies between the economic attributes inciatated that cane yield had positive correlation with . all the yield components and with the components of height, although the character registered negative correlation with H.R.Brix. Among the yield componerits, number of millable canes contributed the maximum to yield. Erom the present investigation, the contribution of number of millable canes to yield was presumed to be through height of cane on account of its positive asecciation with height and its componente single cane weight being another component of cane yield contributed to cane yield on account of girth and height.

Cane yield recorded negetive correlation with H.R.Brix and the results point towards the fact that as the piald increased, the quality components get decreased. This may be ascribed to the enhanced water content in the juice and consequent dilution of the quality components.

Heterosis studies revealed that the performance of the hybrids was promising. The hybrids manifested positive heterosis for all the characters studied except water shoot counts. Since the standarcis included in the trial were highly stabilized clones, a declino in hetorosis for H.R.Brix vas observed in the population. The hybrids displayed an oncouraging trend for number of millable canes. In the clonal population the superiority displayed by them for numier of internodes in the comparison with the stabilised varieties provide potentialities for subsequent improvement. Twenty four elite clones with economic attributes could be identified for further genetic improvement based on the present invostigation.

[^0]: * 4 significant at 1% level
 * significant at 5\% lovel

