OPTIMUM SIZE OF PLOTS IN COCOA (Jheobroma cacao L.) - A MULTIVARIATE CASE

THESIS

submitted in partial fulfilment of the requirement for the degree

Faculty of Agriculture
Kerala Agricultural University

Department of Statistics

COLLEGE OF VETERINARY AND ANIMAL SCIENCES Mannuthy - Trichur

Jo my loving parents

DECLARATIOH

I hereby declare that this thesis entitled" OPIIMOM SIZE OF PLOMS IN COCOA (Sheobroma cacao L.) - A MUITIVAFIATE CASE " is a bonafide record of research work done by me during the course of research and that the thesis has not previously formed the basis for the avard to me of any degree, diploma, associateship, fellowship or other similar title, of any other University or Jociety.

Mannuthy,

October 1987

Shula. M.A.
(SHEFLA.A.A.)

CERTIFICATE

Certified that this thesis, entitled " OPFIMUN SIZE OF PLOTS IH COCOA (Theobroma cacao.I) - A MULTIVARIATE CASE" is a record of research work done independently by sat. SHEELA. H.A. under my guidance and supervision and that it has not previously formed the basis for the award of any degree, fellowship, or associateship to her.

V.K.GOPHNATHAN UHNITMAH,

Chairman, Advisory Board, Associate Professor of

Agricultural Statistics, College of Horticulture.

ACKROULEDGEMENTS

With ereat respect and devotion I place on my deep Bense of prožouna eratitude to my guide Sri.V.K. Gopinathan Unnithan, Chairman of the advisory committee, Ascociate Profeesor of Aericultural Statistics, College of Horticulture, who not only supervised my work but also was the main motlvating force behind my efforts for completing this thesis.

I wish to exprese my sincere and whole hearted thanks to Dr. K.C. George, Profeanor and Head, Department of Statistics for his valuable guidance and encouragement through out the courac.

I wish to acknobledge the asaistance and timely advice provided by Bmt. P. Soudamini, Asst. Professor, College or horticulture.

I take this opportunity to express my indebtednees to Dr.R. Vikraman hair, professor (KADP) ; College of Horticulture and member of the edvisory comittee for providine the necebsary data and for the valuable suggeetions rencored by him.

I express my aincere thanie to the Dean, College of Veterinary and Animal Sciences, and Dean College of

Horticulture for providing the necessary facilities.

I am greatful to the Kerala Agricultural University for offering financial assistance in the form of fellowship.

I especially wish to thank Sheri. A. Jacob Thomas, Assistant Professor, Department of Statistics, College of Veterinary and Animal Sciences; and Smut. T.K Indira Bali, Sit. Gracemma Kurian and Smt.K.A Mercey, Asst. Professors of Agricultural Statistics, College of Horticulture, for their advice and assistance.

My thanks are extended to the staff, Department of Stastistics and to all my friends for their generous help and encouragements.

(STELA. MA)

GOHTENTS

IATRODUCTION	\cdots	1-2
REVIEN OF MITERATURS	-•	3-13
MATERTALS ABD mbthods	14-19
REGULTS	-••••*	20-66
DISCUS3ION	. $\cdot \cdots \cdot$	67-75
gumbary	-....	76-79
REfertaces	-......	80-83
ABGTEACS		

IIST OP TABLES

Teble Title Page
number
4.1 /s/, No. of trees \& replications required to gittain 5 关 error and efficiency for different sizes of plots \& blocks usine method I. 37
4.2 CV, No. of trees B replications required to attain 5% SE and efficiency for different Bizos of plots and blocks using wethod I. 39
$4.3 / \mathrm{s} /$, Ho. of trees \& replications required to attain 5d error and efficiency for different sizes of plote \& blocks using method II Qiemfer arranging with Trunk girth. 41
4.4 CV, No. of trees \& replications required to attain 5\% SE and efficiency for aifferent sizes of plots \& blocks using method II after after arranging with Trunk girth. 43
 attain 5% error and efficiency for difierent sizes of plote \& blocks uaing method II after arranging with Canopy spreed. 45
4.6 CV, No.of trees a replications required to attain 5% a 5 and efficiency for different aizes of plots \& blocks usine method il aituer arranging with Cenopy spread. 47
$4.7 / \mathrm{s} /$, No. of trees \& replioatione required to attain 5% error and efficiency for different sizes of plots $\&$ blocke using method III after arranging with crunk girth. 49
4.8 CV , Ho. of treet \& replications required to attain 5 SE and efficiency for different sizes of plots and blocks using method III after arrangine with trunk airth. 51
$4.9 \mathrm{~s} /$, No. of trees $\&$ replications required to attain 5% error and eficiency ror different sizes of plots and blocks uging method III after arranging with Canopy spread. 53
$4.10 \mathrm{CV}, \mathrm{No}$. of trees feplications required to attain 5 SE and efficiency for different sizes of plots and blocks using tethod III after arranging with Canopy epread. 55
4.11 Different models fitted to /s/ along with the R^{2} values for hethod 1 57
4.12 Different models itited to CV along with the R^{2} values ior hethod I. 58
4.13 Different models fitted to /S/ along with the R^{2} values for Method II after arranging with Trung girth. 59
4.14 Different models iltted to CV along with the R^{2} values for Method II after arranging with Trunk girth. 60
4.15 Different models fitted to /s/ alone with the f^{2} valuea for Wethod II after arranging with Canopy spread. 61
4.16 Different models fitted to CV along with the R^{2} values for Nethod II after arrangine with Canopy gpread. 62
4.17 Different models pitted to /s/alone with the R^{2} values for method III after arrangine with Trunk eirtin. 63
4.18 Difierent models fitted to CV along with the H^{2} values for hethod III apter arranging with Trunk girth. 64
4.19 Different models fitted to / / / glong with the R^{2} values $\mathcal{P} 0$ method III arter arrangine with Canopy spread. 65
4.20 Different models fitted to CV along with the R^{2} values for Method III after arranging with Canopy spread. 66

Introduction

IHTRODUCTIOR

The success of any tiold experiment very much demends on the amount of exparimental errer wich is a function of very many factors. The size and constitution or the experimental unit is a major factor contributine to the experinental error. Hence attention of reaearchers has been laid on determination of aise and constitution of the experinental units so as to ainimiae the experimental error within the avallable resources. All atrempts in the bethodology as well as its application to various crops have so Per been solely based on a single important character. But any orop is characterised by many characters and all oi then have to be considered while studyine it. In other worde, it will be more meaningful to deternine the ontimum gize of experimental unit based on simultaneone consideration of the various important characters of the crop.

Cocoa (Theobrona caceo F.) is a peremial crop that gains laportance, especially anong the Kerala farmers. It belong to the fasily ' Sterculiaceae ' and originated in the Amazon river basin in Drazil. Owing to its shade loving mature, it is raised as an intercrop in coconat gardene. Horeover, demand for cocon is on the increabe aue to the conpetetion that now exists in the market. Hence research on various aspets of the crop is being taken un extensively. Therefore determination or the
optimum size of plots for cocoa is all the nore imporiant.

Cocos is a cross fertilized crop, and genetic variability amone trees is predominant over environmental variance. Any attempt on the formation of experinental plote for cocoa has to talse this aspect also into considaration. Therorore the present investigation was taken up with the following objectives.
(1) To evolve a procedure to determine optimum size of plots, with respect to more than one character.
(2) To determine optimum size of plots for cocoa in multivariate cese with and bithout blocking uoing the procedure evolved.
(3) To compare the optimux so determined with that obtained with respect to a aingle variable in the case of cocoa.

Review of Literature

Reviev of hiterature

Any attempt on atermination of optimum aize of experimental units based on consideration of more than one character is not avallabie in literature. Even in the undvariate case, few work had been done in methodology, though the same had been extensievely used. A brief review of the york in methoiology as zell as its application is Eiven in this chapter.

nultivariate cose

Deterainant of the scatter aatrix had been used as a measure of variation in multivariate case by various research workers. Friedman and futin(1967), Gcott and Symons(1971b), Harriot(1971); Everitt(1979) and Surebh(1986) used the determinant of the acatter matrix as a measure of variation for clustering. Suresh(i986) used the detercinant of the patrwise scatter matrix sulso an a measure of distance between genotypes.

Univariate case

Smitn(1938) proposed the first theoretical model i.e., $V_{x}=V_{1} x^{-b}$ where v_{x} is the variance of the mean yield per plot based on the plote of x unita in aize, and b, the index of soll heterogeneity which lies between O and 1. A value of ' b ' nearer to one indicated that there was no significant correlation amone contiguous units, whereas a value in the nelghbourhood of zero indicated a strone
linear relationship betreen adjacent units.

Smith's equation in the modified form is given by $Y=a x^{-b}$ fhere Y is the coerfioient of variation per ploti based on plots of x unfts, ' a ' the coefficient of variation of plote of aize unity and 'b' an index of soil heterogeneity.

Srith's equation ves modified by Preeman(1963) as

$$
V_{x}=v_{1} / / x^{b}+v^{\prime \prime} / x \quad \text { where, }
$$

V_{X} is the total variance per plant of a plots oi' x units, V_{i} ' is the variance due to enviromment of plots of different- bise and $V^{\prime \prime} / x$ is the variance anong plants aithin plote of x units.

Hethods of estimation oz plot size

Maximum curvature method conaists of representing the relationehip between plot size and ccefficient of variation graphically by using a free-hand curve and choosing the size of the plot just beyond the point of maximut curvature as the optimum. Federer(1967) had pointed out two weaknesses of this method. They are (i) the relative costs of various plot sizes are not considered and (ii) the point of maximun curvature is not independent of the smallest unjt selected or the scale of measurement used.

> Prabhakaran and thomes(1974) on tapioca,
> Hariharan(1981) on brinjal and Lucyema(1986) on cahew and several others used this method to determine optimum
plot size.

Reghava Rac(983) suggested calculus rethod of determination of optimum plot size by meximising curvature. Gopalumaran(1984) used this procodure to find out the optiaum plot sige in turmeric. He found that optimum plot size was $3 \mathrm{~m}^{2}$ for conducting field trials on turteric. Lucyama(1986) uging thic procedure, found seven tree plote as optimum for field experimenta in cashew.

Sujth(1938) Eugeested that the optimum plot size for unguarded plots as $X_{o p t}=\mathrm{bk}_{1} /(\uparrow-b)_{k_{2}}$ where X is the number of besic units per plot, k_{1}-the cost ascociated with number of plots and K_{2} the cost associated with unit area, bthe index of soil heterogeneity.

Several workers such as sexene et al. (1972) on oat, Sreeneth(1973) on sorghum, Prebhekaran and Thomas(1974) on tapioce, Hariharan(1981) on brinjal, Gopakumaran(9984) on turneric, vorized out optimun plot aize using this approach.

Pearce and Thom(1950) conducted experiments in apple trees with no guard rovs. They observed that larger ploto Eave more information per replicate while smaller ones gave. more fnformetion per tree and obtained single tree plots as optimasi.

Optimum plot gise was also obtained by maximising information per unit area by various workers. Eutters(1964) used this procedure and found nine tree plote to be most
suitable for robusta coffee. Several workers like fenon and Tyagi(1971) on mandarian orange, Bharghava and Sardane(1975) on apple, Prabhakaran et al. (1978) on benana, Aharghava et al. (1978) on banana, Mair(1981) on cashev had tried this method. They found that single tree plots were the most eificient for conducting field trials on respective crops.

Pearce and Phom(1951) investigated the plot aize for experiments in cocos. They found that a plot should be as small as 0.15 acre for an acurate experiment.

Gomez (1972) aefined optimum plot sige as that which requires minimum experimental aaterial for a given precision.

Agarwal(1973) recommended ainele tree plot for apple as the best on the consideration of minimun experimental material for given precision.

Kalamar(1932a) defined efricioncy of a plot of x unite as $1 / X G_{X}$ where G_{X} is the coefejcient of variation of plots of x units.

Kripashanker et gil. (1972) found that eficiciency of the plot decreased fith increase in aice of the plot in the case of soyabean for any given shape of plot. He found that a plot of about $9 m^{2}$ with three replication was found suitable.

Prabhakaran and Thomas(1974) bad shown that erficiency of a plot decreased with an increase in size or the plot in the case of tapioca. similer results were obtained by Agarwal et al.(1968) on arecanut, Hariharan(1981) on brinjal, Gopakumaran(1984) on turmeric.

Jayaraman(1979) tried out Fairfield Saith method and Maximun curvature method and recommended a plot gize of $17.28 \mathrm{oq} . \mathrm{m}(7.2 \mathrm{~m} \times 2.4 \mathrm{~m})$ for conducting lield experiments in sunflower.

Lessman and Atrins(1963a) empirically found that $\log _{\mathrm{C}}=\mathrm{a}=(\mathrm{a}+\log \mathrm{X})^{\mathrm{b}}$ where C_{X} is the coefficient of variation of plots of x units, was superior to Smith's model i.e., $Y=a x^{-b}$ in the case of grain sorghum.

Gopalmaran(1984) worked out the following three nonlinear models for describing the relationship between coefitcient of variation and plot size x.
(i) $Y=a+b / \sqrt{x}+c / x$
(ii) $Y^{-1}=a+b \log x$
(iii) $\mathrm{Y}^{-1}=a+b \sqrt{x}+c x$

He found that the first model vas superior to smith's model, i.e., $Y=a x^{-b}$ in the cage of turmeric.

Koch and Rigney(1951) developed a method called variance component heterogeneity index method for eotimating plot aize by utiliaing data from actual field

Abstract

experiments with different treatments instead of conducting uniformity tirals. This method consisted in eatimation of different sizes by recongtructing the Arova of the specilied design and using these estimated variance for Sitting Smith's Iunction.

Eut Hatheway and Villiams(1958) pointed out that the method of Koch and Rigney (1951) often reaulted in inaccurate estimates of plot size because they assianed equal weights to the different components of variation even though they zere based on different degrees of freedom.

Sundararej(1977) proposed a technique for estimating optimum size and shape of plot from Pertilizer trial deta. The technique involved substraction of treatment effect from each observation and treating the resulting date as data from uniformity trial.

Formation of plots and blocks
Bhrikande(1958) observed that genetic variation between trees was more potential source of error than enviromental variation in coconut. This was besed on the assumption that genetic and environmental effects on the phenotype are additive and independent and that the average yield ' Y ' of a tree over an even number of consecutive years can be expressed as $Y=C+E$ where G is the contribution due to genotype, and E that due to environment.

He proposed three methods of plot formation to
control error variation. First metbod is to divide the land into compact blocks and within each block the adjacent trees are grouped together to form plots. This method aims at reducing within bloci variation, and increasing the betreen block variation, as far as 'E'component is concerned.

In second method the trees are arranced in deacending order of magnitude of totel yield for an even number of congecutive years. Suppose there are v treatments to be tried in k tree plots. The ordered trees are divided into groups of kv trees. these group of kv treen form blocks. In each block of ordered trees, apply v treatments at random to the first k trees, then to the next k trees and so on, till all the trees in the block ere exhausted. In each block, k trees recievine a treatment forme plot. This method aims at reducing within block variation and increasing the between block variation as far as the G component is concerned.

The two methods were combined into a third method as follows. First divide the land into compact block of kv trees. The trees within blocks are arranged accoraine to the total production per tree and plots are formed as in the second method. This method aims at reducine the within block variation, by making plots within compact blocks as homogeneous as possible for G components while compact blocks are used to control the environmental variation.

Jucyama(1986) tried formation of plots by selectine trees at random from the entire area.

Size and shape of the block

Abraham and Vachani(1964) observed that shape of the block did not have any consistent effect on block efficiency for experiments in rice.

Agarwal et al.(9963) found that blocking was not effective to control variation in arecanut. Similar results vere obtained by Abraham et al.(1969) on pepper, Kripashanker et al.(1972) on soyabean, Saxena et al.(1972) on oat, Sreenath(1973) on A.P. chari sorehum, Bist et al. (1975) on potato.

Bhargava and Sardana(1975) observed a decrease in etficiency of the experiment with increase in blocksize for apple trees.

Kaushik et al.(1977) observad that coefricient of variation increased with increase in block size for experiments in mutard. They aleo reported that, blocke elongated in east-gest direction vere able to reduce error to a ereater extent than those elongated in north-aouth direction.

Rambabu et al. (1980) coducted field trials on natural Erasslands in hills and found that O.V aecreased with increase in block aize.

Halr(1981) observed that two plot blocks were the most efficient for conducting field experimente on cashew. He also found that the efficiency oi blocking decreased with increase in plot gize.

Brar et al. (1983) investigated optimum plot aize for swoet orange and found that the efriciency of bloching decreased rith increanc in block size. They also found a relation between variation Y and plot size X i.e., $X Y^{[a}=K$.

Saraswathi(1983) found that tyo plot blocks were the most efficient for conducting field experiventa on coconut. She also found that the efficiency or blocking decreased with increase in plot aizo.

Gopalumaran(1984) Iound that two plot blocks were the most eficicient in controlline error in the case of turmeric.

Caliorating variables

Cheeaman and Pound (1938) reported eightfold increase in precision using the recorde for three-yeare yield prior to the experimental year in the case of cocos.

Pearce and from (1951) observed thet for analysio of covariance for cocoa, preceading two or four gears yleld was optimum to reduce error.

Ioncuorth and Freeman(1963) conducted experimente with cocoa trece and recomended girth as a calibrating variate
for young trees, and as a supplement to pre-treatment yield on mature trees.

Shrikande(1958) recommended calibration by two year's yield data when there is a biennial tendency for experiments with coconut.

Abraham and Kulkarni (1963) found that about two years data immediately prior to the experimental period as sufficient for covariance analysis in coconut.

Sen(1963) pointed out that calibration was most effective shen blocking was less effective. He found that there was little to choose between calibration and blocking as a means of allowing for known past differences for experiments on tea.

Butters(1964) found that stem diameters measured at the first internode on bearing stems, was of limited use as a calibrating variate for robusta coffee.

Agarval et al.(1968) reported positive correlation between the total yield of pre-experimental years with that of experimental year for arecanut . The highest correlation for yield was obtained with yield of two consecutiveer years.

Menon and Tyagi(1971) reported spread and height of the tree to be good for analysis of covariance.

Nair(1981) suggested selection index as an efficient calibrating variate for cashew.
Saraswathi(1993) found that analysis of covarlance was not effective in reduction of coefficient of variation when plots were forsed with negative intraclass correlation coefficient in the case of coconut.
Lucyamma(1986) recommended yield data of one year prior to the start of the experiment as a covariate for conducting experiments uith cashev.

Materials and Methods

haterials and methods

The material for the present study coneiats of 738 Forastero variety of cocoa(Theotroma cacao L.) planted in October 1979 with a spacing of 30×3 m in the Kerala hericultural Developeent project(KADP) farm, Vellaniskara of the Kerala Agricultural University. The crop was rafaed under rainfed conditions in the inter spacea of an existing rubber plantation. The manurial and cultural practices were done as per the package of practices recomondation of the Rerala Agricultural University.
observationa were recorded on the following three characters.

1. Yield.
liumber of pode harvested from December 1985 to November 1986 was recorded as yield for each tree. 2. Trunk girth

Trunk eirth was measured in at at 95 cm height for every tree.
3. Cancpy spread

North-Eouth and Eabt-Weet canopy opread were measured in cm for each tree and their arithmetic mean was recorded as the measure of canopy spread.

Methods

Individual trees are of prine icportance than groups of plents Zor conductine experiment in perennial crops.

Therefore the size of the experinental plot was considered in teris of the number of trees.

Measure of variation in multivariate cage.

Determinant of the dispersion matrix is in wide use as a measure of variation in multivariate case. But as in the univariate cage it depends on the unit of measurement as well as tho magnitude of the observations. Hence the ratrix of relative dasiapersion of the vecter variable

$$
\mathrm{x}=\left[\begin{array}{c}
x_{p} \tag{3.1}\\
x_{2} \\
x_{3} \\
\vdots \\
x_{p}
\end{array}\right]
$$

vas defined as $S=\left(S_{i j}\right) p p_{p}$
where $s_{i j}=\sum_{k=1}^{N}\left(X_{i k} X_{j k}-n \bar{X}_{i} \bar{X}_{j}\right) / n \bar{X}_{i} \bar{X}_{j} \quad i, j=1,2, \ldots \ldots n$,
$X_{i f}$ is the observation on $i^{\text {th }}$ character of the $k^{\text {th }}$ unit, \bar{X}_{i} is the mean per unit of the $i t h$ character and $\$$ is the total number of units.

Thus /S/ which is independent of unite of meaburement and magnitude of obeervations was proposed as the meagure of relative variation in fultivariate cese for determination of optimua giae of experimental unit.

Different methode of plot formation

Plets were formed-by 3 different methods and their efficiencies were conpared empirically. The different
methods of plot formetion with no blockine and with blocks of size 5, 10 and 15 are described below.

Method I

The whole set of trees were divided into compact blocks of required size and plots of one to 15 trees were formed by combining adjacent trees in the field. In the case of no blocking, the whole set of trees were considered as a single block.

Hethod II

All trees were arrenged in desconding order of magnitude of (1) the trunk girth and of (2) the apread separately and were divided into blocks of required size. Plota or one to 15 trees were iorted by combining adjacent trees in the list in each block for each arranement. For no blocking. the whole set of trees ware considered as a single block.

Mothod III

The treee were first erranged as cescribed in hethod II. Plots of different sizes were iormed by the zollowines procedure. Let there be $n k$ trees in a block. Divide the nk trees into ' n ' groupg of ' k ' trees bearing continous serial numbers each. When ' n ' is even, the ith plot vas rormed by combining ith tree from each of the first $\quad n / 2$ ' Eroupg and ($k-i+1$) attree from each of the remainine ' $n / 2$ '
groups. In other words the trees having serial number i, $i+k, i+2 k, \ldots \ldots . i+((n / 2)-1) k,((n / 2)+1) k-i+1, \ldots \ldots \ldots n k-1+1$ form $i^{\text {th }}$ plot in each block, where $i=1,2,3, \ldots \ldots .$.

When ' n ' is odd, $i^{\text {th }}$ plot vas formed by combining the $i^{\text {th }}$ tree from each of the first $((n-1) / 2)$ groups and $(\mathbb{k}-1+1)^{\text {pt }}$ tree from each of the remaining $((n-1) / 2)$ groups, where i=1,2,.....n. In other words the trees having serial number $1, i+k, \ldots . \quad i+((n-1) / 2) k,(((n+1) / 2)+1) k-1+1$, $(((n+1) / 2)+2) k-i+1, ~ n k-i+1$ form $i^{\text {th }}$ plot in each block, where $1=1,2,3, \ldots \ldots n$.

Determination of optimum plot size

Optimum sizes of plots were determined by three different approaches for different block sizes and for without blocking under each of the three methods of plot formation.
(1) Optimum plot size is the one which requires minimum experimental units for a specified precision.

Number of trees to achieve pa error

Multivariate case

Let

$$
X=\left[\begin{array}{l}
\overline{\bar{X}}_{p} \tag{3}\\
\overline{\bar{X}}_{2} \\
\cdot \\
\dot{\bar{X}}_{p}
\end{array}\right]
$$

be the mean vector for the p dimensional vector variable X for plots of bize 'r'. The relative dispersion matrix of $\overline{\mathrm{X}}$,
sey $D(\bar{X})$ is eiven by

$$
D(\bar{x})=\left(B_{i j} / r\right) \ldots \ldots(5 \cdot 4)
$$

Hence the determinent of ralative dispersion matrix is given by

$$
|\mathrm{D}(\stackrel{\rightharpoonup}{\mathrm{x}})|=|\mathrm{s}| / r^{p}
$$

Analoguous to fixing C.V at p level in univariate case, for P 哌 error in multivariate case,

$$
\begin{aligned}
& |S| / r^{p}=(P / 100)^{2 p} \\
& |S| 1 / p /(p / 100)^{2}=r \ldots(3.5)
\end{aligned}
$$

is the number of replications required to achieve pa error. In other words', the number of replications, r, to achieve P\% error has to be at least $|S|^{1 / P /(P / 100)^{2} \text {. however when }}$ the number of'replications so obtained was less than two, the seme was taken as two. The number of trees required to achieve Pfiorror was obtained by multiplying the number of replication with the corregponding plot aize.

Univariate Case.

The co-efficient of variation (cV) wae considered as the measure of variation. The number of replications, r, required to achive p standard orror wes determined as

$$
\begin{equation*}
r=(C V)^{2} /(P / 100)^{2} \tag{3.6}
\end{equation*}
$$

where CV refers to co-efficient of variation. The number of trees required to achieve P standarc error was obtained by nultiplyine the number of replications with the correaponding |'plot Bize.
(2) Efficiency of a plots of x unite was taken as $1 / x C V$ where CV is the coefficient of variation for plots of x trees in the univariate case and $1 / x \vee / \overline{/ s /}$ in the multivariate case. The plot, size which gave maximum value for efficiency was taken as the optimum plot size under this method.

(3) Method of maximum curvature

The following four models were rifted for / $/ \mathrm{s}$ against plot size in multivariate case and for CV against plot size in uvivariate case.

$$
\begin{array}{ll}
Y=a x^{b} & \cdots \cdots(3.7) \\
Y=a+b / \sqrt{x}+c / x & \cdots \cdots(3.8) \\
Y^{-1}=a+b l o g x & \cdots \cdots(3.9) \\
Y^{-1}=a+b \sqrt{x}+c x & \cdots \cdots(3.10)
\end{array}
$$

where, Y is, the $C V$ in univariate case and / $/ \mathrm{L}$ in multivariate case, and x the plot size. Optimum plot size was determined, by calculus method of maximum curvature for the best fitting model. Optimum plot size for model (3.7) was found to be

$$
x_{\text {opt }}=\left[(a b)^{2}(2 b+1) /(b+2)\right]^{1 / 2(b+1)}
$$

Optimum plot size for model (3.8) was obtained as the solution of the polynomial equation $1.875 b(\sqrt{x})^{9}+6 a(\sqrt{x})^{8}$
$-.375 b^{3}(\sqrt{x})^{3}-2.8125 a b^{2}(\sqrt{x})^{2}-7.125 a^{2} b(\sqrt{x})-6 a^{3}=0$
[Optimum plot size had to be calculated only for these two models.]

RESUITS

The date vere amalysed by the nethods deacribed in 'Materials: and Methods' and the results obtained are presented below.
4.1. Wethod I.
4.1.a gultivariate case.

The determinant of the relative dispersion matrix (/s/) of plote of aize ranging from one to 15 adjacent trees have been evaluated with no blocking and with blockes of size 5, 10 and 15 and are presented in mable 4.1. The number of trees required to achicve atmost ifve percent error along with the number of replications alons with efficiency for the different plot sizes were determined and are also preeented in Table 4.1. Pour models fitted for / / 'against plot size (x) alone with R^{2} value are given in the table 4.19
$/ S /$ decreased from $.47 \times 10^{-3}$ for single tree plots to $.82 \times 10^{-6}$ for 15 tree plota when blocking was not adonted. The minimun number oi treea required to achieve atoost five percent error ;was found to be for single tree plots. Single tree plots were also found to heve maximum efficiency. Amone the four models considered, \mathfrak{R}^{2} was highest for model (3.7) and vas 99\%. Optimum plot size determined froni the wethod of maximum curvature of this model was unity:-
/s/ had on over all decreasine trend with increase in size of plotes, though it was not regular when blockine was edopted.

In the case of five plot blocke, value of $/ \mathrm{s} /$ ranged fron $.5573 \times 10^{-5}$ to $.41 \times 10^{-8}$, The minimum number of trees required to achieve atwost five percent error was found to be for aingle tree plots. Nine tree plots kere found to give maximum efficiency. \mathbb{R}^{2} was highest for model (3.8) and was 73\%. Three tree plots were found to be optimum usine thie model.

In the case of 10 plot blocks, /s/ ranged from $.4279 \times 10^{-4}$ to $.6 \times 10^{-7}$ for 12 tree plots. Two tree plots were found to be optimum with respect to the number of trees regnired to eet five percent error. Beximum efficiency was for two tree plots. With an R^{2} value of 92%, model (3.8) was the best fitting one in thia case and optimum plot size detérained yas 16.

When blocks were formed uith 15 plote, $/ \mathrm{s} /$ ranged irom $.4726 \times 10^{-4}$ for single tree plots to $.12 \times 10^{-6}$ for 12 tree plots. The minimuiu number of trees required to get five percent error for single tree plots. Single tree plots were found to eive maximum efticiency. Noalel (3.a) had the highest n^{2} value of 86% and the corresponding optimum plot size was one.

4.1.b Univariate case.

The coefficient of variation (CV), of plots of size ranging from one to 15 adjacent trees have been calculated for yield, with no blocking and with blocke of size 5,10 and 15 and are presented in Table 4.2. The number of replications and trees required to achieve five percent stenderd error and efficiency for plots of different sizes are also given in the same Rable. Four models vere fitted in this case also and the details are given in Table 4.12.

CV decreased from. 873 for single tree plots to .400 for 15 tree plots when no blocking was adopted. The CV decreased with increase in plot size. The minimum number of trees required to achieve five percent $S E$ vas found to be for single, tree plots. Single tree plots also gave maximum efficiency. The highest A^{2} value of 99% vas recorded for models (3.8) and (3.10) and the corresponding optimum plot size for model (3.8) was found to be two.

When block size was five, $C V$ decreased from 0.822 for single tree plots to 0.150 for 45 tree plots. CV had an overall decreasing trend with increase in plot size, though it was not regular. The minimum number of trees required to get five percent se was found for 12 tree plots. Single tree plots had maximum efiriciency. The value. of R^{2} was highest 93% for model (3.8) and it gave an optimum plot size of unity.

When blocks of ten plots were foreec, $C V$ deoreased
from 0.854 for single tree plots to .137 for 15 tree plots. Generally CV was found Gecreasing with an increase in plot size, but for plot aizes $3,7,11,13$ andi4. The mirimum number of trees feqireá to get five percent SE . was found to be for 12 tree plote. Sinele tree plote had maximum efficiency. The value of n^{2} was highest 96%) for model(3.8) and optimum plot size wes one.

When block size was 15 , the CV decreasd from 0.800 for gingle tree plots to 0.157 for 12 tree plots and then increaad to $: 251$ for 15 tree plots. CV decreased with increase in plot aize except far $4,11,13$ and 15 tree plots. The minimum number of troes required to get five percent SE was found to be sor 10 tree plote. Single tree plots had maximum efficiency. R^{2} vas hichest (94\%) for model $(3,8)$ and optimum plot size was one.
4.2. Bethod II'

The trees were arranged in descending order of megnitude of trunt girth and of canopy gpread separately and plots were formed by combining trees adjacent in the 11st.

4.2.1. Arrangement by trunk girth

 4.2.1.a Pultivariate case/a/ of piots of nize varying from one to 15 trees have been calculated with no blocking and with blocks ci

Gige 5,10 and 15 and are given in Tabia 4.3. The number of replicatione required to get five percent error alone With the correanding number of trees and efficiency are also provided in the mathe pable. The four modals fitted and f^{2} are given in the Table 4.13.
$/ 6 /$ decresed from 0.00047 for single tree plote to 0.348×10^{-5} for 15 tree plote when no blocking was adopted. The minitum nuber of trees reguired to get tive percent error ves for single tree plots. Bingle tree plots alao hed maximu efficiency. hodel (3.8) sac found to be the best fit with an R^{2} value of 99% and three tree plots was found to be optimun from this nodel.

When the block gige was five, value of / S/ decreaced from . 00742 to $.103 \times 10^{-6}$. /s/ was found aecreasing uith increase in plot aige except for $3,6,8$ and 12 tree plotis. The minimum number of treas required to eet five percent error was found for two tree plots. Pwo tree plots also had maximum eficiency. R^{2} value was higheat (95\%) for model (3.8) and optimum plot aize for this model was 13.

When the block sige was $10,13 /$ decreased from 0.00465 for aingle tree plota to 0.420×10^{-6} for 15 tree plots. /S/ was, found abcreasing with incrase in piat aize except for $\varepsilon^{\prime}, 12$ and 13 tree plots. The ainimute number of trees required to get five percent error whe found for 11 tree plots. It was found that 11 tree plota also had maximum eficiency. f^{2} value was nighest (90%) for
model (3.8) and optimu plot size for thie model was 10.

When block aize vas $15, / 5 /$ decreaned from 0.00486 for single tree plote to 0.157×10^{-5} for 15 tree plots. /s/ was found to decrease with increase in plot gize except for 8 and 12 tree plota. The minimum number oi trees required to achiove five percent error was found for 11 tree plots. Eleven tree plots also had maximum efficiency. R^{2} velue was hifhest (99\%) for model (3.7) and ontimum plot size using thig model was one.

4.2.1.b Univariate case

The CV of plots of size ranging frow one to 15 adjacentrees have been calcuated, for yiold with no blocking and with blocka of aize 5, 10, and 15 and are given in Table 4.4. The number of trees required to achieve five percent SE along with the number of trees needed are given. Efficiency was found out for different plot sizen and are given in the same Table. Pour models were ritted and the detaile are given in Table 4.14.

CV decreased irom . 873 for single uree plots to .413 for 15 tree plots when no blockine wha adopted. The minimum number, of trees required to achieve ifve percent SE was for single tree plota. It was found that maximum eficiciency also' was for single tree plots. Model(3.8) gave the best fiti with 98% value for R^{2}, and single tree plot as optimum.

When block size was five, the cy decreased fron 1.348
for single tree plots to .270 for 11 tree plots. In general, oV had a decreasing trend with increase in plot Gize, but for $4,5,0,10,12,14$ and 15 tree plote. The minimum number of treeg required to get five percent error was for nine tree plote. Tro tree plots were found to give maximas efficiency. R^{2} wae highest (89%) for model (3.8) givine an optimum plot aize of unity.

When blocke of ten plote were formed, $C V$ decreased from 1.050 for eingle tree plots to .268 for 13 tree plote. Generally, CV was found uecreasing with increase in plot aize except por plot aizes $4,12,14$ and 15 . The minitura number of trees required to get five percent error was Lound to be for 13 tree plots. Single tree plots were found to provide maximum efficiency. The highest value of R^{2} (97\%) was for model (3.8) elving an optimum plot size of one.

In the case of block size 15, cV decreased from 1.245 for single tree plots to . 29 f for 15 tree plots. In general cV decreased with an increase in plot size except For 4,8 and 12 tree plota. The minimum number of trees regired to get five percent error was round to be for six tree plots. jingle tree plots had maximum efficiency. The value of n^{2} was highest (975) for model (3.8) givine on optisum plot gize of unity.

4.2.2. Arrancement by canopy syread.

4.2.2.a Multivariate case

/3/ of plots of aize varying from one to 15 treea have been calculated uith no blocking and with blocks of sizes 5,10 and 15 and are eiven in table 4.5. The number of trees required to achieve ilve percent error along with the number of replications and efficiency for different plot sizes are also eiven in the same Table. Four models fitted along with R^{2} values are Eiven in the Table 4.15.
$/ \mathrm{s} /$ decreased from $.47 \times 10^{-3}$ for single tree plots to $.238 \times 10^{-5}$ for 15 troe plots. /s/ was found to decrease with increase in plot gize. The mininum number of trees required to get five percent error was found to be for single tree plots. Single tree plots were found to give maxirum efficiency. Hodel (3.8)was the best fit with 99\% R^{2} and three tree plotg as optimum.

When block size was five, /s/ decreased from $.556 \times 10^{-2}$ for single tree plots to $.4 \times 10^{-7}$ for 15 tree plots. /s/ had an over all decreasing trond with increase in plot size, though it was not regular. The minimum number of trees required to get five percent orror was found for two tree plots. It was found that two tree plots also gave maximum efficiency. Model (3.8) was the beat fit with $94 \% R^{2}$ and single tree plots as optimum.
for single tree plots to $.100 \times 10^{-5}$ for 15 tree plots. /S/ was found to be decreasing with incraage in plot alen, but fior plot gizes 8,12 and 13. The minimum number of trees required to get five percent error was found to be for single tree plots. Six trea plots were found to be optimum with reapect to maximum efficiency. fodel (3.8) was found to be the best fit with on R^{2} value of g9\%s. Four tree plots were round to be optimum from this model.

When block size was $15, / 8 /$ decreased frou. 96×10^{-3} for sincle tree plots to $.151 \times 10^{-5}$ for 15 tree plots. /s/ decreased with increase in plot sise, but for 7,10 and 13 tree plots. ${ }^{\text {. The minimum numer of trees required to get }}$ five percent error was found to be for six tree ploto. Six tree plots were aiso found to give maximum eificiency. B^{2} was highest for model (3.8)with 99\% n 2 and four tree plots as optimum.

4.2.2.b Univariate case

CV of yield determined for different plot sises are etven in Table 4.6. The minimum number of trees required to achieve sive percent $S E$ alone with the corresponding number of repiications are also provided in the same Table. Efficiency found for different plot sizes are also provided in Table 4.6. Four models fitted and the R^{2} values are Eiven in the Table 4.16

CV decreased iron . 873 for single tree plote to .443
for 15 tree plote. The minimunamber of trees reqired to
get five percent $S F$ was found to be for single tree plots. Single tree plots also provided maximum efficiency. Modele (3.8) and (3.10) fitted the data best with $99 \% R^{2}$ and model (3.8) enve an optimua plot siac of unity.

When block size was tive, CV decreased from 1.022 for single tree plots to . 200 for 15 tree plote. It had an over all decreasing trend, though was not regular. The number of trees required to achievo five percent $S E$ was found to be for 15 tree plots. Maximum efficiency was found to be for gingle tree plots. The value of R^{2} was highest (85%) for models $(3.7) \&(3.8)$ and two tree plota as optimum in the case of model (3.8.)

When block gize tas 10 , 67 decreased from .938 for two tree plots to .232 for 11 tree plots. CV was found to decrease with increase in plot aize, though it was not reguler. The minimum number of trees required to achieve five percent $S \mathrm{E}$ was found to be for 11 tree plots. Single tree plots was found to provide maximm officiency, Hodol (3.8) Gave the bost fit with $93 \% \pi^{2}$ and three tree plot an the optimum.

When block size was 15, CV decreased from. 640 for single tree plots to .290 for nine tree plots. $C V$ had an over all decreasing trend with increase in plot sise, but it was not regular. The ainimum number of trees reguired to achieve five percent $S E$ feg found to be for six tree plots. Single tree plots was found to be optimum with
respect to maximum efficiency. Model (3.8) was the most fitting one with $86 \% \mathrm{R}^{2}$ and an optimum plot eize of unity. 4.3. Method III

The trees were arranged in a descending order of magnitude of trunk girth and of canopy spread geparately and plota wre formed as deseribed in 'hateriels and Methods' 4.3.1 Arrangement by Trunk girth.
4.3.1.a Hituvariate cage.
/s/ of plots of size varying from one to 15 trees have been calculated with no blocking and with blocks of 5,10 and 15 and are given in table 4.7. The number of replications required to get five percent error along aith the corresponding number of trees and efficiency for different plot; sizes are also provided in the same teible. The four models fitted and R^{2} value determined for each model are given in the rable 4.17.
/3/ decreased from . 00047 for sindie tree plots to $.7 \times 10^{-9}$ for 15 , tree plots when no bloclsine was adopted. The minimum number of trees required to get five percent error was found to for two tree plote. Bleven tree plots had maximum efficiency. Model (3.8) was found to be the best fit with an R^{2} value of 95\%. Fourteen tree plots found to be optimuin using this model.

When block sige was five, /s/ decreased from . 0074 for
single tree plots to 1×10^{-8} for 15 tree plots. /s/ was found to be decreasing with increase in plot size, but for plot sizes 5,11 and 14. The minimum number of trees required to get five percent error was found to be for six tree plots. Fifteen tree plote were found to provide maximum efficiency. The value of R^{2} was highest (97%) for model (3.7) and optinum plot size was one.

When block size was $10, / s /$ decreased irom . 0046 for aingle tree plots to $.12 \times 10^{-7}$ for 15 tree plots. /s/ was found to decrease with increase in plot size except ior six tree plots. The minimum number of trees required to achieve five percent error was found to be for five tree plots. Thirteen tree plots were found having maximum efficiency. R^{2} was highest (98%) for nodel (3.7) end single tree plots were found to be optitum using this model.

In the cave of 15 plot blocks, /s/ decreased from .0044 for single tree plota to $.14 \times 10^{-7}$ for 15 tree plots. /s/ decreased with an increase in plot size. The minimum number of trees required to echieve five percent error was found to be for eight tree plots. Fourteen tree plots were found to provide maximum efficiency. Hodel (3.7) was the best fit uith en R^{2} value of 99% and optimum plot size froa this model was unity.

4.3.1.b Univariate case.

The CV for plota of size varying one to 15 trees have
been determined ror yield with no blocking and with blocks of sizes $5 ; 10$ and 15 and are given in the Table 4.8. The number of revlications required to achieve five percent 3s along with the number of trees neoded aro also given in the same Tablo. Eificiency deterained for difierent plot sizes are also provided in the same Tabla. pour nodels ritted and n^{2} determined for each model are provided in the Table 4.18.

OV doereaed from 0.375 for aingle iree plots to .226 for 12 tree plots in the case of without blockine. CV was found to docrease with increase in plot size, except sor 7,13 and 14 tree plots. The miniman number cf trees required to achieve live percent gis was found to befior six tree plots. Single tree plots were found to be optimum with reopect to efficiency. The highest(99j) p^{2} was recorded for model (3.a) and the corresponding optimum plot aize was round to de one.

In the sase of block size five, the $C V$ decresed from 1.340 for sinfle tiree plots to 0.140 for 12 tree plote. Generally it was found that $C V$ decreesed with increase in plot size, but for plot sizes 3,4,10 and 13. The minimua number oi treet required to achieve fivepercent bir we found to be for 12 tree plota. Hiximum efficiency koo found to be for two tree plots. With an ri^{2} valuo of eevi model (3.10) was the beat fitting one in this case. optimum plot slee determined res two using model (3.8).

Por blockr of gize ten, CV docreased from 1.050 for aingle tree plots to 0.217 for nine trec plote. Generally the ct decreased with an increase in plot size except for plot sizeo $2,6,10,11,13$ and 15 . The win!mum number on treeo required to achieve iive percent $9 R$ was found to be for nine tree plots. Foximum efficiency was found to be for single tree ploto. fodel (3.7) had the highost R^{2} velue of 92% and the correaponding optimum plot oize was one.

In the case of block size 15, CV decreased from 1.240 for single tree plots to. 0.227 for 14 tree plots. ov was found to decrease with increase in plot siae except fot plot sizes $5,11,12,13$, and 15 . The minimum number of trees required to achieve five percent $3 E$ was found for 10 tree plots. Single tree plots was found to provide maximum efficiency. R^{2} was highest for models $(3.0) E(3.10)$ and it was 99\%. Single tree plots was found to be optimum usine $\operatorname{model}(3.8)$.

4.3.2 Arrangemont by canopit apread.

4.3.2.a Aultivariate cage.

/s/ of plota of sime varyine from one to 15 trees heve been calculated fith no blocking and with blocks of eises 5, 10 and 15 and are given in the table 4.9. The number of replications required to achieve five percent error along with the number of trees and efficiency for difrerent plot gizas are also given in the same table. Four models
fitted for /E/, against plot sizes along with R^{2} values are given in the table 4.19.
/s/ decreased from . 00047 for single tree plots to $.9 \times 10^{-9}$ for 15 tree plots in the case of vithout blocking. /S/ decreased with increase in plot size. except for seven and 13 tree plots. The minimum number of trees required to get five percent error wes found to be for four tree ploto. gix tree plots vere found to provide maximum efziciency. The best fitting model (3.7) uith an $R^{2}(96 \%)$ had single tree plots as optimum.

When block size was five, /S/ decreased from . 0055 for single tree plots to $.14 \times 10^{-3}$ for 15 tree plots. $/ \mathrm{s} /$ decreased with increase in plot size except for 13 tree plots. The minimum number of trees required to get $5 \%^{\prime}$ error vas found to be for six tree plota. Tyelve tree plots vere found to provide waximum efficiency. R^{2} wes highest (96%) for model (3.7) and single tree plote was optimum.

When block of 10 plote were considered, /s/ decreased from . 00111 for single tree plots to $.41 \times 10^{-9}$ for 15 tree plots. The ainimum number of trees required to achieve five percent error was found for seven tree plots. Firteen tree plots were iound to give maximum efficiency. Model(3.7) was the best fit with $90 \% R^{2}$ and single tree plots as optimum.

Tor blocks of size $15, / 3 /$ decreased from .00096 tor
single tree plots to $.9 \times 10^{-9}$ for 12 tree plotis. $/ \mathrm{s} /$ was found to decrease with increase in plot size except for nine tree plots. The minirum number of trees required to get five percent error was for six tree plots. Phirteen tree plots gave maximum efficiency. π^{2} whe hicheot (99%) for moàl (3.7) giving an optirum plot size of unity. 4.3.2.b Univariate case.

CV wẹs determined for yield for different plot gizes and was given in the Table 4.10. The number of trees required to achieve five percent SE along with the efficiency for different plot aizes are also provideã in the same Table. Four modele fitted and the detalls are given in the riable 4.20.

CV decréased from . 873 for sinele tree plots to .181 for 15 tree plots when no blockine was adopted. $C V$ was found to decrease with increase in plot size except for plots of $7,9,11$ and 14 trees. The minimum number of trees required to achieve five percent $S E$ was found for 15 tree plots. Single tree plots were found to have maximum efficiency. Model (3.8) was the best fit with $98 \mathrm{~g}_{\mathrm{f}} \mathrm{R}^{2}$ and six tree plote as, the optimum plot size.

When block aize vas ifive, CV deoreased from 1.022 for single tree piota to . 115 for 11 tree plots. CV decreaced with increase in piot size, but for $6,7,8$ and 13 tree plots. The ainimum number of trees required to
achieve five percent SR vag for 12 tree plots. Five tree plots vere found to sive maximum efficiency. Model (3.8) was the best fit with $91 \% \mathrm{R}^{2}$ and single tree plots as optimum.

When block olze was 10, CV decreased Erom 803 for single tree plots to . 174 for 12 tree plota. The CV was found to be decreasine with increase. in plot size except for 4,5 and 14 tree plots. The minimum number of trees required to achleve five percent 92 was found to be for three tree plots. Single tree plots were found to provide maximun efficiency. R^{2} was highest (85%) for model(3.8) providing an optimum plot size of one.

When block aize was 15 , CV decreased from 840 for ginele tree plote to. 167 for 15 tree plote. $C V$ was found to be decreasing vith increase in plot aize except for $4,9,10$ and 14 tree plots. The minimum number oftrees required to achieve five percent $S E$ was found to be for 15 tree plotz. Single tree plotg were found to give maximum efficiency. R^{2} was highegt (96解) for model (3.8) providing an optimun plot size of one.

Table. 4.1.
/S/, Bo. of treee \& replications required to attain 5% error and efíiciency for different sizes of plots $\$$ blocka using method I

$\begin{aligned} & \text { Plot } \\ & \text { size } \end{aligned}$	Without blocking				5 plot blocls			
	$/ \mathrm{s} / \times 10^{5}$	\%o. Repl cati for erro	No. tre for err	$1 \times \sqrt[3]{19}$	$15 / \times 10^{7}$	Ho. Rep cat tor err	110.of treen Por 5 error	$1 / \times \sqrt[3]{/ 8 /}$
1	47.477	29	29	12.86	34.760	6	6	66.50
2	8.295	17	34	11.51	55.739	7	14	28.32
3	3.110	13	39	10.61	28.781	6	18	23.64
4	1.768	10	40	9.72	4.180	3	12	33.65
5	1.019	9	45	9.28	11.043	4	20	19.37
6	0.736	8	48	8.59	0.633	2	12	41.88
7	0.453	7	49	8.65	11.444	4	28	13.83
8	0.313	6	48	3.57	0.282	2	16	41.16
9	0.272	6	54	7.97	0.041	2	18	69.99
10	0.249	5	50	7.46	3.000	3	30	14.93
11	0.198	5	55	7.34	0.268	2	22	33.60
12	0.147	4	48	7.45	0.176	2	24	32.40
13	0.130	4	52	7.05	0.574	2	26	19.98
14	0.119	4	56	6.92	0.586	2	28	18.45
15	0.082	4	60	7.12	0.215	2	30	24.16

Table. 4.1 (cont.....)
$/ \mathrm{s} /$, Ho. of treeo \& replicatons required to attain 5% error and efficiency for different sizes of plots \& blocks using method I

Table. 4.2 (cont.....)
CV, No. OP trees ceplications required to attain 5\% SE and efficiency for different sizes of plots and blocks using method I.

Table. 4.3
/s/, ilo.of trees \& replications required to attain 5\% error and efficiency for different sizes of plots \& blocks using method II arter arranging with Trunk eirth

Table. 4.4
CV, Mo.of trees roplications required to attain 5 5 BE and efficiency for different sizes of plots \& blocks using method II after arranging with Trunk girth

Table. 4.5
/s/, No. of trees $\&$ replications required to attain 5% error and efficiency for difierent sizes of plots and blocks using method II efter arramging vith Canopy epread

Table. 4.5 (cont......)
/S/, Ho. of trees \& replications required to attain 5 体 error and efficiency for different sizes of plos \& blosks using method II after arranging with Canopy spread

Table. 4.6
CV, Ho.of trees \& replications required to attain 5\% SE and efficiency for different sizes of plote \& blocks using methou II after arranging with Canopy spread

$\begin{array}{ll} \text { Plot } \end{array}$	CV	$\begin{aligned} & \text { hout b } \\ & \text { Ho.of } \\ & \text { Repli } \\ & \text { catio } \\ & \text { for } \\ & \text { SEE } \end{aligned}$	locking - Mo.0f trees \% for 5\% SE	1/xCy	CV^{5}	ot bloc No. of Repli- cation for 5% ${ }_{\text {SE }}$	Mo. 0 f trees for 5 SE	$1 / \mathrm{xCV}$
1	0.873	305	305	1.14	1.022	418	418	0.97
2	0.693	192	384	0.72	0.668	178	356	0.74
3	0.611	149	447	0.54	0.662	175	525	0.50
4	0.573	131	524	0.43	0.860	296	1184	0.29
5	0.545	119	595	0.36	0.622	155	775	0.32
- 6	0.513	105	630	0.32	0.380	58	348	0.43
7	0.511	104	728	0.27	0.353	50	350	0.40
8	0.483	93	744	0.25	0.424	72	576	0.29
9	0.470	E8	792	0.23	0.359	52	468	0.30
10	0.468	88	880	0.21	0.331	44	440	0.30
11	0.459	84	924	0.19	0.276	30	330	0.32
12	0.455	83	996	0.18	0.324	42	504	0.25
13	0.454	82	1066	0.16	0.281	32	416	0.27
14	0.465	86	1204	0.15	0.234	22	308	0.30
15	0.443	78	1170	0.15	0.200	16	240	0.35

Table. 4.7

 after arranging with prunk girth

Tatle. 4.7 (cont....)
 exifuiency for ditierent sizes of plote \& blocits usine method II aiter arrangins with Trunk girth

$\begin{aligned} & \text { Plot } \\ & \text { size } \end{aligned}$	$/ 5 / \times 10^{6}$	plot No. Repl cat for erro	ck No. tre for err	$1 / \times \sqrt[3]{13 /}$	$1 \mathrm{~s} / \times 10^{6}$	15 plot Mo. of Replication for 5% error	block illo. of trees Sor 5\% error	$1 / \times 3 / \sqrt{13}$
1	4651.252	67	67	5.99	4468.878	66	66	6.07
2	308.848	27	54	7.40	154.357	$2!$	42	9.32
3	12.136	9	27	14.55	21.734	11	33	12.08
4	2.020	5	20	19.84	4.102	-6	24	15.61
5	0.356	3	15	28.37	2.328	- 5	25	15.15
6	0.404	3	18	22.62	0.729	4	24	18.59
7	0.319	3	21	21.10	0.388	3	21	19.72
8	0.243	2	16	20.11	0.162	2	16	23.02
9	0.103	2	10	23.93	0.085	- 2	19	25.27
10	0.080	2	20	23.20	0.058	2	20	25.83
11	0.044	2	22	25.75	0.058	2	22	23.48
12	0.029	2	24	27.12	0.031	2	24	26.52
13	0.017	2	26	29.94	0.030	2	26	24.75
14	0.014	2	28	29.63	0.016	2	28	28.34
15	0.012	2	30	29.11	0.014	2	30	27.66

Table. 4.8
CV, No. of trees t replications recuired to achieve 5% and efficiency for different sizes of plots and blocks usine method II after arranging with Trunk girth

Plot size	Without blockinsFo.ofETepli- Ho.ofcation treesfor 5% Tor 5%SE SE			9/XCV	${ }_{c v}^{5}$	bt block Mo. of Replication for 5\% 82	no.of trees for 5s: 35	1/xCV
1	0.873	305	305	1.14	1.348	727	727	0.74
2	0.568	130	260	0.38	0.502	101	202	0.99
3	0.449	81	243	0.74	0.755	228	684	0.44
4	0.396	63	252	0.63	0.342	284	1136	0.29
5	0.356	51	255	0.56	0.797	254	1270	0.25
6	0.302	36	216	0.55	0.713	203	1218	0.23
7	0.313	39	273	0.45	0.452	82	574	0.31
8	0.277	30	240	0.45	0.372	55	440	0.33
9	0.269	29	261	0.41	0.275	30	270	0.40
10	0.263	28	280	0.38	0.297	35	350	0.33
11	0.246	24	264	0.36	0.187	14	154	0.48
12	0.226	20	240	0.36	0.140	6	96	0.59
15	0.230	21	273	0.33	0.183	14	182	0.42
14	0.233	22	303	0.30	0.174	13	182	0.41
15	0.227	21	315	0.29	0.149	9	135	0.44

Table. 8 (cont....)

$\begin{aligned} & \text { Plot } \\ & \text { size } \end{aligned}$	CV	plot Ho. Repl cati for SE	ock No.of trees for 5 SE	$1 / \mathrm{xCV}$	CV	15 plot bockHo.ofRepli-No.ofcationfreer 5%SESOr 5%		$1 / \mathrm{xCV}$
1	1.050	441	441	0.95	1.240	615	615	0.80
2	1.140	520	1040	0.43	0.848	288	576	0.58
3	0.645	166	498	0.51	0.620	154	462	0.53
4	0.528	112	448	0.47	0.426	73	292	0.58
5	0.340	46	230	0.58	0.438	77	385	0.45
6	0.356	51	306	0.46	0.357	51	306	0.46
7	0.320	41	287	0.44	0.324	43	301	0.44
8	0.302	37	296	0.41	0.314	40	320	0.39
9	0.217	19	171	0.51	0.255	26	234	0.43
10	0.242	23	230	0.41	0.240	23	230	0.41
11	0.245	24.	264	0.37	0.248	25	275	0.36
12	0.232	22	264	0.35	0.250	26	312	0.33
13	0.233	22	286	0.33	0.256	26	333	0.30
14	0.222	22	286	0.32	0.227	21	294	0.31
15	0.247	24	360	0.26	0.230	21	315	0.28

Table. 4.9
/S/, No. of trees \& replications required to attain 5% error and efficiency for different sizes of plots and blocks using method III after arranging with Canopy spread

$\begin{aligned} & \text { Plot } \\ & \text { size } \end{aligned}$	/s/×10 ${ }^{\text {With }}$	hout bloc Nio. of Replication for 5% error	ocking Ho. 0 : trees for 5, error	$1 / \times \sqrt{/ 5 /}$	$1 / 3 / \times 10^{7}$	ot bloc Ho.of Repli- cation for 5\% error	190.01 trees for 5% error	$1 / \times \sqrt[3]{/ 5 /}$
1	4747.535	29	29	12.86	55654.743	70	70	5.64
2	20.438	5	10	39.68	196.948	11	22	18.54
3	11.935	4	12	32.29	166.452	10	30	13.06
4	1.785	2	8	53.86	47.264	7	28	14.92
5	1.221	2	10	43.08	4.650	3	15	25.90
6	0.159	2	12	77.35	2.019	2	12	28.49
7	0.421	2	14	41.77	1.803	2	14	25.30
8	0.081	2	16	36.55	1.275	2	16	25.34
9	0.077	2	18	58.08	0.340	2	18	34.29
10	0.044	2	20	62.99	0.144	2	20	41.49
11	0.039	2	22	63.03	0.048	2	22	57.26
12	0.026	2	24	66.14	0.007	2	24	90.90
13	0.032	2	26	53.33	0.018	2	26	76.92
14	0.022	2	28	56.69	0.014	2	28	71.42
15	0.009	2	30	69.44	0.014	2	30	66.66

Table. 4.9 (cont......)
$/ \mathrm{S} /$, No. of trees \& replications required to attain 5% error and efficiency for different sizes of plots \& blocks using method III after arranging with Canopy spread

Plot size	$\begin{array}{r} 10 \\ / \mathrm{S} / \times 10^{6} \end{array}$	plot blo No.of Replication for 5% error	ock No. of trees for 5\% error	$1 / \times \sqrt[3]{1 \mathrm{~s} /}$	$/ \mathrm{S} / \times 10^{6}$	15 plot No.of Replication for 5% error	block No. of trees for 5% error	$1 / \mathrm{x} / \mathrm{s} /$
1	1119.507	42	42	9.63	961.715	39	39	10.13
2	100.913	19	38	10.77	25.145	12	24	17.09
3	3.857	6	18	21.36	2.860	6	18	23.64
4	2.556	5	20	18.42	0.751	4	16	27.51
5	1.644	5	25	17.09	0.395	3	15	27.37
6	0.592	3	18	19.87	0.182	2	12	29.51
7	0.114	2	14	29.81	0.105	2	14	30.77
8	0.098	2	16	27.11	0.034	2	16	38.58
9	0.047	2	18	30.78	0.035	2	18	33.96
10	0.029	2	20	32.54	0.026	2	20	33.75
11	0.021	2	22	32.95	0.016	2	22	36.07
12	0.010	2	24	38.67	0.009	2	24	40.06
13	0.010	2	26	35.70	0.006	2	26	42.33
14	0.010	2	28	33.15	0.006	2	28	39.30
15	0.004	2	30	41.99	0.005	2	30	38.98

Pable. 4.10
CV, Ho.of trees \& replications required to achieve $5 \& \operatorname{se}$ and efficiency for different sizes of plots a blocks using method III after arranging with Canopy spread

Plot size	CVWithout blocking No.of Repli- Ho.of cation trees for 5% for 5% SE			$1 / \mathrm{xCV}$	CV	ot block No. 0 f Replication for 58 3E	No.or trees for 58 SE	$1 / \mathrm{xCV}$
1	0.873	305	305	1.14	1.022	418	418	0.98
2	0.563	127	254	0.88	0.468	88	176	1.06
3	0.458	84	252	0.72	0.385	59	177	0.86
4	0.381	58	232	0.65	0.348	48	192	0.71
5	0.319	41	205	0.62	0.274	30	150	0.72
6	0.309	38	234	0.53	0.287	33	198	0.58
7	0.316	40	280	0.45	0.344	47	329	0.41
8	0.252	25	200	0.49	0.349	49	392	0.35
9	0.272	30	270	0.40	0.270	29	261	0.41
10	0.245	24	240	0.40	0.250	25	250	0.40
11	0.271	29	319	0.35	0.115	6	66	0.79
12	0.224	20	240	0.37	0.065	2	24	1.28
13	0.204	17	221	0.37	0.206	17	221	0.37
14	0.243	24	336	0.29	0.191	15	210	0.37
15	0.181	13	195	0.36	0.180	13	195	0.37

Table. 4.10 (cont....)
CV, No. Of trees \& replications required to attain 5\% si and efficiency for different sizes of plots \& blocks using method III arter arraneing with Ganopy spread

$\begin{aligned} & \text { Plot } \\ & \text { size } \end{aligned}$	cV ${ }^{10}$	plot No. Repl cat for SE	ock Bo. of trees for 5\% SB	$1 / \mathrm{xCv}$	cV ${ }^{15}$	ot bl Ho. of Repl catio for. SE	cit Ho.of trees for 5% SE	$1 / \mathrm{xCV}$
1	0.803	258	258	1.24	0.840	282	282	1.19
2	0.751	226	452	0.66	0.551	121	242	0.90
3	0.304	37	111	1.09	0.399	64	192	0.83
4	0.438	77	303	0.57	0.408	67	268	0.61
5	0.454	82	410	0.44	0.404	66	330	0.49
6	0.424	72	432	0.39	0.338	46	276	0.49
7	0.370	55	385	0.33	0.243	24	168	0.58
8	0.357	$5!$	408	0.35	0.235	22	176	0.53
9	0.263	28	252	0.42	0.267	29	261	0.41
10	0.225	20	200	0.44	0.302	36	360	0.33
11	0.203	16	176	0.44	0.242	23	253	0.37
12	0.174	12	144	0.47	0.228	21	252	0.36
13	0.174	12	156	0.44	0.192	15	195	0.40
14	0.202	16	224	0.35	0.199	16	224	0.35
15	0.201	16	240	0.33	0.167	11	165	0.39

Table. 4.11

Different models fitted to /s/along with the R^{2} values for Method I
a
b
c

Mithout blocking

$$
\begin{array}{lcccc}
Y=a x^{-b} & 410 \times 10^{-6} & -226 \times 10^{-2} & \\
Y=a / x+b / \sqrt{x}+c & 127 \times 10^{-5} & -99 \times 10^{-5} & 186 \times 10^{-6} & 98 \\
Y^{-1}=a+b l o g x & -320 \times 10^{3} & 862 \times 10^{3} & & 65 \\
Y^{-1}=a x+b \sqrt{x}+c & 204 \times 10^{3} & -657 \times 10^{3} & 515 \times 10^{3} & 96
\end{array}
$$

5 plot black

$Y=a x^{-b}$	119×10^{-7}	-229×10^{-2}		$64^{* *}$
$Y=a / x+b / \sqrt{x}+c$	-812×10^{2}	$165 \times 10^{* *}$	-423×10^{3}	$73^{* *}$
$Y^{-1}=a+b l o g x$	-134×10^{5}	560×10^{5}		10
$Y^{-1}=a x+b / \sqrt{x+c}$	-122×10^{5}	823×10^{5}	-925×10^{5}	11

10 plot blocis

$Y=a x-b$	48×10^{-6}	-225×10^{-2}	$82^{* *}$	
$Y=a / x+b / \sqrt{x}+c$	$10 \times 10-5$	$-75 \times 10-6$	$142 \times 10-7$	92^{*}
$Y-1=a+b l o g x$	-365×104	981×104		47
$Y-1=a x+b \sqrt{x}+c$	181×104	-495×104	312×104	63

15 plot block

$Y=a x^{-b}$	10×10^{-5}	-231×10^{-2}		$84_{* *}^{* *}$
$Y=a / \pi+b / \sqrt{x}+c$	5×10^{-5}	-11×10^{-7}	-36×10^{-7}	$86^{* *}$
$Y^{-1}=a+b 10 g x$	-194×10^{4}	522×10^{4}		48^{*}
$Y^{-1}=a x+b \sqrt{X+c}$	718×10^{3}	-142×10^{4}	373×10^{3}	61^{*}

** Significant at 1%

* Significant at 5%

Table. 4.12
Different modele fitted to $C V$ along with the R^{2} values for Method I

Vithout blockine

5 plot block

$Y=a x^{-b}$	0.904	-0.607		86
$Y=a / x+b / \sqrt{x}+c$	-0.268	1.224	-0.131	93**
$Y-1=8+b l o g x$	0.342	4.301		75
$Y-1=a x+b \sqrt{x}+c$	0.04 e	1.466	-0.526	79

10 plot block
$\begin{array}{lll}Y=a x-b & 0.865 & -0.608\end{array}$
$Y=a / x+b / \sqrt{x}+c \quad-0.009$
$0.905 \quad-0.061$
$Y-1=a+b l \log x \quad 0.265$
4.48577
$\begin{array}{lllll}Y^{-1} & =a x+b \sqrt{x}+c & 0.389 & -0.135 & 1.138\end{array}$
15 plot blook

$Y=a x^{-b}$	0.817	-0.541	
$Y=a / x+b / \sqrt{x+c}$	-0.049	0.904	-0.043
$Y-1=a+b l o g x$	0.726	3.636	
$Y-1=a x+b \sqrt{x}+c$	-0.375	3.279	-2.181

** Significant at 1名

* Significant at 5\%

Table. 4.13
Different models fitted to / $\mathrm{S} /$ along with the R^{2} values for lethod II after arranging with Trunk girth
a
b

Without blocking

$Y=a x^{-b}$	480×10^{-5}	-172×10^{-2}	
$Y=a / x+b / \sqrt{x}+c$	980×10^{-6}	-62×10^{-5}	106×10^{-6}
$Y^{-1}=a+b l o g x$	-652×10^{2}	192×10^{3}	
$Y^{-1}=a x+b \sqrt{x}+c$	428×10^{2}	-133×10^{3}	107×10^{3}

5 plot block

$Y=a x-b$	$432 \times 10-5$	$-303 \times 10-2$	
$Y=a / x+b / \sqrt{x}+c$	$23 \times 10-3$	$-20 \times 10-3$	$4 \times 10-3$
$Y-1=a+b 1$ ogx	-596×103	127×104	
Y		95	

$\mathrm{Y}-1=\mathrm{ax}+\mathrm{b} \sqrt{\mathrm{x}}+\mathrm{c} \quad 621 \times 103 \quad-254 \times 104 \quad 231 \times 104 \quad 72$

10 plot block

$Y=a x^{-b}$	76×10^{-4}	-334×10^{-2}		96**
$Y=a / x+b / \sqrt{x}+c$	13×10^{-3}	-10×10-3	2×10^{-3}	98
$Y^{-1}=a+b l o g x$	-578×10^{3}	126×10^{4}		36
$Y^{-1}=a x+b \sqrt{x}+c$	543×10^{3}	-216×10^{4}	192×10^{4}	79

15 plot block

$Y=a x^{-b}$	39×10^{-4}	-294×10^{-2}	
$Y=a / x+b / \sqrt{x}+c$	143×10^{-4}	-119×10^{-2}	23×10^{-4}
$Y-1=a+b l o e x$	-188×10^{3}	479×10^{3}	
$Y-1=a x+b \sqrt{x}+c$	115×103	-373×103	285×103

** Sienificant at 1%

* Signifioant at 5%

Table. 4.14
Different models fitted to $C V$ along with the \mathbb{R}^{2} values for Method II aifter arranging with Trunk girth
a
b
c
R^{2}

Nithout blocking

$Y=a x^{-b}$	0.823	-0.250		97**
$Y=a / x+b / \sqrt{x}+c$	0.078	0.497	0.297	98
$\mathrm{Y}-\mathrm{f}=\mathrm{a}+\mathrm{blog} \mathrm{x}$	1.157	1.002		97**
$y-1=a x+b \sqrt{x}+c$	-0.092	0.842	0.433	97

5 plot block

$y=a x^{-b}$	1.110	-0.488		76
$y=a / x+b / \sqrt{x}+c$	1.073	-0.033	0.272	89 **
$\mathrm{Y}^{-1}=\mathrm{a}+\mathrm{blog} \mathrm{x}$	0.707	2.117		64
$y^{-1}=a x+b \sqrt{x}+c$	-0.323	2.416	-1.519	67

10 plot block
$Y=a x^{-b} \quad 1.130 \quad-0.509 \quad 95^{* *}$
$Y=a / x+b / \sqrt{x}+c \quad 0.274 \quad 0.038 \quad 0.111 \quad 97$
$Y^{-1}=a+b l o g x .0 .522 \quad 2.379$

$Y-1=a x+b \sqrt{X}+c$	0.023	0.826	0.029	94

15 plot block

$Y=a x-b$	1.154	-0.516		$92_{* * *}^{* * *}$
$Y=a / x+b / \sqrt{x}+c$	0.465	0.704	0.083	$97_{* *}^{* *}$
$Y-1=a+b l o g x$	0.625	2.220		$90^{* *}$
$Y-1=a x+b \sqrt{x}+c$	-0.205	1.875	$\because^{*}-1.001$	91^{*}

** Significant at i\&

* Significant at 5尼

Table. 4.15
Different models fitted to / $/$ / elong with the R^{2} values for Method II after arranging with Canopy spread
a
b
c

Without blocking

$Y=a x^{-b}$	470×10^{-6}	-195×10^{-2}		$98_{* *}^{* *}$
$Y=a / X+b / \sqrt{x}+c$	108×10^{-5}	-74×10^{-5}	131×10^{-6}	$99_{* *}^{* *}$
$Y^{-1}=a+b l o g x$	-112×10^{3}	329×10^{3}		$7!_{* *}^{*}$
$Y^{-1}=a x+b \sqrt{x}+c$	596×10^{2}	151×10^{3}	111×10^{3}	95^{*}

5 plot block
$Y=\mathrm{ax}^{-\mathrm{b}} \quad 306 \times 10^{-5} \quad-325 \times 10^{-2} \quad 77$
$Y=a / x+b / \sqrt{x}+c \quad 170 \times 10^{-4}$
$-147 \times 10^{-2} \quad 292 \times 10^{-5} 94$
$Y^{-1}=a+b \log x \quad-314 \times 10^{4} \quad 636 \times 10^{4} \quad 13$
$Y^{-1}=a x+b \sqrt{x}+c \quad 379 \times 10^{4} \quad-160 \times 10^{5} \quad 149 \times 10^{5} \quad 40$
10 plot block
$Y=a x^{-b} \quad 181 \times 10^{-5} \quad-275 \times 10^{-2} \quad 93$

93
$Y=a / x+b / \sqrt{x}+c \quad 23 \times 10^{-4} \quad-135 \times 10-5 \quad 196 \times 10^{-6} \quad 99_{*}^{*}$
$\begin{array}{lll}\mathrm{Y}-1=\mathrm{a}+\mathrm{bl} \text { of } \mathrm{x} & -238 \times 103 & 660 \times 103\end{array}$
$Y-1=a X+b \sqrt{X}+c \quad 124 \times 103 \quad-344 \times 103 \quad 232 \times 103 \quad 76$
15 plot block

$Y=a x^{-b}$	280×10^{-5}	-125×10^{-2}		$9^{* *}$
$Y=a / x+b / \sqrt{x}+c$	23×10^{-4}	-174×10^{-5}	312×10^{-6}	$99_{* *}^{* *}$
$Y^{-1}=a+b l o g x$	-169×10^{3}	497×10^{3}		$70^{* *}$
$Y-1=a x+b \sqrt{x+c}$	739×10^{2}	-164×10^{3}	833×10^{2}	08

** Sienixicant at is

* Sienificent at 5\%
ω

Table. 4.16
Different models fitted to $C V$ along with the Π^{2} values for Hethod II after arranging with Canopy spread
a
b
c

Without blocking

$Y=a x^{-b}$	0.819	-0.239	
$Y=a / x+b / \sqrt{x+c}$	0.117	0.435	0.323
$Y^{-1}=a+b 100 x$	1.175	0.939	
$Y^{-1}=a x+b \sqrt{x+c}$	-0.119	0.946	0.330

5 plot block

$Y=a x^{-b}$	1.206	-0.571		$85^{* *}$
$y=a / x+b / \sqrt{x+c}$	-1.081	2.373	-0.309	85
$Y^{-1}=a+b l o g x$	0.244	2.986		76
$Y^{-1}=a x+b \sqrt{x}+c$	0.358	-0.571	1.333	91

10 plot blocks

$Y=a x^{-b}$	1.042	-0.539		$89^{* *}$
$Y=a / x+b / \sqrt{x}+c$	-1.384	2.590	-0.378	93
$y-1=a+b \log x$	0.488	2.913		85
$Y-1=a x+b \sqrt{X}+c$	-0.003	1.171	-0.297	90

15 plot block

$\mathrm{Y}=\mathrm{ex}^{-b}$	1.105	-0:541		90
$Y=a / x+b / \sqrt{x+c}$	-0.291	1.146	0.011	86
$Y^{-1}=a+b l o g x$	1.056	1.875		69
$\mathrm{Y}-1=\mathrm{ax}+\mathrm{b} \sqrt{\mathrm{x}}+\mathrm{c}$	-0.427	2.829	-1.645	78

[^0]* Significant et 5 5

Table. 4.17

Different nodels fitted to $/ \mathrm{S} /$ along with the R^{2} values for Fethod III after arranging with Trunk girth

Hithout blocking

$Y=a x^{-b}$	48×10^{-6}	-431×10^{-2}	
$Y=a / x+b / \sqrt{x}+c$	154×10^{-5}	-136×10^{-5}	273×10^{-6}
$Y-1=a+b l o g x$	-397×10^{6}	958×10^{5}	
$Y-1=a x+b \sqrt{x}+c$	284×10^{6}	$-101 \times 10^{*}$	827×10^{6}

5 plot block

$Y=a x-b$	$25 \times 10-4$	$-514 \times 10-2$		97
$Y=a / x+b / \sqrt{x}+c$	$240 \times 10-4$	$-212 \times 10-4$	$427 \times 10-5$	95
$Y-1=a+b 10 g x$	-173×106	362×106		27
$Y-1=a x+b \sqrt{x}+c$	173×106	-704×106	635×10^{6}	66

10 plot block

$Y=a x^{-b}$	30×10^{-4}	-471×10^{-2}		98
$Y=a / x+b / \sqrt{x}+c$	145×10^{-4}	-125×10^{-4}	247×10^{-5}	97
$y^{-1}=a+b l o g x$	-246×10^{5}	551×10^{5}		46
$y^{-1}=a x+b \sqrt{x}+c$	211×10^{5}	-814×10^{5}	707×10^{5}	92

15 plot block

$Y=a x-b$	$388 \times 10-5$	-471×10^{-2}		$99 * * *$
$Y=a / x+b / \sqrt{x}+c$	$154 \times 10-4$	$-135 \times 10-4$	$269 \times 10-5$	$96 * *$
$Y-1=a+b 10 g x$	-204×105	460×105		$48 * *$
$Y-1=a x+b \sqrt{x}+c$	168×105	-641×105	550×105	$92 * *$

** Signisicant at 1%

* Significant at 5\%

Table. 4.18

Different models fitted to $C V$ along with the R^{2} values for Method III after: arranging with Trunk eirth
a
b
c

Without blocking

$Y=a x^{-b}$	0.804	-0.493		$98 * * *$
$Y=a / x+b / \sqrt{x}+c$	0.364	0.421	0.089	$99_{* *}^{* *}$
$Y^{-1}=a+b l o g x$	$\therefore 0.901$	2.973		$97_{* *}$
$Y^{-1}=a x+b \sqrt{x}+c$	-0.153	1.913		-0.641

5 plot block
$Y=a x^{-b} \quad 1.694 \quad-0.809 \quad 75$
$\begin{array}{llll}\mathrm{Y}=\mathrm{a} / \mathrm{x}+\mathrm{b} / \sqrt{\mathrm{x}}+\mathrm{c} & -1.078 & 2.769 & -0.466\end{array}$
$Y^{-1}=a+b l o g x \quad-0.807 \quad 64$
$\begin{array}{lllll}Y^{-1}=a x+b \sqrt{x}+c \quad 1.048 & -3.088 \quad 3.283 & 88\end{array}$
10 plot block
$Y=a x^{-b} \quad 1.260 \quad-0.680 \quad 92$
$\mathrm{Y}=\mathrm{a} / \mathrm{x}+\mathrm{b} / \sqrt{\mathrm{x}}+\mathrm{c} \begin{array}{llll}-0.822 & 2.350 & -0.404 & 89\end{array}$

$Y^{-1}=a+b l o g x$	0.246	3.602

$Y^{-1}=a x+b \sqrt{X}+c \quad-0.235 \quad 1.577 \quad 1.914 \quad 91$
15 plot block

$Y=a x^{-b}$	1.214	-0.652		97
$Y=a / X+b / \sqrt{x}+c$	0.473	0.336	-0.042	$99_{*}^{* *}$
$Y^{-1}=a+b \log x$	0.316	003.405		95
$Y^{-1}=a x+b \sqrt{x}+c$	-0.150	2.074	-1.335	97

* Sieniricant at 1%
* Significant at 5t

Table. 4.19
Different models fitted to /S/ alone with the R^{2} valueg for Method III after arranging with Canopy spread
a
b
c
R^{2}

Without blocking

$Y=a x^{-b}$	130×10^{-6}	-439×10^{-2}	
$Y=a / x+b / \sqrt{X}+c$	154×10^{-5}	-136×10^{-5}	271×10^{-6}
$Y^{-1}=a+b l o g x$	-237×10^{6}	546×10^{6}	
$Y-1=a x+b \sqrt{X+c}$	196×10^{6}	-744×10^{6}	641×10^{6}

5 plot block

$i \mathrm{~V}=\mathrm{ax}-\mathrm{b}$	48×10-4	-561×10-2		96
$\underline{Y}=\mathrm{a} / \mathrm{x}+\mathrm{b} / \sqrt{x}+\mathrm{c}$	$180 \times 10-4$	-159×10-4	$38 \times 10-4$	94
$\mathrm{Y}-1=\mathrm{a}+\mathrm{bl} \log \mathrm{x}$	-298×103	659×106		33
$Y-1=a x+b \sqrt{x}+c$	228×10^{6}	-853×10^{6}	711×10^{6}	62

$\frac{10}{24}$ plot block

$\mathrm{Y}^{\prime}=\mathrm{ax}^{-\mathrm{b}}$	14×10^{-4}	-463×10^{-2}		99
$Y=a / x+b / \sqrt{x}+c$	344×10^{-5}	-293×10-5	575×10^{-6}	97
$Y^{-1}=a+b l o g x$	-540×105	120x106		$4 *^{*}$
				**
$\mathrm{Y}-1=\mathrm{ax}+\mathrm{b} \sqrt{\mathrm{x}}+\mathrm{c}$	464×105	-180×10^{6}	156×10^{6}	84

15 plot block

$Y=a x-b$	$522 x$
$Y=a / x+b / \sqrt{x+c}$	307×1
$Y-1=a+b l o g x$	$-598 x$
$Y-1=a x+b \sqrt{x+c}$	$468 x$
$*$ Significant at 1%	
$*$	Significant at 5%

Table. 4.20
Different modela fitted to CV along with the p^{2} values for Method III after arranging with Canopy spread

Without blocking

$Y=a x^{-b}$	0.815	-0.517		96
$Y=a / x+b / \sqrt{x}+c$	0.351	0.0	0.452	0.070
$Y^{-1}=a+b l o g X$	0.796		3.274	98
$Y^{-1}=a x+b \sqrt{x}+c$	0.027	1.410	-0.167	90

5 plot bloct
$Y=a x^{-b} \quad 0.898 . \quad-0.656$
$Y=a / x+b / \sqrt{x}+c \quad 0.962 \quad-0.127$
$Y-1=a+b l o g x \quad-0.086$
5.775 . 32
$Y-1=a x+b \sqrt{X}+c \quad 0.260$
1.017
-0.248
10 plot block
$\begin{array}{lll}\mathrm{Y}=\mathrm{ax-b} & 0.916 & -0.572\end{array}$
$Y=a / x+b / \sqrt{x+c} \quad-0.527$
1.514
-0.174

$$
82
$$

$Y-1=a+b l o g x \quad 0.420$
3.826

85
$Y-1=a x+b \sqrt{x}+c \quad 0.335$
-0.128
1.17

73

15 plot block
$\begin{array}{lll}Y & =\mathrm{ax}-\mathrm{b} & 0.822\end{array}$
$Y=a / x+b / \sqrt{x}+c \quad 0.149$
0.665
0.017

92
$\begin{array}{ll}\mathrm{Y}-1=\mathrm{a}+\mathrm{blogx} & 0.65 \\ \mathrm{Y}-1=\mathrm{ax}+\mathrm{b} \sqrt{\mathrm{x}+\mathrm{c}} & 0.160 \\ \text { ** Significent at } 1 \%\end{array}$

* Significant at 5%

DISCUSOIOR

Determinant of the scatter matrix had been used as a neasure of variation in multivariate case by various workers. This measure of variation depende on the unite of measureaent and magnitudes of the obaervations. Hence it is not suiteble for comparison of variation of plots of different aises. Therefore the matrix of relative dispersion wes defined. Each element of this matrix is unit free and hence the determinant. Thus/S/facilitates comparison of plots of different sizes in the multivariate case just as coafficient of variation in the univariate case. Hence it was used as a measure of variation in the present investicetion.

Three difierent methode of plot formation were considered in the present investigation. The third method was a slight modification of the second method proposed by Shrikande (1958). This modification was suggested in order to make maximum heterogeneity within piots so that maximum homogeneity is attained emong plots. The optimum plot gizen arrived ai for different block sizen by different methods and the compariaon between the three methods of plot rormation are discussed below.

Method I

Multivariate case

In the case of without blocking, aingle tree plots
were found to be optimut on all the three considerations.

For blocks of gize ife, sinele tree plote were lound to require miniaum number of treea to achiove five percont error where as nine tree plots gave maximum efficiency and three tree plots were optimum by the method of maximum curvature.

Though nine tree plots had maximum efficiency(69.99), itr required at least 18 treos to achieve five percent orror while single tree plots needed only aix trees to achieve five percont error and had efficiency (66.5) very nearer to that for nine tree plots. Similarly three tree plots had very low efficiency and required 18 treen to achieve five percent error. Hence aingle tree plote can be recomended for experimente with blocks of size five.

For blocke of size 10 , two tree piota were found to require minimum number of trees to achieve five percent error and eeve maximum efficiency. Optimum was found to be 18 using model II while single tree plots were found to be optimum using smith's model by the method of maximum curvature, Two tree plots can be recommended on economic consteerations.

For blocke of aizo 15 , single tree plots were found to be optimum on all the three considerationa.

Univariate case

In the cose of without blocking, single tree plots
were found to require minimum number of trees to achieve five percent $S B$ and had naximum eificiency vihare as two tree plots vere found to be optimum by the method of meximum curvature.

In the case of two tree plote 378 trees were renuired to achieve five percent atandard orror. But for single tree plots, 305 trees were neoded to achieve five percent gtandard error. Hence single tree plote mey bo used for experiments when no blocking is adopted.

When blocking tas adopted, 12 tree plota vere found to requires winimum number of trees for blocks of gize five, 12 tree plots for blocks of size ten and 10 tree plote for blocka of 15 plots. Dut eingle tree plots had maximum efificiency as woll as optimum by the method of maximum curvature for all the three sizes of blocka.

Blockine was found to be effective in this method. single tree plots were found to be optimun in multivariate case wile 10 tree plote were found to be optimum in univariate case with respect to the minimum experinental materiel for specified preciaion

Method II

Sultivariate case

[^1]tive percent error and had maximum efficiency when the trees were arranged by trunk girth or by canopy apread. Three tree plots vere optimum by the wethod of maxisum curvature under both arrangemente. Since single troe plots required far less number of trees compared to three tree plote, oingle tree plots can be used for experimonto when this method is adopted.

For blocisa of size five, two tree plots were founc to require minimum number of trees to achieve five percent error and they had maximug efficiency under both arrangements. By the method of maximum curvature, single tree plota were optimun then arrangement was by girth while 13 tree plots were optimm when arrangement was by spread. Adoption of two tree plots in experiments will drastically reduce the number of trees compared to single tree plota or 13 tree plote and hence the cost. Therefore two tree plots can be recombended in thia case.

For blocks of size ten, the minimum number of trees required to achieve five percent error was for 11 tree plots when arrangement was by girth and for single tree plots when the arrengement was by opread. Eleven tree plote were found to eive maximum efficiency shen arrangenent was by girth whereas six tree plote gave maximum efficiency when arrangement wes by spread.

Since the optimum plot sizes arrived at by different methods were not in asreement in either arrangements, a
general recommendation could not be mede here.

In the case of block of size 15, eleven tree ploto required minimum number of trees to achieve five percent error and gave maximun efficiency whereas single tree plots were optimum by the method of maximum curvature then the arrangement was by girth. Eleven tree plots can de used in this case because of drestic reduction in total number of trees and hence in cost.

When the arrangesent was by spread, six tree plots were found to require the minimum number of trees to achieve five percent error and gave maximum efficiency where ae four tree plots gave optimun by the method of maximum curvature. Six tree plots may used for experiments with blocks of size fifteen in this case as consideration of reduced cost.

Univariate cabo.

In the cace of without blocking, single tree plots were optimum on all the three considerations under both arrangements.

For blocks of sizes five and ten a general recomendations could not be made becouse the optimum plot sizes arrived at by different nethods were not in agreement with either arrangements.

In the case of blocks of sige 15, six tree plota were found to require minimum number of trees to achieve iive
percent error under both arraneements. But gingle tree plots were optimum by the method of maximum curvature and Gave maximum efficiency. Six tree plote may be used for experiments because of the reduction in the cost.

Blocking was found to be affectve in this method. Two tree pota were found to be optimat in multivariate case while six tree plote vere found to be optinum in univariate case with reopect to the minimum experinental material for specifted precision.

Method III

Multivariate case
/3/ values for different plot sinee were very low when blockine vas not adopted comparea to those of blocks of different bizes. In other worde blocking ras ineffective under hoth arrangenents. Arrangenent with girth resulted in smaller /a/ velues for all sizes of plots and blocks compared to that with spread. Theretore optimum plot sizes for no blocking only is discussed here.

Ninimum number of trees.required to achieve five percent error was for two tree plots (total six trees) when the arrangement zas by girth and for four tree plots (total aicht trees) when the arrangement was by apread. optinum plot sizes arrived at with respect to maximum efficiency as well ae by the method of maximum curvature was for lareer plot sizes when arrangement ves by girth and for sugller
plot sizes when the arrangement was by spread. Adoption or larger plot sizes, although will achieve more precioion, two tree plots will be quite sufficient for all practical purposes because of the minimum cost.

Univarlate case

In the case of without blocking six tree plots were found to require mininum number of trees to achteve five percent standard arror where as aingle tree plots were optimum by the method of maximum curvature and had maximum efficiency, when the arrangement was by girth. Six tree plots requiring least cost. can be recommended for experiments in thia cese.

When the arrangenent was by spread, 15 tree plots were found to require minimum number of trees to achieve five percent error where as single tree plots were found to have maximum efficiency. But six tree plote were optimum by the method of maximum curvature. Fiftegn tree plots may be used for experimenta in this casc.

For blocks of aize five, 12 tree plots were found to require minimun number of trees to achieve five percent error whore ad two tree plots gave maximum efficiency when the arrangement was by sirth. But when the arrangement was by spread, twelve tree plots vere found optimum with respect to the number of trees required to achieve five percent error and also geve maximum efficiency. But single
tree plota were optimum by the method of method of maximum curvature. Twelve tree ploto can be used as optimum under both arrangemente because of the drastic reduction in cost.

In the case of blocks of aizes 10 and 15 , a general. recommendation was difficult bectuce of the diferences of the optimum plot sizes arrived at by different approaches.

Blocking was found to be ingffective in this methoa. Two tree plots were found to be optinum in multavariate case while 15 tree plots vere found to optimum in univariate case with respect to the minimum experimental material Por apecified preciaion.

Comparison of dieferent methode
/s/ in multivariate case and coefsicient of variation in univariate case here found to be low for all plot alzes when no blockine was adopted in method III compared to those in methoda I and II. In other words, method III is a nore erficient nethod of plot formation then methods I and II. Blocking was found to be effective in I and II methods of plot formation as the coefficient of varlation or / $/ \mathrm{/} / \mathrm{dec}$ eased for almost all the plot sizes when blocking was adopted.

When blocking mas adopted in method ITI, there was no subgtantial reduction in the value of $/ \mathrm{s} /$. Hence blocking we ineffective in this method. In univeriate caee, for certain plot aizes, the coefficient of variation decreased
and for many of the plot sizes, it increased. Therefore, one can not say on the effectiveness of blocking in general.

When the experiment is to be plenned in an established garden, the third method can be adopted. The main aim of this method of plot formation is to increase variability within plots and thus achieve homogenity amone plots . Experiments, forwhich fresh planting is to be done, methodi with blocking can be recommended.

As regards the different methods of determination of optimum sizes of plots, that requiring ginimum number of trees for a specified precision is to be prefed over the others on economic consideration.

In the present investigation, blocking was done just to make the totel number of trees in every block to be the same. If blocking is done judiciousiy, i.e., by proper stratification of the treen, blocking is likely to become more efficient. Pre-treatment yield would be a good covariate for experiment with Cocoa rather than the trunk Eirth or canopy spread since they had only very feable relationship with yield.

SUMMARY

Determination of optimum size of experimental unit based on simultaneous conaideration of more than one character vas attempted for the first time. The matrix of relative dispersion of' p ' characters, $X_{i}, i=1 \ldots \ldots .$. defined as $S=\left(S_{i j}\right)$ where
$S_{1 j}=\sum_{k=1}^{N}\left(X_{i k} X_{j k}-W_{i} \bar{X}_{j}\right) / E \bar{X}_{i} \bar{X}_{j} \quad i, j=1,2, \ldots p$,
$X_{i k}$ is the observation on ith character of the $e^{\text {th }}$ unit, \bar{X}_{1} is the mean per unit of the $i^{\text {th }}$ character and N is the total number of unita.
/2/, the determinant of relative disperaion matrix was proposed as a measure of variation for comparison of plote of difierent sizes in the multivariate cage.

The material consistod of 738 Forestero variety of cocoa trees Groun in the Kerela Aericultural Development Project(KADf) fara, Vellanikyara of the Kerala Agricultural University. The followine three methodo of plot formation were used in the present investigation

Rethod I

The whole set of trees were divided into compact bloche of different aizes and plots of one to firteen trees vere formed by combining adjacent trees in the field.

Method II

All trees were arranged in descending order of magnitude of trunk Eirth and of the canopy spread separately and were divided into blocks of required size. Plots of one to fifteen trees were formed by combining adjacent trees in the list in each blocks for each arrangement.

Method III

The troe wore firot, arranged as decribed in Hethod II. Plota of difierent gizeo were tormed by the rolioding yrocedure. Let there be nir trees in a block. Divide the nt trees inte 'n' groups of 'k' trees bearing continuous serial numbers each. When ' n ' is even, the $i^{\text {th }}$ plot was formed by combining $i^{\text {th }}$ tree from each of the first ' $n / 2^{\prime}$ groups and $(k-1+1)^{\text {st }}$ tree from each of the remaining $\quad n / 2$ ' groups. In other words the trees having serial number 1 , $1+k, \quad i+2 k, \ldots \ldots .1+((n / 2)-1) k, \quad((n / 2)+1) k-1+1, \ldots \ldots . . .$. form $i^{\text {th }}$ plot in oach block, vere $1=1,2,3, \ldots, n$. When ' n ' is odd, $i^{\text {th }}$ plot wes formed by combining the $i^{\text {th }}$ tree from each of the first $((n+1) / 2)$ groups and $(k-i+1)^{\text {t }}$ tree irow each of the remaining $((n-1) / 2)$ groups, where $i=1,2, \ldots . . n$. In other words the trees having serial number 1, $\quad i+k$, $\ldots \ldots \ldots+((n-1) / 2) k, \quad(((n+1) / 2)+1) k-i+1$, $(((n+1) / 2)+2) k-i+1, \ldots . . n k-i+1$ form ith plot in each block, where $i=1,2,3, \ldots . . . n$.

Of the three methods of plot formation, flothod III, proposed in this investigation was found to be superior to Methods I and II for experiments in established gerdens. Blocking was found to be ineffective in this method. Blocking was found to be effective in I and II.

Optinum sizes of plots were determined by following three different considerations for different block sizes under each of the three methodo of plot formation.
(1) Optimum plot size is that which requires minumum experimental material for a specified precision. For the purpose, the number of replications to achieve p\% error in multivariate case vas proposed as

$$
r=/ s / 1 / p /(p / 100)^{2}
$$

(2) Bfficiency for plot of x trees was taken as $1 / x C V$ where $C V$ is the coefficient of variation for plots of x trees in univariate case and $1 / x y / \sqrt{/ G /}$ in muitivariate case. Shat sige which has maximum efficiency wos considered as optinum.
(3) Optimum piot aige also was obtained by the calculus method oi maximum curvature, using best of four emperical models.

Of the three approaches, the first approach was recommended on economic considerations. The third method of plot formation without blocking was recomended for
experiments in established gerdens with two tree plots and the first method for those with fresh planting with single tree plots in small blocks.

References

REPERENCES

Abrahan, T.P., Khosla, R.K. and Agarwal, K. T. (1969). Uniformity trials on black pepper. (Piper nisrum I.). Indian J. egric. Sci. 39(8): 780-806

Abraham, T.P. and Kulkarni, G.A. (1963). Investigations on then optimum pre-experimental period in fielld experimentation on perennial crops. J. Indian Soc. agric Statist. 15(1): 175-184

Abrahan, T.P. and Yachani, M.V. (1964). Size and shape of plots and blocks in field experiments vith transplanted rice orop. Indian J. agric. Sci. 34: 152-165

Agarval, K. $\begin{gathered}\text { (1973). Uniformity trials of Apple. Indian J. }\end{gathered}$ Hort 30: 525-528

Agarwal, K.N., Bavappa, K.V.A. and Khosla, R.K. (1968). Study of gize and shape of plots and blocks and optimum number of pre-experimental periods on arecanut. Indien J. agric. Sci. 38: 444-460

Beker, G.A., Huberty, 敝. . , Veinmeyar, F.J.(1952). A uniformity trial on unirrigated barely of ten year's duretion. Agron J. 44: 267-270

Bhargava, P.N. and Sardana, M.G. (1975). Size and shape of plots in field trials with apple. Indian J. Hort. 32(1): 50-57

Bhargava, P.N., Saxena, A. and Baika, P.K. (1978). Bize and shape of plots in rield trials with banena. Indian J. Hort. 35(1): 68-73

Bist, B.S., Malhotra, V.P. and Sreenath, P.R. (1975). Size and shape of plots and blocks in field experiments with potato crops in hills. Indian J. agric. Sci. 45(1): 5-8

Brar, W.S., Chahal, B.S. Gill, D.S. (1983). Optimum plot size for experiments on sweet orange. (Citrus Sinensis osbee). Cy Jaffa. South Indian Hort 31:99-100

Butters, B. (1964). Some practical consideration in the conduct of field trials with robusta coffee. d. Hort. Sci. 39 : 24-33

Cheesman, E.E. and Pound, F.J. (1938). Uniformity trials on cocoa. Trop. Agric. 9(9) : 277-288

Everitt, B.s. (1979). Unresolved probleas in cluster analysis. Biometrics. 35:169-181

Federer, U.T. (1967). Experiments Design. Oxford δ IBH Publishing Company, Gaicutta, Inđ. Ed. pp. 544

Freeman, C.H. (1963). The combined eifect of environmental and plant variation. BLometrics 19(2): 273-277
Priedman, f.p. and Rubin, J. (1957). On some invariant eriteria for grouping data. J. An. Statist. Assoc. 62 : 1159-1178

Gomez, K.A. (1972). Rechniques for field experiments with rice. Inernational Rice Research. Institute, Ios Banos, Philippines. pp. 46

Gopakunaran, R. (1984). Optimun plot size for field experinenta on turmeric. Unpubiished H.Sc. (AE.Stat) thesie, Kerala haricultural Dniversity.

Hariharan, V. (1981). Optimum plot gige for field experimento on brinjel. Unpublished f.Sc. (Ag. Stat.) theais, Kerala Agricultural University.

Hatheway, V.H. and Villiams, E.J. (195s). EPficient eatimation of the relationship between plot slae and the veriability of crop yields. Bicmetrics. $14(t)$: 207-222

Jayaraman, K. (1979). Optimum size and shape of plots and blocks and reletive efficiency or̂ desiane for Field experiments in ounflower(helianthus annuus L.)
 Manealore.
*Kalamkar, R.J. (1932a). Experimental error and the field plot technique with potato. 立 agric. Bci. Camb. 22 : 373-385

Kaushik, L. $\mathrm{G} ., \mathrm{Singh}, \mathrm{K} . \mathrm{P}$. and Yadeve, T.P. (1977). A uniformity triels with austard. Indian J. geric. Del. 47(10): 515-518

Koch, E.j. and Rigney, J.A. (1951). A method of estimatine plotsize iros experimental data. Agron. J. 43: 17-21

Kripashanter, K.S., Lal, M.S. and Cowami, U. (1972). size and shape of plots and blocks in yield trials os soyabean. Indian J. Refric Eci.42(10): 901-904
*Lessman, K.J. and Atkins, R.E. (1963a). Optioun plot sise and relative efficiency of lattice deoigns for Erain sorghum yield teste. Crou. Sci. 3 : 477-401

Longworth, J.F. and Freeman, G.f. (1963). The use of trunk girth as a calibrating variate for field experiments on cocoa trees. J. Hort Sci. 38: 61-67

Lucyamma Mathew. (1986). Standardisation of field plot technique for cashew. Unpublished M.Sc.(Ag.Stat) thesis, Kerala Agricultural University.

Marriot, F.H.C. (1971). Practical problews in a method of cluster analysis. Biometrics. 27: 501-514

Menon, T.C.M. and Tyagi, B.N. (1971). Optimum size and shape of plots in experiments with mandarin orange. (Citrus reticula Blanco). Indian J.aeric. Sci. 41 (10): 857-861

Nair, R.B. (1981). Determination of size and shape of plots for trials on cashew. Unpublished M.Sc. (Ag.Stat) thesis, Kerala Agricultural University.

Pearce, S.C. and Thom, J.M.S. (1950). The variabilty of Apple trees and the optimum size for unguarded plote. J. Hort. Sci. 26: 98-108

Pearce, S.C. and Thom, J.M.S. (1951). A study of plot size with Nigerian estate cocoa. J. Hort Sci. 26: 261-267

Prabhakaran, P.V., Balakrishnan, S. and Mary George. (1978). Optimum size for field trials with banana. Agric. Res. J. Kerala. 16(1): 33-38
Prabhakaran, P.V. and Thomes, E.J. (1974). Optimum plot size for field experiments with tapioca. Agric. Res. J. Kerala.12(1):19-23

Rambabu, Agarwal, M.C., Samraj, P. and Chinnamani, S. (1980). Size and shape of plots and blocks for field trials on natural grasslands in Nilgiri hills. Indian J. agric. Sci. 50 (8): 598-602

Raghava Rao, D. (1983). Statistical techniques in agricultural and biological research.0xiord \& IBH Publishing Co., Ist Ea. pp. 367

Saraswethi, P (1983). Methodological studies in designing experiments on coconut. Unpublished Ph.D. Thesis, IARI, New Delhi

Saxena, P.N., Kaviootkar,A.G and Monga ,M.K.(1972).Optimum plot size for oat Erown for fodder.Indian J. agri. Sci. 42(1):63-69

Scott, A.J. and Symons, M.J. (1971b). Clustering method based on likelihood ratio criteria. Biometricg. 27: 387-397
*Sen, A.R. (1963). Use of pre-treatment data in desinging experiments on tea. Emp. J. exp. Agric. 31: 41-49
*Smith, H.F. (1938). An empirical law describing heterogeneity in the yield of Agricultural crops. J. agric. Sci. 28: 1-23

Sreenath, P.R. (1973). Size and shape of plots and blocks in field trials with 'M.P. Chari' Sorghum. Indian J. agric. Sci. 43(2): 110-112

Shrikande, V.J. (1958). Sone considerations in designing experiments on coconut trees. Indian Coco. J. 11(4): 140-157

Sundararaj, N. (1977). Technique for estimating optimum size and shape of plot from fertilizer trial data. J. of Indian Soc. agric. Statistics. 29: 80-84

Suresh, K.f. (1986). Standardisation of technigues of clustering genotypes using Mahalanobis D 2 and Wilks's \wedge criterion. Unpublished M.Sc. (Ag.Stat.) thesis. Kerala Agricultural University.

* Originals not referred.

OPTIMUM SIZE OF PLOTS IN COCOA (Jheolroma cacao L.) - A MULTIVARIATE CASE

By
SHEELA. M. A.

ABSTRACT OF THE THESIS
 submitted in partial fulfilment of the requirement for the degree
 Faculty of Agriculture
 Kerala Agricultural University

Department of Statistics COLLEGE OF VETERINARY AND ANIMAL SCIENCES Mañnuthy - Trichur

ABSTRACT

A procedure to determine optimum size of experimental units in the multivariate case was proposed. For the purpose, the matrix of relative dispersion was defined and its deterainant was used as the measure of variation for comparison of plots of different sizes. This procedure was illustrated with the help of observations on three characters of 738 trees of 'Porastero' variety of cocoa raised in the KADP farm of the Kerala Agricultural University, Vellenikkara. Optimum plot size also vas obtained in the univariate case. .

The following three different methods of plot formation were used in this investigation.

Method I

The whole get of trees were divided into compact blocks of different gizes and plots of one to fifteen trees were formed by combining adjacent trees in the field. Method II

All trees were arranged in descending order of magnitude of trunk girth and of the canopy spread separately and were divided into blocks of required size. Plots of one to fifteen trees were formed by combining adjacent trees in the list in each blocir for each arrangement.

Method III

The trees were first arranged in descending order of magnitude of each character and they vere divided into blocks of required size. Plote of different aizes were formed withein each block by the following procedure. Leit there be 'nk' treen in a block. The nk trees were divided into ' n ' groups of 'Ic' trees each bearing continuous serial numbere. When ' n ' ibeven, the $i^{\text {th }}$ plot was formed by combining 1 th tree fron each of the riret ' $n / 2$ ' groups and (k-i+1)st tree from each of the reveining ' $n / 2$ ' groups, where $i=1,2, \ldots . . n$. When ' n ' is odd, ith plot was formed by combining the ith tree from each of the first $((n+1) / 2)$ eroups and $(k-i+1)^{\text {at }}$ tree from each of the remaining $((n-1) / 2)$ groups, where $1=1,2, \ldots .$. .

Of the three nethods oif plot formation kethod III, which was proposed in this study was found to we superior to Methods I and II for experiments in established eardens and Method I for experimenta for which fresh planting is required

Optimum size of plote were aiso determined by three different methods viz.,
(a) that which requires mininmum experimental material for a specified precision
(b) that which has maximum efficiency and
(c). that for which the beat fitting model has maximum curvature.

Of these three methods, the first one was found to be superior to the other two on economic considerations.

Two tree plots were found to be the optimum in multivariate case and 15 tree plots in univariate case when plots were formed by method III, without blocking, after arranging with trunk girth.

[^0]: * Significant at 1 多

[^1]: In the case of without blockine, single tree plots wore found to reguire minimua number of trees to achieve

